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Abstract 

In this paper we present an approach to the solution of parameter estimation problems in systems described mathematically 

by differential algebraic equations. The numerical solution of these equations is compared with measurements from experi­

ments. By adaptation of the parameters in the differential algebraic equations we try to tit the solution to the measurements. For 

the tit we use a (weighted) least squares criterion. Not only the final estimate of the unknown parameters, but also additional 

information about the reliability is derived. 
A computer program. with an interactive graphical user interface, has been developed to steer through the computation in 

order to intluence the precise formulation of the model and the data and to see the numerical results by direct visualisation. 

I. Introduction 

In many areas of the experimental sciences, such as chemistry, biology or environmental engineering, 

where mathematical models are used to describe a process under consideration and experiments are per­
formed to validate these models, an increasing demand for mathematical support has arisen. The models 

concern time-dependent processes with numerous state variables and many interactions, and feedback loops 

between the variables. They can be described mathematically by a set of differential algebraic equations 

( DAEs). It happens frequently that these model equations contain a number of unknown parameters, e.g. 
reaction constants (growth rates, etc.). The aim is to determine these unknown parameters such that an 

optimal fit is accomplished between the measurements from the laboratory or the plant and the theoretical 
results obtained by solving the set of DAEs. 

After the mathematical formulation of the problem, we present the numerical techniques which we use to 

cope with this problem. An additional section about the statistical background is followed by a case study 
from biochemistry. 

2. Mathematical formulation 

The model equations are denoted by a system of differential equations (DAEs) as 
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dv 
E d.t = j(t, y. I-!). with .vUo. 8) = yo(8), (1) 

where t is the time, 8 is an m-dimensional vector of unknown parameters, y(t. 8) is an 11-dimensional state 

vector depending on t and fl, f(t, y. 8): IR x 1R11 x !Rm~ 1R11 and the diagonal, n x n-matrix E denotes which 

equations are algebraic: E;; equals 1 if the ith equation is a differential equation and 0 if it is an algebraic 

equation. 
In order to determine the unknown parameters, some measurements, say N, are available on the process 

under consideration. Each measurement is characterised by a triple 

(c1,t;.J;). l~J~N. 

where c; indicates which component of the state vector, y, has been measured, t; is the time of the measure­

ment and J; is the measured value. It is possible to have more measurements at the same time: t; = t; + 1. A 

necessary condition reads N?;cm. 
An obvious approach is to estimate the unknown parameters such that the (weighted) sum of squared 

discrepancies between the calculated and the measured values, 

N 
~ , ~ 1 

S(8) = L.,, Wj(Yc,(f;, {I) - y;)-. (2) 
i=I 

is minimal. The calculated values are computed by means of an automatic solver for the DAEs based on 

the backward differentiation formulas (BDF, see for example [3] or [ 4]). The weights, w;, are based on the 

accuracy of the measurements and have dimension 1 /[)?; J. In the case that the errors in the measurements 
are statistically independent and we assume a Gaussian distribution of the errors with standard deviation, 

a;, we take w; = l/a1 and weighted least squares coincides with the maximum likelihood estimate. 

3. Variational equations 

In order to use a gradient-based minimisation procedure we solve, besides the set of DAEs (I), the 
corresponding set of variational equations with respect to the unknown parameter vector: 

d a.v of ay af 
£--=--+-. 

dt a8 ay ae ae 
a a 

with -v(to, 8) = -vci(O). 
a8·· a8· 

(3) 

The variational equations can easily be derived from ( 1) by a computer algebra package (we use Maple 

Y). The solution of (3) yields the gradient oy(t. 8)/iJO, which will be used later for the minimisation of the 
weighted sum of squared discrepancies (cf. (2)). 

Further, inspection of (3) shows that its Jacobian corresponds with m copies of the Jacobian of the original 

model equations (I). This means that the variational equations inherit the stiffness character of the original 
equations. In case of a BDF method, when a certain order and step strategy has been provided for numerical 
solution of ( 1 ), the same strategy can be used to solve (3) numerically. 

The use of a computer algebra package to derive the variational equations in combination with the same 
order and step strategy, leads faster to a more accurate gradient than is possible by finite differences. 
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4. Minimisation 

Denoting the vector of weighted discrepancies by the column vector 

Y(l;l) = W;(Yc;U;. 8) - 'Ji)i=l. .... N• 

we can write the sum of squares (2) as 

5(8) = llY(8)11 2 = YT(fi)Y(8). 

137 

(4) 

(5) 

For a given value of e, the vector Y(8) can be computed by numerical integration of the model equations 
( 1 ). The variational equations (3) lead to the calculation of the N x m matrix 

aY(e) ( a ) A(e)=--= w;-v".(t;,&) . 
ae aw ' i=l. ... N 

(6) 

The minimisation of (5) is done by an iterative procedure. Suppose e is a trial vector and its correction 
is given by 8&. The squared sum of the improved parameter vector can be approximated by a quadratic 
function of 88: 

S(e + 88) = yT((i + 88)Y(l1+88) 

>:::: (Y(H) + A(8)88)T(Y(8) + A(8)88) 

= YT(&)Y(8) + 28HT AT(e)Y(fJ) +oeT AT(f))A(e)Ofi. 

Its minimum is given by the normal equations 

AT(8)A(8)88 = -AT(8)Y(e). 

(7) 

(8) 

The last fonnula is the starting point of a Gauss-Newton method. It is obvious that the Gauss-Newton 
procedure will fail if the matrix A(e) is (almost) singular. A well-known remedy is the use of the 
Levenberg-Marquardt method, which changes (8) to a limited extent into 

(9) 

where A is adjusted to the condition of the matrix A(e). The Levenberg-Marquardt method can be seen as 
a combination of the Gauss-Newton and steepest descent. 

To solve 88 from (9), we use the singular value decomposition (SVD) of the matrix A(l1) as 

(10) 

with U(e) and V(8) unitary N x m andm xm matrices, respectively, and E(8) is a diagonal matrix, containing 
the singular values in a non-decreasing order. Substitution of ( 10) in (9) leads to the following expression 
for the correction of the parameter vector: 

( 11) 

5. Statistical background 

We assume that the errors in the measurements are statistically independent, scaled via the weights in 
such a way that they have equal variance (0" 2) and come from a Gaussian distribution. In most practical 
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cases this is quite a reasonable assumption. The (weighted) experimental errors in the measurements are 
then given by Y(6l), as in (4). This means that the covariance matrix of the experimental errors is given by 

E(Y(e)YT(e),)=a 2 /N. (12) 

In combination with (11) this gives the covariance matrix of se: 

E(SBS&T) = a 2 (AT Ar' = a 2V .r-2vT. (13) 

Upon convergence of the Levenberg-Marquardt algorithm we obtain a final estimate of e, denoted by 
e = e + 8e. We can write the corresponding final sum of squares as 

(14) 

where the matrices V and E are from the SVD (see (10)). 
From standard statistics (see [2]) we know that S(li)/a 2 and 8t9T(V E 2VT)S&/a 2 have a x2-distribution 

with N - m and m degrees of freedom, respectively. An unbiased estimate of a 2 is given by 

s2 = S(7i)/(N - m). 

The confidence region at level a is the ellipsoidal region 

seT (v E 2vT) 88~-m-S(fi)Fa(m, N - m), 
N-m 

(15) 

(16) 

where Fa(m, N - m) is the upper ex quantile for Fisher's F-distribution with m and N - m degrees of 
freedom. 

The independent confidence interval for each estimate is given by 

cc&;) - set, (8;) + se;*), (17) 

with 

SB;*= j-m-S(e)Fa(m, N - m) (V .r-2vT) ... 
N -m 11 

In case the weights are not known a priori, these quantities can be estimated together with the parameters 
if some assumptions are made. This case of unknown weights in combination with dependent measurement 
errors is treated in Appendix A. 

It should be emphasised that all the results from this section are obtained by linearisation. For most 
non-linear problems this can give some insight in the neighbourhood of the minimum, but if we restrict 
ourselves to this information it can at the same time be very misleading. More information can be obtained 
from sampling many points in the ellipsoidal region, this may show that the confidence region is not an 
ellipse but a non-convex and irregular region. 

6. Restrictions with respect to the parameters 

For many practical reasons it may occur that there are restrictions with respect to the parameters to be 
estimated (e.g. reaction constants are always non-negative). Most of the simpler linear restrictions can be 
taken into account by a re-parametrisation, but that is not sufficient for the general case. 
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Suppose we have K restrictions for the 111 unknown parameters. The restrictions are, in general, non-linear 
so that we write 

R(ti)~O. (18) 

where R(ti) is a K -dimensional vector function. The restrictions imply that a subset of the 111-dimensional 
parameter space is excluded. In case of a constraint optimisation problem, we start the numerical procedure 
as if we were dealing with the un-constraint case (starting with an initial e s.t. R(8)~0) which results in a 
MJ (see (1 t )). Then we check whether after the correction the constraints are still fulfilled: R(e + oe )(0. 

When some of the constraints are violated, there will be a non-empty subset {i 1, ... , ik} c { 1, ... , K); k is 
the number of violated or active constraints. 

After determining the subset {i.i }, we compute the k x m matrix B, again by using computer algebra: 

(19) 

For notational convenience we introduce a k-dimensional vector r(e) which contains all the vector elements 
R11 (8) for j E ( l, ... , k). ff we write down the normal equations with linearised constraints and denote the 
Lagrange multipliers by q, we get 

BT) (oe) = -( ATY. (Ii)). 
0 q r(ti) 

(20) 

Again we would not use the standard Gauss-Newton, but choose the Marquardt-Levenberg method. This 
leads to the correction 

88 = -V ( I:2 +Al"' )-I [ I:UTY(Fi) + (BV)T q J, (21) 

where the Lagrange multipliers, q, are given by 

q = ( B V (I: 2 + A/111 r 1 ( B V) T) -
1 

( B V (I: 2 + Al,,, r 1 I: U TY (ti) - r ( (j)) . 
It may take some iterations to fulfil all the restrictions. Numerical experiments showed that for a feasible 
set of restrictions two or three iterations are sufficient. 

7. A case study from biochemistry 

As an example we treat the following set of chemical reactions originating from biochemistry: 

k1 
E+S~C, 

k2 
C !:i, E + P. 

It is a simple but illustrative example. The treatment of real-life problems with many more state variables 
and parameters is outside the scope of this paper and will be reported elsewhere. 

The state variables in the reaction scheme are the concentrations of the enzyme,[£], substrate, [SJ, and 
complex, [C]. The mathematical description of the problem is given by 

d[S] 
dt = -k1 [EJ[S] + k2[C], 

d[C] dt = k1[E][S] - kz[C] - k3[C], [£]+[CJ= [Eo] + [C0]. (22) 
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Table I 
Initial and final parameter values for the case study plus additional statistics _____ _ 

Hini HenJ 15(:!* 

k1 6.0 0.683 0.0762 
k2 0.8 0.312 0.06 77 

k3 1.2 0.212 0.00544 
S(€i) 0.848 0.00051 
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Fig. 1. The calculated concentrations of the complex ( [ C I) for the initial (left graph) and final parameter vector (right graph I 
and the measurements (X). 

The initial values are [Sol = 1.0. [Col = 0.0 and [Eo] = 1.0, the vector of unknown parameters yields 

eT = (k 1, k1. k3). During the experiment the complex concentrations have been measured. These can be 
found in Appendix B. 

For this numerical test we take all the weights equal to I and assume the errors in the measurements to 

be independent. The initial parameter vector, 8;0 ;. the final estimate, Bend· the corresponding sum of squared 
discrepancies (see Eq. (2)) and the confidence limits (oe* from ( 17)) are listed in Table 1. 

The solution of the DAEs describing the reaction mechanism (Eq. (22)) with the initial and the final 
estimates of the parameters is shown in Fig. 1 for the complex concentrations. 

8. Conclusions 

In this paper we presented an approach to parameter estimation problems in systems of differential 
algebraic equations. The described solution method has been implemented and can be applied in many 

sciences where mathematical modelling of time-dependent processes is involved. The treated case study 
shows the usefulness of this implementation for experimental sciences. 
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Appendix A 

Here we describe a more general situation, which is indispensable if we do not have an estimate for the 
measurement errors and expect them to be dependent. We consider dependence between errors of different 
measurements taken at the same time. 

In most practical cases the weights, with wl = I/a}, are unknown and it is impossible to estimate all 
these weights in addition to the unknown parameters, 8. In case of dependent errors we also have unknown 
covariances. The best that can be done is to assume that the variances and covariances of the discrepancies 
only vary with their corresponding components. 

For convenience of notation we introduce the integers q as the number of measured components, q(:,_n, 

and r as the number of measurements taken at the same time, otherwise known as sample size. 1 Now we 
may form the r x q matrix D containing the (unweighted) discrepancies, d; = Ye; (t;, 8) - Yi, in such a way 
that each column is associated with one measured component and each row corresponds to one sample. The 
matrix entry Dij corresponds to the jth measurement of the ith sample. With the matrix D we introduce 
the q x q matrix M, given by 

M = DTD. (A. l) 

In case of independent measurement errors the covariance matrix, V, is diagonal and its non-zero entries 
equal a'f (i E {I, ... , q} ). A short hand notation of the weighted sum of squares (Eq. (2)) is 

Tr(V- 1M). 

For the general case (a full matrix V), the probability density (see [ 1]) is given by 

p(d1, ... , dN, 8) = (21T)-N/2(det(V- 1){12 exp(-!Tr(V- 1 M)). 

The logarithm of the corresponding likelihood function (LLF) yields 

ln .C(8) = -N ln(-Jh) - !r ln(det(V)) - ! Tr( y-I M). 

Differentiation with respect to the covariance matrix leads to 

aon .C(e))/av = -!rv- 1 + ! v- 1 Mv- 1, 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

and this expression vanishes if V = M / r. The last expression gives a biased and consistent estimate of the 
covariance matrix. An unbiased estimate is given by 

V= M. 
r -m/q 

(A.6) 

If we finally substitute this estimate in the LLF of Eq. (A.4) we obtain 

ln .C(8) = -~N ln(21T) - ~r In (( 1 )q det(M)) - ~ Tr((r - m/q)lq) 
- - r - m/q -

= !Nln((N - m)/2q-rr)- !rln(det(M)) + ~(m - N). 

1 Here we assume that qr = N, which is in general not true. The adaptations for non-constant sample sizes are straightforward 
and therefore omitted. 
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Table 2 
Measurements of the complex concentration ([ C]) 
time (I;) ICL time (t;) IC]; 

l.O 0.32 11.0 0.18 
2.0 0.38 12.0 0.16 
3.0 0.38 13.0 0.15 
4.0 0.36 14.0 0.13 
5.0 0.33 15.0 0.13 
6.0 0.30 16.0 0.11 
7.0 0.28 17.0 0.10 
8.0 0.25 18.0 0.09 
9.0 0.23 19.0 ().()7 

10.0 0.20 20.0 0.06 

Maximising this expression is equal to minimising 

In £(8) = ln(det(M)). (A.7) 

Appendix B 

The measurements (N = 20) corresponding to the case study of Section 7 give values of the complex 

concentration, I CJ, at a series of times as given in Table 2. 
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