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1. INTRODUCTION 

A main goal of distributed computing is the design and analysis of 
efficient algorithms for computing interesting functions that run on dis­
tributed networks of processors. A basic assumption in this analysis is that 
the efficiency of such algorithms is limited by the amount of interprocessor 
communication required by the algorithm. In this paper we attempt to 
quantify how much communication effort is required to compute a simple 
class of functions on a distributed network of processors. The model of 
a distributed network we consider is that of an anonymous network. 
(The model will be formally defined in Section 2.) This model has been 
well-studied in the literature [4, 5, 14, 17, 24, etc.], since it embodies a 
small number of assumptions while still admitting nontrivial solutions 
to the questions raised. It allows us to study the effect of symmetry 
(of the network and of the functions to be computed) on distributed com­
putations. 

Informally, by an anonymous network we understand a connected 
graph. The nodes of the graph represent the processors of the network and 
the edges represent the available communication links between processors. 
The processors are entirely homogenous, having no unique identites (hence 
the name anonymous). In a computation, each processor starts in some 
initial state with some input, proceeds by sending and receiving messages 
through the network links according to some deterministic algorithm, and 
ends its computation after a finite number of steps by entering into a final 
state. An action of a processor depends on its current state and the input 
data to its algorithm. Moreover, the processors execute the same action 
given the same state and input data. At the end of the computation each 
processor outputs the (same) desired function of the inputs. 

For simplicity, we will consider the problem of computing the class of 
Boolean functions, i.e., functions with {O, 1 }-valued inputs and outputs. 
This class contains a number of interesting and important examples (OR, 

AND, XOR, etc.) and is rich enough to capture the notions studied here. It 
is relatively straightforward to extend the algorithms described below to 
more general functions (at a corresponding cost in complexity). The com­
munication cost incurred during a computation is measured in terms of the 
number of bits exchanged by the processors, termed the bit complexity of 
the computation. We prefer to study the bit complexity rather than the 
message complexity (the number of messages exchanged by processors) so 
as not to hide the costs associated with sending large messages. In some 
sense, the message complexity measures the number of communication 
rounds required to compute a function, whereas the bit complexity 
measures the total amount of information that must be exchanged to com­
pute a function. In the algorithms below the sizes of the messages sent is 
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clear from the context, and thus it is easy to calculate the message 
complexity of the algorithm. 

1.1. Previous Work 

In the sequel we assume that N is the number of processors of a given 
anonymous network. 

The simplest topology considered in the study of the bit complexity of 
computing Boolean functions is the ring, e.g., [l, 3, 4, 17, 19]. It has been 
shown by Attiya et al. [ 4] that there is an algorithm for computing all 
Boolean functions which are computable on the ring, with bit complexity 
O(N 2 ). In addition, Moran and Warmuth [17] show that any nonconstant 
function has bit complexity Q(N -log N) on the ring, and also construct 
Boolean functions with bit complexity e(N ·log N) on the ring. For the 
anonymous torus network Beame and Bodleander [5] give an algorithm 
with bit complexity O(N1.5 ), and construct nonconstant functions with bit 
complexity e(N). In the case of the anonymous hypercube network 
Kranakis and Krizanc [ 14] give an algorithm with bit complexity 
O(N - log4 N). (In [5, 14] the networks are assumed to have a globally 
consistent labelling on the edges.) 

For general networks Yamashita and Kameda [23, 24] show that the 
message complexity of computing a Boolean function on an arbitrary 
anonymous network is O(N 2 ·m), where m is the number of links of the 
network. However, these messages consist of trees of depth N 2 with fanout 
corresponding to the degrees of the nodes of the network. For regular 
graphs of degreed this translates into an exponential O(dN2

) bit complexity 
( d = 4 for the torus, and d =log N for the hypercube). 

1.2. Results of the Paper 

In the present paper we study the bit complexity for Boolean functions 
on arbitrary anonymous networks and on distance regular anonymous 
networks (see Section 5 for the definition of distance regular). We show in 
Section 3 that for any anonymous N-node network of maximal node 
valency d and diameter o, every Boolean function which is computable 
on the network can be computed in O(N 3 • o. d 2 - log N) bits. This signifi­
cantly improves the previous O(dN2

) upper bound of [23]. In Section 4 
we give an algorithm for computing symmetric functions with bit 
complexity O(N 2 • {J • d 2 • log2 N). This same algorithm provides even 
more efficient algorithms when applied to specific networks, like tori, 
hypercubes, and random regular graphs. For the case of distance regular 
networks we show in Section 5 how to compute any symmetric function in 
O(N · (; · d ·log N) bits. We conclude in Section 6 with some discussion and 
open problems. 
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2. MODEL OF COMPUTATION 

A distributed network is a simple, connected graph consisting of nodes 
(vertices) on which the processors are located, and links (edges) along 
which the interprocess communication takes place. The processors are 
assumed to have unlimited computational power but may exchange 
messages only with their neighbors in the network. Initially, each processor 
is given an input bit, 0 or 1. 

The processors follow a deterministic protocol (or algorithm). During 
each step of the protocol they perform local computations depending on 
their input value, their previous history, and the messages they receive from 
their neighbors. Then they transmit the result of this computation to some 
or all of their neighbors. After a finite number of steps, predetermined by 
the initial conditions and the protocol, the processors terminate their com­
putation and output a single bit. 

Let B N be the set of Boolean functions on N (Boolean) variables. Let 
.Al = ( V, E) be a network of size N, with node set V = { 0, 1, ... , N - 1 } and 
edge set Es. Vx V. An input to ./V is an N-tuple I= (bv:vE V) of bits 
b" E { 0, 1}, where processor v receives as input value the bit b,,. Given a 
function f E B N known to all the processors in the network we are 
interested in computing the value /(I) on all inputs I. To compute f on 
input I= (bv: v E V), each processor v E V starting with the input bit 
bv should terminate its computation according to the given protocol. 
A network computes the function f if for each input I, at the end of 
the computation each processor computes the value f(J). 

The bit complexity for computing f is the total number of bits 
exchanged during the computation of / We are interested in providing 
algorithms that minimize the bit complexity of computing Boolean 
functions. 

We assume that the processors transmit messages through the links in 
finite time and are error-free. In addition, we make the following assump­
tions regarding the networks and their processors: 

l. The processors know the network topology and the size of the 
network (i.e., total number of processors). 

2. The processors execute identical algorithms. In particular, this 
implies that the processors are anonymous (i.e., they do not know the 
identities of themselves or of the other processors). 

3. The processors are deterministic. 

4. The network is asynchronous. 

5. The processors can distinguish their communication links; i.e., 
the links are given labels which are known to the processors locally. 
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However, there is no global, consistent labeling (or orientation) of the 
network links. 

6. The network links are FIFO. 

The class of computable functions under the above model depends on 
the given network. Although it will turn out that all symmetric boolean 
functions are computable on any network, there may exist functions 
which are not computable on specific networks. For example, take N 
processors arranged on an oriented ring. A Boolean function which 
changes value when we rotate the inputs cyclically is not computable (e.g., 
f( x 1 , x 2 , •.. , x N) = x 1 is such a function). Th us in the case of oriented rings 
the processors must be given a boolean function which satisfies the 
invariance condition f(x 1, x2, ... , xN)=f(xN, X1, X2, ... , xN_ 1) on all 
inputs. 

Intuitively speaking, the above assumptions will imply that a function is 
computable in a network if and only if its output depends not on the inputs 
themselves but rather on the similarity class of the inputs (a precise for­
mulation of this statement will be given later in Theorem 5). For particular 
Iabeled networks (rings, hypercubes, Cayley networks, etc.) simpler charac­
terizations are known which depend only on the automorphism group of 
the network. For more on these topics consult [13, 14]. 

Observe that our algorithms are valid on any asynchronous net­
work provided that the links are FIFO. It makes no difference which 
processor "starts" as long as they complete the "send-receive" cycle 
in the order specified by the protocol. Moreover, a flood of wake-up 
messages would cost only O(IEI) bits, where E is the number of links of 
the network. 

Note that changing any of the above assumptions changes the computa­
tional capabilities and limitations of the model. If the size of the network 
is not known to the processors then it may not even be possible to com­
pute any nonconstant function, e.g., in the ring [ 4]. Angluin [2] has 
shown that if the processors are anonymous and identical there is no algo­
rithm for electing a leader. Yamashita and Kameda [24] have studied the 
effect of not knowing the topology of the network. If we add randomization 
to the model it becomes possible to improve greatly the average and worst 
case bit complexity. In synchronous networks information can be gathered 
not only through message passing but also through the absence of com­
munication during a particular time interval. Labeling the edges of a 
network can be shown to change the set of functions computable on the 
network (see [14]). 

In general, there are a number of models that could seemingly improve 
our results. Nevertheless, this would have to be at the cost of relaxing 
some of our rules regarding the deterministic execution of the protocols, 
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distributivity of computation, and asynchronicity of communication. This 
also seems to indicate that more efficient algorithms would presumably 
need additional global information. 

3. ARBITRARY BOOLEAN FUNCTIONS 

In this section we give a general algorithm which computes any Boolean 
function computable on a given network using polynomial bit complexity. 
Before presenting the main algorithm we present some introductory results 
on idempotent operations. 

3.1. Algorithm for Idempotent Operations 

One of the results that will be used very frequently in the sequel concerns 
the computation of certain simple operations, such as maximum and 
set-union on general anonymous networks. To facilitate and simplify our 
discussion and avoid unnecessary repetition we state our main algorithm 
for computing such functions as a separate theorem. First we need a few 
definitions. 

Let 0 be a commutative, associative, and idempotent binary operation 
on a set A; i.e., 0: A x A_, A satisfies the following axioms for all a, h, 
CEA: 

• O(a, b)= O(b, a) (commutativity), 

• O(a, O(b, c))= O(O(a, b), c) (associativity), 

• 0 (a, a) =a (idem potency). 

Such operations include maximum, minimum, set-union, and set-intersec­
tion. For simplicity, from now on we will abbreviate 0 (a, h) by a 0 b. 

Let .#· = ( V, E) be an anonymous network and let 0 be an operation 
satisfying the previous three conditions. Let AN be the set of all N-tuples 
from elements of A. For any input I= (ip: p E V) EA N to the network we 
can define a function 0: AN_, A by the following equation: 

(By an abuse of notation we use the same symbol for the binary operation 
0: A x A _,A and the function 0: AN_, A.) In view of the associativity of 
0 this function is well defined. As a first step in our goal of providing an 
algorithm for computing all (computable) Boolean functions we will show 
that functions, like O, which arise from such binary operations give rise to 
computable functions. The algorithm presented below was independently 
discovered by Tel [22] in the context of infimum computations in directed 
networks. 
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THEOREM 1. Let ,/V be an anonymous network with maximal node 
valency d and diameter o and let 0 be a commutative, associative and idem­
potent binary operation. There is an algorithm for computing 0 (/)for any 
input J = (ip: p E V) EA N with bit complexity O(N ·ex· <5 • d), where ex 
denotes the number of bits necessary to represent an element of A. 

Proof The idea of the algorithm is rather simple. Each processor sends 
its initial input value to all its neighbors. After receiving a value from its 
neighbors it applies the operation 0 to the value it already has and the 
values it receives. Every processor executes these steps o many times. Even­
tually every input value to a node of the network will be distributed and 
accounted for by every other processor. 

More formally the algorithm is as follows. Let I= < iP : p E V) be the 
input to the network. 

Algorithm for processor p: 
Initialize: value P [ 0] : := i P; 

for i := 0, 1, ... , D-1 do 
send valuep[i] to all neighbors of p; 
receive valueq[i] from all neighbors q of p; 
compute valuep[i+ 1] := 
<> ( {value P [i]} u { valueq [i] : q is a neighbor of p} ); 

od; 
output value P : := value P [ o]. 

The proof of correctness of the algorithm is not difficult. Since the "send" 
procedure of the algorithm is iterated o times (where o is the diameter of 
the network) it is clear that the algorithm guarantees that all input values 
are taken into account when calculating the value of the function. By com­
mutativity and associativity it is immaterial in what order the opertion 0 
is applied to the given values. It can happen that in the course of the execu­
tion of the above algorithm by processor p the operation 0 is applied 
more than once to some element a, which is the initial input value to a 
certain processor q. The number of times 0 is applied depends on the 
number of walks of length less than o from p to q through the network. 
However, because of the idempotency of the operation O, we have that 
a <> a <> · · · <> a= a. It follows that all processors will compute exactly the 
same value <> (/), namely value P = 0 (/), for all p. 

It remains to determine the bit complexity of the algorithm. The pro­
cessors receive through their neighbors elements of A, apply the operation 
0, create new elements of A, and transmit them to their neighbors. The 
cost of transmitting each of these elements is ex, the number of bits 
necessary to represent an element of A. Each of the N processors transmits 
a value to its d neighbors once in each of the o phases of the above 
algorithm. This gives the desired bit complexity. I 
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An obvious corollary of the theorem concerns the bit complexity of the 
ORN function. Since binary ORN is a commutative, associative, and idempo­
tent operation, Theorem 1 implies the following result, which will be useful 
later. 

COROLLARY 2. On an anonymous N-node network with maximal node 
valency d and diameter o the ORN function can be computed with bit 
complexity O(N · o · d). I 

A simple extension of the lower bound for ORN on the ring in [ 4 ]shows 
that if the network is regular then ORN requires Q(N · 0) bits to compute. 
Thus for this case the above algorithm is optimal to within a factor of d. 

For any input I= (ip: p E V) E AN to the network let {iP: p E V} denote 
the input-set corresponding to the input I. The next corollary concerns the 
bit complexity of computing the input-set for a given input and will be 
useful in the proof of our general Theorem 6 about the bit complexity of 
computable Boolean functions on general networks. 

COROLLARY 3. Let JY be an anonymous N-node network with maximal 
node valency d and diameter o. There is an algorithm for computing the 
input-set { iP: p E V} of any input I= (ip: p E V) EA N with bit complexity 
O(N 2 ·a· o · d), where rx denotes the number of bits necessary to represent an 
element of A. 

Proof Here we apply the main Theorem 1 to the binary operation 
union, 0 (a, b) =au b, where the input to node p is the singleton set {iP }. 
The elements transmitted in the course of the algorithm are subsets of the 
set { iP : p E V}. Each element can be coded with rx bits, and therefore such 
sets can be coded with N · rx bits. I 

3.2. A Digression on Views and Computability 

Before proceeding with a discussion of our main algorithm it will be 
necessary to digress for a moment in order to present some prerequisites 
from [23] concerning the construction of "views" by processors and the 
computability of Boolean functions. 

As in Angluin [2] and Yamashita and Karneda [23], we assume that 
the processors are given labels for their corresponding links. By this we 
mean an a priori numbering on the links of each processor. The numbering 
of each node is done locally and independently of the others. If necessary, 
each processor p renames all its incident links with the numbers 
1, 2, ... , deg(p ), where deg(p) is the degree of p. Let us denote this 
labeling ff. Further assume that the input configuration I= (bp: p E JV) 
is assigned to the processors of the network, with bit bP assigned to 
processor p. 
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The view of processor p with respect to the input configuration I and 
labeling 2, denoted by T~. 1(p ), is an infinite, labeled rooted tree defined 
recursively in the following way. The label of the root of T~. 1 (p) is the 
input bit bP; for each processor p;, i = 1, .. ., deg(p ), adjacent to p the tree 
T ';, / (p) has a vertex p; and an edge from the root to p; labeled l(p, p;) : = 
{!i'(p,p;), !i'(p;,p)}. Moreover, at the vertex P; of the tree T';, 1(p) is 
rooted the tree T ';, / (p;). 

Two views are called similar if they are isomorphic, including edge and 
vertex labels. It is clear that this similarity is an equivalence relation all of 
whose equivalence classes have the same size (see [23]). We also denote 
by T~, 1 (p) the tree obtained from T'!;, 1(p) by removing all levels of 
height >h. 

An important consideration in the study of the complexity of our algo­
rithms concerns the height of the tree which is sufficient in order that each 
processor can retrieve the view of all the processors in the network from its 
own view. This can be resolved by the fact that "isomorphism up to depth 
N 2 implies isomorphism up to all depths." For a proof the reader should 
consult [23]. 

More recent investigations by Norris allow an even stronger version 
of this last result, which in turn implies a factor N improvement in 
the complexity of our main algorithm. In order to obtain the optimal 
possible result we state (without proof) the main result of Norris 
[18], that "isomorphism up to depth N - 1 implies isomorphism up to all 
depths." 

LEMMA 4. If T~~/(p), T1ft,~/(p') are similar, so are T';, 1 (p), 
T~.1(P'). I 

The second issue to concern us in this section is the class of Boolean 
functions which are computable in the network. The notion of com­
putability on anonymous networks, which was defined in Section 2, 
involved precise rules on the behavior of the processors and the required 
interprocess communication. Theorem 4.1 of [23] connects our notion 
of computability of a Boolean function with its invariance under a 
suitable class of automorphisms of the network. The exact result is the 
following. 

THEOREM 5. A Boolean function f is computable in a network JV if and 
only if, for any inputs !, I' such that there exist labelings !i', !i'' for which 
the trees Tc;,, 1 , T ';., r are similar, we must have that f(l) = f(!' ). I 

The algorithms described below are for Boolean functions which are 
computable on the given anonymous network. 
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3.3. General Algorithm 

We are now ready to give our algorithm for computing arbitrary 
Boolean functions on a given anonymous network. We will prove the 
following theorem. 

THEOREM 6. Let .Al be an anonymous N-node network with maximal 
node valency d and diameter o. There is an algorithm that computes any 
Boolean function which is computable on the network with bit complexity 
O(N 3 ·b ·d 2 ·log N). 

Proof Let f E B N be any Boolean function, known to all processors, 
which is computable on the anonymous network .V. Let I= ( b P : p E V) 

be the input to the network, where bP is the input to node p. Before 
proceeding with the formal description we outline the intuition behind the 
algorithm. 

Overview of the Algorithm. The algorithm has two phases. In the first 
phase each node "unwraps" the network and forms a view (a labeied tree 
with itself as root). During this unwrapping procedure the processors 
exchange messages by executing an algorithm that enables them to "form" 
a view of what the input to the network should be. This is the most expen­
sive part of the algorithm and two important complexity issues need to be 
taken into account: the first concerns the number of iterations of the 
unwrapping procedure required for the processors to receive sufficient 
information, and the second the number of bits required to code the infor­
mation transmitted throughout the computation in order to minimize the 
number of bits exchanged. We take care of the first requirement by apply­
ing Lemma 4, and the second by developing a simple coding algorithm that 
economizes on the number of transmitted bits by encoding prior to trans­
mission. Naturally, the coding and decoding algorithms require computa­
tion, but this is local to the processors and does not contribute to the 
overall bit complexity. 

After the end of phase one, each processor will have access to a full view 
of the network. In phase two each processor will be able to compute a con­
figuration I' (which is not necessarily identical to the input configuration 
I) but which corresponds to a view of the network "similar" to the one 
provided by the view I. Different processors may compute different views 
but they can all agree on a common configuration, say I', by exchanging 
messages and using Theorem 1. Since the function f is computable its out­
put depends not on the input but rather on the similarity class of the views. 
It follows that /(I')= f(I), and all processors output the value/(!') which 

is also the correct value. 

643/114/2-4 
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Main Algorithm. Our algorithm relies on several cost efficient adjust­
ments and improvements of the algorithm of [24 ], using Theorem 1. Here 
is a formal presentation of the two phases. 

As indicated in Section 3.2, we assume that the links associated with pro­
cessor p are labeled with the numbers 1, 2, ... , deg(p ). Now each processor 
transmits to each neighbor the label it has chosen for the link connecting 
them. Let 2' be the resulting labeling of the network JV. Next, each pair 
(p, q) of processors label their corresponding link with the multiset 

l(p, q) = { ff'(p, q), ff'(q, p) }. 

The processors keep this labeling fixed throughout the algorithm. It should 
be pointed out that this is only a local labeling and not a global orientation 
of the network; the processors know only the labeling of their corre­
sponding links, and are completely unaware of the choice of labeling by the 
other processors in the network. 

Phase 1. In this phase each processor gathers information from the rest 
of the processors about the input to the network in order to be able to 
compute correctly the value /(/). Each processor p computes its view, 
Ty 1 (p ). Since ff' and I are fixed below we will denote the view of p by I;,. 
This is a vertex and edge labeled tree of depth N. In a sense, each node p 
''unwraps" the network and forms a tree with itself as root. Since the 
network is anonymous it cannot use names for the processors; instead, it 
can only label the vertices of the tree with the input bits it receives in the 
course of the interprocess communication. Thus, the root of I;, is labeled 
with the input bit bP and the node corresponding to q is labeled with the 
bit bq. However, it needs to be stressed here that when the processors label 
a node with the bit b q they do not necessarily know that the name of the 
processor they are labeling is q. (See Subsection 3.2 for details.) 

The processors need to exchange enough information in order to com­
pute correctly each r;,. They do this by exchanging the views they have 
constructed. However, trees of depth i and branching d have exponential 
bit complexity Q(d;) and transmitting them is expensive. Therefore we 
must be careful if we want to achieve an algorithm with polynomial bit 
complexity. 

The novel idea here is that the processors do not need to transmit the 
whole trees. Instead they proceed in a level-by-level computation of the 
views. Assuming that at level i the processors have computed their trees up 
to depth i, they can use the algorithm given in Corollary 3 to compute the 
set of "encoded" trees. (Note that this set will be the same for all 
processors.) Since at each level there are no more trees than there are 
processors in the network, the codes can be taken to be integers ~ N. Now 
the processors proceed to the next level i + 1 transmitting trees of height I. 
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They use these encoded trees as leaves and leave it to the recipient 
processors to decode the information (which they can do since they have 
all computed the previous set of trees). 

In the sequel we concentrate on the issue of coding and transmission of 
the trees concerned. Processor p computes a sequence of trees T; of depth 
i, i = 0, 1, ... , N - 1, by executing the following algorithm. P 

Algorithm for processor p: 
Initialize: T~ := bP and set~ := { T~}; 
for i := 0, ... , N -1 do 

od; 

compute the set set~:= { T~: q E V}; 
code the elements of the set set~ with integers 1, ... , k, 
where k:::;; N is the number of elements set 1 , 

. p 

by ordering the set set~ lexicographically and letting 
code( T~) = j, if T~ is the jth tree in this ordering; 
form the tree T~ + 1; it is a tree of depth 1 with root labeled bP; 
for each neighbor q of p there is an edge labeled l(p, q ); 

its leaves are labeled cod( T~), where q is a neighbor of p; 
send the tree T~+ 1 to all the neighbors of p; 

output set;- 1• 

After the trees of level i have been constructed the processors use the set 
algorithm given in Corollary 3 to compute the set { T~ : p E V}. Once all 
processors know all the trees of depth i there is no need to transmit to each 
other the decoded full trees themselves. It is sufficient to transmit the codes 
of the trees, and these can be just integers from 1 up to N, provided that 
they all perform "identical" algorithms that will enable them to decode the 
trees and subsequently generate the views. 

To code the trees the processors order them lexicographically and let the 
code of the tree T be j, if T is the jth tree in this ordering. The processors 
then form new trees of depth i + 1, namely T~+ 1, by using these codes as 
leaves. Namely, the tree has a root which is labeled with p's input bit. The 
leaves of the tree consist of the above codes of the corresponding trees of 
depth i and the edges have the corresponding labeling. Now the processors 
transmit these new trees to all their neighbors, etc. To decode the trees the 
recipient processors need only look at their leaves in order to derive the 
whole view up to the current level. As indicated above we iterate this 
algorithm N times. 

Phase 2. At this point all processors have computed the set of all 
views of depth N - 1, namely the set { r;- 1 : p E V}. As explained in Sub­
section 3.2 we define an equivalence relation among trees. Two trees T and 
T' are equivalent if they are isomorphic including vertex and edge labels, 
but ignoring names of the vertices. By Lemma 4 for any two trees if their 
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restrictions to depth N -1 are isomorphic then the full trees themselves 
must also be isomorphic. Let [ T] 1• 9' denote the equivalence class of T, 
where the subscript is to stress the dependence of the equivalence class on 
the input and the chosen labeling. It follows from the above discussion that 
each processor will be able to find representatives of all the equivalence 
classes of the full trees. The conditions imposed on the processors, and 
stated in the Introduction, regarding anonymity and the fact that all 
processors execute the same algorithm given the same state and input data 
guarantees that the Boolean function f is not sensitive to automorphisms 
applied on the input configuration. It follows that since f is computable 
on the network its value depends only on the equivalence classes of 
the trees above; i.e., for any inputs I, I' and any labelings 2, 2', if 
[T] 1,_,.,= [T'Jr,.1l"• for any trees T, T', then f(l)=f(I') (see also [23, 
Theorem 4.1 ] ). 

Now the processors want to compute f(I), but they do not know the 
input J. To resolve this problem each processor 

1. retrieves all the equivalences classes of the views in the network 
from its view (this can be done in view of Lemma 4 ), and 

2. uses its knowledge of the network topology to construct a labeling 
ff' and an input I' such that [ T] 1, 9' = [ T] r .. >!", for all trees T. 

Certainly, each processor may choose a different input I' and labeling ff'. 
However, by exchanging information using Corollary 3, the processors can 
agree on a unique input I' and labeling !£?' based on some predetermined 
order. Since f is computable in the network its value depends only on the 
equivalence classes of the trees. We conclude that /(J) = f(I'). Thus it is 
sufficient to output f(I') and this will be the desired, correct value assumed 
by f on input J. 

This concludes the description of the algorithm. It remains to determine 
its bit complexity. 

Complexity. Both phases involve local computations which do not 
require any bit exchanges. The application of Corollary 3 in phase 2 is 
easily estimated to be O(N 3 • b · d), which is well within the permissible 
bound of our theorem. The main bit exchanges take place in phase 1. There 
we have N iterations of the algorithm in Corollary 3. We need d -log N bits 
to represent each of the corresponding trees. (The maximal degree of a 
network node is d and this same d is the maximal branching of the trees. 
The encoded trees are of depth 1 and their leaves are the encoded "sub­
trees" which are integers 1, ... , k, for some k ~ N.) This means that the bit 
complexity of phase 1, and hence also of the algorithm as a whole, is 
O(N 3 • (i ·d2 ·log N). I 
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4. SYMMETRIC FUNCTIONS 

Symmetric functions are easier to compute because their output depends 
only on the number of l 's present in the input. As expected there exists a 
much more efficient algorithm for this class of functions. In this section we 
give an algorithm which computes any symmetric function on an 
anonymous network, improving upon the algorithm given above in this 
case. Our algorithm is deterministic but we use techniques from Markov 
chains in order to study the termination characteristics of our protocol and 
deduce its complexity. 

4.1. Algorithm for Symmetric Functions 

By the weight of a sequence I= (h 1 , ••• , b N) of bits we understand the 
number of b;'s which are equal to 1. Let .Al= ( V, E) be an anonymous 
network of size N, with node set V = {O, 1, ... , N- 1} and edge set 
E £ V x V. To simplify the analysis below we will consider the network 
JI!'= ( V, E u { (i, i) I i = 0, .. ., N - 1}) (i.e., .Al with self loops added to 
each vertex). Let deg(i) and deg'(i) = deg(i) + 1 be the valency of node i in 
ff and .Al', respectively. Let A= {a;.j) be the adjacency matrix of .lV'. We 
associate the stochastic matrix P = (P;.J, where Pi,J = a;jdeg'(i), with JV'. 
For each node i, define TC;= deg'(i)/(N + 2M), where M is the number of 
edges of .Al. Note that n; can be computed by each processor i from 
knowledge it has of the topology of the network. We will prove the 
following theorem. 

THEOREM 7. Let ff be an anonymous N-node network with maximal 
node valency d and let .Al' be the network ,Al. with self loops added to each 
node. Let p be the second largest eigenvalue (in absolute value) of the 
stochastic matrix P associated with JV'. There is an algorithm that computes 
any symmetric function on the network A1 with bit complexity 

0 -N·log N-d . ( -log N ) 
log p 

Proof The idea of the algorithm is the following. Each processor sends 
its initial input value to all its neighbors. After receiving the values from all 
its neighbors the processor updates the value it already has based on "the 
average of the values" it receives. Every processor executes these steps S 
times, where S is of order 0( - log N/log p ). Eventually in this way every 
input value to a node of the network will be distributed and equally 
accounted for by every other processor. 

Let f be a symmetric Boolean function on N variables known to all the 
processors and let fk be the value of f on inputs of weight k. Let 
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f= <h,.: vE V) be the input to the network, where bv is the input bit to 
node t'- More formally the algorithm is as follows. 

Algorithm for processor p: 

Input: bP, f; 
Initialize: valueP[O] :=bp and S; 

for i := 0, 1, ... , S do 

value [i] . 
send q to all ne1ghbors of p; 

deg'(p) 

. value, [i] . 
receive 1 from all ne1ghbors q of p; 

deg'(q) 

compute value P [ i + 1] := 

{ valueq[i] . . hb f } I: : q is a ne1g or o p or q = p 
deg'(q) 

od; 

put w :=[valu~[S]l 

Output};". 

Each processor knows its input bit but does not know the network input 
configuration I. At the ith stage, i :( S, processor p updates its variable 
value P which is an approximation to the number of 1 's in the input con­
figuration I times the quantity nr At the final stage the processor computes 
w= [valuep/np], the nearest integer less than or equal to valueP/np. If the 
approximation is sufficiently close to the actual value kn P, where k is the 
weight of the input I, then all processors will output the same correct 
value/.,. 

We have to show that all the processors eventually converge to the 
correct ratio (and hence the resulting value fw is the same for all the pro­
cessors) and to bound the value of S. We will use the theory of Markov 
chains [21, 12] in order to complete the proof of correctness of the above 
algorithm. 

Note that P=(p;,j) is the NxN stochastic matrix of a primitive, 
reversible Markov chain corresponding to a random walk on .Al'. (In 
general, the stochastic matrix corresponding to an arbitrary connected, 
undirected network is only irreducible and need not be primitive. By adding 
a self loop to each vertex of JV to form the network JV' we guarantee the 
corresponding Markov chain is primitive.) Its stationary distribution is 
(n1, n1, .. ., nN). Let 1 = A1 > A2 ;;::: · • • ~ Ak be the eigenvalues of P and put 
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Standard arguments (see, e.g., [7, Lemma 2]) show that 

p):J=n;+o (R·p} ( I ) 

where pn is the (i, J) entry of the matrix P'. If M P = max,, 1 { v njrrJ then 

the matnx form of Eq. ( 1) is 

P' = poc + O(M P · p'. E), (2) 

where Eis the matrix of all l's, and the limit px' = lim . prof the chain 

is an N x N matrix such that all the entries of its ith ~cl~~n are equal to 

n;. In our case, M P = J dmaxldmin, where dmax (respectively, dmin) is the 

maximal (respectively, minimal) valency of the network A/''. Hence, Eq. (2) 

becomes 

P'=Pw+o ( fd::x.p'·E). '1 d.:: (3) 

It is easy to see that for any input vector I, L =I pxc is the eigen­

vector of P whose ith entry equals kn,, where k is the number of l's in the 

input /. 

We are interested in the rate of convergence of the limit of IP' as r tends 

to infinity. It follows from Eq. (3) that 

IP'=L+o( /d::::.p'·k·e) v d.:: (4) 

where e is the row vector consisting of all 1 's. During the rth iteration of 

the above algorithm processor p computes the pth component of IP'. To 

guarantee that all the processors compute the correct value it is enough to 

ensure that the error term in ( 4) is less than ~n P; i.e., 

((f:::;. r k 1 
'1-:t:::. p . < 2(N + 2M)' 

This inequality implies that the number S of iterations required is 

S = 0( - log N/log p ), if p > 0. (Of course the case p = 0 is possible but then 

the number of required iterations is S = 2.) It is not hard to see that during 

each iteration of the algorithm O(log S) bits must be transmitted by each 

processor to all of its ::::::; d neighbors in order to guarantee a sufficient 

precision of the approximation at the Sth iteration. By results of Landau 

and Odlyzko [ 15], for any network .iV' with maximal node valency d 
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and diameter c5, the second largest eigenvalue of the stochastic matrix 
corresponding to the network fi' satisfies the inequality 

1 
p ~ l - N · c5 · (2 + d)' 

i.e., log p ~ -(1/N). c5. 2(2 + d). Hence log S = O(log N) and so the bit 
complexity of the algorithm (number of steps x number of processors x 
maximal number of bits per step per processor) is indeed 

0 ---·N·logN·d, ( logN ) 
log p 

as we had to prove. I 
As an immediate consequence of the above theorem we get the following 

bound on the bit complexity of symmetric functions on anonymous 
networks. 

THEOREM 8. Let ..;V be an anonymous N-node network with maximal 
node valency d and diameter c5. There is an algorithm that computes any sym­
metric Boolean function on fi with bit complexity O(N 2 • c5 • d 2 log2 N). 

Proof As above log p ~ -1/N · () · (2 + d). Combining this with 
Theorem 7 we obtain that the bit complexity for computing symmetric 
functions is O(N 2 • c5 · d 2 • log2 N). I 

4.2. Algorithms for Specific Networks 

Here are some applications of the theorem to specific types of networks. 

COROLLARY 9. The bit complexity of computing any symmetric function 
on an anonymous d-dimensional torus with N = nd nodes is O(n 1 + 2/d log2 N). 

Proof The characteristic values of the corresponding adjacency matrix 
of fi' are given by the formula 

d (211: ) 1 + I 2 cos - ik , 
k=I n 

The second largest eigenvalue of the corresponding stochastic matrix of 
fi' is 

p=-1 ·(1+2d·COS ( 211:))· 
2d+ 1 n 

Using approximations to the log and cos functions it is easy to show 
log p = 0( -1/n2 ). Thus, by the theorem, the bit complexity of computing 
symmetric functions in this case is O( N 1 + Z/d log2 N). I 
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COROLLARY 10. The bit complexity of computing a symmetric function 
on an anonymous n-dimensional hypercube with N = 2" nodes is O(N log4 N). 

Proof The eigenvalues of the adjacency matrix of the hypercube are 
A;= n - 2i, 0 ~ i ~ n. The second largest eigenvalue of the corresponding 
stochastic matrix of .%' is (n - 1)/(n+1 ). Using the inequality 
log( 1 - 2/(n + 1)) < -2/(n + 1 ), the theorem implies that the bit complexity 
of computing symmetric functions in this case is O(N log4 N). I 

For random regular graphs we can prove the following result. 

COROLLARY 11. The bit complexity of computing any symmetric function 
on a random regular graph of valency 2d is O(Ndlog2 Njiog d) with 
probability greater than 1 - N-a(.Jd). 

Proof This follows immediately from the theorem and recent results of 
Friedman et al. [11] bounding the size of the second largest eigenvalue of 
random regular graphs; i.e., with probability 1 - N°<.fl> the second largest 
eigenvalue of a regular graph of valency 2d is O(.jd), where dis fixed as 
N-+ 00. I 

5. DISTANCE REGULAR GRAPHS 

In this section we show that by taking advantage of the topology of 
distance regular graphs we can derive efficient algorithms for computing 
symmetric functions on such graphs. 

5.1. Definitions and Examples 

The distance between any two nodes p, q of a network .%, denoted 
d(p, q ), is the length of the shortest path between p and q. The circle with 
center p E V and radius k, denoted by C(p; k ), is the set of nodes q E V such 
that d(p, q) = k. The set of neighbors of p, denoted .JV(p ), is the circle 
C(p; 1 ). 

A network JV is called distance regular if for any nodes p, q at distance 
k there are precisely ak neighbors of p at distance k- 1 from q and bk 
neighbors of p at distance k + 1 from q; i.e., the quantities 

IC(p; l)n C(q; k-1)1, 

I C(p; 1) n C(q; k + 1 )I 

do not depend on the particular nodes p, q but only on their distance 
d(p, q). 
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Distance regular graphs were introduced by Biggs [ 6] and arose in the 
context of combinatorial regularity properties implied by the existence of 
an intersection array. Their theory has many connections to design theory, 
coding theory, geometry, and group theory [8]. 

Distance regular graphs include hypercubes, odd graphs, triangle graphs, 
complete bipartite graphs, etc. [ 6, 8, 9]. A network JV is distance 
transitive if for any nodes p, q, p', q' with d(p, q) = d(p', q'), there is an 
automorphism rjJ of the network .;V such that r/J(p) = p' and r/J(q) = q'. It is 
easy to see that all distance transitive graphs are distance regular, but the 
converse is false [ 6]. 

5.2. Algorithm for Symmetric Functions 

Now we are ready to prove the main theorem of this section. First of all 
we remind the reader that the threshold function THk E B N is defined to be 
1 on inputs of weight at least k and 0 otherwise. 

THEOREM 12. On an anonymous N-node distance regular network of 
valency d and diameter o every symmetric function can be computed in 
O(N · fJ · d ·log N) bits. Moreover the threshold function THk can be computed 
in O(N · fJ · d -log k) bits, where k ~ N. 

Proof For any processors p, q with k = d(p, q) we define 

ak=l{rEC(p; l):d(q,r)=k-1}1, 

bk = I { r E C(p; 1 ) : d( q, r) = k + 1 } I, 

ck=l{rEC(p; l):d(q, r)=k}I, 

k = 1, 2, .. ., fJ 

k = 0, 1, ... , fJ - 1, 

k=O,I, .. .,6. 

(Note that ck=k-ak-bk.) For any input configuration I, any processor 
p, and any distance k ~ 6, let l(p; k) be the number of processors at 
distance k from the processor p and whose input bit is 1. To compute a 
symmetric function it is sufficient for each processor p to know J(p; k ), for 
each k ~b. The idea of the proof is to find an (inductive) formula for 
computing l(p; k) in terms of the previously computed values l(p; I), where 
l < k, and values l(q, l), where q E C(p; 1) is a neighbor of p, I< k. We note 
that 

L l(q; k- I)= I { (q, x): qE.!V(p), d(q, x) = k-1, bx= 1 }I 
qEA''(p) 

=I l{qE.!V(p):d(q,x)=k-1}1 
bx~ 1 
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= 
b_,= 1, d(p. x)=k 

I { q E .#'(p) : d(q, x) = k - 1} I 

+ 
b,=1.d(p.x)=k-1 

l{qe.#'(p): d(q, x)=k-1 }I 

+ 
b, = 1, d(p, x) = k - 2 

I { q E .#'(p) : d( q, x) = k - 1 } I 

b_,= 1 
d(p.x)=k 

bx= I 
d(p,x)=k-1 

b_,= I 
d(p.x)=k-2 

= ak · l(p; k) +ck_ 1 - l(p; k - 1) +bk_ 2 • l(p; k - 2 ), 

which in turn leads to the inductive formula 

akl(p; k)= L I(q; k-l)-(d-ak_ 1 -bk-d 
q e .4'.(p) 

· l(p; k - 1 )- bk_ 2 • I(p; k - 2). (5) 

Formula (5) and the knowledge of the network topology (i.e., the 
numbers ak and bd make it possible to construct an efficient algorithm for 
computing symmetric functions. Let f e B N be a symmetric function and let 
A be the value off on inputs of weight k. 

Algorithm for processor p: 
Input: bP, f; 
Initialize: /(p; 0) := 1 if p's input bit is 1 and := 0 otherwise; 
send input bit to all neighbors; 
compute I(p; 1) :=the number of 1 's among the neighbors of p; 
fork:= 1, ... , [> - 1 do 

od; 

send I(p; k) to all the neighbors of p; 
compute l(p; k+ 1) from l(p; k-1), l(p; k) and the J(q; k)'s, 
where q ranges over all neighbors of p, via formula ( 5 ); 

compute the sums :=2:%=o I(p; k); 
output ls 

The correctness for the algorithm was shown above. It remains to deter­
mine its complexity. For k = 0, ... , [>each processor p transmits the number 
l(p; k) to all its neighbors. This requires transmission of J messages 

l(p; 0 ), ... , J(p; [>) 

(each of length less than or equal to log Nbits) to each of the dneighbors of 
p; i.e., O(J. d -log N) bits per processor for a total of O(N · fJ · d -log N) bits. 
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The proof of the bit complexity of computing the threshold function THk 

employs the previous algorithm. Observe that when the number of l's at a 
certain distance from a processor exceeds the threshold value k then we 
only need to transmit k, which requires log k bits. I 

An important corollary to the above is the case of the hypercube. 

COROLLARY 13. On the anonymous hypercube, every symmetric function 
can be computed in 0( N -log3 N) bits. Moreover the threshold function THk 

can be computed in 0( N -Iog2 N -log k) bits, where k ~ N. 

Proof Let n =log N. This is an immediate consequence of the fact that 
the hypercube is distance regular. It is easy to show that in the notation of 
section 5, ak = k, bk= n - k, and ck= 0. The resulting inductive formula 
(which is a special case of formula ( 5)) is the following: 

b(p;k)=~·( I b(q;k-1)-(n-k+2J-b(p;k-2)). (6) 
qeD(p; I) 

This proves our assertion. I 

6. CONCLUSIONS AND OPEN PROBLEMS 

The present paper has been concerned with the problem of determining 
algorithms with polynomial bit complexity for computing Boolean func­
tions on anonymous distributed networks. The main result of Section 3 
provides such an algorithm for any anonymous network Al with bit com­
plexity O(N 3 . b. d 2 ·log N). It would be interesting, however, if we could 
improve on this bit complexity. 

We have been able to find more efficient algorithms for computing 
symmetric functions on arbitrary networks (Theorem 8) and very efficient 
algorithms for symmetric functions on the class of distance regular 
networks (Theorem 12 ). Nevertheless, these algorithms are still not known 
to be optimal and improvements are possible. 

An interesting special case is that of the hypercube network. Based upon 
the results of [ 4] for unlabeled and oriented rings and [ 5] for oriented tori 
one would expect that there are more efficient algorithms for computing 
Boolean functions on the unlabeled and oriented hypercube than those 
provided here. For the oriented hypercube this is indeed confirmed by 
results in [ 14 ], which gives an algorithm computing all computable 
Boolean functions (not just symmetric) with bit complexity O(N log4 N). 
Nevertheless the unoriented hypercube remains a mystery and nothing 
better is known than the O(N 3 log4 N) result implied by Theorem 6. 
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There have been few studies in the literature regarding lower bounds on 
the bit complexity. The only network for which this question has been 
studied extensively is the ring [1, 10, 17]. Reference [19] studies the ques­
tion for the extrema finding function but relies on specific properties of this 
function. Reference [24] give lower bounds for the message complexity of 
computing Boolean functions for broad classes of networks. However, very 
little is known about lower bounds on the bit complexity of Boolean func­
tions on the anonymous torus or hypercube, not to mention the general 
case of unlabeled networks. 

If we allow the processors to flip coins in the course of the computation 
then this changes entirely the rules of the game. It is now possible to intro­
duce algorithms with improved average and worst case bit complexity. Also, 
the class of functions computable in this model may be different. For the 
case of rings this has been studied by [3]. For general networks [20] and 
[16] have given algorithms with low message complexity for the problem of 
constructing a rooted spanning tree (which can then be used to compute 
Boolean functions efficiently). It would be very interesting to examine more 
thoroughly the bit complexity for the case of general anonymous networks. 
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