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Abstract

The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern
formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes
involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the
regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data
for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models
of gene networks used as computational tools to extract regulatory information from spatial expression data. This is
achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which
predict a specific network topology. We show how considering variability in the data combined with analysis of parameter
determinability significantly improves the biological relevance and consistency of the approach. Our models are in
agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the
regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is
required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models.
Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published
models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression
dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step
towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.
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Introduction

How genes contribute to pattern formation is one of the central

questions of modern developmental biology. Traditionally, this

question has been addressed using genetic and molecular

approaches. Although very powerful, these approaches have

several important limitations: First, it is difficult to study expression

features which are not specifically affected by a particular

mutation (see below). Second, there is always some remaining

ambiguity whether an interaction is direct or not [1]. And finally,

it is difficult to establish whether known regulatory interactions are

not only necessary, but also sufficient to account for patterning in

the wild-type system [2]. It is important to develop complementary

approaches that help us to overcome these limitations. Here, we

show how such an approach can be used to investigate the

patterning function of a particular gene in its wild-type context in a

rigorous and quantitative manner.

The patterning system we study is the gap gene network of

Drosophila. Gap genes constitute the first zygotic step in a

regulatory cascade which leads to the determination of body

segments along the major (anterior-posterior, A–P) body axis

during the blastoderm stage, shortly before the onset of

gastrulation [3,4]. They are involved in the regulation of pair-

rule and segment-polarity genes. The latter establish a segmental

pre-pattern of gene expression by gastrulation time. Gap genes

such as hunchback (hb), Krüppel (Kr), giant (gt) and knirps (kni) are

expressed in broad, overlapping domains. These domains are

established by spatial gradients of the maternal co-ordinate

proteins Bicoid (Bcd), Hb, and Caudal (Cad) (reviewed in [5]).

Later these expression patterns are maintained and refined

through gap-gap cross-regulation (see [1], and references therein),

as well as regulation by the terminal maternal system acting

through the terminal gap genes tailless (tll) and huckebein (hkb)

(reviewed in [6]). In this report, we focus on hkb and its role in gap

gene regulation.

The expression domains of gap genes in the posterior region of

the embryo shift towards the anterior over time [7]. These shifts

are independent of maternal factors or gap protein diffusion.

Instead, they are caused by an asymmetric cascade of cross-

repressive interactions between gap genes with overlapping

expression domains (reviewed in [8]): the posterior hb domain is

established during late blastoderm stage; this leads to the
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repression of Hb’s anterior neighbour gt; Gt then represses its

anterior neighbour kni, whose protein product in turn represses its

anterior neighbour Kr. In contrast, anterior neighbours never

repress their posterior neighbours. Note that a qualitatively

similar, but less specific, mechanism for domain shifts has been

predicted previously based on theoretical considerations [9].

This mechanism suggests that the posterior hb domain plays a

central role in the initiation and regulation of gap domain shifts.

However, our understanding of hb regulation in this domain is

poor and incomplete. In particular, the position of its posterior

boundary itself shifts over time[10], but the regulatory mechanism

by which this is achieved remains unknown. In this paper, we use

the gene circuit method—a data-driven modelling approach

[11,12]—to investigate the role of Hkb in the establishment and

subsequent shift of the posterior hb domain.

The gene circuit method uses mathematical models of gene

networks as computational tools to extract regulatory information

from quantitative, spatial gene expression data (Figure 1A). We

obtained such data for hkb expression using a slightly modified

version of an established data-processing pipeline (see [13], and

references therein): (1) A polyclonal antibody against Hkb protein

was raised and used to stain blastoderm stage Drosophila embryos.

(2) Embryo images were acquired using a confocal laser scanning

microscope. (3) Image segmentation was applied to obtain

numerical tables of average protein concentrations per nucleus.

(4) Embryos were sorted into time classes—each covering about

7 min of developmental time—based on Eve expression and

morphological markers. (5) Non-specific background staining was

removed and (6) data were averaged across all embryos stained for

Hkb at a given time point. This yielded an integrated, quantitative

time-series of Hkb expression patterns, which we combined with

equivalent data for other gap genes from the FlyEx data base

[14,15] for modelling and model fitting (see below).

To simulate the dynamics of gap gene expression, we use gene

circuit models (see Methods for equations) [11,12]. Such models

have been successfully used in the past to investigate gap gene

expression and regulation [1,7,16–22]. Gap gene circuits consist of

Author Summary

Currently, there are two very different approaches to the
study of pattern formation: Traditional developmental
genetics investigates the role of particular factors in great
mechanistic detail, while newly developed systems-biolo-
gy methods study many factors in parallel but usually
remain rather general in their conclusions. Here, we
attempt to bridge the gap between the two by studying
the expression pattern and function of a particular
developmental gene—the terminal gap gene huckebein
(hkb) in the fruit fly Drosophila melanogaster—in great
quantitative detail using a systems-level approach called
the gene circuit method. Gene circuits are mathematical
models which allow us to reconstitute a developmental
process in the computer. This allows us to study the
function of the hkb gene in its wild-type regulatory context
with unprecedented accuracy and resolution. Our results
confirm earlier, qualitative evidence, and show that hkb
plays a small, but crucial role in gap gene regulation.
Understanding hkb’s regulatory contributions is essential
for our wider understanding of dynamic shifts in the
position of gap gene expression domains which play
important roles during both development and evolution.

Figure 1. The gene circuit method: old vs. new models. (A) Reverse engineering gene regulatory networks using the gene circuit method: A
mathematical (dynamical) model of the network is fit to quantitative, spatial gene expression data using combined global and local non-linear
optimisation approaches. The resulting gene circuits, consisting of specific estimated sets of parameter values, define regulatory interactions among
genes within the network (its regulatory topology). This topology is not defined a priori, but is extracted from the quantitative expression data by the
fitting procedure. The resulting dynamical behaviour of the system can be analysed using graphical or numerical methods. (B) Previous gap gene
circuit models used concentrations of the protein products of gap genes hb, Kr, gt, kni, tll, and of the maternal co-ordinate gene cad as state variables
(grey shaded background), while the maternal protein gradient encoded by bcd was implemented as an external input which did not vary over time
(6-gene models, left; time-constant Bcd indicated by blue shaded background). Current gap gene circuit models only include the trunk gap genes hb,
Kr, gt and kni as state variables (grey shaded background), implementing bcd, cad, tll and hkb as time-variable external inputs since they are not
regulated by gap genes themselves (4-gene models, right). hkb (highlighted), which is the focus of this study, has not been considered in previous
models. See main text for details.
doi:10.1371/journal.pcbi.1000548.g001
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a row of dividing nuclei along the A–P axis of the embryo.

Between nuclear divisions, gap proteins are synthesised and decay

within each nucleus. In addition, gap proteins diffuse between

neighbouring nuclei which are not yet separated by cell

membranes at this stage [23]. The model incorporates a few basic

assumptions about eukaryotic transcriptional regulation: Regula-

tory input is fed into a sigmoid regulation-expression function. We

assume that each regulatory interaction can be either repressive (if

it is negative), absent (if it is close to zero) or activating (if positive),

and hence can be represented by a single number or parameter in

the model. For simplicity, we assume that regulatory inputs are

additive and independent of regulatory context (i. e. the presence

or absence of other regulators).

Previous gene circuit models included the gap genes hb, Kr, kni,

gt and tll as well as the maternal co-ordinate gene cad (6-gene

models; Figure 1B, left) [1,7,17–20]. All of these genes regulate

and are regulated by other genes in the model. However, it is

known from the experimental literature that neither tll nor the

maternal contribution to cad are affected by gap genes (zygotic cad

expression is repressed by Hb, but does not play a role in gap gene

regulation) [24–29]. This can create modelling artifacts—incon-

sistent with experimental data—such as an expansion of tll

expression which influences gap gene expression in the central

region of the embryo [1,21,22]. It also leads to problems with the

determinability of parameters involved in tll and cad regulation,

which in turn affects determinability of regulatory parameters for

other gap genes (see below) [19]. Finally, the absence of Hkb in

these models results in incorrect expression and regulation of the

posterior hb domain [1].

To avoid such problems, we use a revised model—first

introduced in [21,22]—which represents tll and cad as time-

variable external inputs. This model only considers hb, Kr, kni and

gt as core regulators of the network (4-gene models). Protein

concentrations of the products of these genes constitute the state

variables of the system, while levels of Tll and Cad are now

calculated from data. It is assumed that they regulate, but are not

themselves regulated by gap genes. These published models have

a constant Bcd gradient and did not consider Cad data from late

time points just before the onset of gastrulation [21,22]. In

contrast, we implement Bcd as a time-variable input, and use late

Cad expression data to represent the rapidly changing expression

dynamics of these two genes at that stage. Bcd starts being rapidly

degraded right before the onset of gastrulation [10]. At the same

time, Cad disappears from the central region of the embryo and

refines into a posterior stripe of zygotic expression which has a

homeotic, rather than maternal co-ordinate function [30].

Finally, the most important addition to the model in the context

of this paper is that of the terminal gap gene hkb. Similar to tll, it is

not regulated by gap genes itself [26,28] and is included as yet

another external input factor. Core regulatory genes and external

inputs in our current 4-gene models are summarised in Figure 1B

(right).

The modelling framework outlined above does not predeter-

mine any specific regulatory interactions within the gene network.

Instead, these interactions—and hence the regulatory topology of

the network—are obtained by fitting the model to the data

(Figure 1A). This is achieved by minimising a cost function that

measures the difference between the two. Previous studies using

gap gene circuits used a cost function based on the sum of squared

differences between gap protein levels in the model and the data

(ordinary least squares, OLS) [1,7,17–22]. However, the OLS cost

function is an appropriate measure under certain assumptions

only: all errors in the data have to be independent of each other,

and are assumed to follow a normal distribution with zero mean

and constant standard deviation. The latter condition clearly does

not hold for our data set, since standard deviations vary for each

gene over space and time (Figure S1) [10,31]. Generally, standard

deviations become smaller at late time points. They are also

relatively small around domain boundaries, and almost negligible

in non-expressing regions, indicating that domain position is

determined with little variation towards the onset of gastrulation

[10]. Therefore, it is more appropriate to consider data variability

for model fitting by using a weighted least squares (WLS) cost

function for optimisation (Maximum Likelihood Estimation, [32]),

in which each squared difference between model and data is

weighted inversely proportional to the standard deviation of the

corresponding data point. In other words, data points with little

embryo-to-embryo variability contribute more to the measured

difference between model and data than those with a high

variability between embryos. Here, we compare results obtained

by both OLS and WLS fits to demonstrate that indeed, WLS is a

more suitable measure than OLS not only in theory, but also in

practice.

The resulting models are analysed in various ways to gain new

biological insights. Analysis of the dynamical behaviour of our

models allows us to associate specific regulatory interactions and

mechanisms with specific features of gene expression (such as the

establishment of a new expression domain or the formation,

sharpening or shift of an expression domain boundary). This can

either be achieved by graphical examination of specific interac-

tions in the model [1,2,7], or by characterising the convergence of

the system towards its various dynamical attractors [21,22]. In

addition, we can test how reliably our models predict a specific

regulatory network topology, by statistical determinability analysis

of our parameter estimates. This is achieved by calculating

confidence intervals around our estimated solutions, which give us

a range of values in which the true solution of our optimisation

problem lies with a given probability (see Methods and [19,33], for

details). If these intervals do not range across several regulatory

categories (‘activation’, ‘repression’, or ‘no interaction’), the

parameter is well-determined. In contrast, if they cover more

than one regulatory category, the parameter is only weakly

determined, or not determined at all. It has been shown that

biological network models always contain at least a few parameters

which cannot be determined, and that this is usually due to

parameter correlations [34]. Here, as in a previous study [19], we

analyse such parameter dependencies by calculating an average

correlation matrix across solutions.

In the sections that follow, we analyse the protein expression

pattern of hkb in a quantitative manner. We then use these

quantitative expression data as external input to new gap gene

circuit models. We obtain parameter estimates for these models

(and hence a predicted regulatory topology for the gap gene

system) using fits with both OLS and WLS cost functions. We

show that the latter produces more consistent and well-

determined parameter estimates. In contrast to earlier models,

these circuits now reproduce expression dynamics in the

posterior hb domain correctly. In particular, they show a correct

anterior shift in this expression domain, and thus correct shifts in

all gap domains in the posterior region of the embryo. We analyse

the dynamical behaviour of our model to show that this is due to

the repressive influence of Hkb on hb. We further establish that

this is the only significant contribution hkb makes to pattern

formation by gap genes. The role of hkb as revealed by our models

is entirely consistent with evidence from the experimental

literature. Finally, we discuss its implications for gap domain

shifts, segment determination and the evolution of the gap gene

system.

hkb Gene Circuits
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Methods

Hkb Antibody
Polyclonal antiserum against Hkb protein was raised as follows:

A full-length cDNA clone of hkb (FlyBase ID: FBgn0001204) was

obtained from the Drosophila gene collection (http://www.fruitfly.

org/DGC), and recombined into a pET-DEST42 GATEWAY

expression vector (Invitrogen). The resulting construct was auto-

induced in E. coli strain BL21(DE3) using Overnight Express

medium (Novagen/Merck). 6xHis-tagged Hkb protein was

purified according to [35]: The most prominent protein band

was excised from a preparative SDS-PAGE gel and recovered by

electroelution followed by dialysis against double distilled water.

Antibodies were raised in two rats using 120mg of protein per rat

(Eurogentec).

Quantitative Expression Data
Blastoderm stage embryos of Drosophila melanogaster (collected 1–

4 hrs after egg laying) were stained against Hkb (dilution: 1:100),

Eve (1:2000) and either Hb (1:1000) or Kni (1:400), using antisera

described above (for rat-aHkb), in [36] (for rabbit-aEve) and in

[35] (for guinea pig-aHb, and -aKni). Eve is used for time

classification [13]. As secondary antibodies, we used

Alexa488-arat, Alexa555-aguinea pig and Alexa647-arabbit
(Molecular Probes) at a dilution of 1:4000. Nuclei were counter-

stained using Hoechst 34580 (Invitrogen). Laterally oriented

embryos were scanned using a 20| water-immersion objective

on a Leica SP5 confocal scanning laser microscope. Fluorescent

dyes were excited with a single wavelength at a time to prevent

bleed-through between channels. The following wavelength

windows were used for detection: 410–485 nm (with the 405 nm

blue diode laser line), 495–555 nm (488 nm Argon), 565–625 nm

(561 nm DPSS), and 640–720 nm (633 nm HeNe). To ensure

reproducibility of measurements, scans were performed using

identical detector gain and offset for all embryos on a slide. Images

of dorsal nuclear and membrane morphology for time classifica-

tion were obtained using differential interference contrast (DIC)

with a 63| water-immersion objective.

Embryo images were processed to yield integrated expression

data as described in the Introduction and in [13] (and references

therein), with the following exceptions: (1) Images of embryos at

early blastoderm stage (comprising cleavage cycles 9 to 13 (C9–

C13); cleavage cycle n is the period between mitoses n{1 and n
[23]) were segmented using a threshold-based algorithm: Images

were de-speckled using a median filter; a top-hat transformation

was used to remove uneven background; automated thresholding

(using Otsu’s method) was corrected interactively wherever

necessary until all nuclei in an image were captured by the

algorithm; finally, a watershed segmentation algorithm was

applied to the distance transform of the thresholded image to

avoid fused nuclei [37]. (2) Images of embryos at late blastoderm

stage (cleavage cycle 14A (C14A)) were segmented using a

watershed algorithm combined with nuclear edge detection as

described in [38]. To reduce over-segmentation, we introduced

an extended-minima transform before the watershed algorithm

was applied [37]. (3) Expression data were not registered, as

registration based on expression features in the central region

fails at the termini where hkb is expressed, and not enough

replacement features were available in that region of the embryo.

(4) Due to its low signal-to-noise ratio, Hkb serum had to be used

at a relatively high concentration (see above) to elicit a clearly

detectable signal. This created high levels of non-specific

background staining in the central region of the embryo, which

our background removal procedure failed to completely remove.

The residual central signal is clearly separated from the two

expression domains at the termini. It does not seem to represent

any real expression, and has not been observed in any previous

study of hkb [26,28,39,40]. To avoid modelling artifacts like those

described for Tll in the Introduction, this signal was removed

from integrated data by setting Hkb levels in the central region to

zero. Moreover, integrated Hkb data were scaled (by an arbitrary

factor of 3 across all time classes) to facilitate visual comparison

(in Figure 2, right column) and to reduce numerical stability

problems when solving the model (see below). Hkb expression

data will be integrated into the FlyEx database, available at

http://urchin.spbcas.ru/flyex or http://flyex.ams.sunysb.edu/

flyex [14,15].

Quantitative integrated expression data for Bcd, Cad, Hb, Kr,

Kni, Gt and Tll are taken from the FlyEx database. Concentra-

tion measurements were taken at C13, as well as eight regularly

spaced time points during C14A (T1–T8) [13]. The data set used

for model fitting consists of Nd~1976 averaged nuclear protein

concentrations. Averaging is achieved by collecting measure-

ments from individual embryos into a number of bins along the

A–P axis. Each integrated expression pattern at a given time

point is based on data from 9–62 individual embryos (with the

exception of Kni at C13, which is represented by 4 embryos

only). Each embryo contributes measurements from multiple

nuclei to a bin to be averaged. Therefore, the number of

measurements used in the computation of the averaged

concentration value per nucleus (the sample mean) is usually

much larger than the number of embryos per time point. Based

on this and the Central Limit Theorem [41], we assume that

concentration values in averaged bins are approximately

normally distributed. As it is not known how measurements are

correlated, we take them to be independent of each other. Figure

S1 shows integrated gap gene expression data with their

associated standard deviations.

Gene Circuit Models
Gene circuits are hybrid dynamical models with two continuous

and one discrete rule: (1) interphase, (2) mitosis and (3) division

[11]. During interphase, the change in concentration gai for each

gap gene product a in each nucleus i over time t is described by

the following system of ordinary differential equations (ODEs):

dgai
dt

~RaW
XNg

b~1

Wb
a g

b
i z

XNe

e~1

Ee
ag

e
i zha

 !

zDa(n) gai{1{gai
� �

z gaiz1{gai
� �� �

{lagai :

ð1Þ

The three terms on the right-hand side of the equation represent

regulated protein synthesis, protein diffusion and protein decay.

Integer indices a and b refer to regulated gap genes and regulators

respectively, and e refers to external regulators. Ng~4 is the

number of gap genes in the model (hb, Kr, kni and gt), Ne~4 is the

number of external regulatory inputs (provided by bcd, cad, tll and

hkb, genes which regulate gap genes but are not regulated by gap

genes themselves). ua~
XNg

b~1
Wb

a g
b
i z

XNe

e~1
Ee
ag

e
i zha repre-

sents the total regulatory input to gene a. W and E are genetic

interconnectivity matrices (for state variables and external inputs

respectively, of size Ng|Ng and Ng|Ne) whose elements (called

regulatory weights) each define one particular regulatory interac-

tion in the gap gene network. ha is a threshold parameter (which

represents the influence of uniform maternal factors on the

expression of gene a) for the sigmoid regulation-expression

function

hkb Gene Circuits
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Figure 2. Quantitative analysis of hkb expression. This figure shows images of representative embryos stained against Hkb protein for each
time class (T1–T8) during cleavage cycle 14A (left), with their corresponding quantified Hkb expression profiles (middle). Integrated Hkb expression
data for each time class are shown, and compared to integrated profiles of Bcd, Cad, Hb, Kr, Gt, Kni, and Tll from the FlyEx data base [14,15], on the
right. N indicates the number of embryos on which each integrated Hkb pattern is based. Horizontal plot axes represent percent A–P position (where
0% is the anterior pole). Grey shaded background (on the right) indicates the trunk region of the embryo, which is covered by gap gene circuit
models. Vertical plot axes show relative protein concentration (based on fluorescence intensity on an 8-bit range of 0 to 255). Integrated Hkb patterns
have been scaled to facilitate comparison to other expression profiles. See Methods for details on time classes and data quantification.
doi:10.1371/journal.pcbi.1000548.g002
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W(ua)~
1

2

uaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ua)2z1

q z1

0
B@

1
CA: ð2Þ

Negative regulatory input ua leads to increasing repression (with

leakage), while positive regulatory input leads to increasing

activation until saturation of gene expression at maximum

production rate Ra. Da is a diffusion rate that depends on the

distance between nuclei, which halves at every nuclear division (n

is the number of previous divisions). la is the rate of decay for the

product of gene a. It is related to the half-life of the protein by

ln (2)=la. During mitosis, protein synthesis is shut down. Nuclei

divide instantaneously at the end of mitosis and the protein

concentrations from each mother nucleus are copied to its two

daughters. We use the same division schedule as in Figure 2 of [1],

which is based on [23,42].

Gap gene circuits include cleavage cycles 13 and 14A (ending at

the onset of gastrulation; Tgast~71:1min) and cover the region

from 35% to 92% along the A–P axis of the embryo (where 0% is

the anterior pole). This includes Nc~30 and Nc~58 nuclei at

C13 and C14A, respectively. As a consequence, system (1) consists

of 120 and 232 ODEs during C13 and C14A respectively. At the

boundary points i~1 and i~Nc we replace the diffusion term in

the right-hand side of (1) by Da(gaiz1{gai ) and Da(gai{1{gai )
respectively, implementing homogeneous Neumann (no-flux)

boundary conditions.

Kr, Kni, Gt, Tll and Hkb proteins are not present at significant

levels before C13 (see Results and [10]). Thus, we use zero initial

conditions for these. Non-zero initial conditions for Bcd, Cad and

Hb are obtained by linear interpolation of integrated expression

data at C12 (t~{6:2 min) and C13 (t~10:55 min). Moreover,

to solve (1) one needs concentration levels gei for external inputs e
at all time points t[½0,Tgast�. This is achieved by linear inter- or

extrapolation from data points at t~0,T0,T1, . . . T8 (T0 denotes

the single time point in C13). Higher-order inter-/extrapolation is

prone to produce artifacts due to fluctuations in the expression

data, and is therefore not used here [21]. Because it is not clear

whether integrated Bcd profiles at T7 and T8 have non-specific

background properly removed, we used linear extrapolation based

on T5/6 for these time points. This results in a rapid decay of the

Bcd gradient just before the onset of gastrulation qualitatively

similar to that described in [10]. Negative extrapolated concen-

tration values were reset to zero wherever necessary.

Parameter Estimation
Equation (1) contains m~48 parameters (parameter vector h

containing W b
a , Ee

a, ha, Ra, Da and la), whose values we seek to

determine by fitting the model to the data. We denote each

measurement in our data set by gai (Tj )data, specified by the time Tj

when the concentration of gene product a in nucleus i was

measured. The corresponding model value obtained from (1) is

denoted by gai (Tj )model. The estimation of unknown parameters in

(1) amounts to minimising the cost function

S(h)~
XNg

a~1

XNt

j~0

XNc(n)

i~1

vaij gai (Tj )model{gai (Tj )data
� �2

, ð3Þ

where va
ij are positive weights, Ng~4 is the number of gap genes,

Nt~8 is the number of time classes, and Nc(n) is the number of

nuclei (which depends on the number of preceding mitoses n) for

which we have data. When all weights va
ij in (3) are equal to one,

(3) represents an ordinary least squares (OLS) fit, which was the

cost function used in all previous studies using gene circuit models

[1,7,17–22]. When the weights are taken to be inversely

proportional to the corresponding variances in the data, the cost

function becomes the weighted least squares (WLS) distance and

its minimum is the Maximum Likelihood Estimate [32].

The quality of a fit of the model to the data is measured by the

root mean square (RMS) given by

RMS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

XNg

a~1

XNt

j~0

XNc(n)

i~1

gai (Tj )model{gai (Tj )data

� �2

vuut , ð4Þ

where Nd~1976 is the total number of all measurements. A

solution is considered to be ‘good’ if its RMSv12:0 and if there

are no visible pattern defects in the model response [1].

We used a two-step optimisation algorithm to minimise the cost

function (3): Global optimisation by the parallel Lam Simulated

Annealing (pLSA) algorithm [43–45] was performed on the Darwin

cluster at the High-Performance Computing (HPC) centre of the

University of Cambridge (http://www.hpc.cam.ac.uk) as described

previously [1,7,21,22]. pLSA solutions were used as starting points

for local search by the Levenberg-Marquardt (LM) method [46,47]

as described in [19,33]. The complete set of estimated parameter

values can be found in Table S1. For numerical solution of the

model during pLSA optimisation, we use a Runge-Kutta Cash-

Karp (Rkck) adaptive-step-size solver set to high accuracy to avoid

numerical instability [48]. During local optimisation by LM the

model is solved using an implicit multistep Backward Differentiation

Formula (BDF) as previously described in [19,33].

Based on previous studies using gap gene circuits [1,7,18–22],

we define our search space for parameter estimation by the linear

constraints 10:0ƒRa
ƒ30:0, 0:0vDa

ƒ0:3, 5:0ƒ

ln 2

la ƒ20:0

(a~1, . . . ,Ng), and by the following non-linear penalty function

for regulatory parameters W b
a and Ee

a

XNg

b~1

Wb
a g

b
max

� �2
z
XNe

e~1

Ee
ag

e
max

� �2
z(ha)2

ƒ104, a~1, . . . ,Ng , ð5Þ

where gbmax and gemax are the maximum concentration values in

our data set for proteins b and e, respectively. Previous work has

shown that fixing the values of parameters ha improves parameter

determinability without affecting the overall quality of the fits [19].

Therefore, we take ha~{2:5, a~1, . . . ,Ng in all simulations,

which leaves us with m~44 unknown parameters in (1) to be

estimated.

Statistical Analysis of Parameter Estimates
Here, we only provide a brief overview of the equations used for

calculating confidence intervals and parameter correlations (see

Introduction). For more detailed explanations of these statistical

quantities and their derivations, we refer the reader to [19,33] (and

references therein).

Model optimisation results in a vector ĥh with the estimated

parameter values as its elements. The ellipsoidal confidence region

around ĥh, in which the ‘true’ parameter vector h� lies with a

certain probability 1{a (defined as 95% in our case) is defined by

(h�{ĥh)T JT (ĥh)J(ĥh)
� �

(h�{ĥh)ƒ
m

Nd{m
S(ĥh)Fa(m,Nd{m), ð6Þ
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where m and Nd are the number of parameters and measure-

ments, respectively. J is the Jacobian (or sensitivity) matrix of size

Nd|m, defined as J(h)~
LY(h)

Lh
where Y(h) is the vector of

weighted differences between model and data. Each entry Jij in

J(h) shows how sensitive the model response is at the ith data

point for a change in the jth parameter. Fa(m,Nd{m) is the

upper a part of Fisher’s distribution with m and Nd{m degrees of

freedom. From (6) one can derive dependent and independent

confidence intervals for parameter estimates ĥhi (i~1,2, . . . ,m).

These are, respectively,

hi : jhi{ĥhijƒ
rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V (ĥh)S2(ĥh)VT (ĥh)
� �

ii

r
8>><
>>:

9>>=
>>; ð7Þ

and

hi : jhi{ĥhijƒrs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V (ĥh)S{2(ĥh)VT (ĥh)
� �

ii

r� 	
: ð8Þ

Here V(ĥh) and S(ĥh) are obtained from the Singular Value Decom-

position of J(h) [48,49] and r2
s~

m

Nd{m
S(ĥh)Fa(m,Nd{m).

The correlation coefficient between ĥhi and ĥhj is given by

rij~
Bijffiffiffiffiffiffiffiffiffiffiffi
BiiBjj

p : ð9Þ

where B(ĥh)~V (ĥh)S{2(ĥh)VT (ĥh).

Results

Quantitative Analysis of hkb Expression
We quantified expression levels of Hkb protein in blastoderm

stage embryos of Drosophila as described in Methods. Our analysis

closely follows that of tll in [10], and focuses on the last two

cleavage cycles before gastrulation (C13 and C14A; cleavage

cycles and time classes are defined in Methods) [23]. Represen-

tative embryo images and quantified expression patterns from

those individual embryos are shown for all time classes (T1–T8) of

C14A in Figure 2, left and middle column. Scaled, integrated

expression data for Hkb are compared to other gap gene

expression patterns in Figure 2, right column, which also indicates

the number of embryos used to construct the data set.

Hkb protein can first be detected in both its anterior and posterior

domain at C13 (data not shown). Protein levels rapidly increase during

early C14A (T1–T3). At this stage, peak levels are very similar in both

domains, although the anterior is very slightly weaker than the

posterior one. Subsequently, the anterior domain gradually weakens

(T5–T8), while protein levels in the posterior domain remain more or

less constant (although there may be a slight decrease in concentration

at T8). The peaks of both domains remain at a constant position

throughout (5% A–P position for the anterior, 95% for the posterior

domain). Similarly, the width of both domains remains approximately

constant: the anterior domain extends back to about 10–15% A–P

position, while the posterior domain reaches as far as 85–90%, both

domains covering about 10–15% A–P position in each terminal region.

None of the two Hkb domains show any discernible D–V asymmetry

at any point in time before gastrulation.

Model Fitting: OLS versus WLS
Our quantitative hkb expression data enabled us to include this

gene in gap gene circuit models. We used both OLS and WLS cost

functions for fitting 4-gene models (Figure 1B, right) to

quantitative expression data (Figure S1). For the OLS cost

function, we performed 740 independent optimisation runs

(combined global and local search). The quality of a fit is assessed

using the root mean square (RMS) score (defined in Methods).

About 80% of the resulting parameter sets have good-scoring

RMS values (RMSv12:0). This residual error is below the level of

variation in the expression data [10,31]. However, a closer look at

the patterns for good-scoring sets reveals that most of them have a

slight, but significant, patterning defect in common: model output

shows an artifactual hump of Kr expression posterior to its central

domain (data not shown). This problem has also been noticed in

an earlier study with gap gene circuits without hkb (Manu, Stony

Brook University, New York, USA: personal communication). In

these circuits, Gt represses hb and the small ectopic Kr domain is

required to down-regulate gt to allow initiation of posterior hb

expression. This is both incompatible with experimental evidence

[50–56] and previously published models of the gap gene system

[1,7,17–19,21,22]. Therefore, we exclude these solutions from our

analysis. Although a large majority of circuits obtained by OLS fits

show the small ectopic Kr domain, we found 39 low-scoring

parameter sets that do not have this patterning defect (Figure S2).

These circuits were selected for further analysis. Their RMS

values vary between 8:71 and 10:11.

Local search with the WLS cost function was performed using

selected OLS parameter estimates as starting points: the 39

solutions without, and the lowest-scoring 90 solutions with

defective Kr expression. In addition, we performed 80 independent

optimisation runs using WLS both for global and local search. For

our analysis, we selected 117 (out of 209) parameter sets with the

lowest WLS scores varying uniformly between 1:08|103 and

1:13|103. This corresponds to RMS values between 10:43 and

13:32, which are slightly higher than those for OLS runs since

WLS solutions tolerate larger residual errors at early stages of gap

gene expression. None of these low-scoring parameter sets show

any major patterning defects (Figures 3 and S3), while most

solutions with larger WLS scores do (data not shown). In

particular, we observed no ectopic expression of Kr in any of

these solutions. This is not surprising as standard deviations in the

data are small in regions where protein concentration is low. Thus,

the corresponding weights for the WLS cost function are large,

which prevents the presence of any ectopic expression domains

(even if they are small) in low-scoring solutions.

Gap gene expression patterns produced by circuits from the

selected OLS and WLS fits are similar, although variability

between different models is somewhat larger for OLS (compare

Figures S2 and S3). As expected, WLS solutions generally show

slightly better fits at late stages. Most visible defects occur early.

The posterior borders of the central Kr and the posterior gt domain

become established at a slightly different position than in the data

(Figures 3, arrowhead, and S3). In addition, there are irregularities

in the shape of anterior expression boundaries of the posterior gt

domain (WLS only; Figure S3), the central domain of Kr, and the

posterior domain of hb (OLS and WLS; asterisks in Figure 3).

Although such irregularities in boundary shape lie well within the

variability of the integrated data (cf. Figure S1), they are never

observed in quantitative expression profiles extracted from

individual embryos [10]. Similar problems with the posterior

domains of gt and hb have been observed in earlier models of the

gap gene system [1,21].

hkb Gene Circuits
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On the other hand, the dynamic expression of hb in its posterior

domain is reproduced correctly. Earlier models exhibited defects

in the timing and positioning of the posterior boundary of this

domain (see dark grey Hb profile in Figure 3), while the circuits

presented here accurately reproduce the establishment and

subsequent anterior shift of this expression border (arrows in

Figure 3).

Consistency of Parameter Estimates
Estimates of regulatory weights obtained by both OLS and

WLS fits were classified into the following three categories:

‘activation’ (parameter values w0:005), ‘repression’ (v{0:005)

and ‘no interaction’ (between {0:005 and 0:005) [1,18,19]. This

leads to a predicted regulatory topology of the network based on

which category a majority of parameter estimates falls into

(summarised in Figure 4). If a threshold of 0:01 is chosen instead,

the predicted network topology remains largely unchanged, with

two notable exceptions: the activating effects of both Cad and Tll

on hb change to the ‘no interaction’ category indicating that these

predicted interactions are very weak, and may not be significant

(see Discussion).

Apart from only two interactions, the predicted regulatory

topologies agree between OLS and WLS fits. In the case of OLS,

Hkb activates gt and represses kni, while for WLS it is the other

way around (Figure 4). Strikingly, the more consistent expression

patterns between WLS solutions are also reflected by more

consistent predictions of network structure. While many param-

eters fall into different categories in different OLS solutions, only

one interaction (regulation of kni by Hkb) shows this type of

ambiguity in the case of WLS (Figure 4). This means that WLS

solutions are not only more tightly clustered in terms of their

expression patterns, but also in terms of the distribution of their

parameter values.

A similar pattern can be observed when comparing our new 4-

gene models with earlier 6-gene circuits (cf. Figure 1B). Although

the predicted regulatory structure is largely in agreement between

these two types of model, consistency of the prediction is improved

considerably in 4-gene models (even in the case of the OLS

solutions presented here). Repression of Kr and gt by Hb, of kni by

Gt, of Kr by Kni and of gt by Tll are now present in all parameter

sets, while previous results for the 6-gene case showed no

interaction for these weights in many solutions [1,18,19]. Weak

activation of hb by Tll is now predicted by a large majority of

parameter sets. Some previous models had predicted this

interaction [17], while most showed repression or no interaction

between the two genes [1,18,19]. Another activating interaction

which is now consistently predicted is that between Kni and gt.

Finally, there is no auto-activation of gt in a very large majority of

our parameter sets.

Parameter Determinability
The regulatory structure of the gap gene system shown in

Figure 4 is based solely on the classification of estimated

parameters into regulatory categories. To assess the quality of

the parameter estimates more rigorously, we computed dependent

and independent confidence intervals for each parameter set (see

Methods and [19,33]). We then checked if these confidence

intervals fall entirely into negative (‘repression’), or positive

(‘activation’) ranges of parameter values, or whether they cluster

tightly around zero (‘no interaction’).

Results in Figure 4 are fully confirmed when only dependent

confidence intervals (which tend to underestimate the extent of the

confidence region) are taken into account. In contrast, not all of

our conclusions from Figure 4 are supported when independent

Figure 4. Predicted regulatory network topologies from
models obtained by OLS and WLS fits. The distribution of
regulatory weights for each regulator (columns) and regulated gene
(rows), is shown for OLS fits (above) and WLS fits (below). Number
triplets show how many parameter estimates (from independently
obtained optimisation solutions) fall into the regulatory categories of
‘repression’ (parameter values v{0:005; left), ‘no interaction’ (between
{0:005 and 0:005; middle), and ‘activation’ (parameter values w0:005;
right). Background colours indicate whether a majority of the weights
for a particular interaction show repression (red), activation (green) or
no interaction (blue). Dark background means that all solutions fall into
the same category; light colours indicate ambiguity in the prediction
where some solutions fall into a different category than others. Note
that the regulatory topology predicted by WLS fits with fixed Hkb
weights (WLSfh) is exactly the same as that for WLS fits (not shown).
doi:10.1371/journal.pcbi.1000548.g004

Figure 3. Model output compared to quantitative expression
data. Integrated expression profiles from the FlyEx data base [14,15] are
shown for Hb (yellow), Kr (green), Gt (blue) and Kni (red; left to right) for
time classes T2, T5 and T8 (top to bottom). Light grey profiles show
corresponding profiles based on numerical solution of the current 4-gene
model with parameter estimates obtained by WLS fits (see main text).
The dark grey profile for Hb (left) shows model output of a representative
6-gene model from 7. Arrows highlight the correct establishment and
anterior shift of the posterior boundary of the posterior hb domain.
Patterning defects in the model are indicated as follows: Asterisks
indicate bulges in the anterior borders of the central Kr and the posterior
hb domain; arrowhead indicates slightly incorrect position of the early
posterior border of the posterior gt domain. We emphasise discrepancies
in boundary shape and position over those in expression levels since the
latter are somewhat arbitrary due to the relative protein concentrations
in the data. The incorrect reproduction of the late-appearing ‘dip’ in the
anterior hb domain is expected, as the model currently does not include
separate phases of early and late hb regulation (see [1] for details). Plot
axes as in Figure 2, middle and right column.
doi:10.1371/journal.pcbi.1000548.g003
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confidence intervals (which tend to overestimate the extent of the

confidence region) are considered. For example, Figure 5A shows

the confidence intervals for interactions between Gt and Kr (left;

parameter: W Gt
Kr ), Bcd and hb (middle; EBcd

hb ), as well as Tll and kni

(right; ETll
kni) for all 39 selected OLS fits. Independent confidence

intervals for W Gt
Kr lie in the negative part of the plane for almost all

parameter estimates and therefore, repression predicted for this

weight in Figure 4 is confirmed by statistical analysis. In other

words, this parameter is determinable. Independent confidence

intervals for EBcd
hb , on the other hand, slightly extend into the

negative part of the plane. Therefore, the model only predicts that

Bcd does not repress hb. Note that this is a weaker conclusion than

predicting activation for this weight from Figure 4. Hence, this

parameter is only weakly determinable. In contrast, we cannot

draw any conclusions about ETll
kni, since independent confidence

intervals extend from the negative into the positive part of the

plane. Thus, statistical analysis cannot confirm the repression of kni

by Tll inferred from Figure 4, and this parameter is not

determinable.

Parameter determinability analysis based on independent

confidence intervals for OLS and WLS fits is summarised in

Figures 5B and 5C, respectively. We focus on regulatory

parameters since, just as in earlier studies [19], promoter strengths

Ra, diffusion coefficients Da and decay rates la have extremely

large independent confidence intervals meaning that none of these

parameters are determinable (data not shown). Confidence

intervals for all regulatory weights are shown in Figures S4 (for

OLS) and S5 (for WLS fits). It is evident that conclusions from this

analysis are generally weaker than those drawn from classifying

parameter values only (compare Figures 5B,C with Figure 4).

11 and 12 (out of 32) regulatory parameters cannot be

determined for OLS and WLS fits, respectively. Among them

are several of the interactions predicted to fall into the ‘no

interaction’ category in Figure 4 (W Kr
hb , W Kr

kni and WGt
gt ) if a

threshold of 0:005 is chosen for the analysis. However,

independent confidence intervals of these interactions are all very

small and cluster tightly around zero (Figures S4 and S5).

Furthermore, their intervals are completely within the ‘no

interaction’ category if the threshold is extended to 0:01. For

these reasons, we consider them to be determinable in Figure 5B

and C. This lowers the number of non-determinable regulatory

parameters to 10 for both OLS and WLS fits. Out of the

remaining 22 regulatory weights, 2 are only weakly determinable

(for both OLS and WLS fits), while the regulatory category for the

other 20 is confirmed by statistical analysis. Which regulatory

parameters are not determinable differs significantly between OLS

and WLS solutions and does not follow any obvious pattern, apart

from the fact that most interactions by terminal gap genes tll and

hkb are affected (Figure 5B,C).

Regulation of the Posterior hb Domain
Previous quantitative analyses of the gap gene system suggested

a set of basic regulatory mechanisms based on broad activation of

gap genes by maternal co-ordinate proteins, and spatially specific

gap-gap cross-repression [1,7]. In addition, they revealed signif-

icant anterior shifts in the position of posterior gap domains after

their initial establishment during C13 [7,10]. These shifts are

caused by asymmetric repressive interactions as described in the

Introduction and in [1,7,22]. Parameter analysis (Figures 4 and 5),

as well as graphical inspection of regulatory interactions across

space and time (data not shown; analysis performed as in [1,7])

show that our current 4-gene models implement exactly the same

regulatory principles as those seen in previous 6-gene circuits.

In addition, our current gap gene circuits now accurately

reproduce expression in the posterior hb domain, while shift and

establishment of this domain were incorrect in previous models

[1,7,17–22] (Figure 3). To investigate how the inclusion of Hkb

affects this domain, we have performed a detailed graphical

analysis of hb regulation in the posterior region of the embryo

(Figure 6). This analysis reveals the following regulatory principles.

The posterior hb domain is the last gap domain to form in the

posterior region of the embryo. Expression is initiated during

cleavage cycle 13 and the domain retracts from the posterior pole

in early cycle 14A (T2) [10,57,58]. Later during cycle 14A,

expression levels increase, domain boundaries sharpen and shift

further towards the anterior (see Figures 2 and 6, left column).

The late initiation of hb expression in the posterior region can be

explained by residual amounts of Kni protein being present in the

region during C13 and early cycle C14A (Figure 6, T2, left and

middle panel). Kni is a very strong repressor of hb. Kni is

increasingly repressed in the most posterior region of the embryo

by the gradual accumulation of Gt protein (data not shown). In the

model, combined activating inputs by Cad and Tll induce hb

Figure 5. Parameter determinability analysis. (A) Dependent
(green) and independent (red) confidence intervals are shown across 39
OLS solutions (horizontal axes) to illustrate a regulatory weight which is
well determined (W Gt

Kr , left), one that is only weakly determined (EBcd
hb ,

middle), and one that is not determined at all (ETll
kni , right). Vertical axes

represent parameter values; note that scales vary between plots. (B–D)
Summaries of parameter determinability analysis for OLS (B), WLS (C)
and WLS fits with fixed Hkb weights (WLSfh; D). Symbols indicate
whether a particular interaction between a regulator (columns) and a
regulated gene (rows) is well determined (-, repression; +, activation; o,
no interaction), only weakly determined (- = , no activation; + = , no
repression), or not determined at all (x). Background colours as in
Figure 4B–D, except that grey indicates non-determinability. See text
for equations and details.
doi:10.1371/journal.pcbi.1000548.g005
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expression where Kni levels have fallen to a low-enough level

(Figure 6, T2, middle and right panel). At later stages, hb auto-

activation gradually supplements and replaces activation by other

factors (Figure 6, T5/T8, middle). The posterior boundary of the

posterior hb domain is set by Hkb repression (Figure 6, T2–T8,

middle). The accumulation of Hkb in this region causes an

increase in both levels and extent of this repression over time. This

in turn leads to an anterior shift in the region where hb is

expressed, such that Hb protein is only actively produced in the

anterior part of its domain, while protein degradation dominates

further posterior (Figure 6, T5–T8, right). At this level, the

mechanism underlying the shift in the posterior hb domain is

equivalent to those of other gap domains [7]: expression can

extend anteriorly due to the lack of repression by the adjacent

domain (posterior gt), while it becomes increasingly repressed

posteriorly (by Hkb, in this case).

Models with Fixed Hkb Regulatory Parameters
Our analysis of parameter determinability indicates that those

parameters with particularly large confidence intervals could be

fixed to specific values—within the non-empty intersections of

their dependent intervals—without affecting the quality of the fits.

Diffusion rates, for example, show large confidence intervals,

despite not being significantly correlated with other parameters

(see also below). Therefore, fixing their values during optimisation

(to averaged values based on previously found estimates:

Dhb~0:237, DKr~Dkni~0:300, and Dgt~0:115) will not change

the determinability of the remaining parameters but will reduce

the size of the optimisation problem. On the other hand,

regulatory weights describing the effect of Hkb on Kr, gt and kni

have large confidence intervals (see Figures S4 and S5) because of

correlations to other parameters, in particular the regulatory

effects of Tll on the same targets (data not shown). This indicates a

certain level of redundancy. Since a large majority of the

dependent confidence intervals for these weights cover negative

and positive values, we have set all of them to zero during

optimisation. This leaves us with 37 parameters to be re-estimated.

We used local search with 60 initial parameter sets arbitrarily

chosen from the previously found 117 WLS parameter sets.

Additionally, we performed 20 global optimisation runs with these

parameters fixed. From the resulting solutions, we selected 66

circuits which have low WLS values (about 1:08|103). As

expected, expression patterns produced by these models are very

similar to those for WLS fits (data not shown).

The network topology shown for WLS runs in Figure 4 remains

absolutely unchanged for the new estimates (with the obvious

exception of the regulatory parameters for regulation of Kr, gt, and

kni by Hkb which have been set to zero; data not shown). We

calculated confidence intervals for these solutions to test whether

more parameters are determinable in these models than in OLS

and WLS fits with Hkb weights included (Figure S6). Our analysis,

based on independent confidence intervals, is summarised in

Figure 4D. It is immediately evident that determinability of

regulatory parameters has significantly improved in these circuits

compared to WLS fits. Only 2 weights (EBcd
hb and ETll

Kr ) remain

non-determinable, 4 show weak determinability (EBcd
kni , ECad

hb , W Hb
Kr

and EHkb
hb ), while for the other 23 the confidence intervals confirm

the type of regulation revealed by parameter classification. This is

a significant improvement compared to circuits which include all

regulatory weights for Hkb (compare Figure 4B,C with 4D).

Figure 6. Graphical regulatory analysis of the posterior hb domain. Expression profiles from the model (left), regulatory contributions
(middle) and change in Hb protein concentration (dashed) vs. Hb protein levels (solid lines; right) are shown in the posterior region of the embryo.
Horizontal plot axes represent percent A–P position as in Figure 2. Vertical axes represent relative protein concentrations (left and right columns),
regulatory contributions (coloured areas are given by jWb

a|gbi j or jEb
a|gei j in equation (1) and reflect the strength of a given interaction at a specific

point in space and time; contributions by repressors are shown in dark, activators in light colour; middle column), or relative change in protein
concentration over time (dHb=dt; right column). All plots are based on our best scoring WLS solution (circuit WLS57; see Table S1 for parameter
values). Other solutions showed equivalent mechanisms (data not shown). Here, we focus on hb activation and the regulation of the posterior
boundary of this domain. For an analysis of the anterior boundary, see [7] (Supplementary Information, Figure 14).
doi:10.1371/journal.pcbi.1000548.g006
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Parameter Correlations
The occurrence of non-determinable parameters is often caused

by correlations between parameters [19,34]. We have analysed

these correlations for WLS models with fixed Hkb regulatory

parameters, by calculating the mean correlation matrix for all

parameters across solutions (see Methods and Figure S7). Note

that for all significant entries of the mean correlation matrix the

standard deviation is negligible, meaning that those correlations

are present in all individual correlation matrices. This revealed the

following correlations for parameters which are not or only weakly

determinable in these models: Activation of hb by Bcd is negatively

correlated with the activating effects of Cad (also weakly

determined) and Gt, which indicates a certain level of redundancy

of these interactions in the model. Repression of Kr by Tll is

negatively correlated with activation of gt by Cad, indicating that

the more Gt there is in the posterior (through increased activation

of gt by Cad), the less repression by Tll is required to keep Kr

expression off in the posterior of the embryo. The repression of hb

by Hkb is negatively correlated with activation of hb by Tll, which

indicates that a balance needs to be maintained between these

interactions to enable correct posterior hb expression.

Finally, the last two interactions which are only weakly

determined are the activation of kni by Bcd (negatively correlated

with repression of kni by Hb) and the repression of Kr by Hb

(negatively correlated with activation of Kr by Bcd; Figures 4D and

S7). A similar correlation between Bcd activation and Hb

repression can also be seen for gt, but does not lead to reduced

determinability in this case. Similar correlations were also found in

earlier 6-gene models [19]. They corroborate results which

indicate that a delicate balance between activation and repression

is essential for correct gap gene expression in the trunk region of

the embryo [2]. In addition, we find similar negative correlations

between Tll repression and Cad activation for the posterior gap

genes gt and kni (Figure S7). These do not affect parameter

determinability in our current models, but did so in earlier 6-gene

models [19]. This indicates that balance between activation and

repression through different maternal systems is crucial in the

posterior region of the embryo as well.

Prediction of Mutant Expression Patterns
After regulatory weights of gap gene circuits have been

estimated based on wild-type expression data, analysis of mutants

can be conducted in silico [59]. Null mutants of any regulator b (or

e) can be simulated by setting regulatory weights W b
a (or Eb

a ) to

zero for all regulated genes a (while leaving all other parameter

values unchanged). Similar to earlier gap gene circuit models [1],

our current models do not reproduce expression patterns in

mutant backgrounds for hb, Kr, gt or kni correctly (data not shown).

In contrast, we were more successful at simulating null mutants of

the terminal gap genes tll and hkb.

The only known alteration of gap gene expression in hkb

mutants is the failure of posterior hb to retract from the posterior

pole [26,60]. This is reproduced correctly in both OLS and WLS

solutions (arrows in Figure 7, upper and middle row). In addition,

however, many OLS solutions show de-repression of gt and kni in

posterior regions of the embryo (asterisks in Figure 7), which is

inconsistent with the evidence. We never observed such defects in

WLS circuits.

Embryos mutant for tll show more severe patterning defects:

Both the posterior domain of gt and the abdominal domain of kni

are expanded posteriorly [26,53,54,61,62], while the posterior hb

domain is reduced or absent in these embryos [26,60,63]. Only Kr

does not seem to be affected [63,64]. Most OLS and WLS

solutions show mutant expression patterns which are inconsistent

with this evidence (data not shown). Surprisingly, however, circuits

obtained by WLS with fixed diffusion rates and Hkb regulatory

parameters, reproduce these defects correctly: there is no posterior

hb expression (arrowhead in Figure 7), while gt and, to a lesser

degree, kni are de-repressed in the posterior region of the embryo

(arrows in Figure 7, bottom row).

Discussion

Our results constitute a comprehensive, integrative analysis of

the expression and function of the terminal gap gene hkb in the

blastoderm embryo of Drosophila. On one hand, we have

characterised the expression of hkb in a quantitative manner. On

the other, we used a systems-level approach—the gene circuit

method—to show how Hkb exerts its effect on the expression of hb

in its wild-type genetic context, and to demonstrate that it does not

have any non-redundant function in gap gene regulation beyond

that. But before we discuss these biological insights in more detail

below, we highlight two significant improvements in the gene

circuit methodology, which have important implications for

reverse engineering biological networks in general.

Methodological Improvements
First, we were able to increase the efficiency of optimisation, and

the consistency of parameter estimates, by using weighted least

squares (WLS) instead of ordinary least squares (OLS) for

optimisation. The use of a WLS cost function also reduces the

need for human intervention when selecting solutions for analysis,

since it prevents the occurrence of minor (but biologically

significant) patterning defects such as the ectopic Kr domain

observed in most OLS solutions. Out of 740 optimisation attempts

with OLS, we only obtained 39 biologically realistic models. In

contrast, none of the WLS solutions exhibited this problem, and

thus a much larger proportion of them were suitable for analysis.

This constitutes a very drastic increase in overall computational

efficiency and biological relevance of the obtained fits. Further-

more, OLS solutions showed much larger variability in expression

patterns and parameter values than those obtained with WLS.

This indicates that fitting with WLS to data with non-constant

standard deviations not only leads to biologically more relevant,

but also to more consistent results across optimisation runs.

Figure 7. Simulation of terminal gap gene mutants. Simulated
expression profiles of Hb, Kr, Gt and Kni (left to right) in hkb (top: OLS,
middle: WLS) and tll mutant backgrounds (bottom: WLS with fixed Hkb
weights) are shown at time class T8. Plot axes and colours as in Figure 3:
wild-type data shown in colour, mutant model output in grey. Arrows
indicate de-repression of posterior gap gene expression, arrowhead
absence of the posterior hb domain; both consistent with experimental
evidence. Asterisks indicate posterior de-repression of gt and kni in OLS
circuits inconsistent with published experimental observations.
doi:10.1371/journal.pcbi.1000548.g007
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Second, analysis of parameter determinability [19,34] allows us

to eliminate parameters from the optimisation problem, thereby

considerably reducing the complexity of the problem. Our models

have 48 parameters, a number which we managed to reduce to 37

by fixing non-determinable parameters to specific values (see also

[19]). Statistical analysis based on confidence intervals not only

gives us an indication of which parameters to fix, but also of which

values to fix them to (see Results). This was used successfully here

for both diffusion rates and regulatory parameters representing the

regulatory effect of Hkb on its targets Kr, gt and kni. Not only were

we able to reduce the computational effort for optimisation, but

fixing parameters also significantly improved parameter determin-

ability, such that only 2 out of 29 regulatory parameters now

remain non-determinable. This is a vast improvement over

previous, 6-gene models [19].

Expression and Regulation of hkb
In terms of the biology, we first discuss the expression and

regulation of hkb. Our quantitative analysis of hkb expression

confirms and extends results from earlier studies. Both Hkb

domains cover about 10–15% A–P position in the anterior and

posterior terminal region of the embryo [26,39,40]. Their borders

coincide with the limits of the invaginating mesoderm in the

ventral furrow during gastrulation [39]. Expression of hkb is more

restricted to the terminal regions of the embryo than expression of

tll (see Figure 2, right column). This difference is very clear at all

time points for the posterior domains. In contrast, the early

anterior domains of Hkb and Tll are very similar in extent, and

only diverge at mid C14A (from about T5 onward), when the

anterior Tll domain retracts from the pole. There are other, more

subtle differences as well, revealed by a comparison with the

quantitative analysis of Tll in [10]: The anterior domain of Hkb

appears before that of Tll, which can only be detected during early

cycle 14A. Hkb levels in this domain also decrease much earlier

again (from T5 onward) than those of Tll in its anterior domain,

whose peak levels remain constant until right before the onset of

gastrulation (T7/8). Finally, the anterior domain of Hkb does not

show any D–V asymmetry before gastrulation, while the

corresponding domain of Tll retracts from the anterior pole and

becomes increasingly dorsal during late cycle 14A (T5–T8). In

contrast, dynamics of the maximum protein level in the posterior

Hkb domain closely follows that of Tll, with the only potential

difference being that Hkb persists very slightly longer in this region

than Tll right before the onset of gastrulation (T8).

These results are entirely consistent with what we know about

hkb regulation. The expression of hkb is completely independent of

any other gap genes (including tll) [26,28]. Both hkb domains

depend on higher levels of Torso signalling from the terminal

maternal system than those of tll, explaining their more restricted

spatial extent [39,65–67]. In addition, the anterior domain also

requires the presence of Bcd [68]. These activating inputs are

enabled through local relief of strong repression mediated by

ubiquitous maternal factors such as Dead ringer (Dri) and

Groucho (Gro) in the terminal regions of the embryo [69].

Interestingly, hkb is also regulated by the D–V maternal system,

which is required for the ventral shift of the anterior hkb domain

during gastrulation [28,69]. Our results clearly indicate that this

interaction is not significant before gastrulation as we can detect

no D–V asymmetry in any of the two hkb domains at this stage

(Figure 2).

Regulation of Trunk Gap Genes
But how does Hkb affect regulation of other gap genes? The

regulatory mechanisms for the expression of the trunk gap genes

hb, Kr, gt and kni predicted by our models are summarised in

Figure 8: (1) Gap genes are broadly activated by the maternal

gradients of Bcd and Cad. (2) Auto-activation is involved in

maintenance and sharpening of boundaries in the anterior domain

of hb, the central domain of Kr and the abdominal domain of kni.

(3) The basic staggered arrangement of gap domains is provided

by mutual repression between non-overlapping gap genes hb and

kni, as well as gt and Kr. (4) Asymmetric repression between

overlapping gap genes leads to anterior shifts in domain positions.

(5) Terminal gap genes tll and hkb repress gap gene expression in

the posterior terminal region of the embryo. These regulatory

principles largely confirm results from previous studies using gap

gene circuits [1,7,17–19,21,22].

The most significant improvement of our models over earlier

ones is that they now correctly reproduce the expression and shift

of the posterior hb domain (Figure 3). This means that our current

models now reproduce the dynamic shifts of all posterior gap

domains correctly [10]. Our analysis suggests that the appearance

of this domain depends on the retraction of Kni—through

increasing repression by Gt—from the posterior terminal region

of the embryo in early cycle 14A (Figure 6). Its posterior boundary

is set and subsequently shifted by increasing Hkb repression. These

regulatory mechanisms are strongly supported by experimental

evidence. Kni has been shown to repress hb: mis-expression of kni

leads to a reduction of hb expression in the affected regions [70–

72], and the posterior hb domain expands anteriorly in kni mutants

[72]. Moreover, the abdominal domain of kni is expanded

posteriorly in gt mutants [53], and reduced in embryos over-

expressing gt [73]. Finally, repression of hb by Hkb is supported by

the fact that the posterior hb domain fails to retract from the

posterior pole in hkb mutant embryos [26,60].

While our models reproduce repressive effects on posterior hb

expression in a way consistent with experimental evidence, there is

not much convincing data supporting the activating inputs

responsible for posterior hb expression predicted by our models.

Accordingly, we have omitted them from our regulatory summary

in Figure 8. Both activation of hb by Cad and by Tll are predicted

to be weak in the model. In the case of Cad, there is no evidence

for any interaction with hb, as hb is expressed normally in mutants

lacking both zygotic and maternal cad [29], as well as in embryos

over-expressing cad [74]. Activation by Tll seems to be supported

by the fact that posterior expression of hb is strongly reduced or

absent in tll mutant embryos [26,60,63,75], while the posterior hb

domain expands anteriorly in embryos over-expressing tll [75–77].

Figure 8. Summary of predicted gap gene regulatory mecha-
nisms. Gap domains are shown schematically, with anterior to the left,
posterior to the right. Background colours indicate the most prominent
activating input to each domain. Auto-activation is indicated by double-
arrows. T-bars indicate repressive gap-gap cross-regulation (thickness of
the bars indicates repressive strength). See text for details.
doi:10.1371/journal.pcbi.1000548.g008
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In addition, there are several predicted Tll binding sites in the

regulatory element responsible for posterior hb expression [78]. On

the other hand, there is strong evidence that activation of hb by Tll is

largely indirect—via repression of kni by Tll—as posterior hb

expression is present in tll kni double mutants [77]. Finally, there is

some evidence against a role of hb auto-activation in the posterior

region. Mutants that express a non-functional Hb protein show no

obvious defects in posterior hb expression [79]. Moreover, the

expression of hb reporter constructs in the posterior hb domain is

broadened and more intense in a hb mutant background compared

to wild-type, while it is strongly reduced in embryos over-expressing

hb [75]. In the model, none of these activating contributions provide

any spatial specificity to posterior hb expression, which is mainly due

to repression by Kni and Hkb (Figure 6). Taken together, this

suggests that hb may be activated by an unknown, uniformly

expressed maternal factor in this region.

There is another unresolved question concerning the posterior

hb domain: Translation of hb is repressed by the posterior gradient

of the maternal co-ordinate protein Nanos (Nos) and its co-factors

[80–82]. These factors act through a Nos-response element, which

is present in both maternal and zygotic transcripts of hb [81]. It

remains unclear how this translational repression is overcome

during mid cycle 14A. Either, the Nos gradient has disappeared

(or is disappearing) by this time (this has never been assessed), or

enough hb transcripts must accumulate to overcome Nos’

repressive effect on translation. Quantitative studies of the Nos

gradient will be required to resolve this issue.

For the posterior domain of hkb, our results show conclusively

that its effect on hb expression is the only role it plays in gap gene

regulation in the wild-type embryo. Excluding interactions of Hkb

with Kr, kni and gt has no effect on any of these genes in the model.

In fact, parameter determinability and prediction of tll mutant

gene expression patterns improve significantly if these interactions

are excluded (Figures 5 and 7). However, there is some evidence

suggesting that Hkb does repress Kr and gt: The central Kr domain

expands further posterior in embryos mutant for the maternal

gene vasa (vas), tll and hkb than in those mutant for vas and tll alone

[83]. Similarly, the posterior domain of gt expands further

posterior in tll hkb double mutants than in embryos mutant for

tll alone [26,28]. Furthermore, the posterior gt domain is absent in

embryos over-expressing hkb [28,39]. Note that all of this evidence

comes from over-expression experiments or embryos mutant for

multiple genes, including tll. This suggests that there are two main

reasons why interactions of Hkb with Kr, gt and kni do not play a

role in the wild-type embryo: First, expression of hkb never

overlaps its potential target genes (with the exception of gt;

Figure 2). And second, its repressive input seems to be completely

redundant with the corresponding repressive contributions by Tll.

This is confirmed by our analysis of parameter determinability.

Apart from the regulation of the posterior hb domain, there are

only two predicted interactions that differ in our 4-gene models

compared to those in earlier 6-gene models. First, there is no auto-

activation of gt in a large majority of our parameter sets. Although

this interaction was present in earlier models [1,17–19], gap gene

auto-activation in general is not required for correct gap gene

expression [17]. Second, activation of gt by Kni is supported by the

fact that the posterior domain of gt is weakened and its posterior

border fails to form properly in kni mutant embryos [52–54]. Fits in

which this interaction is fixed to zero all show the ectopic expression

of Kr described for OLS fits in the Results section, indicating that it is

necessary for correct regulation of gt in the model (data not shown).

However, it remains unclear whether its inclusion is an improve-

ment over previous models. The experimental evidence remains

ambiguous (effects are weak and the affected posterior border of gt

occurs in a region where kni is not expressed), and activation of gt by

Kni causes the transient patterning defect observed in the anterior

border of the posterior gt domain in our current models (Figure S3).

In summary, this suggests that neither of these two differences

significantly affect the biological relevance of the models.

Little is known about the function and effect of the anterior hkb

domain. In particular, it is not known why anterior hkb does not

seem to have a repressive effect on hb, as both genes are co-

expressed in this region. Unfortunately, we have not been able to

include this domain in our analysis since our models currently do

not include head gap genes, which are essential for patterning in

the anterior region of the embryo.

Simulating Mutants
Apart from correct posterior hb expression, the second major

improvement of the models reported here is that they are able to

reproduce null mutants of the terminal gap genes tll and hkb (see

Figure 7). A theoretical study previously established that, in

principle, it is possible to predict mutant patterns based on gene

circuit fits to wild-type data only [59]. However, earlier gene

circuit models—optimised against real, noisy expression data—

failed to correctly reproduce any gap gene null mutants so far

(including tll mutants) [1]. Our models provide an important first

step towards the solution of this problem.

Apart from mutations in hkb and tll, gap gene circuit models

have been shown to correctly reproduce gap gene expression (and

its variational properties) in the presence of fluctuations in the Bcd

gradient [21,22]. All of these perturbations affect the gap gene

network in a feed-forward manner. Neither bcd, hkb nor tll are

regulated by gap genes themselves.

On the other hand, our current models still cannot accurately

reproduce null mutants of the trunk gap genes hb, Kr, gt and kni (data

not shown). All of these genes regulate and are regulated by other

gap genes. This indicates that the problem is connected with

feedback regulation within the model. Various potential reasons for

this have been proposed in the past: over-simplified representation

of transcriptional regulation in the model, missing production

delays, scaling problems in the data, over-fitting to noisy expression

data, or missing factors in the model which are redundant in the

wild-type, but become important in a mutant background [1].

Further systematic studies will be necessary to elucidate which of

these factors affect feedback regulation in our models in a way which

makes them fail to reproduce such mutant expression patterns.

Developmental and Evolutionary Implications
Why is all this important? After all, our results establish that hkb

plays a very minor role in gap gene regulation. Yet, understanding

the regulatory function of hkb is crucial for a better understanding

of both the developmental and evolutionary dynamics of the gap

gene system. Our current models are the first to reproduce all

shifts of posterior gap domains correctly. There is evidence

suggesting that the mechanism underlying these shifts is an

emergent property of the entire gap gene network [7,22]. If this is

correct, we cannot understand gap domain shifts completely

without understanding how all of these domains are regulated.

This view is supported by the following: First, there are no

known mutants that affect any of the gap domain shifts

individually. Moreover, evidence from an analysis of the

dynamical behaviour of gap gene circuits suggests that all trunk

gap genes participate in the shift mechanism in an integrated way

[7,22]. Repression between overlapping gap domains (as described

in the Introduction) interacts in complex ways with the mutually

repressive interactions between Kr and gt as well as hb and kni. In

addition, terminal gap genes contribute to domain shifts as well, as

hkb Gene Circuits
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we have established in this study. We are far from understanding

the causal flow of regulatory information in this system. Our

analysis suggests that the posterior hb domain may play a central

role in it. All posterior nuclei in the system converge towards an

attractor state in which hb is expressed at high level [22].

Moreover, the delayed establishment of its posterior domain

coincides precisely with the phase of development when domain

shifts occur. Further evidence from tll mutant embryos, which lack

a posterior hb domain, will be required to better understand the

causal role of this domain in gap gene regulation.

Changes in the regulation of the posterior hb domain also play an

important role in the evolution of the gap gene system in dipteran

insects (flies, midges, and mosquitoes). Primitive, nematoceran flies

such as the psychodid midge Clogmia albipunctata lack posterior hb

expression before gastrulation [84], while the posterior domains of gt

and hb appear to have swapped positions in mosquitoes [85]. It will

be interesting to investigate whether gap gene regulation in these

embryos requires Hkb, and how the absence (or change in position)

of posterior gap domains affects boundary shifts and their regulation

compared to Drosophila. It has been noted previously that shifting

gap domains are reminiscent of travelling waves of gene expression

in animals with sequential segment determination [1], which is

widely assumed to be the ancestral state of segment determination

(reviewed in [86]). This suggests that shifting domains are ancestral

as well. Understanding how regulatory changes in posterior hb

expression affect these shifts in various dipteran species will not only

help us understand how the gap gene network performs its

patterning function, but also how it evolved. In view of this, our

models are an important first step towards an integrative, systems-

level understanding of the developmental and evolutionary

dynamics of the gap gene network.

Supporting Information

Figure S1 Gap gene expression data used for model fitting.

Integrated expression patterns (dark lines) with corresponding

standard deviations (lightly coloured areas) are shown for Hb (red),

Kr (green), Kni (purple) and Gt (blue) at cleavage cycle 13 (C13)

and eight time classes (T1–8) during cleavage cycle 14A. Relative

protein concentrations are plotted against percent A–P position

(where 0% is the anterior pole). All patterns shown are from the

FlyEx data base: http://urchin.spbcas.ru/flyex. See Methods for

details on data processing.

Found at: doi:10.1371/journal.pcbi.1000548.s001 (0.41 MB PDF)

Figure S2 Model output compared to quantitative expression

data (OLS fits). Integrated expression profiles from the FlyEx data

base (http://urchin.spbcas.ru/flyex) are shown for Hb (yellow), Kr

(green), Gt (blue) and Kni (red; left to right) for time classes C13 and

T1–T8 (top to bottom). Grey profiles show corresponding profiles

based on numerical solution of the model with parameter estimates

obtained by OLS fits. Relative protein concentrations are plotted

against percent A–P position (where 0% is the anterior pole).

Found at: doi:10.1371/journal.pcbi.1000548.s002 (0.51 MB PDF)

Figure S3 Model output compared to quantitative expression

data (WLS fits). Integrated expression profiles from the FlyEx data

base (http://urchin.spbcas.ru/flyex) are shown for Hb (yellow), Kr

(green), Gt (blue) and Kni (red; left to right) for time classes C13 and

T1–T8 (top to bottom). Grey profiles show corresponding profiles

based on numerical solution of the model with parameter estimates

obtained by WLS fits. Relative protein concentrations are plotted

against percent A–P position (where 0% is the anterior pole).

Found at: doi:10.1371/journal.pcbi.1000548.s003 (0.95 MB PDF)

Figure S4 Parameter determinability analysis: confidence inter-

vals for OLS fits. Columns represent regulators, rows regulated

genes. Dependent (green) and independent (red) confidence

intervals are shown across all selected 39 OLS solutions (horizontal

axes). Vertical axes represent parameter values; note that scales

vary between plots.

Found at: doi:10.1371/journal.pcbi.1000548.s004 (0.64 MB PDF)

Figure S5 Parameter determinability analysis: confidence inter-

vals for WLS fits. Columns represent regulators, rows regulated

genes. Dependent (green) and independent (red) confidence

intervals are shown across all selected 117 WLS solutions

(horizontal axes). Vertical axes represent parameter values; note

that scales vary between plots.

Found at: doi:10.1371/journal.pcbi.1000548.s005 (1.03 MB PDF)

Figure S6 Parameter determinability analysis: confidence inter-

vals for WLS fits with fixed Hkb weights (WLSfh). Columns

represent regulators, rows regulated genes. Dependent (green) and

independent (red) confidence intervals are shown across all

selected 66 WLSfh solutions (horizontal axes). Vertical axes

represent parameter values; note that scales vary between plots.

Found at: doi:10.1371/journal.pcbi.1000548.s006 (0.73 MB PDF)

Figure S7 Mean correlation matrix for WLS fits with fixed Hkb

weights (WLSfh). Parameter correlations are arranged in blocks

per regulated gene. Abbreviations indicate regulator (for regula-

tory weights) or parameter (for promoter strength and decay rates).

Positive correlations are shown in green, negative correlations in

blue. For clarity, only correlation values above 0.5 are shown.

Note that most correlations occur between parameters involved in

the regulation of the same gene (diagonal blocks of the matrix).

Found at: doi:10.1371/journal.pcbi.1000548.s007 (0.42 MB PDF)

Table S1 Estimated parameter values are shown for all OLS,

WLS and WLSfh optimisation runs.

Found at: doi:10.1371/journal.pcbi.1000548.s008 (0.11 MB XLS)
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