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Chapter 1

Introduction

Sharing resources among multiple users is common in daily life. One may think of
resources such as lanes on a highway, agents in a call center, the processing capacity
of a computer system, the available bandwidth in communication systems, or the
transmission power of wireless base stations. In each of these situations, some
scheduling mechanism regulates how the resources are shared among competing
users. It is not always clear what the “best” way is to do this. Besides efficient use
of the available resources in order to meet the demand, issues like fairness and the
performance perceived by the users are important as well.

The random nature of arrivals of new users, and of their corresponding ser-
vice characteristics, motivates the study of queueing-theoretic models. In this the-
sis we concentrate on three queueing models in particular: single-server systems,
bandwidth-sharing networks, and parallel-server models. These models arise in the
context of scheduling in communication networks. We are interested in finding
scheduling policies that optimize the performance of the system, and evaluating
policies that share the resources in a fair manner. Whenever possible, we do this
directly for the stochastic queueing model. Otherwise, we resort to asymptotic
regimes: we either let the offered work approach the available capacity or consider
a related deterministic fluid model.

This first chapter serves as background on the content of the thesis and is orga-
nized as follows. In Section 1.1 we describe the essential characteristics of resource-
sharing systems and introduce the notions of efficient and fair scheduling. In Sec-
tion 1.2 we provide several examples of communication networks that motivate our
study of resource-sharing systems. The queueing models are introduced, and a lit-
erature overview is given in the subsequent sections: in Section 1.3 for single-server
queues, in Section 1.4 for bandwidth-sharing networks and in Section 1.5 for parallel-
server models. In Section 1.6 we describe the main techniques and concepts used
throughout the thesis. Section 1.7 concludes this chapter with an overview of the
thesis.
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1.1 Scheduling in resource-sharing systems

Deciding how to share the resources among users contending for service is a com-
plicated task. This is in particular due to the following two elements. First of all, it
is uncertain at what time new jobs arrive to the system and what amount or what
kind of service they require. Second, the capacity of the resources is finite and there
may be additional constraints on the way the resources can be shared among the
various jobs. For example, some types of jobs might be processed faster by certain
specialized resources, some types of jobs might need capacity from several resources
simultaneously, etc.

In order to mathematically model the dynamic behavior of a resource-sharing
system, we investigate queueing-theoretic models that capture the two elements as
mentioned above. A queueing model consists of several servers with finite capacity,
which can be allocated to users, possibly subject to additional constraints. The
arrivals of new users and the amount and type of service they require, are described
by stochastic processes.

The evolution of a queueing model is determined by the employed scheduling
policy, which specifies at each moment in time how the capacity of the servers is
shared among all users contending for it. An important body of the scheduling liter-
ature is devoted to seeking a policy that optimizes the performance of the queueing
model. The latter may be expressed in terms of performance measures such as
throughput, holding cost, user’s delay, and the number of users in the system. Be-
sides performance, another important notion is fairness. This relates to maintaining
some level of “social justice”, i.e., fairness in treatment of the users. Fairness is a
subjective notion and much research has been devoted to developing quantitative
measures [11].

A well-studied queueing model is the work-conserving single-server system, as
will be described in Section 1.3. This system works at full speed whenever there
is work in the system. Apart from this model, in this thesis we focus on multi-
class resource-sharing systems that can be seen as an extension of the single-server
queue. More specifically, we study models where the total used capacity might
not be constant over time and may depend for instance on the scheduling decision
taken or on the types of users presently in the system. The fact that the scheduling
decisions affect the total used capacity significantly complicates the task of designing
optimal and fair scheduling policies.

In the remainder of this section we introduce in more detail the notions of optimal
and fair scheduling. We make a distinction between the static regime and the
dynamic regime, which are treated in Sections 1.1.1 and 1.1.2, respectively. In the
static regime the population of users is fixed, while the dynamic regime allows for
departures and arrivals of new users.

1.1.1 Static setting

In this section we describe the notions of optimal and fair scheduling in a static
setting. For a given population of users, indexed by i = 1, . . . , I, we consider
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different ways to allocate the available capacity among the users. Let xi be the rate
allocated to user i and let ~x = (x1, . . . , xI) be the rate allocation vector. The set
consisting of all feasible rate allocation vectors is denoted by S. Besides the fact
that the capacity of the servers is finite, the shape of S is determined by additional
constraints on the way the capacity of the servers can be shared among the users.

In a static setting it is natural to measure the performance in terms of the total
throughput

∑I
i=1 xi. A feasible allocation that maximizes the total throughput may

be called optimal in the static setting. However, this optimal allocation does not
guarantee that all users are allocated a strictly positive rate. It can be the case that
some types of users obtain no capacity at all, which is highly unfair.

A commonly used definition of fairness has its origin in microeconomics. It relies
on a social welfare function, which associates with each possible rate allocation the
aggregate utility of the users in the system [91]. A feasible allocation is called fair
when it maximizes the social welfare function, i.e., an ~x ∈ S that solves

max
~x∈S

∑

i

Ui(xi), (1.1)

with Ui(xi) the utility of allocating rate xi to user i. When the functions Ui(·) are
strictly concave and the set S is convex and compact, the maximization problem
has a unique solution. An important class of utility functions as introduced in [100]
is described by

Ui(xi) = U
(α)
i (xi) =

{

wi log xi if α = 1,

wi
x1−α

i

1−α if α ∈ (0,∞)\{1}, (1.2)

with wi > 0 a weight assigned to user i, i = 1, . . . , I. The fact that these functions
are increasing and strictly concave forces fairness between users: increasing the rate
of a user that was allocated a relatively little amount, yields a larger improvement
in the aggregate utility. The corresponding allocation that solves the optimization
problem (1.1) is referred to as a weighted α-fair allocation. The resulting perfor-
mance of this static fairness notion in a dynamic context is discussed in Section 1.4
for the particular case of bandwidth-sharing networks.

The class of weighted α-fair allocations contains some popular allocation
paradigms when wi = 1 for all i. For example, as α → 0 the resulting allocation
achieves maximum throughput. Under suitable conditions, the Proportional Fair
(PF) and max-min fair allocations (as defined in [24]) arise as special cases when
α = 1 and α → ∞, respectively, [100]. These notions of fairness have been widely
used in the context of various networking areas, see for example [90, 100, 118, 136]
for max-min fairness and [71, 100, 111] for PF.

The max-min fair allocation (α → ∞) is commonly seen as the most fair, since it
maximizes the minimum rate allocated to any user. On the other extreme, maximiz-
ing the throughput (α → 0) can be highly unfair to certain users. The parameter α
is therefore often referred to as the fairness parameter measuring the degree of fair-
ness. Typically, realizing fairness and achieving a high throughput are conflicting
objectives.
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1.1.2 Dynamic setting

In practice, users depart upon service completion and new users arrive into the
system over time. As mentioned previously, this can by modeled by queueing-
theoretic models. In this section we discuss performance and fairness measures to
evaluate different scheduling policies.

A key performance requirement in a dynamic setting is stability. Loosely speak-
ing, stability means that the number of users in the system does not grow unbound-
edly or, in other words, that the system is able to handle all work requested by users.
In this thesis we particularly focus on extensions of the single-server system where
the total used capacity may depend on the scheduling decisions taken. Hence, sta-
bility conditions strongly depend on the policy employed. We therefore distinguish
two types of conditions: (i) stability conditions corresponding to a particular policy
and (ii) maximum stability conditions. The latter are conditions on the parameters
of the model under which there exists a policy that makes the system stable.

Besides stability, another important performance measure concerns the number
of users present in the system. We note that minimizing the total mean number of
users is equivalent to minimizing the mean delay, cf. Little’s law. As we will point
out in Section 1.3.3, size-based scheduling policies, e.g. the Shortest Remaining Pro-
cessing Time (SRPT) policy, are popular mechanisms for improving the performance
by favoring smaller service requests over larger ones. However, this does not imme-
diately carry over to the models we consider in this thesis. There are two effects to
be taken into account. In the short term, it is preferable to favor “small” users that
are likely to leave the system soon. In the long term however, a policy that uses the
maximum capacity of the system at every moment in time, can empty the work in
the system faster. When the total capacity used depends on the way the resources
are shared among the classes, the above-described goals can be conflicting.

The objective of optimal scheduling is often contradictory with fair scheduling.
For example, giving preference to users based on their size (as is the case with SRPT)
may starve users with large service requirements. Similar to the static setting, there
is no universally accepted definition of fairness in the dynamic setting. We refer
to [11, 155, 156] for an overview on definitions existing in the literature.

In general, it is a difficult task to find fair or efficient policies for the dynamic
setting. One may think of a policy as a rule that prescribes a rate allocation for each
given population (as the population dynamically changes, the allocation changes
as well). It is important to note that the use of fair or efficient allocations from
the static setting does not give any guarantee for the behavior of the system in the
dynamic setting. For example, maximizing the throughput at every moment in time,
might unnecessarily render the system unstable, and hence be certainly suboptimal
in the dynamic context (see for example [30, Example 1] and Proposition 3.2.1).

1.2 Motivating examples

In this section we describe several examples of communication networks that moti-
vate the queueing models studied in the thesis. The queueing models are discussed
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in more detail in Sections 1.3–1.5.

1.2.1 Wired communication networks

The Internet is a packet-switched network, carrying data from source to destination.
Each data transfer (flow) is split into several chunks (packets) that are routed indi-
vidually over a common path from source to destination. Along this path, packets
traverse various switches and routers that are connected by links. As a result, data
flows contend for bandwidth on these links for the duration of the transfer.

Data flows can be broadly categorized into streaming and elastic traffic. Stream-
ing traffic, corresponding to real-time connections such as audio and video applica-
tions, is extremely sensitive to packet delays. It has an intrinsic rate requirement
that needs to be met as it traverses the network in order to guarantee satisfactory
quality. On the other hand, elastic traffic, corresponding to the transfer of digital
documents like Web pages, e-mails, and data files, does not have a stringent rate
requirement. Most of the elastic data traffic in the Internet nowadays is regulated
by the Transmission Control Protocol (TCP) [65]. This end-to-end control dynami-
cally adapts the transmission rate of packets based on the level of congestion in the
network. It ensures a high transmission rate to a user when the load on its path is
low, and implies a low rate when links on its path are congested.

Link in isolation

Typically, a given link is transmitting packets generated by several data flows. For
example, in Figure 1.1 (left) the white and black packets each correspond to their
own data flow. When viewing the system on a somewhat larger time scale (flow
level), it can be argued that each data flow is transmitted as a continuous stream
through the link, using only a certain fraction of the bandwidth, as depicted in
Figure 1.1 (right). In case of homogeneous data flows and routers this implies that
the bandwidth is equally shared among the data flows, i.e., the throughput of each
data flow is C/n bits per second when there are n flows present on a link in isolation
with bandwidth C.

Since the dynamics at the packet level occur at a much faster time scale than the
arrivals and departures of data flows, it is reasonable to assume that the bandwidth
allocation is adapted instantly after a change in the number of flows. Under this
time-scale separation, the dynamic bandwidth sharing coincides with the so-called
Processor Sharing (PS) queue, where each flow receives a fraction 1/n of the total
service rate whenever there are n active flows. Hence, PS is a useful paradigm for

Figure 1.1: Two data flows in a link at packet level (left), and flow level (right).
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evaluating the dynamic behavior of elastic data flows competing for bandwidth on
a single link [22, 104]. The actual bandwidth shares may in fact significantly differ
among competing flows, either due to the heterogeneous end-to-end behavior of data
flows or due to differentiation among data flows in routers. An appropriate model
for this setting is provided by the Discriminatory Processor Sharing (DPS) queue,
where all flows share the bandwidth proportional to certain flow-dependent weights.

Multiple links

Instead of one link in isolation, a more realistic scenario is to consider several con-
gested links in the network. Even though individual packets travel across the net-
work on a hop-by-hop basis, when we view the system behavior on a somewhat
larger time scale, a data flow claims roughly equal bandwidth on each of the links
along its source-destination path simultaneously. A mathematical justification for
the latter can be found in [153]. The class of weighted α-fair allocations, as described
in Section 1.1.1, is commonly accepted to model the flow-level bandwidth allocation
as realized by packet-based protocols. For example, the α-fair allocation with α = 2
and weights wk inversely proportional to the source-destination distance, has been
proposed as an appropriate model for TCP [108]. In addition, for any α-fair alloca-
tion (defined at flow level) there exists a distributed mechanism at packet level that
achieves the α-fair allocation [71, 100, 130].

Under the time-scale separation assumption, bandwidth-sharing networks as con-
sidered in [94] provide a natural way to describe the dynamic flow-level interaction
among elastic data flows. See also [70, 153], where bandwidth-sharing networks are
obtained as limits of packet-switched networks. In bandwidth-sharing networks, a
flow requires simultaneously the same amount of capacity from all links along its
source-destination path.

An example of a bandwidth-sharing network is depicted in Figure 1.2. Flows of
class 0 request the same amount of bandwidth from all links simultaneously and in
each link there is possibly cross traffic present from other routes. This interaction
between active flows can cause inefficient use of the available capacity. For example,
when there are flows of class 0 present, the capacity of a certain link with no cross
traffic may not be fully used when the capacity of another link is already exhausted.

class 0

class 1 class 2 class 3 class L

link 1 link 2 link 3 link L

Figure 1.2: Linear bandwidth-sharing network with L + 1 classes of data flows.
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class-1 class-2
usersusers C1

C2

C1

C2

Figure 1.3: A single base station with two classes (left), and the rate region in case
of TDMA (middle) and CDMA (right).

1.2.2 Wireless communication networks

In this section we focus on elastic data transfers in a wireless cellular network. Such
a network consists of several cells each with their own base station. We concentrate
on data transmissions from the base station to the wireless users (laptops, mobiles)
in the corresponding cell. The transmission rate at which a user receives data
is determined by the control mechanism of the base station. In addition, it is
influenced by physical phenomena like signal fading or signal interference with other
base stations.

Base station in isolation

We first consider a base station in isolation. There are two basic methods to divide
the power of the base station among the users. One method is Time Division
Multiple Access (TDMA) in which the base station transmits in each time slot to
exactly one user. Another method is Code Division Multiple Access (CDMA) in
which the base station transmits simultaneously to several users and the various
data streams are jointly coded. Due to power attenuation, users on the edge of the
cell will have worse channel conditions compared to users close to the base station.
In Figure 1.3 (left) we consider a simple example where a class-1 user (class-2 user)
is close to (far from) the base station and its transmission rate equals C1 (C2), with
C1 > C2, when being allocated the full power of the base station. The corresponding
rate region is depicted in Figures 1.3 (middle) and (right) for TDMA and CDMA,
respectively. The northeast boundaries of the capacity regions are obtained when
the base station transmits at full power. Note however that the aggregate allocated
rate varies depending on the power allocation.

Inter-cell interference

When several neighboring base stations transmit simultaneously, the respective sig-
nals may interfere, causing a reduction in the transmission rates. In Figure 1.4
(left) we consider a simple example of two base stations and two classes of users
each associated with their own base station. We assume that a base station is either
off or is transmitting at full power. When only base station i is on, its transmission
rate equals Ci, i = 1, 2. However, when both base stations are on, the transmission
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base station 1 base station 2

class-1 class-2
usersusers C1

C2

(c1, c2)

Figure 1.4: Two base stations each with their own class (left), and the rate region
(right).

rate of base station i is ci, ci < Ci, i = 1, 2. The corresponding rate region is
depicted in Figure 1.4 (right) and we note that the aggregate transmission rate is
either C1, C2, or c1 + c2 depending on the activity of the base stations. At present,
a base station typically transmits at full power as long as there are users present
in its cell. The corresponding flow-level performance is studied in [28] for example.
Recently, however, coordination between base stations has been proposed [29, 152],
motivating the study of efficient coordinated power control of base stations.

1.3 The single-server system

The classical single-server system consists of a single queue and a single server with
fixed capacity. Without loss of generality, the capacity is set equal to one. Users
arrive one by one in the system and each user requires a certain amount of service.
Let λ denote the arrival rate to the system, so that λ−1 is the mean inter-arrival
time. The service requirement of a user represents the amount of time that the
server needs to serve the user when it would devote its full capacity to this user.
This random variable is denoted by B. The capacity of the server may be shared
among multiple users at the same time. When a user is not served, it waits in the
queue. Preemption of a user in service is allowed. In the case of preemption, a user
goes back to the queue awaiting to receive its remaining service requirement. After
a user has received its full service, it leaves the system.

A common assumption is that the inter-arrival times are independent and iden-
tically distributed (i.i.d.), the service requirements are i.i.d., and the sequences of
inter-arrival times and service requirements are independent. This model is referred
to as the G/G/1 queue, a notation that was introduced by Kendall [73]. Here the
G stands for general. When in addition the inter-arrival times are exponentially
distributed, i.e., a Poisson arrival process, the corresponding system is denoted by
the M/G/1 queue where the M stands for Markovian or memoryless. When instead
the service requirements are exponentially distributed, the queue is referred to as
the G/M/1 queue.

In a single-server queue the focus is on work-conserving scheduling policies, that
is, policies that always use the full capacity of the server whenever there is work
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in the system. Obviously, the total unfinished work in the system, the workload,
is independent of the work-conserving policy employed. In addition, any work-
conserving policy in a G/G/1 queue is stable as long as the traffic load ρ := λE(B)
is strictly less than one [86].

While the workload process and the stability condition are independent of the
employed work-conserving policy, this is not the case for the evolution of the queue
length process and, hence, for most performance measures. There is a vast body
of literature on the analysis of scheduling policies in the single-server queue. In
the remainder of this section we mention the results relevant for the thesis. We
first give a description of two time-sharing policies: PS and DPS. As explained
in Section 1.2.1, these policies provide a natural approach for modeling the flow-
level performance of TCP. We conclude this section with an overview of optimal
size-based scheduling in the single-server queue.

1.3.1 Processor sharing

Under the Processor Sharing (PS) policy, the capacity is shared equally among all
users present in the system. When there are n users in the system, each user receives
a fraction 1/n of the capacity of the server. Below we present several known results
from the literature. For full details and references on the PS queue we refer to [104].

When the arrival process is Poisson and ρ < 1, the stationary distribution of the
queue length exists and is insensitive to the service requirement distribution apart
from its mean. More precisely, the queue length in steady state has a geometric
distribution with parameter ρ, i.e., the probability of having n users in the queue is
equal to (1 − ρ)ρn, n = 0, 1, . . . , cf. [119]. In particular, this implies that the mean
number of users in the system is finite whenever ρ < 1. Another appealing property
of PS is that a user’s slowdown (defined as the user’s mean sojourn time divided by
its service requirement) equals 1/(1 − ρ), independent of its service requirement.

For a PS queue with several classes of users, the geometric distribution carries
over as well. Consider K classes of users, where class-k users arrive according to a
Poisson process with arrival rate λk and have service requirements Bk, k = 1, . . . , K.
Assuming Poisson arrivals, the probability of having nk class-k users in the system,
k = 1, . . . , K, is equal to

(1 − ρ) · (n1 + . . . + nK)!

n1! · n2! · . . . · nK !
·

K
∏

k=1

ρnk

k , (1.3)

with ρk := λkE(Bk) and ρ :=
∑K

k=1 ρk, [41, 69]. Another interesting result concerns
the remaining service requirements of the users. Given a population of users, the
remaining service requirements are i.i.d. and distributed according to the forward
recurrence times of their service requirements [41, 69].

1.3.2 Discriminatory processor sharing

The Discriminatory Processor Sharing (DPS) policy, introduced in [77] by Kleinrock,
is a multi-class generalization of PS. By assigning different weights to users from
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different classes, DPS allows class-based differentiation. Let K be the number of
classes, and let wk be the weight associated with class k, k = 1, . . . , K. Whenever
there are nk class-k users present, k = 1, . . . , K, a class-l user is served at rate

wl
∑K

k=1 wknk

, l = 1, . . . , K.

In case of unit weights, the DPS policy reduces to the PS policy. Despite the
similarity, the analysis of DPS is considerably more complicated compared to PS.
The geometric queue length distribution for PS does not have any counterpart for
DPS. In fact, the queue lengths under DPS are sensitive with respect to higher
moments of the service requirements [32]. Despite this fact, in [12] the DPS model
was shown to have finite mean queue lengths regardless of the higher-order moments
of the service requirements.

The seminal paper [51] provided an analysis of the mean sojourn time conditioned
on the service requirement by solving a system of integro-differential equations. As
a by-product, it was shown that a user’s slowdown behaves like the user’s slowdown
under PS, as its service requirement grows large, see also [12]. Another asymptotic
regime under which the DPS policy has been studied is the so-called heavy-traffic
regime, which means that the traffic load approaches the critical value (ρ ↑ 1).
For Poisson arrivals and exponentially distributed service requirements, in [113]
the authors showed that the scaled joint queue length vector has a proper limiting
distribution. Let Nk denote the number of class-k users in steady state, then

(1 − ρ)(N1, N2, . . . , NK)
d→ X · ( ρ̂1

w1
,

ρ̂2

w2
, . . . ,

ρ̂K

wK
), as ρ ↑ 1,

where
d→ denotes convergence in distribution, ρ̂k := limρ↑1 ρk, k = 1, . . . , K, and X

is an exponentially distributed random variable. In Chapter 2 we extend this result
for phase-type distributed service requirements. For more results on DPS under
several other limiting regimes we refer to the overview paper [5] and to Chapter 2.

For the sake of completeness, we briefly mention a related scheduling policy,
Generalized Processor Sharing (GPS) [45, 109]. Under GPS, the capacity is allocated
across the non-empty classes in proportion to the weights, i.e., class l receives

wl1(nl>0)
∑K

k=1 wk1(nk>0)

, l = 1, . . . , K,

whenever there are nk class-k users present, k = 1, . . . , K. As opposed to DPS,
under GPS each non-empty class is guaranteed a minimum share of the capacity
regardless of the number of users present within this class.

1.3.3 Optimal scheduling

There exists a vast amount of literature devoted to optimal scheduling in single-
server systems. A well-known optimality result concerns the Shortest Remaining
Processing Time (SRPT) policy, which serves at any moment in time the user with
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the shortest remaining service requirement [120]. In [121, 127] it is proved that
SRPT minimizes sample-path wise the number of users present in the single-server
system. (Stochastic minimization and other optimality notions used in this section
will be introduced in detail in Section 1.6.)

SRPT relies on the knowledge of the (remaining) service requirements of the
users. Since this information might be impractical to obtain, a different strand of
research has focused on finding optimal policies among the so-called non-anticipating
policies. These policies do not use any information based on the (remaining) service
requirements, but they do keep track of the attained service of users present in
the system. Popular policies like First Come First Served (FCFS), Least Attained
Service (LAS), PS and DPS are all non-anticipating. Among all non-anticipating
policies, the mean number of users is minimized under the Gittins rule [3, 57]. The
latter simplifies to LAS and FCFS for particular cases of the service requirements [3].

The LAS policy [78, Section 4.6], also known as Foreground-Background, which
serves at any moment in time the user(s) with the least attained service, has been ex-
tensively studied. For an overview we refer to [105]. In case of Poisson arrivals, LAS
stochastically minimizes the number of users in the system if and only if the service
requirement distribution has a decreasing failure rate (DFR) [3, 114]. This result is
based on the fact that under the DFR assumption, as a user obtains more service,
it becomes less likely that it will leave the system soon. Therefore, prioritizing the
newest users is optimal.

For a service requirement distribution with an increasing failure rate (IFR), any
non-preemptive policy, in particular FCFS, stochastically minimizes the number of
users in the system [114]. A policy is non-preemptive when at most one user is served
at a time and once a user is taken into service this service will not be interrupted.
This result can be understood from the fact that under the IFR assumption, as a
user obtains more service, it becomes more likely that it will leave the system soon.

We finish this section with an important result for the multi-class single-server
system. We associate with each user class a cost ck and let µk := 1/E(Bk), where
Bk denotes the class-k service requirement. A classical result states that the so-
called cµ-rule, the policy that gives strict priority to classes in descending order
of ckµk, minimizes the mean holding cost E(

∑

k ckNk). This result holds for the
M/G/1 queue among all non-preemptive non-anticipating policies [56] and for the
G/M/1 queue among all non-anticipating policies [38, 102]. The optimality of the
cµ-rule can be understood from the fact that 1/µk coincides in both settings with
the expected remaining service requirement of a class-k user at a scheduling decision
epoch. Hence, at every moment in time, the user with the smallest weighted expected
remaining service requirement is served.

1.4 Bandwidth-sharing networks

Bandwidth-sharing networks provide a modeling framework for the dynamic inter-
action of data flows in communication networks, where a flow claims roughly equal
bandwidth on each of the links along its path, as described in Section 1.2.1. Math-
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ematically, a bandwidth-sharing network can be described as follows. It consists of
a finite number of nodes, indexed by l = 1, . . . , L, which represent the links of the
network. Node l has finite capacity Cl. There are K classes of users. Associated
with each class is a route that describes which nodes are needed by the users from
this class. Let A be the L×K incidence matrix containing only zeros and ones, such
that Alk = 1 if node l is used by users of class k and Alk = 0 otherwise. Each user
requires simultaneously the same capacity from all the nodes on its route. Let sk

denote the aggregate rate allocated to all class-k users. The total capacity used from
node l is

∑K
k=1 Alksk. Hence, a rate allocation is feasible when

∑K
k=1 Alksk ≤ Cl,

for all l = 1, . . . , L.
An example of a bandwidth-sharing network is the so-called linear network as

depicted in Figure 1.2. It consists of L nodes and K = L+1 classes, for convenience
indexed by j = 0, 1, . . . , L. Class-0 users require the same amount of capacity from
all L nodes simultaneously while class-i users, i = 1, . . . , L, require service at node i
only. The L × (L + 1) incidence matrix of the linear network is

A =















1 1 0 0 . . . 0
1 0 1 0 . . . 0
1 0 0 1 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 1















,

hence the capacity constraints are s0 + si ≤ Ci, i = 1, . . . , L. The corresponding
capacity region in the case of a two-node linear network with C1 = C2 = C is
depicted in Figure 1.5. As this figure indicates, the linear network can be viewed
as an extension of the single-server system. More specifically, the system can be
interpreted as a single server that handles all classes with the special feature that it
can work on classes 1, . . . , L simultaneously at full speed.

As explained in Section 1.2.1, the linear network provides a flow-level model for
Internet traffic that experiences congestion on each link along its path from other
intersecting routes. A linear network also arises in simple models for the mutual
interference in wireless networks. Consider the following setting. Users can be either
in cell 0, 1 or 2. Users in cells 1 and 2 can be served in parallel by base stations 1
and 2, respectively. Because of interference, a user in cell 0 can only be served when

C

C

C

s0

s1

s2

Figure 1.5: Capacity region of a two-node linear network in case C1 = C2 = C.
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either base station 1 or 2 is on and transmits the requested file to the user in cell 0.
Hence, class 0 can only be served when both classes 1 and 2 are not served, which
can be modeled as a linear network consisting of two nodes. As a further motivating
example we could think of write permission in a shared database. Consider L servers
that each perform tasks involving read/write operations in some shared database.
Read operations can occur in parallel. However, if a server needs to perform a
task involving write operations, then the database needs to be locked, and no tasks
whatsoever can be performed by any of the other servers. This may be modeled as a
linear network with L nodes, where class-0 tasks correspond to the write operations.

An inherent property of bandwidth-sharing networks is that, given a population
of users, the total used capacity of the network,

∑K
k=1

∑L
l=1 Alksk, is not necessarily

equal to the total available capacity of the network,
∑L

l=1 Cl. This may even be the
case when we restrict ourselves to Pareto-efficient allocations, i.e., allocations where
the rate allocated to a class cannot be increased without reducing the rate allocated
to another class. For example, one may think of the linear network where at a
certain moment in time there are no users of class L present. The Pareto-efficient
allocation that serves class 0 makes full use of the capacity of the network. However,
the Pareto-efficient allocation that serves classes 1 until L−1 uses only the capacity
of the first L − 1 nodes, and leaves the capacity of node L unused.

The maximum stability conditions of a bandwidth-sharing network are
∑K

k=1 Alkρk < Cl, for all l = 1, . . . , L, see [59], i.e., the offered load in each node
is strictly less than its available capacity. In general, the stability conditions cor-
responding to a specific policy can be more restrictive than the maximum stability
conditions. This becomes for example apparent in the linear network with unit
capacities, Cl = 1, l = 1, . . . , L. The policy that gives preemptive priority to
class-0 users is stable under the maximum stability conditions, ρ0 + ρi < 1, for all
i = 1, . . . , L. However, the Pareto-efficient policy that gives preemptive priority to
classes 1 through L is stable if and only if ρ0 <

∏L
i=1(1− ρi), which is a more strin-

gent condition. These stability results will be elaborated on in Section 3.2. Note
that in [59] it is shown that this instability effect can be avoided. It is proved that
any Pareto-efficient policy in a bandwidth-sharing network is stable, provided that
it is suitably modified when the number of users in a class becomes too small.

1.4.1 Weighted α-fair sharing

A popular class of policies studied in the context of bandwidth-sharing networks are
weighted α-fair bandwidth-sharing policies. In state ~n = (n1, . . . , nK) a weighted
α-fair policy allocates sk(~n)/nk to each class-k user, with (s1(~n), . . . , sK(~n)) the
solution of the utility optimization problem

maximize

K
∑

k=1

nkU
(α)
k

(

sk

nk

)

,

subject to
K
∑

k=1

Alksk ≤ Cl, l = 1, . . . , L, (1.4)
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and U
(α)
k (·), α > 0, as defined in (1.2). Note that the total rate allocated to class k,

sk, is equally shared among all class-k users, in other words, the intra-class policy
is PS.

For a network consisting of one node, the weighted α-fair policy reduces to the

DPS policy with weights w
1/α
k , k = 1, . . . , K. For the linear network with unit

capacities, the weighted α-fair rate allocation is given by

s0(~n) =
(w0n

α
0 )1/α

(w0nα
0 )1/α + (

∑K
i=1 winα

i )1/α
, si(~n) = 1(ni>0) · (1 − s0(~n)), i = 1, . . . , L,

see [30]. For grid and cyclic networks, as described in [30], the weighted α-fair rate
allocations can be found in closed form as well.

An important property of weighted α-fair policies in bandwidth-sharing networks
concerns stability. In [30] it is proved that when the service requirements and
the inter-arrival times are exponentially distributed, weighted α-fair bandwidth-
sharing policies (α > 0) achieve stability under the maximum stability conditions,
∑K

k=1 Alkρk < Cl, for all l = 1, . . . , L, see also [139, 159]. For phase-type distributed
service requirements, maximum stability is proved for the Proportional Fair (PF)
policy (α = 1 and unit weights) [93]. In [31, 34, 82] stability is investigated when
the set of feasible allocations is not given by (1.4). The authors of [31] prove that for
any convex set of feasible allocations, PF and the max-min fair policy (α → ∞ and
unit weights) provide stability under the maximum stability conditions. In [34, 82]
stability is investigated when the set of feasible allocations is non-convex or time-
varying. It is shown that the stability condition depends on the parameter α, and
that for some special cases the stability condition becomes tighter as α increases.

1.4.2 Flow-level performance

Very little is known about the way α-fair sharing affects the performance perceived
by users. Closed-form analysis of weighted α-fair policies has mostly remained elu-
sive, except for so-called hypercube networks (a special case is the linear network)
with unit capacities. For those networks, the steady-state distribution of the num-
bers of users of the various classes under PF is of product form and insensitive to the
service requirement distributions [30, 32]. For all other situations, the distributions
of the numbers of users under weighted α-fair policies are sensitive with respect to
higher moments of the service requirement distributions [32]. In [33], insensitive
stochastic bounds on the number of users in any class are derived for the special
case of tree networks. A related result can be found in [134] where the authors focus
on exponentially distributed service requirements and obtain an upper bound on
the total mean number of users under PF.

A powerful approach to study the complex dynamics under weighted α-fair poli-
cies is to investigate asymptotic regimes. For example, in [49] the authors study the
max-min fair policy under a large-network scaling and give a mean-field approxima-
tion. Another asymptotic regime is the heavy-traffic setting where the load on at
least one node is close to its capacity. In this regime, the authors of [68, 72, 160]
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study weighted α-fair policies under fluid and diffusion scalings and investigate dif-
fusion approximations for the numbers of users of the various classes. In addition,
when the load on exactly one node tends to its capacity, the authors of [160] iden-
tify a cost function that is minimized in the diffusion scaling by the weighted α-fair
policy. For the linear network, heavy-traffic approximations for the scaled mean
numbers of users are derived in [81]. Bandwidth-sharing networks in an overloaded
regime, that is when the load on one or several of the nodes exceeds the capacity, are
considered in [46]. The growth rates of the numbers of users of the various classes
under weighted α-fair policies are characterized by a fixed-point equation.

Motivated by the optimality results in the single-server system, research has
focused on improving weighted α-fair policies using performance benefits from size-
based scheduling. In [1] the authors propose to deploy SRPT as intra-class policy,
instead of PS, in order to reduce the number of users in each class. Another approach
is taken in [157, 158], where weighted α-fair policies are studied with dynamic per-
user weights that depend on the remaining service requirements. Simulations show
that the performance can improve considerably over the standard α-fair policies.

1.5 The parallel-server model

The parallel-server model consists of L multi-skilled servers that can work in parallel
on K classes of users. A class might be served more efficiently on one server than
on another. We denote by µkl := 1/E(Bkl) the mean service rate of a class-k user at
server l, where Bkl denotes the service requirement of a class-k user when server l
works at full speed on this user. Figure 1.6 (left) shows a parallel-server model with
two classes of users and two servers.

The parallel-server system may be viewed as a simple model for a parallel com-
puter system where processors have overlapping capabilities and the capacity of the
processors needs to be allocated among several tasks. Other applications are service
facilities like call centers. An agent can be specialized in a certain type of calls, but
can also handle other types at a relatively low speed. In the thesis we will specif-

µ11

µ22

µ12

µ21

class 1

class 2

server 1

server 2

s1

s2

(c1, c2)

C1

C2

Figure 1.6: Parallel two-server model with two classes (left), and the capacity region
when c1 + c2 > max(C1, C2) (right).
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ically focus on a parallel two-server model with two classes of users, where both
servers can work simultaneously on the same user. This model may represent the
interference of two base stations in a cellular wireless network, as described in the
next paragraph.

Consider a parallel two-server model with two classes where both servers can
work simultaneously on the same user. We define c1, c2, µ1 and µ2 such that they
satisfy µ11 = c1µ1, µ12 = (C1 − c1)µ1, µ21 = (C2 − c2)µ2 and µ22 = c2µ2, with
C1, C2 > 0. In case of exponentially distributed service requirements, we can now
give an equivalent representation of the parallel two-server model with two classes.
In this equivalent model description, class-k users have a mean service requirement
of 1/µk, k = 1, 2. When each class is served by its own server, class k receives
capacity ck (since then its departure rate is µkk = ckµk). However, when both
servers work together on class k, this class receives capacity Ck (since then its
departure rate is µk1+µk2 = ckµk+(Ck−ck)µk). The corresponding capacity region
is depicted in Figure 1.6 (right) in case c1 + c2 > max(C1, C2), where sk denotes the
capacity allocated to class k. The application to interference in wireless networks
becomes now apparent: the capacity region coincides with that in Figure 1.4 (right)
and is a simplification for the region of Figure 1.3 (right). Interestingly, the shape of
the capacity region, when setting C1 = C2 = 1 (without loss of generality), indicates
that the parallel two-server model with two classes may be viewed as an extension
of the single-server system. There is one main server with capacity one that handles
both classes of users. This server has the special feature that when the server works
on both classes in parallel, its capacity becomes c1 + c2.

The above-described parallel two-server model with two classes has been well
studied under the simple priority rule that server k gives preemptive priority to
class k, k = 1, 2, and helps the other server when there is no queue of class k.
Under this policy, the model is also referred to as the coupled-processors model for
which the joint queue length distribution has been analyzed in [50] for exponential
service requirements. In [42] the joint workload distribution is characterized in the
case of general service requirements. Both results in [42, 50] require the solution
of a Riemann-Hilbert boundary value problem. A diffusion approximation for the
queue lengths has been obtained in [25, 26] for a heavily-loaded system with general
service requirements.

The maximum stability conditions of a parallel-server model can be explicitly
described: There exists a policy that makes the parallel-server model stable if and
only if there exist xkl ≥ 0, k = 1, . . . , K, l = 1, . . . , L, such that

∑

k xkl ≤ 1, and
λk <

∑

l xklµkl, with λk the arrival rate of class k [132, 135]. Due to the special-
ized servers, Pareto-efficient policies in parallel-server models are not necessarily
stable under the maximum stability conditions. In [137] policy-dependent stability
conditions are characterized for the parallel two-server model with µ21 = 0.

Obtaining closed-form expressions for performance measures and finding efficient
scheduling policies in parallel-server models is a notoriously difficult task. For results
obtained in this area we refer to the overview in [128]. In the remainder of this
section we describe those relevant for the thesis.
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1.5.1 Threshold-based policies

Popular policies studied in the context of parallel-server models rely on thresholds.
Decisions are taken based on whether or not queue lengths exceed class-dependent
thresholds. For example, in the case of the parallel two-server model with two classes
a threshold-based policy could be that both servers serve their own class. However,
when the number of class-1 users exceeds a threshold, server 2 helps server 1 to
reduce the work in class 1. In the case of phase-type distributed service requirements,
the exact stability conditions have been obtained for this policy [107, 137]. In
particular, it is shown that the threshold should be sufficiently large in order for the
system to be stable.

A general class of threshold-based policies for parallel-server models is proposed
in [129]. An important observation made there is that finding reasonable values for
the thresholds is not trivial since performance can be quite sensitive to the threshold
values. The authors of [129] derive approximate formulas for the queue lengths based
on vacation models and illustrate how these can be used to obtain suitable threshold
values. In [107] the authors consider the parallel two-server model with two classes
of users and propose another class of threshold-based policies. Besides determin-
ing the stability conditions, they evaluate the robustness against misestimation of
load. Approximations for mean response times are given in [106], also incorporating
switching times when a server switches between queues. Threshold-based policies
that achieve optimality in a heavy-traffic setting are described in [19, 20].

1.5.2 Max-Weight policies

Max-Weight policies were first introduced in [135] and have been extensively studied
ever since, see for example [89, 125, 132]. The generalized cµ-rule [99], including the
Max-Weight policy as a special case, is analyzed in [89] for a parallel-server model.
This rule myopically maximizes the rate of decrease of certain instantaneous holding
cost. More precisely, when server l is free, it starts serving a user from class k′

such that k′ = argmaxk µkl
dCk(nk)

dnk
, whenever there are nk class-k users present,

k = 1, . . . , K, and serves this user until it leaves the system. The function Ck(nk)
can be interpreted as the cost of having nk class-k users present in the system. The
class of Max-Weight policies corresponds to functions of the type Ck(nk) = γknβ+1

k ,
with β, γk > 0. In that case, the policy can be described by cones in R

K
+ such

that the decision taken by the Max-Weight policy is based on which cone the queue
length vector currently belongs to. Related projective-cone schedulers have been
studied in [8, 116] where the decision is based on which cone the workload vector
currently belongs to.

Under fairly mild conditions, Max-Weight policies achieve maximum stability
for a large class of queueing networks [125, 132, 135]. However, the framework does
not allow for linear holding cost, i.e., β = 0. In fact, a myopic policy based on a
linear cost function can render the system unnecessarily unstable. Besides stability,
another important characteristic is that these policies are robust in the sense that
they do not rely on any information of the inter-arrival processes.

Heavy-traffic results for the parallel-server model have been obtained in [89, 132],
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where it is in particular shown that the generalized cµ-rule minimizes the holding
cost,

∑K
k=1 Ck(Nk(t)), sample-path wise in the diffusion limit. Here Nk(t) denotes

the number of class-k users at time t under the generalized cµ-rule. More details on
the heavy-traffic results can be found in Section 8.6.2.

1.5.3 Optimal scheduling in heavy traffic

Determining the optimal policy in a parallel-server model has so far proved analyt-
ically infeasible. Most research in this area has focused on heavily-loaded systems
under a (complete) resource pooling condition. The latter means that as the system
approaches its capacity, the individual servers can be effectively combined to act
as a single pooled resource. As mentioned in Section 1.5.2, the generalized cµ-rule
minimizes the scaled cost sample-path wise in heavy traffic. A complementary re-
sult is obtained in [19, 20], where the authors prove that certain threshold-based
policies minimize the scaled average discounted number of users in a heavy-traffic
setting, see Section 8.6.1 for more details. In [10, 61, 62] several discrete-review
policies are proposed (the system is reviewed at discrete points in time, and deci-
sions are based on the queue lengths at the review moment) for which heavy-traffic
optimality results hold as well. It is important to note that Max-Weight policies are
robust, while efficient threshold-based and discrete-review policies may depend on
the inter-arrival characteristics.

1.6 Methodology

When seeking efficient policies, our goal is to minimize the number of users present
in the system, or more generally, the so-called holding cost. Because of Little’s law,
minimizing the total mean number of users is equivalent to minimizing the mean
sojourn time, and thus equivalent to maximizing the user’s throughput defined as
the ratio between the mean service requirement and the mean sojourn time.

We first discuss several notions of optimality. The strongest notion we consider
relates to stochastic ordering. Two random variables X and Y are stochastically
ordered, X ≤st Y , when P(X > s) ≤ P(Y > s) for all s ∈ R. Equivalently, X ≤st Y
if and only if there exist two random variables X ′ and Y ′ defined on a common

probability space, such that X
d
= X ′, Y

d
= Y ′, and X ′ ≤ Y ′ with probability

one [101, 117]. We call a policy π̃ stochastically optimal when it stochastically
minimizes the holding cost at any moment in time, i.e.,

K
∑

k=1

ckN π̃
k (t) ≤st

K
∑

k=1

ckNπ
k (t), for all t ≥ 0, and for all π ∈ Π,

where ck is a positive cost associated with class k, Π is a predetermined set of policies
to which the search is restricted, and Nπ

k (t) denotes the number of class-k users at
time t under policy π, k = 1, . . . , K. A weaker notion of optimality is obtained
when taking the expectation on both sides, i.e., a policy is called optimal when it
minimizes the mean holding cost, E(

∑K
k=1 ckNk(t)), at any moment in time. When
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optimal policies in the transient regime do not exist, we further weaken the notion
of optimality. We then focus on policies that stochastically minimize the long-run
holding cost, limm→∞

1
m

∫m

0

∑K
k=1 ckNk(t)dt, or that minimize the average long-run

holding cost,

lim
m→∞

1

m
E

(

∫ m

0

K
∑

k=1

ckNk(t)dt
)

.

The latter notion is referred to as average-cost optimal. Unfortunately, it is not al-
ways within reach to explicitly determine optimal policies. In such cases, we resort
to asymptotic regimes such as a fluid scaling and a heavy-traffic regime. Optimal-
ity definitions in these regimes will be described in more detail in Sections 1.6.3
and 1.6.4.

In the remainder of this section we sketch the four main techniques used in the
thesis: sample-path comparison, stochastic dynamic programming, fluid scaling,
and the heavy-traffic regime. As such, this section serves as a reference framework
throughout the thesis. In Chapters 4, 7 and 8 we apply a sample-path compari-
son technique to characterize policies that minimize the mean holding cost at any
moment in time. Similar techniques are used in Chapter 3 to obtain stability con-
ditions. Another technique used in Chapters 4 and 8 is dynamic programming in
order to find either stochastically-optimal policies or to determine characterizations
of average-cost optimal policies. Fluid-scaled processes and asymptotically fluid-
optimal policies are investigated in Chapters 5 and 8. Chapters 2, 6 and 8 contain
results for systems in a heavy-traffic regime.

1.6.1 Sample-path comparison

Sample-path comparison is a useful tool in the control of queueing networks. A
sample path corresponds to one particular realization of the stochastic process. As
the name suggests, sample-path comparison techniques aim to compare, sample path
by sample path, stochastic processes defined on a common probability space.

When for each sample path the same ordering on two processes holds, these
processes are ordered sample-path wise. This is closely related to stochastic or-
dering of processes. Processes {X(t)}t and {Y (t)}t are stochastically ordered,
{X(t)}t ≤st {Y (t)}t, if and only if (X(t1), . . . , X(tm)) ≤st (Y (t1), . . . , Y (tm)) for
any m and all 0 ≤ t1 < t2 < . . . < tm < ∞, [101]. Hence, if there exist two processes
{X ′(t)}t and {Y ′(t)}t defined on a common probability space (i.e., these two pro-

cesses are coupled) that are ordered sample-path wise and satisfy {X ′(t)}t
d
= {X(t)}t

and {Y ′(t)}t
d
= {Y (t)}t, then the processes {X(t)}t and {Y (t)}t are stochastically

ordered.
In queueing networks, a rather intuitive way of coupling processes corresponding

to different policies is to consider the same realizations of the arrival processes and
service requirements. However, often more ingenious couplings are needed in order
to obtain the desired comparison. We refer to [47, 84] for an overview on sample-path
comparison methods and applications to queueing networks. In [92] (see also [85])
necessary and sufficient conditions on the transition rates are given in order for a
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stochastic order-preserving coupling to exist between two Markov processes.
The optimality of the cµ-rule (denoted by πcµ) in the G/M/1 queue can be

proved using sample-path arguments [84]. Here we describe the proof in the case
of two classes, since it illustrates the basic steps taken in most of the sample-path
proofs in the thesis. Assume c1µ1 ≥ c2µ2 so that the cµ-rule amounts to giving
preemptive priority to class 1, see Section 1.3.3. When the system is initially empty
and the same realizations of arrivals and service requirements are considered under
all policies, the following inequalities hold sample-path wise:

Wπcµ

1 (t) ≤ Wπ
1 (t) (1.5)

and
Wπcµ

1 (t) + Wπcµ

2 (t) ≤ Wπ
1 (t) + Wπ

2 (t), (1.6)

for all t ≥ 0 and for all policies π, where Wπ
k (t) denotes the workload in class k

under policy π at time t. Multiplying (1.5) by c1µ1 − c2µ2 ≥ 0 and (1.6) by c2µ2,
and using that E(Wπ

k (t)) = E(Nπ
k (t))/µk for non-anticipating policies (results from

the memoryless property of the exponentially distributed service requirements), it
follows that c1E(Nπcµ

1 (t)) + c2E(Nπcµ

2 (t)) ≤ c1E(Nπ
1 (t)) + c2E(Nπ

2 (t)), for all t ≥ 0
and for all non-anticipating policies π.

1.6.2 Stochastic dynamic programming

Markov decision theory is a useful framework for modeling decision making in
Markovian queueing systems. So-called stochastic dynamic programming tech-
niques, based on Bellman’s principle of optimality [21], allow to study a wide range
of optimization problems. Although these techniques are well developed, only a few
special queueing networks allow for an explicit solution of the optimal policy, see the
survey on Markov decision problems (MDP’s) in the control of queues [131]. Even
when not explicitly solvable, characterizations of the optimal policies can often still
be obtained. We refer to the textbooks [110, 117] for a full overview on MDP’s.

In the simplest setting, an MDP is described as follows. At equidistant points in
time, t = 0, 1, . . ., a decision maker observes the state of the system, denoted by x,
and chooses an action a from the action space A(x). The state at the next decision
epoch, denoted by y, is described by the transition probabilities p(x, a, y) depending
on the current state and the action chosen. There is a direct cost C(x) each time
state x is visited. The corresponding Markov decision chain can be described by
{Xt, At}t, where Xt and At represent the state and action at time t, respectively.

Markov decision theory allows optimization under finite-horizon, infinite-horizon
discounted, and average-cost criteria. Here we focus on the latter, that is, we search
for a policy that minimizes

lim sup
m→∞

1

m
E(

m−1
∑

t=0

C(Xt)).

An average-cost optimal policy does not necessarily need to exist when the state
space is infinite. There exist, however, sufficient conditions under which existence
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is guaranteed, see for example [123]. In that case, if (g, V (·)) is a solution of the
average-cost optimality equations

g + V (x) = C(x) + min
a∈A(x)

∑

y

p(x, a, y)V (y), for all states x, (1.7)

then g equals the minimum average cost and a stationary policy that realizes the
minimum in (1.7) is average-cost optimal [117, Chapter V.2]. The function V (·) is
referred to as the value function.

There are two main dynamic programming techniques: the policy iteration algo-
rithm and the value iteration algorithm. The latter is used throughout the thesis.
Value iteration consists in analyzing the functions Vm(·), m = 0, 1, . . . , defined as

V0(x) = 0

Vm+1(x) = C(x) + min
a∈A(x)

{
∑

y

p(x, a, y)Vm(y)}, m = 0, 1, . . . . (1.8)

The functions Vm+1(x) are interesting by themselves. They represent the minimum
achievable expected cost over a horizon m + 1 when starting in state x, i.e., the
term E(

∑m
t=0 C(Xt)|X0 = x) is minimized. Under certain conditions it holds that

Vm(·)−mg → V (·) and Vm+1(·)− Vm(·) → g as m → ∞ [64]. In addition, the min-
imizing actions in (1.8) converge to actions that constitute an average-cost optimal
policy [64, 124]. As a consequence, if properties such as monotonicity, convexity, and
submodularity [79] are satisfied for Vm(·), for all m = 0, 1, . . ., then the same is true
for the value function V (·). Together with (1.7) this helps in the characterization of
an optimal policy.

For a finite state space, the value iteration algorithm is useful to numerically de-
termine an approximation of the average-cost optimal policy. This consists in recur-
sively computing the functions Vm+1(·) until the difference between maxx(Vm+1(x)−
Vm(x)) and minx(Vm+1(x)−Vm(x)) is sufficiently small. Since the state spaces con-
sidered in the thesis are infinite, in all our numerical experiments we apply the value
iteration algorithm after appropriate truncation of the state space.

In a Markovian queueing system, without loss of generality, one can focus on
policies that make decisions at transition epochs. The times between consecutive
decision epochs are state-dependent and exponentially distributed. We can however
equivalently consider the uniformized Markov process [110]: After uniformization,
the transition epochs (including “dummy” transitions that do not alter the system
state) are generated by a Poisson process of uniform rate. As such, the model can be
reformulated as a discrete-time MDP, obtained by embedding at transition epochs.

Throughout the thesis we use value iteration to find either (characterizations
of) average-cost optimal policies (as described above), or stochastically optimal
policies. The latter is done by setting the direct cost equal to zero, C(·) = 0, and
allowing a terminal cost at the end of the horizon, V0(·) = C̃(·). In that case, the
term Vm+1(x) represents the minimum achievable expected terminal cost when the
system starts in state x at m + 1 time units away from the horizon, i.e., the term
E(C̃(Xm+1)|X0 = x) is minimized. Setting C̃(·) = 1(c̃(·)>s), with c̃(·) some cost
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function, this corresponds to minimizing P(c̃(Xm) > s|X0 = x). The minimizing
action in (1.8) is an optimal action at m + 1 time units from the horizon. Hence, if
the optimal actions do not depend on the time horizon m and on the value for s,
then the corresponding stationary policy stochastically minimizes the cost c̃(Xt) for
all t.

1.6.3 Fluid scaling

The analysis of fluid-scaled processes has proved to be a powerful approach to in-
vestigate stability and optimal scheduling in queueing networks. A well-known re-
sult is [44], where stability of a multi-class queueing network is linked to that of
the corresponding fluid-scaled model. For more details on fluid analysis, we refer
to [40, 97, 115] and references therein. In this section we describe the fluid scaling
of interest and focus on its application to optimal scheduling.

Consider a sequence of processes, indexed by r ∈ N, such that N r
k (t) denotes the

number of class-k users at time t in a queueing network with K classes of users when
the initial queue lengths equal N r

k (0) = rnk, nk ≥ 0, k = 1, . . . , K. The fluid-scaled
number of users is obtained when both time and space are scaled linearly, i.e.,

N
r

k(t) :=
N r

k (rt)

r
, k = 1, . . . , K.

Whenever fluid scaling is applied in this thesis, we assume exponential inter-arrival
times and service requirements, and consider non-anticipating policies. More general
service requirements are allowed when posing additional conditions on the intra-class
policies. Due to the functional strong law of large numbers [40], loosely speaking,
each converging subsequence of N

r
(t) converges to some process N(t), which has

continuous characteristics and deterministic fluid input [44]. This limit is referred
to as a fluid limit.

When it does not seem possible to derive optimal policies for the stochastic
queueing network, fluid-scaling techniques can help to obtain approximations in-
stead. In order to do so, a deterministic fluid control model is considered, which is a
first-order approximation of the stochastic network by only taking into account the
mean drifts. For example, in a multi-class single-server queue, on average λk class-k
users arrive per time unit, and on average µk := 1/E(Bk) class-k users depart when
class k is given full priority. Hence, in this case the fluid control model is described
by the process (n1(t), . . . , nK(t)) that satisfies

nk(t) = nk + λkt − µkUk(t), and nk(t) ≥ 0, t ≥ 0, k = 1, . . . , K,

with Uk(t) =
∫ t

0 uk(v)dv and where uk(·) are feasible control functions, i.e.,

K
∑

k=1

uk(v) ≤ 1, and uk(v) ≥ 0, k = 1, . . . , K, for all v ≥ 0.

In this thesis we call a fluid control optimal when it minimizes
∫∞
0

∑K
k=1 cknk(t)dt.

The optimal trajectories in the fluid control model are denoted by n∗
1(t), . . . , n

∗
K(t).
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In the literature, optimal fluid controls have been obtained by using Pontryagin’s
maximum principle, see for example [14] or by solving a separated continuous linear
program, see for example [154].

Motivated by the close relation between stability of the stochastic queueing net-
work and its associated fluid model [44], researchers became interested in connec-
tions between optimal scheduling in the stochastic network and the far simpler fluid
control problem [13, 95, 97]. A crucial question is how to make a translation from
the optimal control in the fluid model to a stable and efficient policy in the actual
stochastic network. The optimal fluid control provides intuition on what a good
policy in the stochastic network should try to achieve, however, difficulties can arise
around the boundaries of the state space where a straightforward translation is not
always adequate, see for example [53] and Chapters 5 and 8.

Once a translation to the stochastic network has been made, one needs to show
that this policy is close to optimal. We use the following concept. Given that the
system is stable, a policy π is called asymptotically fluid-optimal when

lim
r→∞

E

(

∫ D

0

K
∑

k=1

ckN
π,r

k (t)dt
)

=

∫ D

0

K
∑

k=1

ckn∗
k(t)dt,

for all D sufficiently large. The main step to prove that a policy is asymptoti-
cally fluid-optimal consists in showing that the fluid limit of the stochastic net-
work under this policy coincides with the optimal trajectories in the fluid control
model, n∗

1(t), . . . , n
∗
K(t). We refer to [15, 53, 88, 90, 96] and Chapters 5 and 8 for

several examples of multi-class queueing networks for which asymptotically fluid-
optimal policies have been derived.

Under suitable conditions, an average-cost optimal policy is asymptotically fluid-
optimal [16], [53], [97, Theorem 10.0.5]. Unfortunately, no guarantee exists for the
average cost of an asymptotically fluid-optimal policy. In fact, the asymptotically
fluid-optimality definition aims at emptying the system efficiently starting from large
initial state conditions, while average-cost optimality is concerned with the steady-
state behavior of the system. In numerical experiments it has been observed that
the average cost under asymptotically fluid-optimal policies is close to optimal. A
first step towards a formal connection has been made in [96]. There, asymptotically
fluid-optimal policies are proposed for which bounds on the average cost exist. In
heavy traffic, these bounds (scaled with 1−ρ) are tight and coincide with the optimal
(scaled) average cost.

1.6.4 Heavy-traffic regime

Under a heavy-traffic regime the system is investigated as the traffic load approaches
the capacity limit of the system. Analyzing the system in this regime can provide
useful intuition as to how the system behaves when it is close to saturation. Typ-
ical heavy-traffic results relate to optimal control, queue length approximations,
and state-space collapse (reduction in dimension of a multi-dimensional stochastic
process).



24 Chapter 1 Introduction

The earliest heavy-traffic result is due to Kingman [76] who considered the
steady-state behavior of a single-server queue under a non-preemptive policy (for
service requirements with finite second moments). He proved that the steady-state
queue length, scaled with 1− ρ, converges in distribution to an exponential random
variable as ρ → 1. For PS or DPS the queue length is of the order (1 − ρ)−1 as
well, see for example Chapter 2, but this is not true in general. For example, under
LAS it can be either smaller or larger than (1 − ρ)−1, depending on the service
requirement distribution [105].

So-called diffusion-scaled processes are commonly studied in a heavy-traffic set-
ting to describe the transient behavior. A sequence of traffic parameters, indexed
by r, is considered that converges at an appropriate rate to a heavily-loaded sys-
tem. Let N r

k (t) denote the number of class-k users in the r-th system and define
the diffusion-scaled number of users by

N̂ r
k (t) := N r

k (rt)/
√

r.

Due to the functional central limit theorem, the limit of such a diffusion-scaled
process typically involves a reflected Brownian motion [40, 80]. We refer to [25, 68,
89] for several examples of queueing networks where diffusion-scaled processes have
been analyzed.

For the single-server queue the diffusion scaling consists in letting

lim
r→∞

ρr = 1 such that lim
r→∞

√
rµr(ρr − 1) = θ ∈ R.

It is known that the diffusion-scaled number of users in a non-preemptive single-
server system converges to a reflected Brownian motion with negative drift [40,
80]. Note that the stationary distribution of the latter process is exponential [40,
Theorem 6.2], which coincides with the exponential distribution as mentioned earlier
for the scaled steady-state process. For general networks, it is not obvious whether
this interchange of the heavy-traffic limit and steady-state limit is allowed, and it
has only been proved for some special cases, see for example [55] and Remark 2.6.2.

Optimal scheduling in heavy traffic is a well-studied field, typically focusing on
policies with non-preemptive intra-class policies. For example, in [98] it is proved
that a generalized Max-Weight policy is approximately optimal in the sense that its
average cost is at most | log(1−ρ)| worse than that of the optimal average-cost policy,
implying optimality in heavy traffic. Other optimality results relate to diffusion-
scaled networks, where the goal is to find a policy that minimizes some diffusion-
scaled cost (either sample-path wise or on average) as r → ∞ [19, 61, 89, 99, 160].
Asymptotically optimal policies in heavy traffic can serve as useful approximations
for the optimal policy in the original system when the load is high.

1.7 Overview of the thesis

In this chapter we presented several concepts related to resource-sharing systems,
with special attention for the single-server system and two extensions of this model:
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the linear network and the parallel two-server model with two classes of users. In
the remainder of the thesis we concentrate on these three systems for which we
investigate efficient scheduling policies and evaluate policies that share the resources
in a fair manner.

In Chapter 2 we focus on the single-server system and analyze a generalization
of the DPS policy. More specifically, we consider phase-type distributed service
requirements and allow customers to have different weights in various phases of their
service. In our main result we establish a state-space collapse for the steady-state
queue length vector in heavy traffic. This result has several interesting consequences.
We derive that in heavy traffic the remaining service requirement of any customer is
distributed according to the forward recurrence time of its service requirement. In
addition, we obtain that the scaled holding cost stochastically reduces as customers
with lower variability in their service requirement obtain larger weights. Chapter 2
presents the results that appeared in [143, 144].

In Chapter 3 we turn to the linear bandwidth-sharing network. We investigate
fundamental stability properties of size-based scheduling mechanisms, such as SRPT
and LAS, applied in a linear network. The results indicate that instability effects
may occur when users with long routes have relatively large service requirements
compared to the ones with short routes. For networks with sufficiently many nodes,
instability phenomena may in fact arise at arbitrarily low traffic loads. When instead
the long routes have relatively small service requirements, size-based scheduling
policies are stable under the maximum stability conditions. This chapter is based
upon [146].

Chapter 4 focuses on optimal scheduling within the class of non-anticipating
policies for the linear bandwidth-sharing network with exponentially distributed
service requirements. We observe that policies that minimize the mean holding cost
strongly depend on the mean service requirements of the various classes. For certain
settings, simple priority rules are optimal. In the case of a two-node linear network,
an optimal policy can be characterized in the remaining cases by “switching curves”,
i.e., the policy dynamically switches between several priority rules. Knowledge of
optimal policies allows to evaluate the performance of the class of α-fair bandwidth-
sharing policies. Through numerical experiments we observe that the gap between
α-fair policies and optimal policies is not that large provided the system load is
moderate. In addition, the performance under α-fair policies is quite insensitive
to α, as long as this value is not too small. Chapter 4 presents the results published
in [147, 151].

Chapter 5 is a continuation of Chapter 4. In Chapter 4 it was shown that in
a two-node linear network an optimal policy is characterized by switching curves,
however, an exact characterization of these curves was in general not possible. In
this chapter we set out to study these switching curves in asymptotic regimes. We
find that linear switching curves are optimal for the related fluid control problem.
Using this fact, we derive that, in most cases, policies characterized by these linear
switching curves are asymptotically fluid-optimal in the original stochastic model
as well. For some scenarios however, fluid-based switching curves may result in
a policy that not only is far from optimal, but may in fact be unstable. In that



26 Chapter 1 Introduction

case, the diffusion scaling is appropriate and efficient switching-curve policies have a
square-root shape. Through numerical experiments we assess the potential gain that
switching curve policies can achieve over weighted α-fair policies in a moderately-
loaded regime, and find that the latter can approach the optimal performance when
choosing the weights appropriately. Chapter 5 builds upon the analysis of [148, 150].

While in Chapters 4 and 5 we concentrated on exponentially distributed service
requirements, in Chapter 6 we turn to generally distributed service requirements.
Since deriving a strictly optimal policy for the linear network does not seem possible,
we instead consider a heavy-traffic regime. Motivated by the size-based scheduling
results for single-server systems, we focus on (anticipating) policies that separate
within a class the large requests from the small ones. Such policies turn out to
be asymptotically optimal in heavy traffic for service requirements with bounded
support. In addition, we show that these size-based policies may outperform α-fair
policies, which are non-anticipating, by an arbitrarily large factor when the load is
sufficiently high. This chapter presents the results published in [145].

In Chapter 7 we consider a multi-class queueing system with general inter-arrival
times and service requirements, and give sufficient conditions in order to compare
sample-path wise the workload and the number of users under different policies. This
allows us to evaluate the performance of the system under various policies in terms
of stability and the mean holding cost. In particular, for the linear network under
weighted α-fair policies we obtain stability results and, in the case of exponentially
distributed service requirements, establish monotonicity of the mean holding cost
with respect to the fairness parameter α and the relative weights. In order to
broaden the comparison results, we investigate a heavy-traffic regime and perform
numerical experiments. In addition, we study a single-server system with two user
classes, and show that under DPS and Generalized Processor Sharing the mean
holding cost is monotone with respect to the relative weights. This result is in
line with the monotonicity result obtained for DPS under a heavy-traffic scaling in
Chapter 2. Chapter 7 is based upon [141, 142].

In Chapter 8 we turn our attention to a parallel two-server model with two
classes of users and set out to study optimal non-anticipating scheduling policies for
exponentially distributed service requirements. For some settings we can determine
the optimal policy exactly, but in general this is analytically infeasible. We therefore
seek asymptotically fluid-optimal policies, using similar techniques as in Chapter 5.
We investigate the fluid control model for which we show that the optimal control is
described by a switching curve. Using this fact, we derive that policies characterized
by either linear or exponential switching curves are asymptotically fluid-optimal in
the original stochastic model. For a moderately-loaded system, we numerically
compare these fluid-based policies with Max-Weight and threshold-based policies,
which are known to be optimal in a heavy-traffic setting. We observe that the fluid-
based and the threshold-based policies perform well, while significant performance
gains can be achieved over Max-Weight policies. Chapter 8 is based upon [149].



Chapter 2

Heavy-traffic analysis of
discriminatory processor sharing

Efficient scheduling in a single-server system is a well-studied field, as described in
Section 1.3.3. In this chapter we focus on Discriminatory Processor Sharing (DPS)
policies and are interested in how the choice of the weight parameters affects the
performance of the system in steady state. In fact, we analyze a generalization of the
DPS queue with phase-type distributed service requirements, and allow customers
to have different weights in various phases of their service. Since the steady-state
analysis will not be tractable in general, we study the system in heavy-traffic con-
ditions.

In the main result of this chapter we establish a state-space collapse for the
steady-state queue length vector in heavy traffic. The result shows that in the
limit, the queue length vector is the product of an exponentially distributed random
variable and a deterministic vector. The reduction of dimensionality of a multi-
dimensional stochastic process under heavy-traffic scaling has been demonstrated
previously in other queueing models, see for example [19, 68, 132]. In addition,
our main result allows to derive several interesting results concerning the residual
service requirements and monotonicity properties of the holding cost.

Our work is inspired by the heavy-traffic analysis in [113] for the traditional
DPS model with exponentially distributed service requirements. After developing a
procedure to determine all moments of the queue length distributions from systems
of linear equations, the authors show that the variability of the queue length vector
is of a lower order than the mean queue lengths, which directly leads to state-space
collapse of the queue length vector. Here we follow a different and more direct
approach by investigating the joint probability generating function of the queue
lengths. This function is shown to satisfy a partial differential equation, which
takes a convenient form after passing to the heavy-traffic limit, allowing a closed-
form solution in that case.

Generalized DPS models similar to the one studied in this chapter were previously
considered in [23, 58, 63]. The analysis in [58] is particularly relevant for the present
study. Through appropriate choices for a quite general functional of the queue length
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process, [58] determined the heavy-traffic distributions of the marginal queue lengths
and sojourn times, when the service requirements have finite second moments. Our
results are complementary to those: On one hand we restrict the focus to the queue
lengths, and on the other hand we study the joint queue length distribution. That
way, we establish a state-space collapse for the queue length vector.

Several papers have analyzed (discriminatory) processor sharing mechanisms as-
suming overload conditions and general service requirement distributions. For ex-
ample, the authors of [7] characterize the queue length growth rates of the standard
DPS model by a fixed-point equation, generalizing the analogous result for the PS
model [66]. More recently, further extensions to bandwidth-sharing networks [46]
and a network setting similar to ours [23] have been obtained. In all these references
the transient behavior of the queue lengths is studied under overload conditions,
while we investigate the convergence of the (scaled) steady-state distribution as the
critical load is approached.

As phase-type distributions lie dense in the class of all probability distributions,
in practice the restriction to this class is not seen as being essential. In the present
chapter, an important caveat must be accounted for, though. Our analysis relies
on heavy-traffic scaling techniques which typically require finite second moments of
the service requirements. Since all phase-type distributions (with a finite number
of phases) have a finite second moment, this restriction is implicit in our modeling
approach. Indeed, our results show that the second moments appear in a natural
fashion in the heavy-traffic limit. We believe that our results do extend to all
distributions with a finite second moment (not necessarily phase-type), but we do
not investigate this here.

Allowing the relative service weights of customers to change over time as they
acquire service, effectively opens up a way to implement size-based scheduling by
assigning relatively high weights in service phases that are more likely to lead to
a quick service completion. Using the heavy-traffic result, we investigate how the
choice of the weights influences the asymptotic performance of the system. In par-
ticular, we prove that the scaled holding cost reduces as more preference is given to
customers in service phases with a small expected remaining service requirement.

The standard DPS queue with phase-type service requirement distributions is
a special case of our model. The state-space collapse allows to show that in a
heavy-traffic setting, conditioned on the number of customers, the remaining service
requirements of the various customers are independent and distributed according to
the forward recurrence times. In addition, we derive that the scaled holding cost in
the standard DPS queue reduces as more preference is given to classes according to
the forward recurrence times of the service requirements. The applicability of this
result for a moderately loaded system is investigated by numerical experiments.

The present chapter is organized as follows. In Section 2.1 we introduce the gen-
eral Markovian framework and state the main result, which establishes a state-space
collapse of the joint queue length vector. As a preparation for the proof of the main
result, the functional equation for the generating function of the joint queue length
process is studied in Section 2.2 and, under the heavy-traffic scaling, in Section 2.3.
The proof of the main result is given in Section 2.4. Section 2.5 discusses size-based
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scheduling. Section 2.6 applies the state-space collapse result to the standard DPS
queue with phase-type distributed service requirements. In addition, it presents the
implications for residual service requirements and monotonicity properties of the
holding cost. Concluding remarks can be found in Section 2.7.

2.1 General framework and main result

We consider a general Markovian system with J customer types. Customers arrive
according to a Poisson process with rate λ, and an arriving customer is of type i with
probability p0i, i = 1, . . . , J . Type-i customers have an exponentially distributed
service requirement with mean 1/µi. After service completion, they become of
type j with probability pij , j = 1, . . . , J , and leave the system with probability

pi0 := 1 −∑J
j=1 pij . Let P be a J × J matrix with P = (pij), i, j = 1, . . . , J .

We assume that customers require a finite service amount with probability one, so
that all customers eventually leave the system. This implies limn→∞ Pn = 0, and
hence, (I − P )−1 is well defined. In addition, we assume that none of the J types
are redundant (i.e., eventually all types are observed); this assumption is formalized
following equation (2.1) below.

The J customer types share a common resource of capacity one. There are
strictly positive weights g1, . . . , gJ associated with each of the types. Whenever
there are qi type-i customers, i = 1, . . . , J , present in the system, each type-j
customer is served at rate

gj
∑J

i=1 giqi

, j = 1, . . . , J.

We denote the number of type-i customers in steady-state by Qi.

The above-described framework is a generalization of the DPS queue with phase-
type distributed service requirements: It represents an M/PH/1 DPS queue where
customers may have different weights in various phases of their service.

We let Ri denote the remaining service requirement until departure for a cus-
tomer that is now of type i. Note that this includes service in all subsequent stages as
the customer changes from one type to another. Since the service time of each type
is exponentially distributed, the expected remaining service requirements can be in-
terpreted as absorption times in an appropriate Markov chain and therefore satisfy
the following system of linear equations: E(Ri) = 1

µi
+
∑J

j=1 pijE(Rj), i = 1, . . . , J .

Let E(~R) = (E(R1), . . . , E(RJ ))T and ~m = (1/µ1, . . . , 1/µJ)T , so that we can write

E(~R) = (I − P )−1 ~m.

Denote the total traffic load by

ρ := λ

J
∑

j=1

p0jE(Rj).
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Let γi represent the expected number of times a customer is of type i during its
visit in the network. Hence, γ1, . . . , γJ satisfy the following equations

γi = p0i +

J
∑

j=1

γjpji, i = 1, . . . , J, (2.1)

i.e., ~γT = ~pT
0 (I − P )−1, with ~γ = (γ1, . . . , γJ)T and ~p0 = (p01, . . . , p0J)T . Note

that γi

µi
represents the expected cumulative amount of service a customer requires

while being of type i during its visit in the network. Our assumption that none of
the J types is redundant, entails that ~γ is a vector with strictly positive elements.
We denote the load corresponding to customers while they are of type i by

ρi := λ
γi

µi
.

Hence, for the total traffic load ρ we may equivalently write

ρ = λ

J
∑

j=1

p0jE(Rj) = λ~pT
0 E(~R) = λ~pT

0 (I − P )−1 ~m = λ~γT ~m = λ

J
∑

j=1

γj

µj
=

J
∑

j=1

ρj .

(2.2)

Our main result shows that the steady-state distribution of the multi-dimensional
queue length process takes a rather simple form when the system is near saturation,
i.e., ρ ↑ 1, which is commonly referred to as the heavy-traffic regime. This regime
can be obtained by fixing the ~p0, P, and ~m, and letting

λ ↑ λ̂ :=
1

~pT
0 (I − P )−1 ~m

, (2.3)

since then ρ = λ~pT
0 (I − P )−1 ~m ↑ 1. Although approaching heavy traffic in this way

is natural, the results remain valid for any other sequence of parameters (belonging
to stable systems) that reaches heavy traffic in the limit. In heavy traffic, we denote
by

ρ̂i := λ̂
γi

µi

the load corresponding to customers while they are of type i (
∑J

j=1 ρ̂j = 1).

We can now state our main result, which establishes a state-space collapse for
the queue length vector in the heavy-traffic regime.

Proposition 2.1.1. Consider the general Markovian framework. When scaled with
1 − ρ, the queue length vector has a proper limiting distribution as (ρ1, . . . , ρJ ) →
(ρ̂1, . . . , ρ̂J ), such that ρ ↑ 1,

(1 − ρ)(Q1, Q2, . . . , QJ)
d→ (Q̂1, Q̂2, . . . , Q̂J)

d
= X ·

(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)

, (2.4)
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where
d→ denotes convergence in distribution and X is an exponentially distributed

random variable with mean

E(X) =

∑J
j=1 ρ̂jE(Rj)

∑J
j=1

ρ̂j

gj
E(Rj)

. (2.5)

The proof will be given in Section 2.4. Here we give some intuition for the result.
Proposition 2.1.1 shows that in heavy traffic, the multi-dimensional queue length
process essentially reduces to a one-dimensional random process: it can be expressed
as a random variable X times a deterministic vector. Given this reduced variability
of the process, the value of the deterministic vector can be understood as follows.
Note that, in general

ρj = E

(

gjQj
∑J

i=1 giQi

· 1(
∑J

i=1 Qi>0)

)

, (2.6)

since the expression within the expectation operator reflects the capacity allocated
to type j. Here the function 1A denotes the indicator function, i.e., 1A = 1 if A is
true, and 0 otherwise. Using that the process reduces to one dimension in heavy
traffic, in the limit we may replace Qj/Qi by a ratio of constants aj/ai. Together
with (2.6) and under the assumption that the scaled queue length will be strictly

positive in heavy traffic, this implies that aj = (
∑J

i=1 giai)
ρ̂j

gj
. The pre-factor

∑

i giai

is common to all aj , which explains the appearance of the vector ( ρ̂1

g1
, ρ̂2

g2
, . . . , ρ̂J

gJ
) in

Proposition 2.1.1.

Numerical illustration of Proposition 2.1.1: We consider two types of cus-
tomers and choose g1 = 2, g2 = 1, µ1 = 2, µ2 = 5, p01 = 0.6, p02 = 0.4, p12 =
0.3, p21 = 0.1. In Figures 2.1 and 2.2 we plot the joint queue length probabili-
ties (obtained by simulation) for loads ρ = 0.8 (ρ1 ≈ 0.59, ρ2 ≈ 0.21), ρ = 0.90
(ρ1 ≈ 0.66, ρ2 ≈ 0.24) and ρ = 0.99 (ρ1 ≈ 0.73, ρ2 ≈ 0.26), respectively. The hor-
izontal and vertical axes correspond to Q1 and Q2 respectively. As a consequence
of the state-space collapse stated in Proposition 2.1.1, in heavy traffic the proba-
bilities will lie on a straight line with slope g1

ρ̂1

ρ̂2

g2
≈ 0.72, starting from the origin.

In Figures 2.1 and 2.2 we see that as the load increases, the probable states indeed
tend to concentrate more around this line. For load ρ = 0.99, this effect is clearly
visible; the probable queue length states are strongly concentrated around the line
with slope 0.72.

2.2 Functional equation

Before focusing on the heavy-traffic regime, we derive a functional equation for
the generating function of the joint queue length process. Denote by ~Q and ~q the
vectors (Q1, Q2, . . . , QJ) ≥ ~0 and (q1, q2, . . . , qJ) ≥ ~0, respectively. The equilibrium
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Figure 2.1: Joint queue length probabilities for load ρ = 0.8 (left) and ρ = 0.90
(right), respectively.

distribution π(~q) := P( ~Q = ~q) satisfies

λπ(~0) =
J
∑

i=1

µipi0π(~ei), (2.7)

and for ~q 6= ~0,








λ +

J
∑

i=1

giqiµi

J
∑

i=1

giqi









π(~q) =
J
∑

i=1

λp0iδqiπ(~q − ~ei) +
J
∑

i=1

gi(qi + 1)
J
∑

j=1

gjqj + gi

· µipi0π(~q + ~ei)

+

J
∑

i=1

J
∑

j=1

δqj ·
gi(qi + 1)

J
∑

m=1
gmqm + gi − gj

· µipijπ(~q + ~ei − ~ej), (2.8)

where δq = 1 if q > 0, and δq = 0 otherwise, and with ~ei the i-th unit vector. It will
be notationally convenient to use the following transformation:

R(~0) = 0 and R(~q) =
π(~q)

J
∑

j=1

gjqj

, for ~q 6= ~0.

Also, let p(~z) and r(~z) denote the generating functions of π(~q) and R(~q), respec-
tively, where ~z = (z1, . . . , zJ) and |zi| < 1 for i = 1, . . . , J :

p(~z) = E(zQ1

1 · . . . · zQJ

J ) =

∞
∑

q1=0

· · ·
∞
∑

qJ=0

zq1

1 · . . . · zqJ

J π(~q),

r(~z) = E

(

zQ1

1 · . . . · zQJ

J
∑J

j=1 Qjgj

)

=

∞
∑

q1=0

· · ·
∞
∑

qJ=0

zq1

1 · . . . · zqJ

J R(~q),
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Figure 2.2: Joint queue length probabilities for load ρ = 0.99.

where we use the convention that 1/
∑J

j=1 Qjgj = 0 when ~Q = ~0. Note that

gizi
∂r(~z)

∂zi
=

∑

q1,...,qJ :
∑J

j=1 qj>0

giqi
∑J

j=1 gjqj

zq1

1 · . . . · zqJ

J π(~q). (2.9)

Multiplying (2.8) by zq1

1 . . . zqJ

J , summing both sides over q1, q2, . . . , qJ , and adding
equation (2.7), we obtain from (2.9) that

λp(~z)+
J
∑

i=1

µigizi
∂r(~z)

∂zi
=

J
∑

i=1

λp0izip(~z)+
J
∑

i=1

µigipi0
∂r(~z)

∂zi
+

J
∑

i=1

J
∑

j=1

µigipijzj
∂r(~z)

∂zi
.

(2.10)
Since π(~0) = 1 − ρ, it follows from (2.9) that

J
∑

i=1

gizi
∂r(~z)

∂zi
+ 1 − ρ = p(~z). (2.11)

Together with (2.10) this gives the following partial differential equation for r(~z):

λ(1 − ρ)(1 −
J
∑

i=1

p0izi)

=

J
∑

i=1



µigi(pi0 +

J
∑

j=1

pijzj − zi)− λgizi(1 −
J
∑

j=1

p0jzj)





∂r

∂zi
. (2.12)

This equation turns out to be very useful to analyze the joint queue length distribu-
tion in heavy traffic, as it allows for an explicit solution in that asymptotic regime.
That is the topic of the next two sections. Note that equation (2.12) was derived
in [113] for the case of exponentially distributed service requirements.
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2.3 Heavy-traffic scaling

It will be convenient to use the change of variables zi = e−si with si > 0, i = 1, . . . , J .
Denote ~s = (s1, . . . , sJ) and e−(1−ρ)~s = (e−(1−ρ)s1 , . . . , e−(1−ρ)sJ ). If

lim
ρ↑1

p(e−(1−ρ)~s) = lim
ρ↑1

E(e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJ QJ ) (2.13)

exists, then there is a (possibly defective) random vector (Q̂1, Q̂2, . . . , Q̂J) such
that (1− ρ)(Q1, Q2, . . . , QJ) converges in distribution to (Q̂1, Q̂2, . . . , Q̂J), and the
distribution of (Q̂1, Q̂2, . . . , Q̂J) is uniquely determined by the limit in (2.13) (cf. the
Continuity theorem [52]). For now, we assume that the limit exists; we come back
to this assumption in Section 2.4. In this section we give two lemmas that describe
properties of limρ↑1 p(e−(1−ρ)~s). In particular, in Lemma 2.3.2 we obtain a partial
differential equation, which will be the key element in the proof of the main result
stated in Proposition 2.1.1.

In order to describe the behavior of the generating function, we define

r̂(~s) := E

(

1 − e−s1Q̂1 · . . . · e−sJ Q̂J

∑J
j=1 Q̂jgj

)

,

where we use the convention that 1/
∑J

j=1 Q̂jgj = 0 when
∑J

j=1 Q̂j = 0. The “1” in
the numerator is to ensure that the expression between brackets remains bounded
when the Q̂j ’s are all near zero. We can now state the following lemma.

Lemma 2.3.1. If limρ↑1 p(e−(1−ρ)~s) exists, then it satisfies:

lim
ρ↑1

p(e−(1−ρ)~s) =
J
∑

i=1

gi
∂r̂(~s)

∂si
. (2.14)

Proof: From (2.11) we have

lim
ρ↑1

p(e−(1−ρ)~s) = lim
ρ↑1

J
∑

i=1

gi
∂r(~z)

∂zi

∣

∣

∣

~z=e−(1−ρ)~s
. (2.15)

By definition of r(~z) we can write

lim
ρ↑1

∂r(~z)

∂zi

∣

∣

∣

~z=e−(1−ρ)~s
= lim

ρ↑1

∂E

(

z
Q1
1 ·...·zQJ

J
∑

J
j=1 Qjgj

)

∂zi

∣

∣

∣

~z=e−(1−ρ)~s

= lim
ρ↑1

E

(

Qi
∑J

j=1 Qjgj

· e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJ QJ

e−(1−ρ)si

)

= E

(

Q̂i
∑J

j=1 Q̂jgj

· e−s1Q̂1 · . . . · e−sJ Q̂J

)

=
∂r̂(~s)

∂si
. (2.16)
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In the third step we used that Qi
∑J

j=1 Qjgj
· e−(1−ρ)s1Q1 · . . . · e−(1−ρ)sJ QJ is upper

bounded by 1
minj(gj) , and, cf. the continuous mapping theorem [27], converges in

distribution to Q̂i
∑J

j=1 Q̂jgj
· e−s1Q̂1 · . . . · e−sJ Q̂J . From (2.15) and (2.16) we ob-

tain (2.14). �

In the following lemma we show that the partial differential equation as given
in (2.12) simplifies considerably in the heavy-traffic regime.

Lemma 2.3.2. If limρ↑1 p(e−(1−ρ)~s) exists, then the function r̂(~s) satisfies the fol-
lowing partial differential equation:

0 =

J
∑

i=1

Fi(~s)
∂r̂(~s)

∂si
= ~F (~s) · ▽r̂(~s), ∀ ~s ≥ ~0,

where ~F (~s) = (F1(~s), . . . , FJ (~s)), and

Fi(~s) = gi

(

µi(−si +

J
∑

j=1

pijsj) + λ̂

J
∑

j=1

p0jsj

)

, (2.17)

with λ̂ as defined in (2.3).

Proof: Taking ~z equal to e−(1−ρ)~s in (2.12), dividing both sides by 1−ρ and taking
the limit of ρ ↑ 1, this gives

0 = lim
ρ↑1

J
∑

i=1

(

µigi

1 − e−(1−ρ)si +
J
∑

j=1

pij(e
−(1−ρ)sj − 1)

1 − ρ

− λgie
−(1−ρ)si

J
∑

j=1

p0j
1 − e−(1−ρ)sj

1 − ρ

)

· ∂r(~z)

∂zi
|~z=e−(1−ρ)~s

=

J
∑

i=1

gi ·
(

µi(si −
J
∑

j=1

pijsj) − λ̂

J
∑

j=1

p0jsj

)

· ∂r̂(~s)

∂si
. (2.18)

In the second step we used (2.16) and the fact that limρ↑1
x1−ρ−1

1−ρ = ln(x). �

2.4 Proof of the main result

This section contains the proof of the main result stated in Proposition 2.1.1. It
consists of two steps. First we show in Section 2.4.1 that

(Q̂1, Q̂2, . . . , Q̂J)
d
= (

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ
) · X, (2.19)
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for some random variable X . Second, we demonstrate in Section 2.4.2 that X
is exponentially distributed with mean as given in (2.5). With these two partial
results, the proof can be completed as follows: In Section 2.3 we assumed that
limρ↑1 p(e−(1−ρ)~s) exists, thereby showing in Sections 2.4.1 and 2.4.2 that there is
a unique limit. For any converging subsequence this analysis can be performed, in
particular for the lim sup and lim inf, which implies that the limit itself exists. This

establishes the state-space collapse (1−ρ)(Q1, Q2, . . . , QJ)
d→ (Q̂1, Q̂2, . . . , Q̂J) with

(Q̂1, Q̂2, . . . , Q̂J) taking only values on the line described in (2.19).

2.4.1 State-space collapse

In this section we give the proof of (2.19). The proof is based on the fact that the
probability generating function satisfies the partial differential equation as described
in Lemma 2.3.2. From this partial differential equation it can be derived that the
function r̂(~s) is constant on the (J − 1)-dimensional hyperplane

Hc := {~s ≥ ~0 :

J
∑

j=1

ρ̂j

gj
sj = c}, c > 0,

as will be shown in Lemma 2.4.2. From this it follows that the function r̂(~s) de-

pends on ~s only through
∑J

j=1
ρ̂j

gj
sj , so there is a function r̂∗ : R → R such that

r̂(~s) = r̂∗(
∑J

j=1
ρ̂j

gj
sj). From Lemma 2.3.1 and ∂r̂(~s)

∂si
= ρ̂i

gi

dr̂∗(v)
dv

∣

∣

∣

v=
∑

J
j=1

ρ̂j
gj

sj

, we

then obtain

E(e−
∑J

i=1 siQ̂i) = lim
ρ↑1

p(e−(1−ρ)~s) =

J
∑

i=1

gi
∂r̂(~s)

∂si
=

J
∑

i=1

ρ̂i
dr̂∗(v)

dv

∣

∣

∣

∣

v=
∑J

j=1

ρ̂j
gj

sj

=
dr̂∗(v)

dv

∣

∣

∣

∣

v=
∑J

j=1

ρ̂j
gj

sj

,

which again depends on ~s only through
∑J

j=1
ρ̂j

gj
sj . Equivalently, we can write

E(e−
∑J

i=1 siQ̂i) = E(e
− g1

ρ̂1
Q̂1

∑J
i=1

ρ̂i
gi

si · e−s2
ρ̂2
g2

(
g2
ρ̂2

Q̂2− g1
ρ̂1

Q̂1) · . . . · e−sJ
ρ̂J
gJ

(
gJ
ρ̂J

Q̂J− g1
ρ̂1

Q̂1)
).

Since this only depends on
∑J

j=1
ρ̂j

gj
sj , it implies that gi

ρ̂i
Q̂i =

gj

ρ̂j
Q̂j almost surely

for all i, j, and we obtain:

(Q̂1, Q̂2, . . . , Q̂J) =

(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)

· g1

ρ̂1
Q̂1, almost surely,

or equivalently

(Q̂1, Q̂2, . . . , Q̂J)
d
=

(

ρ̂1

g1
,
ρ̂2

g2
, . . . ,

ρ̂J

gJ

)

· X,

with X distributed as g1

ρ̂1
Q̂1.
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s1

s2

s3

~F (~s0)

▽r̂(~s0)

~F (~f(u1))

▽r̂(~f(u2))

▽r̂(~f(u1))

~F (~f(u2))

~f(0) = ~s0

Flow ~f(u)

Plane Hc
Plane Hc

s1

s2

s3

▽r̂(c · ~s∗)

c · ~s∗

▽r̂(~s0)

Figure 2.3: Geometrical interpretation of the proof of Lemma 2.4.2 when J = 3.

Before we proceed to prove that the generating function r̂(~s) is constant on the
hyperplane Hc we first give a geometric interpretation for this fact in the particular
case of J = 3. In Figure 2.3 (left) we depict the hyperplane Hc for J = 3. For a

given ~s0 ∈ Hc, we draw a flow curve ~f(u), u ≥ 0, defined such that the tangent

at every point is precisely ~f ′(u) := ~F (~f(u)) and ~f(0) = ~s0 ∈ Hc. We will see in

the proof of Lemma 2.4.2 that the vector ~F (~s) is parallel to the hyperplane Hc,

for all ~s ∈ Hc, thus the flow ~f(u) stays in the hyperplane Hc for all u ≥ 0. By

Lemma 2.3.2, the vector ~F (~s) and the gradient ▽r̂(~s) are perpendicular, for all ~s,

so ~f ′(u) = ~F (~f(u)) ⊥ ▽r̂(~f(u)). Thus the function r̂ has the same value in every

point on a given flow ~f(u). In Figure 2.3 (right) we draw several flows in the
hyperplane Hc. In the proof of Lemma 2.4.2 we will see that all flows starting in
the hyperplane Hc converge to one common point c · ~s∗. Since the function r̂(·) is
continuous and constant on each flow trajectory, it follows that r̂(~s) is constant on
the whole hyperplane Hc, or equivalently, ▽r̂(~s) ⊥ Hc.

The following technical lemma is used in the proof of Lemma 2.4.2.

Lemma 2.4.1. Consider the matrix A defined as














g1

(

−µ1 + µ1p11 + λ̂p01

)

g1

(

µ1p12 + λ̂p02

)

. . . g1

(

µ1p1J + λ̂p0J

)

g2

(

µ2p21 + λ̂p01

)

g2

(

−µ2 + µ2p22 + λ̂p02

)

. . . g2

(

µ2p2J + λ̂p0J

)

.

.

.

.

.

.
. .

.
.
.
.

gJ

(

µJpJ1 + λ̂p01

)

gJ

(

µJpJ2 + λ̂p02

)

. . . gJ

(

−µJ + µJpJJ + λ̂p0J

)















,

where λ̂ is as defined in (2.3). One eigenvalue of A is 0 (with multiplicity 1), and
all the other eigenvalues have a strictly negative real part. In addition, there exists
a vector ~η ≥ ~0 with

∑J
j=1 ηj = 1 such that ~s∗ with s∗j :=

gj

ρ̂j
ηj is an eigenvector of A

corresponding to the eigenvalue 0, and ~s∗ ∈ H1.
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Proof: Define D as the diagonal matrix diag[d1, d2, . . . , dJ ] with di := ρ̂i

gi
, and

define S := DAD−1, i.e., S equals














g1

(

−µ1 + µ1p11 + λ̂p01

)

ρ̂1
g2
ρ̂2

(

µ1p12 + λ̂p02

)

. . . ρ̂1

gJ
ρ̂J

(

µ1p1J + λ̂p0J

)

ρ̂2
g1
ρ̂1

(

µ2p21 + λ̂p01

)

g2

(

−µ2 + µ2p22 + λ̂p02

)

. . . ρ̂2
gJ
ρ̂J

(

µ2p2J + λ̂p0J

)

...
...

. . .
...

ρ̂J
g1
ρ̂1

(

µJpJ1 + λ̂p01

)

ρ̂J
g2
ρ̂2

(

µJpJ2 + λ̂p02

)

. . . gJ

(

−µJ + µJpJJ + λ̂p0J

)















.

Hence, the matrix S is similar to A and therefore A, S and ST have the same
eigenvalues. Using (2.1), it follows that

−µiρ̂i +

J
∑

j=1

ρ̂j(µjpji + λ̂p0i) = λ̂(−γi + p0i +

J
∑

j=1

γjpji) = 0, i = 1, . . . , J. (2.20)

Hence, the sum of each row in ST (sum of each column in S) is equal to 0, and the
off-diagonal elements in ST are all positive. This implies that the matrix ST is a gen-
erator corresponding to a finite-state continuous-time Markov chain. This Markov
chain is irreducible, as will be shown at the end of the proof, and hence it has a unique
equilibrium distribution ~η, i.e., ~ηST = ~0 and

∑J
j=1 ηj = 1. This implies that 0 is an

eigenvalue with multiplicity 1 of the matrix ST , and, cf. [9, Proposition 6.2], the real
parts of all other eigenvalues are strictly negative. Since the eigenvalues of A and
ST coincide, the same holds for the matrix A. The eigenvector of A corresponding
to the eigenvalue 0 is given by ~s∗ = D−1~η, since A~s∗ = D−1DAD−1~η = D−1S~η = ~0.

It remains to be shown that the Markov chain corresponding to the generator ST

is irreducible. Note that, since γi > 0, also ρ̂i > 0 for all i = 1, . . . , J . Let

J0 := {j = 1, . . . , J : p0j > 0},

denote the non-empty set of types that receive external arrivals. Let

Jn := {j = 1, . . . , J : there exist j0, . . . , jn−1 with p0j0 · pj0j1 · . . . · pjn−1j > 0},

n = 1, . . . , J − 1, denote the set of types such that there is a strictly positive
probability that a customer becomes of this type after n steps. Since J < ∞ and
eventually all types are observed, we have that ∪J−1

n=0Jn = {1, . . . , J}.
Now consider the J × J matrix ST . If j ∈ J0, then the (j, i)-th element of ST ,

ρ̂i
gj

ρ̂j
(µipij + λ̂p0j), is strictly positive for all i 6= j. Thus, in the Markov chain

corresponding to the generator ST , from any state in J0 one can reach all other
states. In order to prove irreducibility it is now sufficient to show that from any
state in {1, . . . , J}\J0, some state in J0 can be reached.

Assume j ∈ J1. By definition, there exists an i ∈ J0 such that pij > 0. Hence,

the (j, i)-th element of the matrix ST , ρ̂i
gj

ρ̂j
(µipij + λ̂p0j), is strictly positive. This

implies that from every state in J1, a state in J0 can be reached. Now consider a
state j ∈ J2. By definition, there exists a state i ∈ J1 such that pij > 0. Similarly
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to the previous case, this implies that the (j, i)-th element of ST is strictly positive,
and we can conclude that from every state in J2, a state in J1 can be reached.
Proceeding along these lines, it can be shown that from every state in Jn, a state
in Jn−1 can be reached, n = 1, . . . , J − 1. Since ∪J−1

n=0Jn = {1, . . . , J}, we obtain
that every state outside J0 can reach a state in the set J0, which concludes the
proof. �

The following lemma shows that the generating function r̂(~s) is constant on Hc.

Lemma 2.4.2. For any c > 0, the function r̂(~s) is constant on Hc.

Proof: From (2.20) it follows that

J
∑

i=1

ρ̂i

gi
· Fi(~s) =

J
∑

i=1

ρ̂i ·



µi(−si +

J
∑

j=1

pijsj) + λ̂

J
∑

j=1

p0jsj





=

J
∑

i=1

(−µiρ̂i +

J
∑

j=1

ρ̂j(µjpji + λ̂p0i))si = 0.

This implies that for all ~s ∈ Hc, the vector ~F (~s) is parallel to the hyperplane

Hc. Since ~F is C1, for each state ~s ≥ ~0 there exists a unique flow ~f(u) =
(f1(u), . . . , fJ(u)), parametrized by u ≥ 0, such that

~f(0) = ~s and
dfi(u)

du
= Fi(~f(u)), for all i and u ≥ 0. (2.21)

Since ~F (~s) is parallel to Hc for all ~s ∈ Hc, when started in Hc, the flow ~f(u) will

stay in Hc. Another important property of this flow ~f(u) is that

dr̂(~f(u))

du
=

J
∑

i=1

dfi(u)

du
· ∂r̂(~s)

∂si

∣

∣

∣

∣

~s=~f(u)

= 0,

which follows from the chain rule, Lemma 2.3.2, and equation (2.21). Hence, along

each flow ~f(u), which lies in Hc, the function r̂(~f(u)) is constant. We will now show
that each flow in Hc converges to a certain point c · ~s∗ ≥ ~0 as u → ∞.

Relation (2.21) can be written as ~f(0) = ~s and ~f ′(u) = A~f(u), with A as defined
in Lemma 2.4.1, see (2.17). In Lemma 2.4.1 it is proved that one eigenvalue of A
is 0 with eigenvector ~s∗ ≥ ~0, ~s∗ ∈ H1, and all the other eigenvalues have a strictly
negative real part. Hence, the solution of ~f ′(u) = A~f(u) with ~f(0) ∈ Hc can be

written as ~f(u) = c · ~s∗ + ~g(u), where limu→∞ ~g(u) = ~0 and ~s∗ ≥ ~0. This implies
that all the flows in the hyperplane Hc converge to one common point c · ~s∗ ≥ ~0.

Since the continuous function r̂(~s) is constant along one flow, and all flows in the
hyperplane Hc converge to c · ~s∗ ∈ Hc, we obtain that the function r̂(~s) is constant
on Hc. �
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2.4.2 Determining the common factor

In the previous section we showed that (Q̂1, Q̂2, . . . , Q̂J)
d
= ( ρ̂1

g1
, ρ̂2

g2
, . . . , ρ̂J

gJ
) · X,

with X some random variable. In this section we determine the distribution of X .
In order to do so, we consider the total workload in the network, denoted by W .
When scaled with (1 − ρ) the total workload has a proper distribution as ρ ↑ 1,
see [76]:

(1 − ρ)W
d→ Ŵ ,

where Ŵ is exponentially distributed with mean

E(Ŵ ) =

J
∑

j=1

ρ̂jE(Rj). (2.22)

The total workload can be represented as

W =

J
∑

j=1

Qj
∑

h=1

Rj,h,

with Rj,h the residual service requirement of the h-th type-j customer. Note that
the remaining service requirements of all customers in phase j are i.i.d. and have

the same phase-type distribution independent of ~Q, more precisely, Rj,h
d
= Rj for

all h. Hence,

E(e−sW ) = E(e−s
∑J

j=1

∑Qj
h=1 Rj,h) = E(

J
∏

j=1

E(e−s
∑Qj

h=1 Rj,h | ~Q))

= E(

J
∏

j=1

(E(e−sRj ))Qj ) = E(e
∑J

j=1 Qj ln(E(e−sRj ))),

for s > 0. For the scaled workload we can therefore write

E(e−sŴ ) = lim
ρ↑1

E(e−(1−ρ)sW ) = lim
ρ↑1

E(e
∑ J

j=1
ln(E(e

−(1−ρ)sRj ))
(1−ρ)s

(1−ρ)sQj )

= E(e−s
∑J

j=1 E(Rj)Q̂j ), (2.23)

where in the last step we used that e
∑J

j=1
ln(E(e

−(1−ρ)sRj ))
(1−ρ)s

(1−ρ)sQj is bounded by 1 and

converges in distribution to e−s
∑J

j=1 E(Rj)Q̂j . The latter follows from ln(E(e−(1−ρ)sRj ))
(1−ρ)s

→ −E(Rj), as ρ ↑ 1. From (2.23) we obtain that

Ŵ
d
=

J
∑

j=1

E(Rj)Q̂j ,
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and together with (2.19) this gives

Ŵ
d
= X ·

J
∑

j=1

ρ̂j

gj
E(Rj). (2.24)

Since Ŵ is exponentially distributed, the same is true for X . Taking expectations
in (2.24), from (2.22) we obtain

E(X) =

∑J
j=1 ρ̂jE(Rj)

∑J
j=1

ρ̂j

gj
E(Rj)

,

which concludes the proof of Proposition 2.1.1.

2.5 Size-based scheduling

Allowing the relative service weights of customers to change over time as they acquire
service, opens up a way to implement size-based scheduling by assigning relatively
high weights in service phases that are more likely to lead to a quick service com-
pletion. In this section we investigate how the choice of the weights influences the
performance of the system. With each type of customers we associate a cost cj ≥ 0,

j = 1, . . . , J . As performance measure we take the holding cost
∑J

j=1 cjQj.
Recall that we consider the general Markovian framework where type-j customers

have weight gj. In this section we will write Q
(g)
j (Q̂

(g)
j ) instead of Qj (Q̂j) to

emphasize the dependence on the weights g1, . . . , gJ . From Proposition 2.1.1 we

obtain that the scaled holding cost, (1 − ρ)
∑J

j=1 cjQ
(g)
j , converges in distribution

to an exponentially distributed random variable with mean

J
∑

j=1

cjE(Q̂
(g)
j ) =

∑J
j=1

ρ̂j

gj
· cj

∑J
j=1

ρ̂j

gj
· E(Rj)

·
J
∑

j=1

ρ̂jE(Rj), (2.25)

as ρ ↑ 1. Using this expression, we obtain the following monotonicity result in the
heavy-traffic regime: The holding cost decreases “stochastically” as more preference
is given to customers of types with a large value of ci

E(Ri)
.

Proposition 2.5.1. Consider the general Markovian framework and consider two
policies with weights (g1, . . . , gJ) and (g̃1, . . . , g̃J), respectively. Let cj ≥ 0, j =
1, . . . , J . Without loss of generality we assume that the types are ordered such that

c1

E(R1)
≥ c2

E(R2)
≥ . . . ≥ cJ

E(RJ ) .

If
gj

gj+1
≤ g̃j

g̃j+1
, for all j = 1, . . . , J − 1, then

lim
ρ↑1

(1 − ρ)
J
∑

j=1

cjQ
(g)
j ≥st lim

ρ↑1
(1 − ρ)

J
∑

j=1

cjQ
(g̃)
j .
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Proof: We have that (1 − ρ)
∑J

j=1 cjQ
(g)
j converges in distribution to an exponen-

tially distributed random variable with mean as stated in (2.25). Hence, it only
remains to check that

∑J
j=1

cj ρ̂j

gj

∑J
j=1

ρ̂j

gj
E(Rj)

≥
∑J

j=1
cj ρ̂j

g̃j

∑J
j=1

ρ̂j

g̃j
E(Rj)

.

This holds since





J
∑

j=1

cj ρ̂j

gj



 ·





J
∑

j=1

ρ̂j

g̃j
E(Rj)





=
∑

j,i:j 6=i

ρ̂j ρ̂i

( 1

gj g̃i
cjE(Ri) +

1

gig̃j
ciE(Rj)

)

+

J
∑

j=1

ρ̂2
j

1

gj g̃j
cjE(Rj)

≥
∑

j,i:j 6=i

ρ̂j ρ̂i

( 1

gig̃j
cjE(Ri) +

1

gj g̃i
ciE(Rj)

)

+
J
∑

j=1

ρ̂2
j

1

gj g̃j
cjE(Rj)

=





J
∑

j=1

cj ρ̂j

g̃j



 ·





J
∑

j=1

ρ̂j

gj
E(Rj)



 .

Here we used that ciE(Rj)(
1

gig̃j
− 1

gj g̃i
) ≥ cjE(Ri)(

1
gig̃j

− 1
gj g̃i

), which follows from

the fact that gi

gj
≤ g̃i

g̃j
and ci

E(Ri)
≥ cj

E(Rj)
, for i ≤ j. �

As described in Section 1.3.3, the cµ-rule minimizes the mean holding cost in an
(i) M/G/1-queue among all non-preemptive policies as well as in an (ii) G/M/1-
queue among all preemptive non-anticipating policies. In both systems the expected
remaining service requirement of a class-k customer at a scheduling decision epoch
is 1/µk. Hence, the cµ-rule gives priority according to the cost ck divided by the
expected remaining service requirement of a class-k customer. Proposition 2.5.1 can
be seen as an extension of the cµ-rule for DPS-based policies in the heavy-traffic
regime: the performance improves as larger weights are assigned according to the
values of

cj

E(Rj)
, j = 1, . . . , J . In particular, we obtain that a policy that gives

preemptive priority to type i = arg maxj=1,...,J
cj

E(Rj)
minimizes the scaled holding

cost in heavy traffic among all DPS-based policies.

2.6 The standard DPS queue in heavy traffic

In this section we specialize the results obtained so far to the standard DPS queue
with phase-type distributed service requirements. In order to show how this queue
fits into the Markovian framework of Section 2.1, let us give a brief description of
the standard DPS queue.
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We consider a single-server system with capacity one and Poisson arrivals with
rate λ. With probability pk an arrival is a class-k customer. Class-k customers have
phase-type distributed service requirements, Bk, with a finite number of phases. In
particular, this implies that the second moment of Bk is finite. Let

̺k := λpkE(Bk)

be the load associated with class-k customers. The capacity is shared among the
customers of the various classes in accordance with the DPS policy. When there are
nk class-k customers present in the system, k = 1, . . . , K, each class-k customer is
served at rate

wk
∑K

l=1 wlnl

,

where wk is the weight associated with class k. It is important to note that the
weight for a class-k customer is independent of the current phase of its service
requirement. Denote by Nk the number of class-k customers in the DPS queue in
steady-state.

The DPS queue with phase-type distributed service requirements fits as follows
into the Markovian framework as described in Section 2.1. Within each customer
class of the DPS queue, we distinguish between customers residing in different ser-
vice phases, and represent them in the general framework as different customer types.
Denoting the number of phases of the class-k phase-type distribution with Jk, the

total number of types is J :=
K
∑

k=1

Jk. With slight abuse of terminology, we also refer

to a class-k customer in the jth service phase as being of type
∑k−1

l=1 Jl + j. We use
k(j) to denote the customer class to which type-j customers belong. If types i and
j belong to the same customer class, then they are associated the same weight, i.e.,
gi = gj = wk(j) when k(i) = k(j). The p0j in the general framework is taken such
that for l = k(j), p0j/pl is the probability that a class-l customer starts with service
phase j. In the DPS queue, no transitions are possible between types belonging to
different customer classes, hence for the general framework this implies that pij = 0
if k(i) 6= k(j). If a class-k(i) customer finishes phase i, then pij is the probability
that it continues in phase j (with k(i) = k(j)). The number of class-l customers in
the DPS model can be written as Nl =

∑

j:k(j)=l Qj.

The mean service requirement of a class-l customer may be written as E(Bl) =
∑

j:k(j)=l
p0j

pl
E(Rj). Hence, the load in class l can be expressed by

̺l = λplE(Bl) = λ
∑

j:k(j)=l

p0jE(Rj). (2.26)

For the DPS queue, the set of equations as given in (2.1) simplifies: per class there
is a set of equations that can be solved independently. For class l, the correspond-
ing γi’s can be found from the following set of equations:

γi = p0i +
∑

j:k(j)=l

γjpji, for all i s.t. k(i) = l.
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Applying the same reasoning as we followed to obtain equation (2.2), it follows that
an equivalent representation of ̺l is

̺l = λ
∑

j:k(j)=l

γj

µj
=

∑

j:k(j)=l

ρj . (2.27)

Note that the total load in the DPS queue equals
∑K

l=1 ̺l =
∑K

l=1

∑

j:k(j)=l ρj =: ρ,
i.e., it coincides indeed with the total load in the general framework.

Before proceeding with the main result of this section, we first give expressions
for the forward recurrence time of the service requirements. For class l, we denote
this random variable by Bfwd

l . From renewal theory we know that the associated
distribution is

P(Bfwd
l ≤ x) :=

1

EBl

∫ x

0

P(Bl > y)dy, (2.28)

and hence E(Bfwd
l ) =

E(B2
l )

2E(Bl)
. Alternatively we can write

P(Bfwd
l ≤ x) =

∑

j:k(j)=l

ρj

̺l
· P(Rj ≤ x), (2.29)

see [9, Chapter III, Corollary 5.3]. Intuitively relation (2.29) can be explained as
follows: Note that

γj

pl
represents the expected number of visits to phase j during

the lifetime of the random variable Bl, with k(j) = l. As a consequence, γj/(plµj)
is the expected time spent in phase j. Thus, with probability

γj

plµj
∑

i:k(i)=l
γi

plµi

=
ρj

∑

i:k(i)=l ρi
=

ρj

̺l
,

the residual life time equals the residual service requirement starting in phase j, and
this gives relation (2.29). Combining (2.28) and (2.29), we obtain that the mean
forward recurrence time of Bl satisfies

E(B2
l )

2E(Bl)
= E(Bfwd

l ) =
∑

j:k(j)=l

ρj

̺l
· E(Rj). (2.30)

We now show the state-space collapse for the standard DPS queue with phase-
type distributed service requirements. When passing ρ → 1 as described in Sec-
tion 2.1, we actually fix the service requirement distributions and the class prob-
abilities pk, while increasing the arrival rate. In particular, the heavy-traffic scal-

ing as considered in Section 2.1, λ ↑ λ̂ =
(

~pT
0 (I − P )−1 ~m

)−1

, is equivalent with

λ ↑ (
∑

l plE(Bl))
−1, since

∑K
l=1 plE(Bl) =

∑J
j=1 p0jE(Rj) = ~pT

0 (I − P )−1 ~m. We

denote the limiting loads of all classes by ˆ̺l = λ̂plE(Bl), l = 1, . . . , K (or equiva-
lently, ˆ̺l =

∑

j:k(j)=l ρ̂j).
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Proposition 2.6.1. Assume phase-type distributed service requirements, and con-
sider a standard DPS queue with weights w1, . . . , wK . When scaled with 1 − ρ, the
queue length vector has a proper distribution as ρ → 1,

(1 − ρ)(N1, N2, . . . , NK)
d→ (N̂1, N̂2, . . . , N̂K)

d
= X · ( ˆ̺1

w1
,

ˆ̺2

w2
, . . . ,

ˆ̺K

wK
), (2.31)

where
d→ denotes convergence in distribution and X is an exponentially distributed

random variable with mean

E(X) =

∑

k pkE(B2
k)

∑

k pkE(B2
k)/wk

, (2.32)

which is equal to 1 when wk = 1 for all k, i.e., in the case of a standard PS queue.

Remark 2.6.2. In the case of exponentially distributed service requirements, in [68]
a related result is proved. The authors consider a sequence of systems indexed by r
such that ̺r

k → ˆ̺k, ρr =
∑K

k=1 ̺r
k ↑ 1, and

√
r(1 − ρr) → 1, as r → ∞, and obtain

that (1 − ρr)N r(rt) converges in distribution to

Ŵ (t)
∑K

k=1
ˆ̺k

wkµk

· ( ˆ̺1

w1
, . . . ,

ˆ̺K

wK
), (2.33)

with Ŵ (t) the diffusion-scaled workload process, being equal to a reflected Brow-
nian motion with negative drift. The stationary distribution of the latter process
is exponential with mean

∑K
k=1

ˆ̺k

µk
, see also Section 1.6.4. Hence, for exponentially

distributed service requirements, the stationary limit of (2.33) coincides with the
heavy-traffic limit of the steady-state queue lengths (2.31) as derived in Proposi-
tion 2.6.1. Interestingly, this shows that the heavy-traffic limit and the steady-state
limit commute in the case of exponentially distributed service requirements.

Proof of Proposition 2.6.1: Recall that the DPS queue with phase-type dis-
tributed service requirements is a special case of the general framework of Section 2.1
when the parameters are chosen as described in the beginning of this section. In
particular, recall that gi = gj = wl when k(i) = k(j) = l. Since Nl =

∑

j:k(j)=l Qj ,

ˆ̺l =
∑

j:k(j)=l ρ̂j (see (2.27)), and since for the general framework relation (2.4)

holds, relation (2.31) follows directly where X is an exponentially distributed ran-
dom variable with mean as given in (2.5). We are left with showing that (2.5)
reduces to (2.32).

From (2.26) and (2.30), and since type-j customers belong to class k(j) and have
weight gj = wk(j), we obtain that

J
∑

j=1

ρj

gj
E(Rj) =

K
∑

l=1

̺l

wl

∑

j:k(j)=l

ρj

̺l
E(Rj) =

K
∑

l=1

̺l

wl

E(B2
l )

2E(Bl)
=

K
∑

l=1

λpl

wl

E(B2
l )

2
. (2.34)



46 Chapter 2 Heavy-traffic analysis of DPS

Similarly, we have that

J
∑

j=1

ρjE(Rj) =

K
∑

l=1

̺l

∑

j:k(j)=l

ρj

̺l
E(Rj) =

K
∑

l=1

̺l
E(B2

l )

2E(Bl)
=

K
∑

l=1

λpl
E(B2

l )

2
. (2.35)

Obviously, equations (2.34) and (2.35) remain valid in heavy traffic. Equation (2.32)
follows after substituting (2.34) and (2.35) into (2.5). �

Note that, although the limiting distribution depends on the second moments
of the service requirement distributions through E(X), the impact of the second
moment on E(X) is uniformly bounded, and in particular

min
k

wk ≤ E(X) ≤ max
k

wk,

cf. [2]. Similar partial insensitivity results have also been proved for the mean
sojourn time conditioned on the service requirement, [12], and the tail index of the
sojourn time distribution, [36].

The state-space collapse as demonstrated above, allows us to show further inter-
esting properties for the DPS queue. In Section 2.6.1 we obtain heavy-traffic results
for the residual service requirements of the customers in the various classes. In Sec-
tion 2.6.2, monotonicity in the weights of the standard DPS queue is investigated.

2.6.1 Residual service requirements

The distribution of the residual service requirement of a customer, without having
knowledge on the current phase of its service requirement, depends on the used
scheduling policy. For example, in a FCFS queue the residual service requirement
for customers waiting to be served is given by their original service requirement.
In case of a standard PS queue, the residual service requirements are independent
random variables distributed according to the forward recurrence times of the service
requirements. Given that there are nk class-k customers in the system, let Br

k,h

denote the remaining service requirement of the h-th class-k customer, k = 1, . . . , K,
h = 1, . . . , nk. The following result is known for PS:

P(Br
k,h ≤ xk,h, Nk = nk, k = 1, . . . , K, h = 1, . . . , nk)

= P(Nk = nk, k = 1, . . . , K)

K
∏

k=1

nk
∏

h=1

P(Bfwd
k ≤ xk,h),

with xk,h ≥ 0, and P(Nk = nk, k = 1, . . . , K) as given in (1.3). In this section we
show that in a heavy-traffic setting a similar result holds for the DPS queue.

Obviously, in the heavy-traffic limit, there will be an infinite number of customers
present in the system. Therefore, we concentrate on the first yk < ∞ class-k cus-
tomers, k = 1, . . . , K. In the following proposition we show that the scaled number
of customers in the various classes and the remaining service requirements of any
finite subset of customers are independent in a heavy-traffic setting. In particular,
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the remaining service requirement of a class-k customer is distributed according to
the forward recurrence time of its service requirement Bk. It will be convenient to
set Br

k,h = 0 whenever h > Nk, k = 1, . . . , K.

Proposition 2.6.3. Assume phase-type distributed service requirements, and con-
sider a standard DPS queue with weights w1, . . . , wK . Then,

lim
ρ↑1

E

(

e−
∑K

l=1 sl(1−ρ)Nl−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

)

= E

(

e−
∑K

l=1 slN̂l

)

·
K
∏

l=1

yl
∏

h=1

E

(

e−sl,hBfwd
l

)

,

for yl ∈ {0, 1, . . .} and sl,h, sl > 0, l = 1, . . . , K, h = 1, . . . , yl.

Recall that (N̂1, N̂2, . . . , N̂K)
d
= X ·

(

ˆ̺1
w1

, ˆ̺2
w2

, . . . , ˆ̺K

wK

)

, where X is exponentially

distributed with mean E(X) =
∑K

l=1 plE(B2
l )

∑K
l=1 plE(B2

l )/wl
, cf. Proposition 2.6.1.

Proof of Proposition 2.6.3: It will be convenient to first analyze the conditional

expectation E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~Q
)

. In order to do so, we condition on the

type of the h-th class-l customer, which we denote by Il,h and takes values in
{i : k(i) = l}. For convenience, if h >

∑

j:k(j)=l Qj , then Il,h has no significance.

Let ~I = (I1,1, . . . , I1,y1 , . . . , IK,1, . . . , IK,yK ), which takes values in the set

I := {~i : k(i1,1) = 1, . . . , k(i1,y1) = 1, . . . , k(iK,1) = K, . . . , k(iK,yK ) = K}.

Conditioning on the types of the customers, we can write

E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~Q
)

=
∑

~i∈I

E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~I =~i, ~Q
)

· P(~I =~i| ~Q).

(2.36)

Define the random variable Yl as

Yl := min(yl,
∑

j:k(j)=l

Qj) = min(yl, Nl), l = 1, . . . , K,

and note that P(Yl = yl) = P(
∑

j:k(j)=l Qj > yl) → 1, as ρ ↑ 1, cf. Proposition 2.1.1.
Since yl is a deterministic value, this implies convergence of Yl to yl in probability.
By definition, if the h-th class-l customer is of type il,h, then the corresponding
residual service requirement has the same distribution as Ril,h

, h = 1, . . . , yl. Hence,

E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~I =~i, ~Q
)

=

K
∏

l=1

Yl
∏

h=1

E

(

e−sl,hRil,h

)

,

→
K
∏

l=1

yl
∏

h=1

E

(

e−sl,hRil,h

)

, as ρ ↑ 1, (2.37)
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where the convergence holds in probability (since the conditional expectation on the
left-hand side converges to a deterministic value).

Given the population vector ~Q, the first chosen class-l customer is of type i,
k(i) = l, with probability Qi

∑

j:k(j)=l Qj
. The next chosen class-l customer is of type j,

k(j) = l, with probability
Qj−1(i=j)

∑

j:k(j)=l Qj−1 , etc. So we obtain

P(~I =~i| ~Q)

=
Qi1,1

∑

j:k(j)=1 Qj
·
Qi1,2 − 1(i1,1=i1,2)
∑

j:k(j)=1 Qj − 1
· . . . ·

Qi1,Y1
−∑Y1−1

h=1 1(i1,h=i1,Y1 )
∑

j:k(j)=1 Qj − (Y1 − 1)
· . . . ·

QiK,1
∑

j:k(j)=K Qj
·
QiK,2 − 1(iK,1=iK,2)
∑

j:k(j)=K Qj − 1
· . . . ·

QiK,YK
−
∑YK−1

h=1 1(iK,h=iK,YK
)

∑

j:k(j)=K Qj − (YK − 1)
.

The latter converges in probability to

K
∏

l=1

yl
∏

h=1

ρ̂il,h

ˆ̺l
, as ρ ↑ 1,

where we used that (1 − ρ)(Q1, . . . , QJ)
d→ X · (ρ̂1/g1, . . . , ρ̂J/gJ) (see Proposi-

tion 2.1.1), the fact that Yl converges in probability to yl, the continuous mapping
theorem [27], gil,h

= wk(il,h) = wl, and (2.27). Together with (2.29), (2.36) and
(2.37) we now obtain

E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~Q
)

→
∑

~i∈I

K
∏

l=1

yl
∏

h=1

ρ̂il,h

ˆ̺l
· E
(

e−sl,hRil,h

)

=

K
∏

l=1

yl
∏

h=1

∑

il,h:k(il,h)=l

ρ̂il,h

ˆ̺l
E

(

e−sl,hRil,h

)

=

K
∏

l=1

yl
∏

h=1

E

(

e−sl,hBfwd
l

)

,

in probability as ρ ↑ 1. By the law of total expectation we therefore have

lim
ρ↑1

E

(

e−
∑J

j=1 sj(1−ρ)Qj−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

)

= lim
ρ↑1

E

(

e−
∑J

j=1 sj(1−ρ)Qj E

(

e−
∑K

l=1

∑yl
h=1 sl,hBr

l,h

∣

∣

∣

~Q
))

= E

(

e−
∑J

j=1 sjQ̂j

)

·
K
∏

l=1

yl
∏

h=1

E

(

e−sl,hBfwd
l

)

. (2.38)

The result now follows by setting sj = s̃k(j), j = 1, . . . , J, in equation (2.38) and

noting that
∑

j:k(j)=l Q̂j = N̂l. �

2.6.2 Monotonicity in the weights

In this section, we investigate how the choice of the weights influences the holding
cost for the standard DPS queue. We denote by dk ≥ 0 the cost associated with a
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class-k customer. Note that this is a different setting compared to Section 2.5, where
a cost was assigned per type. As we will see in the proposition below, the scaled
holding cost stochastically decreases when relatively larger weights are assigned to
classes according to the values of dk/E(Bfwd

k ), k = 1, . . . , K. Note that E(Bfwd
k ) =

E(B2
k)

2E(Bk) = 1
2

(

V ar(Bk)
E(Bk) + E(Bk)

)

, hence customers belonging to classes with highly

variable service requirement distributions should be given lower priority. In addition,
from Proposition 2.6.3 it follows that E(Bfwd

k ) = E(Br
k) in heavy traffic. This

shows a connection with the cµ-rule where priority is given according to the cost dk

divided by the expected residual service requirement of a class-k customer, see also
Section 2.5.

Proposition 2.6.4. Assume phase-type distributed service requirements and con-
sider two standard DPS queues with weights (w1, . . . , wK) and (w̃1, . . . , w̃K). Let
dk ≥ 0, k = 1, . . . , K. Without loss of generality we assume that the classes are
ordered such that d1/E(Bfwd

1 ) ≥ . . . ≥ dK/E(Bfwd
K ).

If wk

wk+1
≤ w̃k

w̃k+1
, for all k = 1, . . . , K − 1, then

lim
ρ↑1

(1 − ρ)
K
∑

k=1

dkN
DPS(w)
k ≥st lim

ρ↑1
(1 − ρ)

K
∑

k=1

dkN
DPS(w̃)
k , (2.39)

where N
DPS(w)
k denotes the number of class-k customers in the DPS queue with

weights w1, . . . , wK .

Proof: From Proposition 2.6.1 we obtain that (1 − ρ)
∑K

k=1 dkN
DPS(w)
k converges

in distribution to an exponentially distributed random variable with mean

∑K
k=1

dk ˆ̺k

wk

∑

k pk
E(B2

k)

wk

·
∑

k

pkE(B2
k),

hence we need to check that

∑K
k=1

dk ˆ̺k

wk

∑K
k=1

ˆ̺k

wk

E(B2
k
)

E(Bk)

≥
∑K

k=1
dk ˆ̺k

w̃k

∑K
k=1

ˆ̺k

w̃k

E(B2
k
)

E(Bk)

.

This follows using similar arguments as in the proof of Proposition 2.5.1 and noting

that
E(B2

k)
2E(Bk) = E(Bfwd

k ). �

Note that the cµ-rule can be obtained in the limit from a DPS policy by letting
the ratios wk/wk+1, k = 1, . . . , K−1, all go to ∞. When the service requirements are

exponentially distributed, it holds that dk/E(Bfwd
k ) = dkµk, so that the optimality

of the cµ-rule in heavy traffic is obtained as a special case of Proposition 2.6.4.
In Section 7.5 we will study monotonicity properties similar to (2.39) for the

DPS queue with exponential service requirements outside the heavy-traffic setting.
For general service requirements, however, monotonicity will not necessarily hold in
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Figure 2.4: Total mean number of customers under a DPS policy with weights
w1 = 1 and w2 = r. Class-1 service requirements are hyper-exponentially distributed
and class-2 service requirements are exponentially distributed. The load ρ = ̺1 +̺2

equals 0.6, 0.8, 0.9 and 0.999, respectively.

a moderately-loaded queue. This is further explained in the example below where
the behavior of the DPS queue with hyper-exponential service requirements is nu-
merically investigated for several values of the load.

Numerical illustration of Proposition 2.6.4: We consider a DPS queue with
two classes. Class-1 customers have hyper-exponentially distributed service require-
ments, i.e., with a certain probability p a class-1 customer has an exponentially dis-
tributed service requirement with mean 1/µ11 and with probability 1 − p it has an
exponentially distributed service requirement with mean 1/µ12. Class-2 customers
have exponentially distributed service requirements with mean 1/µ2. Furthermore,
we assume the load is equally distributed between classes 1 and 2, i.e., ̺1 = ̺2.
We will be interested in the total number of customers in the system, hence we set
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d1 = d2 = 1. Note that

E(Bfwd
1 ) =

p/µ2
11 + (1 − p)/µ2

12

p/µ11 + (1 − p)/µ12
and E(Bfwd

2 ) = 1/µ2.

Without loss of generality we set w1 = 1 and w2 = r, with r > 0. Proposi-
tion 2.6.4 states that in a heavily-loaded system the steady-state total number
of customers is stochastically increasing in r when E(Bfwd

1 ) < E(Bfwd
2 ), is con-

stant in r when E(Bfwd
1 ) = E(Bfwd

2 ), and is stochastically decreasing in r when

E(Bfwd
1 ) > E(Bfwd

2 ). Note that when r = 1, the policy reduces to standard PS,
and in that case the total mean number of customers is given by ρ

1−ρ .
In Figure 2.4 we plot the total mean number of customers as a function of the

weight parameter r (denoted by E(NDPS(r))). We consider the case µ11 = 0.1,

µ12 = 10, and µ2 = 1, while choosing several values for f := E(Bfwd
1 )/E(Bfwd

2 ).
The total mean number of customers is obtained by solving a system of linear
equations as described in [51]. For ρ = ̺1 + ̺2 we chose the following values: 0.6,
0.8, 0.9 and 0.999. We see that in the latter case, a heavily-loaded system, the total
mean number of customers is increasing when f < 1, constant when f = 1, and
decreasing when f > 1. As the total load decreases, the monotonicity no longer
necessarily holds. This can be explained as follows. Since µ11 < µ2 < µ12, the cµ-
rule suggests to prioritize class-1 customers in phase 2, while the class-1 customers
in phase 1 should receive lowest priority. In the DPS queue no differentiation can
be made between customers residing in different phases. Therefore, the way the
weight r affects the mean total number of customers depends on the typical mix
of numbers of class-1 customers residing in the two phases. In heavy traffic, this
mix is characterized by the loads corresponding to the work of class 1 residing in
phases 1 and 2, cf. Proposition 2.1.1, and is hence independent of r. However, away
from heavy traffic, this mix may itself be influenced by r, leading to the observed
non-monotonic behavior in the figures.

2.7 Concluding remarks

We have studied a multiple-phase network of which the DPS queue with phase-
type distributed service requirements is a special case. In our main result we have
shown that, in heavy-traffic conditions, the queue length process exhibits a so-
called state-space collapse. Based on this result, we found that the DPS model in
heavy traffic inherits several well known properties of PS (not necessarily in heavy
traffic). For example, in the limit, the (scaled) number of customers present in a
DPS model is exponentially distributed, which is the continuous analogue of the
geometric queue length distribution of the PS queue. In addition, in a heavy-traffic
regime the residual service requirements are independent and distributed according
to the forward recurrence times, which is true for PS as well.

We have investigated the performance of a DPS queue in heavy traffic as a
function of the weights and showed that the scaled holding cost reduces as customers
with smaller weighted residual service requirements get larger weights. In Chapter 7
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we will investigate monotonicity properties of the DPS queue outside the heavy-
traffic setting.

This chapter can serve as a first step towards analyzing the steady-state queue
lengths for the class of weighted α-fair policies, of which DPS is a special case. It
would be interesting to investigate whether a heavy-traffic analysis similar to the
one performed in this chapter can be carried out for the linear bandwidth-sharing
network. This will not be a trivial extension, since the work-conserving property,
which was used to derive the exponentially distributed random variable as described
in Section 2.4.2, does not carry over to the linear network.



Chapter 3

Stability and size-based
scheduling in a linear network

Size-based scheduling policies, such as SRPT and LAS, provide popular mechanisms
in single-server systems for improving the overall performance by favoring smaller
service requests over larger ones, see Section 1.3.3. In this chapter we examine
the merits of size-based scheduling in the linear bandwidth-sharing network. More
precisely, the capacity among the various classes is allocated based on the sizes of
the service requirements of the users. We explore fundamental stability properties
of such size-based scheduling policies.

Due to concurrent resource possession in a linear network, size-based scheduling
policies may use the capacity of the nodes inefficiently and persistently leave critical
resources underutilized, even when congestion builds up. As a result, SRPT and LAS
may unnecessarily cause instability, and will then certainly not yield good perfor-
mance. Rather than aiming at a general characterization of the stability conditions,
in this chapter we focus on various (limiting) regimes of the service requirements.
This appears already sufficiently rich to exhibit the instability effects. In particular,
we prove that this occurs when the users with long routes have larger service re-
quirements than the ones with shorter routes. For networks with sufficiently many
nodes, instability phenomena can in fact arise at arbitrarily low traffic loads. In the
opposite regime, where the users with long routes have smaller service requirements
than the ones with shorter routes, size-based scheduling strategies are less prone to
instability effects.

It is worth drawing a distinction with the situation in queueing networks with
feedback where the usual necessary stability conditions are not sufficient either,
as first exemplified in Lu & Kumar [87] for priority scheduling and later studied
in Bramson [37] for FCFS. In these networks, users visit the various nodes along
their route through the network in succession, whereas users in bandwidth-sharing
networks require service at all nodes along their route simultaneously. The way in
which the queues build up in those feedback networks is also qualitatively different,
and typically involves oscillatory behavior.

This chapter is organized as follows. In Section 3.1 we present a model descrip-
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tion and discuss some preliminary results. The three subsequent sections examine
fundamental stability properties under several size-based scheduling policies. In Sec-
tion 3.2 this is done for SEPT (Shortest Expected Processing Time) policies, which
can be described by simple priority rules. We turn the attention to SRPT and
LAS in Sections 3.3 and 3.4, respectively. In Section 3.5 we make some concluding
remarks.

3.1 Model and preliminaries

We consider a linear network with L nodes and L + 1 classes, where class i requires
service at node i only, i = 1, . . . , L, while class 0 requires service at all L nodes
simultaneously, see Figure 1.2. For convenience, we assume each of the nodes to
have a unit service rate. Class-j users arrive according to independent Poisson
processes of rate λj , and have generally distributed service requirements Bj with
distribution function Bj(x) = P(Bj < x), j = 0, 1, . . . , L. Define the traffic load of
class j by ρj := λjE(Bj). Let Aj(0, t) denote the amount of work from class j that

arrives in the interval (0, t], and note that limt→∞
Aj(0,t)

t = ρj , almost surely (a.s.).
The queue of class-j users is referred to as Qj, j = 0, . . . , L. In bandwidth-

sharing networks, the queue is a purely virtual entity in the sense that the users do
not actually reside in physical queues, but rather keep the bulk of the backlogged
work stored in their own buffers. Denote by Nj(t) the length of Qj at time t, i.e.,
the number of class-j users in the system at time t.

In this chapter we focus on scheduling policies that can be described by sized-
based priority ranking. For example, priority is given based on some class parame-
ter (SEPT), remaining service requirement (SRPT), or amount of attained service
(LAS). Since class-0 users require simultaneous service at all nodes, without any
further arbitration mechanism, capacity can be left unused. Therefore the priority
ranking needs to be augmented with a further arbitration mechanism to arrive at
the rate allocation to the various classes. We will distinguish between two options:
(i) weak priority, which means that the capacity in node i that is left unused, is
re-allocated to class i; (ii) strict priority, which implies that this capacity is left
unused.

In this chapter we use the following definitions for stability of a single queue, a
node and the complete system.

Definition 3.1.1 (Stability). For a given policy, Qj , j = 0, . . . , L, is stable when

lim inf
T→∞

1

T

∫ T

0

1(Nj(t)=0)dt > 0, a.s.

Node i, i = 1, . . . , L, is stable when both Q0 and Qi are stable. The system is stable
when all nodes are stable.

By the Poisson assumption, the process ~N(t) = (N0(t), . . . , NL(t)) is a regener-
ative process with regeneration state ~0. A common definition for stability used in
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the literature, as well as in the chapters of this thesis (with the exception of this
chapter), is that the process is stable when it has a finite mean recurrence time to
state ~0. (In the case of a Markov process this is equivalent to state ~0 being positive

recurrent.) Note that the process ~N(t) has a finite mean recurrence time to state ~0
if and only if

lim inf
T→∞

1

T

∫ T

0

1( ~N(t)=~0)dt > 0, a.s, (3.1)

see [138]. A necessary condition for the linear network to have a finite mean recur-
rence time is ρ0+ρi ≤ 1 for all i = 1, . . . , L, see for example [59]. Note that when the

system is stable according to Definition 3.1.1, i.e., lim infT→∞
1
T

∫ T

0 1(Nj(t)=0)dt > 0,
a.s., for all j = 0, . . . , L, this does not imply that (3.1) is satisfied or, equivalently,

that the process ~N(t) has a finite mean recurrence time. Hence, the stability notion
used in this chapter is slightly weaker than the definition that is commonly used.
The advantage of using the weaker notion of stability of the system is that stability
of the individual queues implies that the system is stable as well. This implica-
tion would not go through when using the definition of finite mean recurrence time
instead.

For a given policy, let sj(t) denote the service rate allocated to class j at time t.
We define by

σj := lim inf
T→∞

1

T

∫ T

0

sj(t)dt and σj := lim sup
T→∞

1

T

∫ T

0

sj(t)dt,

the random variables denoting respectively the minimum and maximum long-term
average service rate of class j, j = 0, . . . , L. We have the following lemma.

Lemma 3.1.2. It holds that σj ≤ σj ≤ ρj, a.s.
If Qj is stable, j = 1, . . . , L, then σj = ρj, a.s.

Proof: The statement σj ≤ σj ≤ ρj follows immediately from
∫ T

0
sj(t)dt ≤

Aj(0, T ) + Wj(0) and the fact that limT→∞ Aj(0, T )/T = ρj , a.s. Here Wj(t)
denotes the workload in class j at time t. The second statement deserves more
elaboration. Note that

lim inf
T→∞

Wj(T )

T
= lim inf

T→∞

(

Aj(0, T )

T
− 1

T

∫ T

0

sj(t)dt

)

= ρj − σj .

Hence, it remains to be shown that if Qj is stable, then lim infT→∞ Wj(T )/T = 0
a.s., or equivalently, if lim infT→∞ Wj(T )/T > 0 with strictly positive probability,
then Qj is unstable.

Assume lim infT→∞ Wj(T )/T > 0 with strictly positive probability. Hence,
with strictly positive probability we have limT→∞ Wj(T ) = ∞, and there ex-
ists a T̄ > 0 such that 1(Wj(t)>0) = 1 for all t > T̄ . We can conclude that

limT→∞
1
T

∫ T

0 1(Wj(t)>0)dt = 1 with strictly positive probability, i.e., Qj is unstable.
�
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For a given policy, it will be convenient to define the function cj(t) as follows:
cj(t) := sj(t) when Nj(t) > 0, and otherwise the term cj(t) is defined as the maximal
capacity that could have been allocated to class j (if it would have been present) at
time t without reducing the rates allocated to other users. We define by

cj := lim inf
T→∞

1

T

∫ T

0

cj(t)dt and cj := lim sup
T→∞

1

T

∫ T

0

cj(t)dt,

the random variables denoting respectively the minimum and maximum long-term
average of cj(t). In the next lemma we describe the stability conditions in terms of cj

and cj . The terms cj and cj depend on the employed scheduling policy. In general,
they are difficult to obtain, since they are highly influenced by the interaction with
the other classes i 6= j.

Lemma 3.1.3. If ρj < cj , a.s., then Qj, j = 0, . . . , L, is stable. If Qj is stable,
then ρj ≤ cj , a.s.

Proof: Note that cj(t) ≤ 1, so that 1(Nj(t)=0) ≥ 1(Nj(t)=0)cj(t) = cj(t) − sj(t), for
all t. Hence, we obtain that

lim inf
T→∞

1

T

∫ T

0

1(Nj(t)=0)dt ≥ cj − σj , a.s. (3.2)

From this it follows that if cj > σj , a.s., then Qj is stable. Since σj ≤ ρj , the first
statement in the lemma is proved.

The second statement in the lemma follows from the fact that sj(t) ≤ cj(t), and
hence, σj ≤ cj , a.s., together with the fact that σj = ρj if Qj is stable. �

Obviously, ρj < 1 is a necessary condition for Qj to be stable, j = 0, . . . , L.
In the following lemma, useful sufficient stability conditions are presented under
certain conditions on the policies.

Lemma 3.1.4. (i) A sufficient condition for stability of Qi, i = 1, . . . , L, is ρ0+ρi <
1, provided that under the employed policy node i operates at the full service rate
whenever Qi is non-empty.
(ii) A sufficient condition for stability of node i is ρ0 + ρi < 1, provided that under
the employed policy node i operates at the full service rate whenever Q0 or Qi are
non-empty.
(iii) A sufficient condition for stability of the system is

∑L
i=0 ρi < 1, provided that

under the employed policy at least one of the nodes operates at the full service rate
whenever the system is non-empty.

Proof: Statement (ii) follows from the fact that node i behaves as a work-conserving
single-server queue with load ρ0 + ρi. Statement (iii) follows from the fact that
the total workload of classes 0, 1, . . . , L, is stochastically dominated by that in a
work-conserving system where classes 1, . . . , L, are never served at the same time.
Statement (i) deserves more elaboration. When node i operates at the full service
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rate whenever Qi is non-empty, we have 1(Ni(t)>0) ≤ s0(t) + si(t). Together with
Lemma 3.1.2 this implies

lim sup
T→∞

1

T

∫ T

0

1(Ni(t)>0)dt ≤ ρ0 + ρi, a.s.

Hence, Qi is stable if ρ0 + ρi < 1. �

For the scheduling policies considered in this chapter (SEPT, SRPT and LAS),
the third property in Lemma 3.1.4 is always satisfied, while the first property only
holds for the variants with weak priority. In the remainder of this chapter, stability
conditions for size-based scheduling policies are further investigated. We do not aim
at deriving stability conditions in the full setting of general service requirements.
Instead, we focus on two particular regimes of the service requirements. Either the
class-0 users have, in some sense, relatively large service requirements compared
to the class-i users, i = 1, . . . , L, or the class-0 users have relatively small service
requirements.

3.2 SEPT scheduling

In preparation for the analysis of SRPT and LAS, we first consider the Shortest
Expected Processing Time first (SEPT) policy with preemption. SEPT simply
gives preemptive priority to class-i users over class-0 users when E(Bi) < E(B0)
and vice versa when E(Bi) > E(B0), i = 1, . . . , L.

3.2.1 Large class-0 users

When E(B0) > E(B1), . . . , E(BL), i.e., large class-0 users, SEPT scheduling in a
linear network corresponds to the policy that gives preemptive priority to classes
1, . . . , L over class 0.

Proposition 3.2.1. Under the priority rule that gives preemptive priority to
classes 1, . . . , L over class 0, Qi is stable if and only if ρi < 1, i = 1, . . . , L. In
addition, Q0 is stable if ρ0 < ΠL

i=1(1 − ρi), and unstable if ρ0 > ΠL
i=1(1 − ρi).

Proof: When classes 1 . . . , L are given preemptive priority, class i behaves as in
an isolated M/G/1 queue with class i only. Therefore, Qi is stable if and only if
ρi < 1, i = 1, . . . , L. Let Ni, i = 1, . . . , L, be the random variable with the time-
average distribution of Ni(t). Since N1, . . . , NL are independent, we have P(N1 =
0, . . . , NL = 0) = ΠL

i=1(1 − ρi). Class 0 is served when there are no class-i users
present, i = 1, . . . , L. By Lemma 3.1.3, we obtain that if

ρ0 < P(N1 = 0, . . . , NL = 0) = ΠL
i=1(1 − ρi), (3.3)

then Q0 is stable. In addition, if ρ0 > P(N1 = 0, . . . , NL = 0) = ΠL
i=1(1 − ρi), then

Q0 is unstable. �
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Note that the above condition is more stringent than the maximum stability
condition. In fact, the system can be unstable for arbitrarily low values of ρ0 if the
number of traversed nodes is large. The instability can arise here since this priority
policy can leave a substantial portion of the capacity unused, regardless of how large
the number of class-0 users is. In Sections 3.3 and 3.4 we show that SRPT and LAS
inherit these difficulties.

3.2.2 Small class-0 users

When E(B0) < E(B1), . . . , E(BL), i.e., small class-0 users, SEPT scheduling in a
linear network corresponds to the policy that gives preemptive priority to class 0
over all class-i users, i = 1, . . . , L. Under this priority rule, the system is stable
under the maximum stability conditions, see the next proposition.

Proposition 3.2.2. Under the priority rule that gives preemptive priority to class-0
users, Q0 is stable if and only if ρ0 < 1. In addition, Qi is stable if ρ0 + ρi < 1,
and unstable if ρ0 + ρi > 1, i = 1, . . . , L.

Proof: When class 0 is given preemptive priority, class 0 behaves as in an isolated
M/G/1 queue with class 0 only. Therefore, Q0 is stable if and only if ρ0 < 1.
Since N0(t) is a regenerative process, we have that limT→∞ N0(T )/T → 0, a.s.,
when Q0 is stable. Together with

lim
T→∞

W0(T )

T
= ρ0 − lim

T→∞

1

T

∫ T

0

s0(t)dt,

this implies σ0 = σ0 = ρ0. Class-i users, i = 1, . . . , L, behave as in an isolated
priority queue with classes 0 and i, hence we have ci(t) = 1 − s0(t), so that ci =
ci = 1 − ρ0. By Lemma 3.1.3, we then obtain the result. �

3.2.3 Intermediate-size class-0 users

In order to cover the full range of service requirements, we extend the model with
class-i’ users, i = 1, . . . , L, that require service from node i only, arrive according to a
Poisson process of rate λi′ , and have exponentially distributed service requirements
with mean E(Bi′ ), such that E(Bi) < E(B0) < E(Bi′ ) for all i = 1, . . . , L. Denote
the traffic load of class i′ by ρi′ := λi′E(Bi′), i = 1, . . . , L.

Under the SEPT policy, class-j users, j = 0, 1, . . . , L, are not affected by the
presence of class-i′ users, i = 1, . . . , L. It thus follows from the results in Sub-
section 3.2.1 that Qi, i = 1, . . . , L, is stable if ρi < 1 and that Q0 is stable if
ρ0 < ΠL

i=1(1 − ρi).
In order to establish sufficient stability conditions, it is important to know

whether we have weak or strict SEPT. Strict SEPT only allows a class-i′ user to be
served when there are no class-0 and class-i users in the system. In contrast, weak
SEPT also allows a class-i′ user to be served when there are class-0 users in the
system which are however blocked from service by class-j users, j 6= i, and there are
no class-i users present.
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Weak SEPT

For weak SEPT, class-i′ users can be served during the time that Qi is empty.
However, class-0 users may be served during this time as well. Note that ci′(t) ≥
1 − s0(t) − si(t). Hence, it follows from Lemma 3.1.2 that ci′ ≥ 1 − σ0 − ρi.
Together with Lemma 3.1.3 we obtain that ρi′ < 1 − σ0 − ρi, i = 1, . . . , L, is a
sufficient stability condition for Qi′ . In order to determine the value of σ0, we need
to distinguish whether Q0 is stable or not, i.e., whether ρ0 < ΠL

i=1(1 − ρi) or not.
If Q0 is stable, then σ0 = ρ0, and thus the stability condition for Qi′ becomes
ρ0 + ρi + ρi′ < 1. If Q0 is unstable, then it follows from (3.2) that with strictly
positive probability c0 ≤ σ0. Since s0(t) ≤ c0(t), we also have that σ0 ≤ c0. Class 0
is served when there are no users from classes 1, . . . , L present, hence c0 and c0 are
both equal to P(N1 = 0, . . . , NL = 0) = ΠL

i=1(1 − ρi) a.s. (see Proposition 3.2.1).
Hence, a sufficient stability condition for Qi′ takes the form

ρi′ < 1 − ΠL
j=1(1 − ρj) − ρi = (1 − ρi)(1 −

∏

j 6=i

(1 − ρj)).

Strict SEPT

Under strict SEPT, class i′ is only served when no users of class 0 and class i
are present. Hence, by Lemma 3.1.3, a sufficient stability condition for Qi′ may

be expressed by ρi′ < lim infT→∞
1
T

∫ T

0 1(N0(t)=0,Ni(t)=0)dt, a.s., i = 1, . . . , L. In
general no tractable expression appears to exist for the latter.

3.3 SRPT scheduling

We turn the attention to SRPT scheduling. A class-0 user receives the total capacity
of all nodes whenever it has the smallest remaining service requirement among all
users. Otherwise, in case of weak SRPT, the total capacity in node i is given to the
class-i user with the smallest remaining service requirement. However, in case of
strict SRPT the total capacity in node i is only given to a class-i user when this user
has indeed the smallest remaining service requirement among all class-0 and class-i
users, and otherwise the capacity is lost. Possible ties (which occur with non-zero
probability in case of discrete service requirement distributions) are assumed to be
broken at random.

It will be convenient to introduce

ρj(x) := λjE(Bj1(Bj<x)) = λj

∫ x−

0 ydBj(y), (3.4)

the traffic load of class j when all class-j users of size x or larger are rejected. It is
important to note that users of size exactly x are excluded in this definition.

In order to establish exact stability conditions, we need to impose some additional
assumptions on the service requirement distributions, as will be done in the next
subsections.
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3.3.1 Large class-0 users

In this subsection we consider class-0 users with large service requirements, com-
pared to all other classes.

Stability of Qi, for i = 1, . . . , L

Define mj := inf{x : Bj(x) > 0} and Mj := sup{x : Bj(x) < 1} as the minimum and
maximum values of the class-j service requirements, j = 0, . . . , L. We focus on the
case where class 0 has larger service requirements than all classes i, i.e., m0 > Mi,
for i 6= 0. Thus, a class-0 user can only enter service when there are no class-i users
in the system. When a class-0 user is in service and a class-i user arrives, the service
is preempted when the remaining service requirement of the class-0 user is larger
than that of the arriving class-i user.

Evidently, ρi < 1 is a necessary condition for stability of Qi, i = 1, . . . , L, because
otherwise Qi would be unstable even in the absence of any class-0 users. The next
proposition shows that for weak SRPT with m0 > Mi this condition is sufficient as
well.

Proposition 3.3.1. If the policy is weak SRPT and m0 > Mi for all i = 1, . . . , L,
then the condition for stability of Qi is ρi < 1.

Proof: As observed above, the fact that m0 > Mi implies that class i receives
preemptive priority over class 0, unless a class-0 user has a smaller remaining service
requirement than all class-i users (so at most Mi) and is being served. In the
presence of this class-0 user, it depends on the other classes whether class 0 or
class i is being served. When this class-0 user leaves the system, no new class-0
users are taken into service under SRPT as long as class i is present (m0 > Mi).
Hence, as long as Qi remains non-empty, it will be prevented from service for at most
a duration Mi, since weak SRPT does not leave any capacity in node i unused when
class i is present. It follows that class i behaves as in an isolated queue with class i
only and random service interruptions whose total duration during each busy period
is bounded by Mi. Lemma 3.3.2 implies that a queue with service interruptions of
bounded size in each busy period, is stable for any ρi < 1. �

Lemma 3.3.2. Consider an M/G/1 queue with traffic load ρ and with service in-
terruptions. Assume that the total duration of the service interruptions in any con-
tiguous period during which the queue is continuously backlogged is stochastically
bounded by a random variable D with E(D) < ∞. If ρ < 1, then for any work-
conserving policy the queue is stable.

Proof: Let the random variable BP denote the length of a busy period in an
ordinary M/G/1 queue without service interruptions. Obviously, E(BP ) < ∞ when
ρ < 1.

Now consider the queue with service interruptions as described in the lemma.
Let the random variable C denote the length of a contiguous period during which
the queue is continuously backlogged. With each user we can associate a sub-busy
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period during which that user is served, as well as users that arrived during that
service time (not counting those that arrive when that service time is interrupted),
those that arrived during the service of those users and so on. The period C can
now be split into the following three components: the service interruptions, the sub-
busy period of the user that arrived at an empty system when there is no service
interruption (this user may not be present) and the sub-busy periods of the users
that arrived during a service interruption. The expected number of users that arrive
while the service is interrupted is bounded by λE(D). We can therefore write

E(C) ≤ E(D) + (1 + λE(D))E(BP ) < ∞.

This implies P(N = 0) = 1/λ
1/λ+E(C) > 0, which establishes the stability of the queue.

�

The next proposition indicates that for strict SRPT the condition ρi < 1 is in
general not sufficient for Qi to be stable.

Proposition 3.3.3. If the policy is strict SRPT and m0 > Mj, for all j = 1, . . . , L,
then the condition for stability of Qi is

ρi < 1 and ρj(Mi) < 1 for all j 6= 0, i. (3.5)

Proof: We first prove that the above condition is sufficient. Since m0 > Mi, class i
receives preemptive priority over class 0, and will be entitled to service, unless a
class-0 user is present with a smaller remaining service requirement than all class-i
users. Although the service of such a class-0 user may repeatedly be interrupted by
arriving class-j users, j = 1, . . . , L, the latter users all have service requirements of
at most Mi.

Consider a period that starts with an arrival of class i in an empty Qi, and
finishes when Qi is empty again. Let Di denote the total amount of time that
class i is prevented from service during this period. By Lemma 3.3.2, Qi is stable
for any ρi < 1 if E(Di) < ∞. It remains to be shown that E(Di) < ∞ when
ρj(Mi) < 1 for all j 6= 0, i.

Define Ti as the time it takes for a class-0 user with a remaining service require-
ment of r0 = Mi, to receive the last Mi part of its service. Di can be bounded
from above by Ti, since class i only notices the class-0 user, when r0 ≤ Mi. Note
that at the moment that the class-0 user is being served and r0 reaches the level
Mi, because of SRPT, it is necessary that there are no other users present with a
remaining service requirement smaller than Mi.

Denote by r0(t) the smallest remaining service requirement of all the class-0
users present at time t. A class-0 user with a remaining service requirement smaller
than Mi is being served until a user of size smaller than r0(t1) arrives at time t1
(so it necessarily is of class i, i = 1, . . . , L). This user preempts the class-0 user.
The class-0 user can resume its service when all newly arrived users with size not
larger than r0(t1) have left the system. This period is called a busy period of classes
1, . . . , L.
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After this busy period the class-0 user can enter service again, until at a certain
time t2 a user arrives with size smaller than r0(t2) (such a user is necessarily of class
i, i = 1, . . . , L). A new busy period starts of class-i users, i = 1, . . . , L, with sizes
smaller than or equal to r0(t2). This pattern repeats itself until the class-0 user has
received its complete service and leaves the system.

Note that an upper bound for such a busy period of classes 1, . . . , L, is obtained
when instead we look at the busy period of users from classes 1, . . . , L with size
smaller than or equal to Mi. Hence, if ρj(Mi) < 1 for all j = 1, . . . , L, then the
class-0 user can be served during at least a fraction of time ΠL

j=1(1 − ρj(Mi)) in
the period Ti. Since the class-0 user needs a total of Mi service, we can conclude
that ΠL

j=1(1 − ρj(Mi))E(Ti) ≤ Mi, and hence E(Ti) < ∞. The fact that E(Di) ≤
E(Ti) < ∞ concludes the proof that (3.5) is sufficient.

It remains to be shown that (3.5) is necessary as well. Clearly, ρi < 1 is a
necessary condition. To show that the second condition is necessary too, suppose
it is not satisfied, i.e., ρj(Mi) > 1 for some j 6= 0, i. The following can now happen
with positive probability. Suppose at time t = 0 the system is empty. A first
user arrives at time T1 and is of class 0 with a service requirement B0. Define
dj := sup{x : ρj(x) ≤ 1}, hence dj < Mi. There is a d, dj < d ≤ Mi, such
that there arrive class-j users with sizes in the interval (dj , d]. Now assume at
time T1 + B0 − r, r ∈ (d, Mi), a second user arrives, which is of class i and has
a service requirement smaller than r. Hence, the class-0 user is interrupted from
service by this class-i user. Since ρj(d) > 1 and since we consider SRPT, we can
define T ∗ as the last moment that class j had no users with sizes in the interval
(dj , d]. Assume in the interval (T1 + B0 − r, T ∗) there are always users of class i
present with (remaining) service requirement less than or equal to r. Hence, at time
T ∗, the class-0 user has still size r. After time T ∗, there are always class-j users
present with service requirements in the interval (dj , d]. Since d < r, the class-0
user, which has size r, and therefore also class-i users of size larger than r, will
never be served again (strict SRPT). Hence Qi will grow indefinitely from time T ∗

onward. The above-described trajectory occurs with positive probability. �

Stability of Q0

We now turn to the stability of Q0. To determine sufficient conditions for stability
of Q0, we will consider the network in a limiting regime, obtained by scaling the
dynamics of some classes with a common parameter ǫ and passing ǫ ↓ 0. This
technique is usually referred to as analytic perturbation, and has successfully been
applied to study steady-state performance as a function of ǫ, as ǫ ↓ 0, see for
instance [6, 43].

We consider a sequence of systems, indexed by ǫ, where the class-i arrival rate

in the ǫ-system is λ
(ǫ)
i := λi/ǫ and the class-i service requirements are distributed

as ǫBi, for i = 1, . . . , L. Note that the traffic load of class i in the ǫ-system is

ρ
(ǫ)
i = λi

ǫ ǫE(Bi) = ρi, independent of ǫ. Let ρ
(ǫ)
i (x) be the equivalent of (3.4) for the

ǫ-system. Furthermore, as ǫ ↓ 0, the class-i service requirements become extremely
small compared to class 0, so we are in the situation of large class-0 users.



3.3 SRPT scheduling 63

In the ǫ-system we make a distinction between class-i users with original size

smaller or larger than
√

ǫ. Denote by N
√

ǫ
i (t) the number of class-i users in the

ǫ-system with original size smaller than
√

ǫ present at time t. We define A
√

ǫ
i , for

i = 1, . . . , L, as a period where class-i users with original size smaller than
√

ǫ are
served in the ǫ-system. Note that in this period the total capacity of node i is

allocated to a class-i user with original size smaller than
√

ǫ. We define I
√

ǫ
i , for

i = 1, . . . , L, as a period where class-i users with original size smaller than
√

ǫ are
not served in the ǫ-system.

It is possible that N
√

ǫ
i (t) > 0 during a period I

√
ǫ

i , but that these class-i users
are blocked from service by a class-i user with an original size larger than

√
ǫ or a

class-0 user, both with a remaining service requirement smaller than
√

ǫ. The latter
will occur at most a fraction of order

√
ǫ of the time, so class-i users with original

size smaller than
√

ǫ will receive priority over the other users virtually all the time
as ǫ ↓ 0. Thus, class i restricted to

√
ǫ will approximately behave as in an isolated

queue with class i restricted to
√

ǫ only as ǫ ↓ 0. Moreover, since

ρ
(ǫ)
i (

√
ǫ) =

λi

ǫ
E(ǫBi1(ǫBi<

√
ǫ)) = λiE(Bi1(Bi<

1√
ǫ
)) → ρi

and classes i for i = 1, . . . , L will behave roughly independently, this suggests that

limT→∞
1
T E[0,T ](I

√
ǫ

1 , . . . , I
√

ǫ
L ) → ΠL

i=1(1− ρi), as ǫ ↓ 0, as is confirmed by the next
proposition. Here E[0,T ](A) denotes the amount of time that the event A occurs
during the interval [0, T ].

Proposition 3.3.4. Consider the ǫ-systems under the weak SRPT policy. If ρ0 +
ρi < 1 for i = 1, . . . , L, then

lim
ǫ↓0

lim
T→∞

1

T
E[0,T ](I

√
ǫ

1 , . . . , I
√

ǫ
L ) = ΠL

i=1(1 − ρi), a.s.

Proof: Let us introduce a reference system with class i only and with the same
arrival process and service requirements as in the original system, but where class-i
users with sizes larger than

√
ǫ are rejected. The number of class-i users in the

reference system is denoted by N̂
√

ǫ
i (t). Define Â

√
ǫ

i and Î
√

ǫ
i as the active and idle

periods of the reference system, respectively.

If ρ0 + ρi < 1, i = 1, . . . , L, then Q1, . . . , QL are stable in the original system
and in the reference system (Lemma 3.1.4 (i)). For the reference system (which is
an isolated work-conserving queue) this implies that

lim
T→∞

1

T
E[0,T ](Â

√
ǫ

i ) = lim
T→∞

1

T

∫ T

0

1
(N̂

√
ǫ

i (t)>0)
dt = ρ

(ǫ)
i (

√
ǫ). (3.6)

In addition, for the original system we obtain from Lemma 3.1.2 that ρ
(ǫ)
i (

√
ǫ) =
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lim supT→∞
1
T E[0,T ](A

√
ǫ

i ). For i = 1, . . . , L, we now have

lim sup
T→∞

1

T
E[0,T ](Î

√
ǫ

i , A
√

ǫ
i ) = lim sup

T→∞

1

T
(E[0,T ](A

√
ǫ

i ) − E[0,T ](A
√

ǫ
i , Â

√
ǫ

i ))

≤ lim sup
T→∞

1

T
E[0,T ](A

√
ǫ

i ) − lim inf
T→∞

1

T
E[0,T ](A

√
ǫ

i , Â
√

ǫ
i )

= lim
T→∞

1

T
E[0,T ](Â

√
ǫ

i ) − lim inf
T→∞

1

T
E[0,T ](A

√
ǫ

i , Â
√

ǫ
i )

≤ lim sup
T→∞

1

T
(E[0,T ](Â

√
ǫ

i ) − E[0,T ](A
√

ǫ
i , Â

√
ǫ

i ))

= lim sup
T→∞

1

T
E[0,T ](I

√
ǫ

i , Â
√

ǫ
i ). (3.7)

We proceed to derive an upper bound for the latter expression. Observe that

when the reference system is active at time t, i.e., N̂
√

ǫ
i (t) > 0, it holds that N

√
ǫ

i (t) >

0, because N
√

ǫ
i (t) ≥ N̂

√
ǫ

i (t). Thus, in order for the event (I
√

ǫ
i , Â

√
ǫ

i ) to occur, it

must be that N
√

ǫ
i (t) > 0, and hence there is a class-i user with original size smaller

than
√

ǫ, but this user is not served. As noted earlier, this can only arise when a
class-i user with original size larger than

√
ǫ or a class-0 user is present, both with

a remaining service requirement smaller than
√

ǫ.

We have the bound E[0,t](I
√

ǫ
i , Â

√
ǫ

i ) ≤ ∑N[0,t]

n=1 D
√

ǫ
i,n, with N[0,t] denoting the

number of class-i users with original size larger than
√

ǫ and class-0 users, that are
served during the interval [0, t]; the index n is used to denote the n-th such user,

and D
√

ǫ
i,n is the amount of time that class-i users with original size smaller than

√
ǫ

are prevented from service because of user n. For weak SRPT, we have D
√

ǫ
i,n ≤ √

ǫ,
since no capacity is left unused in the presence of class-i users and user n needs
only its last

√
ǫ amount of service. Using the strong law of large numbers, we can

conclude that

lim sup
T→∞

E[0,T ](I
√

ǫ
i , Â

√
ǫ

i )

T
≤ lim

T→∞

N[0,T ]

T

√
ǫ ≤ (λ0+λ

(ǫ)
i P(B

(ǫ)
i >

√
ǫ))

√
ǫ, a.s. (3.8)

Furthermore we have limǫ↓0 λ
(ǫ)
i P(B

(ǫ)
i >

√
ǫ)
√

ǫ = limǫ↓0
λi√

ǫ
P(Bi > 1√

ǫ
). It can be

shown that when E(Bi) < ∞, this limit equals 0. Hence, by (3.8) we obtain

lim
ǫ↓0

lim
T→∞

E[0,T ](I
√

ǫ
i , Â

√
ǫ

i )

T
= 0 for all i = 1, . . . , L, a.s. (3.9)

For any converging subsequence Tk of
E[0,T ](I

√
ǫ

1 ,...,I
√

ǫ
L )

T it follows from (3.7) and (3.9)
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that

lim
ǫ↓0

lim
k→∞

E[0,Tk](I
√

ǫ
1 , . . . , I

√
ǫ

L )

Tk
= lim

ǫ↓0
lim

k→∞

E[0,Tk](Î
√

ǫ
1 , . . . , Î

√
ǫ

L )

Tk

− E[0,Tk](Î
√

ǫ
1 , . . . , Î

√
ǫ

L , A
√

ǫ
i , for an i 6= 0)

Tk
+

E[0,Tk](I
√

ǫ
1 , . . . , I

√
ǫ

L , Â
√

ǫ
i , for an i 6= 0)

Tk

= lim
ǫ↓0

lim
k→∞

E[0,Tk](Î
√

ǫ
1 , . . . , Î

√
ǫ

L )

Tk

= ΠL
i=1(1 − ρi), a.s.,

where in the last step we use that Î
√

ǫ
1 , . . . , Î

√
ǫ

L are independent, together with rela-

tion (3.6) and ρ
(ǫ)
i (

√
ǫ) → ρi, for i = 1, . . . , L. �

From Proposition 3.3.4 we can now derive the stability condition for ǫ small
enough in an ǫ-system.

Corollary 3.3.5. Consider the ǫ-system under the weak SRPT policy. If ρ0+ρi < 1,
for an i = 1, . . . , L, then Qi is stable.
(i) If in addition ρ0 < ΠL

i=1(1 − ρi), then there exists an ǭ such that Q0 is stable in
the ǫ-system for every ǫ < ǭ.
(ii) Conversely, if ρ0 > ΠL

i=1(1− ρi), then there exists an ǭ such that Q0 is unstable
in the ǫ-system for every ǫ < ǭ.

Proof: Stability of Qi when ρ0+ρi < 1 follows from Lemma 3.1.4 (i). The remainder
of the proof is concerned with stability of Q0.

There is at least one node i that can work at full rate on class-i users with service
requirement larger than

√
ǫ or on class 0, whenever no users of classes 1, . . . , L

with service requirement smaller than
√

ǫ are being served. Hence, it follows from

Lemma 3.1.3 that a sufficient condition for Q0 to be stable is ρ0 +
∑L

i=1(ρi −
ρ
(ǫ)
i (

√
ǫ)) < lim infT→∞

1
T E[0,T ](I

√
ǫ

1 , . . . , I
√

ǫ
L ), a.s. Since ρ

(ǫ)
i (

√
ǫ) → ρi, for i =

1, . . . , L, Proposition 3.3.4 implies that if ρ0 < ΠL
i=1(1 − ρi), then there exists an ǭ

such that Q0 is stable in the ǫ-system for every ǫ < ǭ. This proves statement (i) of
the corollary.

Conversely, we have that if ρ0 > ΠL
i=1(1 − ρi), then there exists an ǭ such that

ρ0 − ρ0(
√

ǫ) > lim supT→∞
1
T E[0,T ](I

√
ǫ

1 , . . . , I
√

ǫ
L ), for all ǫ ≤ ǭ. This follows from

Proposition 3.3.4 and from the fact that limǫ↓0 ρ0(
√

ǫ) = limǫ↓0 λ0E(B01(B0<
√

ǫ)) =

0. Since class-0 users with sizes larger than
√

ǫ receive at most capacity when class-
i users with service requirement strictly less than

√
ǫ are not served, Lemma 3.1.3

implies that Q0 is not stable, which proves statement (ii) of the corollary. �

3.3.2 Small class-0 users

We now turn the attention to small class-0 users. We consider the setting where
M0 < mi, for i = 1, . . . , L, as defined in Section 3.3.1.
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Stability of Q0

In contrast to Corollary 3.3.5, the minimal condition ρ0 < 1 can in this case already
be sufficient for stability of Q0. Moreover, for strict SRPT it is the exact stability
condition for Q0.

Observation 3.3.6. If the policy is strict SRPT and M0 < mi for all i = 1, . . . , L,
then the condition for stability of Q0 is ρ0 < 1.

This may be deduced as follows. The fact that M0 < mi implies that class 0
receives preemptive priority over class i, and will be entitled to service, unless a
class-i user, for some i = 1, . . . , L, has a smaller remaining service requirement than
all class-0 users (so at most M0). Class 0 has to wait until those users with a
remaining service requirement smaller than all class-0 users have left the network.
Since it is strict SRPT, no new class-1, . . . , L users are taken into service. Thus,
as long as Q0 remains non-empty after the arrival of a new class-0 user, it will be
prevented from service for at most a period M0. By Lemma 3.3.2, Q0 is stable for
any ρ0 < 1.

Under weak SRPT, ρ0 < 1 does not always give a stable Q0. However, first
we illustrate a situation in which it is a sufficient condition. For that purpose we
consider deterministic service requirements and L = 2 nodes.

Proposition 3.3.7. Assume class j has a deterministic service requirement dj ,
j = 0, 1, 2, with d1 6= d2 and d0 < d1, d2, or d1 = d2 > 2d0. For the network under
consideration with the weak SRPT policy, Q0 is stable if and only if ρ0 < 1.

Proof: The fact that d0 < di implies that class 0 receives preemptive priority over
class i, and will be entitled to service, unless a class-i user, for some i = 1, . . . , L,
has a smaller remaining service requirement than d0. Although class-1, . . . , L users
may continue to be served for a while, the delay incurred by a newly arrived class-0
user is bounded as will be shown below. Thus, as long as Q0 remains non-empty
after the arrival of a new class-0 user, it will be prevented from service for at most
a bounded period. By Lemma 3.3.2, such a queue is stable for any ρ0 < 1.

It remains to be shown that the delay incurred by a newly arrived class-0 user is
bounded. Suppose that class 0 could be prevented from entering service indefinitely.
Then at a certain point in time we have for example a class-1 user with a remaining
service requirement r1 < d0 as well as class-0 and class-2 users of which none have
received any service. Because of weak SRPT, the class-1 and class-2 users are served.
When the class-1 user leaves the system, the class-2 user has a remaining service
requirement of r2 = d2 − r1. When r2 is smaller than d0, this class-2 user is served
and because of weak SRPT, a class-1 user also receives service. In order for this to
repeat indefinitely, it is necessary that

r1 < d0, 0 < r2 = d2 − r1 < d0, 0 < d1 − d2 + r1 < d0,

0 < 2d2 − d1 − r1 < d0, 0 < 2d1 − 2d2 + r1 < d0, . . . ,
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or equivalently,

k(d1 − d2) + r1 < d0 and k(d2 − d1) + d2 − r1 < d0, ∀ k ≥ 0. (3.10)

When d1 6= d2, we can choose a K, such that for all r1 < d0 there exists a
k = k(r1) < K for which (3.10) is not satisfied. When d1 = d2 > 2d0, we may
choose K = 1. We can conclude that at some point in time class-1 and class-2
users have remaining service requirements larger than d0, so a class-0 user can enter
service. In fact, the delay for class 0 is bounded by (K + 1)d0, independent of r1.
�

In general, ρ0 < 1 is not a sufficient condition for stability of Q0 under weak
SRPT, as may be illustrated again with deterministic service requirements and
L = 2 nodes. Take d1 = d2 = d with d0 < d < 2d0 and assume that Q1 and Q2

are both unstable. In that case, the staggered service pattern of class-1 and class-2
users described in the proof of the above proposition may in fact replicate itself ad
infinitum and class 0 can never return to service. Hence, Q0 may also become unsta-
ble with non-zero probability. If Q1 or Q2 is stable, which is the case if ρ0 + ρ1 < 1
or ρ0 + ρ2 < 1, then with probability 1 the above cycle cannot repeat indefinitely,
and it may in fact be checked that Q0 is stable.

Stability of Qi, for i = 1, . . . , L

Finally, we investigate the conditions for stability of Qi. Under weak SRPT, it
follows from Lemma 3.1.4 that ρ0 + ρi < 1 is a sufficient condition for stability
of Qi.

Under strict SRPT, ρ0 + ρi < 1 will in general not be sufficient for stability
of Qi, i = 1, . . . , L. We will show this by considering again L = 2 nodes and
deterministic service requirements dj , j = 0, 1, 2, d0 < d1, d2. By Lemma 3.1.3,

if ρ0 + ρi < lim infT→∞
1
T

∫ T

0 (c0(t) + ci(t))dt, a.s., then node i, and hence Qi, is
stable. It holds that c0(t) + ci(t) = 0 when at time t there are no class-i users with
a remaining service requirement smaller than d0 present and there are new class-0
users in the system which cannot be served because of the presence of a class-j
user with a remaining service requirement smaller than d0, j 6= 0, i. Otherwise
c0(t) + ci(t) = 1. An explicit expression for the long-run average of c0(t) + ci(t), or
for c0 and ci, appears hard to find.

3.4 LAS scheduling

In this section we consider LAS scheduling. In each node, the users with the least
attained service are granted the right to an equal share of the capacity at that node.
Class-0 users only receive the minimum of the granted shares at the nodes. This may
leave capacity unused at some of the nodes. As with SRPT, we again distinguish
two variants of LAS. With weak LAS, the unused capacity is re-allocated to the
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other class at that node (if there are users of that class). In case of strict LAS, the
unused capacity is simply lost.

The subsequent analysis is facilitated by a particular property of LAS: the users
with a total service requirement x are not influenced by users that have received
more than x in service. It will be convenient to define the following quantities, which
we refer to as truncated loads:

ρ̃j(x) := λj

∫ x−

0
ydBj(y) + λjxP(Bj ≥ x) = ρj(x) + λjxP(Bj ≥ x),

where ρj(x) was previously defined in (3.4). Thus, ρ̃j(x) represents the load due
to class-j users truncated at size x (users larger than or equal to x contribute an
amount x, rather than zero as in ρj(x)). We call the system obtained by truncating
the sizes of class-j users at xj , j = 0, . . . , L, the (x0, . . . , xL)-truncated system. If
x0 = . . . = xL = x we simply refer to the “x-truncated” system. The ∞-truncated
system corresponds to the original one.

Property 3.4.1. From the perspective of users of size x, the system dynamics are
identical to those of the x-truncated system. In addition, if there is an x̄0 such
that P(B0 ≤ x̄0) = 1, then from the perspective of class-i users of size xi > x̄0 for
an i = 1, . . . , L, the system behaves identically to the (∞, x̄0, . . . , x̄0, xi, x̄0, . . . , x̄0)-
truncated system, with xi in the i + 1-th component.

While the first claim is immediate from the arguments above, the second state-
ment deserves some elaboration. The influence of class j, with j 6= 0, i, on class i is
through class-0 users. If no class-0 user is larger than x̄0, then class-j users larger
than x̄0 have no effect on the class-0 users, and therefore no influence on the class-i
users either.

By choosing x small enough, we can ensure that
∑L

j=0 ρ̃j(x) < 1. Hence, by
Lemma 3.1.4 (iii) there exists a stable x-truncated system, for some x > 0. It
follows from Property 3.4.1 that class-j users of size at most x experience a stable
system if and only if Qj is stable in the x-truncated system, for j = 0, . . . , L.
In addition, stability is monotone with respect to truncation: if (x0, . . . , xL) ≥
(y0, . . . , yL) component-wise and Qj is stable in the (x0, . . . , xL)-truncated system,
then so is Qj in the (y0, . . . , yL)-truncated system.

In the remainder of this section, we impose additional assumptions on the service
requirements in order to obtain stability conditions.

3.4.1 Large class-0 users

In this section we consider large class-0 users. We consider an ǫ-system in which

class-0 users arrive according to a Poisson process of rate λ
(ǫ)
0 := ǫλ0 and sizes are

distributed as B0/ǫ, ǫ > 0.

In Proposition 3.4.2 we derive that the maximum stability conditions ρ0+ρi < 1,
i = 1, . . . , L, are in general not sufficient for stability under LAS scheduling. In par-
ticular, we prove that if class 0 has extremely large service requirements compared
to all other classes, then ρ0 ≤ ∏L

i=1(1 − ρi) is a necessary stability condition. The
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proof of this proposition uses that, in the limit as ǫ ↓ 0, all classes i 6= 0 behave as
if there is no class-0 traffic.

Proposition 3.4.2. Assume the policy is either weak or strict LAS. If there exists
an ǭ such that Q0 is stable in the ǫ-system, for all 0 < ǫ < ǭ, then it must be that
ρ0 ≤

∏L
i=1(1 − ρi).

Proof: Let us focus on the ǫ-system. When Q0 is stable, this must be true in
particular for traffic due to class-0 users with service requirements larger than h.
Once these users have received an amount of service equal to h, they can at most be
served when no users are present with attained service less than h. By Lemma 3.1.3,
stability of Q0 implies that

ρ0 − ρ̃
(ǫ)
0 (h) ≤ lim sup

T→∞

1

T

∫ T

0

1
(N

(ǫ,h)
j (t)=0, ∀j=0,...,L)

dt

≤ lim sup
T→∞

1

T

∫ T

0

1
(N

(ǫ,h)
i (t)=0, ∀i=1,...,L)

dt, (3.11)

a.s., where N
(ǫ,h)
i (t) denotes the number of class-i users with attained service less

than h present at time t in the ǫ-system. For now, assume that

lim sup
T→∞

1

T

∫ T

0

1
(N

(ǫ,h)
i (t)=0, ∀i=1,...,L)

dt ≤
L
∏

i=1

(1 − ρ̃i(h)) (3.12)

for all ǫ > 0 and h > 0. Setting h = h(ǫ) = 1/
√

ǫ, we obtain from (3.11) and (3.12),
together with the fact that

ρ̃
(ǫ)
0 (h(ǫ)) = λ0E(B01(B0<

√
ǫ)) + λ0

√
ǫP(B0 ≥

√
ǫ) → 0, as ǫ ↓ 0, (3.13)

and

ρ̃i(h(ǫ)) = λiE(Bi1(Bi<1/
√

ǫ)) + λi
1√
ǫ
P(Bi ≥

1√
ǫ
) → ρi, as ǫ ↓ 0, (3.14)

that ρ0 < ΠL
i=1(1 − ρi), and hence the proposition is proved.

We show (3.12) by comparing the workloads in classes i = 1, . . . , L, with those
in a reference system where class 0 is omitted. Since ǫ will remain fixed in the
remainder of the proof, we suppress the dependence on ǫ for notational convenience.
Let us denote the workload of class i at time t in the h-truncated system by Wh

i (t),

and that in the h-truncated reference system by Ŵh
i (t). We further represent, both

for the original and the reference system, the amount of traffic of class i truncated
at h that arrives in the time interval (s, t] by Ah

i (s, t). In the original system we also
define the amount of service given to class-0 users with attained service less than h
in the time interval (s, t] by Bh

0 (s, t), and the capacity wasted in (s, t] at node i while
there is at least one class-i user that has received at most h in service by Uh

i (s, t).
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Both systems are in the same state at time 0. Without loss of generality, assume
they both start empty. Then for i = 1, . . . , L,

Wh
i (t) = sup

s∈[0,t]

{Ah
i (s, t) + Bh

0 (s, t) + Uh
i (s, t) − (t − s)} ≥ sup

s∈[0,t]

{Ah
i (s, t) − (t − s)}

= Ŵh
i (t),

so that

lim sup
T→∞

1

T

∫ T

0

1
(N

(h)
i (t)=0, ∀i=1,...,L)

dt = lim sup
T→∞

1

T

∫ T

0

1(W h
i (t)=0, ∀i=1,...,L)dt

≤ lim sup
T→∞

1

T

∫ T

0

1(Ŵ h
i (t)=0, ∀i=1,...,L)dt =

L
∏

i=1

(1 − ρ̃i(h)),

where the last equality follows from the independence of the various classes in the
reference system. �

For weak LAS, we prove that the necessary condition ρ0 < ΠL
i=1(1 − ρi) is also

a sufficient condition for stability of the ǫ-system in the limiting regime.

Proposition 3.4.3. Assume the policy is weak LAS. If ρ0 < ΠL
i=1(1 − ρi), then

for ǫ small enough the ǫ-system is stable.

Proof: Under weak LAS, Qi is stable when ρ0 + ρi < 1. Hence, it remains to be
shown that Q0 is stable. We will use the same notation as in the proof of Proposi-
tion 3.4.2. In particular, we distinguish between users with attained service smaller

and larger than h. When N
(ǫ,h)
i (t) = 0, for all i = 1, . . . , L, at least one of the nodes

works at full speed on class-i users with attained service larger than h, i = 1, . . . , L,
and on class-0 users, whenever present. By Lemma 3.1.3 and Lemma 3.1.4 (iii) it is
therefore sufficient for stability of Q0 to have

ρ0 +
∑L

i=1(ρi − ρ̃i(h)) < lim infT→∞
1
T

∫ T

0
1

(N
(ǫ,h)
i (t)=0, ∀i=1,...,L)

dt. (3.15)

If we can show that, whenever ρ0 < ΠL
i=1(1 − ρi), there exists an h (may depend

on ǫ) such that the above holds for ǫ small enough, then the proposition is proved.

Let s
(ǫ,h)
j (t) denote the service rate allocated at time t to class-j users with

attained service less than h. If N
(ǫ,h)
i (t) > 0, then 1 − s

(ǫ,h)
0 (t) − s

(ǫ,h)
i (t) = 0,

because the unused capacity in node i is re-allocated to class-i users with attained
service less than h, when the service discipline is weak LAS. Hence, the wasted
capacity in node i while there are class-i users present that have received at most h

in service, U
(ǫ,h)
i (0, t), equals 0. We can conclude that

W
(ǫ,h)
i (t) = sup

s∈[0,t]

{Ah
i (s, t) + B

(ǫ,h)
0 (s, t) − (t − s)} (3.16)

≤ sup
s∈[0,t]

{Ah
i (s, t) − (1 − g(ǫ))(t − s)} + sup

s∈[0,t]

{B(ǫ,h)
0 (s, t) − g(ǫ)(t − s)}.
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Let h = h(ǫ) and choose the function g(ǫ) such that ρ̃
(ǫ)
0 (h(ǫ)) < g(ǫ) < 1. Then,

V
(ǫ)
i (t) := sups∈[0,t]{A

h(ǫ)
i (s, t)−(1−g(ǫ))(t−s)} represents the workload in a queue

with capacity 1 − g(ǫ) that serves only class-i users truncated at size h(ǫ). Using
independence, we obtain

lim
T→∞

1

T

∫ T

0

1
(V

(ǫ)
i (t)=0, ∀i=1,...,L)

dt = ΠL
i=1(1 − ρ̃i(h(ǫ))

1 − g(ǫ)
), a.s. (3.17)

Note that V
(ǫ)
0 (t) := sups∈[0,t]{B

(ǫ,h(ǫ))
0 (s, t) − g(ǫ)(t − s)} ≤ sups∈[0,t]{A

h(ǫ)
0 (s, t) −

g(ǫ)(t−s)}, where the right-hand side can be interpreted as the workload in a queue
with capacity g(ǫ) that serves only class-0 users truncated at size h(ǫ) (and hence
its time-average limit exists). Hence,

lim sup
T→∞

1

T

∫ T

0

1
(V

(ǫ)
0 (t)>0)

dt ≤ lim
T→∞

1

T

∫ T

0

1
(sups∈[0,t]{A

h(ǫ)
0 (s,t)−g(ǫ)(t−s)}>0)

dt

= ρ̃
(ǫ)
0 (h(ǫ))/g(ǫ), a.s. (3.18)

By (3.16) we have

1
(W

(ǫ,h(ǫ))
i (t)=0, ∀i=1,...,L)

≥ 1
(V

(ǫ)
i (t)=0, ∀i=1,...,L,V

(ǫ)
0 (t)=0)

≥ 1
(V

(ǫ)
i (t)=0, ∀i=1,...,L)

− 1
(V

(ǫ)
0 (t)>0)

.

Together with (3.17) and (3.18), we obtain that

lim inf
T→∞

1

T

∫ T

0

1
(N

(ǫ,h(ǫ))
i (t)=0, ∀i=1,...,L)

dt ≥ ΠL
i=1(1 − ρ̃i(h(ǫ))

1 − g(ǫ)
) − ρ̃

(ǫ)
0 (h(ǫ))

g(ǫ)
, (3.19)

a.s. Setting h(ǫ) = 1/
√

ǫ, we have ρ̃
(ǫ)
0 (h(ǫ)) → 0 and ρ̃i(h(ǫ)) → ρi, for i = 1, . . . , L

(see (3.13) and (3.14)). Choosing g(·) such that limǫ↓0 ρ̃
(ǫ)
0 (h(ǫ))/g(ǫ) = 0 and

limǫ↓0 g(ǫ) = 0, we obtain that the right-hand side in (3.19) converges to ΠL
i=1(1−ρi)

as ǫ ↓ 0. This proves that (3.15) is satisfied when ρ0 < ΠL
i=1(1 − ρi). �

3.4.2 Small class-0 users

In this section we consider class-0 users with small service requirements, compared
to the service requirements of class-i users, i = 1, . . . , L. As before, we study a
sequence of systems indexed by ǫ and let ǫ ↓ 0. In the ǫ-system, class-0 users arrive

according to a Poisson process of rate λ
(ǫ)
0 := λ0/ǫ and the sizes are distributed

as ǫB0.
The next proposition shows that in the ǫ-system, the maximum stability condi-

tions can be arbitrarily close to the sufficient stability conditions when we consider

B
(ǫ)
0 truncated at h(ǫ), with limǫ↓0 h(ǫ) = 0.

Proposition 3.4.4. Assume the policy is weak or strict LAS and consider a func-
tion h(ǫ) such that limǫ↓0 h(ǫ) = 0. If ρ0 + ρi < 1 for an i 6= 0, then there exists

an ǭ such that for all 0 < ǫ < ǭ, node i is stable in the ǫ-system with B
(ǫ)
0 truncated

at h(ǫ).
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Proof: Assume ρ0 + ρi < 1, for an i = 1, . . . , L. We have limǫ↓0 h(ǫ) = 0, so there
is an ǭ such that

ρ0 + ρi +

L
∑

j=1,j 6=i

ρ̃j(h(ǫ)) < 1, for all ǫ < ǭ. (3.20)

From this it follows that ρ̃
(ǫ)
0 (h(ǫ)) +

∑L
j=1 ρ̃j(h(ǫ)) < 1, for all ǫ < ǭ, which, by

Lemma 3.1.4 (iii), is a sufficient condition for stability of the h(ǫ)-truncated system.

According to Property 3.4.1, for ǫ < ǭ, Q0 is stable when B
(ǫ)
0 is truncated at h(ǫ).

For class i, Property 3.4.1 implies that Qi is stable in the (h(ǫ),∞, . . . ,∞)-
truncated system if and only if Qi is stable in the (h(ǫ), . . . , h(ǫ),∞, h(ǫ), . . . , h(ǫ))-
truncated system, with ∞ in the i + 1-th component. Because of Lemma 3.1.4 (iii),
for the latter it is sufficient to have (3.20), which holds for all ǫ < ǭ. �

Remark 3.4.5. The fact that we can choose h(ǫ) such that limǫ↓0 h(ǫ)/ǫ = ∞,

and thus P(B
(ǫ)
0 ≤ h(ǫ)) → 1, as ǫ ↓ 0, suggests that the non-truncated ǫ-system

can be arbitrarily closely approximated by the truncated one. However, the proof

of Proposition 3.4.4 relies on the truncation of B
(ǫ)
0 . In the particular case that

B0 is bounded from above by a constant M , Proposition 3.4.4 does imply that the
condition ρ0 + ρi < 1 is sufficient for stability of node i in the ǫ-system for ǫ small
enough (take h(ǫ) = ǫM).

3.5 Concluding remarks

We have explored the fundamental stability properties of size-based scheduling poli-
cies in linear bandwidth-sharing networks. In particular, we established the exact
stability conditions for SRPT and LAS scheduling in various limiting regimes. De-
spite its simplicity, the linear network appears already sufficiently rich to exhibit
instability phenomena that may occur for general network topologies and route
structures. The results indicate that, due to the simultaneous resource possession,
size-based scheduling among classes may fail to use the available resources efficiently,
and cause instability effects, even at arbitrarily low traffic loads.

In particular, the results in this chapter imply that the prototypical size-based
scheduling policies will certainly not yield optimal performance in bandwidth-sharing
networks when applied among classes. Instead, proper tuning of the parameters of
weighted α-fair bandwidth-sharing policies, which are stable under the maximum
stability conditions, or applying size-based scheduling within classes, might provide
more promising approaches for improving the performance of the network. This will
be further explored in Chapters 4, 5, and 6. It is noteworthy that in single-link sce-
narios, weighted α-fair policies essentially reduce to DPS policies, which are known
to cover the entire achievable mean-holding cost region (for non-anticipating poli-
cies) in the case of exponentially distributed service requirements [56, Lemma 6.3].



Chapter 4

Optimal scheduling
in a linear network

The focus of the present and the next two chapters is on optimal scheduling in a lin-
ear bandwidth-sharing network. As observed in Chapter 3, the size-based scheduling
policies SRPT and LAS, which have optimality properties in single-server models,
may cause instability effects in a network scenario and, hence, do certainly not yield
optimal performance. This indicates that for a general setting, optimal policies are
hard to obtain. In this chapter we therefore mainly focus on exponentially dis-
tributed service requirements and restrict the attention to non-anticipating policies,
i.e., policies that do not have knowledge of the remaining service requirements. We
seek policies that minimize in some sense the holding cost. Our main result is that
an optimal policy can be characterized by so-called switching curves, i.e., the pol-
icy dynamically switches between several priority rules. In particular, for special
choices of the mean service requirements, it reduces to simple priority rules.

A popular class of policies studied in the context of bandwidth-sharing networks
are the α-fair bandwidth-sharing policies. These policies achieve stability under the
maximum stability conditions, provided α > 0. However, it is not well understood to
what extent their performance leaves potential room for improvement. Armed with
the knowledge of an optimal policy in the linear network, we compare numerically
its performance with various α-fair bandwidth-sharing policies. Our results indicate
that, for a moderately-loaded system, the optimal policy achieves only modest im-
provements over an optimized α-fair policy. In their turn, the performance of α-fair
policies is fairly insensitive to the value of α, as long as this value is not too small.

This chapter is organized as follows. In Section 4.1 we provide a model descrip-
tion and discuss some preliminaries. In Section 4.2 we derive sample-path compar-
isons for the workload processes under various scheduling policies. These results are
used in Section 4.3 to show that for certain settings simple priority rules minimize
the mean holding cost. In the case of two nodes, we use dynamic programming tech-
niques to show that such policies are in fact stochastically optimal. In addition, we
show that an optimal policy can be characterized by a switching curve. Numerical
experiments can be found in Section 4.4. We summarize our results in Section 4.5.
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4.1 Model and preliminaries

We consider a linear network with L nodes and L + 1 classes, where class i requires
service at node i only, i = 1, . . . , L, while class 0 requires service at all L nodes
simultaneously, see Figure 1.2. For convenience, we assume each of the nodes to
have a unit service rate. Hence, a rate allocation is feasible when it belongs to
the capacity region S := {(s0, . . . , sL) ∈ R

L+1
+ : s0 + si ≤ 1, for all i = 1, . . . , L},

which is depicted in Figure 1.5 for the case L = 2. Class-j users arrive according
to independent Poisson processes of rate λj , and have generally distributed service
requirements Bj , j = 0, . . . , L. Define the traffic load of class j by ρj := λjE(Bj).
For a given policy π, denote by Nπ

j (t) the number of class-j users and by Wπ
j (t) the

workload in class j, at time t. We further define Nπ
j and Wπ

j as random variables
with the corresponding steady-state distributions (when they exist).

For any point in time, a policy decides how the capacity is divided between
the various classes. We assume that the numbers of users in the various classes are
observable to a policy. The class containing all policies is denoted by Π and the class
containing all (possibly preemptive) non-anticipating policies is denoted by Π̄ ⊂ Π.
We also define two classes of priority rules, which play a central role in this chapter:

• Π∗: π∗ ∈ Π∗ when π∗ gives preemptive priority to class 0 whenever it is back-
logged. Otherwise, all other classes with a backlog are served simultaneously.

• Π∗∗: π∗∗ ∈ Π∗∗ when π∗∗ simultaneously serves all classes i = 1, . . . , L when-
ever at least one user of each class is present. Otherwise class 0 is served.
When class 0 is empty, any other class with at least one user present is served.

Policies in Π∗ and Π∗∗ ensure that each node operates at full rate whenever it is non-
empty. Hence, those policies achieve a stable system under the maximum stability
conditions ρ0 + ρi < 1, i = 1, . . . , L, see Lemma 3.1.4 (ii).

Besides the stability conditions, it is possible to derive closed-form expressions
for other performance measures for a policy π∗ ∈ Π∗ as well. Note that class 0 does
not notice the presence of other classes under a policy π∗. The mean amount of
class-0 work is therefore given by the Pollaczek-Khintchine formula:

E(Wπ∗

0 ) =
λ0E(B0

2)

2(1 − ρ0)
.

With a policy π∗, any class i 6= 0 sees its service being interrupted by busy periods
of class 0, so that [133]:

E(Wπ∗

i ) =
λ0E(B0

2) + λiE(Bi
2)

2(1 − ρ0 − ρi)
− λ0E(B0

2)

2(1 − ρ0)
.

These formulas hold for any service requirement distribution and intra-class pol-
icy. In the special case of exponentially distributed service requirements and a
non-anticipating intra-class policy, the mean number of users can simply be ob-
tained from E(Nπ

i ) = µiE(Wπ
i ), with µi = 1/E(Bi) (and thus E(Bi

2) = 2/µ2
i ). In
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particular, if π∗ ∈ Π∗ ∩ Π̄, then

E(Nπ∗

0 ) =
ρ0

1 − ρ0
, (4.1)

E(Nπ∗

i ) =
ρi

1 − ρ0 − ρi
+

µi

µ0

(

ρ0

1 − ρ0 − ρi
− ρ0

1 − ρ0

)

, i = 1, . . . , L. (4.2)

For a policy π∗∗ ∈ Π∗∗ there is no closed-form expression available for the mean
workloads. For L = 2, determining these is equivalent to solving a boundary-value
problem [42]: the service rate allocated to any class i depends on the workloads of
both other classes.

4.2 Workload

In this section we compare (sample-path wise) the workloads of the various classes
under different policies. In fact, the results presented in this section are valid for
generally distributed inter-arrival times.

Let πi be a policy that is work-conserving in node i, for an i = 1, . . . , L, i.e.,
the capacity of node i is fully used whenever that node is backlogged. Obviously,
such a policy stochastically minimizes the total workload process in node i. More
specifically, if Wπi

0 (0) + Wπi

i (0) ≤st Wπ
0 (0) + Wπ

i (0) for a policy π ∈ Π, then

{Wπi

0 (t) + Wπi

i (t)}t≥0 ≤st {Wπ
0 (t) + Wπ

i (t)}t≥0. (4.3)

This is obtained by considering the same realizations of the arrival processes and
service requirements under both policies. Note that policies in Π∗ and Π∗∗ are work-
conserving in each node, so (4.3) holds for all i = 1, . . . , L, when πi ∈ Π∗ ∪ Π∗∗.
We call Wπ

0,j,k(t) := Wπ
0 (t) + Wπ

j (t) + Wπ
k (t) the aggregate workload in nodes j

and k. Besides minimizing the workload in each node at any point in time, any
policy π∗∗ ∈ Π∗∗ also minimizes the aggregate workload in at least one pair of
nodes (these need not always be the same) as is formalized in the following lemma.
This result will be useful for the analysis in the next section.

Lemma 4.2.1. Consider the same realizations of the arrival processes and service
requirements for a policy π∗∗ ∈ Π∗∗ and a policy π ∈ Π. If for t = 0 there exist
nodes j and k with j 6= k, such that

Wπ∗∗

0,j,k(t) ≤ Wπ
0,j,k(t), (4.4)

then, for any t > 0, there exist j and k (not necessarily the same as at time t = 0)
with j 6= k such that (4.4) holds.

In particular, when L = 2, the lemma states that any policy in Π∗∗ stochastically
minimizes the total workload in the system. We note that there is no policy that
achieves the same for L > 2. In the short term it is favorable to not serve class 0
whenever there are users present of at least two other classes (classes 1, . . . , K).
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However, in the long run, serving class 0 when present may allow all other classes to
be served at an even higher rate later and possibly empty the entire system sooner.

Proof of Lemma 4.2.1: We show by contradiction that u, defined as

u := inf{t > 0 : Wπ∗∗

0,j,k(t) > Wπ
0,j,k(t), for all j, k = 1, . . . , L, j 6= k},

cannot be finite. Let us suppose u < ∞. Inequality (4.4) can only be violated for
all pairs j and k immediately after time u, when it holds with equality at time u
for some j and k, which we fix for the remainder of the proof. In addition, for
the equality to cease to be valid, policy π∗∗ should not be serving both classes j
and k at full rate, hence we have for example Wπ∗∗

j (u) = 0. Policy π∗∗ is work-

conserving in all nodes. Hence, from (4.3) we obtain Wπ∗∗

0jk (t) = Wπ∗∗

0 (t)+Wπ∗∗

k (t) ≤
Wπ

0 (t)+Wπ
k (t) ≤ Wπ

0jk(t), for all u ≤ t < Tj, with Tj the moment of the first class-j
arrival after time u. This contradicts the definition of u. �

4.3 Optimality results

In the remainder of this chapter we focus on exponentially distributed service re-
quirements and write µj := 1/E(Bj), j = 0, 1, . . . , L. We are interested in non-

anticipating policies that minimize in some sense the holding cost
∑L

j=0 cjNj(t),
where cj is an arbitrary nonnegative cost associated with class j, j = 0, . . . , L.

To put our results in context, we recall that the cµ-rule is known to minimize the
mean holding cost in a single-server multi-class queue with exponentially distributed
service requirements among all non-anticipating policies [38, 102]. The rationale
behind this rule is that it maximizes the weighted departure rate at all times. The
problem of how to allocate the capacity of the nodes among the various users in
a linear network is more complex. Besides trying to maximize the total weighted
departure rate of the system, we must take into account that giving more preference
to class 0 may make better use of the available capacity. For example, when ciµi >
c0µ0 for all i = 1, . . . , L, giving preemptive priority to classes 1, . . . , L, myopically
maximizes the total weighted departure rate of the system. However, such a policy
unnecessarily causes instability when ΠL

i=1(1 − ρi) < ρ0, see Proposition 3.2.1. In
general, there can be a trade-off between maximizing the total weighted departure
rate and using the full capacity in each backlogged node. For relatively ‘large’
values of µ0 these two objectives are compatible and priority rules are optimal. More
precisely, this is so when c0µ0 ≥∑i≥1,i6=j ciµi for all j 6= 0, which will be the setting
of Section 4.3.1. In Section 4.3.2 we treat the other case, i.e., c0µ0 <

∑

i≥1,i6=j ciµi

for an j 6= 0, and describe the general structure of an optimal policy.

4.3.1 Priority rules and optimality

In this section, we prove that priority rules minimize the mean holding cost when
c0µ0 >

∑

i≥1,i6=j ciµi for all j 6= 0. In the case of two nodes (L = 2), we establish
stochastic optimality.
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Mean holding cost

Because of the memoryless property of the exponential distribution and since we
will only consider non-anticipating policies, the workload, Wj(t), is distributed as
∑Nj(t)

k=1 Ej
k, where Ej

k are i.i.d. exponential random variables with mean 1/µj. After

taking expectations, this gives E(Wj(t)) =
E(Nj(t))

µj
. This relation allows to use the

results of Section 4.2 to readily derive that, in certain cases, priority rules minimize
the mean holding cost. These optimality results are in fact valid for generally
distributed inter-arrival times.

Proposition 4.3.1. (This proposition holds for generally distributed inter-arrival
times.) Assume exponentially distributed service requirements. Let π ∈ Π̄, π∗ ∈
Π∗ ∩ Π̄, and assume Wπ∗

j (0) ≤st Wπ
j (0), for all j = 0, . . . , L. If

∑L
i=1 ciµi ≤ c0µ0,

then E(
∑L

j=0 cjN
π∗

j (t)) ≤ E(
∑L

j=0 cjN
π
j (t)), for all time t ≥ 0.

Proof: Giving preemptive priority to class 0 stochastically minimizes the workload
of class 0, i.e., {Wπ∗

0 (t)}t≥0 ≤st {Wπ
0 (t)}t≥0. Hence, we have

E(Nπ∗

0 (t)) ≤ E(Nπ
0 (t)). (4.5)

By (4.3), policy π∗ stochastically minimizes the workload in each node, which implies

by the relation E(Wi(t)) = E(Ni(t))
µi

that

1

µ0
E(Nπ∗

0 (t)) +
1

µi
E(Nπ∗

i (t)) ≤ 1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t)), (4.6)

for all i = 1, . . . , L. Multiplying (4.5) by
c0µ0−

∑L
i=1 ciµi

µ0
≥ 0, multiplying (4.6)

by ciµi ≥ 0, for all i = 1, . . . , L, and summing these L + 1 inequalities gives
E(
∑L

j=0 cjN
π∗

j (t)) ≤ E(
∑L

j=0 cjN
π
j (t)). �

Proposition 4.3.2. (This proposition holds for generally distributed inter-arrival
times.) Assume exponentially distributed service requirements. Let π ∈ Π̄, π∗∗ ∈
Π∗∗ ∩ Π̄, and assume Wπ∗∗

j (0) ≤st Wπ
j (0), for all j = 0, . . . , L. If

∑L
i=1 ciµi ≥

c0µ0 ≥ ∑L
i=1,i6=j ciµi for all j 6= 0, then E(

∑L
j=0 cjN

π∗∗

j (t)) ≤ E(
∑L

j=0 cjN
π
j (t)),

for all time t ≥ 0.

Proof: Note that both the stochastic inequalities in (4.3) and in (4.4) are obtained
by coupling the arrival and service processes. Consider one such realization. At
time t we then have

Wπ∗∗

0 (t) + Wπ∗∗

i (t) ≤ Wπ
0 (t) + Wπ

i (t), for all i 6= 0, (4.7)

and there are classes j, k 6= 0, j 6= k, such that

Wπ∗∗

0 (t) + Wπ∗∗

j (t) + Wπ∗∗

k (t) ≤ Wπ
0 (t) + Wπ

j (t) + Wπ
k (t). (4.8)

Now multiply (4.7) by c0µ0 −∑L
l=1,l6=i clµl ≥ 0, for i = j, k and by ciµi for all

i 6= 0, j, k, multiply inequality (4.8) by
∑L

i=1 ciµi − c0µ0 ≥ 0, and sum these L + 1
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inequalities to obtain
∑L

j=0 cjµjW
π∗∗

j (t) ≤ ∑L
j=0 cjµjW

π
j (t). Taking expectations

on both sides gives the result. �

The above-obtained results extend to the case of hyperexponentially distributed
service requirements with parameters pik,

∑Ki

k=1 pik = 1, and µik, k = 1, . . . , Ki. Op-
timality in expectation of a policy π∗ ∈ Π∗∩ Π̄ or of a policy π∗∗ ∈ Π∗∗∩ Π̄ can then
be established when either

∑L
i=1 µmax

i ≤ µmin
0 or

∑L
i=1 µmin

i ≥ µmax
0 and µmin

0 ≥
∑L

i=1,i6=j µmax
i , for all j = 1, . . . , L, respectively, with µmin

j = mink=1,...,Kj µjk and
µmax

j = maxk=1,...,Kj µjk.

Stochastic optimality

It is worth noting that despite the stochastic workload relations, the above argu-
ments cannot be strengthened to prove that priority rules in fact stochastically
minimize the holding cost for the given parameter values. This can, however, be
accomplished using a dynamic programming approach in the case of two nodes and
unit costs, cj = 1, j = 0, . . . , L. (This agrees with the stochastic optimality of the
cµ-rule, which has only been proved in the case of unit costs [114].) The obtained
stochastic optimality results concern exponentially distributed service requirements.
For an extension to phase-type distributed service requirements we refer to [140].

We consider the uniformized Markov chain, that is, transition epochs are gen-
erated by a Poisson process of uniform rate ν =

∑L
j=0 λj +

∑L
j=0 µj . Since ν is

finite, we may assume ν = 1 without loss of generality. We then focus on the
discrete-time Markov chain embedded at transition epochs, and, for transparency
of notation, denote the number of class-j users after t steps by Nj(t), j = 0, . . . , L.
We define the value functions Vm(·) : Z

L+1
+ → R, m = 0, 1, . . ., as follows. Let

~x = (x0, . . . , xL) ∈ Z
L+1. Then, V0(~x) := C̃(~x), with C̃(·) : Z

L+1
+ → R a terminal

cost, and for m = 1, 2, . . . ,

Vm+1(~x) := C(~x) +

L
∑

i=0

λiVm(~x + ~ei)

+ min
~s∈S







L
∑

j=0

1(xj>0)µjsjVm(~x − ~ej) + (1 −
L
∑

j=0

λj −
L
∑

j=0

1(xj>0)µjsj)Vm(~x)







= C(~x) +

L
∑

i=0

λiVm(~x + ~ei) +

L
∑

i=0

µiVm(~x)

+ min
~s∈S







L
∑

j=0

1(xj>0)µjsj (Vm(~x − ~ej) − Vm(~x))







, (4.9)

with C(·) : Z
L+1
+ → R the direct cost, S the capacity region, and ~ej ∈ Z

L+1 the

(j + 1)-th unit vector, j = 0, . . . , L. Setting C(~x) = 0 and C̃(~x) = 1(
∑L

j=0 xj>y),

we obtain Vm+1(~x) = minπ∈Π̄ P(
∑L

j=0 Nπ
j (m + 1) > y| ~N(0) = ~x), with ~N(t) =
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(N0(t), . . . , NL(t)). Hence, if we can show that for all y ≥ 0 and all m ∈ {0, 1, . . .}
we can choose the same minimizing action in (4.9) (the optimal action may depend
on the state ~x), then the corresponding stationary policy stochastically minimizes
the total number of users at every instant in time.

The following lemma states that the value functions are non-decreasing.

Lemma 4.3.3. If C(·) and C̃(·) are non-decreasing in xj , for all j, then Vm(·) is
non-decreasing in xj , for all j and m = 0, 1, . . ..

Proof The statement follows directly from the definition of Vm(·). �

The set S is convex, hence the minimizing action in (4.9) will be one of the
extreme points of S. From the lemma above, it can be concluded that the minimizer
will not be ~0 ∈ S, since

∑L
j=0 1(xj>0)µjsj (Vm(~x − ~ej) − Vm(~x)) ≤ 0 for all ~s ∈ S.

Hence we can rewrite the function Vm+1(·) as follows:

Vm+1(~x) = C(~x) +

L
∑

i=0

λiVm(~x + ~ei)

+ min(µ0Vm((x0 − 1)+, . . . , xL) +
L
∑

i=1

µiVm(~x),

µ0Vm(~x) +

L
∑

i=1

µiVm(x0, . . . , xi−1, (xi − 1)+, xi+1 . . . , xL)). (4.10)

From now on we focus on the case L = 2. In order to obtain stochastic optimality
results, we prove three lemmas that establish convenient properties of the functions
Vm(·), m = 0, 1, . . . , without specifying the functions C(·) and C̃(·). The proofs
may be found in Appendix 4.A.

The first lemma shows that under certain conditions on the cost functions, the
minimizing action in (4.10) will be to always serve class 0 rather than classes 1 or 2
alone, independent of the remaining time horizon.

Lemma 4.3.4. Assume C(·) and C̃(·) are non-decreasing in x0, x1 and x2. If both
Z = C and Z = C̃ satisfy for i, j = 1, 2, with i 6= j,

µ0Z(~x − ~e0) + µiZ(~x) ≤ µ0Z(~x) + µiZ(~x − ~ei), (4.11)

for all x0, xi > 0, xj ≥ 0, then the same is true for Z = Vm for all m.

The next lemma shows that under certain conditions on the cost functions it is
better to serve class 0 rather than classes 1 and 2 simultaneously, independent of
the remaining time horizon.

Lemma 4.3.5. Assume C(·) and C̃(·) are non-decreasing in x0, x1 and x2. If both
Z = C and Z = C̃ satisfy (4.11) for i = 1 and i = 2, and, in addition, satisfy

µ0Z(~x − ~e0) + (µ1 + µ2)Z(~x) ≤ µ0Z(~x) + µ1Z(~x − ~e1) + µ2Z(~x − ~e2), (4.12)

for all x0, x1, x2 > 0, then the same is true for Z = Vm for all m.
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Combining Lemmas 4.3.4 and 4.3.5 we obtain that any policy π∗ ∈ Π∗ ∩ Π̄ is
stochastically optimal when µ1 + µ2 ≤ µ0.

Proposition 4.3.6. Assume exponentially distributed service requirements. Let
π∗ ∈ Π∗ ∩ Π̄, π ∈ Π̄, and assume ~Nπ∗

(0) = ~Nπ(0). If µ1 + µ2 ≤ µ0, then
∑2

j=0 Nπ∗

j (t) ≤st

∑2
j=0 Nπ

j (t), for all time t ≥ 0.

Proof: We set C(~x) = 0. If µ1 + µ2 ≤ µ0, then the non-decreasing function
C̃(~x) = 1(

∑

2
j=0 xj>y) satisfies (4.11) for i = 1 and i = 2, and (4.12). Lemmas 4.3.4

and 4.3.5 imply that serving class 0 (whenever possible) is always the minimizing
action in (4.10). �

In the following lemma we show that under certain conditions on the cost func-
tions, it can also be better to serve classes 1 and 2 whenever both are present, rather
than class 0. Again this is independent of the remaining time horizon.

Lemma 4.3.7. Assume C(·) and C̃(·) are non-decreasing in x0, x1 and x2. If both
Z = C and Z = C̃ satisfy

µ0Z(~x) + µ1Z(~x − ~e1) + µ2Z(~x − ~e2) ≤ µ0Z(~x − ~e0) + (µ1 + µ2)Z(~x), (4.13)

for all x0, x1, x2 > 0, then the same is true for Z = Vm for all m.

Combining Lemmas 4.3.4 and 4.3.7 we obtain that any policy π∗∗ ∈ Π∗∗ ∩ Π̄ is
stochastically optimal when µ1, µ2 ≤ µ0 and µ1 + µ2 ≥ µ0.

Proposition 4.3.8. Assume exponentially distributed service requirements. Let
π∗∗ ∈ Π∗∗ ∩ Π̄, π ∈ Π̄, and assume ~Nπ∗∗

(0) = ~Nπ(0). If µ1, µ2 ≤ µ0 and µ1 + µ2 ≥
µ0, then

∑2
j=0 Nπ∗∗

j (t) ≤st

∑2
j=0 Nπ

j (t), for all time t ≥ 0.

Proof: We set C(~x) = 0. If µ1, µ2 ≤ µ0 and µ1 + µ2 ≥ µ0, then the non-decreasing
function C̃(~x) = 1(

∑2
j=0 xj>y) satisfies (4.11) for i = 1 and i = 2, and (4.13). This

implies that the minimizing action in (4.10) is to serve classes 1 and 2 whenever
both are present (Lemma 4.3.7) and to serve class 0 otherwise (Lemma 4.3.4). �

4.3.2 General structure of an average-cost optimal policy

Again assuming exponential service requirements, we now explore the remaining
case when there exists a j = 1, . . . , L, such that

∑L
i=1,i6=j ciµi ≥ c0µ0. It may

still be better to sometimes serve class 0, even if that does not maximize the total
weighted departure rate in the short run. Doing so creates the potential to serve
classes 1, . . . , L simultaneously in the future, and therefore achieve a higher degree of
parallelism. Hence, as the number of users varies, the system will dynamically switch
between several priority rules. We focus on an average-cost optimal policy, i.e., a

policy that minimizes lim supT→∞
1
T E(

∫ T

0

∑L
j=0 cjN

π
j (t))dt over all policies π ∈ Π̄.

According to [123, Corollary 20] such an average-cost optimal policy exists.
We focus on the case of two nodes and hence consider service rates such that

µ0 < µi for at least one i = 1, 2. Intuitively it is clear that when there are users
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of both classes 1 and 2 present, serving them will be optimal. When there are only
users of classes 0 and 1 present (no class-2 users) and c1µ1 < c0µ0, serving class 0
seems appropriate, since it uses the full capacity in both nodes, and it maximizes
the weighted departure rate. However, when c0µ0 < c1µ1, there is no obvious
choice: serving class 1 will maximize the weighted departure rate, but leaves node 2
unused. In contrast, serving class 0 uses the full capacity of the network, but the
weighted departure rate is not maximized. The next proposition states that in such
situations, the average-optimal policy can be characterized by a switching curve
that determines which class should be served. Note that no closed-form expression
for this curve can be obtained using dynamic programming techniques. Finding
approximations for the switching curve will be the subject of Chapter 5.

Proposition 4.3.9. Assume exponentially distributed service requirements. Con-
sider a non-anticipating policy that is described by switching curves hi(·), i = 1, 2:

• When N1(t), N2(t) > 0, classes 1 and 2 are served simultaneously.

• When N3−i(t) = 0 and c0µ0 ≥ ciµi, for an i = 1, 2, class 0 is served.

• When N3−i(t) = 0 and c0µ0 < ciµi, for an i = 1, 2, class 0 is served if
Ni(t) < hi(N0(t)), and otherwise class i is served.

If c1µ1+c2µ2 > c0µ0, then there exist switching curves such that the policy described
above is an average-cost optimal policy (among all non-anticipating policies).

In the remainder of this section we give a proof of Proposition 4.3.9. We focus
again on the discrete-time Markov chain and value functions Vm(·) as defined in

Section 4.3.1. Choosing C(~x) =
∑2

j=0 cjxj and C̃(~x) = 0 implies that the objective
is to find an average-cost optimal policy, i.e., a policy that minimizes the average

holding cost lim supT→∞
1
T E(

∫ T

0

∑2
j=0 cjNj(t)dt). For now, we do not consider any

particular choice of the cost functions and derive, under certain conditions on the
cost functions, inequalities for the value functions.

In case there are no class-2 users present, the optimal action is described by a
switching curve if only if the value function V (·) = limm→∞ Vm(·)−mg, with g the
minimum average cost, satisfies Properties A and B below. By symmetry, similar
properties are required for the existence of a switching curve when there are no
class-1 users.

Property A: If it is optimal to serve class 1 in state (x0, x1, 0), then this is optimal
in state (x0, x1 + 1, 0) as well. Or equivalently, if

(µ0 + µ2)V (x0, x1, 0) + µ1V (x0, x1 − 1, 0)

≤ µ0V (x0 − 1, x1, 0) + (µ1 + µ2)V (x0, x1, 0),

then

(µ0 + µ2)V (x0, x1 + 1, 0) + µ1V (x0, x1, 0)

≤ µ0V (x0 − 1, x1 + 1, 0) + (µ1 + µ2)V (x0, x1 + 1, 0).
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Note that this property is implied by the following inequality:

µ0V (x0, x1 + 1, 0) + µ0V (x0 − 1, x1, 0) + 2µ1V (x0, x1, 0) (4.14)

≤ µ0V (x0, x1, 0) + µ0V (x0 − 1, x1 + 1, 0) + µ1V (x0, x1 − 1, 0) + µ1V (x0, x1 + 1, 0).

Property B: If it is optimal to serve class 0 in state (x0, x1, 0), then this is optimal
in state (x0 + 1, x1, 0) as well. Or equivalently, if

µ0V (x0 − 1, x1, 0) + (µ1 + µ2)V (x0, x1, 0)

≤ (µ0 + µ2)V (x0, x1, 0) + µ1V (x0, x1 − 1, 0),

then

µ0V (x0, x1, 0) + (µ1 + µ2)V (x0 + 1, x1, 0)

≤ (µ0 + µ2)V (x0 + 1, x1, 0) + µ1V (x0 + 1, x1 − 1, 0).

This property is implied by the following inequality:

2µ0V (x0, x1, 0) + µ1V (x0 + 1, x1, 0) + µ1V (x0, x1 − 1, 0) (4.15)

≤ µ0V (x0 + 1, x1, 0) + µ0V (x0 − 1, x1, 0) + µ1V (x0 + 1, x1 − 1, 0) + µ1V (x0, x1, 0).

To derive the main result of a switching curve structure, we show that inequali-
ties (4.14) and (4.15) (and hence Properties A and B), as well as the two analogous
versions of them (when class 1 is empty), hold for Vm(·), m = 0, 1, . . .. The proof,
which may be found in Appendix 4.B, follows by induction on m. In each step,
three auxiliary inequalities are proved as well, representing submodularity and su-
permodularity of the value functions [79].

Lemma 4.3.10. Assume C(·) and C̃(·) are non-decreasing in x0, x1 and x2. If
Z = C and Z = C̃ satisfy equation (4.13), as well as the following four inequalities,
for all x0 > 0, x1, x2 ≥ 0,:

µ0Z(~x + ~e1) + µ0Z(~x − ~e0) + 2µ1Z(~x)

≤ µ0Z(~x) + µ0Z(~x − ~e0 + ~e1) + µ1Z(x0, (x1 − 1)+, x2) + µ1Z(~x + ~e1), (4.16)

µ0Z(~x + ~e2) + µ0Z(~x − ~e0) + 2µ2Z(~x)

≤ µ0Z(~x) + µ0Z(~x − ~e0 + ~e2) + µ2Z(x0, x1, (x2 − 1)+) + µ2Z(~x + ~e2), (4.17)

2µ0Z(~x) + µ1Z(~x + ~e0) + µ1Z(x0, (x1 − 1)+, x2)

≤ µ0Z(~x + ~e0) + µ0Z(~x − ~e0) + µ1Z(x0 + 1, (x1 − 1)+, x2) + µ1Z(~x), (4.18)

2µ0Z(~x) + µ2Z(~x + ~e0) + µ2Z(x0, x1, (x2 − 1)+)

≤ µ0Z(~x + ~e0) + µ0Z(~x − ~e0) + µ2Z(x0 + 1, x1, (x2 − 1)+) + µ2Z(~x), (4.19)
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and the following three properties, for all x0, x1, x2 ≥ 0,:

Supermodularity in the components x0 and x2 : (4.20)

Z(x0, x1, (x2 − 1)+) + Z((x0 − 1)+, x1, x2) ≤ Z(~x) + Z((x0 − 1)+, x1, (x2 − 1)+),

Supermodularity in the components x0 and x1 : (4.21)

Z(x0, (x1 − 1)+, x2) + Z((x0 − 1)+, x1, x2) ≤ Z(~x) + Z((x0 − 1)+, (x1 − 1)+, x2),

Submodularity in the components x1 and x2 : (4.22)

Z(x0, (x1 − 1)+, (x2 − 1)+) + Z(~x) ≤ Z(x0, (x1 − 1)+, x2) + Z(x0, x1, (x2 − 1)+),

then the same is true for Z = Vm for all m.

We are now able to prove Proposition 4.3.9.

Proof of Proposition 4.3.9: We set C̃(~x) = 0. If c1µ1+c2µ2 > c0µ0, then the non-

decreasing cost function C(~x) =
∑2

j=0 cjxj satisfies all conditions in Lemmas 4.3.7
and 4.3.10. Hence, the minimizing action in (4.10) is to serve classes 1 and 2
whenever both are present (Lemma 4.3.7), independent of the value m. When
choosing x2 = 0 in (4.16) and (4.18) and x1 = 0 in (4.17) and (4.19), we obtain the
desired inequalities for the existence of a switching curve. In addition, if c0µ0 ≥ ciµi,
i 6= 0, then C(~x) =

∑2
j=0 cjxj satisfies the relation (4.11). Hence, in that case the

minimizing action in (4.10) is to serve class 0 rather than class i alone. �

4.4 Numerical evaluation of α-fair policies

In this section we compare the performance of the optimal policy with that of α-fair
bandwidth-sharing policies with unit weights wj = 1, j = 0, . . . , L, as defined in
Section 1.4.1. Recall that when α = 1, the α-fair policy is also referred to as the
Proportional Fair (PF) policy. In that case, the steady-state distribution of the
number of users is of product form and insensitive to the service requirements. In
particular, the mean numbers of users equal [94]

E(NPF
0 ) =

ρ0

1 − ρ0

(

1 +

L
∑

i=1

ρi

1 − ρ0 − ρi

)

, (4.23)

E(NPF
i ) =

ρi

1 − ρ0 − ρi
, i = 1, . . . , L. (4.24)

Comparing the total mean number of users under PF and a policy π∗ ∈ Π∗ ∩ Π̄
already provides important insight. Assuming exponential service requirements,
from (4.1), (4.2), (4.23), and (4.24) we obtain that

E(

L
∑

j=0

cjN
π∗

j ) − E(

L
∑

j=0

cjN
PF
j ) =

ρ0

1 − ρ0

L
∑

i=1

ρi

1 − ρ0 − ρi

(

ci
µi

µ0
− c0

)

. (4.25)
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Note that for µ0 < µ̄0 :=
∑L

i=1 λici/(1−ρ0−ρi)

c0
∑L

i=1 ρi/(1−ρ0−ρi)
(relatively large class-0 users), PF does

better than π∗, and the difference in (4.25) is unbounded as µ0 ↓ 0. For µ0 > µ̄0

(relatively small class-0 users), it is better to prioritize class 0. In fact, π∗ achieves

the minimum mean holding cost among all strategies in Π̄, when c0µ0 ≥
∑L

i=1 ciµi.

Still, the difference is bounded by − ρ0

1−ρ0

∑L
i=1

c0ρi

1−ρ0−ρi
. Thus, PF performs reason-

ably well compared to π∗ over a wide range of parameter values.

We now proceed to numerically investigate whether the latter finding holds in
greater generality. We consider a linear network with two nodes (L = 2). For
general α-fair bandwidth-sharing policies (α 6= 1) we conduct simulations in order
to estimate the mean numbers of users. The optimal policy is computed using value
iteration after truncating the state space. In cases where the optimal policy is known
explicitly, we verified that the results obtained by value iteration are accurate. We
examined a wide range of scenarios. Since the results are qualitatively similar, we
only present the results for the cases with c0 = c1 = c2 = 1, ρ0 = 0.3, ρ1 = 0.3,
µ1 = 1, µ2 = 0.5, with either (A) ρ2 = 0.2 or (B) ρ2 = 0.5, and varying µ0.

Throughout this section, we use the notation Nπ :=
∑2

j=0 Nπ
j .

In Figure 4.1 we plot the total mean number of users under different policies
as a function of µ0 for cases A and B. We denote by π(α) the α-fair policy with
parameter α and unit weights wj = 1, j = 0, . . . , L. The smallest total mean
number of users among all α-fair policies, minα E(Nπ(α)), is labeled with “opt. α-
fair”. The other curves correspond to the policies π∗ ∈ Π∗ ∩ Π̄, the optimal policy
(“opt. policy”), and two α-fair bandwidth-sharing policies corresponding to α = 1
(PF) and α = 2. First of all, we note that for µ0 ≥ µ1 + µ2 the queue length
under π∗ indeed coincides with that under the optimal allocation. Second, we see
that the performance of the optimal α-fair policy compares well with that of the
optimal policy in the moderately-loaded systems we consider. The gap does not
exceed 20%. Apparently, α-fair policies succeed in dynamically adjusting the rate
allocation in an efficient manner, without any knowledge of the service requirement
parameters. Note that in this chapter we considered α-fair policies with unit weights.
In Chapter 5 we compare the performance of weighted α-fair policies when the
weights are chosen appropriately, and we will see that weighted α-fair policies are
able to approximate the optimal policy rather well. In case of a heavily-loaded
system however, the performance of α-fair policies can be arbitrarily worse compared
to anticipating policies. This is the subject of Chapter 6.

In Figure 4.2 we plot the total mean number of users as a function of α for several
values of µ0, for cases A and B. A striking observation from the simulations is that
as long as the value of α is not too small, the total mean number of users is fairly
insensitive to the value of µ0 (for fixed ρ0). In addition, the differences within the
class of α-fair policies are small: For α > 0.5, the difference between the best and
the worst α-fair policies is roughly 5% and 10%, in cases A and B, respectively.

As can be seen from Figure 4.2, in all cases the optimal value of α is either
close to 0 (for small values of µ0) or equals ∞ (for large values of µ0). In fact, the
performance under the α-fair policies appears to have monotonicity properties in α
(either decreasing or increasing). This effect is further investigated in Chapter 7.
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Figure 4.1: Total mean number of users in case A (left) and case B (right).
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Figure 4.2: Total mean number of users in case A (left) and case B (right).

4.5 Concluding remarks

We have characterized optimal non-anticipating policies in a linear bandwidth-
sharing network with exponential service requirements. These optimal scheduling
policies require a high degree of coordination within the network as well as knowl-
edge of the mean service requirements, which may prohibit actual implementation.
As a benchmark, though, they are extremely useful to assess the effectiveness of
other bandwidth-sharing policies, such as α-fair policies. In all our experiments
we observed that for moderately loaded systems (i) the differences within the class
of α-fair policies are not significant (as long as α is not too small), and (ii) these
policies compare well with the optimal policies. A related result has been obtained
in [161] for the special case of a star network with three links and three classes. The
authors derive performance bounds for PF and for the optimal policy, and obtain
that, in heavy traffic, the total mean number of users under PF is at most 3/2 times
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larger than the mean number of users under the optimal non-anticipating policy.

The optimality results obtained in this chapter concern rate allocation across
classes, and do not involve the scheduling within classes. For exponential service re-
quirements the performance is in fact independent of the employed non-anticipating
intra-class policy. For general distributions however, this is not the case, and a well-
chosen intra-class policy may significantly improve the performance. In Chapter 3
it was shown that standard size-based scheduling policies such as SRPT and LAS
applied across all classes can cause instability effects. However, size-based schedul-
ing within classes, i.e., size-based intra-class policies, may still produce substantial
performance benefits, provided the rate allocation across classes is carefully arbi-
trated to avoid the above instability phenomena. Exactly how to combine size-based
scheduling within classes, and what the potential gains might be, is a non-trivial
issue. In Chapter 6 we investigate this for a linear network in heavy traffic.

Appendix

4.A Proofs of Lemmas 4.3.4, 4.3.5, and 4.3.7

In this section we prove the inequalities in Lemmas 4.3.4, 4.3.5, and 4.3.7 by induc-
tion on m. Obviously, for Z = V0 they hold. The induction step consists in showing
that when an inequality holds for Z = Vm it holds for Z = Vm+1 as well. Define

Ṽm+1(~x) := Vm+1(~x) − C(~x) −
2
∑

j=0

λjVm(~x + ~ej)

= min{µ0Vm((x0 − 1)+, x1, x2) + µ1Vm(~x) + µ2Vm(~x),

µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)}.

By assumption, C(~x)+
∑2

j=0 λjVm(~x+~ej) satisfies the inequality. In order to prove

that Vm+1(·) does so as well, it is therefore sufficient to show that Ṽm+1(·) does.
This will be done in the remainder of this section.

Proof of Lemma 4.3.4: Assume inequality (4.11) holds for Z = Vm with i = 1
and j = 2. We will prove that this holds as well for Z = Ṽm+1. (The proof for the
case i = 2 and j = 1 follows similarly.)

Let x0, x1 > 0 and x2 ≥ 0. By definition, we have

µ0Ṽm+1(~x − ~e0) + µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0) + µ1Vm(~x − ~e0 − ~e1) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+µ1[µ0Vm(~x) + µ1Vm(~x − ~e1) + µ2Vm(x0, x1, (x2 − 1)+)]

= µ0[µ0Vm(~x − ~e0) + µ1Vm(~x)]

+µ1[µ0Vm(~x − ~e0 − ~e1) + µ1Vm(~x − ~e1)]

+µ2[µ0Vm(x0 − 1, x1, (x2 − 1)+) + µ1Vm(x0, x1, (x2 − 1)+)]. (4.26)
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For the state ~x we do not know which action is the minimizer in Ṽm+1(~x). If serving
class 0 is the minimizer, then

µ0Vm(~x − ~e0) + µ1Vm(~x) = Ṽm+1(~x) − µ2Vm(~x).

If serving classes 1 and 2 is the minimizer, then

µ0Vm(~x − ~e0) + µ1Vm(~x) ≤ µ0Vm(~x) + µ1Vm(~x − ~e1)

= Vm+1(~x) − µ2Vm(x0, x1, (x2 − 1)+),

where the inequality follows since (4.11) holds for Vm(·). By Lemma 4.3.3, Vm(·) is
non-decreasing, so we can conclude that

µ0Vm(~x − ~e0) + µ1Vm(~x) ≤ Ṽm+1(~x) − µ2Vm(x0, x1, (x2 − 1)+). (4.27)

Similarly for the state ~x − ~e1 we deduce that

µ0Vm(~x − ~e0 − ~e1) + µ1Vm(~x − ~e1) ≤ Ṽm+1(~x − ~e1) − µ2Vm(x0, x1 − 1, (x2 − 1)+).

Together with (4.26) and (4.27) this gives

µ0Ṽm+1(~x − ~e0) + µ1Ṽm+1(~x)

≤ µ0Ṽm+1(~x) + µ1Ṽm+1(~x − ~e1) + µ2

[

µ0Vm(x0 − 1, x1, (x2 − 1)+)

+(µ1 − µ0)Vm(x0, x1, (x2 − 1)+) − µ1Vm(x0, x1 − 1, (x2 − 1)+)
]

≤ µ0Ṽm+1(~x) + µ1Ṽm+1(~x − ~e1),

where the last inequality follows since (4.11) holds for Vm(·). This proves that
Ṽm+1(·) satisfies (4.11). �

Proof of Lemma 4.3.5: Assume inequality (4.12) holds for Z = Vm. We prove
that this holds as well for Z = Ṽm+1. Let x0, x1, x2 > 0. We have

µ0Ṽm+1(~x − ~e0) + (µ1 + µ2)Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0) + µ1Vm(~x − ~e0 − ~e1) + µ2Vm(~x − ~e0 − ~e2)]

+(µ1 + µ2)[µ0Vm(~x) + µ1Vm(~x − ~e1) + µ2Vm(~x − ~e2)]

= µ0[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)] (4.28)

+µ1[µ0Vm(~x − ~e0 − ~e1) + (µ1 + µ2)Vm(~x − ~e1)] (4.29)

+µ2[µ0Vm(~x − ~e0 − ~e2) + (µ1 + µ2)Vm(~x − ~e2)]. (4.30)

By (4.12), the expression (4.28) is equal to µ0Ṽm+1(~x). Note that Lemma 4.3.4
implies that Vm(·) satisfies (4.11). If x1 = 1, it follows from (4.11) that (4.29) is
equal to µ1Ṽm+1(~x − ~e1). If x1 > 1, it follows from (4.12) that (4.29) is equal to
µ1Ṽm+1(~x−~e1) as well. Similarly, the expression in (4.30) is equal to µ2Ṽm+1(~x−~e2),
because of (4.11) and (4.12). This implies that Z = Ṽm+1 satisfies (4.12). �
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Proof of Lemma 4.3.7: Assume inequality (4.13) holds for Z = Vm. We prove
that this holds as well for Z = Ṽm+1. Let x0, x1, x2 > 0. We have

µ0Ṽm+1(~x) + µ1Ṽm+1(~x − ~e1) + µ2Ṽm+1(~x − ~e2)

≤ µ0[µ0Vm(~x − ~e0) + µ1Vm(~x) + µ2Vm(~x)]

+µ1[µ0Vm(~x − ~e0 − ~e1) + µ1Vm(~x − ~e1) + µ2Vm(~x − ~e1)]

+µ2[µ0Vm(~x − ~e0 − ~e2) + µ1Vm(~x − ~e2) + µ2Vm(~x − ~e2)]

= µ0[µ0Vm(~x − ~e0) + µ1Vm(~x − ~e0 − ~e1) + µ2Vm(~x − ~e0 − ~e2)]

+µ1[µ0Vm(~x) + µ1Vm(~x − ~e1) + µ2Vm(~x − ~e2)]

+µ2[µ0Vm(~x) + µ1Vm(~x − ~e1) + µ2Vm(~x − ~e2)]. (4.31)

Since Vm(·) satisfies (4.13) and is non-decreasing (by Lemma 4.3.3), the expression
in (4.31) is equal to µ0Ṽm+1(~x − ~e0) + µ1Ṽm+1(~x) + µ2Ṽm+1(~x). Hence, Z = Ṽm+1

satisfies (4.13). �

4.B Proof of Lemma 4.3.10

In this section we prove Lemma 4.3.10 by induction on m. For Z = V0 it holds.
Suppose we know that the inequalities (4.16)–(4.22) hold for Z = Vm. We have
to show that they hold for Z = Vm+1. Since the inequalities hold for both C(·)
and Vm(·), it is straightforward to check that C(~x) +

∑2
j=0 λjVm(~x + ~ej) satisfies

these inequalities as well. In order to prove that Vm+1(·) satisfies (4.16)–(4.22), it
is therefore sufficient to show that Ṽm+1(·) (as defined in Appendix 4.A) does.

The following observation can be made, which will be helpful in proving (4.16)–
(4.22) for Ṽm+1(·). The inequalities being true for Z = Vm implies that at time m+1
the optimal actions are of a switching curve structure. So for example, if at
time m + 1 it is optimal to serve class 1 when we are in state ~x, this is also optimal
if at time m + 1 we are in state ~x +~e1. This property will be referred to as Ṽm+1(·)
following a switching curve.

Proof of inequality (4.16): We have to show that Z = Ṽm+1 satisfies (4.16).
In order to prove this, we need to distinguish between which actions are optimal
in the states ~x, ~x − ~e0 + ~e1, (x0, (x1 − 1)+, x2) and ~x + ~e1 at m + 1 steps from the
horizon. In every state there are two possibilities, either serve classes 1 and 2,
or serve class 0. Since Ṽm+1(·) follows a switching curve, only the following five
combinations of optimal actions in the various states can occur: In situation 1 it is
optimal to serve classes 1 and 2 in states ~x, ~x − ~e0 + ~e1 and ~x + ~e1, and class 0 in
state (x0, (x1−1)+, x2). In situation 2 it is optimal to serve classes 1 and 2 in states
~x−~e0 +~e1 and ~x+~e1, and class 0 in states ~x and (x0, (x1 − 1)+, x2). In situation 3
it is optimal to serve classes 1 and 2 in state ~x − ~e0 + ~e1 and serve class 0 in the
other three states. In situation 4 it is optimal to serve class 0 in all four states and
in situation 5 it is optimal to serve classes 1 and 2 in all four states. For each of the
five possible situations we will show that Z = Ṽm+1 satisfies (4.16).
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Situation 1: Let x0 > 0, x1, x2 ≥ 0. We can write

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x + ~e1) + µ1Vm(~x) + µ2Vm(x0, x1 + 1, (x2 − 1)+)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ1[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]. (4.32)

For the terms in (4.32) with a factor µ2, we have

µ2[µ0Vm(x0, x1 + 1, (x2 − 1)+) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(~x) + µ1Vm(x0, x1, (x2 − 1)+)]

≤ µ2[µ0Vm(x0, x1, (x2 − 1)+) + µ0Vm(x0 − 1, x1 + 1, (x2 − 1)+)

+ µ1Vm(x0, (x1 − 1)+, (x2 − 1)+) + µ1Vm(x0, x1 + 1, (x2 − 1)+)

− µ1Vm(x0, x1, (x2 − 1)+) + µ1Vm(~x)]

≤ µ2[µ0Vm(x0, x1, (x2 − 1)+) + µ0Vm(x0 − 1, x1 + 1, (x2 − 1)+)

+ µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(x0, x1 + 1, (x2 − 1)+)], (4.33)

where the first inequality follows from (4.16) and the second from (4.22). By (4.16)
the terms in (4.32) without a factor µ2 are smaller than or equal to

µ0[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2)] + µ0[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x − ~e0)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + µ1Vm(x0, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x + ~e1) + µ1Vm(~x)].

Together with (4.32) and (4.33) this yields

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

+ µ0[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x − ~e0) + µ2Vm(x0 − 1, x1 + 1, (x2 − 1)+)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x + ~e1) + µ1Vm(~x) + µ2Vm(x0, x1 + 1, (x2 − 1)+)]

= µ0Ṽm+1(~x) + µ0Ṽm+1(~x − ~e0 + ~e1)

+ µ1Ṽm+1(x0, (x1 − 1)+, x2) + µ1Ṽm+1(~x + ~e1),

which was to be proved. In the last step we used that in situation 1 it is optimal
to serve classes 1 and 2 in states ~x, ~x − ~e0 + ~e1 and ~x + ~e1, and class 0 in state
(x0, (x1 − 1)+, x2) at m + 1 steps from the horizon.
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Situation 2: Let x0 > 0, x1, x2 ≥ 0. We can write

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0 + ~e1) + (µ1 + µ2)Vm(~x + ~e1)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ1[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]. (4.34)

For the terms in (4.34) with a factor µ2, we have

µ2[µ0Vm(~x + ~e1) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(~x) + µ1Vm(x0, x1, (x2 − 1)+)]

≤ µ2[µ0Vm(x0 − 1, x1, (x2 − 1)+) − µ0Vm(~x − ~e0) + µ1Vm(x0, x1, (x2 − 1)+)

− µ1Vm(~x) + µ0Vm(~x) + µ0Vm(~x − ~e0 + ~e1)

+ µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(~x + ~e1)]

≤ µ2[µ0Vm(~x) + µ0Vm(x0 − 1, x1 + 1, (x2 − 1)+)

+ µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(x0, x1 + 1, (x2 − 1)+)],

where the first inequality follows from (4.16) and the second from (4.22). This
inequality together with (4.34) yields

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ0[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x − ~e0) + µ2Vm(x0 − 1, x1 + 1, (x2 − 1)+)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x + ~e1) + µ1Vm(~x) + µ2Vm(x0, x1 + 1, (x2 − 1)+)]

= µ0Ṽm+1(~x) + µ0Ṽm+1(~x − ~e0 + ~e1)

+ µ1Ṽm+1(x0, (x1 − 1)+, x2) + µ1Ṽm+1(~x + ~e1),

which was to be proved. In the last step we used that in situation 2 it is optimal
to serve classes 1 and 2 in states ~x− ~e0 + ~e1 and ~x + ~e1, and class 0 in states ~x and
(x0, (x1 − 1)+, x2) at m + 1 steps from the horizon.

Situation 3: Let x0 > 0, x1, x2 ≥ 0. We can write

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0 + ~e1) + (µ1 + µ2)Vm(~x + ~e1)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ 2µ1[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]. (4.35)
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For the terms in (4.35) with a factor µ2, we have

µ2[µ0Vm(~x + ~e1) + µ0Vm(x0 − 1, x1, (x2 − 1)+) + 2µ1Vm(~x)]

≤ µ2[µ0Vm(~x) + µ0Vm(~x − ~e0 + ~e1) + µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(~x + ~e1)

+ µ0Vm(x0 − 1, x1, (x2 − 1)+) − µ0Vm(~x − ~e0)]

≤ µ2[µ0Vm(~x) + µ0Vm(x0 − 1, x1 + 1, (x2 − 1)+)

+ µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(~x + ~e1)], (4.36)

where the first inequality follows from (4.16) and the second from (4.22). By (4.16)
the terms in (4.35) without a factor µ2 are smaller than or equal to

µ0[µ0Vm(~x − ~e0) + µ1Vm(~x)] + µ0[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x − ~e0)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + µ1Vm(x0, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x + ~e1)].

Together with (4.35) and (4.36) this yields

µ0Ṽm+1(~x + ~e1) + µ0Ṽm+1(~x − ~e0) + 2µ1Ṽm+1(~x)

≤ µ0[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ0[µ0Vm(~x − ~e0 + ~e1) + µ1Vm(~x − ~e0) + µ2Vm(x0 − 1, x1 + 1, (x2 − 1)+)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x − ~e0 + ~e1) + (µ1 + µ2)Vm(~x + ~e1)]

= µ0Ṽm+1(~x) + µ0Ṽm+1(~x − ~e0 + ~e1)

+ µ1Ṽm+1(x0, (x1 − 1)+, x2) + µ1Ṽm+1(~x + ~e1),

which was to be proved. In the last step we used that in situation 3 it is optimal
to serve classes 1 and 2 in state ~x − ~e0 + ~e1 and serve class 0 in the other states, at
m + 1 steps from the horizon.
Situation 4: In this case, it is optimal to serve class 0 at m + 1 steps from the
horizon in the states ~x, ~x−~e0 +~e1, (x0, (x1 − 1)+, x2) and ~x+~e1. We can only be in
this situation if x0 > 1, since Vm(·) is non-decreasing in x0, x1 and x2. Since (4.16)
holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as well.
Situation 5: In this case, it is optimal to serve classes 1 and 2 at m + 1 steps from
the horizon in the states ~x, ~x − ~e0 + ~e1, (x0, (x1 − 1)+, x2) and ~x + ~e1. Since (4.16)
holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as well.

Proof of inequality (4.17): This goes along similar lines as the proof of (4.16).

Proof of inequality (4.18): We have to show that Z = Ṽm+1 satisfies (4.18).
In order to prove this, we need to distinguish between which actions are optimal
in the states ~x + ~e0, ~x − ~e0, (x0 + 1, (x1 − 1)+, x2) and ~x at m + 1 steps from the
horizon. Since the optimal actions at time m + 1 have a switching curve structure
(as explained earlier), there are exactly five possible situations:
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Situation 1: In this case it is optimal to serve classes 1 and 2 in states ~x + ~e0,
~x−~e0, and ~x, and serve class 0 in state (x0+1, (x1−1)+, x2). Let x0 > 0, x1, x2 ≥ 0.
We can write

2µ0Ṽm+1(~x) + µ1Ṽm+1(~x + ~e0) + µ1Ṽm+1(x0, (x1 − 1)+, x2)

≤ 2µ0[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

+ µ1[µ0Vm(~x + ~e0) + µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ2Vm(x0 + 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]. (4.37)

For the terms in (4.37) with a factor µ2, we have

µ2[2µ0Vm(x0, x1, (x2 − 1)+) + µ1Vm(x0 + 1, x1, (x2 − 1)+)

+ µ1Vm(x0, (x1 − 1)+, x2)]

≤ µ2[µ0Vm(x0 + 1, x1, (x2 − 1)+) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(x0 + 1, (x1 − 1)+, (x2 − 1)+) + µ1Vm(x0, x1, (x2 − 1)+)

− µ1Vm(x0, (x1 − 1)+, (x2 − 1)+) + µ1Vm(x0, (x1 − 1)+, x2)]

≤ µ2[µ0Vm(x0 + 1, x1, (x2 − 1)+) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(x0, x1, (x2 − 1)+)], (4.38)

where the first inequality follows from (4.18) and the second from (4.20). In addition,
by (4.18) we have

µ0[2µ0Vm(~x) + µ1Vm(~x + ~e0) + µ1Vm(x0, (x1 − 1)+, x2)]

≤ µ0[µ0Vm(~x + ~e0) + µ0Vm(~x − ~e0) + µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(~x)].

Together with (4.38) this gives that (4.37) is not larger than

µ0[µ0Vm(~x + ~e0) + µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ2Vm(x0 + 1, x1, (x2 − 1)+)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(x0, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0 + 1, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

= µ0Ṽm+1(~x + ~e0) + µ0Ṽm+1(~x − ~e0)

+ µ1Ṽm+1(x0 + 1, (x1 − 1)+, x2) + µ1Ṽm+1(~x).

Situation 2: In this case it is optimal to serve classes 1 and 2 in states ~x−~e0 and ~x,
and serve class 0 in states ~x +~e0 and (x0 + 1, (x1 − 1)+, x2). Let x0 > 0, x1, x2 ≥ 0.
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We can write

2µ0Ṽm+1(~x) + µ1Ṽm+1(~x + ~e0) + µ1Ṽm+1(x0, (x1 − 1)+, x2)

≤ µ0[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ0[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

+ µ1[µ0Vm(~x + ~e0) + µ1Vm(x0 + 1, (x1 − 1)+, x2)

+ µ2Vm(x0 + 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]. (4.39)

For the terms in (4.39) with a factor µ2, we have

µ2[µ0Vm(~x) + µ0Vm(x0, x1, (x2 − 1)+)

+ µ1Vm(x0 + 1, x1, (x2 − 1)+) + µ1Vm(x0, (x1 − 1)+, x2)]

≤ µ2[µ0Vm(x0, x1, (x2 − 1)+) − µ0Vm(~x) + µ1Vm(x0 + 1, x1, (x2 − 1)+)

− µ1Vm(~x + ~e0) + µ0Vm(~x + ~e0) + µ0Vm(~x − ~e0)

+ µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(~x)]

≤ µ2[µ0Vm(~x + ~e0) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(x0, x1, (x2 − 1)+)],

where the first inequality follows from (4.18) and the second from (4.20). We can
conclude that (4.39) is not larger than

µ0[µ0Vm(~x) + (µ1 + µ2)Vm(~x + ~e0)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(x0, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0 + 1, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

= µ0Ṽm+1(~x + ~e0) + µ0Ṽm+1(~x − ~e0)

+ µ1Ṽm+1(x0 + 1, (x1 − 1)+, x2) + µ1Ṽm+1(~x).

Situation 3: In this case it is optimal to serve classes 1 and 2 in state ~x − ~e0, and
serve class 0 in states ~x, ~x + ~e0 and (x0 + 1, (x1 − 1)+, x2). Let x0 > 0, x1, x2 ≥ 0.
We can write

2µ0Ṽm+1(~x) + µ1Ṽm+1(~x + ~e0) + µ1Ṽm+1(x0, (x1 − 1)+, x2)

≤ µ0[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

+ µ0[µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(x0, x1, (x2 − 1)+)]

+ µ1[µ0Vm(~x) + (µ1 + µ2)Vm(~x + ~e0)]

+ µ1[µ0Vm(x0 − 1, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0, (x1 − 1)+, x2)]. (4.40)
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For the terms in (4.40) with a factor µ2, we have

µ2[µ0Vm(~x) + µ0Vm(x0, x1, (x2 − 1)+) + µ1Vm(~x + ~e0) + µ1Vm(x0, (x1 − 1)+, x2)]

≤ µ2[µ0Vm(~x + ~e0) + µ0Vm(~x − ~e0) + µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(~x)

− µ0Vm(~x) + µ0Vm(x0, x1, (x2 − 1)+)]

≤ µ2[µ0Vm(~x + ~e0) + µ0Vm(x0 − 1, x1, (x2 − 1)+)

+ µ1Vm(x0 + 1, (x1 − 1)+, x2) + µ1Vm(~x)], (4.41)

where the first inequality follows from (4.18) and the second from (4.20). By (4.18),
the terms in (4.40) without a factor µ2 are smaller than or equal to

µ0[µ0Vm(~x) + µ1Vm(~x + ~e0)] + µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2)]

+ µ1[µ0Vm(x0, (x1 − 1)+, x2) + µ1Vm(x0 + 1, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x − ~e0) + µ1Vm(~x)].

Together with (4.41) this gives that (4.40) is not larger than

µ0[µ0Vm(~x) + (µ1 + µ2)Vm(~x + ~e0)]

+ µ0[µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(x0 − 1, x1, (x2 − 1)+)]

+ µ1[µ0Vm(x0, (x1 − 1)+, x2) + (µ1 + µ2)Vm(x0 + 1, (x1 − 1)+, x2)]

+ µ1[µ0Vm(~x − ~e0) + (µ1 + µ2)Vm(~x)]

= µ0Ṽm+1(~x + ~e0) + µ0Ṽm+1(~x − ~e0)

+ µ1Ṽm+1(x0 + 1, (x1 − 1)+, x2) + µ1Ṽm+1(~x).

Situation 4: In this case it is optimal to serve class 0 in states ~x + ~e0, ~x − ~e0,
(x0 +1, (x1−1)+, x2) and ~x. We can only be in this situation if x0 > 1. Since (4.18)
holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as well.
Situation 5: In this case it is optimal to serve classes 1 and 2 in states ~x + ~e0,
~x − ~e0, (x0 + 1, (x1 − 1)+, x2) and ~x. Since (4.18) holds for Vm(·), it follows easily
that it holds for Ṽm+1(·) as well.

Proof of inequality (4.19): This goes along similar lines as the proof of (4.18).

Proof of inequality (4.20): We have to show that Z = Ṽm+1 satisfies (4.20), i.e.,

Ṽm+1(x0, x1, (x2 − 1)+) + Ṽm+1((x0 − 1)+, x1, x2)

≤ Ṽm+1(~x) + Ṽm+1((x0 − 1)+, x1, (x2 − 1)+). (4.42)

For x0 = 0 or x2 = 0 this is trivially true. Hence, we assume that x0 > 0 and x2 > 0.
The value of the right-hand side of (4.42) depends on which of the two actions are
optimal in the states ~x and ~x − ~e0 − ~e2 at m + 1 steps from the horizon. There are
exactly four possible situations:
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Situation 1: In this case it is optimal to serve class 0 in state ~x−~e0−~e2, and serve
classes 1 and 2 in state ~x. Since Vm(·) is non-decreasing, this can never be the case
when x0 = 1. So we may assume that x0 > 1, x1 ≥ 0, x2 > 0. We can write

Ṽm+1(~x − ~e2) + Ṽm+1(~x − ~e0)

≤ µ0Vm(~x − ~e0 − ~e2) + (µ1 + µ2)Vm(~x − ~e2)

+ µ0Vm(~x − ~e0) + µ1Vm(x0 − 1, (x1 − 1)+, x2) + µ2Vm(~x − ~e0 − ~e2). (4.43)

By (4.18), the terms in (4.43) with factors µ0 and µ1 are not larger than

− µ0Vm(~x − ~e0) + µ0Vm(~x − ~e0 − ~e2) + µ1Vm(~x − ~e2) − µ1Vm(~x)

+ µ0Vm(~x) + µ0Vm(~x − 2~e0) + µ1Vm(x0, (x1 − 1)+, x2) + µ1Vm(~x − ~e0)

= µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ0Vm(~x − 2~e0 − ~e2) + µ1Vm(~x − ~e0 − ~e2)

+ µ0Vm(~x − 2~e0) + µ0Vm(~x − ~e0 − ~e2) − µ0Vm(~x − 2~e0 − ~e2) − µ0Vm(~x − ~e0)

+ µ1Vm(~x − ~e2) + µ1Vm(~x − ~e0) − µ1Vm(~x) − µ1Vm(~x − ~e0 − ~e2)

≤ µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ0Vm(~x − 2~e0 − ~e2) + µ1Vm(~x − ~e0 − ~e2),

where the last inequality follows from (4.20). From the above we obtain that (4.43)
is not larger than

µ0Vm(~x) + µ1Vm(x0, (x1 − 1)+, x2) + µ2Vm(~x − ~e2)

+ µ0Vm(~x − 2~e0 − ~e2) + µ1Vm(~x − ~e0 − ~e2) + µ2Vm(~x − ~e0 − ~e2)

= Ṽm+1(~x) + Ṽm+1(~x − ~e0 − ~e2).

Situation 2: In this case it is optimal to serve class 0 in state ~x, and serve classes 1
and 2 in state ~x − ~e0 − ~e2. First note that from (4.17) and (4.20) we have

2Vm(~x) ≤ Vm(x0, x1, (x2 − 1)+) + Vm(~x + ~e2), for x0 > 0, x1, x2 ≥ 0. (4.44)

Let x0 > 0, x1 ≥ 0, x2 > 0. For the terms in (4.43) with a factor µ2, we can write

µ2[Vm(~x − ~e2) + Vm(~x − ~e0 − ~e2)]

≤ µ2[Vm(~x − ~e0 − ~e2) − Vm(~x − ~e2) + Vm(x0, x1, (x2 − 2)+) + Vm(~x)]

≤ µ2[Vm(x0 − 1, x1, (x2 − 2)+) + Vm(~x)], (4.45)

where the first inequality follows from (4.44) and the second from (4.20). Note
that it is assumed that the cost functions satisfy (4.13). Hence, when x1 > 0, it
follows from Lemma 4.3.7 that the optimal action is to serve classes 1 and 2 in
state ~x, since x2 > 0. In situation 2, class 0 is served in state ~x, hence we can
assume that x1 = 0. In that case, the terms in the right-hand side of (4.43) with
a factor µ1 are: µ1Vm(x0, 0, x2 − 1) + µ1Vm(x0 − 1, 0, x2). By (4.20) we have that
this is smaller than or equal to µ1Vm(x0, 0, x2) + µ1Vm(x0 − 1, 0, x2 − 1). Together
with (4.45) this gives that (4.43) is not larger than

µ0Vm(x0 − 1, 0, x2) + (µ1 + µ2)Vm(x0, 0, x2)

+ µ0Vm(x0 − 1, 0, x2 − 1) + µ1Vm(x0 − 1, 0, x2 − 1) + µ2Vm(x0 − 1, 0, (x2 − 2)+),

= Ṽm+1(x0, 0, x2) + Ṽm+1(x0 − 1, 0, x2 − 1).
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Situation 3: In this case it is optimal to serve class 0 in states ~x and ~x − ~e0 − ~e2.
Since (4.20) holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as well.
Situation 4: In this case it is optimal to serve classes 1 and 2 in states ~x and
~x − ~e0 − ~e2. Since (4.20) holds for Vm(·), it follows easily that it holds for Ṽm+1(·)
as well.

Proof of inequality (4.21): This goes along similar lines as the proof of (4.20).

Proof of inequality (4.22): We have to show that Z = Ṽm+1 satisfies (4.22). For
x1 = 0 or x2 = 0, this is trivially true. Hence, we assume that x1 > 0 and x2 > 0.
In order to prove relation (4.22), we need to distinguish between which of the two
actions are optimal in the states ~x−~e1 and ~x−~e2 at m + 1 steps from the horizon.
There are exactly four possible combinations:
Situation 1: In this case it is optimal to serve class 0 in state ~x − ~e2 and serve
classes 1 and 2 in state ~x − ~e1. When x0 = 0, we can never be in this situation,
since Vm(·) is non-decreasing. Therefore we assume x0 > 0. We can write

Ṽm+1(~x − ~e1 − ~e2) + Ṽm+1(~x)

≤ µ0Vm(~x − ~e0 − ~e1 − ~e2) + µ1Vm(~x − ~e1 − ~e2) + µ2Vm(~x − ~e1 − ~e2)

+µ0Vm(~x) + µ1Vm(~x − ~e1) + µ2Vm(~x − ~e2). (4.46)

By (4.16), the terms in (4.46) with factor µ0 or µ1 are not larger than

− µ0Vm(~x − ~e0 − ~e1) + µ0Vm(~x − ~e0 − ~e1 − ~e2) + µ1Vm(~x − ~e1 − ~e2)

+ (µ0 − µ1)Vm(~x − ~e1) + µ0Vm(~x − ~e0) + µ1Vm(x0, (x1 − 2)+, x2) + µ1Vm(~x)

= µ0Vm(~x − ~e1) + µ1Vm(x0, (x1 − 2)+, x2) + µ0Vm(~x − ~e0 − ~e2) + µ1Vm(~x − ~e2)

+ µ1Vm(~x) + µ1Vm(~x − ~e1 − ~e2) − µ1Vm(~x − ~e1) − µ1Vm(~x − ~e2)

+ µ0Vm(~x − ~e0) + µ0Vm(~x − ~e0 − ~e1 − ~e2) − µ0Vm(~x − ~e0 − ~e1)

− µ0Vm(~x − ~e0 − ~e2)

≤ µ0Vm(~x − ~e1) + µ1Vm(x0, (x1 − 2)+, x2) + µ0Vm(~x − ~e0 − ~e2) + µ1Vm(~x − ~e2),

where the last inequality follows from (4.22). From the above we obtain that (4.46)
is not larger than

µ0Vm(~x − ~e1) + µ1Vm(x0, (x1 − 2)+, x2) + µ2Vm(~x − ~e1 − ~e2)

+ µ0Vm(~x0 − ~e0 − ~e2) + µ1Vm(~x − ~e2) + µ2Vm(~x − ~e2),

= Ṽm+1(~x − ~e1) + Ṽm+1(~x − ~e2).

Situation 2: In this case it is optimal to serve class 0 in state ~x − ~e1 and serve
classes 1 and 2 in state ~x − ~e2. The proof is symmetric to situation 1.
Situation 3: In this case it is optimal to serve class 0 in states ~x − ~e1 and ~x − ~e2.
Since (4.22) holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as well.
Situation 4: In this case it is optimal to serve classes 1 and 2 in states ~x− ~e1 and
~x − ~e2. Since (4.22) holds for Vm(·), it follows easily that it holds for Ṽm+1(·) as
well. �



Chapter 5

Asymptotically optimal
switching-curve policies

In Chapter 4 we used dynamic programming techniques to show that for a two-node
linear network with exponential service requirements an optimal non-anticipating
policy has certain structural properties: It is characterized by so-called switching
curves. An explicit characterization of these curves is however in general not possi-
ble. To gain a better understanding of the functional form of the optimal switching
curves, we therefore set out in this chapter to study these in asymptotic regimes. In
particular, we study the system after a fluid or diffusion scaling.

We find that in many scenarios simple linear switching curves provide asymptoti-
cally fluid-optimal policies. These curves are obtained by solving the fluid control
problem corresponding to the two-node linear network. When both nodes are equally
congested, however, the fluid-based policy may not even ensure stability. In such
cases we show that a diffusion scaling is appropriate, and that efficient policies have
square-root shaped switching curves.

Through numerical experiments we conduct comparisons of the optimal policies
(when numerically feasible), the class of weighted α-fair bandwidth-sharing policies
and policies characterized by either linear, square-root or constant switching curves.
We find that the fluid-based and diffusion-based policies give close-to-optimal per-
formance. In addition, we confirm that weighted α-fair policies perform well among
non-anticipating policies in moderately-loaded systems. In particular, we observe
that the optimal policy can be approximated by a weighted α-fair policy when
choosing the weights appropriately.

The remainder of this chapter is organized as follows. Section 5.1 describes the
model, and presents new stability results. The fluid control model and asymptoti-
cally fluid-optimal policies are presented in Section 5.2. Section 5.3 considers the
case when both nodes are equally congested and studies the network after a diffu-
sion scaling. Numerical experiments can be found in Section 5.4. We conclude the
chapter with a short summary and ideas for further research in Section 5.5.
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5.1 Model and preliminaries

We consider a linear network with two nodes and three classes, where class i re-
quires service at node i only, i = 1, 2, while class 0 requires service at both nodes
simultaneously, see Figure 1.2 with L = 2. We assume each of the nodes to have
unit capacity, so that a rate allocation is feasible when it belongs to the capacity
region S := {(s0, s1, s2) ∈ R

3
+ : s0 + si ≤ 1, for i = 1, 2}, as depicted in Figure 1.5.

Class-j users arrive according to independent Poisson processes of rate λj , and
have exponentially distributed service requirements Bj with mean 1/µj, j = 0, 1, 2.
Denote the traffic load of class j by ρj := λj/µj. As in Chapter 4, the class of
non-anticipating policies is denoted by Π̄. For a given policy π ∈ Π̄ denote by Nπ

j (t)
and Wπ

j (t) the number of class-j users and the class-j workload, respectively, at
time t. Define Nπ

j and Wπ
j as the random variables with the corresponding steady-

state distributions (when they exist).
In Chapter 4 we characterized non-anticipating policies that minimize the aver-

age holding cost lim supT→∞ E(
∫ T

0

∑2
j=0 cjNj(t)dt)/T , with cj a non-negative cost

associated with class j, j = 0, 1, 2. Simple priority rules were proved to be optimal
when c0µ0 ≥ max(c1µ1, c2µ2), see Propositions 4.3.1 and 4.3.2. Otherwise, an opti-
mal policy is characterized by a switching curve, see Proposition 4.3.9. In particular,
when c0µ0 < max(c1µ1, c2µ2), this policy prescribes that in states with N3−i(t) = 0,
class 0 is served when Ni(t) < hi(N0(t)), and class i is served otherwise, with hi(·)
the switching curve belonging to class i.

The above determines the structure of the optimal policy, but does not explicitly
characterize the optimal switching curves. To gain some further understanding,
let us compare two different policies, say policy π(h) with switching curves h1(·)
and h2(·) and policy π(g) with switching curves g1(·) and g2(·), while hi(x0) ≤
gi(x0) for all x0, i = 1, 2. Clearly, in the short run, a lower switching curve is
better when c0µ0 < ciµi, since the number of states that have a weighted departure
rate equal to ciµi will increase. In the long run, however, a higher curve may
actually pay off: when starting in the same state, a higher curve empties the system
faster (see Lemma 5.1.1 below) and has therefore less strict stability conditions (see
Corollary 5.1.2 below). Clearly, an optimal switching curve strikes the right balance
between these short- and long-run effects. Lemma 5.1.1 and its corollary are valid
for generally distributed inter-arrival times. The proof of Lemma 5.1.1 may be found
in Appendix 5.A.

Lemma 5.1.1. (This lemma holds for generally distributed inter-arrival times.)
Denote by Wh

j (t) the workload of class j at time t under policy π(h). Let hi(x0) ≤
gi(x0) for all x0, i = 1, 2. If W g

0 (0) ≤st Wh
0 (0) and W g

0 (0) + W g
i (0) ≤st Wh

0 (0) +
Wh

i (0), for i = 1, 2, then

{W g
0 (t)}t≥0 ≤st {Wh

0 (t)}t≥0, (5.1)

{W g
0 (t) + W g

i (t)}t≥0 ≤st {Wh
0 (t) + Wh

i (t)}t≥0, for i = 1, 2. (5.2)

Corollary 5.1.2. (This lemma holds for generally distributed inter-arrival times.)
Let hi(x0) ≤ gi(x0) for all x0, i = 1, 2. If the system is empty under policy π(h), then
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it is empty under policy π(g) as well. In particular, if the empty state is positive
recurrent under π(h) in the case of Poisson arrivals, then it is positive recurrent
under π(g) as well.

Define the policy πl, for an l = 1, 2, as the policy that gives preemptive priority
to class l, and when class l is empty, class 0 receives preemptive priority. Class 3− l
is only served whenever there is capacity left unused. This strict priority rule has
switching curves hl(x0) = 0 and h3−l(x0) = ∞. Under this policy, the total workload
is almost surely finite, as is stated in the following lemma. In fact, the lemma
considers even more general policies that are work-conserving in node l. The proof
is provided in Appendix 5.B. It essentially uses that the behavior of classes 0 and l
is determined by the dynamics within node l. In order for class 3 − l to grow
unboundedly, it has to be the case that for a non-negligible portion of time class l
is served while class 3 − l is not present. Obviously, the latter cannot be true.

Lemma 5.1.3. For any Pareto-efficient policy which gives strict priority to class 0
over class 3 − l when class l is empty, for an l = 1, 2, the total workload in the
system is almost surely finite when ρ0 + ρi < 1, i = 1, 2.

For general service requirement distributions, we can determine the mean work-
load for class l under policy πl, l = 1, 2, from the Pollaczek-Khintchine formula:

E(Wπl

l ) = λlE(Bl
2)

2(1−ρl)
. Class 0 sees its service being interrupted by busy periods of

class l so that [133]:

E(Wπl
0 ) =

λ0E(B0
2) + λlE(Bl

2)

2(1 − ρ0 − ρl)
− λlE(Bl

2)

2(1 − ρl)
.

Unfortunately, for class 3−l there are no expressions available for the mean workload.
Determining these requires solving a boundary value problem [42].

5.2 Fluid analysis

In this section we consider the number of users under a fluid scaling and inves-
tigate close-to-optimal switching curves. It will be convenient to first study the
related deterministic fluid control model. This will be done in Section 5.2.1. In con-
trast to the stochastic model, we obtain exact expressions for the optimal switching
curves. In Section 5.2.2 we then show that these optimal switching curves provide
asymptotically fluid-optimal policies in the stochastic model.

5.2.1 Optimal fluid control

The fluid control model arises from the original stochastic model by only taking
into account the mean drifts. A fluid process for the two-node linear network is a
solution n(t) = (n0(t), n1(t), n2(t)) of the following equations:

nj(t) = nj + λjt − µjUj(t), j = 0, 1, 2, (5.3)

nj(t) ≥ 0, j = 0, 1, 2. (5.4)
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Here n = (n0, n1, n2) ∈ R
3
+ and Uj(t) =

∫ t

0 uj(v)dv, such that for all v ≥ 0,

u0(v) + ui(v) ≤ 1, i = 1, 2, (5.5)

uj(v) ≥ 0, j = 0, 1, 2, (5.6)

(i.e., u(v) ∈ S) and the functions uj(·) are measurable, j = 0, 1, 2. Note that
Uj(·) is Lipschitz continuous with constant less than or equal to 1. Hence, it is
absolutely continuous which implies that it is differentiable almost everywhere [112].
Thus, nj(·) is differentiable almost everywhere as well, and

dnj(t)

dt
= λj − uj(t)µj , j = 0, 1, 2, (5.7)

at regular points (a regular point is a value of t at which nj(t) is differentiable).

A policy π for the fluid control model is described by the control uπ(t) (we also
write Uπ

j (t)). A corresponding trajectory is denoted by nπ(t). Our aim is to derive
an optimal clearing control for the fluid model, starting from any initial state. We
use the following two definitions:

• A control is called path-wise optimal if it minimizes
∑2

j=0 cjn
π
j (t) for all t ≥ 0,

with (nπ(t), uπ(t)) satisfying (5.3)–(5.6).

• A control is called average-cost optimal if it minimizes
∫∞
0

∑2
j=0 cjn

π
j (t)dt,

with (nπ(t), uπ(t)) satisfying (5.3)–(5.6).

Path-wise optimal controls do not necessarily exist. However, if they exist they
are automatically average-cost optimal. Before describing optimal controls, we first
state two convenient lemmas.

Under the stability conditions ρ0+ρi < 1, i = 1, 2, the fluid model can be drained
in finite time (and then remains empty if controlled optimally), see the next lemma.

Lemma 5.2.1. If ρ0 + ρi < 1, i = 1, 2, then the policy that serves class 0 whenever
possible, drains the fluid model in finite time and keeps the system empty from that
moment on.

Proof: We focus on the policy that serves class 0 whenever possible. Hence,

when n0(t) > 0, we have u0(t) = 1, so that dn0(t)
dt = λ0 − µ0 < 0. From this it

follows that once class 0 hits zero, it will remain zero. Together with (5.7) this
yields that u0(t) = ρ0 when n0(t) = 0. Hence, if ni(t) > 0 and n0(t) = 0, then
dni(t)

dt = µi(ρi − (1 − u0(t))) = µi(ρ0 + ρi − 1) < 0, i = 1, 2. We can conclude that
the system empties in finite time. �

For the original stochastic model it was shown that when c1µ1 + c2µ2 ≥ c0µ0, it
is optimal to serve classes 1 and 2 simultaneously, whenever both are present, see
Proposition 4.3.9. The fluid model inherits this property. The proof may be found
in Appendix 5.C.
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Lemma 5.2.2. Assume c1µ1 + c2µ2 ≥ c0µ0. For any policy π̃, there exists a
policy π that does not do worse than π̃ (i.e., if nπ(0) = nπ̃(0), then

∑2
j=0 cjn

π
j (t) ≤

∑2
j=0 cjn

π̃
j (t), for all t ≥ 0) and satisfies the following:

uπ
1 (t) = uπ

2 (t) = 1, if n1(t), n2(t) > 0, (5.8)

uπ
i (t) = ρi, if ni(t) = 0 and nj(t) > 0, i 6= j, i, j = 1, 2, (5.9)

uπ
i (t) = ρi, if ni(t) = nj(t) = 0 and ρi ≤ ρj , i 6= j, i, j = 1, 2. (5.10)

For the parameter settings where there is no conflict between maximizing the
weighted departure rate and fully using all resources, one would expect that the
fluid control model allows for a path-wise optimal policy, which is confirmed by the
next proposition.

Proposition 5.2.3. Assume ρ1 ≤ ρ2 and ρ0 + ρ2 < 1.
If c1µ1 + c2µ2 ≤ c0µ0 then a path-wise optimal control is:

• u∗
0(t) = 1, if n0(t) > 0,

• u∗
0(t) = ρ0, if n0(t) = 0.

If c1µ1 + c2µ2 ≥ c0µ0 ≥ c1µ1, c2µ2, then a path-wise optimal control is:

• u∗
0(t) = 0, if n1(t), n2(t) > 0,

• u∗
0(t) = 1 − ρ2, if n0(t), n1(t) > 0, n2(t) = 0,

• u∗
0(t) = 1 − ρ1, if n0(t) > 0 and n1(t) = 0,

• u∗
0(t) = ρ0, otherwise.

If c2µ2 ≥ c0µ0 ≥ c1µ1, then a path-wise optimal control is:

• u∗
0(t) = 0, if n2(t) > 0,

• u∗
0(t) = 1 − ρ2, if n0(t) > 0 and n2(t) = 0,

• u∗
0(t) = ρ0, otherwise.

In all cases, u∗
i (t) = 1 − u∗

0(t), if ni(t) > 0 and u∗
i (t) = min(ρi, 1 − u∗

0(t)), if
ni(t) = 0, i = 1, 2.

The first two controls are similar to the stochastic policies π∗ ∈ Π∗ ∩ Π̄ and
π∗∗ ∈ Π∗∗ ∩ Π̄ respectively, which are optimal in the stochastic model (Proposi-
tions 4.3.1 and 4.3.2). The third case corresponds to policy π2, which, according to
Lemma 5.1.3, keeps the total workload in the system finite a.s.

Proof of Proposition 5.2.3: First assume c1µ1 + c2µ2 ≤ c0µ0. Consider the
control with u∗

0(t) = 1, if n0(t) > 0, and u∗
0(t) = ρ0, if n0(t) = 0, and denote
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the corresponding trajectory by n∗(·). Obviously, the control u∗(·) minimizes the
amount of class-0 fluid, i.e.,

n∗
0(t) ≤ nπ

0 (t), for all t, (5.11)

for any control π. In addition, u∗(·) is work-conserving in both nodes, i.e., u∗
0(t) +

u∗
i (t) = 1 whenever n0(t) + ni(t) > 0, i = 1, 2. Hence, for a given policy π we have

U∗
0 (t) + U∗

i (t) ≥ Uπ
0 (t) + Uπ

i (t), i = 1, 2. By (5.3), this implies

1

µ0
n∗

0(t) +
1

µi
n∗

i (t) ≤
1

µ0
nπ

0 (t) +
1

µi
nπ

i (t), i = 1, 2, for all t. (5.12)

Multiplying (5.11) by (c0µ0−c1µ1−c2µ2)/µ0 ≥ 0, multiplying (5.12) by ciµi, for i =

1, 2, and summing these three inequalities gives that
∑2

j=0 cjn
∗
j (t) ≤

∑2
j=0 cjn

π
j (t),

i.e., u∗(·) is path-wise optimal.

Now assume c1µ1 + c2µ2 ≥ c0µ0(≥ c1µ1). Lemma 5.2.2 fully characterizes the
optimal action in states where both classes 1 and 2 are backlogged, i.e., u∗

1(t) =
u∗

2(t) = 1 whenever n1(t), n2(t) > 0. We therefore only need to consider the following
two cases: no backlog of class 1 and no backlog of class 2.

First we consider states with n1(t) = 0. Since ρ1 ≤ ρ2, by Lemma 5.2.2 we
have u∗

1(t) = ρ1 and u∗
2(t) ≥ ρ1. Hence, the corresponding optimal trajectory keeps

class 1 empty from then on. The time until reaching the origin is the same for every
Pareto-efficient policy that keeps class 1 empty. Hence, the policy that allocates the
remaining fraction 1−ρ1 of capacity between classes 0 and 2 such that the weighted
departure rate is maximized, minimizes the cost at any moment in time. Hence, if
c0µ0 ≤ c2µ2, then u∗

2(t) = 1 when n2(t) > 0 and u∗
2(t) = ρ2 when n2(t) = 0. If

c0µ0 ≥ c2µ2, then u∗
0(t) = 1 − ρ1 when n0(t) > 0 and u∗

0(t) = ρ0 when n0(t) = 0.

Now consider states with n1(t) > 0 and n2(t) = 0. By Lemma 5.2.2, an optimal
control satisfies u∗

2(t) = ρ2 (and hence keeps class 2 empty) and u∗
1(t) ≥ ρ2 as long

as n1(t) > 0. We are left with finding the optimal way to allocate the remaining
fraction 1 − ρ2 of capacity between classes 0 and 1, until class 1 is empty. Below
we will show that the control u∗(·) as suggested in the statement of the proposition
is path-wise optimal (we denote the corresponding trajectory by n∗(·)). For states
with n1(t) > 0 and n2(t) = 0 this control is u∗

0(t) = 1 − ρ2 when n0(t) > 0 and
u∗

0(t) = ρ0 when n0(t) = 0. Let T ∗ be the first moment that class 1 is empty under
control u∗(t). In the interval (t, T ∗] the control u∗(·) is work-conserving in both
nodes, hence for any control π (throughout we assume nπ(t) = n∗(t)), we have

1

µ0
n∗

0(u) +
1

µi
n∗

i (u) ≤ 1

µ0
nπ

0 (u) +
1

µi
nπ

i (u), (5.13)

for i = 1, 2 and t ≤ u ≤ T ∗. In order to conclude the proof, we need to distinguish
between the two cases: c0µ0 ≥ c2µ2 and c0µ0 ≤ c2µ2.

First assume c0µ0 ≥ c2µ2. As shown above, once class 1 empties, a path-wise
optimal control keeps class 1 empty and allocates the remaining capacity to class 0.
Since ρ1 ≤ ρ2, this allocation is work-conserving in both nodes, hence (5.13) is valid
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for all u ≥ t. Together with the fact that min(n∗
1(u), n∗

2(u)) = 0, for all u ≥ t, we
obtain that for all u ≥ t

1

µ0
n∗

0(u) +
1

µ1
n∗

1(u) +
1

µ2
n∗

2(u) = max
i=1,2

(
1

µ0
n∗

0(u) +
1

µi
n∗

i (u))

≤ 1

µ0
nπ

0 (u) +
1

µ1
nπ

1 (u) +
1

µ2
nπ

2 (u), (5.14)

for any control π. Multiplying (5.13) by c0µ0 − c3−iµ3−i ≥ 0, for i = 1, 2, multiply-

ing (5.14) by
∑2

i=1 ciµi − c0µ0 ≥ 0, and summing these three inequalities we obtain
∑2

j=0 cjn
∗
j (u) ≤

∑2
j=0 cjn

π
j (u), for all u ≥ t, i.e., u∗(·) is path-wise optimal.

Now assume c0µ0 ≤ c2µ2. Recall that we start at time t in states with n1(t) > 0
and n2(t) = 0. Since c0µ0 ≤ c2µ2, once class 1 empties, a path-wise optimal control
keeps both classes 1 and 2 empty, and allocates the remaining fraction of capacity
1−ρ2 to class 0 (as shown above). Since this allocation is work-conserving in node 2
we obtain, together with (5.13), that for all u ≥ t

1

µ0
n∗

0(u) =
1

µ0
n∗

0(u) +
1

µ2
n∗

2(u) ≤ 1

µ0
nπ

0 (u) +
1

µ2
nπ

2 (u). (5.15)

Hence, for all u > T ∗, 1
µ0

n∗
0(u) + 1

µ1
n∗

1(u) = 1
µ0

n∗
0(u) ≤ 1

µ0
nπ

0 (u) + 1
µ2

nπ
2 (u) ≤

1
µ0

nπ
0 (u) + 1

µ1
nπ

1 (u) + 1
µ2

nπ
2 (u). Together with (5.13) we obtain that for all u ≥ t

1

µ0
n∗

0(u) +
1

µ1
n∗

1(u) ≤ 1

µ0
nπ

0 (u) +
1

µ1
nπ

1 (u) +
1

µ2
nπ

2 (u). (5.16)

Since class 2 is empty for all u ≥ t, we have as well

0 ≤ nπ
2 (u). (5.17)

Multiplying (5.15) by c0µ0−c1µ1 ≥ 0, multiplying (5.16) by c1µ1, multiplying (5.17)

by (c2µ2−c0µ0)/µ2 ≥ 0, and summing these inequalities we obtain
∑2

j=0 cjn
∗
j (u) =

c0n
∗
0(u) + c1n

∗
1(u) ≤∑2

j=0 cjn
π
j (u), for all u ≥ t, i.e., u∗(·) is path-wise optimal. �

In case c1µ1 > c0µ0 (with ρ1 ≤ ρ2), a path-wise optimal policy does not exist. We
will derive average-cost optimal fluid controls instead. Before doing so, in the next
lemma we prove that these indeed exist. The proof may be found in Appendix 5.D.
More importantly, we obtain that if u∗(t) is an average-cost optimal control, then
it also minimizes a finite horizon cost whenever the horizon is large enough. This
property will be useful to prove convergence of the stochastic model in Section 5.2.2.

Lemma 5.2.4. If ρ0 + ρi < 1, i = 1, 2, then there exists a control u∗(t) that is
average-cost optimal. Let n∗(t) be the corresponding trajectory. In addition, there
exists a function H : R → R such that,

min
n(t) s.t. (5.3)−(5.6)

∫ D

0

2
∑

j=0

cjnj(t)dt =

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt =

∫ ∞

0

2
∑

j=0

cjn
∗
j (t)dt,

for all D ≥ H(c0n0 + c1n1 + c2n2), with n the initial state.
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As in the stochastic model, there is no straightforward way to allocate the capac-
ity in states with n2(t) = 0 when c0µ0 < c1µ1. Giving full priority to class 1 maxi-
mizes the weighted departure rate. This, however, leaves a fraction 1−u∗

2(t) = 1−ρ2

of the capacity in node 2 unutilized. As soon as class 1 empties, we are faced with
an unnecessarily high backlog in node 2. A trade-off between serving class 0 or 1
arises and it turns out to be optimal to give first priority to class 1 and then to
switch to class 0. This is made precise in the next lemma.

Lemma 5.2.5. Assume ρ1 ≤ ρ2, ρ0 + ρ2 < 1, and c0µ0 ≤ c1µ1. Consider a
trajectory starting in ñ ∈ {(n0, n1, n2) ∈ R

3
+ : n0 ≥ 0, n1 > 0, n2 = 0} with the

following properties: (i) first u1(t) = 1 during a contiguous period, and then (ii) we
switch to u0(t) = 1 − ρ2 and u1(t) = u2(t) = ρ2 during another contiguous period.
Let n̂ be the end point of this trajectory.

Among all feasible trajectories that move from ñ to n̂ without coinciding with
the n1 = 0 axis, the trajectory described above minimizes

∑2
j=0 cjnj(t) at all times

(until reaching n̂). In case c0µ0 < c1µ1 this is the unique optimal trajectory.

Proof: Since we consider only trajectories from ñ to n̂ that do not coincide with the
n1 = 0 axis, it follows from Lemma 5.2.2 that we can focus on trajectories that keep
class 2 empty, i.e., u2(t) = ρ2. Hence, for any Pareto-efficient trajectory from ñ to n̂

the cost decreases at rate d(c0n0(t)+c1n1(t))
dt = c0λ0+c1λ1−(1−u1(t))c0µ0−u1(t)c1µ1

with u1(t) ≥ ρ2, and the cumulative amount of time it spends on serving class 1 is
given by (n̂1 − ñ1)/(λ1 −µ1). Since c0µ0 ≤ c1µ1, first prioritizing class 1 maximizes

the rate of decrease in cost, and hence minimizes
∑2

j=0 cjnj(t) at all times (until
reaching n̂). �

Lemma 5.2.5 allows us to derive average-cost optimal controls for the cases where
no path-wise optimal control could be found.

Proposition 5.2.6. Assume ρ1 ≤ ρ2 and ρ0 + ρ2 < 1.
If c1µ1 ≥ c0µ0 ≥ c2µ2, then an average-cost optimal control is:

• u∗
0(t) = 0, if n1(t) ≥ c2µ2

c1µ1+c2µ2−c0µ0
· µ1

µ0
· ρ2−ρ1

1−ρ0−ρ2
n0(t) or if n1(t), n2(t) > 0,

• u∗
0(t) = ρ0, if n0(t) = n1(t) = 0,

• u∗
0(t) = 1 − ρ1, if n0(t) > 0 and n1(t) = 0,

• u∗
0(t) = 1 − ρ2, otherwise.

If c1µ1, c2µ2 ≥ c0µ0, then an average-cost optimal control is:

• u∗
0(t) = 0 if n1(t) ≥ c0

c1
· ρ2−ρ1

1−ρ0−ρ2
n0(t) or if n2(t) > 0,

• u∗
0(t) = 1 − ρ2, otherwise.

In all cases, u∗
i (t) = 1 − u∗

0(t), if ni(t) > 0 and u∗
i (t) = min(ρi, 1 − u∗

0(t)), if
ni(t) = 0, i = 1, 2.
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u∗
0 = 1 − ρ2

u∗
0 = 0

n0 n0

n1

u∗
0 = 1 − ρ1

n2

u∗
0 = ρ0

0 0

d2

b

n̂0

Figure 5.1: Optimal capacity allocation when n2(t) = 0 (left) and n1(t) = 0 (right);
if c1µ1 ≥ c0µ0 ≥ c2µ2 and ρ1 < ρ2.

u∗
0 = 1 − ρ2

u∗
0 = 1 − ρ2

u∗
0 = 1 − ρ2

u∗
0 = 0

u∗
0 = 0

n0n0

n1 n2

b

n̂0
00

Figure 5.2: Optimal capacity allocation when n2(t) = 0 (left) and n1(t) = 0 (right);
if c1µ1, c2µ2 ≥ c0µ0 and ρ1 < ρ2.

For illustration, the trajectories corresponding to the average-cost optimal con-
trols are depicted in Figures 5.1 and 5.2 (the case when both n1(t) > 0 and
n2(t) > 0 is not shown; in that case u∗

0(t) = 0). Figure 5.1 considers the case
c1µ1 ≥ c0µ0 ≥ c2µ2. According to Proposition 5.2.6, there is a linear switching
curve above which class 1 must be served with full capacity when n2(t) = 0, see the
left plot of Figure 5.1. Below that curve, class 0 receives the fraction 1 − ρ2 that is
left from keeping class 2 empty. Once the process hits the horizontal axis, class 0
receives 1 − ρ1, which forces class 2 to increase. The plane on the right shows that
when class 1 is empty, it receives exactly its average load and hence remains empty.
Class 2 increases while class 0 is emptied.

Figure 5.2 considers the case c1µ1, c2µ2 ≥ c0µ0. In states where class 2 is empty
there is a linear switching curve, see the left plot of Figure 5.2. The plane on the
right shows that once class 1 empties, it will remain empty. From that moment on,
class 0 receives no capacity until class 2 is empty as well.
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The policies in Proposition 5.2.6 may be described by linear switching curves
hi(x0) = kix0, i = 1, 2. When c1µ1 ≥ c0µ0 ≥ c2µ2, we have k1 = c2µ2

c1µ1+c2µ2−c0µ0
·

µ1

µ0
· ρ2−ρ1

1−ρ0−ρ2
and k2 = ∞. In this case k1 depends on the traffic loads as well as the

(weighted) departure rates. When c1µ1, c2µ2 ≥ c0µ0, we have k1 = c0

c1
· ρ2−ρ1

1−ρ0−ρ2
and

k2 = 0. Now k1 only depends on the traffic loads, c0, and c1. This can be explained
as follows. Assume c2µ2 ≥ c0µ0. When starting in a point with n2(t) = 0, the value
of k1 determines the point where the trajectory hits the horizontal axis (where both
classes 1 and 2 are empty). From that moment on, it is optimal to keep classes 1
and 2 empty. Hence class 2 remains empty, so that the precise value of c2µ2 will
have no impact on the cost or on the optimal value of k1. In particular, one could
set c2µ2 = c0µ0 and use the expression of k1 for the case c2µ2 ≤ c0µ0. Then indeed
k1 = c2µ2

c1µ1+c2µ2−c0µ0
· µ1

µ0
· ρ2−ρ1

1−ρ0−ρ2
= c0

c1
· ρ2−ρ1

1−ρ0−ρ2
.

Proof of Proposition 5.2.6: Lemma 5.2.2 fully characterizes the optimal policy
in states where both classes 1 and 2 are backlogged. When we start in a state with
no backlog of class 1, we can use the arguments in the proof of Proposition 5.2.3
to conclude that the actions as described in Proposition 5.2.6 (which keep class 1
empty) minimize the cost sample-path wise until the system is empty. We therefore
only need to consider the case of no backlog in class 2.

Assume we start in a state with n1(t) > 0 and n2(t) = 0. By Lemma 5.2.2, an
optimal control satisfies u∗

2(t) = ρ2 (and hence keeps class 2 empty) and u∗
1(t) ≥ ρ2

as long as n1(t) > 0. We are left with finding the optimal way to allocate the
remaining fraction 1− ρ2 of capacity between classes 0 and 1, until class 1 is empty.

At some point, an optimal trajectory will hit the n1 = 0 axis for the first time.
This point will be denoted by n̂ = (n̂0, 0, 0), see the left plots in Figures 5.1 and 5.2.
From this point on, an optimal trajectory from n̂ to the origin is exactly known.

Since c0µ0 ≤ c1µ1, an optimal trajectory from n to n̂ first prioritizes class 1
and at some point switches to serving class 0 (while keeping class 2 empty), see
Lemma 5.2.5. The turning point where the switch occurs is denoted by b = (b0, b1, 0),
see again the left plots in Figures 5.1 and 5.2. In order to obtain the average-cost
optimal control, it is left to determine the optimal switching point. We do this by
calculating the cost belonging to the trajectory that turns at b.

The time it takes to move from n to b is equal to T (n, b) = b0−n0

λ0
during which

the holding cost is on average c0(n0+b0)
2 + c1(n1+b1)

2 . The time it takes to move

from b to n̂ is equal to T (b, n̂) = b1
µ1ρ2−λ1

during which the holding cost is on

average c0(b0+n̂0)
2 + c1b1

2 , with n̂0 = b0 − µ0(1−ρ0−ρ2)
µ1(ρ2−ρ1) b1. Let Kn(b0) be the cost of

the fluid trajectory going from n to the origin when the turning point is b. Note
that b1 = n1 − b0−n0

λ0
(µ1 − λ1), hence b1 is uniquely determined by b0 and n. The

cost for switching point b can now be written as:

Kn(b0) = T (n, b)(
c0(n0 + b0)

2
+

c1(n1 + b1)

2
) + T (b, n̂)(

c0(b0 + n̂0)

2
+

c1b1

2
) + K∗

n̂,

with b0 ∈ [n0, n0+n1
λ0

µ1−λ1
]. The term K∗

n̂ represents the minimum cost when going



5.2 Fluid analysis 107

from n̂ to the origin. Note that n̂1 = 0, hence the optimal trajectory starting in n̂
is exactly known:

• If c0µ0 ≥ c2µ2, then it is optimal to prioritize class 0, while keeping class 1
empty. An optimal trajectory corresponds to the right plot of Figure 5.1.
Denote by d = (0, 0, d2) the point where the trajectory hits the vertical axis.
From that point on, the trajectory stays on the vertical axis until it hits the
origin. Hence, K∗

n̂ = T (n̂, d) c0n̂0

2 + T (n̂, 0) c2d2

2 , with T (n̂, d) = n̂0

µ0(1−ρ0−ρ1) ,

d2 = T (n̂, d)µ2(ρ2 − ρ1), and T (n̂, 0) = T (n̂, d) + d2

µ2(1−ρ0−ρ2)
.

• If c2µ2 ≥ c0µ0, then it is optimal to keep both classes 1 and 2 empty. Hence,
it takes T (n̂, 0) = n̂0

µ0(1−ρ0−ρ2)
to reach the origin. The average holding cost of

class 0 is c0n̂0/2, so that K∗
n̂ = T (n̂, 0) c0n̂0

2 .

It can be checked that when minimizing Kn(·) over b0, the optimal b lies on the
linear switching curve as stated in Proposition 5.2.6. �

5.2.2 Asymptotically fluid-optimal policies

The optimal switching curves for the stochastic model can be computed numerically
by value iteration after truncating the state space. In Figure 5.3 we plotted the so-
obtained optimal switching curves for scenarios with ρ1 6= ρ2 and unit costs cj = 1,
j = 0, 1, 2. We also plotted the (shifted) switching curves obtained in the fluid
control problem, as stated in Proposition 5.2.6, and observe that these give a good
approximation for the optimal switching curves in the stochastic model. In this
section we discuss the theoretical foundations that justify the use of the optimal
fluid control in the stochastic model. In particular, we prove that the fluid-scaled
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ρ0 = 0.4, ρ1 = 0.1, ρ2 = 0.3, µ0 = 2, µ1 = 5, µ2 = 5
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Figure 5.3: Optimal switching curves in the stochastic model when ρ1 < ρ2, and
(shifted) optimal fluid switching curves, i.e., x1 = 7+x0 ·µ2/(µ1 +µ2−µ0) ·µ1/µ0 ·
(ρ2 − ρ1)/(1 − ρ0 − ρ2) (left) and x1 = 3 + x0 · (ρ2 − ρ1)/(1 − ρ0 − ρ2) (right).



108 Chapter 5 Asymptotically optimal switching-curve policies

numbers of users under certain switching-curve policies, converge to an optimal fluid
trajectory n∗(t) as determined in Section 5.2.1. Using the latter, we then show that
these policies are asymptotically fluid-optimal in the stochastic model.

On a common probability space we construct a sequence of processes depending
on the initial state. To be precise, for a given policy π we let Nπ,r

j (t) denote
the number of class-j users at time t when the process starts in state N r(0) =
r · (n0, n1, n2), with r ∈ N. All processes N r(t) share the same sequence of arrivals
and service requirements. For a given policy π, denote by T π,r

Ii
(t) the cumulative

amount of time during the interval (0, t] that node i is idle, i = 1, 2, and by T π,r
j (t)

the cumulative amount of time that was spent on serving class j, j = 0, 1, 2. Then,
T π,r

0 (t) + T π,r
i (t) + T π,r

Ii
(t) = t, i = 1, 2, and

Nπ,r
j (t) = rnj + Ej(t) − Fj(T

π,r
j (t)), j = 0, 1, 2, (5.18)

with Ej(·) a Poisson process with rate λj and Fj(·) a Poisson process with rate µj ,
[48]. We will be interested in the processes under the fluid scaling, i.e., both time
and space are scaled linearly by the parameter r:

N
π,r

j (t) :=
Nπ,r

j (rt)

r
and T

π,r

l (t) :=
T π,r

l (rt)

r
, j = 0, 1, 2, l = 0, 1, 2, I1, I2.

Limit points for N
π,r

j (t) and T
π,r

l (t) are described in the next lemma.

Lemma 5.2.7. For almost all sample paths ω there exists a subsequence rk such
that

lim
k→∞

N
π,rk

j (t) = N
π

j (t), j = 0, 1, 2, u.o.c.,

lim
k→∞

T
π,rk

l (t) = T
π

l (t), l = 0, 1, 2, I1, I2, u.o.c.

Furthermore, (N
π
, T

π
) satisfies for j = 0, 1, 2, i = 1, 2, l = 0, 1, 2, I1, I2,

N
π

j (t) = nj + λjt − µjT
π

j (t), (5.19)

N j(t) ≥ 0, T
π

l (0) = 0, T
π

0 (t) + T
π

i (t) + T
π

Ii
(t) = t, and T

π

l (t), are non-decreasing
and Lipschitz continuous functions.

The notation u.o.c. stands for uniform convergence on compact sets. We call the
processes T

π

l (t) and N
π

j (t) fluid limits for initial fluid level n and policy π.

Proof of Lemma 5.2.7: Making use of (5.18) and the fact that T
π,r

l (t) is Lipschitz
continuous with a constant less than or equal to 1, the proof follows similarly as
that of [44, Theorem 4.1]. Note that the Poisson assumptions are in fact not needed
for the result of this lemma to hold. �

As cost in the stochastic model we take E

(

∫D

0

∑2
j=0 cjN

π,r
j (t)dt

)

, with D > 0.

As r → ∞, this will tend to infinity. In order to obtain a non-trivial limit we divide
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the cost by r2 and consider a horizon that grows linearly in r, i.e., we are interested
in

E

(

∫ r·D

0

∑2
j=0 cjN

π,r
j (t)

r2
dt
)

= E

(

∫ D

0

2
∑

j=0

cjN
π,r

j (t)dt
)

.

We have the following lower bound on the scaled cost.

Lemma 5.2.8. For any policy π we have

lim inf
r→∞

E

(

∫ D

0

2
∑

j=0

cjN
π,r

j (t)dt
)

≥
∫ D

0

2
∑

j=0

cjn
∗
j (t)dt =

∫ ∞

0

2
∑

j=0

cjn
∗
j (t)dt,

whenever D ≥ H(c0n0 + c1n1 + c2n2), and where n∗(t) represents an average-cost
optimal trajectory of the fluid control problem for initial state n and H(·) is as
defined in Lemma 5.2.4.

Proof: By applying Fatou’s lemma, we obtain

lim inf
r→∞

E

(

∫ D

0

2
∑

j=0

cjN
π,r

j (t)dt
)

≥ E

(

lim inf
r→∞

∫ D

0

2
∑

j=0

cjN
π,r

j (t)dt
)

= E

(

lim
k→∞

∫ D

0

2
∑

j=0

cjN
π,rk

j (t)dt
)

,

with the subsequence rk (may depend on the sample path ω) corresponding to the
lim inf-sequence. Lemma 5.2.7 states that for almost all sample paths ω, there exists
a subsequence rkl

of rk such that liml→∞ N
π,rkl
j (t) = N

π

j (t), u.o.c., j = 0, 1, 2, with

N
π

j (t) a fluid limit for initial fluid level n and policy π. Note that a fluid limit is
an admissible trajectory for the fluid control problem. When we consider a finite
horizon D ≥ H(

∑2
j=0 cjnj), we obtain from Lemma 5.2.4 that

lim
l→∞

∫ D

0

2
∑

j=0

cjN
π,rkl
j (t)dt =

∫ D

0

lim
l→∞

2
∑

j=0

cjN
π,rkl
j (t)dt =

∫ D

0

2
∑

j=0

cjN
π

j (t)dt

≥ min
n(t) s.t. (5.3)−(5.6)

∫ D

0

2
∑

j=0

cjnj(t)dt =

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt =

∫ ∞

0

2
∑

j=0

cjn
∗
j (t)dt,

with n∗(t) an average-cost optimal trajectory. Note that in the first step we used
uniform convergence of the functions N

π,rkl
j (t), j = 0, 1, 2, on [0, D], in order to

interchange the limit and the integral. �

As described in Section 1.6.3, a policy is asymptotically fluid-optimal when the
lower bound is obtained. Hence, policy π is asymptotically fluid-optimal when

lim
r→∞

E

(

∫ D

0

2
∑

j=0

cjN
π,r

j (t)dt
)

=

∫ ∞

0

2
∑

j=0

cjn
∗
j (t)dt,
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with D ≥ H(
∑2

j=0 cjnj) and n∗(t) an average-cost optimal trajectory of the fluid
control problem for initial state n. In the remainder of this section, we use the opti-
mal fluid controls as described in Propositions 5.2.3 and 5.2.6 to identify asymptoti-
cally fluid-optimal policies in the stochastic model. In case max(c1µ1, c2µ2) ≤ c0µ0,
optimal policies in the stochastic model were found in closed form, see Section 4.3.1.
In this section we therefore focus on situations with max(c1µ1, c2µ2) > c0µ0.

We first consider the setting c1µ1 > c0µ0 and ρ1 < ρ2. In that case, an optimal
control in the fluid model is characterized by a linear switching curve with a strictly
positive slope, see Proposition 5.2.6. In the next lemma we describe the fluid limit of
the stochastic model under such policies. The proof may be found in Appendix 5.E.

Lemma 5.2.9. Assume ρ1 < ρ2. Denote by π̃ the policy with switching curves

hi(x0) = kix0, i = 1, 2, with k1 < µ1

µ0

ρ2−ρ1

1−ρ0−ρ2
and k2 ∈ {0,∞}. The process N

π̃
(t)

is uniquely determined. In addition, the functions T
π̃

l (t) are differentiable almost
everywhere, and for each regular point t it holds that:
If k2 = ∞, then

dT
π̃

0 (t)

dt
= 1 − ρ2, if N

π̃

1 (t) < k1N
π̃

0 (t), N
π̃

1 (t) > 0 and N
π̃

2 (t) = 0, (5.20)

dT
π̃

0 (t)

dt
= 0, if N

π̃

1 (t), N
π̃

2 (t) > 0 or if N
π̃

1 (t) ≥ k1N
π̃

0 (t), (5.21)

dT
π̃

0 (t)

dt
= ρ0, if N

π̃

0 (t) = N
π̃

1 (t) = 0, (5.22)

dT
π̃

0 (t)

dt
= 1 − ρ1, if N

π̃

0 (t) > 0 and N
π̃

1 (t) = 0, (5.23)

and if k2 = 0, then

dT
π̃

0 (t)

dt
= 1 − ρ2, if N

π̃

1 (t) < k1N
π̃

0 (t) and N
π̃

2 (t) = 0, (5.24)

dT
π̃

0 (t)

dt
= 0, if N

π̃

2 (t) > 0 or if N
π̃

1 (t) ≥ k1N
π̃

0 (t). (5.25)

In all cases
dT

π̃
i (t)
dt = 1 − dT

π̃
0 (t)
dt , if N

π̃

i (t) > 0, and
dT

π̃
i (t)
dt = min(ρi, 1 − dT

π̃
0 (t)
dt ), if

N
π̃

i (t) = 0, i = 1, 2.

In the next proposition we show that linear switching curves as obtained for
the fluid control model provide asymptotically fluid-optimal policies for the original
stochastic model.

Proposition 5.2.10. Assume ρ1 < ρ2 and ρ0 + ρ2 < 1.
If c1µ1 > c0µ0 ≥ c2µ2, then the policy with switching curves h1(x0) = c2µ2

c1µ1+c2µ2−c0µ0
·

µ1

µ0
· ρ2−ρ1

1−ρ0−ρ2
· x0 and h2(x0) = ∞ is asymptotically fluid-optimal.

If c1µ1 > c0µ0 and c2µ2 ≥ c0µ0, then the policy with switching curves h1(x0) =
c0

c1
· ρ2−ρ1

1−ρ0−ρ2
· x0 and h2(x0) = 0 is asymptotically fluid-optimal.
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Proof: Denote by π̃ the policy with switching curves hi(x0) = kix0, i = 1, 2, with
k1 = c2µ2

c1µ1+c2µ2−c0µ0
· µ1

µ0
· ρ2−ρ1

1−ρ0−ρ2
and k2 = ∞ if c0µ0 > c2µ2, and k1 = c0

c1
· ρ2−ρ1

1−ρ0−ρ2

and k2 = 0 if c2µ2 ≥ c0µ0. Note that when c2µ2 = c0µ0, one may also choose
k2 = ∞.

Since c1µ1 > c0µ0 we have in both cases that k1 < µ1

µ0

ρ2−ρ1

1−ρ0−ρ2
. Hence, the results

in Lemma 5.2.9 hold for policy π̃, i.e., N
π̃
(t) is uniquely determined and T

π̃

j (t),
satisfies (5.20)–(5.23) when k2 = ∞, and satisfies (5.24) and (5.25) when k2 = 0.

Using the correspondence u∗
j(t) =

dT
π̃
j (t)

dt , j = 0, 1, 2, with u∗(t) the average-cost

optimal control as defined in Proposition 5.2.6, it follows from (5.19) that N
π̃

j (t) =
n∗

j (t), j = 0, 1, 2, with n∗(t) the trajectory corresponding to the control u∗(t).
For a given sample path ω, let rk be a subsequence such that

lim inf
r→∞

∫ D

0

2
∑

j=0

cjN
π̃,r

j (t)dt = lim
k→∞

∫ D

0

2
∑

j=0

cjN
π̃,rk

j (t)dt.

From Lemma 5.2.7 it follows that for almost all ω there exists a subsequence rkl

of rk such that liml→∞ N
π̃,rkl (t) = N

π̃
(t) and liml→∞ T

π̃,rkl (t) = T
π̃
(t), u.o.c.

Since the functions N
π̃,rkl
j (t), j = 0, 1, 2, converge uniformly on the set [0, D], we

can interchange the limit and the integral, so that

lim inf
r→∞

∫ D

0

2
∑

j=0

cjN
π̃,r

j (t)dt = lim
l→∞

∫ D

0

2
∑

j=0

cjN
π̃,rkl
j (t)dt =

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt.

The same holds for the lim sup and we can conclude that for almost all ω,

lim
r→∞

∫ D

0

2
∑

j=0

cjN
π̃,r

j (t)dt =

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt. (5.26)

We have that
∫ D

0

∑2
j=0 cjN

π̃,r

j (t)dt is uniformly integrable. This follows from the
same argument as in the proof of [44, Lemma 4.5]. Here we state it briefly. Note that
N

π,r

j (t) ≤ (nr
j + Ej(rt))/r, with Ej(·) a Poisson process with rate λj , j = 0, 1, 2.

Since limr→∞ Ej(rt)/r = λjt a.s. (see Lemma 5.2.7) and E(Ej(rt)/r) = λjt, we
obtain from [27, Theorem 3.6] that Ej(rt)/r is uniformly integrable. Since D < ∞,

uniform integrability of
∫D

0

∑2
j=0 cjEj(rt)/rdt follows as well. Hence, by definition

of uniform integrability it is immediate that also the function
∫D

0

∑2
j=0 cjN

π,r

j (t)dt
is uniformly integrable.

We obtain

lim sup
r→∞

E

(

∫ D

0

2
∑

j=0

cjN
π̃,r

j (t)dt
)

= lim
m→∞

E

(

∫ D

0

2
∑

j=0

cjN
π̃,rm

j (t)dt
)

= E

(

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt

)

=

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt, (5.27)
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where in the second step we used (5.26) and uniform integrability to interchange
the limit and expectation (see [27, Theorem 3.5]). The subsequence rm corresponds
to the lim sup.

Equation (5.27) holds in particular for D > H(
∑2

j=0 cjnj). Together with
Lemma 5.2.8 we can conclude that π̃ is asymptotically fluid-optimal. �

We now consider the case c2µ2 > c0µ0 ≥ c1µ1 and ρ1 ≤ ρ2. In that setting,
an optimal control in the fluid model coincides with the policy π2 (as defined in
Section 5.1), see Proposition 5.2.3. In the next proposition we show that π2 is
asymptotically-fluid optimal in the stochastic model.

Proposition 5.2.11. Assume ρ0 + ρ2 < 1 and ρ1 ≤ ρ2. If c2µ2 > c0µ0 ≥ c1µ1,
then policy π2 is asymptotically fluid-optimal and the fluid limit N

π2
(t) is uniquely

determined.

Proof: Note that the functions T
π2

l (·) are differentiable almost everywhere. In
Appendix 5.F we show that for each regular point t it holds that

dT
π2

0 (t)

dt
= 0, if N

π2

2 (t) > 0, (5.28)

dT
π2

0 (t)

dt
= 1 − ρ2, if N

π2

0 (t) > 0 and N
π2

2 (t) = 0, (5.29)

dT
π2

0 (t)

dt
= ρ0, if N

π2

0 (t) = N
π2

2 (t) = 0. (5.30)

In all cases
dT

π2
i (t)

dt = 1 − dT
π2
0 (t)
dt , if N

π2

i (t) > 0, and
dT

π2
i (t)

dt = min(ρi, 1 − dT
π2
0 (t)
dt ),

if N
π2

i (t) = 0, i = 1, 2.
From (5.19) and (5.28)–(5.30), it follows that N

π2

j (t) is uniquely determined.

Using the correspondence u∗
j (t) =

dT
π2
j (t)

dt , j = 0, 1, 2, with u∗(t) as defined in

Proposition 5.2.3, it follows that N
π2

j (t) = n∗
j (t), j = 0, 1, 2, with n∗(t) the trajectory

corresponding to the control u∗(t). The remainder of the proof is similar to the proof
of Proposition 5.2.10. �

5.3 Diffusion scaling for ρ1 = ρ2

In Section 5.2.1 we derived that linear switching curves provide optimal fluid con-
trols. When either ρ1 = ρ2 and min(c1µ1, c2µ2) ≤ c0µ0 or ρ1 6= ρ2, these curves
approximate the optimal switching curves in the stochastic model very well, and pro-
vide asymptotically fluid-optimal policies, see Section 5.2.2. However, when ρ1 = ρ2

and c0µ0 < min(c1µ1, c2µ2), this is not the case. In that setting, the optimal switch-
ing curves in the fluid control model are both equal to zero, i.e., it is optimal to
serve class 0 only if there is work of neither class 1 nor class 2. In the stochastic
model, giving classes 1 and 2 preemptive priority leads unnecessarily to an unstable
system when ρ0 > (1 − ρ1)(1 − ρ2), see Proposition 3.2.1, and is therefore certainly
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Figure 5.4: Optimal switching curves and square-root approximations, when ρ1 =
ρ2: ρ0 = 0.4, ρ1 = ρ2 = 0.2 (left) and ρ0 = ρ1 = ρ2 = 0.3 (right).

not close-to-optimal. In the fluid control model we have no instability, since we can
keep classes 1 and 2 simultaneously empty, while in the stochastic model there can
be stochastic fluctuations that cause instability effects.

In Figure 5.4 we plotted the optimal switching curves for parameters that satisfy
ρ1 = ρ2, together with a function that provides a good approximation of the curve.
We chose µ0 = 2, µ1 = µ2 = 5, c0 = c1 = c2 = 1, and plotted h1(·). (By symmetry,
the switching curve h2(·) is identical.) The figures indicate that the switching curve
has a sub-linear shape, and in fact is close to the square-root function. In the
previous section, we scaled the processes N0(t), N1(t) and N2(t) identically. Due to
its sub-linear shape, the switching curve therefore collapsed on the horizontal axis
after taking the limit. This motivates the choice for a different scaling when ρ1 = ρ2:
We need to scale the system such that the switching curves remain observable.

In the remainder of this section we assume c0µ0 < min(c1µ1, c2µ2). In the case
that classes 1 and 2 are both strictly positive, we know that it is optimal to serve
both classes 1 and 2 until one of them empties. Without loss of generality, we can
therefore concentrate on initial states with N2(0) = 0.

We generically consider switching curves of the shape hi(·) = kif(·), ki ≥ 0, for
i = 1, 2. The function f(·) is not specified for now. Again we consider the sequence
of processes indexed by a superscript r, where the workload and number of users
in class j at time t are denoted by W r

j (t) and N r
j (t), respectively, j = 0, 1, 2. The

initial state depends on r and is chosen in accordance with the above observations:
N r(0) = (rn0,

√
rm1, 0), with n0, m1 > 0. We investigate the fluid-scaled processes

N
r

j(t) and W
r

j(t). We will see that limr→∞ N
r

j(t) = limr→∞ W
r

j(t) = 0 for j = 1, 2.

Therefore, we are also interested in the diffusion-scaled processes
Nr

j (rt)√
r

and
W r

j (rt)√
r

,

j = 1, 2.

Remark 5.3.1. The workload and number of users present in the system under

the fluid and diffusion scaling can be related in the following way: limr→∞ N
r

j(t)
d
=
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limr→∞ µjW
r

j(t) and limr→∞
Nr

j (rt)√
r

d
= limr→∞ µj

W r
j (rt)√

r
, assuming these limits ex-

ist. This can be seen as follows. Due to the exponentially distributed service re-
quirements and the fact that we consider non-anticipating policies, we have

W r
j (rt)

d
=

∑Nr
j (rt)

k=1 Expk(µj)

N r
j (rt)

· N r
j (rt), (5.31)

j = 0, 1, 2, with Expk(µj), k = 1, 2, . . . , i.i.d. exponential random variables with

mean 1/µj. In addition, it can be proved that limr→∞
∑

Nr
j (rt)

k=1 Expk(µj)

Nr
j (rt) · Nr

j (rt)

r

d
=

µj limr→∞
Nr

j (rt)

r and limr→∞
∑

Nr
j (rt)

k=1
Exp

k
(µj)

Nr
j (rt) · Nr

j (rt)√
r

d
= µj limr→∞

Nr
j (rt)√

r
. Com-

bining this with (5.31) the statements follow.

In Sections 5.3.1 and 5.3.2 we describe the free processes corresponding to the
behavior above and below the switching curve. This is used in Section 5.3.3 to
explain the square-root shape of the switching curves when ρ1 = ρ2.

5.3.1 Free process above the switching curve

Class i is given preemptive priority in states above the switching curve hi(·), i =
1, 2. Hence, the free process that corresponds to the behavior above the switching
curve hi(·) is the process that gives class i priority, regardless of the number of
class-0 and class-(3 − i) users present. This implies that under fluid-scaling the
free process is linearly decreasing in class i and linearly increasing in class 0, while
keeping class 3 − i empty.

5.3.2 Free process below the switching curve

We now consider the free process that corresponds to the behavior of the stochastic
process below the switching curve. Hence, in the free process, classes 1 and 2 are
served during (short) excursions when both of them are positive, or whenever there
are no class-0 users present.

We reflect the fact that we look at the free process by adding the symbol ∼ to
the notation. In the following proposition, it is stated that the free process has two
different types of components: the component corresponding to class 0 behaves as
a deterministic fluid component, while classes 1 and 2 show random fluctuations of
the order

√
r in a time span r, i.e., their workloads remain of the order

√
r a.s.

Proposition 5.3.2. Consider the free process that serves classes 1 and 2 whenever
both are present, and otherwise serves class 0. Assume ρ1 = ρ2. Let N r(0) =
(rn0,

√
rm1, 0) and let τ0 be the first moment that class 0 is empty. For all t < τ0,

we have

lim
r→∞

W̃ r
0 (rt)

r
=

n0

µ0
− (1 − ρ0 − ρ1)t,
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and limr→∞
W̃ r

i (rt)
r = 0 for i = 1, 2. In addition, for all t < τ0,

lim
r→∞

W̃ r
1 (rt)√

r
= lim

n→∞
1(W̃ r

1 (rt)≥W̃ r
2 (rt))

W̃ r
1 (rt) − W̃ r

2 (rt)√
r

d
= 1(BM(t)+

m1
µ1

≥0)

(

BM(t) +
m1

µ1

)

, (5.32)

lim
r→∞

−W̃ r
2 (rt)√
r

= lim
r→∞

1(W̃ r
2 (rt)≥W̃ r

1 (rt))

W̃ r
1 (rt) − W̃ r

2 (rt)√
r

d
= 1(BM(t)+

m1
µ1

≤0)

(

BM(t) +
m1

µ1

)

, (5.33)

with BM(t) a zero-mean Brownian motion with variance θ2 := λ1/µ2
1 + λ2/µ2

2.

Proof: Denote by Ai(0, t) the amount of class-i work that arrived in the inter-
val (0, t] and by B̃i(0, t), the cumulative amount of capacity that is given to class i
in the free process in the interval (0, t]. Let t < τ0. For i = 1, 2, we have

W̃ r
i (t) = W r

i (0) + Ai(0, t) − B̃i(0, t), (5.34)

B̃1(0, t) = B̃2(0, t), (5.35)

where the last equality holds since classes 1 and 2 are served only when both of
them are positive. Using (5.34) and (5.35), we obtain

W̃ r
1 (rt) − W̃ r

2 (rt) = A1(0, rt) − A2(0, rt) + W r
1 (0) − W r

2 (0).

From Remark 5.3.1, the functional central limit theorem [40, 80] and the fact that
we have Poisson arrivals, we conclude that

lim
r→∞

1√
r

(

W̃ r
1 (rt) − W̃ r

2 (rt)
)

= lim
r→∞

1√
r

(

A1(0, rt) − A2(0, rt) + W r
1 (0) − W r

2 (0)
)

d
= BM(t) +

m1

µ1
, (5.36)

where BM(t) is a zero-mean Brownian motion with variance θ2.
Define s∗ := inf{s ≤ t : classes 1 and 2 are continuously backlogged in (s, t]}.

Since classes 1 and 2 are served at rate 1 in the interval (s∗, t], this implies W̃ r
i (t) =

W̃ r
i (s∗) + Ai(s

∗, t) − (t − s∗), i = 1, 2. Denote by W̃ r
min(t) := min(W̃ r

1 (t), W̃ r
2 (t))

the minimum workload in classes 1 and 2. We have

W̃ r
min(t) ≤ min(W̃ r

1 (s∗), W̃ r
2 (s∗)) + max(A1(s

∗, t), A2(s
∗, t)) − (t − s∗)

≤ min(W̃ r
1 (s∗), W̃ r

2 (s∗)) + sup
s≤t

{Â(s, t) − (t − s)}, (5.37)

where Â(s, t) := max(A1(s, t), A2(s, t)). Using the fact that Â(s, t)/(t−s) → ρ1 < 1
as t − s → ∞, we have from [9, Corollary III.7.2] that the right-hand side of (5.37)
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converges (as t → ∞) to a random variable that is finite almost surely. Consequently,
limr→∞ W̃ r

min(rt) is bounded from above by a non-defective random variable, which

implies limr→∞
W̃ r

min(rt)√
r

= 0, a.s. Together with (5.36) and

W̃ r
i (t) = (W̃ r

i (t) − W̃ r
3−i(t) + W̃ r

min(t))1(W̃ r
i (t)≥W̃ r

3−i(t))
+ W̃ r

min(t)1(W̃ r
i (t)<W̃ r

3−i(t))
,

we obtain (5.32) and (5.33).
As long as class 0 is not empty, both nodes are work-conserving, so that

W̃ r
0 (rt) + W̃ r

1 (rt) = W r
0 (0) + W r

1 (0) + A0(0, rt) + A1(0, rt) − rt.

Since limr→∞
1
r W̃ r

1 (rt) = 0, this gives limr→∞
W̃ r

0 (rt)
r = n0

µ0
+ (ρ0 + ρ1 − 1)t. �

5.3.3 Shape of switching curve

In this section we intuitively explain the square-root shape of the optimal switching
curves when ρ1 = ρ2 and min(c1µ1, c2µ2) > c0µ0. From the fluid control model,
we learned that a switching curve in the stochastic model should lie close to the
horizontal axis (the optimal switching curve in the fluid control model in fact coin-
cides with the horizontal axis, see Proposition 5.2.6). Letting the switching curve be
too close to the horizontal axis, however, poses the risk of significant capacity loss:
capacity is lost in node 2 if there are no class-2 users and the process is in a state
above the switching curve h1(·) and, vice versa, capacity is lost in node 1 if there
are no class-1 users and the process is in a state above the switching curve h2(·).
The switching curve must therefore be high enough to make it sufficiently unlikely
for the process to reach it from below. But it should not be impossible to reach
the switching curve, because above the switching curve the weighted departure rate
is higher. Remark 5.3.1 and Proposition 5.3.2 give that the free processes Ñ1(t)
and Ñ2(t) below the switching curves have zero drift whose fluctuations in linear
time O(r) are of the order O(

√
r). This indicates that square-root switching curves,

i.e., hi(x0) = ki
√

x0, ki ≥ 0, i = 1, 2, are able to strike the right balance between
the above-described effects. For comparison: a linear switching curve would be im-
possible to reach, therefore the policy would not profit from serving the fast class 1
or class 2 even if there is a lot of work of it. On the other hand, a threshold policy
(i.e., a constant switching curve) can quickly give instability problems as, at large
states, it is too easy to move up to the switching curve, thus risking considerable
capacity loss.

In fact, we believe that square-root shaped switching curves provide asymptoti-
cally fluid-optimal policies, however, we do not formally prove this. One approach
to do this would be to determine the fluid limits. The latter requires further in-
vestigation of the reflection of the process on the switching curves and demands
calculating the first-passage probabilities of the zero-mean Brownian motion to the
square-root switching curves. This is not trivial, see for example [4, 18, 103]. For
the same reason, finding the best value for the coefficient ki is not straightforward.
In the remainder of this section we therefore numerically illustrate the impact of
the choice for ki.
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curves hi(x0) = 10

√
x0, i = 1, 2 (left), and hi(x0) = 1/4

√
x0, i = 1, 2 (right).

We set c0 = c1 = c2 = 1, ρ0 = 0.4, ρ1 = ρ2 = 0.2 and µ0 = 2, µ1 = µ2 = 5. In
the first simulation we chose the switching curves hi(x0) = ki

√
x0 with ki = 6/5,

for i = 1, 2. In Figure 5.5 we see that the number of class-0 users indeed decreases
linearly in time (left graph), while the minimum of the number of class-1 and class-
2 users is typically very small (middle graph). The right most graph shows the
trajectory of the difference between the number of class-1 and class-2 users. In
addition, both switching curves are plotted. Recall from Proposition 5.3.2 (and
Remark 5.3.1) that, after diffusion scaling, Ñ1(t)− Ñ2(t) represents Ñ1(t) when it is
positive, and −Ñ2(t) when it is negative. We see that as the number of class-0 users
decreases, the trajectory stays mostly between the two switching curves, making
some excursions between the switching curves in both planes.

Taking ki very large implies that for points that lie (for example) just below the
switching curve h1(·), the probability of emptying the work in class 1 and hitting the
switching curve h2(·) becomes almost zero. See Figure 5.6 (left) where a trajectory
is plotted for ki = 10. Therefore, the policy focuses too much on being work-
conserving in node 1. On the other hand, taking k1 too small, we see that we switch
too often between the two planes, and we loose unnecessarily a considerable amount
of capacity, see Figure 5.6 (right) where k1 = k2 = 1/4.
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5.4 Numerical evaluation

In this section we numerically compare the performance of weighted α-fair
bandwidth-sharing policies (as defined in Section 1.4.1) and fluid-based and diffusion-
based switching-curve policies with that of the true optimal policy. The latter is
determined using value iteration after a suitable state space truncation. Through-
out this section we assume c0 = c1 = c2 = 1, i.e., we focus on minimizing the total
number of users. In Section 5.4.1 we assess the effectiveness of different switching-
curve policies and in Section 5.4.2 we investigate whether an optimal policy can be
approximated with a weighted α-fair policy. Throughout this section, we use the
notation Nπ :=

∑2
j=0 Nπ

j .

5.4.1 Switching-curve policies

We have conducted a large set of simulation experiments to assess the effectiveness
of different switching-curve policies. Under these policies, classes 1 and 2 are served
whenever both are present. When N3−i(t) = 0 for an i = 1, 2, class 0 is served when
Ni(t) < hi(N0(t)), and class i is served otherwise. We consider switching curves of
the shape hi(x0) = kif(x0), i = 1, 2, where the function f(·) is either a square-root,
linear or is equal to one. The latter is referred to as a threshold policy. The value
of ki is varied to assess its impact. We let µ0 = 2, µ1 = µ2 = 5. We simulate in
the order of 106 busy periods and the obtained total mean number of users under
the different policies are compared with the optimal policy and with PF. PF falls
within the class of weighted α-fair policies by setting α = 1 and wj = 1, j = 0, 1, 2.
The mean numbers of users of the various classes under PF are as given in (4.23)
and (4.24).

In Figure 5.7 we considered ρ1 6= ρ2, chose k2 = 0, and let k1 vary. We ob-
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(right).

serve that a policy with a linear switching curve attains the value of the optimal
policy provided that the best coefficient k1 is chosen. This is in accordance with
Proposition 5.2.10 which stated that when c1µ1, c2µ2 ≥ c0µ0, the asymptotically
fluid-optimal policy has a linear switching curve for class 1, h1(x0) = (ρ2 − ρ1)/(1−
ρ0 − ρ2)x0, and gives preemptive priority to class 2. The slope of the linear curve
equals 2/3 for the parameter setting of the left plot and 3/2 for the parameter set-
ting of the right plot. We observe that these slopes are already close to optimal. In
addition, we observe that the square-root policy also performs very well. Further-
more, note that when k1 grows large (and k2 = 0), the behavior of the system under
the considered switching curve policies converges to that of policy π2. Policy π2 is
already close to optimal. This is not surprising, since policy π2 is asymptotically
fluid-optimal when node 2 is heavily loaded (ρ0 + ρ2 ≈ 1 and ρ0 + ρ1 < 1), see
Proposition 5.2.10.

In Figure 5.8 we considered ρ1 = ρ2 and chose k1 = k2, i.e., the switching curves
for both classes are identical. We observe that the square-root policy attains the
value of the optimal policy provided that the best coefficient k1 is chosen. This
agrees with the discussion of the shape of the switching curve in Section 5.3.3.
Also note that the setting in the left graph in Figure 5.8 corresponds to the right
graph in Figure 5.4. The approximation we found there for the switching curve was
hi(x0) = 1.5

√
x0 which indeed is close to optimal. When k1 grows large, the behavior

of the system resembles that of policy π∗∗ ∈ Π∗∗ ∩ Π̄, as defined in Section 4.1.

As described in Section 5.3.3, we did not derive an estimate for an efficient
preconstant k1 when ρ1 = ρ2. Therefore, in Figures 5.9 and 5.10 we test the impact
of the value for k1 on the square-root, linear, and threshold policies for several
combinations of the loads with ρ1 = ρ2. We compare the total mean number of
users under the switching-curve policies with PF. We set k2 = k1. We observe that
square-root switching curves perform best, provided that the value of k1 is chosen
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Figure 5.9: Comparison of PF with square-root (left) and linear (right) switching-
curve policies.
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Figure 5.10: Comparison of PF with threshold policies.

optimally. The linear switching curves perform surprisingly well, although they are
less efficient than the square-root policies. The square-root and linear policies are
not that sensitive to the actual value of k1, as long as its value is not too small.
The threshold policies are more sensitive to the value of k1 and run a higher risk of
being unstable. Overall, we observe that the best choice among these policies only
gives a modest improvement over PF (5-20%).

5.4.2 Weighted α-fair policies

For completeness, in Figure 5.11 we plot the relative improvement of α-fair policies
(with unit weights) over the total mean number of users under PF (α = 1). We
chose µ0 = 2, µ1 = µ2 = 5 and different settings of the loads. We notice that α-fair
policies seem to be rather insensitive to the value of α, as long as α is not too small.
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Figure 5.11: Comparison of α-fair policies with PF for different settings of the loads.

We next test the scope for improvement of α-fair policies by adding weights to
the various classes, i.e., we focus on weighted α-fair bandwidth-sharing policies. We
numerically investigate the effect of changing the weights and check whether we
can approximate the optimal policy with a weighted α-fair policy. Without loss
of generality, we fix w0 = 1. In the numerical examples we choose µ0 = 2 and
µ1 = µ2 = 5, but the observations hold more generally for µ0 < µ1, µ2.

In Figure 5.12, with α = 1 corresponding to PF, and Figure 5.13, with α = 2,
we compare weighted α-fair policies with the optimal policy. We note that the gap
between the best weighted α-fair policy and the optimal policy is at most 5%. From
the left graphs in Figures 5.12 and 5.13 we observe that when ρ1 < ρ2, choosing w1

close to zero and w2 = ∞ approximates the optimal policy very well. In fact, when
choosing these weights the policy resembles π2, which, as observed in Section 5.4.1,
is close to optimal. From the right graphs in Figures 5.12 and 5.13 we observe
that when ρ1 = ρ2, choosing one of the two weights equal to ∞ and the other
weight strictly positive, approximates the optimal policy very well. More precisely,
for PF these weights are wi = 1/2, w3−i = ∞, i = 1, 2 and for α = 2 these
weights are wi = 1/8, w3−i = ∞, i = 1, 2. This can be explained as follows. From
Proposition 4.3.9 we know that when both class-1 and class-2 users are present,
the optimal allocation gives the full capacity to classes 1 and 2. Having one of
the weights equal to ∞, say w2, guarantees that the weighted α-fair policy does
this as well. Now when there are no class-2 users present, there exists a switching
curve that determines the optimal trade-off between serving class 0 or class 1, see
Proposition 4.3.9. In the case of a weighted α-fair policy, when there are no class-2

users present the allocated capacity to class 0 is s0(t) = N0(t)

N0(t)+w
1/α
1 N1(t)

. There

exists a 0 ≤ w1 < ∞ that strikes the right balance to share the capacity between
class 0 and class 1. Note that w1 = 0 (w1 = ∞) implies that class 0 (class 1) is
given strict priority when class 2 is not present.

Similarly, efficient weights for the remaining cases can be obtained. When
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µ0 > µ1 + µ2, an optimal policy gives preemptive priority to class 0 (Proposi-
tion 4.3.6). This policy can be approximated by the weighted α-fair policy by
setting the weights w1 and w2 equal to zero. When µ1, µ2 < µ0 < µ1 + µ2, an op-
timal policy gives preemptive priority to classes 1 and 2 whenever both are present
and otherwise serves class 0 (Proposition 4.3.8). We expect that an α-fair policy
with weights w1 and w2 strictly positive, but smaller than w0 = 1, will approxi-
mate this optimal policy. When µ2 < µ0 < µ1 and ρ1 ≥ ρ2, the weights w1 = ∞
and w2 = 0 approximate the corresponding asymptotically fluid-optimal policy π1

(Proposition 5.2.11). However, when ρ1 < ρ2, the asymptotically fluid optimal
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policy is described by a switching curve in states where there are no class-2 users
present (Proposition 5.2.10). In that case we numerically observed that a weighted
α-fair policy with w1 non-degenerate and w2 = 0, is close to optimal.

5.5 Concluding remarks

Using scaling approaches, we determined accurate approximations to optimal poli-
cies in a linear bandwidth-sharing network. These policies were shown to provide
sensible benchmarks for assessing the performance of bandwidth-sharing policies.
We showed that weighted α-fair policies performed well in all our experiments, and,
when the weights are chosen appropriately, are within a few percent from the theo-
retical optimum.

Despite its simplicity, the two-node network already illustrates the essential com-
plexity of the scheduling problem, and serves as a basis for the analysis of more
general networks. For linear networks with L > 2 nodes we expect that an optimal
fluid control can again be described by switching curves: When class k empties, with
k = 1, . . . , L such that ρk = min(ρ1, . . . , ρL), an optimal fluid trajectory will keep
this class empty from that moment on. Hence, in that case the fluid trajectories can
be reduced to typical paths in a network with one node less. However, when class i,
i 6= 0, with ρi > ρk empties, while class k is still present, one needs to determine
optimal switching points by calculating the corresponding costs (as was done in the
proof of Proposition 5.2.6 for the case of two nodes).

As a final remark, we note that the best multiplicative preconstant of the square-
root switching curve (for the case ρ1 = ρ2) has so far been determined numerically.
We saw in all our experiments that the optimum can, indeed, be attained for a
specific choice of the multiplier. The computation time of this procedure is vir-
tually negligible compared with numerically determining the true optimal policy.
In order to analytically characterize the optimal value of the preconstant, further
investigation of the reflection of the process on the switching curve is required.

Appendix

5.A Proof of Lemma 5.1.1

We couple the systems that arise under the two policies by taking the same arrival
time and service requirement sequences. We will show that (5.1) and (5.2) hold on
each sample path. Since the service requirements are exponentially distributed, the
scheduling within classes does not influence the stochastic behavior of the system
(recall that we restrict the attention to size-oblivious policies). For our coupling ar-
guments it is convenient to assume that FCFS is applied within each class. As a con-
sequence, if W g

i (t) ≤ Wh
i (t), then this immediately translates to the same inequality

in terms of the numbers of users. Define s := inf{t > 0 : (5.1) or (5.2) is violated}.
An inequality can only be violated immediately after time s when it holds with
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equality at time s. In the proof we use f(t+) > f ′(t+) to denote that there exists a
sufficiently small δ > 0 such that f(u) > f ′(u) for all u ∈ (t, t + δ].

First, assume that immediately after time s, equation (5.1) is violated, that is
W g

0 (s+) > Wh
0 (s+) while W g

0 (s) = Wh
0 (s). From (5.2) we have W g

i (s) ≤ Wh
i (s),

i = 1, 2. To ensure that W g
0 (s+) > Wh

0 (s+), policy g must serve classes 1 and/or 2
while policy h serves class 0 at time s. Since W g

i (s) ≤ Wh
i (s) (and hence Ng

i (s) ≤
Nh

i (s)), i = 1, 2, serving classes 1 and/or 2 under policy g implies that also under
policy h classes 1 and/or 2 are served (since hi(n0) ≤ gi(n0) and Ng

0 (s) = Nh
0 (s)),

which yields a contradiction.

Now, assume equation (5.2) for i = 2 is the first to be violated immediately
after time s. Hence, W g

0 (s) + W g
2 (s) = Wh

0 (s) + Wh
2 (s), W g

0 (s+) + W g
2 (s+) >

Wh
0 (s+) + Wh

2 (s+), W g
0 (s) ≤ Wh

0 (s). This implies that at time s, policy g serves
class 1 and there is no work of class 2 present (W g

2 (s) = 0), while policy h serves
either class 0 or class 2. We can conclude from the above that W g

2 (s) ≥ Wh
2 (s). But

W g
2 (s) = 0, so that Wh

2 (s) = 0 as well, and hence W g
0 (s) = Wh

0 (s). By (5.2) we
now obtain W g

1 (s) ≤ Wh
1 (s). Since hi(n0) ≤ gi(n0) and since policy g serves class 1,

policy h serves class 1 as well, which contradicts the initial assumption. �

5.B Proof of Lemma 5.1.3

We set l = 2. Node 2 is work-conserving under policy π2, hence classes 0 and 2
are stable when ρ0 + ρ2 < 1. In particular, the workload in classes 0 and 2 is
finite a.s. In the remainder of the proof we show that the class-1 workload is finite
a.s. as well. Let Aj(s, t) denote the amount of class-j work that arrived in the
interval (s, t], and let Bj(s, t) denote the cumulative amount of capacity that is
given to class j in the interval (s, t]. Define s1 := sup{u ≤ t : W1(u) = 0} and
s := sup{u ≤ s1 : W0(u) + W2(u) = 0}. Then,

W0(t) + W1(t) = W0(t) + A1(s1, t) − B1(s1, t)

= W0(t) + A1(s1, t) − (t − s1) + B0(s1, t)

= W0(t) + A1(s1, t) − (t − s1) + W0(s1) − W0(t) + A0(s1, t)

≤ A1(s1, t) − (t − s1) + W0(s1) + W2(s1) + A0(s1, t)

= A1(s1, t) − (t − s1) + A0(s1, t) + A0(s, s1) + A2(s, s1) − (s1 − s)

= A1(s1, t) + A0(s, t) + A2(s, t) − A2(s1, t) − (t − s)

= A1(s1, t) − (ρ1 + ǫ)(t − s1) + A0(s, t) − (ρ0 + ǫ)(t − s)

+A2(s, t) − (ρ2 + ǫ)(t − s) + (ρ2 − ǫ)(t − s1) − A2(s1, t) + R, (5.38)

with ǫ = 1−ρ0−max(ρ1,ρ2)
4 and R = (ρ1 + ǫ)(t− s1)+ (ρ0 + ǫ)(t− s)+ (ρ2 + ǫ)(t− s)−

(ρ2 − ǫ)(t − s1) − (t − s). The fourth equation follows from the fact that node 2 is
work-conserving, i.e., when node 2 is backlogged, the work is served at full rate.
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For ρ2 ≥ ρ1, we can bound R from above as follows:

R ≤ (ρ2 + ǫ)(t − s1) + (ρ0 + ǫ)(t − s) + (ρ2 + ǫ)(t − s) − (ρ2 − ǫ)(t − s1)

−(t − s)

= (ρ0 + ρ2 − 1)(t − s) + ǫ(4t − 2s1 − 2s) ≤ (ρ0 + ρ2 + 4ǫ − 1)(t − s) = 0.

For ρ2 ≤ ρ1, we have ρ1 − ρ2 + 2ǫ ≥ 0 and we bound R from above as follows:

R = t(ρ0 + ρ1 + 4ǫ − 1) − s(ρ0 + ρ2 + 2ǫ − 1) − s2(ρ1 − ρ2 + 2ǫ)

≤ t(ρ0 + ρ1 + 4ǫ − 1) − s(ρ0 + ρ2 + 2ǫ − 1) − s(ρ1 − ρ2 + 2ǫ)

= (ρ0 + ρ1 + 4ǫ − 1)(t − s) = 0.

Denote by Ŵ c
i (t), the workload at time t in a reference system with class-i traffic

only, service rate c, and with Ŵ c
i (0) = 0. Define Ud

j (t) := sup0≤s≤t{d(t − s) −
Aj(s, t)}. Since R ≤ 0, we have from (5.38) that

W0(t) + W1(t)

≤ sup
0≤s≤t

{A1(s, t) − (ρ1 + ǫ)(t − s)} + sup
0≤s≤t

{A0(s, t) − (ρ0 + ǫ)(t − s)}

+ sup
0≤s≤t

{A2(s, t) − (ρ2 + ǫ)(t − s)} + sup
0≤s≤t

{(ρ2 − ǫ)(t − s) − A2(s, t)}

= Ŵ ρ1+ǫ
1 (t) + Ŵ ρ0+ǫ

0 (t) + Ŵ ρ2+ǫ
2 (t) + Uρ2−ǫ

2 (t). (5.39)

The first three terms in (5.39) represent workloads in stable queues, since the service
rate is larger than the offered loads. Hence, the first three terms are finite a.s, [9].
By [9, Corollary III.7.2] we obtain that the fourth term in (5.39) converges to the
supremum of a random walk with drift ρ2 − ǫ − ρ2 < 0. Since the drift is negative,
we obtain in particular that Uρ2−ǫ

2 (t) < ∞ a.s. Hence the workload in node 1 can
be bounded from above by four terms that are finite a.s. �

5.C Proof of Lemma 5.2.2

Without loss of generality, assume that π̃ is Pareto-efficient, that is, it does not leave
capacity unnecessarily unused. Assume there exists a ∆ > 0 such that policy π̃ does
not satisfy (5.8)–(5.10) for all t ∈ (0, ∆) (without loss of generality, we assume that
such an interval starts at time 0). This implies in particular that nπ̃

1 (t), nπ̃
2 (t) > 0

for all t ∈ (0, ∆), and hence uπ̃
0 (t) > 0, for all t ∈ (0, ∆).

We construct policy π as follows. For all 0 ≤ t ≤ T̃ we set

• uπ
0 (t) = 0, if nπ

1 (t), nπ
2 (t) > 0 or if nπ

0 (t) = 0,

• uπ
0 (t) = 1 − ρi, if nπ

0 (t) > 0, nπ
i (t) = 0, and nπ

j (t) > 0, i 6= j, i, j = 1, 2,

• uπ
0 (t) = 1− ρi, if nπ

0 (t) > 0 and nπ
i (t) = nπ

j (t) = 0, ρi ≤ ρj , i 6= j, i, j = 1, 2,
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and uπ
i (t) = 1 − uπ

0 (t), if ni(t) > 0, and uπ
i (t) = min(ρi, 1 − uπ

0 (t)), if ni(t) = 0,
i = 1, 2. The time T̃ is defined as min(T̃0, T̃12), with T̃0 := inf{t > 0 : nπ̃

0 (t) = nπ
0 (t)}

and T̃12 := inf{t > 0 : nπ̃
1 (t) = 0 or nπ̃

2 (t) = 0} > 0. After time T̃ , policy π takes
the same decisions as policy π̃ (whenever possible), and otherwise idles.

We assumed nπ(0) = nπ̃(0). Since π̃ does not satisfy (5.8)–(5.10) and by def-
inition of π, it follows that for all ǫ > 0 small enough, Uπ

0 (ǫ) < U π̃
0 (ǫ), so that

nπ
0 (ǫ) > nπ̃

0 (ǫ) and T̃0 > 0. In particular, this yields nπ
0 (t) > 0 for all 0 < t < T̃ ,

so that, by definition of policy π, we obtain uπ
0 (t) + uπ

i (t) = 1, for i = 1, 2. Since
nπ̃

i (t) > 0, for all 0 < t ≤ T̃ , we have as well uπ̃
0 (t)+uπ̃

i (t) = 1, i = 1, 2. This implies

Uπ
0 (t) + Uπ

i (t) = U π̃
0 (t) + U π̃

i (t), for all 0 < t ≤ T̃ . (5.40)

Since T̃ ≤ T̃0 and Uπ
0 (ǫ) < U π̃

0 (ǫ) for ǫ > 0 small enough, it holds in particular that
Uπ

0 (t) ≤ U π̃
0 (t), for all t ≤ T̃ . Hence, we obtain that for all t ≤ T̃ ,

2
∑

j=0

cjn
π
j (t) =

2
∑

j=0

cjnj(0) + t ·
2
∑

j=0

λj − c0µ0U
π
0 (t) − (c1µ1 + c2µ2)(t − Uπ

0 (t))

≤
2
∑

j=0

cjnj(0) + t ·
2
∑

j=0

λj − c0µ0U
π̃
0 (t) − (c1µ1 + c2µ2)(t − U π̃

0 (t)) =

2
∑

j=0

cjn
π̃
j (t),

where we used that c1µ1 + c2µ2 ≥ c0µ0. Hence, policy π does better than policy π̃,
for all 0 ≤ t ≤ T̃ .

We conclude the proof by showing that Uπ
j (T̃ ) = U π̃

j (T̃ ), j = 0, 1, 2, which

implies nπ(T̃ ) = nπ̃(T̃ ). In order to do this, we distinguish between the two possible
values of T̃ : (i) Assume T̃ = T̃0. Then, by definition, Uπ

0 (T̃ ) = U π̃
0 (T̃ ), and hence

by (5.40), Uπ
i (T̃ ) = U π̃

i (T̃ ), i = 1, 2. (ii) Assume T̃ = T̃12. Then nπ̃
i (T̃ ) = 0,

for an i = 1, 2. From (5.40) and Uπ
0 (T̃ ) ≤ U π̃

0 (T̃ ), we obtain Uπ
i (T̃ ) ≥ U π̃

i (T̃ ),
so that nπ

i (T̃ ) ≤ nπ̃
i (T̃ ) = 0. This yields Uπ

i (T̃ ) = U π̃
i (T̃ ), and hence by (5.40),

Uπ
j (T̃ ) = U π̃

j (T̃ ), j = 0, 1, 2. �

5.D Proof of Lemma 5.2.4

By the Filippov-Cesari theorem [122, Chapter 2.8], there exists an optimal control
u∗D(t) and a corresponding optimal trajectory n∗D(t) for the problem

minn(t) s.t. (5.3)−(5.6)

∫D

0 (
∑2

j=0 cjnj(t))dt, for any D ≥ 0.

For the moment, assume there exists a function H(·) such that

2
∑

j=0

n∗D
j (t) = 0, for all t ≥ H(

2
∑

j=0

cjnj), (5.41)

with n denoting the initial state. The proof of (5.41) will be given later on.
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From (5.41) we obtain

min
n(t) s.t. (5.3)−(5.6)

∫ ∞

0

2
∑

j=0

cjnj(t)dt ≥ min
n(t) s.t. (5.3)−(5.6)

∫ D

0

2
∑

j=0

cjnj(t)dt (5.42)

=

∫ D

0

2
∑

j=0

cjn
∗D
j (t)dt =

∫ ∞

0

2
∑

j=0

cjn
∗D
j (t)dt ≥ min

n(t) s.t. (5.3)−(5.6)

∫ ∞

0

2
∑

j=0

cjnj(t)dt,

for all D ≥ H(
∑2

j=0 cjnj). Hence, (u∗D(t), n∗D(t)) is an average-cost optimal so-
lution. In particular, this implies the existence result. In addition, from (5.42) we
obtain that for any average-cost optimal trajectory n∗(t), it holds that

min
n(t) s.t. (5.3)−(5.6)

∫ ∞

0

2
∑

j=0

cjnj(t)dt =

∫ ∞

0

2
∑

j=0

cjn
∗
j (t)dt ≥

∫ D

0

2
∑

j=0

cjn
∗
j (t)dt

≥ min
n(t) s.t. (5.3)−(5.6)

∫ D

0

2
∑

j=0

cjnj(t)dt = min
n(t) s.t. (5.3)−(5.6)

∫ ∞

0

2
∑

j=0

cjnj(t)dt,

for all D ≥ H(
∑2

j=0 cjnj). This proves the lemma under the condition that there
indeed exists a function H(·) satisfying (5.41). The latter will be shown in the
remainder of the proof. We use similar arguments as in [88, Proposition 6.1].

Denote by π(0) the policy that serves class 0 whenever possible. Let n(0)(t) be the
trajectory that corresponds to policy π(0). Under the stability conditions we know
that n(0)(t) hits zero after a finite time and then remains empty, see Lemma 5.2.1.
Denote by T (0)(ñ, 0) the time it takes for policy π(0) to empty the system, when
starting in state ñ. It can be written as follows

T (0)(ñ, 0) = T
(0)
0 (ñ, 0) + max

i=1,2

(

ñi + λiT
(0)
0 (ñ, 0)

µi(1 − ρ0) − λi

)

, (5.43)

where T
(0)
0 (ñ, 0) = ñ0

µ0−λ0
is the time it takes until class 0 hits zero. It is clear that

the depletion time scales as follows: T (0)(a · ñ, 0) = a · T (0)(ñ, 0), a ≥ 0.
Let 0 < ζ < 1 be fixed, and x > 0. We now have the following upper bound for

all initial states n with
∑2

j=0 cjnj = x:

∫ D

0

2
∑

j=0

cjn
∗D
j (t)dt ≤

∫ D

0

2
∑

j=0

cjn
(0)
j (t)dt

≤ sup
0≤t≤D

{
2
∑

j=0

cjn
(0)
j (t)} · T (0)(n, 0) ≤ x · ζ · (1 − ζ) · H(x). (5.44)

The function H(·) is defined as

H(x) :=
β

ζ · (1 − ζ)
· sup

l:
∑ 2

j=0 cjlj=x

{T (0)(l, 0)}, x ≥ 0,
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with the constant

β := 1 + max(0,
−c0µ0 +

∑2
j=0 cjλj

µ0 − λ0
),

so that for all initial states n with
∑2

j=0 cjnj = x we have sup0≤t≤D{∑2
j=0 cjn

(0)
j (t)}

= max
(

x, x + T
(0)
0 (n, 0) · (−c0µ0 +

∑2
j=0 cjλj)

)

≤ β · x. (In the first equation we

used that once class 0 is empty, the total number of users will decrease.)

From (5.43) it easily follows that T (0)(l, 0) is continuous in l. Hence
supl:

∑

2
j=0 cj lj=x T (0)(l, 0) < ∞ and in particular H(x) < ∞ for all x > 0. Assume

D ≥ H(x) (in particular, D ≥ (1 − ζ) · H(x)). By (5.44) we obtain that

τ(x) := arg min
t≥0

{
2
∑

j=0

cjn
∗D
j (t) ≤ x · ζ} ≤ (1 − ζ) · H(x), (5.45)

for all initial states n with
∑2

j=0 cjnj = x.

From continuity of n∗D(t) it follows that
∑2

j=0 cjn
∗D
j (τ(x)) = x · ζ. Hence, if

n∗D(0) = n, then n∗D
(

∑∞
m=1 τ(ζm−1

∑2
j=0 cjnj)

)

= 0. Together with (5.45) and

H(a · x) = a · H(x), a ≥ 0, we obtain
∑∞

m=1 τ(ζm−1
∑2

j=0 cjnj) ≤
∑∞

m=1 ζm−1(1 −
ζ) · H(

∑2
j=0 cjnj) = H(

∑2
j=0 cjnj) < ∞. Hence, relation (5.41) holds. �

5.E Proof of Lemma 5.2.9

Let N
π̃

j (t), j = 0, 1, 2, T
π̃

l (t), l = 0, 1, 2, I1, I2, be a fluid limit of policy π̃. So the

functions N
π̃

j (t), satisfy (5.19), and the functions T
π̃

l (·), are absolutely continuous
(follows from Lipschitz continuity), and hence are differentiable almost everywhere.

Fix a sample path ω such that there is a subsequence rk with limrk→∞ N
π̃,rk

j (t) =

N
π̃

j (t), j = 0, 1, 2, u.o.c., and limrk→∞ T
π̃,rk

l (t) = T
π̃

l (t), l = 0, 1, 2, I1, I2, u.o.c..

Further, let t > 0 be a regular point of T
π̃

l (t) for all l.

First assume N
π̃

1 (t) > 0 and N
π̃

2 (t) > 0. Then there is an ǫ > 0 such that N
π̃

1 (s) >

0 and N
π̃

2 (s) > 0 for all s ∈ [t − ǫ, t + ǫ]. By the uniform convergence of N
π̃,rk

j (·)
to N

π̃

j (·), j = 0, 1, 2, on [t − ǫ, t + ǫ], we have N π̃,rk

1 (rks) > 0 and N π̃,rk

2 (rks) > 0
for all rk large enough and s ∈ [t − ǫ, t + ǫ]. Hence, under policy π̃, in the interval

[rk(t− ǫ), rk(t+ ǫ)] classes 1 and 2 are served, so that
dT

π̃,rk
i (t+ǫ)

dt − dT
π̃,rk
i (t−ǫ)

dt = 2ǫ,

i = 1, 2. Letting rk → ∞ and ǫ ↓ 0, we obtain
dT

π̃
i (t)
dt = 1, i = 1, 2.

Now assume N
π̃

1 (t) < k1N
π̃

0 (t), N
π̃

1 (t) > 0 and N
π̃

2 (t) = 0. Then there is an ǫ > 0

such that N π̃,rk

1 (rks) < k1N
π̃,rk

0 (rks) and N π̃,rk

1 (rks) > 0 for all rk large enough and
s ∈ [t− ǫ, t + ǫ]. Hence, under policy π̃, in the interval [rk(t− ǫ), rk(t + ǫ)] class 2 is

served whenever present, and otherwise class 0 is served, so that
dT

π̃
0 (t)
dt +

dT
π̃
2 (t)
dt = 1.
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Note that if N
π̃

2 (t+ δ) > 0, for all 0 < δ < ∆, then
dT

π̃
2 (t+δ)
dt = 1. Since ρ2 < 1, from

dN
π̃
2 (t)
dt = λ2 −µ2

dT
π̃
2 (t)
dt (follows from (5.19)) we obtain that class 2 will stay empty,

and thus
dT

π̃
2 (t)
dt = ρ2 (and

dT
π̃
0 (t)
dt = 1 − ρ2).

Assume N
π̃

1 (t) > k1N
π̃

0 (t). Then there is an ǫ > 0 such that N π̃,rk

1 (rks) >

k1N
π̃,rk

0 (rks) for all rk large enough and s ∈ [t− ǫ, t + ǫ]. Hence, under policy π̃, in

the interval [rk(t − ǫ), rk(t + ǫ)] class 0 receives no service, so that
dT

π̃
0 (t)
dt = 0.

Assume 0 < N
π̃

1 (t) = k1N
π̃

0 (t) and N
π̃

2 (t) = 0. Then there is an ǫ > 0 such

that N π̃,rk

1 (rks) > 0 for all rk large enough and s ∈ [t − ǫ, t + ǫ]. Hence, class 2 is

served whenever present. Similar as before, this implies that
dT

π̃
2 (t)
dt = ρ2, so that

dT
π̃
1 (t)
dt ≥ ρ2. In addition, the full capacity in node 1 is used, hence

dT
π̃
0 (t)
dt +

dT
π̃
1 (t)
dt =

1. Together with (5.19), this implies

k1
dN

π̃

0 (s)

ds
− dN

π̃

1 (s)

ds
= k1

(

λ0 − µ0
dT

π̃

0 (s)

ds

)

− λ1 + µ1
dT

π̃

1 (s)

ds
(5.46)

=
µ0

µ1
k1

(

ρ0 − 1 +
dT

π̃

1 (s)

ds

)

− ρ1 +
dT

π̃

1 (s)

ds
≥ µ0

µ1
k1(ρ0 + ρ2 − 1) − ρ1 + ρ2 > 0,

whenever s ∈ [t−ǫ, t+ǫ] is a regular point. In the last step we used that ρ0+ρ2−1 < 0

and k1 < µ1

µ0

ρ2−ρ1

1−ρ0−ρ2
. Equation (5.46) implies that if at a certain time N

π̃
lies above

the switching curve, then it moves towards the switching curve and if N
π̃

lies on or
below the switching curve, it will move away from (and below) the switching curve.

Since at time t we are in a state on the switching curve, we have N
π̃

1 (s) > k1N
π̃

0 (s)

for s ∈ [t− ǫ, t) and N
π̃

1 (s) < k1N
π̃

0 (s) for s ∈ (t, t+ ǫ]. Note that
dT

π̃
0 (t−)
dt = 0, while

dT
π̃
0 (t+)
dt = 1 − ρ2, so that the point t itself is not a regular point.

Assume N
π̃

0 (t) = N
π̃

1 (t) = 0 and N
π̃

2 (t) > 0. Then there is an ǫ > 0 such that

N π̃,rk

2 (rks) > 0 for all rk large enough and s ∈ [t − ǫ, t + ǫ]. If k2 = ∞, under
policy π̃, class 1 is served whenever present (since class 2 is continuously present),

and otherwise class 0 is served. Hence,
dT

π̃
j (t)

dt = ρj , j = 0, 1. If k2 = 0, then class 2

is given full priority, hence
dT

π̃
2 (t)
dt = 1.

Assume N
π̃

0 (t) > 0 and N
π̃

1 (t) = N
π̃

2 (t) = 0. There is an ǫ > 0 such that

0 < N π̃,rk

0 (rks) and N π̃,rk

1 (rks) < k1N
π̃,rk

0 (rks) for all rk large enough and s ∈
[t − ǫ, t + ǫ]. If k2 = 0, then in this interval class 2 is served whenever present, and

otherwise class 0 is served. This implies
dT

π̃
2 (t)
dt = ρ2 and

dT
π̃
0 (t)
dt = 1−ρ2. If k2 = ∞,

then classes 1 and 2 are served whenever both are present, and otherwise class 0 is

served in the interval [t − ǫ, t + ǫ]. Hence,
dT

π̃
0 (s)
ds +

dT
π̃
i (s)
ds = 1, i = 1, 2, and

d(N
π̃

1 (s)/µ1 − N
π̃

2 (s)/µ2)

ds
= ρ1 −

dT
π̃

1 (s)

ds
− ρ2 +

dT
π̃

2 (s)

ds
= ρ1 − ρ2 < 0, (5.47)
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whenever s ∈ [t− ǫ, t + ǫ] is a regular point. Together with N
π̃

0 (t) > 0 and N
π̃

1 (t) =

N
π̃

2 (t) = 0, this yields N
π̃

0 (s) > 0 and N
π̃

1 (s)µ2

µ1
> N

π̃

2 (s) for s ∈ [t − ǫ, t). Hence,

dT
π̃
0 (t−)
dt is either 1 − ρ2 (when N

π̃

2 (t−) = 0) or 0 (when N
π̃

2 (t−) > 0). In addition,

from (5.47) we obtain N
π̃

0 (s) > 0 and N
π̃

2 (s) > N
π̃

1 (s)µ2

µ1
≥ 0 for s ∈ (t, t+ǫ]. Hence,

class 1 is served whenever present, which implies N
π̃

1 (s) = 0 for s ∈ (t, t+ ǫ], so that
dT

π̃
0 (t+)
dt = 1 − ρ1. Thus,

dT
π̃
0 (t−)
dt 6= dT

π̃
0 (t+)
dt , and hence t is not a regular point.

Assume N
π̃

0 (t) > 0, N
π̃

1 (t) = 0 and N
π̃

2 (t) > 0. Then there is an ǫ > 0 such

that N π̃,rk

j (rks) > 0, j = 0, 2, for all rk large enough and s ∈ [t − ǫ, t + ǫ]. If
k2 = ∞, then class 1 is served whenever present (since class 2 is continuously
present), and otherwise class 0 is served in the interval [rk(t − ǫ), rk(t + ǫ)]. It

follows that
dT

π̃
1 (t)
dt = ρ1, and

dT
π̃
0 (t)
dt = 1− ρ1. If k2 = 0, then class 2 is continuously

served in the interval [rk(t − ǫ), rk(t + ǫ)]. Hence,
dT

π̃
2 (t)
dt = 1.

From (5.19), together with either (5.20)–(5.23), or (5.24) and (5.25), it follows

that N
π̃

j (t) is uniquely determined. �

5.F Proof of relations (5.28)–(5.30)

Let N
π2

j (t), j = 0, 1, 2, T
π2

l (t), l = 0, 1, 2, I1, I2, be a fluid limit of policy π2. So

the functions N
π2

j (t), satisfy (5.19), and the functions T
π2

l (·), are absolutely con-
tinuous (follows from Lipschitz continuity), and hence are differentiable almost ev-
erywhere. Fix a sample path ω such that there is a subsequence rk with N

π2

j (t) =

limrk→∞ N
π2,rk

j (t), u.o.c., j = 0, 1, 2, and T
π2

l (t) = limrk→∞ T
π2,rk

l (t), u.o.c., l =

0, 1, 2, I1, I2. Further, let t > 0 be a regular point of T
π2

l (t) for all l.
First assume N

π2

2 (t) > 0. Then there is an ǫ > 0 such that N
π2

2 (s) > 0 for all
s ∈ [t− ǫ, t + ǫ]. By the uniform convergence of N

π2,rk

2 (·) to N
π2

2 (·) on [t− ǫ, t + ǫ],
we have Nπ2,rk

2 (rks) > 0 for all rk large enough and s ∈ [t − ǫ, t + ǫ]. Hence, under

policy π2, in the interval [rk(t− ǫ), rk(t + ǫ)] class 2 is served, so that
dT

π2,rk
2 (t+ǫ)

dt −
dT

π2,rk
2 (t−ǫ)

dt = 2ǫ. Letting rk → ∞ and ǫ ↓ 0, we obtain
dT

π2
2 (t)
dt = 1.

Now assume N
π2

0 (t) > 0 and N
π2

2 (t) = 0. Hence, under policy π2, in the interval
[rk(t−ǫ), rk(t+ǫ)] class 2 is served whenever present, and otherwise class 0 is served,

so that
dT

π2
0 (t)
dt +

dT
π2
2 (t)
dt = 1. Note that if N

π2

2 (t + δ) > 0, for all 0 < δ < ∆, then
dT

π2
2 (t+δ)
dt = 1. Since ρ2 < 1, from

dN
π2
2 (t)
dt = λ2 −µ2

dT
π2
2 (t)
dt (follows from (5.19)) we

obtain that class 2 will stay empty, and thus
dT

π2
2 (t)
dt = ρ2 (and

dT
π2
0 (t)
dt = 1 − ρ2).

Finally assume N
π2

0 (t) = N
π2

2 (t) = 0 and N
π2

1 (t) > 0. Note that if N
π2

0 (t + δ) +

N
π2

2 (t+δ) > 0, for all 0 < δ < ∆, then
dT

π2
0 (t+δ)
dt +

dT
π2
2 (t+δ)
dt = 1. Since ρ0 +ρ2 < 1,

from
dN

π2
0 (t)/µ0

dt +
dN

π2
2 (t)/µ2

dt = ρ0 + ρ2 − dT
π2
0 (t)
dt − dT

π2
2 (t)
dt (follows from (5.19)) we

obtain that classes 0 and 2 will stay empty, and thus
dT

π2
j (t)

dt = ρj, j = 0, 2. �



Chapter 6

Heavy-traffic analysis of size-based
bandwidth-sharing policies

In Chapters 4 and 5 we characterized optimal scheduling policies for a linear
bandwidth-sharing network among all non-anticipating policies in the case of ex-
ponentially distributed service requirements. We found that it is only possible to
explicitly identify optimal policies in a few limited cases. In the present chapter
we consider the linear network with generally distributed service requirements, for
which optimal policies may be significantly more complicated or even totally in-
tractable. Rather than aiming for strictly optimal policies, we investigate a class of
relatively simple size-based priority policies in heavy-traffic conditions.

Nearly all size-based scheduling results concern single-server settings that do
not exhibit the potential capacity loss that may occur in scenarios with concurrent
resource possession as encountered in bandwidth-sharing networks. In Chapter 3
it was shown that size-based scheduling policies such as SRPT and LAS may in
fact unnecessarily fail to achieve stability in network settings (even at arbitrarily
low loads) when size-based scheduling is applied across the various classes. How-
ever, size-based scheduling within classes may still produce substantial performance
benefits, provided the rate allocation across classes is carefully chosen to avoid the
above instability phenomena.

In this chapter we focus on certain work-conserving policies for which stability
of the system is guaranteed for general service requirements. Within a class we
then separate the large service requirements from the small ones, which as noted
above, might considerably improve the performance. More precisely, we introduce
a fairly simple size-based intra-class policy: Within a class, all users with a service
requirement above a certain threshold are given low priority and, in particular,
cannot be served when there are users of size smaller than the threshold present in
this class.

For generally distributed service requirements, we examine the performance of
such size-based priority policies in heavy-traffic conditions, i.e., each of the links
is near-critically loaded. We show these policies to be asymptotically optimal in
heavy traffic for service requirement distributions with bounded support. Although
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the link utilization may not always be that high, a heavy-traffic regime is relevant to
consider, because at low load the performance will tend to be satisfactory no matter
what. In addition, even when the typical link utilization is relatively low, the load
might fluctuate over time and exhibit significant surges, causing severe congestion
periods or even temporary overload conditions.

In addition, we compare the performance of the size-based priority policies with
that of Proportional Fair (PF) as the prototypical α-fair bandwidth-sharing policy,
and demonstrate that the mean delay may be reduced by an arbitrarily large factor
when the load is sufficiently high. We recall that in Chapters 4 and 5 an opposite
observation was made. For exponentially distributed service requirements, α-fair
policies are close to optimal provided α is not too small. Notice however, that in
Chapters 4 and 5 a moderately-loaded system was considered, while in this chapter
we consider heavy traffic. In addition, the optimal policy was found within the set
of non-anticipating policies, while in this chapter we also allow anticipating policies.

The remainder of the chapter is organized as follows. In Section 6.1 we provide
a detailed model description and gather some useful preliminaries. In Section 6.2
we develop a heavy-traffic analysis of a single-node system in order to illuminate
the key observations and mathematical constructs in the simplest possible context.
In Section 6.3 we then turn the attention to linear bandwidth-sharing networks.
Section 6.3.1 deals with the case where all the flows on the long route are granted
priority over the large flows on the short routes. In Section 6.3.2 we address the
case where the flows on the short routes, when simultaneously present, are favored
over the large flows on the long route. In Section 6.4 we present the numerical
experiments that we conducted to validate the analytical findings and in particular
compare the performance of the above strategies with that of PF. These numerical
experiments indicate that even at fairly moderate load values the performance gains
can be significant. Section 6.5 concludes the chapter with concluding remarks.

6.1 Model and preliminaries

We consider a linear network with L nodes and L + 1 classes, where class i requires
service at node i only, i = 1, . . . , L, while class 0 requires service at all L nodes
simultaneously, see Figure 1.2. For convenience, we assume each of the nodes to
have a unit service rate. Class-j users arrive according to independent Poisson
processes of rate λj , and have generally distributed service requirements Bj with
distribution function Bj(x) = P(Bj < x), j = 0, 1, . . . , L. We assume E(B2

j ) < ∞.
Define

Mj := sup{x : Bj(x) < 1}

as the maximum possible value of Bj , with Mj = ∞ in case Bj has infinite support.

Denote by pj := λj/λ the fraction of class-j users, with λ =
∑L

j=0 λj the total arrival
rate. Let the traffic load of class j be ρj := λjE(Bj). Throughout, we assume that
the maximum stability conditions are satisfied, i.e., ρ0 + ρi < 1 for all i = 1, . . . , L.

For a policy π ∈ Π, denote by Nπ
j (t) the number of class-j users at time t and
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by Wπ
j (t) their total residual amount of work. Define Nπ(t) :=

∑L
j=0 Nπ

j (t) as the
total number of users in the system at time t. Denote by Nπ

j,<xj
(t) and Nπ

j,≥xj
(t)

the number of class-j users with original service requirement smaller than xj and
larger than or equal to xj , respectively. Similarly, we define Wπ

j,<xj
(t) and Wπ

j,≥xj
(t)

as the amount of work consisting of class-j users with original service requirement
smaller than xj and larger than or equal to xj , respectively. Denote by

ρj(xj) := λjP(Bj < xj)E(Bj |Bj < xj) = λj

∫ x−
j

0

ydBj(y),

the load composed of class-j users with original service requirement smaller than xj ,
j = 0, . . . , L. We further define Nπ

j , Wπ
j , Nπ, Nπ

j,<xj
, Nπ

j,≥xj
, Wπ

j,<xj
and Wπ

j,≥xj

as random variables with the corresponding steady-state distributions (when they
exist).

In Chapter 4 we introduced the classes of policies Π̄, Π∗, and Π∗∗. In this chap-
ter we define an additional class of policies Π̂ ⊆ Π containing all work-conserving
policies: π̂ ∈ Π̂ if π̂ utilizes the full service rate at any node i, i = 1, . . . , L, that is
backlogged.

Observe that under any policy π̂ ∈ Π̂ the total workload in any node i behaves
as that of a single work-conserving server offered traffic from classes 0 and i. It
immediately follows that any policy π̂ ∈ Π̂ ensures stability under the maximum
stability conditions. In addition, the Pollaczek-Khintchine formula gives

E(W π̂
0 ) + E(W π̂

i ) =
λ0E(B0

2) + λiE(Bi
2)

2(1 − ρ0 − ρi)
, i = 1, . . . , L, (6.1)

for any policy π̂ ∈ Π̂. It further follows that any policy π̂ ∈ Π̂ minimizes the
total workload in any node i at every point in time. More specifically, if W π̂

0 (0) +
W π̂

i (0) ≤st Wπ
0 (0) + Wπ

i (0) for some arbitrary policy π ∈ Π, then

{W π̂
0 (t) + W π̂

i (t)}t≥0 ≤st {Wπ
0 (t) + Wπ

i (t)}t≥0, i = 1, . . . , L. (6.2)

Since Π∗, Π∗∗ ⊆ Π̂, all policies in these two classes satisfy (6.2) for all i = 1, . . . , L.
Recall that policies in Π∗ ∩ Π̄ and Π∗∗ ∩ Π̄ exhibit optimality properties in

the case of exponentially and hyperexponentially distributed service requirements
provided that the service requirements of class 0 are not too large, see Section 4.3.1.
These results provide a strong notion of optimality, but involve correspondingly
stringent assumptions on the service requirements. In the next sections, we seek
policies, possibly anticipating, that are optimal under significantly milder conditions,
although only in a heavy traffic sense.

6.2 Single-server system in heavy traffic

Although the issue of concurrent resource possession only arises in network scenarios,
we first present a heavy-traffic analysis of a single-server system in order to illustrate
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the key concepts and insights in the simplest possible context. In the next section
we will return to the linear network.

Consider a single-server system, where users arrive according to a Poisson process
of rate λ and have service requirements B with B(x) := P(B ≤ x) and E(B2) < ∞.
Let M := sup{x : B(x) < 1}. Denote the load by ρ := λE(B) < 1 and define

ρ(x) := λ
∫ x−

0 ydB(y). For every policy π, the mean workload in the system obeys

the lower bound E(Wπ) ≥ λE(B2)
2(1−ρ) , with equality when policy π is work-conserving.

We analyze a heavy-traffic regime where the system is critically loaded, i.e., λ ↑
λ∗ := 1

E(B) (so ρ ↑ 1, since ρ implicitly depends on λ).

In order to improve the overall user performance, we exploit the variability in
service demands, and give precedence to small users over large ones. Specifically, we
introduce a class of anticipating policies Πx ⊆ Π̂\Π̄ which use a simple threshold x
to determine whether a user is small or large, and give preemptive priority to users
with (original) service requirement smaller than x. Among users with an (original)
service requirement larger than x, service is non-preemptive, i.e., the service of a
user of size larger than x cannot be preempted by the service of another user of size
larger than x. Motivated by the classical heavy-traffic scaling for non-preemptive
policies, we consider throughout this chapter the workload and number of users
scaled by 1 − ρ.

For policies in the class Πx, the small users do not notice the presence of the
large users, and experience similar performance as in a system without any large
users. Now observe that the load in the latter system is ρ(x), and remains bounded
away from 1, even when the load ρ approaches 1 as λ ↑ λ∗ (assuming that there
are in fact large users, i.e., P(B < x) < 1). Hence, the small users are “shielded”
from the heavy-traffic conditions, as is formalized in the next proposition, which
shows that the number of small users remains bounded as the load approaches the
capacity.

Proposition 6.2.1. For a policy πx ∈ Πx with P(B < x) < 1, it holds that
E(Nπx

<x) = O(1) as λ ↑ λ∗.

Proof: When P(B < x) = 0, the statement is trivial. In the remainder of the
proof we therefore assume P(B < x) > 0. Consider a policy πx ∈ Πx. Users of size
smaller than x do not notice the presence of users of size larger than x. Therefore,

E(Wπx
<x) = λP(B<x)E(B2|B<x)

2(1−ρ(x)) ≤ λx2

2(1−ρ(x)) . The condition P(B < x) < 1 guarantees

that limλ↑λ∗ ρ(x) < 1. Hence, E(Wπx
<x) = O(1) as λ ↑ λ∗. Now suppose that service

is non-preemptive among users of size smaller than x as well (this assumption is
not essential, see Remark 6.2.2 below). Then (E(Nπx

<x) − 1)E(B|B < x) ≤ E(Wπx
<x),

which implies E(Nπx
<x) = O(1) as λ ↑ λ∗. �

Remark 6.2.2. The assumption in the proof of Proposition 6.2.1 that service is
non-preemptive among users of size smaller than x, is not crucial. Instead, we
could use the fact that the preemptive Longest Remaining Processing Time (LRPT)
policy maximizes sample-path wise the number of users among all work-conserving
policies. This follows from the fact that under LRPT all users leave together at
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the end of the busy period. Since users of size smaller than x receive preemptive
priority under policy πx, their number is smaller than the number of users under
LRPT in a system with only users of size smaller than x. The latter has mean

E(NLRPT
<x ) = λP(B < x)(E(B|B<x)

1−ρ(x) + λP(B<x)E(B2|B<x)
2(1−ρ(x))2 ), see [60]. The result now

follows by noting that limλ↑λ∗ ρ(x) < 1.

Proposition 6.2.1 implies that the scaled mean number of small users tends to
zero in heavy traffic. The number of large users can be bounded in terms of the
total workload in the system, which results in an upper bound for the scaled total
mean number of users in the system, as provided in the next proposition.

Proposition 6.2.3. For a policy πx ∈ Πx with P(B < x) < 1, it holds that

limλ↑λ∗(1 − ρ)E(Nπx) ≤ λ∗
E(B2)
2x .

Proof: Consider a policy πx ∈ Πx. Note that E(W
πx

≥x) ≥ x(E(N
πx

≥x) − 1), because
service is non-preemptive among users of size larger than x. Proposition 6.2.1 implies
in particular that the scaled mean number of users smaller than x converges to zero.
Together, this yields limλ↑λ∗(1 − ρ)E(Nπx) = limλ↑λ∗(1 − ρ)E(Nπx

≥x) ≤ limλ↑λ∗(1 −
ρ)

E(W πx
≥x

)

x ≤ limλ↑λ∗(1 − ρ)E(W πx )
x = λ∗

E(B2)
2x . �

6.2.1 Comparison with processor sharing

The next proposition provides a comparison of the policies in the class ∪xΠx with the
processor-sharing (PS) policy, which corresponds to the PF policy in a single-server
system.

Proposition 6.2.4. Let πx ∈ Πx. When B has infinite support, we have

lim
x→∞

lim
λ↑λ∗

E(Nπx)

E(NPS)
= 0.

When B has finite support, we have

lim
x↑M

lim
λ↑λ∗

E(Nπx)

E(NPS)
≤ λ∗

E(B2)

2M
.

Proof: It is well-known that E(NPS) = ρ/(1 − ρ), so limλ↑λ∗(1 − ρ)E(NPS) = 1.

Invoking Proposition 6.2.3, we obtain limλ↑λ∗
E(Nπx)
E(NPS) ≤ λ∗

E(B2)
2x for any x such that

ρ(x) < ρ, which proves both assertions. �

In case B has infinite support, it may be deduced that a policy from the class ∪xΠx

can outperform PS by an arbitrarily large factor. In case B has finite support, the
ratio λ∗

E(B2)/M can be arbitrarily small for a wide range of service requirement

distributions since E(B2) ≤ 1
λ

[

kρ(k)+M(1−ρ(k))
]

. These two findings may be in-

tuitively explained as follows. Under the PS policy, the total workload is distributed
across users of various sizes, in proportion to their share in the total load, and hence
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the total number of users grows linearly with the workload as λ ↑ λ∗. In contrast,
under policies in the class ∪xΠx the overwhelming fraction of the workload is con-
tributed by users of size larger than x as λ ↑ λ∗. Thus, as the value of x increases,
the entire workload is concentrated in fewer and fewer users compared to PS.

Remark 6.2.5. The assumption that service is non-preemptive among users of size
larger than x under policies in the class Πx, is not essential for Proposition 6.2.4. For
example, for the first statement of Proposition 6.2.4 to hold, it would be sufficient to

have that limx→∞ limλ↑λ∗
E(W )

E(Nπx
≥x

)
= ∞, with W the workload in a work-conserving

queue. It then easily follows that

lim
x→∞

lim
λ↑λ∗

E(Nπx

≥x)

E(NPS)
= lim

x→∞
lim
λ↑λ∗

E(Nπx

≥x)

E(W )

E(B2)

2E(B)
= 0,

where we used that E(W ) = E(B2)
2E(B)E(NPS). Together with Proposition 6.2.1 this

yields Proposition 6.2.4 in case B has infinite support.

Remark 6.2.6. Note that policies in Πx rely on knowledge of the service require-
ments, which is not always easy to obtain. Instead, we could consider policies that
give preemptive priority to users with attained service less than x. Let π̃x be such a
non-anticipating policy. In addition, we assume that under policy π̃x service of a user
with attained service larger than x cannot be preempted by the service of another
user with attained service larger than x. Let B have infinite support. For x < ∞,
denote by

ρ̃(x) = λ

∫ x−

0

ydB(y) + λxP(B ≥ x) < ρ,

the load due to users truncated at size x (users larger than or equal to x contribute
an amount x, rather than zero as in ρ(x)). Let Ñ π̃x

<x and Ñ π̃x

≥x denote the number of
users with attained service less than x and larger than or equal to x, respectively.
We define W̃ π̃x

<x as the amount of work in the system consisting of users with at-
tained service smaller than x, with their service requirement truncated at size x.
Furthermore, let W̃ π̃x

≥x = W π̃x − W̃ π̃x
<x.

Since users with attained service less than x do not notice the presence of users
that have attained more than x, we can upper bound the former by considering
a system where users have service requirement min(B, x) and where we apply the

LRPT policy. This gives, E(Ñ π̃x
<x) ≤ λ(E(min(B,x))

1−ρ̃(x) + λE((min(B,x))2)
(1−ρ̃(x))2 ). Using the fact

that limλ↑λ∗ ρ̃(x) < 1 for x < ∞, we obtain limλ↑λ∗(1−ρ)E(Ñ π̃x
<x) = 0. Furthermore,

lim
λ↑λ∗

(1 − ρ)E(Ñ π̃x

≥x) = lim
λ↑λ∗

(1 − ρ)
E(W̃ π̃x

≥x)

E(B|B > x) − x
≤ lim

λ↑λ∗
(1 − ρ)

E(W )

E(B|B > x) − x

=
P(B > x)

∫∞
x P(B > y)dy

lim
λ↑λ∗

(1 − ρ)E(W ),
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where we used in the last step that E(B|B > x) =
∫ ∞

x
ydB(y)

P(B>x) = x +
∫ ∞

x
P(B>y)dy

P(B>x)

(follows from integration by parts). For service requirement distributions with

lim
x→∞

P(B > x)
∫∞

x
P(B > y)dy

= 0, (6.3)

we then obtain limx→∞ limλ↑λ∗
E(N π̃x)
E(NPS) = limx→∞ limλ↑λ∗

E(Ñ π̃x
≥x

)

E(NPS) = 0, i.e., the non-

anticipating policy π̃x can outperform PS by an arbitrarily large factor.
An important class of service requirements that satisfy condition (6.3) are long-

tailed distributions, i.e., limy→∞
P(B>y+z)

P(B>y) = 1 for any z, that, in addition, have a

decreasing failure rate (DFR). (For example, the Pareto distribution belongs to this

class.) Under the DFR assumption, the function P(B>x+z)
P(B>x) is non-decreasing in x,

see [101, Theorem 1.8.2]. From the monotone convergence theorem we then obtain

lim
x→∞

∫∞
x

P(B > y)dy

P(B > x)
= lim

x→∞

∫ ∞

0

P(B > x + z)

P(B > x)
dz

=

∫ ∞

0

lim
x→∞

P(B > x + z)

P(B > x)
dz = ∞,

where the last step follows from the long-tailed assumption. Hence, (6.3) is indeed
satisfied for long-tailed service requirements with a decreasing failure rate.

6.2.2 Optimality properties

The next proposition shows that for any policy π, there exists a policy in ∪xΠx

that performs at least as well as π in heavy traffic. In other words, the class of
policies ∪xΠx is asymptotically optimal in heavy traffic. This may be heuristically
interpreted as follows. As mentioned above, under policies in the class ∪xΠx the
vast bulk of the workload is concentrated in users of size larger than x, while at
the same time the total workload is minimal. In case B has finite support and the
value of x is close to M , it is not possible to achieve a smaller number of users for
the given workload. (When B has infinite support, it may be possible to reduce the
number of users for a given workload yet further, by allowing preemptive service
among large users.)

Proposition 6.2.7. Let πx ∈ Πx. If B has finite support, then for any policy π ∈ Π,

lim
x↑M

lim
λ↑λ∗

E(Nπx)

E(Nπ)
≤ 1.

Proof: Let W be the workload in a work-conserving queue. For any policy π ∈ Π,

E(Nπ) ≥ E(Wπ)

M
≥ E(W )

M
=

λE(B2)

2(1 − ρ)M
. (6.4)

Applying Proposition 6.2.3 to x < M , we obtain

lim
λ↑λ∗

(1 − ρ)E(Nπx) ≤ λ∗
E(B2)

2x
. (6.5)
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Comparing (6.4) and (6.5), and letting x ↑ M yields the assertion. �

6.3 Linear network in heavy traffic

In case of exponential service requirements, with relatively small class-0 users, poli-
cies in either class Π∗∩Π̄ or Π∗∗∩Π̄ are optimal among all non-anticipating policies.
In this section we explore whether, in a heavy-traffic regime, these results extend
to more general service requirement distributions, now also allowing anticipating
policies.

As described in Section 6.1, the linear network consists of L nodes and L + 1
classes of users. We impose that p1E(B1) = . . . = pLE(BL), so that ρ1 = . . . = ρL.
We analyze a heavy-traffic regime where each node is critically loaded, i.e.,

ρ0 + ρi =: ρ ↑ 1, for all i = 1, . . . , L.

This is equivalent to λ ↑ λ∗ := (p0E(B0) + piE(Bi))
−1. We consider the workload

and number of users scaled by 1 − ρ.

Just like for the single-server system in Section 6.2, we focus on simple size-
based priority policies, i.e., within a class small service requirements are prioritized
over large service requirements. We study two classes of work-conserving inter-class
policies. In Section 6.3.1 we analyze a class of policies where class 0 is favored, while
in Section 6.3.2 policies are studied which simultaneously favor classes 1, . . . , L.

6.3.1 Favoring class 0

We first consider policies that serve either class-i users of size smaller than xi simul-
taneously, i = 1, . . . , L, whenever at least one such user of each class is present, or
serve class-0 users. If that is not possible, then classes i = 1, . . . , L are served, with
class-i users with service requirement smaller than xi receiving priority. Other than
that, the priority structure within each of the classes is not essential for the analysis.
Service is non-preemptive among class-i users of original size larger than xi, i.e., the
service of a class-i user of size larger than xi cannot be preempted by the service
of another class-i user of size larger than xi. We denote this class of anticipating
policies by Π∗

x
, where x = (x1, . . . , xL). We adopt the notation x ↑ M and x → ∞

to indicate that xi ↑ Mi for all i = 1, . . . , L and xi → ∞ for all i = 1, . . . , L,
respectively (order is irrelevant).

Under policies in the class Π∗
x, class-0 users and small class-i users, i = 1, . . . , L,

do not notice the presence of the large users in the classes 1, . . . , L, and experience
similar performance as in a system without any large class-i users, i = 1, . . . , L.
Now observe that the load at node i in the latter system is ρ0 + ρi(xi), and remains
bounded away from 1, even when the load ρ approaches 1 as λ ↑ λ∗ (provided that
there are in fact large class-i users, i.e., P(Bi < xi) < 1). Hence, the class-0 users
and small class-i users are ‘immune’ from the heavy-traffic conditions, as is proved
in the next proposition, which shows that the number of class-0 users and small
class-i users remains bounded as the load approaches the capacity.
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Proposition 6.3.1. For a policy π∗
x ∈ Π∗

x with P(Bi < xi) < 1 for all i = 1, . . . , L,

it holds that E(N
π∗

x

0 + N
π∗

x

i,<xi
) = O(1) as λ ↑ λ∗.

Proof: Without loss of generality we assume P(Bi < xi) > 0, i = 1, . . . , L. Consider
a policy π∗

x ∈ Π∗
x. Class-i users of size smaller than xi, i = 1, . . . , L, and class-0

users do not notice the presence of users from the classes 1, . . . , L with size larger
than xi. Policy π∗

x is work-conserving, and therefore

E(W
π∗

x

0 ) + E(W
π∗

x

i,<xi
) = λ

p0E(B2
0) + piP(Bi < xi)E(B2

i |Bi < xi)

2(1 − ρ0 − ρi(xi))
.

The condition P(Bi < xi) < 1 implies that limλ↑λ∗ 1 − ρ0 − ρi(xi) > 0. Hence, we
conclude that

E(W
π∗

x

0 ) + E(W
π∗

x

i,<xi
) = O(1), as λ ↑ λ∗. (6.6)

Now suppose that service among class-0 users and class-i users of size smaller
than xi, i = 1, . . . , L, is non-preemptive as well (this assumption is not essential,

see Remark 6.3.2 below). Then (E(N
π∗

x

0 ) − 1)E(B0) ≤ E(W
π∗

x

0 ) and (E(N
π∗

x

i,<xi
) −

1)E(Bi|Bi < xi) ≤ E(W
π∗

x

i,<xi
). Together with (6.6) this proves the proposition. �

Remark 6.3.2. In a similar way as in the single-server case, Proposition 6.3.1 can
also be proved without the non-preemptive assumption with regard to class-0 users
and class-i users smaller than xi, i = 1, . . . , L. Under policy π∗

x, these users do
not notice the presence of class-i users of size larger than xi. Since each node is

work-conserving we can therefore upper bound E(N
π∗

x

0 ) + E(N
π∗

x

i,<xi
) by the mean

number of users in a system with only class-0 users and class-i users smaller than xi

under the LRPT policy. This gives that E(N
π∗

x

0 )+E(N
π∗

x

i,<xi
) is less than or equal to

λ(p0 + piP(Bi < xi))
(

E(B̄)

1 − ρ0 − ρi(xi)
+

λ(p0 + piP(Bi < xi))E(B̄2)

2(1 − ρ0 − ρi(xi))2

)

,

with E(B̄k) = p0

p0+piP(Bi<xi)
E(Bk

0 ) + piP(Bi<xi)
p0+piP(Bi<xi)

E(Bk
i |Bi < xi), k = 1, 2. The

result now follows by noting that limλ↑λ∗ 1 − ρ0 − ρi(xi) > 0.

Proposition 6.3.1 implies that the scaled mean number of class-0 users and small
class-i users tends to zero in heavy traffic. The number of large class-i users can be
bounded in terms of the total workload at node i, which results in an upper bound
for the scaled total mean number of users in the system, as provided in the next
proposition.

Proposition 6.3.3. For a policy π∗
x
∈ Π∗

x
with P(Bi < xi) < 1 for all i = 1, . . . , L,

it holds that

lim
λ↑λ∗

(1 − ρ)E(Nπ∗
x) ≤ λ∗

L
∑

i=1

p0E(B2
0) + piE(B2

i )

2xi
.
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Proof: It follows from Proposition 6.3.1 that limλ↑λ∗(1 − ρ)E(Nπ∗
x) = limλ↑λ∗(1 −

ρ)
∑L

i=1 E(N
π∗

x

i,≥xi
). Since service is non-preemptive among class-i users of original

size larger than xi, we have E(W
π∗

x

i,≥xi
) ≥ xi(E(N

π∗
x

i,≥xi
) − 1). Hence, we obtain

limλ↑λ∗(1−ρ)E(N
π∗

x

i,≥xi
) ≤ limλ↑λ∗(1−ρ)

E(W
π∗

x

i,≥xi
)

xi
≤ limλ↑λ∗(1−ρ)

E(W
π∗

x

i )+E(W
π∗

x

0 )

xi
=

λ∗ p0E(B2
0)+piE(B2

i )
2xi

, for i = 1, . . . , L, which proves the statement. �

Comparison with proportional fairness

We now compare the performance of the policies in the class ∪xΠ∗
x

with that of PF
as a natural extension of PS.

Proposition 6.3.4. Let π∗
x
∈ Π∗

x
. When B1, . . . , BL have infinite support, we have

lim
x→∞

lim
λ↑λ∗

E(Nπ∗
x)

E(NPF )
= 0.

When B1, . . . , BL have finite support, we have

lim
x↑M

lim
λ↑λ∗

E(Nπ∗
x)

E(NPF )
≤ λ∗

L

L
∑

i=1

p0E(B2
0) + piE(B2

i )

2Mi
.

Proof: From (4.23) and (4.24), we obtain

lim
λ↑λ∗

(1 − ρ)E(NPF ) = lim
1−ρ0−ρi↓0

(1 − ρ0 − ρi)E(NPF ) = lim
1−ρ0−ρi↓0

∑L
i=1 ρi

1 − ρ0

=
L(1 − ρ0)

1 − ρ0
= L. (6.7)

Together with Proposition 6.3.3, this proves the assertion. �

We deduce that when B1, . . . , BL have infinite support, there exists a policy
π∗

x ∈ ∪xΠ∗
x that outperforms PF by an arbitrarily large factor in a heavy-traffic

regime. This may be intuitively explained as follows. Under the PF policy, the total
workload is distributed across users of various sizes, and hence the total number of
users grows linearly with the workload as λ ↑ λ∗. In contrast, under policies in the
class ∪xΠx the dominant fraction of the workload is contributed by class-i users of
size larger than xi as λ ↑ λ∗. Thus, as the value of xi increases, the entire workload
is concentrated in fewer and fewer users compared to PF.

Comparing Propositions 6.2.4 and 6.3.4 we observe that the relative improvement
over the PF policy achieved by policies in the class π∗

x is equal to the average relative
improvement that would have been obtained over the PS policy by policies in the
class Πx in each of the L nodes separately.
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Optimality properties

Assume that Bj has finite support for all classes j = 0, . . . , L, with
∑L

i=1
1

Mi
≤ 1

M0
.

The next proposition shows that for any policy π ∈ Π, there exists a policy in ∪xΠ∗
x

that performs at least as well in heavy-traffic conditions. This may be heuristically
interpreted as follows. As mentioned above, under policies in the class ∪xΠ∗

x the
lion share of the workload is composed of class-i users of size larger than xi, while at
the same time the total workload in each node is minimized. In case

∑L
i=1

1
Mi

≤ 1
M0

,
and the value of xi is close to Mi, it turns out that it is not possible to achieve a
smaller total number of users for the given workload than attained under policies
in ∪xΠ∗

x.

Proposition 6.3.5. Let π∗
x

∈ Π∗
x
. Assume Mj < ∞ for j = 0, . . . , L, and

∑L
i=1

1
Mi

≤ 1
M0

. Then for any policy π ∈ Π,

lim
x↑M

lim
λ↑λ∗

E(Nπ∗
x)

E(Nπ)
≤ 1.

Proof: Policy π∗
x
∈ Π∗

x
is work-conserving in all nodes. Therefore we have for any

policy π ∈ Π,

E(W
π∗

x

0 ) + E(W
π∗

x

i ) ≤ E(Wπ
0 ) + E(Wπ

i ). (6.8)

Proposition 6.3.1 implies that limλ↑λ∗(1 − ρ)E(N
π∗

x

i,<xi
) = 0. In conjunction with

(E(N
π∗

x

i,≥xi
)−1)xi ≤ E(W

π∗
x

i,≥xi
), this yields that limλ↑λ∗(1−ρ)E(N

π∗
x

i )xi ≤ limλ↑λ∗(1−
ρ)E(W

π∗
x

i,≥xi
). It also follows from Proposition 6.3.1 that limλ↑λ∗(1 − ρ)E(N

π∗
x

0 ) =
0. Furthermore, we have E(Wπ

i ) ≤ E(Nπ
i )Mi for every policy π ∈ Π. Together

with (6.8), the above implies that for any policy π ∈ Π,

(1 − ρ)
(

E(N
π∗

x

0 )M0 + E(N
π∗

x

i )xi

)

≤ (1 − ρ)
(

E(Nπ
0 )M0 + E(Nπ

i )Mi

)

+ o(1 − ρ),

(6.9)

for i = 1, . . . , L. In addition, limλ↑λ∗(1 − ρ)E(N
π∗

x

0 ) = 0 yields that

(1 − ρ)E(N
π∗

x

0 )M0 ≤ (1 − ρ)E(Nπ
0 )M0 + o(1 − ρ). (6.10)

Multiplying (6.9) by 1
Mi

for all i = 1, . . . , L, and (6.10) by 1
M0

−
∑L

i=1
1

Mi
≥ 0, and

summing these L + 1 inequalities, gives

(1 − ρ)
(

E(N
π∗

x

0 ) +

L
∑

i=1

E(N
π∗

x

i )
xi

Mi

)

≤ (1 − ρ)

L
∑

j=0

E(Nπ
j ) + o(1 − ρ).

Letting xi ↑ Mi, i = 1, . . . , L, concludes the proof. �
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6.3.2 Favoring classes i = 1, . . . , L simultaneously

We now consider policies that serve all classes 1, . . . , L simultaneously whenever
possible or serve class-0 users of size smaller than x0. If that is not feasible, then
class-0 users of size larger than x0 are served. Otherwise, classes 1, . . . , L are served.
Within class j, users of size smaller than xj receive priority, j = 0, . . . , L. Other than
that, the priority structure within each of the classes is irrelevant for the analysis.
Service is non-preemptive among class-j users of size larger than xj . We denote
this class of anticipating policies by Π∗∗

x , where x = (x0, . . . , xL). As before, we use
the notation x ↑ M and x → ∞ to indicate that xj ↑ Mj for all j = 0, . . . , L and
xj → ∞ for all j = 0, . . . , L, respectively (order is irrelevant).

Under policies in the class Π∗∗
x , the number of small class-0 users as well as the

number of small class-i users remain bounded as the load approaches the capacity,
see Proposition 6.3.7. Compared to Proposition 6.3.1, this is far more difficult to
prove. While these users indeed receive some degree of preferred treatment, it is
no longer the case that they do not notice the presence of the large users. Observe
that simultaneous service of large class-i users can have precedence over service
of small class-0 users, and that small class-i users must be simultaneously present
in order to receive priority over large class-0 users. Hence, in order to prove the
above assertion, we need elaborate arguments as provided in Lemma 6.3.6 below.
The proof of Lemma 6.3.6 may be found in Appendix 6.A. Denote by Ŵ c

j (t) the
workload at time t in a reference system with class-j traffic only, service rate c, and
with Ŵ c

j (0) = 0. Define Ud
j (t) := sup0≤s≤t{d(t − s) − Aj(s, t)}.

Lemma 6.3.6. Let π∗∗
x

∈ Π∗∗
x

and let δ > 0 be such that δ < 1 − ρi for all

i = 1, . . . , L. Assume W
π∗∗

x

0,<x0
(0) = W

π∗∗
x

i,<xi
(0) = 0, for a certain i ∈ {1, . . . , L}.

Then at time t ≥ 0, there exists a j∗ ∈ {1, . . . , L}, such that

W
π∗∗

x

0,<x0
(t) + W

π∗∗
x

i,<xi
(t) ≤ Ŵ ρ0−δ

0,<x0
(t) + Ŵ ρi−δ

i,<xi
(t) + Ŵ

ρj∗+δ
j∗ (t) + U

ρj∗−δ
j∗ (t). (6.11)

Proposition 6.3.7. For a policy π∗∗
x ∈ Π∗∗

x with P(Bj < xj) < 1, j = 0, . . . , L, it

holds that E(N
π∗∗

x

0,<x0
) = O(1) and E(N

π∗∗
x

j,<xj
) = O(1) as λ ↑ λ∗.

Proof: Using Lemma 6.3.6, we obtain that

E(W
π∗∗

x

0,<x0
) + E(W

π∗∗
x

i,<xi
) ≤ E(Ŵ ρ0−δ

0,<x0
) + E(Ŵ ρi−δ

i,<xi
) +

L
∑

j=1

E(Ŵ
ρj+δ
j ) +

L
∑

j=1

E(U
ρj−δ
j ).

For δ small enough, E(Ŵ
ρj−δ
j,<xj

) = λ
pjP(Bj<xj)E(B2

j |Bj<xj)

2(ρj−δ−ρj(xj))
and E(Ŵ

ρj+δ
j ) = λ

pjE(B2
j )

2δ ,

which implies E(Ŵ
ρj−δ
j,<xj

) = E(Ŵ
ρj+δ
j ) = O(1). Furthermore, U

ρj−δ
j (t) converges in

distribution to supT≥0{(ρj − δ)T − Aj(0, T )} as t → ∞ (see [9, Corollary III.7.2]).
The latter is the supremum of a random walk with drift ρj−δ−ρj = −δ < 0, and has
a finite mean by [9, Theorem X.2.1]. Since the drift is independent of λ, this implies

that E(U
ρj−δ
j ) = O(1) as λ ↑ λ∗. Together, this gives E(W

π∗∗
x

0,<x0
)+E(W

π∗∗
x

i,<xi
) = O(1).
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Using similar arguments as in the proof of Proposition 6.3.1 yields the assertion. �

Proposition 6.3.7 implies that the scaled mean number of small class-0 and small
class-i users tends to zero in heavy traffic. The number of large class-0 and large
class-i users can be bounded in terms of the total workload at node i, which results
in an upper bound for the scaled total mean number of users in the system, as
provided in the next proposition.

Proposition 6.3.8. For a policy π∗∗
x

∈ Π∗∗
x

with P(Bj < xj) < 1 for all j =

0, . . . , L, it holds that limλ↑λ∗(1 − ρ)E(Nπ∗∗
x ) ≤ λ∗ Lp0E(B2

0)+
∑L

i=1 piE(B2
i )

2 min(x0,x1,...,xL) .

Proof: Proposition 6.3.7 indicates that the mean number of class-j users smaller
than xj , j = 0, . . . , L, under policy π∗∗

x
remains bounded as λ ↑ λ∗. Since ser-

vice is non-preemptive among class-j users of size larger than xj , j = 0, . . . , L,

it follows that (1 − ρ)(E(N
π∗∗

x

0 ) + E(N
π∗∗

x

i )) ≤ (1 − ρ)
E(W

π∗∗
x

0 )+E(W
π∗∗

x

i )

min(x0,xi)
+ o(1 − ρ)

as λ ↑ λ∗. Hence, the scaled total mean number of users can be upper bounded:

limλ↑λ∗(1−ρ)E(Nπ∗∗
x ) ≤ limλ↑λ∗(1−ρ)

(

LE(N
π∗∗

x

0 )+
∑L

i=1 E(N
π∗∗

x

i )
)

≤ limλ↑λ∗(1−

ρ)
(
∑L

i=1(E(W
π∗∗

x

0 )+E(W
π∗∗

x

i ))

min(x0,x1,...,xL)

)

= λ∗ Lp0E(B2
0)+

∑L
i=1 piE(B2

i )

2 min(x0,x1,...,xL) . �

Comparison with proportional fairness

We now compare the performance of the policies in the class ∪xΠ∗∗
x

with that of
PF.

Proposition 6.3.9. Let π∗∗
x ∈ Π∗∗

x . When B0, B1, . . . , BL have infinite support, we
have

lim
x→∞

lim
λ↑λ∗

E(Nπ∗∗
x )

E(NPF )
= 0.

When B0, B1, . . . , BL have finite support, we have

lim
x↑M

lim
λ↑λ∗

E(Nπ∗∗
x )

E(NPF )
=

λ∗

L

Lp0E(B2
0) +

∑L
i=1 piE(B2

i )

2 min(M0, M1, . . . , ML)
.

Proof: Proposition 6.3.8, together with (6.7), gives the result. �

As before, we conclude that when B0, B1, . . . , BL have infinite support, there
exists a policy π∗∗

x
∈ ∪xΠ∗∗

x
that outperforms PF by an arbitrarily large factor in

heavy-traffic conditions.

Optimality properties

We now assume that Bj has finite support for all classes, with
∑L

i=1
1

Mi
≥ 1

M0
and

1
M0

≥ ∑L
j=1,j 6=i

1
Mj

, for all i = 1, . . . , L. The next proposition shows that for any
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policy π ∈ Π, there exists a policy in ∪xΠ∗∗
x that performs at least as well in heavy-

traffic conditions. As before, these policies manage to simultaneously minimize
the workload in each of the nodes and concentrate the entire workload in users of
maximum size.

Proposition 6.3.10. Assume Mj < ∞ for all j = 0, . . . , L,
∑L

i=1
1

Mi
≥ 1

M0
, and

1
M0

≥
∑L

j=1,j 6=i
1

Mj
for all i = 1, . . . , L. Let π∗∗

x ∈ Π∗∗
x . Then for any policy π ∈ Π,

lim
x↑M

lim
λ↑λ∗

E(Nπ∗∗
x )

E(Nπ)
≤ 1.

The proof may be found in Appendix 6.B. The idea of the proof can be described
as follows. Instead of proving the result for an arbitrary policy in Π∗∗

x , we first focus
on a policy πp ∈ Π∗∗

x ∩Π∗∗. Lemma 4.2.1 holds for πp, and states that the aggregate
workload in at least one pair of nodes is minimized under policy πp. As will be
shown in Appendix 6.B, this allows to prove the optimality of πp. Since the scaled
workloads for policies in the class Π∗∗

x
turn out to be identical in heavy traffic, the

optimality result holds for any policy in this class.

6.4 Numerical evaluation

In the previous sections we compared the performance of policies in classes Π∗
x

and
Π∗∗

x with that of PF in a heavy-traffic regime. In this section we focus on a subset of
the class Π∗

x
, and conduct numerical experiments to illustrate the analytical findings

and assess the scope for performance gains. We specifically examine those policies
π ∈ Π∗

x
∩ Π∗ that serve class-i users of original size smaller than xi, i 6= 0 and

class-0 users in a non-preemptive fashion. Because of the non-preemptive feature,
the following upper bounds hold:

E(Nπ
0 ) ≤ 1 +

E(Wπ
0 )

E(B0)
,

E(Nπ
i,<xi

) ≤ 1 +
E(Wπ

i,<xi
)

E(Bi|Bi < xi)
, i = 1, . . . , L,

E(Nπ
i,≥xi

) ≤ 1 +
E(Wπ

i,≥xi
)

E(Bi|Bi ≥ xi)
, i = 1, . . . , L.

In case of exponentially distributed service requirements, the “1” in the right-hand
side of the first equation may in fact be omitted. Since class 0 receives preemptive
priority (π ∈ Π∗), its mean workload is

E(Wπ
0 ) =

λp0E(B2
0)

2(1 − ρ0)
.

Class-0 and class-i users of size smaller than xi, i 6= 0, are served in a work-
conserving manner, and therefore

E(Wπ
0 ) + E(Wπ

i,<xi
) =

λ(p0E(B2
0) + piP(Bi < xi)E(B2

i |Bi < xi))

2(1 − ρ0 − ρi(xi))
.
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Figure 6.1: Upper bound for (1 − ρ)E(Nπ
0 ), for exponential service requirements

(left) and Pareto service requirements (right).

Policy π is work-conserving in each node, hence

E(Wπ
i,≥xi

) =
λ(p0E(B2

0) + piE(B2
i ))

2(1 − ρ0 − ρi)
− E(Wπ

i,<xi
) − E(Wπ

0 ).

Using the formulas above, we calculated upper bounds for the mean number
of users under policies in the class Π∗

x
∩ Π∗. We considered a system with two

nodes, and set p0 = 0.5, p1 = 0.25, p2 = 0.25 and x1 = x2 = x, and studied both
exponentially and Pareto distributed service requirements. In the former case, we
took µ0 = 2, µ1 = 1, µ2 = 1, while in the latter case we chose a0 = 10, a1 = 3,
a2 = 3 where dBi(y) = aiy

−(ai+1)dy for y ≥ 1, i = 0, 1, 2.
In Figure 6.1 we plotted the upper bound for the scaled mean number of class-0

users as a function of ρ. Note that the scaled mean number of class-0 users does
not depend on x and as ρ increases it converges to zero. In Figure 6.2 we plotted
the upper bound for the scaled mean number of class-1 users smaller than x1 as a
function of ρ. Again, as ρ increases, it converges to zero. Furthermore, for a fixed ρ,
we observe a horizontal asymptote as x grows large. This asymptote of the upper
bound can be found by interchanging the order of limits, i.e.,

lim
λ↑λ∗

lim
x→∞

(1 − ρ)E(Nπ
1,<x1

) ≤ lim
λ↑λ∗

lim
x→∞

(1 − ρ)
(

1 +
E(Wπ

1,<x1
)

E(B1|B1 < x1)

)

= λ∗ p0E(B2
0) + p1E(B2

1)

2E(B1)
.

In Figure 6.3 we plotted the upper bound for the scaled mean number of class-1
users larger than x1.

The three bounds specified above provide an upper bound for the total mean
number of users. In Figure 6.4 we plot the ratio between this upper bound and
the total mean number of users under PF as a function of ρ for exponentially and
Pareto distributed service requirements. In both cases, the policy with threshold
x = 2 gives already a substantial performance improvement for a load of 0.85.
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Figure 6.2: Upper bound for (1− ρ)E(Nπ
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), for exponential service requirements
(left) and Pareto service requirements (right).
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Figure 6.3: Upper bound for (1− ρ)E(Nπ
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), for exponential service requirements
(left) and Pareto service requirements (right).

6.5 Concluding remarks

We have demonstrated that size-based priority policies can be asymptotically op-
timal in heavy traffic for service requirements with bounded support. In addition,
these policies obtain provable performance gains over PF, the prototypical α-fair
policy. In particular, for service requirements with unbounded support, the total
mean number of users may be reduced by an arbitrarily large factor when the load is
sufficiently high. It is worth observing here that we have pursued deliberately sim-
ple policies in order to obtain provable asymptotic performance guarantees. There
are clearly more sophisticated policies conceivable that will typically achieve larger
gains, but may be too complex to allow any explicit performance guarantees. The
results in this chapter indicate however that PF can be substantially improved upon,
and hence studying possible implementable policies is promising.
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Figure 6.4: Upper bound for E(Nπ)/E(NPF ), for exponential service requirements
(left) and Pareto service requirements (right).

Appendix

6.A Proof of Lemma 6.3.6

Let π∗∗
x ∈ Π∗∗

x and take δ > 0 such that δ < 1 − ρj for all j = 1, . . . , L. Let

W
π∗∗

x

0,<x0
(0) = W

π∗∗
x

i,<xi
(0) = 0, for a certain i ∈ {1, . . . , L}. We will prove that at time

t ≥ 0, there is a j∗ ∈ {1, . . . , L}, such that (6.11) holds. For convenience, we assume
that among class-i users of size smaller than xi service is non-preemptive, although
this is not essential in any way for the assertion to hold.

Define s1 := sup{s ≤ t : W
π∗∗

x

0,<x0
(s) + min(W

π∗∗
x

1 (s), . . . , W
π∗∗

x

L (s)) = 0} and

s2 := sup{s ≤ t : W
π∗∗

x

i,<xi
(s) = 0}. Note that W

π∗∗
x

0,<x0
(s1) = 0 and W

π∗∗
x

i,<xi
(s2) = 0.

In addition, there exists a j∗ ∈ {1, . . . , L} such that W
π∗∗

x

j∗ (s1) = 0. Denote by
Bi(s, t) the total amount of service given to class-i users during the time interval
(s, t], and denote by Bi,<xi(s, t) the portion of service that is given to class-i users
of size smaller than xi. Then,

B0,<x0(s, t) + Bi,<xi(s, t) = t − s, (6.12)

with s := max(s1, s2).
We distinguish between two cases: s1 ≤ s2 and s1 ≥ s2. If s1 ≤ s2, then

from (6.12) we obtain

B0,<x0(s2, t) + Bi,<xi(s2, t) = t − s2.

By definition, of s1 and s2 we have

W
π∗∗

x

0,<x0
(t) = W

π∗∗
x

0,<x0
(s2) + A0,<x0(s2, t) − B0,<x0(s2, t),

W
π∗∗

x

0,<x0
(s2) = A0,<x0(s1, s2) − B0,<x0(s1, s2),

W
π∗∗

x

i,<xi
(t) = Ai,<xi(s2, t) − Bi,<xi(s2, t).
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In the interval (s1, t) there is continuously work present of class-0 users of size smaller
than x0 and work of class-j users, j = 1, . . . , L. Therefore, under policy π∗∗

x
, for all

j ∈ {1, . . . , L},

B0,<x0(s1, s2) + Bj(s1, s2) = s2 − s1.

Furthermore,

Bj∗(s1, s2) = W
π∗∗

x

j∗ (s1) + Aj∗(s1, s2) − W
π∗∗

x

j∗ (s2) = Aj∗(s1, s2) − W
π∗∗

x

j∗ (s2).

Combining the above equations, we obtain

W
π∗∗

x

0,<x0
(t) + W

π∗∗
x

i,<xi
(t)

= A0,<x0(s1, t) + Ai,<xi(s2, t) + Aj∗(s1, s2) − (t − s1) − W
π∗∗

x

j∗ (s2)

≤ A0,<x0(s1, t) + Ai,<xi(s2, t) + Aj∗(s1, s2) − (t − s1)

≤ A0,<x0(s1, t) + Ai,<xi(s2, t) + Aj∗(s1, t) − Aj∗(s2, t)

−(ρ0 − δ)(t − s1) − (ρi + δ)(t − s1) − (ρi − δ)(t − s2) + (ρi − δ)(t − s2)

≤ sup
s≤t

{A0,<x0(s, t) − (ρ0 − δ)(t − s)} + sup
s≤t

{Ai,<xi(s, t) − (ρi − δ)(t − s)}

+ sup
s≤t

{Aj∗(s, t) − (ρi + δ)(t − s)} + sup
s≤t

{(ρi − δ)(t − s) − Aj∗(s, t)}.

Since ρ1 = . . . , ρL, this implies (6.11).

Now assume s1 ≥ s2. From (6.12) we obtain

B0,<x0(s1, t) + Bi,<xi(s1, t) = t − s1.

Furthermore,

W
π∗∗

x

0,<x0
(t) = A0,<x0(s1, t) − B0,<x0(s1, t),

W
π∗∗

x

i,<xi
(t) = Ai,<xi(s2, t) − Bi,<xi(s2, t),

and

Bj∗(s2, s1) = W
π∗∗

x

j∗ (s2) + Aj∗(s2, s1) − W
π∗∗

x

j∗ (s1) ≥ Aj∗(s2, s1).

There is continuously work present of class-i users of size smaller than xi in the
interval (s2, t). Hence, for all j ∈ {1, . . . , L},

Bi,<xi(s2, s1) ≥ Bj(s2, s1).
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Combining the above equations, we obtain

W
π∗∗

x

0,<x0
(t) + W

π∗∗
x

i,<xi
(t)

= A0,<x0(s1, t) + Ai,<xi(s2, t) − Bi,<xi(s2, s1) − (t − s1)

≤ A0,<x0(s1, t) + Ai,<xi(s2, t) − Aj∗(s2, s1) − (t − s1)

≤ A0,<x0(s1, t) + Ai,<xi(s2, t) + Aj∗(s1, t) − Aj∗(s2, t)

−(ρ0 − δ)(t − s1) − (ρi + δ)(t − s1) + (ρi − δ)(t − s2) − (ρi − δ)(t − s2)

≤ sup
s≤t

{A0,<x0(s, t) − (ρ0 − δ)(t − s)} + sup
s≤t

{Ai,<xi(s, t) − (ρi − δ)(t − s)}

+ sup
s≤t

{Aj∗(s, t) − (ρi + δ)(t − s)} + sup
s≤t

{(ρi − δ)(t − s) − Aj∗(s, t)}.

Since ρ1 = . . . , ρL, this implies (6.11). �

6.B Proof of Proposition 6.3.10

Take πp ∈ Π∗∗
x ∩Π∗∗. In Lemma 4.2.1 it is proved that for every policy π ∈ Π, there

are at time t classes j, k ∈ {1, . . . , L}, j 6= k, such that

Wπp

0 (t) + Wπp

j (t) + Wπp

k (t) ≤ Wπ
0 (t) + Wπ

j (t) + Wπ
k (t). (6.13)

Furthermore, πp is work-conserving in all nodes. Therefore,

Wπp

0 (t) + Wπp

i (t) ≤ Wπ
0 (t) + Wπ

i (t), i = 1, . . . , L. (6.14)

Multiplying (6.13) by
∑L

i=1
1

Mi
− 1

M0
≥ 0 and (6.14) by 1

M0
−
∑L

l=1,l6=i
1

Ml
≥ 0 for

i = j, k and by 1
Mi

for all i = 1, . . . , L with i 6= j, k, and summing these L + 1

inequalities results in
∑L

i=0
1

Mi
Wπp

i (t) ≤∑L
i=0

1
Mi

Wπ
i (t), hence

L
∑

i=0

1

Mi
E(Wπp

i ) ≤
L
∑

i=0

1

Mi
E(Wπ

i ). (6.15)

We now extend this result to an arbitrary policy π∗∗
x

∈ Π∗∗
x

by analyzing the
(scaled) workloads. We first show that

W
π∗∗

x

0 (t) + W
π∗∗

x

i,<xi
(t) = Wπp

0 (t) + Wπp

i,<xi
(t). (6.16)

We prove this by contradiction. Assume at time t it holds, but immediately after

time t the equality is violated. Hence, for example W
π∗∗

x

0 (u)+W
π∗∗

x

i,<xi
(u) > Wπp

0 (u)+

Wπp

i,<xi
(u), for u ∈ (t, t + δ), with δ > 0 small enough. In order for this to happen,

we need that at time t, W
π∗∗

x

0 (t) + W
π∗∗

x

i,<xi
(t) = 0, since otherwise policy π∗∗

x
would

be serving either class 0 or class-i users with service requirements strictly smaller

than xi. But this implies that Wπp

0 (t)+Wπp

i,<xi
(t) = 0 as well, and hence W

π∗∗
x

0 (u)+
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W
π∗∗

x

i,<xi
(u) = 0 = Wπp

0 (u) + Wπp

i,<xi
(u), for all u ≥ t until a new user arrives. Hence,

we obtain a contradiction.
Since policies π∗∗

x and πp are work-conserving in each node, we have by (6.16)
that for i = 1, . . . , L,

W
π∗∗

x

i,≥xi
(t) = Wπp

i,≥xi
(t). (6.17)

We obtain from Proposition 6.3.7 that limλ↑λ∗(1 − ρ)(E(Wπ
0,<x0

) + E(Wπ
i,<xi

)) = 0
for π ∈ {π∗∗

x
, πp}. Together with (6.17) and the fact that π∗∗

x
and πp are work-

conserving, this implies that

lim
λ↑λ∗

(1 − ρ)E(W
π∗∗

x

0,≥x0
) = lim

λ↑λ∗
(1 − ρ)E(Wπp

0,≥x0
). (6.18)

Using (6.17), (6.18) and the fact that limλ↑λ∗(1 − ρ)
(

E(W
π∗∗

x

0,<x0
) + E(W

π∗∗
x

i,<xi
)
)

= 0,

we obtain from (6.15) that

lim
λ↑λ∗

(1 − ρ)

L
∑

i=0

1

Mi
E(W

π∗∗
x

i ) ≤ lim
λ↑λ∗

(1 − ρ)

L
∑

i=0

1

Mi
E(Wπ

i ), (6.19)

for every policy π ∈ Π. Class-i users of size larger than xi are served in a non-

preemptive way, which implies (E(N
π∗∗

x

i,≥xi
)− 1)xi ≤ E(W

π∗∗
x

i,≥xi
) ≤ E(W

π∗∗
x

i ). Proposi-
tion 6.3.7 shows that under policy π∗∗

x , all scaled class-i work is composed of users

of size xi or larger, i = 0, . . . , L, hence limλ↑λ∗(1 − ρ)E(N
π∗∗

x

i )xi = limλ↑λ∗(1 −
ρ)E(N

π∗∗
x

i,≥xi
)xi ≤ limλ↑λ∗(1 − ρ)E(W

π∗∗
x

i ). Together with E(Wπ
i ) ≤ E(Nπ

i )Mi, we
obtain from (6.19) that

(1 − ρ)
L
∑

i=0

E(N
π∗∗

x

i )
xi

Mi
≤ (1 − ρ)

L
∑

i=0

E(Nπ
i ) + o(1 − ρ).

Letting x ↑ M , this concludes the proof. �



Chapter 7

Monotonicity properties for
multi-class queueing systems

In this chapter we study a general multi-class queueing system where the capacity
allocated to a class may depend on the numbers of users present in all classes. The
linear bandwidth-sharing network under weighted α-fair bandwidth sharing policies
can be seen as a special case of this framework. We compare policies in terms of
their stability conditions, the workloads, and the numbers of users present in the
various classes.

There is a wide range of literature on the ordering of random processes, see for
example [101, 126]. In the seminal paper [92] (see also [85]) necessary and sufficient
conditions on the transition rates are given for the existence of a stochastic ordering
between two Markov processes starting from any two ordered initial states. It turns
out that these conditions are often too strong in order to compare the behavior
of different policies in a queueing system. In particular, they are not satisfied for
weighted α-fair policies. In this chapter we take a different approach to compare
the stochastic processes corresponding to different policies. By restricting the initial
states and considering the same realizations of the arrival processes and service
requirements, we obtain sufficient conditions on two policies in order to compare
sample-path wise their workloads and number of users of the various classes. Since
our result is a pure sample-path comparison, it holds for arbitrary arrival processes
and service requirements. For exponential service requirements, these workload
relations allow for a comparison of the mean holding cost as well.

In this chapter special attention is paid to the class of weighted α-fair bandwidth-
sharing policies in the linear network. In particular, we obtain stability results and,
for exponential service requirements with relatively small class-0 users, we show that
the mean holding cost is decreasing in the fairness parameter α and the relative
weights. The latter matches with the observation we made in Section 4.4. To
cover all service requirement parameters, we consider a two-node linear network in
a heavy-traffic regime and obtain further monotonicity results based on a conjecture
in [67, 68]. In particular, in the case of relatively large class-0 users the heavy-traffic
result suggests the following: As α increases, i.e., the policy becomes more fair,
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the holding cost increases as well. Hence, in that case there is a trade-off between
achieving fairness and obtaining good performance.

Finally, we extend the framework to cover the multi-class single-server system for
which we are especially interested in weighted time-sharing policies such as Discrim-
inatory Processor Sharing (DPS) and Generalized Processor Sharing (GPS). For a
single-server system with two classes of users with exponentially distributed service
requirements we find that the mean holding cost under DPS or GPS is monotone
with respect to the ratio of the weights. A similar result was obtained in Proposi-
tion 2.6.4 for the DPS multi-class single-server system in a heavy-traffic setting.

The remainder of the chapter is organized as follows. In Section 7.1 the model is
introduced and Section 7.2 describes the comparison results for the general frame-
work. We apply this framework to the linear network in Section 7.3 and we focus on
weighted α-fair bandwidth-sharing policies in Section 7.4. In Section 7.5 we consider
the multi-class single-server queue. Concluding remarks can be found in Section 7.6.

7.1 Model description

We consider a multi-class queueing system with L+1 classes of users. Class-j users
arrive according to a renewal process with mean inter-arrival time 1/λj , and have

service requirements Bj with mean 1/µj, j = 0, . . . , L. Let ρj =
λj

µj
represent the

offered work of class j per time unit. The inter-arrival times and service requirements
are mutually independent random variables.

For a given scheduling policy π, denote by Nπ
j (t) the number of class-j users in

the system at time t and let ~Nπ(t) = (Nπ
0 (t), Nπ

1 (t), . . . , Nπ
L(t)). Let Wπ

j (t) denote
the workload in class j at time t. We assume the processes Nπ

j (t) and Wπ
j (t) to be

right-continuous with left limits. We further define Nπ
j and Wπ

j as random variables
with the corresponding steady-state distributions (when they exist).

For a given policy π, denote by sπ
j (t, ~n) the capacity received by class j at time t

when the system is in state ~n = (n0, n1, . . . , nL). Hence the allocation given to
class j can only depend on the time and on the number of users present in the
system. We assume that sπ

j (t, ~n) = 0 when nj = 0. In addition, the allocation vector

~sπ(t, ~n) = (sπ
0 (t, ~n), . . . , sπ

L(t, ~n)) has to lie in a certain capacity region R(t) ⊂ R
L+1
+

which may depend on the time t but not on the state ~n itself, that is ~sπ(t, ~n) ∈ R(t).
In the remainder of the chapter we suppress the dependence on t and write ~sπ(~n)
instead of ~sπ(t, ~n).

For a given policy π, denote by

Sπ
j (t) :=

t
∫

0

sπ
j ( ~Nπ(u))du

the cumulative amount of service received by class j during the time interval (0, t].
Let Aj(0, t) be the amount of class-j work that arrived in the time interval (0, t].
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Then the workload of class j at time t can be written as

Wπ
j (t) = Wπ

j (0) + Aj(0, t) − Sπ
j (t). (7.1)

In order to characterize the evolution of the number of users we need information on
the intra-class policy. The intra-class policy prescribes how the capacity allocated
to class j, sπ

j (~n), is distributed among the class-j users. In this chapter we assume
that the intra-class policy is FCFS.

Remark 7.1.1. When the service requirements are exponentially distributed, for
any non-anticipating intra-class policy, the stochastic behavior of the workloads and
the numbers of users of the various classes is determined completely by the allocation
vector ~sπ(~n) and does not depend on the intra-class policy used. This implies that
for exponential service requirements, the results we obtain (by assuming FCFS) are
also valid for any non-anticipating intra-class policy, e.g. PS and LAS.

Our goal in this chapter is to compare the performance of a multi-class queueing
system under different policies. First of all, we will be interested in whether a policy
can achieve stability. Another important performance measure we consider is the
holding cost,

∑L
j=0 cjN

π
j (t), where cj is an arbitrary nonnegative cost associated

with class j, j = 0, . . . , L.
In Sections 7.3 and 7.4 we focus on the linear network, as depicted in Figure 1.2,

which is a particular example of a multi-class queueing system. It might be con-
venient for the reader to bear this network in mind when reading Section 7.2. In
particular, in Sections 7.3 and 7.4 we focus on a linear network consisting of L nodes
with time-varying capacity. Hence the capacity region corresponding to the linear
network is equal to

R(t) = {(s0, s1, . . . , sL) ∈ R
L+1 : s0 + si ≤ Ci(t), ∀i = 1, . . . , L},

where Ci(t), i = 1, . . . , L, denotes the capacity of node i at time t. When Ci(t) = C
for all i = 1, . . . , L, we refer to it as a symmetric linear network.

7.2 Comparison of policies

In this section we consider the behavior of the queueing system under two different
policies for the same realizations of the arrival processes and service requirements.
The next property states conditions that will allow us to compare two policies.

Property 7.2.1. Let π and π̃ be two policies such that

(i) sπ
0 (~nπ) ≤ sπ̃

0 (~nπ̃), when nπ
0 = nπ̃

0 and nπ
i ≥ nπ̃

i , ∀i = 1, . . . , L, and,

(ii) sπ
0 (~nπ)+ sπ

i (~nπ) ≤ sπ̃
0 (~nπ̃)+ sπ̃

i (~nπ̃), i = 1, . . . , L, for all states ~nπ and ~nπ̃ that
satisfy one of the following conditions:

• nπ
0 > 0, nπ

0 ≥ nπ̃
0 , 0 < nπ̃

i and nπ
i ≤ nπ̃

i .
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• nπ
0 = nπ̃

0 = 0, 0 < nπ
i = nπ̃

i and nπ
j ≥ nπ̃

j for all j 6= 0, i.

Under Property 7.2.1 we establish a sample-path comparison result for the num-
ber of class-0 users and for the workload in the system. This result will play a key
role in the remainder of this chapter.

Proposition 7.2.2. Let π and π̃ be two policies that satisfy Property 7.2.1 and
consider the same realizations of the arrival processes and service requirements.
Assume Wπ

0 (0) ≥ W π̃
0 (0) and Wπ

0 (0)+Wπ
i (0) ≥ W π̃

0 (0)+W π̃
i (0) for all i = 1, . . . , L.

It holds that for all t ≥ 0,

(i) Sπ
0 (t) − Wπ

0 (0) ≤ Sπ̃
0 (t) − W π̃

0 (0),

(ii) Sπ
0 (t)−Wπ

0 (0)+Sπ
i (t)−Wπ

i (0) ≤ Sπ̃
0 (t)−W π̃

0 (0)+Sπ̃
i (t)−W π̃

i (0), i = 1, . . . , L,

and hence

(iii) Nπ
0 (t) ≥ N π̃

0 (t), Wπ
0 (t) ≥ W π̃

0 (t),

(iv) Wπ
0 (t) + Wπ

i (t) ≥ W π̃
0 (t) + W π̃

i (t), i = 1, . . . , L.

We like to emphasize that because of the FCFS assumption and the same real-
izations of the arrival processes and service requirements, we implicitly assume that
at time 0 the k-th most recently arrived class-j user has the same service require-
ment under both policies, j = 0, 1, . . . , L, k = 1, . . . ,min(Nπ

j (0), N π̃
j (0)). Hence,

the condition in Proposition 7.2.2 always holds when both processes start in the
same state ~Nπ(0) = ~N π̃(0), where at time t = 0 each user has the same (remaining)
service requirement under both policies.

In the proof of Proposition 7.2.2 we use f(t+) > g(t+) to denote that there
exists a sufficiently small δ > 0 such that f(u) > g(u) for all u ∈ (t, t + δ]. Since
{Ni(t)}t≥0 is a piece-wise constant right-continuous process, this ensures that an
inequality for Nπ

i (t) and N π̃
i (t) immediately translates to the same inequality for

Nπ
i (t+) and N π̃

i (t+). This property is used throughout the proof.

Proof of Proposition 7.2.2: From (7.1) we obtain that inequality (i) implies
Wπ

0 (t) ≥ W π̃
0 (t) and inequality (ii) implies inequality (iv). Also note that Wπ

0 (t) ≥
W π̃

0 (t) implies Nπ
0 (t) ≥ N π̃

0 (t), since the intra-class policy is FCFS and we assume
the same realizations of the arrival and service requirements under both policies.
Therefore, it suffices to prove that inequalities (i) and (ii) hold.

We prove (i) and (ii) by contradiction. Suppose they do not hold sample-path
wise. Let t be the first time epoch at which one of the two inequalities is violated.

First assume that inequality (i) is the first one to be violated, i.e., Sπ
0 (t) −

Wπ
0 (0) = Sπ̃

0 (t) − W π̃
0 (0) and sπ

0 ( ~Nπ(t+)) > sπ̃
0 ( ~N π̃(t+)) (with strict inequality),

but Sπ
0 (t) − Wπ

0 (0) + Sπ
i (t) − Wπ

i (0) ≤ Sπ̃
0 (t) − W π̃

0 (0) + Sπ̃
i (t) − W π̃

i (0) for all
i = 1, . . . , L. Hence, from (7.1) we obtain Wπ

0 (t) = W π̃
0 (t) and Wπ

i (t) ≥ W π̃
i (t)

for all i = 1, . . . , L. Since the k-th most recently arrived class-j user before the
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current time t has the same (original) service requirement under both policies and
the intra-class policy is FCFS, we have as well

Nπ
0 (t) = N π̃

0 (t) and Nπ
i (t) ≥ N π̃

i (t) for all i = 1, . . . , L. (7.2)

The process {Ni(t)}t≥0 is a piece-wise constant and right-continuous process, hence

(7.2) remains true at time t+. Together with Property 7.2.1 this gives sπ
0 ( ~Nπ(t+)) ≤

sπ̃
0 ( ~N π̃(t+)), which contradicts the initial assumption.

Next, assume that inequality (ii) is violated at time t, i.e., Sπ
0 (t) − Wπ

0 (0) +

Sπ
i (t)−Wπ

i (0) = Sπ̃
0 (t)−W π̃

0 (0) + Sπ̃
i (t)−W π̃

i (0) and sπ
0 ( ~Nπ(t+)) + sπ

i ( ~Nπ(t+)) >

sπ̃
0 ( ~N π̃(t+)) + sπ̃

i ( ~N π̃(t+)) (with strict inequality), but Sπ
0 (t) − Wπ

0 (0) ≤ Sπ̃
0 (t) −

W π̃
0 (0) and Sπ

0 (t) − Wπ
0 (0) + Sπ

j (t) − Wπ
j (0) ≤ Sπ̃

0 (t) − W π̃
0 (0) + Sπ̃

j (t) − W π̃
j (0) for

all j 6= 0, i. Hence Wπ
0 (t) ≥ W π̃

0 (t) and Wπ
i (t) ≤ W π̃

i (t), from which (as before) we
can conclude that Nπ

0 (t+) ≥ N π̃
0 (t+) and Nπ

i (t+) ≤ N π̃
i (t+). We now distinguish

between the following possibilities:

• If N π̃
i (t+) > 0 and Nπ

0 (t+) > 0, then by Property 7.2.1 (ii) it follows that

sπ
0 ( ~Nπ(t+)) + sπ

i ( ~Nπ(t+)) ≤ sπ̃
0 ( ~N π̃(t+)) + sπ̃

i ( ~N π̃(t+)), which contradicts the
initial assumption.

• If N π̃
i (t+) > 0 and Nπ

0 (t+) = 0, then N π̃
0 (t+) = 0 and hence Sπ

0 (t)−Wπ
0 (0) =

Sπ̃
0 (t) − W π̃

0 (0) which implies Sπ
i (t) − Wπ

i (0) = Sπ̃
i (t) − W π̃

i (0) and Sπ
j (t) −

Wπ
j (0) ≤ Sπ̃

j (t) − W π̃
j (0) for j 6= 0, i. So 0 = Nπ

0 (t+) = N π̃
0 (t+), Nπ

i (t+) =

N π̃
i (t+) > 0, and Nπ

j (t+) ≥ N π̃
j (t+) for all j 6= 0, i. By Property 7.2.1 (ii)

it follows that sπ
0 ( ~Nπ(t+)) + sπ

i ( ~Nπ(t+)) ≤ sπ̃
0 ( ~N π̃(t+)) + sπ̃

i ( ~N π̃(t+)), which
contradicts the initial assumption.

• If N π̃
i (t+) = 0, then Nπ

i (t+) = 0 as well, and hence Sπ
i (t) − Wπ

i (0) = Sπ̃
i (t) −

W π̃
i (0). This implies Sπ

0 (t) − Wπ
0 (0) = Sπ̃

0 (t) − W π̃
0 (0) and Sπ

j (t) − Wπ
j (0) ≤

Sπ̃
j (t) − W π̃

j (0) for all j, implying Wπ
0 (t) = W π̃

0 (t) and Wπ
j (t) ≥ W π̃

j (t).

As before, we obtain that Nπ
0 (t+) = N π̃

0 (t+) and Nπ
j (t+) ≥ N π̃

j (t+) for all

j 6= 0. By virtue of Property 7.2.1 this means that sπ
0 ( ~Nπ(t+)) ≤ sπ̃

0 ( ~N π̃(t+)).

Since N π̃
i (t+) = Nπ

i (t+) = 0, we also have that sπ
i ( ~Nπ(t+)) = sπ̃

i ( ~N π̃(t+)) =

0, and hence sπ
0 ( ~Nπ(t+)) + sπ

i ( ~Nπ(t+)) ≤ sπ̃
0 ( ~N π̃(t+)) + sπ̃

i ( ~N π̃(t+)), which
contradicts the initial assumption. �

Remark 7.2.3. Proposition 7.2.2 is a sample-path result and does not require
any distributional or independence assumptions with respect to the inter-arrival
times and service requirements. The only assumption required is that the arrival
characteristics are independent of the state of the system, since in Proposition 7.2.2
we use the same realizations of the arrival processes and service requirements when
comparing the policies.

Proposition 7.2.2 (iii) states in fact a sample-path wise pre-ordering on two

continuous-time processes { ~Nπ(t)}t≥0 and { ~N π̃(t)}t≥0 starting from ordered initial
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states. There is a broad range of literature on the existence of orderings of stochas-
tic processes. In particular, let X(t) and Y (t) be two continuous-time Markov pro-
cesses. In [92, Theorem 5.3] and [85, Theorem 2] necessary and sufficient conditions
on the transition rates are given in order for a coupling (X ′(t), Y ′(t)) to exist that is

order-preserving (X(t)
d
= X ′(t), Y (t)

d
= Y ′(t) and P(X ′(t) ≤ Y ′(t), ∀t ≥ 0) = 1) for

any ordered initial states (X(0) ≤ Y (0)). So if the processes X and Y are initially
ordered, then the order is maintained at all times. Here ≤ denotes a pre-order rela-
tion on the state space. In particular, from [85, 92] it follows that, in a Markovian
setting, the necessary and sufficient conditions on the policies π and π̃ in order to
obtain

{Nπ
0 (t)}t≥0 ≥st {N π̃

0 (t)}t≥0, for any Nπ
0 (0) ≥st N π̃

0 (0), (7.3)

are

sπ
0 (~nπ) ≤ sπ̃

0 (~nπ̃) whenever nπ
0 = nπ̃

0 . (7.4)

(The pre-ordering relation used here for the L+1-dimensional process ~N(t) is defined
by the number of class-0 users.) The sufficient condition in Property 7.2.1 for
the sample-path comparison of Proposition 7.2.2 to hold, and the necessary and
sufficient condition in (7.4) for the stochastic comparison in (7.3) to hold, are not
directly comparable. Given two policies, it is possible that either only Property 7.2.1
is satisfied, or only (7.4) is satisfied. Note that the stochastic ordering result in (7.3)
holds for any two ordered initial states, Nπ

0 (0) ≥ N π̃
0 (0). In Proposition 7.2.2 the

initial states are ordered as well, but we assume that at time t = 0 we have additional
knowledge on the service requirements of the users present under policy π and π̃.
So in this respect we would expect Property 7.2.1 to be weaker than (7.4). On the
other hand, in Proposition 7.2.2 the coupling is specified in advance, namely the
two processes are coupled by their arrival processes and service requirements, while
in (7.3) any coupling is allowed to obtain the desired order-preserving result. So in
this respect we would expect (7.4) to be weaker than Property 7.2.1.

In a queueing context, condition (7.4) is rather strong. One often encounters
examples where s0(~n) → 0 as ni → ∞, i 6= 0. If this is the case for policy π̃,
then (7.4) will not be satisfied. In Sections 7.4 and 7.5 we consider settings for which
Property 7.2.1 is satisfied, while (7.4) does not hold. In addition, Proposition 7.2.2
is not restricted to Markov processes, hence it applies as well for general arrival
processes, service requirements and time-varying capacity regions.

In the remainder of this section, Proposition 7.2.2 is used to derive results for
the stability and mean holding cost.

7.2.1 Stability

The sample-path comparison in Proposition 7.2.2 does not require the system to be
stable. In particular, Proposition 7.2.2 (iv) implies the following result.

Corollary 7.2.4. Assume policies π and π̃ satisfy Property 7.2.1. If the system is
stable under policy π, then it is stable under policy π̃ as well, in the sense that the
system is empty under policy π̃ whenever it is empty under policy π.
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In particular, if the empty state has a finite mean recurrence time under policy π
in the case of Poisson arrivals, then it has a finite mean recurrence time under
policy π̃ as well.

Proof: The first statement follows by noting that if
∑L

j=0 Wπ
j (t) = 0, then we

obtain from Proposition 7.2.2 (iv) that
∑L

j=0 W π̃
j (t) = 0. The second assertion is a

direct implication of the first one. �

7.2.2 Mean holding cost

In case the service requirements are exponentially distributed with
∑L

i=1 ciµi ≤
c0µ0, the sample-path comparison established in Proposition 7.2.2 allows us to com-
pare the mean holding cost.

Proposition 7.2.5. Assume the service requirements are exponentially distributed.
Let π and π̃ be two policies that satisfy Property 7.2.1 and assume policy π gives a
stable system. If

∑L
i=1 ciµi ≤ c0µ0, then

L
∑

j=0

cjE(Nπ
j (t)) ≥

L
∑

j=0

cjE(N π̃
j (t)), ∀ t ≥ 0.

Proof: Assume at time t = 0 the conditions as stated in Proposition 7.2.2 are
satisfied (for example, assume both policies π and π̃ start with an empty system).
From Proposition 7.2.2 (iii) we have that Nπ

0 (t) ≥ N π̃
0 (t) for all t ≥ 0, and hence

E(Nπ
0 (t)) ≥ E(N π̃

0 (t)), for all t ≥ 0. (7.5)

From Proposition 7.2.2 (iv) we derive that Wπ
0 (t)+Wπ

i (t) ≥ W π̃
0 (t)+W π̃

i (t), so that
E(Wπ

0 (t)) + E(Wπ
i (t)) ≥ E(W π̃

0 (t)) + E(W π̃
i (t)) for all i = 1, . . . , L. Since the policy

is non-anticipating and the service requirements are exponentially distributed, and
thus memoryless, we obtain E(Wπ

i (t)) = 1
µi

E(Nπ
i (t)) and hence for all i = 1, . . . , L,

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t)) ≥ 1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t)), for all t ≥ 0. (7.6)

Inequalities (7.5) and (7.6) together with
∑L

i=1 ciµi ≤ c0µ0 give

L
∑

j=0

cjE(Nπ
j (t))

=
c0µ0 −

∑L
i=1 ciµi

µ0
E(Nπ

0 (t)) +
L
∑

i=1

ciµi

(

1

µ0
E(Nπ

0 (t)) +
1

µi
E(Nπ

i (t))

)

≥ c0µ0 −
∑L

i=1 ciµi

µ0
E(N π̃

0 (t)) +

L
∑

i=1

ciµi

(

1

µ0
E(N π̃

0 (t)) +
1

µi
E(N π̃

i (t))

)

=

L
∑

j=0

ciE(N π̃
j (t)),
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for all t ≥ 0. �

Note that by Remark 7.1.1, Proposition 7.2.5 holds for any non-anticipating
intra-class policy, so not only for FCFS.

Remark 7.2.6. We only obtain a comparison result in terms of the mean holding
cost, while we start from a sample-path comparison as stated in Proposition 7.2.2.
The derivation of stochastic ordering results remains as a challenging topic for fur-
ther research.

When ~Nπ(t) and ~N π̃(t) are two Markov processes, the necessary and sufficient

conditions in order to obtain
∑L

j=0 Nπ
j (t) ≥st

∑L
j=0 N π̃

j (t), for any ordered initial

states with
∑L

j=0 Nπ
j (0) ≥ ∑L

j=0 N π̃
j (0), are

∑L
j=0 µjs

π
j (~nπ) ≤ ∑L

j=0 µjs
π̃
j (~nπ̃) for

all states with
∑L

j=0 nπ
j =

∑L
j=0 nπ̃

j , [85, 92]. In a queueing context this condition
is rather strong. In Sections 7.3 and 7.5 we will see settings for which this condition
is not satisfied.

7.3 Linear network

In this section we apply the results obtained in Section 7.2 to the linear network
with time-varying capacity as introduced at the end of Section 7.1. Throughout
this chapter we focus on Pareto-efficient policies. A policy π is said to be Pareto-
efficient if it does not leave any capacity unnecessarily unused. For the linear network
this implies that sπ

i (~n) = Ci(t) − sπ
0 (~n) when ni > 0, i = 1 . . . , L, and sπ

0 (~n) =
mini=1,...,L Ci(t) when ni = 0, for all i = 1, . . . , L. It can be shown that any policy
that leaves capacity unused, can be improved sample-path wise (in terms of the
workload and the number of users of the various classes) by a Pareto-efficient policy.
However, a Pareto-efficient policy is not sufficient to ensure a stable system under
the maximum stability conditions, as explained in Section 1.4.

Condition (ii) in Property 7.2.1 is always satisfied for a Pareto-efficient policy π̃,
since sπ̃

0 (~nπ̃) + sπ̃
i (~nπ̃) = Ci(t) whenever nπ̃

i > 0. Hence, in the specific case of a
linear network, Property 7.2.1 simplifies as follows.

Property 7.3.1. Let π and π̃ be two Pareto-efficient policies such that sπ
0 (~nπ) ≤

sπ̃
0 (~nπ̃), when nπ

0 = nπ̃
0 and nπ

i ≥ nπ̃
i for all i = 1, . . . , L.

In particular, Property 7.3.1 is implied by the following property.

Property 7.3.1’. Let π and π̃ be two Pareto-efficient policies such that sπ
0 (~n) ≤

sπ̃
0 (~n), and either sπ

0 (~n) or sπ̃
0 (~n) is non-increasing with respect to ni for all i 6= 0.

In order to see this, assume that Property 7.3.1’ is satisfied with (for example)
sπ̃
0 (~n) non-increasing with respect to ni for all i 6= 0. Then we have sπ

0 (~nπ) ≤
sπ̃
0 (~nπ) ≤ sπ̃

0 (~nπ̃), with nπ
i ≥ nπ̃

i for all i 6= 0 and nπ
0 = nπ̃

0 . This is exactly
Property 7.3.1.
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Assume policies π and π̃ satisfy either Property 7.3.1 or 7.3.1’. This basically
means that higher priority is given to class 0 under policy π̃ compared to π. From
Section 7.2 we then obtain the following results. Under policy π̃ the number of
class-0 users is less than under policy π (Proposition 7.2.2 (iii)) and the stability
conditions are less strict for policy π̃ (Corollary 7.2.4). These results arise from the
fact that when class 0 is served, it simultaneously uses capacity in all nodes. Hence,
giving more preference to class 0 makes better use of the available capacity and
hence makes the workload in each node smaller, i.e., Wπ

0 (t) + Wπ
i (t) ≥ W π̃

0 (t) +

W π̃
i (t), i = 1, . . . , L (Proposition 7.2.2 (iv)). When in addition c0µ0 ≥

∑L
i=1 ciµi,

that is the maximum weighted departure rate is obtained when class 0 is served,
giving higher priority to class 0 decreases the mean holding cost

∑L
j=0 cjE(Nj(t))

as well (Proposition 7.2.5).
In a linear network, one natural choice for the weights cj could be to relate them

to the number of links each class uses. For example, take c0 = L and ci = 1,
i = 1, . . . , L. In this case the result of Proposition 7.2.5 is valid under the intuitively
appealing condition 1

L

∑L
i=1 µi ≤ µ0, i.e., the departure rate of class 0 is larger than

or equal to the average departure rate for classes 1, . . . , L.

Remark 7.3.2. Assume ~Nπ(t) and ~N π̃(t) are two Markov processes for any two
policies π and π̃. When Property 7.3.1 is satisfied, a sample-path comparison for the
number of class-0 users in a linear network holds. The condition (7.4) is a necessary
and sufficient condition for a stochastic ordering relation for the number of class-
0 users to exist as in the framework of [85, 92]. It can be immediately seen that
Property 7.3.1 is a weaker condition than (7.4). Interestingly, for applications as will
be given later in this chapter, the policies do satisfy Property 7.3.1, but not (7.4).

When µ0 ≥∑L
i=1 µi and Property 7.3.1 is satisfied, it is possible to compare the

total mean number of users in a linear network under the two policies. As mentioned
in Remark 7.2.6, in a queueing context the sufficient and necessary conditions to
stochastically order the total number of users for any ordered initial states, are rather
strong. For the special case of a linear network they are even never satisfied. When
choosing the states such that ~nπ = (0, 1, . . . , 1) and ~nπ̃ = (L, 0, . . . , 0), it is needed

that
∑L

i=1 µi ≤ µ0, but when choosing the states such that ~nπ = (1, 0, . . . , 0) and
~nπ̃ = (0, . . . , 0, 1, 0, . . . , 0), it is needed that µ0 ≤ µi, i = 1, . . . , L, see Remark 7.2.6.
Hence, we see that there does not exist any combination of the variables µ0, . . . , µL,
for which these conditions are satisfied, and a stochastic ordering relation for the
total number of users as in the framework of [85, 92] does not hold.

Recall that in Proposition 4.3.1 we obtained a policy that minimizes the mean
holding cost for the linear network with unit capacities. Proposition 7.2.5 allows to
readily extend this to time-varying capacities.

Corollary 7.3.3. Consider a linear network with time-varying capacities. Assume
the service requirements are exponentially distributed. Let policy π∗ be the policy
that serves class 0 at maximum rate, i.e.,

sπ∗

0 (~n) = min
i

Ci(t) if n0 > 0 and sπ∗

0 (~n) = 0 otherwise.
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Classes 1, . . . , L obtain what is left, i.e.,

sπ∗

i (~n) = Ci(t) − sπ∗

0 (~n) if ni > 0 and sπ∗

i (~n) = 0 otherwise.

If
∑L

i=1 ciµi ≤ c0µ0, then policy π∗ minimizes the mean holding cost
∑L

j=0 cjE(Nj(t)),
for all t ≥ 0, among all non-anticipating policies.

Proof: Note that sπ∗

0 (~n) is constant with respect to ni, i 6= 0. In addition,
sπ∗

0 (~n) ≥ sπ
0 (~n) for any policy π. Hence, Property 7.3.1’ is satisfied and from Propo-

sition 7.2.5 we obtain
∑L

j=0 cjE(Nπ
j (t)) ≥∑L

j=0 cjE(Nπ∗

j (t)) for all t ≥ 0. �

Proposition 7.2.2 and Property 7.3.1 are stated in order to compare two different
policies. However, they also allow us to evaluate the impact of removing a node
from the linear network on the performance of class 0, i.e., compare two different
networks under the same policy. In the next corollary we show that the number of
class-0 users is reduced when a node (and hence the corresponding cross traffic) is
removed.

Corollary 7.3.4. Let π be a policy in a linear network with L nodes that satisfies
the following property:

sπ
0 (n0, n1, . . . , nL) ≤ sπ

0 (n0, m1, . . . , mL−1, 0)

for all ni ≥ mi, i = 1, . . . , L − 1.
Also consider the linear network where node L is removed (and hence has L −

1 nodes) and apply the same policy π in the following way: sπ
0 (n0, . . . , nL−1) :=

sπ
0 (n0, . . . , nL−1, 0).

If Wπ,L
0 (0) ≥ Wπ,L−1

0 (0) and Wπ,L
0 (0) + Wπ,L

i (0) ≥ Wπ,L−1
0 (0) + Wπ,L−1

i (0),
then

Nπ,L
0 (t) ≥ Nπ,L−1

0 (t)

and for i = 1, . . . , L − 1

Wπ,L
0 (t) + Wπ,L

i (t) ≥ Wπ,L−1
0 (t) + Wπ,L−1

i (t),

with Nπ,l
i (t) and Wπ,l

i (t) the number of class-i users and the class-i workload, re-
spectively, at time t under policy π in a linear network with l nodes.

Proof: Policy π in a linear network with L − 1 nodes can be seen as a policy in a
linear network with L nodes by ignoring the class-L users. Denote this policy by π̃.
So for all x ≥ 0, sπ̃

0 (n0, n1, . . . , nL−1, x) := sπ
0 (n0, n1, . . . , nL−1). Hence

sπ
0 (n0, n1, . . . , nL−1, nL) ≤ sπ

0 (n0, m1, . . . , mL−1, 0)

= sπ
0 (n0, m1, . . . , mL−1)

= sπ̃
0 (n0, m1, . . . , mL−1, x)

for all x and all ni ≥ mi, i = 1, . . . , L− 1. This implies that policies π and π̃ satisfy
Property 7.3.1 and from Proposition 7.2.2 the result follows. �
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7.4 Weighted α-fair policies

In this section we focus on weighted α-fair policies as defined in Section 1.4.1. We
denote the weighted α-fair policy with weights w = (w0, w1, . . . , wL) and parame-
ter α by π(α, w) and the corresponding allocation vector by ~s π(α,w)(~n). Recall that
the latter is the solution to the following optimization problem:







max~s∈R(t)

∑L
j=0 wjnj

(

sj

nj

)1−α

/(1 − α) if α > 0, α 6= 1,

max~s∈R(t)

∑L
j=0 wjnj log(

sj

nj
) if α = 1,

(7.7)

and that the intra-class policy of π(α, w) is PS. In Section 7.1 we assumed however
that the intra-class policy is FCFS. Throughout this section we consider exponen-
tially distributed service requirements, thus, the results we obtain will also be valid
if the intra-class policy is PS, see Remark 7.1.1.

In order to compare two α-fair policies we only need to check whether Prop-
erty 7.3.1’ holds. In [30] it was shown that for a symmetric linear network with unit
capacities the weighted α-fair allocation equals

s
π(α,w)
0 (~n) =

(w0n
α
0 )1/α

(w0nα
0 )1/α + (

∑L
i=1 winα

i )1/α
(7.8)

and s
π(α,w)
i (~n) = 1− s

π(α,w)
0 (~n) for all i with ni > 0. Using (7.8), it can be checked

that for this allocation Property 7.3.1’ is satisfied when comparing policies π(β, w)
and π(γ, w̃) with β ≤ γ and w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L (see also [81, Proposition 6.1]).

For an asymmetric network we have no expression for the weighted α-fair allocation
available. However, in that case the optimization problem (7.7) allows us to prove
that Property 7.3.1’ is satisfied. This is stated in the next lemma and the proof may
be found in Appendix 7.A.

Lemma 7.4.1. The following results hold in a linear network:

(i) s
π(α,w)
0 (~n) is non-increasing in ni, i = 1, . . . , L.

(ii) If β ≤ γ, then s
π(β,w)
0 (~n) ≤ s

π(γ,w)
0 (~n) for all ~n.

(iii) If w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L, then s

π(α,w)
0 (~n) ≤ s

π(α,w̃)
0 (~n) for all ~n.

Since Property 7.3.1’ holds for weighted α-fair policies, the comparison results
in Proposition 7.2.2 apply. This allows us to gain insights into the performance of
such policies in linear networks, see Sections 7.4.1 and 7.4.2.

The stochastic comparison results in [85, Theorem 2] and [92, Theorem 5.3]
are not applicable to the weighted α-fair policies. As we already mentioned in
Remark 7.3.2, such an ordering is not possible for the total number of users present
in the system. Also, an ordering for the number of class-0 users for any ordered initial
states is not possible, since equation (7.4) is not satisfied for the class of weighted
α-fair policies in linear networks. Consider for example the simple symmetric linear
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network and choose states such that nπ
0 = nπ̃

0 , nπ
1 = 1 and nπ̃

1 = m with π and π̃

two α-fair policies. From (7.8) we see that if m tends to ∞ then s
π(α,w)
0 (~nπ̃) tends

to 0. Hence (7.4) cannot hold for any pair of α-fair policies.
In [33] the authors consider a network of processor-sharing queues. The capacity

of the various queues is variable and depends on the number of users present in all
the queues. Stochastic bounds for the number of users present in each queue are
obtained for policies that satisfy the monotonicity property (removing a user from
any queue, increases the capacity allocated to every other user). This property fails
to hold for a linear network under α-fair policies, as also indicated in [33]. For
example, removing a class-1 user implies that class 1 gets less capacity and class 0
gets more. This however implies that classes i = 2, . . . , L obtain less capacity
as well and hence a class-i user gets less capacity, i = 2, . . . , L. A requirement in
Property 7.3.1’ is that removing a class-i user, i 6= 0, increases the capacity allocated
to the class-0 users. As shown in Lemma 7.4.1, this holds under natural conditions
on the parameters of weighted α-fair policies.

Remark 7.4.2. From Lemma 7.4.1 and Corollary 7.3.4 we obtain that under a
weighted α-fair policy, the number of class-0 users in a linear network with L nodes
is larger than in a linear network with L − 1 nodes.

In Section 7.4.1 the stability results are presented and in Section 7.4.2 monotonic-
ity of the mean holding cost with respect to the fairness parameter and the relative
weights is established. In order to broaden the comparison result, in Section 7.4.3 we
investigate a heavy-traffic regime and in Section 7.4.4 we perform numerical experi-
ments. In Section 7.4.5 we describe a time-scale separation (the dynamics of class-0
users are infinitely faster than those of classes 1, . . . , L) and derive approximations
for the mean number of users.

7.4.1 Stability

In [30] it is proved that for Poisson arrivals and exponentially distributed service
requirements, any weighted α-fair policy, α > 0, in a bandwidth-sharing network
with fixed capacity gives a stable system, in the sense that the queue length process
is positive recurrent, under the maximum stability conditions. Corollary 7.2.4 and
Lemma 7.4.1 allow us to derive stability results for a linear network with time-
varying capacities.

Corollary 7.4.3. Consider a linear network with time-varying capacities. Let the
service requirements be exponentially distributed. Assume β ≤ γ and w0

wi
≤ w̃0

w̃i
,

i = 1, . . . , L. If the network is stable under policy π(β, w), then it is stable under
policy π(γ, w̃) as well, in the sense that the system is empty under policy π(γ, w̃)
whenever it is empty under policy π(β, w).

Proof: The α-fair policies have PS as intra-class policy. However, since we assume
that the service requirements are exponentially distributed, the stochastic behavior
of the network does not depend on which non-anticipating intra-class policy is be-
ing used. Therefore we can assume that we have a FCFS intra-class policy. From
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Lemma 7.4.1 we obtain that Property 7.3.1 is satisfied, hence the result in Corol-
lary 7.2.4 applies. �

A related stability result is obtained in [82], where the authors consider systems
with a time-varying general capacity region under an α-fair policy with unit weights.
They assume that the capacity region can be in a finite number of states according
to a stationary and ergodic process. For Poisson arrivals and exponentially dis-
tributed service requirements they characterize the stability conditions under which
the process is positive recurrent, and show that the stability region is non-increasing
in the value of α. Interestingly, Corollary 7.4.3 indicates that the stability region is
in fact also non-decreasing in the value of α in the setting of a linear network. We
therefore obtain the following result.

Corollary 7.4.4. Assume Poisson arrivals and exponentially distributed service
requirements. Consider a linear network and assume the set of all the possible
capacity vectors (C1(t), . . . , CL(t)) can be in a finite number of states and evolves
as a stationary and ergodic process. Let Ci be the average of the process Ci(t).

Policy π(α, w) with α > 0 and wi ≤ w0, i = 1, . . . , L, gives a stable system (pos-
itive recurrent) under the necessary stability conditions ρ0 + ρi < Ci, i = 1, . . . , L.

Proof: In [82] it is shown that for α-fair policies with α > 0 and unit weights
(wj = 1, j = 0, . . . , L) the necessary stability conditions are given by ρ0 + ρi < Ci,
i = 1, . . . , L. Moreover, it is established that these conditions are sufficient as
well for the policy π(α,~1) when α ↓ 0. On the other hand, Corollary 7.4.3 states
that the stability conditions become less strict when α increases. This proves that
π(α,~1) is stable under the necessary stability conditions, for all α > 0. From
Corollary 7.4.3 we can then conclude that the same holds for policy π(α, w) with
wi ≤ w0, i = 1, . . . , L. �

7.4.2 Mean holding cost

We are now ready to derive a monotonicity result for the mean holding cost for
weighted α-fair policies in a time-varying linear network. When

∑L
i=1 ciµi ≤ c0µ0,

the instantaneous weighted departure rate of class 0 is relatively large, hence, it
will be attractive to give preference to class-0 users, either by increasing the relative
weight given to class 0, w0/wi, or by increasing the parameter α, see Lemma 7.4.1.
At the same time this makes better use of the available capacity of the nodes, see
Proposition 7.2.2 (iv). In the next corollary we prove that the mean holding cost
indeed decreases when more preference is given to class 0. More precisely, the mean
holding cost is non-increasing in α and in w0

wi
, i = 1, . . . , L.

Corollary 7.4.5. Consider a linear network with time-varying capacities. Assume
exponentially distributed service requirements with

∑L
i=1 ciµi ≤ c0µ0. If β ≤ γ and

w0

wi
≤ w̃0

w̃i
, i = 1, . . . , L, then

L
∑

j=0

cjE(N
π(β,w)
j (t)) ≥

L
∑

j=0

cjE(N
π(γ,w̃)
j (t)), ∀ t ≥ 0.
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Proof: From Lemma 7.4.1 we obtain that π(β, w) and π(γ, w̃) satisfy Property 7.3.1’.
The result then follows from Proposition 7.2.5. �

When
∑L

i=1 ciµi > c0µ0 the analysis is more difficult. For example, in a two-
node linear network (L = 2) with c1µ1 + c2µ2 > c0µ0, it is beneficial to give more
preference to classes 1 and 2 (and hence less preference to class 0) since that will
maximize the total instantaneous weighted departure rate. From Lemma 7.4.1 we see
that this can be done by choosing α small. In the case of exponentially distributed
service requirements and a heavily loaded system, the mean holding cost is indeed
strictly increasing in α, as we will see in Section 7.4.3. For a normally loaded system
this is however not the case (see the simulations in Section 7.4.4). Then the effect
that a smaller α uses the available capacity in each node less efficiently becomes
more apparent.

7.4.3 Heavy-traffic regime

In this section we compare α-fair policies in a heavy-traffic scenario for a two-node
linear network with fixed capacities C1 and C2. Below we briefly state heavy-traffic
results from [67, 68] specialized to the two-node linear network under α-fair policies
with unit weights. We refer to [67, 68] for the full details. We assume exponential
distributed service requirements, as is the case in [67, 68].

Assume the heavy-traffic setting ρi + ρ0 = Ci, i = 1, 2. Define the diffusion
scaled processes as follows. For j = 0, 1, 2,

N̂
k,π(α)
j (t) :=

N
π(α,~1)
j (kt)
√

k
,

and for i = 1, 2,

V̂
k,π(α)
i (t) :=

N
π(α,~1)
0 (kt)/µ0 + N

π(α,~1)
i (kt)/µi√

k
=

N̂
k,π(α)
0 (t)

µ0
+

N̂
k,π(α)
i (t)

µi
.

Here V̂
k,π(α)
i (t) can be seen as the total workload in node i under the diffusion

scaling. In [68, Conjecture 5.1] it is conjectured that the diffusion scaled workload

process
~̂
V k,π(α)(t) converges in distribution to

~̂
V π(α)(t) as k → ∞, where

~̂
V π(α)(t) is

a semimartingale reflecting Brownian motion (with a covariance matrix independent
of α) living in a workload cone. For α = 1 this conjecture is proved in [67, 68]. In
addition, it is mentioned that this result can be extended to α 6= 1. Throughout
this section we assume that the conjecture holds for the two-node linear network.

The workload cone for an α-fair policy with unit weights is given by

{~v : vi =
ρ0

µ0
(q1 + q2)

1
α +

ρi

µi
q

1
α

i , q1, q2 ≥ 0, i = 1, 2} (7.9)

= {~v : v1 ≥ 0, v1
ρ0/µ0

(C1 − ρ0)/µ1 + ρ0/µ0
≤ v2 ≤ v1

(C2 − ρ0)/µ2 + ρ0/µ0

ρ0/µ0
}, (7.10)
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which is independent of the parameter α. Hence, the workload process
~̂
V π(α)(t) is

independent of α as well. The diffusion scaled number of users,
~̂
Nk,π(α)(t), converges

in distribution as k → ∞ to some process
~̂
Nπ(α)(t), which does depend on α (this

process is specified in Appendix 7.B).
Since the process of the total workload in a node does not depend on α, we are

able to derive monotonicity results for the mean holding cost over the whole range
of the parameter µ0. We can express the scaled holding cost as follows:

2
∑

j=0

cjN̂
π(α)
j (t)

=
c0µ0 − c1µ1 − c2µ2

µ0
· N̂π(α)

0 (t) +

2
∑

i=1

ciµi · (
1

µ0
N̂

π(α)
0 (t) +

1

µi
N̂

π(α)
i (t))

d
=

c0µ0 − c1µ1 − c2µ2

µ0
· N̂π(α)

0 (t) +

2
∑

i=1

ciµiV̂
π(α)
i (t). (7.11)

From Proposition 7.2.2 we know that N
π(α,~1)
0 (t) is decreasing in α, and hence

N̂
π(α)
0 (t) is decreasing in α as well. Since V̂

π(α)
i (t) is independent of α, and by taking

expectations in (7.11), we obtain that if c1µ1 + c2µ2 ≤ c0µ0 or c1µ1 + c2µ2 ≥ c0µ0,

then E(
∑2

j=0 cjN̂
π(α)
j (t)) is non-increasing or non-decreasing in α, respectively.

When in addition we use the characterization of
~̂
Nπ(α)(t), we are able to derive

a stronger monotonicity result. The proof may be found in Appendix 7.B.

Proposition 7.4.6. Consider a linear network with fixed capacities C1 and C2.
Assume that the inter-arrival times and service requirements are exponentially dis-
tributed, ρi + ρ0 = Ci for i = 1, 2, and that the conjecture in [68] is valid.

• If c1µ1 + c2µ2 < c0µ0, then E(
∑2

j=0 cjN̂
π(α)
j (t)) is strictly decreasing in α.

• If c1µ1 + c2µ2 = c0µ0, then E(
∑2

j=0 cjN̂
π(α)
j (t)) is constant in α.

• If c1µ1 + c2µ2 > c0µ0, then E(
∑2

j=0 cjN̂
π(α)
j (t)) is strictly increasing in α.

7.4.4 Numerical results

In this section we present numerical experiments to provide further insight into the
performance of α-fair policies. We consider a two-node linear network where both
nodes have unit capacity. We assume Poisson arrivals and exponentially distributed
service requirements and fix µ1 = 1, µ2 = 0.5, ρ1 = ρ2 and wj = cj = 1, j = 0, 1, 2.

Throughout this section, we use the notation Nπ :=
∑2

j=0 Nπ
j .

In Figure 7.1 and Figure 7.2 (left) we let α vary on the horizontal axis and plot
the corresponding total mean number of users for various values of µ0. As expected
from Corollary 7.4.5, we observe that for µ0 ≥ µ1 +µ2 = 1.5 the total mean number
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of users is decreasing with respect to the value of α. When µ0 < µ1 + µ2 = 1.5,
we observe that the total mean number of users is monotone (either decreasing or
increasing) in α as well in the range α ∈ [1,∞). However, when α ∈ (0, 1) and
µ0 < µ1 + µ2 = 1.5, it is possible that the total mean number of users is not
monotone in α. This fact may be explained as follows. Since µ0 < µ1 + µ2 =
1.5, it is attractive to give more preference to classes 1 and 2 when they are both
present (hence less preference to class 0). This corresponds to a small value for α.
However, an α-fair policy with a small α uses the available capacity less efficiently,
see Proposition 7.2.2 (iv) and Lemma 7.4.1 (ii). These two opposite effects might
cause the total mean number of users to not be monotone in α. Note that for

     

 

 

replacemen

α

E
(N

π
(α

)
)

µ0 = 0.2
µ0 = 0.4
µ0 = 0.8
µ0 = 1.2
µ0 = 2
µ0 = 10
perf. bound

0 0.5 1 1.5 2
12

14

16

18

20

22

24

     

 

 

α

E
(N

π
(α

)
)

µ0 = 0.2
µ0 = 0.4
µ0 = 0.6
µ0 = 1.2
µ0 = 2
µ0 = 10
perf. bound

0 2 4 6 8 10
6.5

7

7.5

8

8.5

9

9.5

Figure 7.1: Total mean number of users under α-fair policies in a two-node linear
network with µ1 = 1, µ2 = 0.5 and ρ0 = 0.7, ρ1 = ρ2 = 0.2 (left), and ρ0 = 0.3, ρ1 =
ρ2 = 0.5 (right).
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the heavy-traffic regime as considered in Section 7.4.3, the workload in a node was
independent of the parameter α and hence every value for α had the same efficiency.
Therefore, there was no trade-off and we were able to prove in that setting the
monotonicity result for µ0 < µ1 + µ2.

In Figure 7.2 (right) we let µ0 vary on the horizontal axis and plot the corre-
sponding total mean number of users for various values of α. We observe that the
total mean number of users is mostly increasing in µ0 when α < 1 and decreasing in
µ0 when α > 1, respectively. This can be explained as follows. First of all, if α = 1,
the policy reduces to PF. In the case of unit weights, PF is insensitive to the ser-
vice requirement distributions apart from their respective means (see [94]). Hence,
its total mean number of users is independent of the parameters µ0, µ1 and µ2 for
given values of ρ0, ρ1 and ρ2. When α > 1, from Lemma 7.4.1 (ii) we observe that
class 0 is treated preferentially over classes 1 and 2 (compared to PF). Under an
α-fair policy that gives preference to class 0, it is likely that the total mean number
of users decreases when the class-0 users become smaller, i.e., when µ0 increases,
while µ1, µ2, ρ0, ρ1 and ρ2 are kept fixed. Similarly, when α < 1, classes 1 and 2
are treated preferentially over class 0 (compared to PF). When µ0 becomes larger
(while µ1, µ2, ρ0, ρ1 and ρ2 are kept fixed), class-1 and 2 users become relatively
larger. Under an α-fair policy that gives preference to classes 1 and 2, it is likely
that the total mean number of users increases when µ0 increases.

7.4.5 Time-scale separation

In [33] the authors introduce the so-called quasi-stationary and fluid-limit regimes
(see also [74]). In these regimes, the flow dynamics of the various classes occur on
separate time scales, which can greatly simplify the analysis. It was conjectured
in [33] that these limiting regimes provide performance bounds. For the symmetric
linear network with unit weights, Poisson arrivals and generally distributed service
requirements, we refer to the quasi-stationary and fluid regimes when µ0 → ∞
and µ0 → 0, respectively, and keeping µ1, . . . , µL and ρ0, . . . , ρL fixed. From our
simulation results for a linear network it seems that these limiting regimes can indeed
be performance bounds, see Figure 7.2 (right). When α > 1, the quasi-stationary
regime (µ0 → ∞) is a lower bound on the total mean number of users and the fluid
regime (µ0 → 0) an upper bound on the total mean number of users, and when
α < 1 vice versa. A similar observation was made in [74] for a DPS queue.

We develop here an approximate analysis of the quasi-stationary regime. The
approximate formulae might be useful in assessing the performance of α-fair policies,
since exact closed-form formulae are not available.

In the quasi-stationary regime, µ0 → ∞, the dynamics of class 0 will ‘average
out’ on the relevant time scale for class i, i = 1, . . . , L. Hence, we can say that class 0
takes away a constant service rate ρ0. Class i behaves as in a PS system with capacity
1− ρ0, which implies that the number of class-i users in the system is geometrically

distributed with mean ρi

1−ρ0−ρi
[69]. Hence, limµ0→∞ E(N

π(α,w)
i ) = ρi

1−ρ0−ρi
, which

is independent of α and w0

wi
. Note that for α = 1 this approximation is the correct

expression, see (4.24).
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The time scale of class 0 is infinitely faster than that of classes 1, . . . , L. Thus on
the time scale of class 0, the dynamics of classes 1, . . . , L almost vanish. It can be
assumed that for a given number of class-i users, i = 1, . . . , L, class 0 will reach some

sort of statistical equilibrium. We recall from (7.8) that s
π(α,w)
0 (~n) = n0

n0+c , with

c = c(n1, . . . , nL) = (
∑L

i=1
wi

w0
nα

i )1/α. Thus, given a population ~n, class 0 behaves
like a PS system with c permanent users. The mean number of users in such a system

is ρ0

1−ρ0
(1+ c). Unconditioning and noting that N

π(α,w)
i is in the limit geometrically

distributed with mean ρi

1−ρ0−ρi
, i = 1, . . . , L, we get that approximately

lim
µ0→∞

E(N
π(α,w)
0 )

= lim
µ0→∞

∑

n1,...,nL

E(N
π(α,w)
0 |Nπ(α,w)

i = ni, i 6= 0) · P(N
π(α,w)
i = ni, i 6= 0)

= lim
µ0→∞

∑

n1,...,nL

ρ0

1 − ρ0
·
(

1 + (
L
∑

i=1

wi

w0
nα

i )1/α

)

· P(N
π(α,w)
i = ni, i 6= 0)

≈ ρ0

1 − ρ0
·



1 +

(

L
∑

i=1

wi

w0
(

ρi

1 − ρ0 − ρi
)α

)1/α


 . (7.12)

We ignored here the non-linearity induced by the parameter α. We see that the
performance of class 0 does depend on α and the weights wi, and using similar
arguments as in the proof of Lemma 7.4.1, it can be checked that the approximation
for the mean number of class-0 users as given in (7.12) indeed decreases when α or w0

wi

increases (as was proved in Proposition 7.2.2). In addition, note that for α = 1 the
approximation in (7.12) is the correct expression, see (4.23).

In Figures 7.1 and Figure 7.2 (left) we plotted the above obtained approximation
for the total mean number of users against α (denoted in the figures by “perf.
bound”). We observe that this approximation provides indeed an upper bound on
the performance when α < 1, and a lower bound when α > 1. Even for moderate
values of µ0, the bound is quite tight and not off by more than 10% as long as the
value of α is not too small or too large.

Unfortunately, it does not seem possible to derive an approximation for the fluid
regime. When µ0 → 0, the dynamics of classes 1, . . . , L ‘average out’ on the relevant
time scale of class 0. Thus, class 0 sees a system with capacity 1−max(ρ1, . . . , ρL).
The time scales of classes 1, . . . , L are infinitely faster than that of class 0, hence
on the relevant time scale of classes 1, . . . , L, the dynamics of class 0 nearly vanish.

Thus, given a certain number of class-0 users, class i obtains capacity s
π(α,w)
i (~n) =

(
∑L

i=1
wi

w0
nα

i )1/α/(n0 + (
∑L

i=1
wi

w0
nα

i )1/α), where n0 can be considered fixed. From
this equation we cannot approximate the behavior of classes 1, . . . , L by any known
queueing system unless α = 1.
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7.5 Multi-class single-server system

In Sections 7.3 and 7.4 we have focused on a linear network. In this section we
turn our attention to the multi-class single-server queue with time-varying capacity
C(t). There are K classes of users, where class-i users arrive according to a general
arrival process with rate λi, and have generally distributed service requirements
with mean 1/µi, i = 1, . . . , K. Let ρ =

∑K
i=1 ρi, with ρi = λi/µi. The inter-arrival

times and the service requirements are mutually independent random variables.
We consider allocation policies that are work-conserving, i.e., if

∑K
i=1 ni > 0 then

∑K
i=1 si(~n) = C(t), and if ni = 0 then si(~n) = 0. The intra-class policy is FCFS.
In Section 7.5.1 we consider two weighted time-sharing policies and, using the

general results from Section 7.2, we obtain monotonicity properties in the case of two
classes of users. In Section 7.5.2 we derive a framework (similar to the one derived
in Section 7.2) for a multi-class single-server system (with an arbitrary number of
classes) under work-conserving policies.

7.5.1 GPS and DPS policies

The policies we are particularly interested in are GPS and DPS, two popular non-
anticipating policies for a multi-class single-server system. Let GPS(w) (DPS(w))

denote a GPS (DPS) policy that assigns weight wj to class j, with
∑K

j=1 wj = 1.
As described in Section 1.3.2, the GPS allocation is given by

s
GPS(w)
i (~n) = C(t)

wi
∑K

j=1 wj1(nj>0)

, i = 1, . . . , K,

for
∑K

i=1 ni > 0. We take as intra-class policy in GPS the FCFS policy.
The DPS allocation is given by

s
DPS(w)
i (~n) = C(t)

wini
∑K

j=1 wjnj

, i = 1, . . . , K,

for
∑K

i=1 ni > 0. The allocated capacity to class i is shared equally among all class-i
users, hence the intra-class policy in DPS is PS.

Assume the service requirements are exponentially distributed with c1µ1 ≥
c2µ2 ≥ · · · ≥ cKµK . The cµ-rule, which gives preemptive priority to the class
with the highest ciµi, minimizes the mean holding cost among all non-anticipating
policies, see Section 1.3.3. For both GPS and DPS, a class is given more preference
when its weight is increased. Hence, it seems plausible that giving relatively more
weight to classes with a high ciµi will decrease the mean holding cost. For a single-
server system with only two classes of users (K = 2) we can indeed prove this: Such
a system is equivalent to a linear network with one node (L = 1). When w1 < w̃1,
the policies GPS(w) and GPS(w̃) (DPS(w) and DPS(w̃)) satisfy Property 7.3.1’.
Hence, we can use the results of Section 7.2 to obtain monotonicity results.

Proposition 7.5.1. Consider a single-server system with two classes of users and
time-varying capacity. Let w1 < w̃1. Assume Wπ

1 (0) ≥ W π̃
1 (0), Wπ

2 (0) ≤ W π̃
2 (0)
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and Wπ
1 (0)+Wπ

2 (0) = W π̃
1 (0)+W π̃

2 (0), where either π = GPS(w) and π̃ = GPS(w̃),
or π = DPS(w) and π̃ = DPS(w̃). We consider the same realizations of the arrival
processes and service requirements for both processes.
For generally distributed service requirements it holds that

W
GPS(w)
1 (t) ≥ W

GPS(w̃)
1 (t) and N

GPS(w)
1 (t) ≥ N

GPS(w̃)
1 (t), ∀ t ≥ 0. (7.13)

The opposite inequalities hold for class 2.
For exponentially distributed service requirements it holds that

{WDPS(w)
1 (t)}t≥0 ≥st {WDPS(w̃)

1 (t)}t≥0,

{NDPS(w)
1 (t)}t≥0 ≥st {NDPS(w̃)

1 (t)}t≥0.
(7.14)

The opposite inequalities hold for class 2.
If the service requirements are exponentially distributed with c1µ1 ≥ c2µ2 and the
system can be made stable, then

2
∑

i=1

ciE(N
GPS(w)
i (t)) ≥

2
∑

i=1

ciE(N
GPS(w̃)
i (t)), ∀ t ≥ 0, (7.15)

2
∑

i=1

ciE(N
DPS(w)
i (t)) ≥

2
∑

i=1

ciE(N
DPS(w̃)
i (t)), ∀ t ≥ 0. (7.16)

Proof: Since the respective pair of policies satisfy Property 7.3.1’, equation (7.13)
follows directly from Propositions 7.2.2, and equations (7.15) and (7.16) follow di-
rectly from Proposition 7.2.5. For exponentially distributed service requirements,
the stochastic behavior is independent of the used intra-class policy, see Remark 7.1.1.
For DPS we consider exponentially distributed service requirements. Hence, the
sample-path comparison in Proposition 7.2.2 obtained for FCFS, allows us to ob-
tain the stochastic comparison result in (7.14) for DPS when the intra-class policy
is PS. �

Inequalities (7.13) and (7.14) are rather natural, but to the best of our knowledge
have not been obtained previously. In particular, the comparison results from [85]
and [92] do not allow for such a comparison, as explained later in Remark 7.5.10.
The result for GPS is particularly interesting. GPS is used to model the queueing
delay experienced by packets in packet networks. An important body of research on
GPS is devoted to the characterization of the workload when there are two classes
of users, see for example [35, 109].

Inequalities (7.15) and (7.16) show that for two classes, the mean holding cost
under DPS or GPS is monotone in the whole range w1 ∈ [0,∞), where one extreme
corresponds to giving preemptive priority to class 2 (w1 = 0) and the other extreme
to preemptive priority to class 1 (w1 = 1). To the best of our knowledge, this kind
of monotonicity result is new for GPS. In the case of a two-class single-server DPS-
system with fixed capacity and Poisson arrivals, this result can also be obtained
from the analysis in [51] (see [12] for more details).
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For an arbitrary number of classes little is known on monotonicity results for
GPS and DPS. As mentioned before, motivated by the optimality of the cµ-rule,
one would expect that giving relatively more weight to classes with a high ciµi,
will decrease the mean holding cost. One of the most relevant results is obtained
in [75]. The authors consider a single server with fixed capacity, Poisson arrivals
and exponentially distributed service requirements with µ1 ≥ µ2 ≥ · · · ≥ µK . Using
the results of [51] they prove that if w̃1 ≥ w̃2 ≥ · · · ≥ w̃K , then E(

∑K
i=1 NPS

i ) ≥
E(
∑K

i=1 N
DPS(w̃)
i ). Note that PS is equivalent to a DPS policy with weights wi = 1,

for all i. In general, we expect the following results to hold (a similar conjecture for
the steady-state distribution of DPS has been made in [75]).

Conjecture 7.5.2. Consider a single-server system with K classes of users. As-
sume the service requirements are exponentially distributed with c1µ1 ≥ . . . ≥ cKµK .
If wi/wi+1 ≤ w̃i/w̃i+1, for all i = 1, . . . , K − 1, then

K
∑

j=1

cjE(N
GPS(w)
j (t)) ≥

K
∑

j=1

cjE(N
GPS(w̃)
j (t)), for all t ≥ 0,

and
K
∑

j=1

cjE(N
DPS(w)
j (t)) ≥

K
∑

j=1

cjE(N
DPS(w̃)
j (t)), for all t ≥ 0.

Note that the conjecture for DPS is valid in the heavy-traffic limit: In Propo-
sition 2.6.4 it was proved that the scaled holding cost under DPS are monotone in
the relative weights for a heavily-loaded system with phase-type distributed service
requirements. In the next example we perform numerical experiments that support
Conjecture 7.5.2 for a single-server system with three classes.

Example 7.5.3 (Numerical experiments for GPS and DPS). We consider a
single server with fixed unit capacity, Poisson arrivals, and three classes of users with
exponentially distributed service requirements. We consider both GPS and DPS
with weights wi(r) = Ω(r) · rK−i, r ≥ 1, and Ω(r) = 1/(

∑K−1
i=0 ri) a normalization

constant. Note that wi/wi+1 = r, i = 1, . . . , K. Hence, as the parameter r increases,
class i obtains relatively a larger weight compared to class i + 1. We choose µ1 =

2, µ2 = 1 and µ3 = 0.5, hence we expect that the functions E(
∑K

i=1 N
GPS(w(r))
i ) and

E(
∑K

i=1 N
DPS(w(r))
i ) are decreasing in r. When r → ∞, both GPS(r) and DPS(r)

become a priority rule that gives preemptive priority to class 1, and if class 1 is
empty, serves class 2. Since µ1 > µ2 > µ3, this policy minimizes the total mean
number of users present in the system (follows from the optimality of the cµ-rule).

For GPS with weights wi(r) we simulated the system and Figure 7.3 (left) plots
the total mean number of users as a function of the parameter r. We observe that
the total mean number of users indeed reduces as r increases.

In Figure 7.3 (right) we plot the total mean number of users under DPS(r) as
a function of the parameter r. The total mean number of users was obtained by
solving a system of linear equations as given in [51]. When r = 1, the policy reduces
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Figure 7.3: Total mean number of users under GPS policies (left) and under DPS
policies (right), with µ1 = 2, µ2 = 1, µ3 = 0.5.

to PS, hence E(
∑K

i=1 N
DPS(w(1))
i ) = E(

∑K
i=1 NPS

i ) = ρ1+ρ2+ρ3

1−(ρ1+ρ2+ρ3) . We observe

that the mean total number of users is again decreasing in r.

For a single server with more than two classes, the framework and results as de-
veloped in Section 7.2 and in particular Property 7.2.1 are not applicable. Therefore,
in Section 7.5.2 we develop a similar analysis as in Section 7.2, but now for a single-
server system with an arbitrary number of classes. Unfortunately, this sample-path
framework does not allow a full comparison of either two DPS or two GPS policies
for more than two classes. This will be explained as well in the next section.

7.5.2 Comparison of policies

In this section we derive comparison results for a single-server system with K classes
of users, K ≥ 2, similar to the ones obtained in Section 7.2. We focus on Pareto-
efficient policies, which in a single-server scenario are equivalent to work-conserving
policies. The following property states sufficient conditions on two policies in order
to compare them sample-path wise.

Property 7.5.4. Let π and π̃ be two work-conserving policies such that for any
k = 1, . . . , K − 1, we have that

k
∑

i=1

sπ
i (~nπ) ≤

k
∑

i=1

sπ̃
i (~nπ̃), (7.17)

for all states ~nπ̃ and ~nπ that satisfy the following three conditions:

• nπ
1 ≥ nπ̃

1 , nπ
k ≤ nπ̃

k , nπ
k+1 ≥ nπ̃

k+1 and nπ
K ≤ nπ̃

K .

• If for an m ≥ 0 it holds that nπ̃
k−i = 0, for all i = 0, . . . , m, then in addition

nπ
k−i−1 ≤ nπ̃

k−i−1, for all i = 0, . . . , m.
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• If for an m ≥ 1 it holds that nπ
k+i = 0, for all i = 1, . . . , m, then in addition

nπ
k+i+1 ≥ nπ̃

k+i+1, for all i = 1, . . . , m.

Equation (7.17) represents a weak notion of priority, with strict priority as a
special case. When two policies satisfy Property 7.5.4, we can derive the following
sample-path comparison result.

Proposition 7.5.5. Let π and π̃ be two policies that satisfy Property 7.5.4 and
consider the same realizations of the arrival processes and service requirements. If
∑m

i=1 Wπ
i (0) ≥ ∑m

i=1 W π̃
i (0), m = 1, . . . , K − 1, and

∑K
i=1 Wπ

i (0) =
∑K

i=1 W π̃
i (0),

then for all t ≥ 0

m
∑

i=1

(Sπ
i (t) − Wπ

i (0)) ≤
m
∑

i=1

(

Sπ̃
i (t) − W π̃

i (0)
)

, m = 1, . . . , K. (7.18)

For m = K, (7.18) holds with equality.
In particular we have

Nπ
1 (t) ≥ N π̃

1 (t), Nπ
K(t) ≤ N π̃

K(t), (7.19)

and
m
∑

i=1

Wπ
i (t) ≥

m
∑

i=1

W π̃
i (t), m = 1, . . . , K. (7.20)

For m = K, (7.20) holds with equality.

Proof: Equation (7.20) follows from (7.1) and (7.18). The first relation in (7.19)
follows from (7.20) with m = 1, since the intra-class policy is FCFS and the k-
th most recently arrived class-1 user before time t has the same (original) service
requirement under both policies. Similarly, the second relation in (7.19) follows

from (7.20) with m = K − 1 and
∑K

i=1 Wπ
i (t) =

∑K
i=1 W π̃

i (t). Therefore, it suffices
to prove (7.18).

The policies are work-conserving, so
∑K

i=1 Wπ
i (0) =

∑K
i=1 W π̃

i (0) gives that
∑K

i=1 Sπ
i (t) =

∑K
i=1 Sπ̃

i (t), and hence (7.18) holds with equality for m = K. Equa-
tion (7.18) for m < K is proved by contradiction. Let t be the first time epoch

at which (7.18) is violated for some k, 1 ≤ k ≤ K − 1. So we have
∑k

i=1(S
π
i (t) −

Wπ
i (0)) =

∑k
i=1(S

π̃
i (t) − W π̃

i (0)) and
∑k

i=1 sπ
i ( ~Nπ(t+)) >

∑k
i=1 sπ̃

i ( ~N π̃(t+)), but
∑m

i=1(S
π
i (t) − Wπ

i (0)) ≤∑m
i=1(S

π̃
i (t) − W π̃

i (0)), for m 6= k. Hence,

Sπ
1 (t) − Wπ

1 (0) ≤ Sπ̃
1 (t) − W π̃

1 (0), Sπ
k (t) − Wπ

k (0) ≥ Sπ̃
k (t) − W π̃

k (0),

Sπ
k+1(t) − Wπ

k+1(0) ≤ Sπ̃
k+1(t) − W π̃

k+1(0), Sπ
K(t) − Wπ

K(0) ≥ Sπ̃
K(t) − W π̃

K(0)

Together with (7.1), we obtain Wπ
1 (t) ≥ W π̃

1 (t), Wπ
k (t) ≤ W π̃

k (t), Wπ
k+1(t) ≥ W π̃

k+1(t)

and Wπ
K(t) ≤ W π̃

K(t). Since the k-th class-j user under both policies has the same
(original) service requirement and the intra-class policy is FCFS, we have as well

Nπ
1 (t) ≥ N π̃

1 (t), Nπ
k (t) ≤ N π̃

k (t), Nπ
k+1(t) ≥ N π̃

k+1(t) and Nπ
K(t) ≤ N π̃

K(t).
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Since {Ni(t)}t≥0 is a piece-wise constant process and is right-continuous, we have
as well Nπ

1 (t+) ≥ N π̃
1 (t+), Nπ

k (t+) ≤ N π̃
k (t+), Nπ

k+1(t
+) ≥ N π̃

k+1(t
+) and Nπ

K(t+) ≤
N π̃

K(t+).

Note that if N π̃
k (t+) = 0, then Sπ

k (t) − Wπ
k (0) = Sπ̃

k (t) − W π̃
k (0) and hence

∑k−1
i=1 (Sπ

i (t)−Wπ
i (0)) =

∑k−1
i=1 (Sπ̃

i (t)−W π̃
i (0)). So Sπ

k−1(t)−Wπ
k−1(0) ≥ Sπ̃

k−1(t)−
W π̃

k−1(0) and by (7.1) we obtain Nπ
k−1(t

+) ≤ N π̃
k−1(t

+). Now if also N π̃
k−1(t

+) =

0, then we obtain in the same way that Nπ
k−2(t

+) ≤ N π̃
k−2(t

+), etc. Also note

that if Nπ
k+1(t

+) = 0, then Sπ
k+1(t) − Wπ

k+1(0) = Sπ̃
k+1(t) − W π̃

k+1(0) and hence
∑k+1

i=1 (Sπ
i (t)−Wπ

i (0)) =
∑k+1

i=1 (Sπ̃
i (t)−W π̃

i (0)). So Sπ
k+2(t)−Wπ

k+2(0) ≤ Sπ̃
k+2(t)−

W π̃
k+2(0) and by (7.1) we obtain Nπ

k+2(t
+) ≥ N π̃

k+2(t
+). Now if also Nπ

k+2(t
+) = 0,

then we obtain in the same way that Nπ
k+3(t

+) ≥ N π̃
k+3(t

+), etc.

So at time t+ we are in states ~Nπ(t+) and ~N π̃(t+) that satisfy Property 7.5.4

and hence
∑k

i=1 sπ
i ( ~Nπ(t+)) ≤ ∑k

i=1 sπ̃
i ( ~N π̃(t+)). This contradicts the initial as-

sumption. �

Every work-conserving policy gives a stable system whenever possible. However,
for a subset of the classes, the stability conditions can still depend on the policy
being employed. We have the following result:

Corollary 7.5.6. Assume π and π̃ satisfy Property 7.5.4. If classes 1, 2, . . . , m are
stable under policy π, then these classes are stable under policy π̃ as well, in the
sense that the system is empty under policy π̃ whenever it is empty under policy π.

Proof: If
∑m

i=1 Wπ
i (t) = 0, then we obtain from Proposition 7.5.5 that

∑m
i=1 W π̃

i (t)
= 0. �

The following proposition states the analogous version of Proposition 7.2.5.

Proposition 7.5.7. Assume the service requirements are exponentially distributed.
Let π and π̃ be two policies that satisfy Property 7.5.4 and assume the system is
stable. If c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK , then

K
∑

i=1

ciE(Nπ
i (t)) ≥

K
∑

i=1

ciE(N π̃
i (t)), ∀ t ≥ 0.

Proof: Assume at time t = 0 the conditions as stated in Proposition 7.5.5 are
satisfied. From Proposition 7.5.5 we obtain

∑m
i=1 Wπ

i (t) ≥ ∑m
i=1 W π̃

i (t). Since π
is non-anticipating and the service requirements are exponentially distributed, we
have

m
∑

i=1

1

µi
E(Nπ

i (t)) ≥
m
∑

i=1

1

µi
E(N π̃

i (t)) (7.21)

for m ≤ K. Define P π
m(t) :=

∑m
i=1

1
µi

E(Nπ
i (t)). So P π

m(t) ≥ P π̃
m(t), m = 1, . . . , K,
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and hence

K
∑

i=1

ciE(Nπ
i (t)) = (c1µ1 − c2µ2)P

π
1 (t) + (c2µ2 − c3µ3)P

π
2 (t) + . . . + cKµKP π

K(t)

≥ (c1µ1 − c2µ2)P
π̃
1 (t) + (c2µ2 − c3µ3)P

π̃
2 (t) + . . . + cKµKP π̃

K(t)

=

K
∑

i=1

ciE(N π̃
i (t)),

where we used that c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK . �

Example 7.5.8 (Optimality of the cµ-rule). As mentioned before, for expo-
nentially distributed service requirements, the cµ-rule, i.e., the policy that gives
preemptive priority to the class i with the maximum ciµi, minimizes the mean
holding cost among all non-anticipating policies. For a time-varying multi-class
single-server system, this was shown in [102]. In fact this also follows from Propo-
sition 7.5.7. Assume c1µ1 ≥ c2µ2 ≥ . . . ≥ cKµK . Denote the cµ-rule by π̃, and
consider an arbitrary non-anticipating policy π. Whenever

∑k
i=1 nπ̃

i > 0 we have

that
∑k

i=1 sπ̃
i (~nπ̃) = C(t) and hence (7.17) is satisfied for these states. Now assume

∑k
i=1 nπ̃

i = 0. Since nπ̃
i = 0 for all i ≤ k, the corresponding states ~nπ we have to con-

sider in Property 7.5.4 should satisfy nπ
i ≤ nπ̃

i = 0 for all i ≤ k, that is
∑k

i=1 nπ
i = 0

as well. But then (7.17) is by definition satisfied. Hence Property 7.5.4 is satisfied
and the optimality of the cµ-rule follows now from Proposition 7.5.7.

Proposition 7.5.7, combined with Property 7.5.4 gives sufficient conditions in
order to compare the mean holding cost under two policies. When K = 2, Prop-
erty 7.5.4 reduces to the rather natural condition sπ

1 (~n) ≤ sπ̃
1 (~n) for all states ~n.

This is for example satisfied by either two DPS policies or two GPS policies when
w1 ≤ w̃1. Unfortunately, for more than two classes Property 7.5.4 fails to hold for
any two DPS policies. For a GPS system, Property 7.5.4 is satisfied under more
stringent conditions than the ones stated in Conjecture 7.5.2. For example, for
the case of three classes it can be checked that for two GPS policies, GPS(w) and
GPS(w̃), Property 7.5.4 is equivalent to

w1

w1 + w2
≤ w̃1,

w1

w1 + w3
≤ w̃1

w̃1 + w̃3
and w3 ≥ w̃3

w̃2 + w̃3
. (7.22)

Hence, (7.22) is a sufficient condition to compare the mean holding cost under
GPS(w) and GPS(w̃). If we choose as weights wi(r) = Ω(r) · rK−i, r > 1 (as
considered in Example 7.5.3), equation (7.22) is equivalent to 1 ≤ r and r̃ ≥ r + r2.
We would expect the comparison result already to hold for all r̃ ≥ r, so this shows
that there is still a gap of length r2. For an arbitrary number of classes, the sufficient
conditions in order for Conjecture 7.5.2 to hold for GPS can be obtained as well,
however, the derivations become very cumbersome.

In this section we used sample-path inequalities as given in (7.18) in order to
compare the mean holding cost under two different policies. Property 7.5.4 is a suf-
ficient (but not necessary) condition for these sample-path inequalities to hold. For
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DPS and GPS, this property is not (always) satisfied. In fact, the counterexample
below illustrates for the case of three classes that the sample-path inequalities (7.18)
do not need to hold for either two DPS policies or two GPS policies that satisfy the
conditions of Conjecture 7.5.2. This indicates that for more than two classes, Con-
jecture 7.5.2 cannot be fully proved using such sample-path arguments and requires
a different kind of approach.

Example 7.5.9 (Counterexamples for DPS and GPS). We give a counterex-
ample for the inequality (7.18) that is valid for both DPS and GPS. Consider a sys-
tem with three classes, and consider the two policies with weight vectors w = (2, 1, 1)
and w̃ = (∞, 1, 1), respectively. It is easy to verify that the vectors w and w̃ satisfy
the condition of Conjecture 7.5.2. Assume that at time t = 0 there is one user in
every class, that is, Nπ(0) = N π̃(0) = (1, 1, 1) and their service requirements are
respectively 4, 10 and 1 under both policies π and π̃. At time t = 6 a class-3 user
arrives with a strictly positive service requirement. Let us analyze the evolution
under both policies over time:

• Policy π: In the interval [0, 4) all users share the capacity according to the
weights. At time t = 4 the class-3 user departs the system and the remaining
service requirements of the class-1 and the class-2 user are 2 and 9, respec-
tively. In the interval [4, 6) the class-1 and class-2 users will share the capacity
according to their weights, thus at time t = 6 the remaining service require-
ments of the class-1 and class-2 users are 2

3 and 25
3 , respectively. It follows

that Sπ
1 (6) + Sπ

2 (6) = 4 + 10 − 2
3 − 25

3 = 5.

• Policy π̃: In the interval [0, 4) only class 1 will be served and it departs at
time t = 4. In the interval [4, 6) the class-2 and class-3 users will equally
share the capacity. At time t = 6 the class-3 user departs and the class-2 user
has a remaining service requirement of 9. It follows that Sπ̃

1 (6) + Sπ̃
2 (6) =

4 + 10 − 9 = 5.

Due to the new arrival at t = 6 it follows that sπ
1 ( ~Nπ(6+)) + sπ

2 ( ~Nπ(6+)) = 3
4

whereas sπ̃
1 ( ~N π̃(6+)) + sπ̃

2 ( ~N π̃(6+)) = 1
2 . This together with the fact that Sπ

1 (6) +
Sπ

2 (6) = Sπ̃
1 (6) + Sπ̃

2 (6) implies that Sπ
1 (6+) + Sπ

2 (6+) > Sπ̃
1 (6+) + Sπ̃

2 (6+), which
contradicts (7.18) for m = 2.

In the following remark we explain that Conjecture 7.5.2 does not follow either
from results in [85, 92] and hence that a novel approach is needed.

Remark 7.5.10. Assume { ~Nπ(t)}t≥0 and { ~N π̃(t)}t≥0 are two continuous-time
Markov processes. From Remark 7.2.6 we readily see that the conditions on the
policies π and π̃ in order to obtain {∑K

i=1 Nπ
i (t)}t≥0 ≥st {

∑K
i=1 N π̃

i (t)}t≥0 for any

initial states with
∑K

i=1 Nπ
i (0) ≥st

∑K
i=1 N π̃

i (0), are only satisfied when µi = µ for
all i. Consider for example the two states ~nπ = ~ek and ~nπ̃ = ~ej, where ~ej de-
notes the j-th unit vector. Then the condition as stated in Remark 7.2.6 becomes
∑K

i=1 µis
π
i (~nπ) = µk ≤ ∑K

i=1 µis
π̃
i (~nπ̃) = µj , see also [85, 92]. However, for the
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states ~nπ = ~ej and ~nπ̃ = ~ek we obtain similarly that we need µj ≤ µk. So only when
µi = µ for all i, the conditions are satisfied, but this is not very interesting.

The necessary and sufficient conditions in order to obtain a similar comparison
result as in Proposition 7.5.5, i.e., {Nπ

1 (t)}t≥0 ≥st {N π̃
1 (t)}t≥0 and {Nπ

K(t)}t≥0 ≤st

{N π̃
K(t)}t≥0 given that Nπ

1 (0) ≥ N π̃
1 (0) and Nπ

K(0) ≤ N π̃
K(0), are

sπ
1 (~nπ) ≤ sπ̃

1 (~nπ̃) for all nπ
1 = nπ̃

1 and nπ
K ≤ nπ̃

K , (7.23)

sπ
K(~nπ) ≥ sπ̃

K(~nπ̃) for all nπ
1 ≥ nπ̃

1 and nπ
K = nπ̃

K , (7.24)

see [85, 92]. In a queueing context this can only be satisfied when policy π̃ gives
preemptive priority to class 1 (see equation (7.23) with nπ

2 = . . . = nπ
K = 0) and

policy π gives preemptive priority to class K (see equation (7.24) with nπ̃
1 = . . . =

nπ̃
K−1 = 0). In particular, for any two GPS policies or two DPS policies (with

non-degenerate weights) the inequalities (7.23) and (7.24) do not hold.

7.6 Concluding remarks

In this chapter we have studied multi-class queueing systems and, using sample-
path arguments, we have obtained comparison results for the performance under
two different policies in terms of stability and mean holding cost. The results could
naturally be applied to a linear network and a two-class single-server system. It
might be interesting to consider different types of networks, like a star or grid
network, and use the same approach in order to compare the performance of different
policies.

For the linear network we proved monotonicity results for the mean holding cost
under α-fair policies with respect to the parameter α and the relative weights. In
the numerical section, we observed an additional monotonicity property: The total
mean number of users shows monotone behavior in µ0 for given load ρ0, when the
other parameters are kept fixed. There is no hope that this latter property can
be proved using sample-path arguments, since this requires the same realizations
for the service requirements. When we compare the two stochastic processes for
different values of µ0, this can no longer be done.

For the multi-class single-server system with exponential service requirements it
is reasonable to expect that for weighted time-sharing policies like DPS and GPS,
monotonicity results for the mean holding cost hold under natural conditions on
the weights. We were able to prove this for some special cases using a sample-path
argument. The other cases remain as a challenging topic for further research.

Appendix

7.A Proof of Lemma 7.4.1

For a given state ~n, the α-fair allocation ~sπ(α,w)(~n) is the solution of the optimiza-
tion problem (7.7). (For ease of notation, we drop the dependence on t in Ci(t).)
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Obviously, s
π(α,w)
i (~n) equals Ci − s

π(α,w)
0 (~n) when ni > 0, and equals 0 otherwise.

Without loss of generality, we assume that ni > 0, and hence, we can set si = Ci−s0

in (7.7), for all i. It can be checked that the objective function in (7.7) expressed in
terms of s0 is concave. Taking the derivative with respect to s0 and setting it equal

to zero, we obtain that s
π(α,w)
0 (~n) satisfies

w0 · nα
0 · (sπ(α,w)

0 (~n))−α =

L
∑

i=1

wi · nα
i · (Ci − s

π(α,w)
0 (~n))−α,

or equivalently

1 =

L
∑

i=1

wi

w0

(ni

n0

s
π(α,w)
0 (~n)

Ci − s
π(α,w)
0 (~n)

)α

. (7.25)

The function
∑L

i=1
wi

w0

(

ni

n0

s0

Ci−s0

)α

is non-decreasing in s0. Hence, when either ni or
wi

w0
increases, by (7.25) the corresponding value of s0 must decrease. Statements (i)

and (iii) follow now immediately. Statement (ii) deserves some more elaboration.
Let β < γ and define r := γ/β > 1. By (7.25) we have

1 =
(

L
∑

i=1

wi

w0

( ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)β) 1
β

=
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)β) r
rβ

≥
(

L
∑

i=1

wi

w0

(ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)rβ) 1
rβ

=
(

L
∑

i=1

wi

w0

( ni

n0

s
π(β,w)
0 (~n)

Ci − s
π(β,w)
0 (~n)

)γ) 1
γ

.

By (7.25) we also have that
(

∑L
i=1

wi

w0

(

ni

n0

s
π(γ,w)
0 (~n)

Ci−s
π(γ,w)
0 (~n)

)γ) 1
γ

= 1. Together with the

above, this implies
∑L

i=1
wi

w0

(

ni

n0

s
π(β,w)
0 (~n)

Ci−s
π(β,w)
0 (~n)

)γ

≤ 1 =
∑L

i=1
wi

w0

(

ni

n0

s
π(γ,w)
0 (~n)

Ci−s
π(γ,w)
0 (~n)

)γ

and hence s
π(β,w)
0 (~n) ≤ s

π(γ,w)
0 (~n). �

7.B Proof of Proposition 7.4.6

By the conjecture of [68], the diffusion-scaled workload in node i converges in dis-

tribution to V̂
π(α)
i (t), which is independent of α. In addition, it is stated that the

diffusion-scaled number of users,
~̂
Nk,π(α)(t), converges in distribution to

~̂
Nπ(α)(t).

The latter process can be written as

N̂
π(α)
0 (t)

d
= ρ0(q1(α, t) + q2(α, t))

1
α and N̂

π(α)
i (t)

d
= ρiqi(α, t)

1
α , i = 1, 2. (7.26)

where (q1(α, t), q2(α, t)) ∈ R
2
+, [68]. In the remainder of this proof we fix t and drop

the dependence on t. The scaled workload in a node is independent of α, hence we

can assume that there is a v̂i with V̂
π(α)
i = v̂i, for all α > 0, i = 1, 2. By (7.26), the
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definition of V̂ π(α), and ρ0 + ρi = Ci, we have

(Ci − ρ0)
1

µi
qi(α)1/α + ρ0

1

µ0
(q1(α) + q2(α))1/α d

= v̂i. (7.27)

Together with (7.26), the diffusion-scaled holding cost can now be written as

2
∑

j=0

cjN̂
π(α)
j

d
= c0ρ0(q1(α) + q2(α))

1
α + c1(C1 − ρ0)q1(α)

1
α + c2(C2 − ρ0)q2(α)

1
α

= c1

(

(C1 − ρ0)q1(α)1/α + ρ0
µ1

µ0
(q1(α) + q2(α))1/α

)

+ c2

(

(C2 − ρ0)q2(α)1/α + ρ0
µ2

µ0
(q1(α) + q2(α))1/α

)

+
c0µ0 − c1µ1 − c2µ2

µ0
ρ0(q1(α) + q2(α))

1
α

d
= c1µ1v̂1 + c2µ2v̂2 +

c0µ0 − c1µ1 − c2µ2

µ0
ρ0(1 + f(α)α)

1
α q2(α)

1
α ,

(7.28)

where f(α) :=
(

q1(α)
q2(α)

)
1
α

. In the remainder of the proof we derive monotonicity

properties for the term (1 + f(α)α)
1
α q2(α)

1
α .

Let α1, α2 > 0. From equation (7.27) with i = 2 we obtain

q2(α1)
1/α1 = q2(α2)

1/α2
C2 − ρ0 + ρ0

µ2

µ0
(1 + f(α2)

α2)1/α2

C2 − ρ0 + ρ0
µ2

µ0
(1 + f(α1)α1)1/α1

. (7.29)

From (7.29) we conclude that

(1 + f(α1)
α1)

1
α1 q2(α1)

1
α1 < (=) (1 + f(α2)

α2)
1

α2 q2(α2)
1

α2 (7.30)

if and only if

(1 + f(α1)
α1)

1
α1

(C2 − ρ0 + ρ0
µ2

µ0
(1 + f(α1)α1)1/α1

< (=)
(1 + f(α2)

α2)
1

α2

(C2 − ρ0 + ρ0
µ2

µ0
(1 + f(α2)α2)1/α2

,

if and only if

(1 + f(α1)
α1)

1
α1 < (=) (1 + f(α2)

α2)
1

α2 . (7.31)

Let b be such that v̂1 = bv̂2. Assume without loss of generality ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
≤

b ≤ 1. (For states with b > 1 the analysis is the same, with only the roles of nodes 1

and 2 interchanged.) Note that when b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
we are on the edge of the

cone as described in (7.10). In Lemma 7.B.1 (see below) we prove that (1+f(α)α)
1
α

is strictly decreasing in α when ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
< b ≤ 1 and is constant when

b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
, the edge of the cone. Assuming the probability mass is not all
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concentrated on the edge of the cone, we conclude from (7.28) and the equivalence
between (7.30) and (7.31) that the diffusion-scaled holding cost is strictly decreasing
(strictly increasing) in α when c1µ1 + c2µ2 < c0µ0 (c1µ1 + c2µ2 > c0µ0). �

The following lemma is used in the proof of Proposition 7.4.6.

Lemma 7.B.1. The function (1 + f(α)α)1/α with f(α) =
(

q1(α)
q2(α)

)
1
α

, is strictly

decreasing in α when ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
< b ≤ 1 and is constant in α when b =

ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
, with b = v̂1/v̂2.

Proof: From v̂1 = bv̂2 and (7.27) we obtain the relation

(C1 − ρ0)
1

µ1
q1(αi)

1
αi + (1 − b)ρ0

1

µ0
(q1(αi) + q2(αi))

1
αi = b(C2 − ρ0)

1

µ2
q2(αi)

1
αi .

Dividing both sides by q2(αi)
1

αi , we obtain

(C1 − ρ0)
1

µ1
f(αi) + (1 − b)ρ0

1

µ0
(1 + f(αi)

αi)
1

αi = b(C2 − ρ0)
1

µ2
. (7.32)

By (7.32) we have that f(α) = 0 if and only if b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
. Hence, the

function (1 + f(α)α)
1
α is constant when b = ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
.

Now assume ρ0/µ0

(C2−ρ0)/µ2+ρ0/µ0
< b ≤ 1. Take α1 < α2 and let r > 1 be such that

α2 = rα1. Then

(1+f(α2)
α2)

1
α2 = (1rα1 +f(rα1)

rα1)
1

rα1 < (1α1 +f(rα1)
α1)

r
rα1 = (1+f(rα1)

α1)
1

α1 ,
(7.33)

since 1+f(rα1) > 1. Suppose f(α2) = f(rα1) ≤ f(α1). From (7.33), we then obtain

(1 + f(α2)
α2)

1
α2 < (1 + f(α1)

α1)
1

α1 . However, from (7.32) we know that if f(α2) ≤
f(α1), then (1 + f(α2)

α2)
1

α2 ≥ (1 + f(α1)
α1)

1
α1 , hence we have a contradiction.

We conclude that f(α2) > f(α1), and hence f(α) is strictly increasing in α and

from (7.32) it then follows that (1 + f(α)α)
1
α is strictly decreasing in α. �



Chapter 8

Optimal scheduling in a
parallel two-server model

The focus of Chapters 2–7 was on the single-server model and the linear network.
In this last chapter we shift our attention to the parallel two-server model with two
traffic classes. Both servers can be simultaneously allocated to one of the classes, or
both classes can be served in parallel, each by a dedicated server. We seek policies
that minimize in some sense the holding cost within the class of non-anticipating
policies. As described in Section 1.5, determining the optimal policy in explicit
form has so far proved infeasible. In this chapter our main goals are to study the
structural properties of optimal scheduling policies and to determine computable
approximations that are close to optimality. We assume exponentially distributed
service requirements.

We primarily focus on the situation where the highest service capacity is achieved
when serving both classes in parallel. For some special cases the optimal policy can
be determined exactly, but this is not possible in general. In a similar setting, [17]
states that switching-curve policies are optimal. Numerical experiments included for
illustration in the present chapter indeed support this optimality. In order to find
computable approximations for the optimal policies, we perform a fluid analysis
similar to that of Chapter 5 for the two-node linear network: We first study the
fluid control model for which we show that the optimal control is described by a
linear switching curve. Using this result, we derive that policies characterized by
either linear or exponential switching curves are asymptotically fluid-optimal in the
original stochastic model. Our analysis is partly inspired by that in [53, 54] where
a multi-class tandem-network is studied.

By simulations we compare the fluid-based policies with threshold-based [19, 20]
and Max-Weight policies [89, 132], which are known to be optimal in heavy traffic.
We show that the fluid-based and threshold-based policies give good performance in
general, while significant improvements over Max-Weight policies can be achieved.
For threshold-based policies, however, finding reasonable values for the thresholds
is not trivial since performance as well as stability can be quite sensitive to the
threshold values. This contrasts with the fluid-based policies for which the switching
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curve is explicitly given.

This chapter is organized as follows. In Section 8.1 we describe the model
and state some preliminary results. Section 8.2 contains optimality results for the
stochastic model. The fluid control model and asymptotically fluid-optimal policies
are presented in Section 8.3. For certain choices of the parameters, exponential-
shaped switching curves provide an asymptotically fluid-optimal policy. This is
discussed in more detail in Section 8.4. In Section 8.5 we focus on another setting
and argue that in that case an efficient policy has a quadratic switching curve. For
comparison we briefly discuss optimal policies in heavy traffic using the results of
[19, 20] and [89, 132] in Section 8.6. Numerical experiments and concluding remarks
can be found in Sections 8.7 and 8.8, respectively.

8.1 Model and preliminaries

We consider a parallel two-server model with two classes of users, as depicted in
Figure 1.6 (left). Class-i users, i = 1, 2, arrive according to independent Poisson
processes with rate λi, and have exponentially distributed service requirements. We
assume that both servers can work simultaneously on the same user. As described
in Section 1.5, we can equivalently formulate the parallel-server model as a system
with two classes of users having a capacity region S, defined as the convex hull of
the set {(0, 0), (1, 0), (0, 1), (c1, c2)} (see Figure 1.6 (right) with C1 = C2 = 1 in the
case c1 + c2 > 1). Hence, at any time either one class can be served individually
with capacity 1, or both classes 1 and 2 can be served in parallel with capacities c1

and c2 respectively, ci ≤ 1, or the system is idling (not serving any class), or any
convex combination of these four. The latter representation of the parallel-server
model will be considered throughout the chapter.

Let 1/µi represent the mean class-i service requirement, i = 1, 2, and define the
traffic load of class i as ρi := λi

µi
. For a given policy π, denote by Nπ

i (t) the number of
class-i users at time t, and define Nπ

i as the random variable with the corresponding

equilibrium distribution (when it exists). Let ~Nπ(t) = (Nπ
1 (t), Nπ

2 (t)).

We assume that the numbers of users in the two classes are observable to a policy.
For a given policy π, denote by sπ

i (t) the service capacity devoted to class i at time t.
We assume that sπ

i (t) = 0 when Nπ
i (t) = 0. In addition, we assume the process

sπ
i (t) to be right-continuous with left limits, and the vector ~sπ(t) := (sπ

1 (t), sπ
2 (t)) to

lie in the capacity region S. Note that the total (service) capacity sπ
1 (t)+sπ

2 (t), that
is, the speed at which the total amount of backlogged work in the system decreases,
is not constant in time. Depending on the decision taken at time t, it may vary
between 0 and max(1, c1 + c2).

Let Sπ
i (t) :=

∫ t

0
sπ

i (u)du denote the cumulative amount of capacity devoted to
class i in the time interval (0, t] under policy π. Let Ai(u, t) be the amount of class-i
work that arrived during the time interval (u, t]. Then, the workload in class i at
time t can be written as

Wπ
i (t) := Wi(0) + Ai(0, t) − Sπ

i (t). (8.1)
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The objective of this chapter is to identify scheduling policies that in some ap-
propriate sense minimize the holding cost d1N1(t) + d2N2(t), with di ≥ 0 some cost
associated with class i, within the class of (possibly preemptive) non-anticipating
policies. We denote this class of policies by Π̄. Throughout the chapter, we assume
d1µ1 ≥ d2µ2.

In this chapter we investigate the case c1 + c2 > 1. However, before proceeding
let us briefly consider the situation c1 + c2 ≤ 1. In the latter case, the policy that
gives preemptive priority to class 1 minimizes the mean holding cost. (In fact, this
result holds for any shape of the capacity region where the points (1, 0) and (0, 1)
are not dominated by any other element in the capacity region.) Denote by π(1) the
policy that gives preemptive priority to class 1, and let π ∈ Π̄. Consider the same
realizations of the arrival processes and service requirements for policies π(1) and π.
If at time t = 0 the workloads satisfy

Wπ(1)

1 (t) ≤ Wπ
1 (t), (8.2)

Wπ(1)

1 (t) + Wπ(1)

2 (t) ≤ Wπ
1 (t) + Wπ

2 (t), (8.3)

then the same is true for all t ≥ 0. Multiplying (8.2) by d1µ1 − d2µ2 ≥ 0 and (8.3)

by d2µ2 and adding the two inequalities gives that d1µ1W
π(1)

1 (t) + d2µ2W
π(1)

2 (t) ≤
d1µ1W

π
1 (t) + d2µ2W

π
2 (t). Since we have exponentially distributed service require-

ments and we consider only non-anticipating policies, we obtain E(Wi(t))

= 1
µi

E(Ni(t)), so that d1E(Nπ(1)

1 (t)) + d2E(Nπ(1)

2 (t)) ≤ d1E(Nπ
1 (t)) + d2E(Nπ

2 (t)),

for all t ≥ 0, and in particular, policy π(1) is average-cost optimal.
As mentioned before, in the remainder of the chapter we focus on the unsolved

case c1 + c2 > 1. In this case, the total service capacity is largest when both classes
are served in parallel. For application in wireless networks, this represents the joint
capacity when both base stations transmit in parallel, and in computer scheduling
it corresponds to dedicated specialized servers.

Stability conditions when c1 + c2 > 1

For a given policy π, the system is called stable when the process Nπ(t) is positive
Harris recurrent. When c1+c2 > 1, the policy that serves classes 1 and 2 in parallel,
whenever possible, minimizes the total workload in the system at every moment in
time. Hence, this policy will keep the system stable whenever possible. Under
this policy, the model becomes a coupled-processors model for which the stability
conditions are

min(
ρ1

c1
,
ρ2

c2
) < 1 and (8.4)

if
ρi

ci
< 1 then ρj +

ρi

ci
(1 − cj) < 1, i 6= j, (8.5)

see [42, 50]. Conditions (8.4) and (8.5) are therefore the maximum stability con-
ditions. Note that the load vectors (ρ1, ρ2) that satisfy the maximum stability
conditions are exactly those vectors that lie in the interior of the capacity region S
depicted in Figure 1.6 (with C1 = C2 = 1).
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8.2 Optimality results

For a standard multi-class single-server queue it is well known that the cµ-rule
minimizes the mean holding cost if users of the various classes have exponentially
distributed service requirements, see Example 7.5.8. In the case of unit costs, an
even stronger result exists. The policy that gives preemptive priority to the class i
with the highest departure rate µi, stochastically minimizes the total number of
users [114]. One might expect a similar rule to be optimal in our model as well.
This rule would amount to choosing the allocation ~s(t) that maximizes the weighted
user departure rate, d1µ1s1(t) + d2µ2s2(t), at any time t. Unfortunately, the total
service capacity, s1(t)+s2(t), depends on the chosen allocation as well. For example,
serving class i only decreases the total amount of work at rate 1, while serving both
classes in parallel gives a decrease of the workload at rate c1 + c2 > 1. Therefore,
the objective to maximize the user departure rate may be conflicting with that of
maximizing the total service capacity used. The latter will minimize the total time
needed to empty the system, which is advantageous in the long run, while the former
is better in the short run.

Recall that we chose d1µ1 ≥ d2µ2. If, in addition, d1µ1 ≤ d1µ1c1 + d2µ2c2, then
there is no trade-off and it is intuitively clear that the policy that always serves
classes 1 and 2 in parallel (whenever both are backlogged) is optimal, since this
maximizes both the workload depletion rate and the weighted departure rate. This
is made precise in Section 8.2.1.

When d1µ1 ≥ d1µ1c1 + d2µ2c2, the highest weighted departure rate is obtained
when serving class 1 individually. It may therefore be better to sometimes serve
class 1 individually, even if that does not maximize the rate at which the total
work in the system decreases. Hence as the number of users varies, the system
should dynamically switch between different allocations. The general structure of
an optimal policy is discussed in Section 8.2.2.

8.2.1 Priority rule and optimality

In this section we show that when (d2µ2 ≤) d1µ1 ≤ d1µ1c1+d2µ2c2, the priority rule
that serves both classes in parallel (whenever possible) minimizes the mean holding
cost. In case of unit costs, d1 = d2 = 1, this policy in fact stochastically minimizes
the total number of users. These results are proved using a dynamic programming
approach.

We consider the uniformized Markov chain, that is, transition epochs are gener-
ated by a Poisson process of uniform rate ν = λ1 +λ2 +µ1(1+c1)+µ2(1+c2). Since
ν is finite, we may assume ν = 1 without loss of generality. We then focus on the
discrete-time Markov chain embedded at transition epochs and, for transparency of
notation, denote the number of class-i users after t steps by Ni(t), i = 1, 2. We define
the value functions Vm(·) : Z

2
+ → R, m = 0, 1, . . ., as follows. Let ~x = (x1, x2) ∈ Z

2
+.
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Then, V0(~x) := C̃(~x), with C̃(·) : Z
2
+ → R a terminal cost, and for m = 1, 2, . . . ,

Vm+1(~x) := λ1Vm(~x + ~e1) + λ2Vm(~x + ~e2)

+ min
~s∈S

{

∑

i=1,2

1(xi>0)µisiVm(~x − ~ei) + (1 − λ1 − λ2 −
∑

i=1,2

1(xi>0)µisi)Vm(~x)
}

= λ1Vm(~x + ~e1) + λ2Vm(~x + ~e2) + (µ1(1 + c1) + µ2(1 + c2))Vm(~x)

+ min
~s∈S

{

∑

i=1,2

1(xi>0)µisi (Vm(~x − ~ei) − Vm(~x))
}

, (8.6)

with S the capacity region, and ~ei the i-th unit vector. Choosing C̃(~x) = d1x1 +

d2x2, we obtain Vm+1(~x) = minπ∈Π̄ E(d1N
π
1 (m + 1) + d2N

π
2 (m + 1)| ~N (0) = ~x).

When instead C̃(~x) = 1(x1+x2>y), we obtain Vm+1(~x) = minπ∈Π̄ P(Nπ
1 (m + 1) +

Nπ
2 (m + 1) > y| ~N(0) = ~x). If for all m (and for all y ≥ 0) we can choose the same

minimizing action in (8.6) (the optimal action may depend on the state ~x), then
the corresponding stationary policy minimizes the mean holding cost E(d1N1(t) +
d2N2(t)) (when C̃(~x) = d1x1 + d2x2) or stochastically minimizes the total number
of users (when C̃(~x) = 1(x1+x2>y)), respectively, at every instant in time.

In the next two lemmas we establish convenient properties of Vm(·), without
specifying the function C̃(·).

Lemma 8.2.1. If C̃(·) is non-decreasing in x1 and x2, then Vm(·) is non-decreasing
in x1 and x2 for all m.

Proof: The statement follows directly from the definition of Vm(·). �

The set S is convex, hence for non-decreasing cost functions the minimizing ac-
tion in (8.6) will be one of the extreme points of S. From Lemma 8.2.1 it follows that
∑

i=1,2 1(xi>0)µisi (Vm(~x − ~ei) − Vm(~x)) ≤ 0, hence the minimizing action in (8.6)
will not be (0, 0) ∈ S. This implies that we can rewrite the function Vm+1(·) as
follows:

Vm+1(~x) = λ1Vm(~x + ~e1) + λ2Vm(~x + ~e2)

+ min
(

µ1Vm((x1 − 1)+, x2) + (µ2 + µ1c1 + µ2c2)Vm(~x),

µ2Vm(x1, (x2 − 1)+) + (µ1 + µ1c1 + µ2c2)Vm(~x),

µ1c1Vm((x1 − 1)+, x2) + µ2c2Vm(x1, (x2 − 1)+) + (µ1 + µ2)Vm(~x)
)

. (8.7)

The next lemma shows that under certain conditions on the cost function, the
minimizing action in (8.7) will be to always serve classes 1 and 2 in parallel, whenever
possible, independent of the remaining time horizon. The proof uses Lemma 8.2.1
and may be found in Appendix 8.A.
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Lemma 8.2.2. Assume c1 + c2 ≥ 1 and that C̃(·) is non-decreasing in x1 and x2.
If Z = C̃ satisfies

(µ1 + µ2)Z(~x) + µ1c1Z(~x − ~e1) + µ2c2Z(~x − ~e2)

≤ min(µ1Z(~x − ~e1) + (µ2 + µ1c1 + µ2c2)Z(~x),

µ2Z(~x − ~e2) + (µ1 + µ1c1 + µ2c2)Z(~x)), (8.8)

for all x1, x2 > 0, then the same is true for Z = Vm, for all m ≥ 0.

From the lemma above, we obtain that a policy that always serves both classes
in parallel whenever possible, minimizes the mean holding cost, and stochastically
minimizes the total number of users.

Proposition 8.2.3. Assume c1 + c2 ≥ 1. Let π∗ ∈ Π̄ be a policy that serves both
classes in parallel whenever possible and let π ∈ Π̄. Assume ~Nπ∗

(0) = ~Nπ(0). If
(d2µ2 ≤)d1µ1 ≤ d1µ1c1 + d2µ2c2, then

E(d1N
π∗

1 (t) + d2N
π∗

2 (t)) ≤ E(d1N
π
1 (t) + d2N

π
2 (t)), for all t ≥ 0.

If in addition d1 = d2, then

Nπ∗

1 (t) + Nπ∗

2 (t) ≤st Nπ
1 (t) + Nπ

2 (t), for all t ≥ 0.

Proof: If (d2µ2 ≤)d1µ1 ≤ d1µ1c1 + d2µ2c2, then the non-decreasing cost function
C̃(x1, x2) = d1x1 + d2x2 satisfies (8.8). Lemma 8.2.2 implies that serving both
classes in parallel (whenever possible) is always the minimizing action in (8.7) and
hence the corresponding policy minimizes E(d1N1(t) + d2N2(t)), at any time t ≥ 0.

Now assume d1 = d2. In that case, the non-decreasing cost function C̃(x1, x2) =
1(x1+x2>y) satisfies (8.8). Lemma 8.2.2 implies that serving both classes in parallel
(whenever possible) is always the minimizing action in (8.7) and hence the corre-
sponding policy stochastically minimizes P(N1(t) + N2(t) > y), at any time t ≥ 0,
and for all y ≥ 0. �

8.2.2 General structure of an average-cost optimal policy

Section 8.2.1 treats optimal policies restricted to the case d1µ1 ≤ d1µ1c1 + d2µ2c2.
In this section we explore the general structure of an optimal policy.

When d1µ1 > d2µ2, maximizing the weighted user departure rate would imply
that an optimal policy will never serve class 2 individually when class 1 is also
present. At the same time, serving class 2 individually does not give the highest
possible total service capacity either, since c1 + c2 > 1. Therefore, it is natural
that this action should not be chosen by an optimal policy. This fact is proved in
Proposition 8.2.5. First we state a lemma that in fact holds for generally distributed
inter-arrival times and service requirements and, in particular, holds irrespective of
the values for µ1 and µ2. The proof may be found in Appendix 8.B.

Lemma 8.2.4. (This lemma holds for generally distributed inter-arrival times and
service requirements.) Assume c1 + c2 > 1. Let π̃ be a policy that sometimes does
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serve class 2 individually while there are class-1 users present. Define policy π to
be the policy that uses the same allocation as π̃ when possible, except when policy π̃
serves class 2 individually. In that case policy π serves classes 1 and 2 in parallel
(if possible).

Consider the same realizations of the arrival processes and service requirements.
Then the following sample-path inequalities hold for all t ≥ 0:

Sπ
1 (t) ≥ Sπ̃

1 (t), (8.9)

Sπ
1 (t) + Sπ

2 (t) ≥ Sπ̃
1 (t) + Sπ̃

2 (t), (8.10)

(1 − c2)S
π
1 (t) + c1S

π
2 (t) ≥ (1 − c2)S

π̃
1 (t) + c1S

π̃
2 (t). (8.11)

Proposition 8.2.5. Assume d1µ1 ≥ d2µ2 and c1 + c2 > 1. For any policy π̃
that serves class 2 individually when there is work of class 1 present, there exists a
modified policy π that never serves class 2 individually when class 1 is present and
that does not worse than π̃, i.e.,

E(d1N
π
1 (t) + d2N

π
2 (t)) ≤ E(d1N

π̃
1 (t) + d2N

π̃
2 (t)), for all t ≥ 0.

Proof : Let π̃ be a policy that sometimes does serve class 2 individually while
there are class-1 users present. Define policy π as in Lemma 8.2.4 and hence
the sample-path inequalities (8.9) and (8.10) hold. Multiplying (8.9) by d1µ1 −
d2µ2 ≥ 0 and (8.10) by d2µ2 and adding the two inequalities gives that d1µ1S

π
1 (t)+

d2µ2S
π
2 (t) ≥ d1µ1S

π̃
1 (t) + d2µ2S

π̃
2 (t) and hence by (8.1) we obtain

d1µ1W
π
1 (t) + d2µ2W

π
2 (t) ≤ d1µ1W

π̃
1 (t) + d2µ2W

π̃
2 (t), for all t ≥ 0. (8.12)

Since we assumed exponentially distributed service requirements and we consider
only non-anticipating policies, we have E(Wπ

i (t)) = 1
µi

E(Nπ
i (t)). By taking expec-

tations on both sides in (8.12), we obtain E(d1N
π
1 (t) + d2N

π
2 (t)) ≤ E(d1N

π̃
1 (t) +

d2N
π̃
2 (t)). Hence policy π is not worse than π̃ and policy π never serves class 2

individually when there is work of class 1 present. �

In Section 8.2.1 we explicitly found an optimal policy when d1µ1 ≤ d1µ1c1 +
d2µ2c2. Hence, the remaining interesting case is when d1µ1 > d1µ1c1 + d2µ2c2. We

are interested in a policy that minimizes lim supT→∞
1
T E(

∫ T

0
(d1N

π
1 (t)+d2N

π
2 (t)))dt

over all policies π ∈ Π̄. According to [123, Corollary 20] such an average-cost optimal
policy exists.

When d1µ1 > d1µ1c1 + d2µ2c2, there is a tradeoff when users of both classes
are present. On one hand serving class 1 individually maximizes the weighted user
departure rate since d1µ1 > d1µ1c1 + c2µ2c2. However, serving classes 1 and 2
simultaneously maximizes the speed at which the total workload in the system
decreases. When seeking an average-optimal policy, by Proposition 8.2.5 we only
need to consider policies that never serve class-2 users individually when there are
also class-1 users present. The decision between whether to serve class 1 individually
or classes 1 and 2 jointly depends on the number of class-1 and class-2 users present in
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the system. Intuitively, one may expect that the optimal policy can be characterized
by a switching curve, i.e., there exists a switching curve h(·) such that if N2(t) ≥
h(N1(t)), then it is optimal to serve classes 1 and 2 in parallel, and otherwise it is
optimal to serve class 1 individually. For a model with slightly different behavior
near the boundaries, the authors in [17] state that value iteration techniques can
be used to prove that an average-cost optimal policy is indeed characterized by
such a switching curve (a proof will be included in a forthcoming paper by the
authors of [17]). We expect that for our model, the existence of a switching curve
can be proved using similar steps as in the proof of Proposition 4.3.9. However,
value iteration will not provide us with any information concerning the shape of the
curve. Therefore, in the remainder of the chapter we seek policies that are close
to optimal by investigating two limiting regimes. In Section 8.3 this is done for a
fluid-scaled system, and asymptotically fluid-optimal policies are derived, which are
characterized by a switching curve. Optimality results for the heavy-traffic regime
are reviewed in Section 8.6.

8.3 Fluid analysis

In this section we consider the stochastic queue length processes under a fluid scaling
and investigate close to optimal policies for the unsolved case d1µ1 > d1µ1c1 +
d2µ2c2. In order to do so, it will be convenient to first study the related deterministic
fluid control model. This will be done in Section 8.3.1. For this relatively simple
model we derive optimal controls, which are described by switching curves. Using
these curves we derive in Section 8.3.2 switching curves that provide asymptotically
fluid-optimal policies in the stochastic model.

8.3.1 Optimal fluid control

In this section we focus on the deterministic fluid control model, which arises from
the original stochastic model by only taking into account the mean drifts. A fluid
process is a solution n(t) = (n1(t), n2(t)) of the following equations:

ni(t) = ni + λit − Ui(t)µi − Uc(t)µici, i = 1, 2, (8.13)

ni(t) ≥ 0, i = 1, 2. (8.14)

Here n = (n1, n2) ∈ R
2
+ and Uj(t) =

∫ t

0
uj(v)dv, j = 1, 2, c, such that for all v ≥ 0,

u1(v) + u2(v) + uc(v) ≤ 1, (8.15)

uj(v) ≥ 0, j = 1, 2, c, (8.16)

and the functions uj(·) are measurable, j = 1, 2, c. The subscript c refers to “com-
bined service”, i.e., serving both classes in parallel. Note that Uj(·) is Lipschitz
continuous with constant less than or equal to 1. Hence, it is absolutely continuous
which implies that it is differentiable almost everywhere [112]. Then, ni(·) is differ-
entiable almost everywhere as well, and at regular points (a regular point is a value
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of t at which ni(t) is differentiable) we have

dni(t)

dt
= λi − ui(t)µi − uc(t)µici, i = 1, 2. (8.17)

Under the stability conditions, the fluid model can be drained in finite time, as is
stated in the following lemma.

Lemma 8.3.1. If (8.4) and (8.5) are satisfied, then the policy that serves classes 1
and 2 in parallel whenever possible, drains the fluid model in finite time and keeps
the system empty from that moment on.

Proof: We consider the workload fluid processes wi(t) := ni(t)
µi

, i = 1, 2. From (8.17)

we have dwi(t)
dt = ρi − ui(t)−uc(t)ci, i = 1, 2, at regular points. Focus on the policy

that serves classes 1 and 2 in parallel whenever possible. Assume w1(t), w2(t) > 0.

Then uc(t) = 1. By (8.4), there is a class i with ρi

ci
< 1. Hence, dwi(t)

dt = ρi − ci < 0
and class i will eventually be drained to zero. When at that time the workload
in class j (j 6= i) is strictly positive (while wi(t) = 0), we have uc(t) = ρi

ci
and

uj(t) = 1 − ρi

ci
. From (8.5) this gives dwi(t)

dt = 0 and
dwj(t)

dt = ρj − 1 + ρi

ci
− ρi

ci
cj =

ρj + ρi

ci
(1 − cj) − 1 < 0. Hence, class j must eventually become empty as well. �

A policy π for the fluid control model is described by the control functions
uπ

1 (t), uπ
2 (t) and uπ

c (t) (we also write Uπ
j (t) =

∫ t

0 uπ
j (v)dv). A corresponding tra-

jectory is denoted by nπ(t). We are interested in finding an (average-cost) optimal
fluid control that minimizes
∫ ∞

0

(d1n
π
1 (t) + d2n

π
2 (t))dt, with (nπ(t), uπ(t)) satisfying (8.13)–(8.16). (8.18)

(Different from Chapter 5, we will omit the term “average-cost” since we do not
consider other optimality criteria.) We denote an optimal control by u∗

j (t), j =
1, 2, c, and a corresponding optimal trajectory by n∗

i (t), i = 1, 2. Before proceeding
to find n∗(t) and u∗(t), we first prove in the next lemma that an optimal pair
(n∗(t), u∗(t)) exists. In addition, the lemma states that if u∗(t) is an optimal
control for the infinite-horizon problem, then it is also optimal for the finite-horizon
problem whenever the horizon is large enough. This property will be useful to prove
convergence of the stochastic model in Section 8.3.2. The proof of the lemma goes
along similar lines as the proof of Lemma 5.2.4 and may be found in Appendix 8.C.

Lemma 8.3.2. If (8.4) and (8.5) are satisfied, then there exists a control u∗(t) and
a corresponding trajectory n∗(t) that solves the minimization problem (8.18).

In addition, there exists a function H : R → R such that,

min
n(t) s.t. (8.13)−(8.16)

∫ D

0

(d1n1(t) + d2n2(t))dt =

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt

=

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt,

for all D ≥ H(d1n1 + d2n2), with n the initial state.
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For the stochastic model we know that when d1µ1 ≥ d2µ2, it is never optimal to
serve class 2 exclusively when also work of class 1 is present, see Proposition 8.2.5.
In the fluid control model this is true as well, as is stated in the lemma below. The
proof may be found in Appendix 8.D.

Lemma 8.3.3. Assume (8.4) and (8.5) are satisfied, d1µ1 ≥ d2µ2, and c1 + c2 > 1.
Then, for any policy π̃ that allows uπ̃

2 (t) > 0 when nπ̃
1 (t) > 0, there exists a modified

policy π, with uπ
2 (t) = 0 whenever nπ

1 (t) > 0, that does not do worse than π̃, i.e.,
d1n

π
1 (t) + d2n

π
2 (t) ≤ d1n

π̃
1 (t) + d2n

π̃
2 (t), for all t ≥ 0.

In case d1µ1 ≤ d1µ1c1 + d2µ2c2, the control that serves both classes in par-
allel whenever possible is optimal, i.e., u∗

c(t) = 1 when n1(t), n2(t) > 0, and
u∗

c(t) = min(
ρj

cj
, 1), u∗

i (t) = 1 − u∗
c(t) when nj(t) = 0 and ni(t) > 0, for i 6= j,

i, j = 1, 2. This follows from the fact that the above-described policy minimizes
the time to empty the system, while at the same time, it maximizes the weighted
departure rate at any moment in time. We do not include a formal proof of this
fact, since the main objective of this section is to investigate close-to-optimal poli-
cies for parameter choices that did not allow us to exactly determine the optimal
policy for the stochastic model. (Proposition 8.2.3 discusses an optimal policy for
the stochastic model when d1µ1 ≤ d1µ1c1 + d2µ2c2.)

In the remainder of this section we concentrate on the case d1µ1 > d1µ1c1 +
d2µ2c2, for which the following lemma enables us to prove that the optimal policy
in the fluid control model is characterized by a switching curve.

Lemma 8.3.4. Assume (8.4) and (8.5) are satisfied, d1µ1 > d1µ1c1 +d2µ2c2, and
c1 + c2 > 1. Consider a trajectory starting in ñ ∈ {n ∈ R

2
+ : n1 > 0, n2 ≥ 0} with

the following properties: (i) first class 1 is served exclusively during a contiguous
period, and then (ii) we switch to serving both classes simultaneously during another
contiguous period. Let n̂ be the end point of this trajectory.

Among all feasible trajectories that move from ñ to n̂ without coinciding with the
n1 = 0 axis, the unique path that minimizes d1n1(t) + d2n2(t) at all times (until
reaching n̂), is exactly the trajectory described above.

Proof: Since we consider only trajectories from ñ to n̂ that do not coincide with
the n1 = 0 axis, by Lemma 8.3.3 we know that the best path does not spend any
time serving class 2 individually. Denote by U1 (Uc) the cumulative amount of time
spent serving class 1 individually (classes 1 and 2 in parallel). The net change in
the amount of fluid in the two classes can be written as

n̂1 − ñ1 = (λ1 − µ1)U1 + (λ1 − c1µ1)Uc,

n̂2 − ñ2 = λ2U1 + (λ2 − c2µ2)Uc.

Under the necessary stability conditions (8.4) and (8.5) this has a unique solution
for U1 and Uc. Hence, all trajectories spend the same cumulative amount of time
serving both classes in parallel as well as serving class 1 individually.

The rate at which the cost decreases when n1(t) > 0 is given by d(d1n1(t)+d2n2(t))
dt =

d1λ1 + d2λ2 − u1(t)d1µ1 − uc(t)(d1µ1c1 + d2µ2c2). Since d1µ1 > d1µ1c1 + d2µ2c2,
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µ1 − λ1

µ1 − λ1

λ2

λ2
µ1c1 − λ1

µ1c1 − λ1

λ2 − µ2c2
µ2c2 − λ2

n1n1

n2n2

uc = 1
uc = 1

u1 = 1
u1 = 1

Figure 8.1: Drift vectors for ρ1 < c1 and ρ2 > c2 (left), and ρ1 < c1 and ρ2 < c2

(right), respectively.

first serving only class 1 initially maximizes the rate at which d1n1(t) + d2n2(t)
decreases. Hence, this minimizes d1n1(t) + d2n2(t) at all times (until reaching n̂).
�

For the fluid control model we can now determine the optimal control. We make
a distinction between whether ρ1 < c1 or ρ1 ≥ c1. Note that, cf. Bellman’s principle
of optimality, we only need to consider policies that base their actions on the current
state n(t), because of the infinite horizon and the fact that the parameters do not
depend on the current time t.

Case ρ1 < c1

When ρ1 < c1, a sufficient condition for the system to drain in finite time is ρ2 <
1 − ρ1

c1
(1 − c2) (see Lemma 8.3.1). Depending on ρ2 and c2, the drifts are as in

Figure 8.1. In Proposition 8.3.5 we describe the optimal fluid control, which is
characterized by a linear switching curve. In Figure 8.2 the optimal trajectory is
shown. In order to state the proposition it is convenient to define α as

max
(

0,
c2 − ρ2

c1 − ρ1
+

c1

c1 + c2 − 1
·
1 − ρ2 − ρ1

c1
(1 − c2)

c1 − ρ1
· d1µ1 − d1µ1c1 − d2µ2c2

d2µ2

)

.

(8.19)

Note that under the conditions of Proposition 8.3.5, it holds that α > c2−ρ2

c1−ρ1
.

Proposition 8.3.5. Let d1µ1 > d1µ1c1 + d2µ2c2 and c1 + c2 > 1. Assume ρ1 < c1

and ρ2 < 1 − ρ1

c1
(1 − c2). An optimal control u∗(t) in the fluid control model is

• u∗
1(t) = 1, if n2(t) < αµ2

µ1
n1(t).

• u∗
c(t) = 1, if n2(t) ≥ αµ2

µ1
n1(t) and n1(t) > 0.

• u∗
c(t) = ρ1

c1
and u∗

2(t) = 1 − ρ1

c1
, if n1(t) = 0.
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u∗

c = ρ1
c1

u∗

2 = 1 −

ρ1
c1

n2

n1

n̂2

b

n

0

u∗

c = 1

u∗

1 = 1

n2 = αµ2
µ1

n1 (switching curve)

Figure 8.2: Optimal trajectory of the fluid control model when ρ1 < c1.

Proof: If n1(t) > 0, when seeking an optimal control, by Lemma 8.3.3 we only
need to consider controls with u2(t) = 0 and u1(t) + uc(t) = 1. Hence, from
dn1(t)

dt = λ1 − u1(t)µ1 − uc(t)µ1c1, and the fact that ρ1 < c1 < 1, class 1 remains

empty once it hits zero. So dn1(t)
dt = 0, or equivalently, ρ1−u1(t)−uc(t)c1 = 0 when

n1(t) = 0.

We can now determine the optimal allocation for points with n1(t) = 0. Class 1
is kept empty, hence an optimal fluid control will maximize the departure rate of
class 2. We should therefore maximize u2(t)µ2 + uc(t)µ2c2 given that ρ1 − u1(t) −
uc(t)c1 = 0, u1(t) + u2(t) + uc(t) = 1 and uj(t) ≥ 0. Solving this we obtain

u∗
c(t) =

ρ1

c1
, u∗

1(t) = 0 and u∗
2(t) = 1 − ρ1

c1
,

when n1(t) = 0.

Now assume we start at time t = 0 in n(0) = n = (n1, n2) with n1 > 0 and
n2 ≥ 0. At some point an optimal trajectory will hit the vertical axis for the first
time. This point will be denoted by n̂ = (0, n̂2), see Figure 8.2. Note that the
path from n to n̂ that first serves class 1 individually and at some point switches to
serving both classes in parallel, is always feasible (see the drift vectors in Figure 8.1).
Hence, by Lemma 8.3.4 this path is also the optimal path from n to n̂. The turning
point where the switch occurs is denoted by b = (b1, b2), see again Figure 8.2. We
can calculate the costs corresponding to a certain turning point b. Let T (x, y) be
the time it takes to go from point x to y in the plane. We have T (n, b) = n1−b1

µ1−λ1
,

T (b, n̂) = b1
µ1c1−λ1

, and

T (n̂, 0) =
n̂2

u2µ2 + ucµ2c2 − λ2
=

n̂2

µ2 − µ2
ρ1

c1
(1 − c2) − λ2

,

with n̂2 = b2+T (b, n̂)(λ2−µ2c2) and b2 = n2+T (n, b)λ2. Let Kn(b1) =
∫∞
0 (d1n1(t)+

d2n2(t))dt be the cost of the fluid trajectory going from n to the origin when the
turning point is b = (b1, b2). Note that b2 = n2 + n1−b1

µ1−λ1
λ2, hence b2 is uniquely
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µ1 − λ1 µ1 − λ1

λ2

λ2

n2 n2

n1 n1

Stable Unstable

uc = 1
uc = 1

u1 = 1u1 = 1

λ1 − µ1c1 λ1 − µ1c1

µ2c2 − λ2

µ2c2 − λ2

Figure 8.3: Drift vectors for ρ1 ≥ c1 and ρ2 < c2. Left figure: ρ1 < 1− ρ2

c2
(1−c1) and

hence there are policies that give a stable system. Right figure: ρ1 > 1− ρ2

c2
(1− c1)

and hence the system is unstable.

determined by b1 and n. We have

Kn(b1) = T (n, b)
(d1(n1 + b1)

2
+

d2(n2 + b2)

2

)

+ T (b, n̂)
(d1b1

2
+

d2(b2 + n̂2)

2

)

+T (n̂, 0)
d2n̂2

2
. (8.20)

It can be checked that the function Kn(b1) is a quadratic function in b1 and when
minimizing the cost in (8.20), the optimal turning point b lies on the line b2 = αµ2

µ1
b1.

Hence, if n2(t) < αµ2

µ1
n1(t), then u∗

1(t) = 1, and if n2(t) ≥ αµ2

µ1
n1(t) and n1(t) > 0,

then u∗
c(t) = 1. This completes the characterization of an optimal control. �

Case ρ1 ≥ c1

When ρ1 ≥ c1, the stability condition is ρ2 < c2 and ρ1 < 1 − ρ2

c2
(1 − c1) (see

(8.4) and (8.5)). Hence ρ2

1−ρ1
≤ c2−ρ2

ρ1−c1
and the drifts are as in the left picture in

Figure 8.3. When ρ1 ≥ 1− ρ2

c2
(1 − c1), the system is unstable which corresponds to

the picture on the right in Figure 8.3. The optimal fluid control is described in the
next proposition, and in Figure 8.4 the optimal trajectory is shown.

Proposition 8.3.6. Let d1µ1 > d1µ1c1 + d2µ2c2 and c1 + c2 > 1. Assume ρ1 ≥ c1,
ρ2 < c2, and ρ1 < 1 − ρ2

c2
(1 − c1). An optimal policy in the fluid control model is to

give priority to class 1, i.e.,

• u∗
1(t) = 1 if n1(t) > 0.

• u∗
c(t) = 1−ρ1

1−c1
and u∗

1(t) = ρ1−c1

1−c1
if n1(t) = 0.

The proof of Proposition 8.3.6 below does not give much insight into the result.
Therefore, we first provide some intuition for the fact that the control u∗ as defined
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u∗

c = 1−ρ1
1−c1

u∗

1 = 1 − u∗

c

n2

n1

n

0

u∗

1 = 1

Figure 8.4: Optimal trajectory of the fluid control model when ρ1 ≥ c1.

above, is optimal when ρ1 > c1: Using Lemma 8.3.4 it can be argued that as long
as n1(t) > 0, an optimal action is u∗

1(t) = 1. Hence, once n1(t) = 0, this optimal
control will keep class 1 empty (ρ1 < 1). An optimal fluid control will now choose
allocations u∗

j (t) such that the departure rate for class 2, u2(t)µ2 + uc(t)µ2c2, is
maximized subject to u1(t) + uc(t)c1 = ρ1, u1(t) + u2(t) + uc(t) = 1 and uj(t) ≥ 0.
The unique solution to this is u∗

2(t) = 0, u∗
1(t) = ρ1−c1

1−c1
and u∗

c(t) = 1−ρ1

1−c1
when

n1(t) = 0.

Proof of Proposition 8.3.6: Consider the control u∗(t) as defined in Proposi-
tion 8.3.6. The corresponding trajectory is denoted by n∗(t). Its cost-to-go func-
tion is defined as K(t,n) :=

∫∞
t (d1n

∗
1(s) + d2n

∗
2(s)|n(t) = n)ds =

∫∞
0 (d1n

∗
1(s) +

d2n
∗
2(s)|n(0) = n)ds, for n = (n1, n2) ∈ R

2
+. Hence, we can drop the dependence

on t, and write Kn for the cost-to-go starting in state n. A sufficient condition for
optimality of u∗(t) is that its cost-to-go function Kn satisfies the “Hamilton-Jacobi-
Bellman” partial differential equation:

0 = min
u s.t.(8.14)−(8.16)

(∂Kn

∂n1
· (λ1 − µ1(u1 + c1uc))

+
∂Kn

∂n2
· (λ2 − µ2(u2 + c2uc)) + d1n1 + d2n2

)

, (8.21)

for all n1, n2 ≥ 0, and that the control u∗(t) is a corresponding minimizing action,
[39, Section 5.5]. In the remainder of the proof we show that this is indeed satisfied.

The cost-to-go function is easily derived. Let n̂ = (0, n̂2) denote the point where
the trajectory n∗(t) hits the vertical axis, see Figure 8.4. Hence, n̂2 = n2 +n1

λ2

µ1−λ1

and also n̂2 = T (n̂, 0) · (µ2c2
1−ρ1

1−c1
− λ2) = T (n̂, 0) · µ2

c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1)),
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with T (n̂, 0) the time it takes to move from n̂ to 0. So

Kn = T (n, n̂)
(d1n1

2
+

d2(n2 + n̂)

2

)

+ T (n̂, 0)
d2n̂2

2

=
n1

µ1 − λ1

(d1n1

2
+

d2(2n2 + n1
λ2

µ1−λ1
)

2

)

+
d2(n2 + n1

λ2

µ1−λ1
)2

2µ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1))

.

In the Hamilton-Jacobi-Bellman equation we are interested in the function

∂Kn

∂n1
· (λ1 − µ1(u1 + c1uc)) +

∂Kn

∂n2
· (λ2 − µ2(u2 + c2uc)) + d1n1 + d2n2

= (λ1 − µ1(u1 + c1uc)) ·
( d1n1

µ1 − λ1
+

d2

µ1 − λ1
(n1

λ2

µ1 − λ1
+ n2)

+
d2

λ2

µ1−λ1

µ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1))

(n1
λ2

µ1 − λ1
+ n2)

)

+ (λ2 − µ2(u2 + c2uc)) ·
( d2n1

µ1 − λ1
+

d2

µ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1))

(n1
λ2

µ1 − λ1
+ n2)

)

+d1n1 + d2n2

=
1

µ1 − λ1
·
(

ρ1(a11n1 + a12n2) + ρ2(a21n1 + a22n2)

−n1(u1a11 + uc(c1a11 + c2a21) + u2a21)

−n2(u1a12 + uc(c1a12 + c2a22) + u2a22)
)

+d1n1 + d2n2, (8.22)

where

a11 = d1µ1 + d2
λ2

1 − ρ1
(1 +

ρ2

c2
(1 − c1)

(1 − ρ1 − ρ2

c2
(1 − c1))

)

= d1µ1 + d2µ2
ρ2

1 − ρ1 − ρ2

c2
(1 − c1)

,

a12 = d2 ·
(

µ1 + µ1

ρ2

c2
(1 − c1)

(1 − ρ1 − ρ2

c2
(1 − c1))

)

= d2µ1
1 − ρ1

1 − ρ1 − ρ2

c2
(1 − c1)

,

a21 = d2 ·
(

µ2 + µ2

ρ2

c2
(1 − c1)

1 − ρ1 − ρ2

c2
(1 − c1)

)

= d2µ2
1 − ρ1

1 − ρ1 − ρ2

c2
(1 − c1)

,

a22 = d2
µ1 − λ1

c2

1−c1
(1 − ρ1 − ρ2

c2
(1 − c1))

= d2µ1

(1 − ρ1)
1−c1

c2

1 − ρ1 − ρ2

c2
(1 − c1)

.

Elementary calculation shows that for u1 = 1, and u2 = uc = 0, equation (8.22) is
equal to zero. In addition, under the conditions as stated in Proposition 8.3.6, it
holds that a11 > c1a11 + c2a21 > a21 and a12 = c1a12 + c2a22 > a22. Hence, when
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n1(t) > 0, the minimizing action is u1(t) = 1, u2(t) = 0, uc(t) = 0, which is indeed
prescribed by the control strategy u∗.

When n1 = 0, equation (8.22) is equal to

n2 +
1

µ1 − λ1

(

n2(ρ1a12 + ρ2a22) − n2(u1a12 + uc(c1a12 + c2a22) + u2a22)
)

. (8.23)

Again simple calculations show that this is equal to 0 for all u with u1 + uc = 1
and u2 = 0. Besides u1 + u2 + uc ≤ 1, we have the restriction u1 + c1uc ≤ ρ1

(because n1 = 0). Since a12 = c1a12 + c2a22 > a22, any control with u1 +uc = 1 and
u2 = 0 such that u1 + c1uc ≤ ρ1, will minimize (8.23). The control u∗

1(t) = ρ1−c1

1−c1
,

u∗
c(t) = 1−ρ1

1−c1
and u∗

2(t) = 0 is therefore indeed a minimizing action. �

8.3.2 Asymptotically fluid-optimal policies for ρ1 6= c1

In this section we discuss the theoretical foundations that justify the use of the
optimal control in the fluid model as proxies for the optimal policies in the stochastic
model. In particular, we prove that under a fluid scaling, the stochastic processes of
the numbers of users under certain switching-curve policies, converge to the optimal
fluid trajectory n∗(t) as determined in Section 8.3.1. Using the latter, we then show
that these switching-curve policies are asymptotically fluid-optimal in the stochastic
model.

On a common probability space we construct a sequence of processes depending
on the initial state. To be precise, for a given policy π we let Nπ,r

i (t) denote the
number of class-i users at time t when the initial state equals N r

i (0) = rni, i = 1, 2,
with r ∈ N. All processes Nπ,r(t) share the same sequences of arrivals and service
requirements. For a given policy π, denote by T π,r

I (t) the cumulative amount of
time during the interval (0, t] that neither class is served, by T π,r

i (t) the cumulative
amount of time that was spent serving class i individually, i = 1, 2, and by T π,r

c (t)
the cumulative amount of time that was spent serving classes 1 and 2 in parallel.
Then, T π,r

I (t) + T π,r
1 (t) + T π,r

2 (t) + T π,r
c (t) = t, and

Nπ,r
i (t) = rni + Ei(t) − Fi(T

π,r
i (t)) − Fc,i(T

π,r
c (t)), i = 1, 2, (8.24)

with Ei(t) a Poisson process with rate λi, Fi(·) a Poisson process with rate µi and
Fc,i(·) a Poisson process with rate ciµi, [48].

We will be interested in the processes under the fluid scaling, i.e., both time and
space are scaled linearly by the parameter r:

N
π,r

i (t) :=
Nπ,r

i (rt)

r
and T

π,r

j (t) :=
T π,r

j (rt)

r
.

Limit points for N
π,r

i (t) and T
π,r

j (t) are described in the next lemma.
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Lemma 8.3.7. For almost all sample paths ω there exists a subsequence rk such
that

lim
k→∞

N
π,rk

i (t) = N
π

i (t), i = 1, 2, u.o.c.,

lim
k→∞

T
π,rk

j (t) = T
π

j (t), j = I, 1, 2, c, u.o.c.

Furthermore, (N
π
, T

π
) satisfies for i = 1, 2, j = I, 1, 2, c,

N
π

i (t) = ni + λit − µiT
π

i (t) − µiciT
π

c (t), (8.25)

N i(t) ≥ 0, T
π

j (0) = 0, T
π

I (t) + T
π

1 (t) + T
π

2 (t) + T
π

c (t) = t, and T
π

j (t) are non-
decreasing and Lipschitz continuous functions.

The notation u.o.c. stands for uniform convergence on compact sets. We call the
processes T

π

j (t), j = I, 1, 2, c, and N
π

i (t), i = 1, 2 (as obtained in Lemma 8.3.7) fluid
limits for initial fluid level n and policy π.

Proof of Lemma 8.3.7: Making use of (8.24) and the fact that T
π,r

j (t), j = 1, 2, c,
is Lipschitz continuous with a constant less than or equal to 1, the proof follows
similarly as that of [44, Theorem 4.1]. Note that the Poisson assumptions are in
fact not needed for the result of this lemma to hold. �

Similar to Chapter 5, we take as cost in the stochastic model E

(

∫D

0
(d1N

π,r
1 (t)+

d2N
π,r
2 (t))dt

)

, with D > 0. As r → ∞, this will tend to infinity. In order to obtain

a non-trivial limit we divide the cost by r2 and consider a horizon that grows linearly
in r. So we are interested in

E

(

∫ r·D

0

d1N
π,r
1 (t) + d2N

π,r
2 (t)

r2
dt
)

= E

(

∫ D

0

(d1N
π,r

1 (t) + d2N
π,r

2 (t))dt
)

.

We have the following lower bound on the scaled cost.

Lemma 8.3.8. For any policy π we have

lim inf
r→∞

E

(

∫ D

0

(d1N
π,r

1 (t) + d2N
π,r

2 (t))dt
)

≥
∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt

=

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt,

whenever D ≥ H(d1n1 + d2n2). Here n∗(t) represents an optimal solution of (8.18)
for initial state n and H(·) is as defined in Lemma 8.3.2.

Proof: Using Lemmas 8.3.2 and 8.3.7, the proof follows exactly the same steps as
the proof of Lemma 5.2.8 and will therefore not be included here. �
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As described in Section 1.6.3, a policy is asymptotically fluid-optimal when the
lower bound is obtained. Hence, policy π∗ is asymptotically fluid-optimal when

lim
r→∞

E

(

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt
)

=

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt,

with D ≥ H(d1n1 + d2n2) and n∗(t) an optimal solution of (8.18) for initial state n.
In the remainder of this section we characterize these policies.

Case ρ1 < c1

We first consider the case ρ1 < c1. In Proposition 8.3.5 we found that the optimal
switching curve for the fluid control problem was given by h(x1) = αµ2

µ1
x1, with α as

defined in (8.19). In the following lemma we show that under this switching curve,
the fluid-scaled processes of the original stochastic model have a unique limit, which
is described by the optimal trajectory of the fluid control model. The proof may be
found in Appendix 8.E.

Lemma 8.3.9. Assume c1 + c2 > 1, ρ1 < c1 and ρ2 < 1− ρ1

c1
(1− c2). Denote by π∗

the policy with switching curve h(x1) = αµ2

µ1
x1, with α as defined in (8.19). The

functions T
π∗

j (t) are differentiable almost everywhere, and for each regular point t
it holds that

dT
π∗

1 (t)

dt
= 1, if N

π∗

2 (t) < α
µ2

µ1
N

π∗

1 (t), (8.26)

dT
π∗

c (t)

dt
= 1, if N

π∗

2 (t) ≥ α
µ2

µ1
N

π∗

1 (t) and N
π∗

1 (t) > 0, (8.27)

dT
π∗

c (t)

dt
=

ρ1

c1
and

dT
π∗

2 (t)

dt
= 1 − ρ1

c1
, if N

π∗

1 (t) = 0 and N
π∗

2 (t) > 0, (8.28)

and
dT

π∗
1 (t)
dt +

dT
π∗
2 (t)
dt +

dT
π∗
c (t)
dt +

dT
π∗
I (t)
dt = 1.

In particular, N
π∗

(t) is uniquely determined by

N
π∗

(t) = n∗(t), (8.29)

with n∗(t) the trajectory corresponding to the control u∗(t) as defined in Proposi-
tion 8.3.5.

From Lemma 8.3.9 we obtain that the linear switching curve provides a policy
that is asymptotically fluid-optimal for the original stochastic model.

Proposition 8.3.10. Let d1µ1 > d1µ1c1 + d2µ2c2 and c1 + c2 > 1. If ρ1 < c1

and ρ2 < 1 − ρ1

c1
(1 − c2), then the policy π∗ with switching curve h(x1) = αµ2

µ1
x1 is

asymptotically fluid-optimal, with α as defined in (8.19).
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Proof: For a given sample path ω, let rk be a subsequence such that

lim inf
r→∞

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt = lim
k→∞

∫ D

0

(d1N
π∗,rk

1 (t) + d2N
π∗,rk

2 (t))dt.

From Lemma 8.3.7 it follows that for almost all ω there exists a subsequence rkl

of rk such that liml→∞ N
π∗,rkl (t) = N

π∗

(t), u.o.c.. Since every fluid limit N
π∗

(t)
coincides with the optimal fluid control solution n∗(t) (see equation (8.29)) we obtain

liml→∞ N
π∗,rkl
i (t) = n∗

i (t), i = 1, 2. Since the functions N
π∗,rkl
i (t), i = 1, 2, converge

uniformly on the set [0, D], we can interchange the limit and the integral, so that

lim inf
r→∞

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt

= lim
l→∞

∫ D

0

(d1N
π∗,rkl
1 (t) + d2N

π∗,rkl
2 (t))dt =

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt.

The same holds for the lim sup and we can conclude that for almost all ω,

lim
r→∞

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt =

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt. (8.30)

We also have that
∫ D

0
(d1N

π∗,r

1 (t) + d2N
π∗,r

2 (t))dt is uniformly integrable. This
follows from the same argument as in the proof of [44, Lemma 4.5] (see the proof of
Proposition 5.2.10 for more details). We obtain

lim sup
r→∞

E

(

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt
)

= lim
m→∞

E

(

∫ D

0

(d1N
π∗,rm

1 (t) + d2N
π∗,rm

2 (t))dt
)

= E

(

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt

)

=

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt, (8.31)

where in the second step we used (8.30) and uniform integrability to interchange
the limit and expectation (see [27, Theorem 3.5]).

Equation (8.31) holds in particular for D > H(d1n1 + d2n2). Together with
Lemma 8.3.8 we can conclude that π∗ is asymptotically fluid-optimal. �

Case ρ1 > c1

In Proposition 8.3.6 we found that for the fluid control problem it is optimal to give
class 1 priority whenever present when ρ1 ≥ c1. A straightforward translation of
this policy to the original stochastic model would be to give preemptive priority to
class-1 users. However, the stability conditions under this policy are ρ1 + ρ2 < 1,
which are more stringent than the necessary stability conditions as given in (8.4)
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and (8.5). Hence, a more precise interpretation of the optimal fluid control is needed
to avoid an unstable system.

Note that the optimal policy in the fluid control model can keep the system
stable under (8.4) and (8.5), since on the vertical axis the fluid model partly serves
class 1 individually and partly serves both classes in parallel. This suggests that
for the stochastic model we should as well serve classes 1 and 2 in parallel when
the process moves close to the vertical axis. So there is a switching curve in the
original model that lies close to the vertical axis such that it is non-observable in
the fluid limit. However, under the optimal fluid control, class-2 users are never
served individually (u∗

2(t) = 0). Hence, in the stochastic model, the switching curve
should be such that, after fluid scaling, the time that the stochastic process spends
on the vertical axis tends to zero. This indicates that the curve should not be too
close to the vertical axis.

In the next proposition we state that the above is achieved by a policy with a
switching curve of the shape h(x1) = ex1/γ (for γ large enough), i.e., such a policy
is asymptotically fluid-optimal. We make no claim for small γ. In Section 8.4
reasonable estimates for γ are obtained. Note that the case ρ1 = c1 is excluded
from the proposition. This setting will be discussed in Section 8.5.

Proposition 8.3.11. Let d1µ1 > d1µ1c1+d2µ2c2 and c1+c2 > 1. Assume ρ1 > c1,
ρ2 < c2 and ρ1 < 1− ρ2

c2
(1−c1). The policy π∗(γ) with switching curve h(x1) = ex1/γ

is asymptotically fluid-optimal for γ > 0 large enough.

In addition, the fluid limit is uniquely determined by N
π∗(γ)

(t) = n∗(t), with n∗(t)
the trajectory corresponding to the control u∗(t) as defined in Proposition 8.3.6.

Proof: Let N
π∗(γ)

i (t), i = 1, 2, T
π∗(γ)

j (t), j = I, 1, 2, c, be a fluid limit of policy

π∗(γ). The function T
π∗(γ)

j (·) is absolutely continuous. Using the same techniques
as in [53, Section 7] it follows that for each regular point t, the derivatives satisfy:

dT
π∗(γ)

1 (t)

dt
= 1, if N

π∗(γ)

1 (t) > 0, (8.32)

dT
π∗(γ)

1 (t)

dt
=

ρ1 − c1

1 − c1
and

dT
π∗(γ)

c (t)

dt
=

1 − ρ1

1 − c1
, if N

π∗(γ)

1 (t) = 0, (8.33)

for γ large enough. In fact, this can be checked using the following correspondence

between the processes ξt, xt and T (t) in [53], and our equivalents: ξ3
t = N

π∗(γ)
1 (t),

ξ1
t = N

π∗(γ)
2 (t), x3

t = N
π∗(γ)

1 (t), x1
t = N

π∗(γ)

2 (t), T01(t) = T
π∗(γ)

1 (t) and T11(t) =

T
π∗(γ)

c (t), and mapping our parameters c1, c2, µ1, µ2, λ1 and λ2, such that the drifts
in the interior of Figure 4 in [53] correspond to the drifts in our Figure 8.3. Note
that the drifts on the boundaries cannot be matched, but this does not influence the

fluid analysis. From (A.12) in [53] it follows that for γ large enough,
dT

π∗(γ)
1 (t)
dt = 1

if N
π∗(γ)

1 (t) > 0, hence we obtain (8.32). In addition, for γ large enough it follows
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from (A.13) in [53] that

dT
π∗(γ)

1 (t)

dt
+

dT
π∗(γ)

c (t)

dt
= 1, if N

π∗(γ)

1 (t) = 0. (8.34)

Since 1
µ1

dN
π∗(γ)
1 (t)
dt = ρ1 − dT

π∗(γ)
1 (t)
dt − c1

dT
π∗(γ)
c (t)
dt and ρ1 < 1 =

dT
π∗(γ)
1 (t)
dt when

N
π∗(γ)

1 (t) > 0, class 1 remains empty once it hits zero. Hence, if N
π∗(γ)

1 (t) = 0,

then 1
µ1

dN
π∗(γ)
1 (t)
dt = 0, i.e.,

dT
π∗(γ)
1 (t)
dt +c1

dT
π∗(γ)
c (t)
dt = ρ1, which, together with (8.34),

implies (8.33).

From (8.25), (8.32) and (8.33) it follows that N
π∗(γ)

i (t) is uniquely determined.

Using the correspondence u∗
j (t) =

dT
π∗(γ)
j (t)

dt , j = 1, 2, c, it follows from Proposi-

tion 8.3.6 that N
π∗(γ)

(t) = n∗(t), with n∗(t) the trajectory corresponding to the
control u∗(t) as defined in Proposition 8.3.6. The remainder of the proof is similar
to the proof of Proposition 8.3.10. �

8.4 Discussion for the case ρ1 > c1

When ρ1 < c1, an asymptotically fluid-optimal policy can be characterized by a
linear switching curve for which the slope has been exactly determined. When
ρ1 > c1, Proposition 8.3.11 proves that an exponential switching curve h(x1) = ex1/γ

is asymptotically fluid-optimal for any γ > 0 that is large enough. However, it is
not straightforward to determine a good value for γ. The purpose of the remainder
of this section is to determine a reasonable rule of thumb.

An asymptotically fluid-optimal policy π∗ satisfies

E

(

∫ r·D

0

(d1N
π∗,r
1 (t) + d2N

π∗,r
2 (t))dt

)

= r2 · E

(

∫ D

0

(d1N
π∗,r

1 (t) + d2N
π∗,r

2 (t))dt
)

= r2

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt + o(r2).

Hence, one way to determine a reasonable value for γ is by choosing that value
for γ that minimizes the next order term, o(r2). For the discrete-time version of our
model it is possible to find an estimate of this term, using the techniques of [54].

Consider a discrete-time system with Bernoulli arrivals. In an interval of length ∆,
a class-i user arrives with probability λi∆, and it leaves the system with probability
µisi∆, s ∈ S (with S the capacity region as defined in Section 8.1). We are interested
in policies with exponential switching curves with parameter γ, and denote the state
in the interval k by Nγ

i (k), i = 1, 2. Hence, s(k) = (1, 0) if Nγ
2 (k) < eNγ

1 (k)/γ , and
s(k) = (c1, c2) if Nγ

2 (k) ≥ eNγ
1 (k)/γ and Nγ

1 (k) > 0. When ∆ → 0, this approximates
the continuous-time system with Poisson arrivals and exponentially distributed ser-
vice requirements. (The user departure rate in the discrete model is µisi, which is
equal to the user departure rate in the stochastic model.)
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Following the reasoning in [54] we consider different realizations of the queue
length process, indexed by a superscript r ∈ N. We take as initial point nr =
(γ ln[rn2], [rn2]) and as time horizon r · D for some fixed D with n2 > D. We then

write E(
∑r·D

k=0 Nγ,r
1 (k) + Nγ,r

2 (k)) =
∑4

k=1 V γ
k (nr) with

V γ
1 (nr) = d1

r·D
∑

k=0

E(Nγ,r
1 (k)),

V γ
2 (nr) = d2

r·D
∑

k=0

(nr
2 + k(λ2 −

1 − ρ1

1 − c1
µ2c2)),

V γ
3 (nr) = d2

r·D
∑

k=0

µ2c2

µ1(1 − c1)
(nr

1 − E(Nγ,r
1 (k))),

V γ
4 (nr) = d2

r·D
∑

k=0

µ2
c1 + c2 − 1

1 − c1
E(vγ,r

k ),

where vγ,r
k =

∑k−1
m=0 1(Nγ,r

1 (m)=0) is the number of times the process serves class 2

individually. The asymptotic behavior of vγ,r
k , and hence of V γ

4 (nr), involves study-
ing P(N r

1 (rt) = 0) as r → ∞. Since c1 < ρ1 < 1 and ρ1 < 1 − ρ2

c2
(1 − c1), the drift

of the process (after fluid scaling) is away from the vertical axis and towards the
switching curve. Therefore, we can use the large-deviation results in [54] in order
to obtain the asymptotic behavior of V γ

4 (nr). In particular, it can be shown that

V γ
1 (nr) = d1Drγ ln(r) + O(r),

V γ
2 (nr) = r2

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt + O(r),

V γ
3 (nr) = O(r),

V γ
4 (nr) = d2µ2

c1 + c2 − 1

1 − c1
· r2−β(∆)γ+o(1),

as r → ∞, with β(∆) = ln(ρ1

c1

1−µ1c1∆
1−λ1∆ ), and n∗(t) the optimal fluid trajectory

corresponding to initial state (0, n2). Obviously, V γ
2 (nr) represents the first-order

term, which coincides with what we expected. As said before, we are interested in
the order of the next term. This term is of the order r2−β(∆)γ when γ < 1/β(∆),
and of the order r ln(r) when γ ≥ 1/β(∆). This indicates that setting γ ≥ 1/β(∆)
gives good second-order asymptotics. In our numerical experiments in Section 8.7.1
(for the continuous-time setting), this is indeed observed for large loads, as the
performance severely degrades for small values of γ (see Figure 8.12). For large
values of γ, performance is also suboptimal: When γ > 1/β(∆), the second-order
term is given by Dγr ln r, so that it is not attractive to choose γ too large either.
However, performance turns out to be less sensitive to small changes in γ for large
values of γ, see also our numerical experiments in Section 8.7.1.

Letting ∆ → 0, we have lim∆→0 β(∆) = ln(ρ1

c1
). Choosing as estimate γ =
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1/ln(ρ1

c1
) in the continuous-time system proves to be a reasonable rule of thumb in

all our experiments, see Section 8.7.1.

8.5 Discussion for the case ρ1 = c1

In Section 8.3.2 we obtained asymptotically fluid-optimal policies when ρ1 6= c1.
In this section we discuss the unsolved case, ρ1 = c1. The optimal fluid control
is to serve class 1 individually whenever possible, i.e., the switching curve lies on
the vertical axis. As mentioned before, this policy can be unnecessarily unstable.
Hence, it is expected that a stochastically optimal policy will have a switching curve,
which is non-observable in the fluid limit.

By value iteration we computed numerically an average-cost optimal policy in
the case ρ1 = c1. (In Section 8.7 we will compute such policies for scenarios with
ρ1 6= c1.) We found that an optimal policy is characterized by a switching curve
that resembles a quadratic function, see Figure 8.5. In this section we explain this
quadratic shape.

We first describe the stochastic behavior below and above the switching curve.
In states below the switching curve, the drift is towards this curve. Let us now
concentrate on the free process that corresponds to the behavior in states above
the switching curve (N2(t) ≥ h(N1(t)) and N1(t) > 0), i.e., both classes are served
in parallel. As in Section 5.3.2, the following properties of the free process can be
derived: Since ρ1 = c1, the fluid-scaled number of class-1 users has zero drift and
the diffusion-scaled number of class-1 users converges to a Brownian motion. In
addition, the fluid-scaled number of class-2 users has a negative drift λ2 − µ2c2.

The optimal fluid control indicates that a switching curve should be such that
it is close to the vertical axis. Letting the switching curve be too close, however,
poses the risk that the process spends too much time on the vertical axis. The
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Figure 8.5: Optimal switching curve and a quadratic approximation when ρ1 = c1.
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latter should be avoided, since the optimal fluid control indicates that, under a
fluid scaling, no time should be spent on serving class 2 individually. As described
above, the fluctuations in the number of class 1 users in linear time O(r) are of
the order O(

√
r), while the number of class-2 users decreases linearly in time. This

indicates that a switching curve of the shape h(x1) = kx2
1, k > 0, strikes the right

balance between these two goals. For comparison: a linear switching curve would
be impossible to reach, therefore the policy would not profit from serving class 1
individually. On the other hand, under an exponential switching curve it is too easy
to move to the vertical axis, thus risking to be a considerable amount of time on
the vertical axis.

8.6 Optimality in heavy traffic

One of the goals of this chapter is to describe policies that approximate the optimal
policy rather well (in cases where the optimal policy could not be determined explic-
itly). In Section 8.3 we did so by considering a simpler (fluid) model that only took
into account the mean drifts. We proved that certain policies are asymptotically
fluid-optimal, and therefore are potentially close to optimal in the original stochastic
model as well. In this section we discuss another approach to obtain policies that are
in some sense approximately optimal: We review optimality results available in the
literature for a heavy-traffic regime. These results can be used as approximations
for the original system when the load is rather high, however, there is no guaran-
tee for the performance of these policies in moderately-loaded systems. Therefore,
in Section 8.7 we numerically compare (under moderate load conditions) the per-
formance of the policies that are optimal in heavy traffic with our asymptotically
fluid-optimal policies. Note that both of these policies are motivated by a certain
asymptotic regime, and beforehand it is unclear how well they perform outside these
regimes.

The maximum stability conditions of the parallel two-server model are given
in (8.4) and (8.5). Equivalently, we may say that the system can be kept stable

when the vector ~λ = (λ1, λ2) lies in the interior of the stability set as depicted in

(µ1c1, µ2c2)
µ2

µ1 λ1

λ2

~λ

~λ
~η

~η

Figure 8.6: Stability set.
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Figure 8.6. The system is said to be in heavy traffic when the vector ~λ lies on
the northeast boundary of the stability set. As mentioned in Section 1.5.3, policies
that are in some sense asymptotically optimal in a heavy-traffic setting have been
investigated in the case of complete resource pooling. The complete resource pooling
condition is satisfied if the outer normal, ~η, to the stability set at that ~λ is unique
up to scaling and all its coordinates are strictly positive. Hence, λi > 0 for i = 1, 2
and ~λ 6= (µ1c1, µ2c2). More precisely, the parameters of a heavily-loaded system
under the resource pooling condition correspond to one of the following two regions:

• Region A: λ2 = µ2 − λ1

µ1c1
µ2(1 − c2), λ2 > µ2c2, and µ1c1 > λ1 > 0, i.e.,

ρ2 = 1 − ρ1

c1
(1 − c2), ρ2 > c2, and c1 > ρ1 > 0. The outer normal vector to a

point in this region is ~η = (µ2(1 − c2), µ1c1).

• Region B: λ1 = µ1 − λ2

µ2c2
µ1(1 − c1), λ1 > µ1c1, and µ2c2 > λ2 > 0, i.e.,

ρ1 = 1 − ρ2

c2
(1 − c1), ρ1 > c1, and c2 > ρ2 > 0. The outer normal vector to a

point in this region is ~η = (µ2c2, µ1(1 − c1)).

In Section 8.6.1 we briefly state the results from [19, 20]. There, the authors prove
that threshold-based policies asymptotically minimize the (scaled) holding cost in
heavy traffic. In Section 8.6.2 we recall the definition of Max-Weight policies and
describe the results concerning their behavior in heavy traffic as obtained in [89, 132].
The model studied in [19, 20, 89, 132] is in fact a slight variation of the model we
consider in this chapter. First, a server cannot have two or more users of the same
class in service. (Note that this restriction has no impact in the case of exponential
service requirements.) In addition, once a server starts serving a user, this user has
to obtain its full service from this server. Finally, their model has slightly different
behavior near the boundaries: when Ni(t) = 1, their model can have a departure
rate of at most µici for class i, since a single user cannot be served simultaneously
by the two servers. In the model we consider, we can have a departure rate of µi.

8.6.1 Threshold policies

In [19, 20], the parallel-server model is investigated with an arbitrary number of
servers and classes, and i.i.d. inter-arrival times and service requirements. In this
section we collect results specific for the parallel two-server model.

In [19, 20], the authors consider a sequence of parameters indexed by r, µr
i and λr

i

(ρr
i =

λr
i

µr
i
), with λr

i → λi, µ
r
i → µi such that λ1, λ2, µ1 and µ2 correspond either to

Region A or Region B. An additional condition involves the rate at which the system
converges:

lim
r→∞

√
rµr

i (ρ
r
i − ρi) = θi, with θi ∈ R, i = 1, 2.

Let Nπ,r
i (t) be the number of class-i users in the r-th system under policy π, and

let N̂π,r
i (t) =

Nπ,r
i (rt)√

r
be the diffusion-scaled number of class-i users. It is assumed

that the system is initially empty. Define Ĵr(π) := E(
∫∞
0 e−ξt(N̂π,r

1 (t)+ N̂π,r
2 (t))dt)
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where ξ > 0 is a constant. In [19, 20], a sequence of policies π̃r is called asymptoti-
cally optimal in heavy traffic when limr→∞ Ĵr(π̃r) ≤ lim infr→∞ Ĵr(πr) for any
sequence of policies πr.

In case d1µ1 ≤ d1µ1c1 + d2µ2c2, they prove that an asymptotically optimal
policy in heavy traffic is to serve both classes in parallel whenever possible. For
d1µ1 > d1µ1c1 + d2µ2c2 the following result holds:

Proposition 8.6.1 ([20]). Assume d1µ1 > d1µ1c1 + d2µ2c2 and c1 + c2 > 1, and
consider a heavy-traffic setting with complete resource pooling.

• If (ρ1, ρ2) corresponds to Region A, then the policy that serves classes 1 and
2 in parallel whenever possible, is an asymptotically optimal policy in heavy
traffic.

• If (ρ1, ρ2) corresponds to Region B, then the sequence of threshold policies that
serves class 1 individually when N1(t) > h · ln(

√
r) (with h > 0 large enough),

and that otherwise serves classes 1 and 2 in parallel, is asymptotically optimal
in heavy traffic.

Denote by Th(r) the minimum value for the threshold Th such that the r-th
system is stable under the threshold policy that serves class 1 individually when
N1(t) > Th and serves classes 1 and 2 in parallel otherwise. In [137] it is shown
that any threshold Th with Th > Th(r), makes the r-th system stable. In addition,

Th(r)/ ln(
√

r) → ĥ for some constant ĥ > 0. This shows that the threshold h·ln(
√

r)
in the above proposition is of a minimum order.

In Section 8.7.1 we will evaluate the performance of threshold-based policies in
the moderately-loaded case, and compare it with the optimal policy found numeri-
cally, and with the asymptotically fluid-optimal policies.

8.6.2 Max-Weight policies

The Max-Weight policies are defined in Section 1.5.2. In this section we summarize
the heavy-traffic results on Max-Weight policies as described in [89, 132]. We like
to emphasize that an important property of the Max-Weight policies is that they
maintain a stable system under the maximum stability conditions [132].

The authors of [89] consider a parallel-server model with K classes of users
and L servers. They assume i.i.d. inter-arrival times and service requirements and
consider a sequence of systems indexed by r, λr

i , with λr
i → λi, while keeping the

parameters of the service requirements fixed. The parameters λi, i = 1, . . . , K, are
such that the system is in heavy traffic and the complete resource pooling condition
is satisfied. In addition, limr→∞

√
r(λr

i − λi) = θi, with θi ∈ R, i = 1, . . . , K. The

initial state converges under the diffusion scaling such that limr→∞
Nr

i (0)√
r

= mi with

(γ1m
β
1 , . . . , γKmβ

K) proportional to ~η. As before, ~η is the outer normal vector to the

stability set at ~λ.
The next proposition states the results for the Max-Weight policy, which is de-

noted by MW . In particular, for a heavy traffic setting it states that the Max-
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Weight policy minimizes (under diffusion scaling) both the cost,
∑

i Ci(Ni(t)) =
∑

i γi · (Ni(t))
β+1, and the “virtual” workload,

∑

i ηiNi(t), at all times.

Proposition 8.6.2 ([89]). Consider a heavy-traffic setting with complete resource
pooling. For any policy π ∈ Π̄ it holds that

lim
r→∞

∑

i

γi · (N̂MW,r
i (t))β+1 ≤ lim inf

r→∞

∑

i

γi · (N̂π,r
i (t))β+1,

and
lim

r→∞

∑

i

ηiN̂
MW,r
i (t) ≤ lim inf

r→∞

∑

i

ηiN̂
π,r
i (t).

for all time t. In addition, the vector ~η is proportional to the vector

lim
r→∞

(γ1 · (N̂MW,r
1 (t))β , . . . , γK · (N̂MW,r

K (t))β). (8.35)

The result that the vector in (8.35) is proportional to ~η, is referred to as a state-
space collapse, since the dimension of the K-dimensional process decreases to one.
A similar result was obtained in Chapter 2 for DPS-based policies.

Note that the Max-Weight policy does not minimize the holding cost d1N̂1(t) +
d2N̂2(t), since β must be strictly positive. However, the Max-Weight policy can be
used to come close to this setting, for example, by setting β > 0 very small and
γi = di, i = 1, . . . , K. An alternative option is by making use of the fact that the
Max-Weight policy does minimize the virtual workload

∑

i ηiN̂i(t). Hence, when
trying to minimize the holding cost among the Max-Weight policies, it is best to set
the parameters (γi’s and β) such that N̂MW

k (t) is as large as possible, where k is
such that ηk/dk ≥ ηi/di for all i 6= k. For this reason, in [89] it is suggested that in
heavy traffic a good choice for the parameters is β = 1, γi = 1, i 6= k and γk = ǫk,
with ǫk > 0 small, since the state space collapse result implies that then N̂MW

k (t)

will become relatively large compared to N̂MW
i (t), i 6= k.

For the parallel two-server model as considered in this chapter, the Max-Weight
policy is as follows:

• Serve class 1 individually when N2(t) <
(

γ1(1−c1)µ1

γ2c2µ2

)
1
β

N1(t).

• Serve classes 1 and 2 in parallel when
(

γ1(1−c1)µ1

γ2c2µ2

)
1
β

N1(t) ≤ N2(t)

<
(

γ1c1µ1

γ2(1−c2)µ2

)
1
β

N1(t).

• Serve class 2 individually when
(

γ1c1µ1

γ2(1−c2)µ2

)
1
β

N1(t) ≤ N2(t).

Hence the Max-Weight policy has two linear switching curves. In Figure 8.7 these
switching curves are plotted. Note that in heavy traffic, the state space collapses

to the line x2 =
(

c1µ1γ1

(1−c2)µ2γ2

)
1
β

x1 in the case of Region A and to the line x2 =
(

(1−c1)µ1γ1

c2µ2γ2

)
1
β

x1 in the case of Region B.
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x1

x2

x2 =
(

(1−c1)µ1γ1

c2µ2γ2

)
1
β

x1

x2 =
(

c1µ1γ1

(1−c2)µ2γ2

)
1
β

x1

class 1

class 2

combined

Figure 8.7: The Max-Weight policy.

In Section 8.7.2 we will investigate the performance of the Max-Weight poli-
cies in the moderately-loaded case, and compare it with the optimal policy found
numerically, and with the asymptotically fluid-optimal policies.

8.7 Numerical evaluation

The average-cost optimal policy for the original stochastic model can be computed
numerically by value iteration after truncating the state space. Figures 8.8 and 8.9
illustrate for various scenarios that the optimal policy is characterized by a switching
curve. We note that finding these optimal curves numerically was extremely time-
consuming. Figure 8.8 considers the setting ρ1 < c1. We observe that the optimal
switching curve is linear and coincides exactly with the asymptotically fluid-optimal
switching curve h(x1) = αµ2

µ1
x1 from Proposition 8.3.10. Figure 8.9 corresponds

to a scenario with ρ1 > c1 and illustrates that the optimal strategy resembles
an exponentially-shaped curve, which agrees with Proposition 8.3.11. An optimal
switching curve for a setting with ρ1 = c1 can be found in Figure 8.5. In that
case, the curve coincided with a quadratic function. In the remainder of this section
we will assess the gains that can be achieved by choosing the best switching-curve
policies.

8.7.1 Switching-curve policies

We have conducted a large set of simulation experiments to assess the effectiveness
of different switching-curve policies. We simulate in the order of 106 busy periods
and are interested in the mean total number of users, i.e., d1 = d2 = 1.
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Figure 8.8: Optimal switching curve when ρ1 < c1, ρ2 < c2 (left), and ρ1 < c1 and
ρ2 > c2 (right).
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Figure 8.9: Optimal switching curve when ρ1 > c1 and ρ2 < c2.

Case ρ1 < c1

When ρ1 < c1, an asymptotically fluid-optimal policy is described by the linear
switching curve as stated in Proposition 8.3.10. In Figure 8.10 we focus on this case
and plot the total mean number of users under policies with a linear switching curve
h(x1) = kx1, k ≥ 0 (obtained by simulation). On the horizontal axis we vary the
value of k. Note that k = 0 corresponds to always serving both classes in parallel.
When the slope grows large (k → ∞), the policy gives higher priority to serving
class 1 exclusively (whenever present). Note that strict priority for class 1 leads to
instability if ρ1 + ρ2 > 1, which can be the case even if the stability conditions (8.4)
and (8.5) are met. The two graphs on the left in Figure 8.10 correspond to a
moderately-loaded system. There we also plot the optimal policy found numerically
by value iteration. We observe that when the parameter k is chosen well, the linear
switching-curve policy coincides with the optimal policy. The two graphs on the
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Figure 8.10: Total mean number of users for policies with a linear switching curve
(µ1 = 10, µ2 = 1). The marker indicates the optimal slope for the fluid approxima-
tion. The two graphs on the top row correspond to cases with ρ1 < c1 and ρ2 < c2.
The lower graphs have ρ1 < c1 and ρ2 > c2.

right in Figure 8.10 represent a heavily-loaded system. We did not determine the
optimal policy for this parameter setting, since this is extremely time-consuming.
Choosing k very large implies that the mean number of users will be large (since
ρ1 + ρ2 > 1). It seems that a good choice for heavily-loaded systems is k = 0, i.e.,
always serve both classes in parallel. In a heavy-traffic setting with ρ1 < c1 (and
necessarily ρ2 > c2 while ρ2 + ρ1

c1
(1 − c2) → 1) we see that the policy that always

serves both classes in parallel is also the asymptotically optimal policy as found by
both the fluid analysis (since then α = 0, see (8.19), so the optimal slope in the
fluid model is equal to 0) and the heavy-traffic analysis.

In Figure 8.11 we repeated the experiment for different parameter choices to
illustrate that in the case of a moderately-loaded system the relative differences
in performance between the optimal linear policy (obtained numerically by value
iteration) and the strategy that maximizes the service capacity at all times (slope
k = 0) can be quite significant.
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Figure 8.11: Total mean number of users for policies with a linear switching curve
(µ1 = 10, µ2 = 1). The marker indicates the optimal slope for the fluid approxima-
tion.

An important observation in Figures 8.10 and 8.11 is that the slope as defined
in (8.19) corresponding to the asymptotically fluid-optimal policy (denoted in the
figures by “optimal slope fluid”) is always close to optimal and performs very well.

In the two graphs on the right in Figure 8.10, we observe that the total mean
number of users grows linearly in k as k → ∞. In the remark below we give some
intuition for this effect.

Remark 8.7.1. Consider the policy with a linear switching curve h(x1) = kx1.
If k tends to ∞, then the system dynamics tend to a priority queue where class 1
is given preemptive priority. When ρ1 + ρ2 < 1, this policy is stable, and we indeed
observe in the two graphs on the left in Figure 8.10 and in Figure 8.11 that the
mean number of users will converge to a constant. However, when ρ1 + ρ2 > 1, this
policy is not stable, and E(N1 + N2) will grow infinitely large as k → ∞. The two
graphs on the right in Figure 8.10 suggest that the mean number of users grows
linearly in k as k → ∞. This can be intuitively understood as follows.

Conditioned on jk ≤ N2(t) < (j + 1)k, class 1 has as departure rate µ1c1

if N1(t) ≤ j, and µ1 otherwise. For a given j, let π(j) denote the equilibrium
distribution for the process with departure rates as described above. Hence, πi(j) =
π0(j)

(

ρ1

c1
)i if i ≤ j and πi(j) = π0(j)

(

ρ1

c1
)jρi−j

1 if i > j. If d is large, we assume that
class 1 reaches equilibrium during the time that jk ≤ N2(t) < (j + 1)k. Then the

mean departure rate for class 2 is µ2(j) := µ2π0(j) + µ2c2

∑j
i=1 πi(j) (when jk ≤

N2(t) < (j+1)k), since both classes are served in parallel whenever N2(t) ≥ kN1(t).
It can be checked that µ2(j) is increasing in j, hence there exists a j∗ such that
µ2(j

∗ − 1) < λ2 ≤ µ2(j
∗) (for convenience we set µ2(−1) = 0). Note that j∗ > 0,

unless ρ1 +ρ2 < 1. Hence, if jk ≤ N2(t) < (j +1)k with j < j∗, then the mean drift
in class 2 is positive, and the probability that the increase in N2(t) is O(k) tends to
1 as k → ∞. If jk ≤ N2(t) < (j + 1)k with j ≥ j∗, then the mean drift in class 2 is
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negative. Hence, the probability that the decrement of N2(t) is of order O(k) tends
to 1 as k → ∞. It is therefore plausible that the process N2(t)/k will most of the
time be around the level j∗.

If the region (j∗ +1)k ≤ N2(t) is not reached (which is not a strong assumption,
since this region will be rarely visited as k → ∞), then the number of class-1 users
can be upper bounded by the number of class-1 users in a system with departure
rates µ1c1 if N1(t) ≤ j∗ and µ1 otherwise. Since j∗ does not depend on k, the upper
bound for the number of class-1 users does not scale with k.

For the parameters used in the graph on the top right in Figure 8.10, the j∗ is
equal to 2. We observe in the figure that E(N2)/k indeed converges to j∗ = 2 and
that E(N1) does not scale with k. For the parameters that belong to the graph on
the bottom right in Figure 8.10, the j∗ is equal to 1. In that case too, we observe in
the figure that E(N2)/k indeed converges to j∗ = 1 and that E(N1) does not scale
with k.

Case ρ1 > c1

When ρ1 > c1, an asymptotically fluid-optimal policy is described by an exponential
switching curve as stated in Proposition 8.3.11. In Figure 8.12 we consider several
parameter settings with ρ1 > c1, and plot the total mean number of users under
policies with switching curves of the shape h(x1) = ex1/γ (obtained by simulation).
On the horizontal axis we vary the value of γ. Note that when γ grows large,
this approaches the policy that always serves both classes in parallel. We observed
that the best choice for the parameter γ, delivers virtually the same performance
as the optimal policy (found numerically by value iteration). The large-deviation
analysis further suggests that γ = 1

ln(ρ1/c1)
is a safe choice, see Section 8.4 (denoted

in the figures by “rule of thumb”). In the three graphs on the left column in
Figure 8.12 this corresponds to γ = 8.5. We observe that in fact the better choices
for the parameter γ are smaller than 8.5. Still, the large-deviation result gives a safe
estimate (the policy is stable) with better performance than the capacity-maximizing
strategy (serving both classes in parallel whenever possible, i.e., γ → ∞). In the
three graphs on the right column in Figure 8.12, the rule of thumb is equal to
γ = 2.5. In this case, the rule of thumb is very close to the optimal policy. In
general, in all our tests we observed that the rule of thumb for γ proves to be a
reasonable choice.

Recall that when ρ1 > c1, a threshold policy is asymptotically optimal in a
heavily-loaded system. That is, both classes should be served in parallel whenever
the number of class-1 users is below or equal to some threshold Th ≥ 0. When the
threshold grows large, this coincides with the policy that always serves both classes
in parallel. In Figure 8.12 we consider a moderately-loaded system. We vary the
value of the threshold Th, and plot the total mean number of users (obtained by
simulation). For certain small values of the threshold, the threshold policy performs
rather well. However, when the threshold is chosen too small, the performance of
the system can degrade considerably and become unstable. In fact, for a system
with large loads (ρ1 + ρ2 > 1), the policy with Th = 0 is unstable. In the two



8.7 Numerical evaluation 213

 

 

         

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.3, c1 = 0.4, c2 = 0.7

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 2 4 6 8 10
2.2

2.4

2.6

2.8

3

         

 

 

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.3, c1 = 0.3, c2 = 0.9

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 5 10 15 20 25 30

2

3

4

         

 

 

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.4, c1 = 0.4, c2 = 0.7

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 5 10 15 20
3.6

3.8

4

4.2

4.4

 

 

         

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.4, c1 = 0.3, c2 = 0.9

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 5 10 15 20 25 30

3

4

5

6

7

         

 

 

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.5, c1 = 0.4, c2 = 0.7

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 5 10 15 20 25 30
7

8

9

10

11

12

13

14

15

         

 

 

approx. threshold

rule of thumb

ρ1 = 0.45, ρ2 = 0.5, c1 = 0.3, c2 = 0.9

exponential curves

optimal policy

threshold policies

Th, γ

E
(N

1
+

N
2
)

0 5 10 15 20 25 30

5

6

7

8

9

10

11

12

Figure 8.12: Total mean number of users when ρ1 > c1 and ρ2 < c2 for policies with
exponential switching curves (as a function of γ), and for threshold policies (as a
function of Th). In the graphs on the left column we chose µ1 = 5, µ2 = 2, and in
the graphs on the right column we chose µ1 = 10, µ2 = 1.
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graphs on the last row in Figure 8.12 (where still ρ1 + ρ2 < 1) we already see that
the total number of users doubles when the threshold is set equal to 0. In [129]
the authors propose a method to obtain estimates for the value of the threshold.
For the settings in Figure 8.12 we have calculated the estimates for the threshold
using their method (denoted in the figures by “approx. threshold”). We see that in
the figures on the left column, the approximation for the threshold matches exactly
with the best threshold value. However, in the figures on the right column, the
approximation of the threshold is too small, which results in severe performance
degradation in case of high loads (ρ1 = 0.45, ρ2 = 0.5).

In general, for the case ρ1 > c1 our fluid-based method (rule of thumb) proved to
be a rather safe option, while threshold policies (using the approximation in [129])
may sometimes perform better, but can also be far from optimal. Although this
is supported by a rather extensive set of experiments, it remains as a challenge to
provide a theoretical basis for the robustness of fluid-based policies.

8.7.2 Max-Weight policies

As stated in Section 8.6.2, Max-Weight policies can be close to optimal in a heavy-
traffic setting. In this section we investigate the performance of the Max-Weight
policies in a moderately-loaded system and compare this to the performance of the
asymptotically fluid-optimal policies as found in this chapter. We compare the
total mean number of users and distinguish between whether µ1c1 + µ2c2 ≥ µ1 or
µ1c1 + µ2c2 < µ1. We will observe that in the second case the fluid-based policies
can outperform the Max-Weight policies, and that the parameter choices for the
Max-Weight policies as suggested by the heavy-traffic results are not necessarily a
good choice in a moderately-loaded system.

Case µ1c1 + µ2c2 ≥ µ1

From Section 8.2.1 we know that when µ1c1 + µ2c2 ≥ µ1, the policy which serves
classes 1 and 2 in parallel whenever possible, stochastically minimizes the total
mean number of users present in the system. Note that when µ1c1 + µ2c2 ≥ µ1, the
Max-Weight policy with γ1 = γ2 = 1 and β close to zero, will almost always serve
both classes in parallel. Numerically we observed that the Max-Weight policy (with
γ1 = γ2 = 1 and β close to zero) turns out to be very effective and nearly matches
the performance of the optimal policy. For this reason, we have not included any
graphs for this case.

Case µ1c1 + µ2c2 < µ1

When µ1c1 + µ2c2 < µ1, the asymptotically fluid-optimal policy we proposed is
described by a switching curve h(x1) (either linear, quadratic or exponential), where
class 1 is served in states below the switching curve, and classes 1 and 2 are served
in parallel in states above the switching curve. We compare these policies with
Max-Weight policies. We choose the parameters as described in Section 8.6.2. So
we take γ1 = γ2 = 1 and β = 10−4. When µ1 > µ2 and µ1c1 + µ2c2 < µ1, we
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Figure 8.13: Total mean number of users under Max-Weight policies and under the
optimal linear switching curve, with µ1c1 + µ2c2 < µ1 and ρ1 < c1.
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Figure 8.14: Total mean number of users under Max-Weight policies and under
exponential switching curves, with µ1c1 + µ2c2 < µ1 and ρ1 > c1.

have η1 < η2, both in Region A and in Region B of Figure 8.6. Hence, we will also
consider Max-Weight policies with γ1 = 1, γ2 = ǫ2, ǫ2 > 0, and β = 1.

In Figures 8.13 and 8.14, we compare (by simulation) the performance of the
Max-Weight policies (referred to as MW) with the performance of the best linear
or exponential switching-curve policies. On the horizontal axis we vary ǫ2 and on
the vertical axis we plot the total mean number of users under the various policies.
First of all, we note that in both Figures 8.13 and 8.14, the Max-Weight policy with
β = 10−4 and γi = 1, i = 1, 2, performs rather poorly. This is not surprising, since
if µ1c1 + µ2c2 < µ1, then the Max-Weight policy (with β = 10−4 and γ1 = γ2 = 1)
will almost always serve class 1 individually, which is far from optimal.

For the parameters as in Figure 8.13 (left), the fluid approximation suggests that
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if N2(t) ≤ 1.8N1(t), then it is good to serve class 1, and otherwise to serve both
classes in parallel. Numerically, we found that this is also the best linear policy
for the stochastic model. The Max-Weight policy (with β = 1 and γ = (1, ǫ2))
will serve class 1 most of the time, since that is the prescribed action in states
such that N2(t) ≤ 6 2

3ǫ2
N1(t). From the figure, we see that this is only 5% worse

than the optimal linear policy. For the parameters as in Figure 8.13 (right), the
fluid approximation serves always classes 1 and 2 in parallel. Numerically, we found
that this is also the best linear policy for the stochastic model. The Max-Weight
policy (with β = 1 and γ = (1, ǫ2)) however, serves class 1 individually as soon as
N2(t) ≤ 12

10ǫ2
N1(t). These states will be visited more often when ǫ2 ↓ 0. In the

figure, the performance degrades from 15% worse (ǫ2 = 1), to 30% worse (ǫ2 ↓ 0),
compared with the optimal linear policy.

In Figure 8.14, the parameters are such that an exponential switching curve is
asymptotically fluid-optimal. We plot the performance of both the best exponential
switching curve (determined numerically), and of the exponential switching curve
where γ is set according to the rule of thumb, i.e., γ = 1

ln(ρ1/c1)
= 3.48. For

µ1 = 10, the Max-Weight policy (with β = 1 and γ = (1, ǫ2)) is about 15% worse
compared with the best exponential policy. For µ1 = 2, it is close to optimal when
ǫ2 = 1, but the performance degrades when ǫ2 ↓ 0. Observe that in both cases
the policy with an exponential switching curve where γ is chosen according to the
rule of thumb, performs rather well. We have also calculated the performance of
the threshold policy as suggested in [129]. For the setting of Figure 8.14 (left) it
suggests a threshold equal to 0, in which case there are approximately 2.8 users in
the system. Hence, the proposed policy does not give good performance. For the
setting of Figure 8.14 (right) it suggests a threshold equal to 1, in which case there
are approximately 2.68 users in the system. This is rather close to optimal.

8.8 Concluding remarks

We have studied optimal policies for a parallel two-server model where the high-
est service capacity is achieved when serving both classes in parallel. Through a
fluid limit analysis we determined the shape of close-to-optimal policies, which can
be characterized either by linear, quadratic or exponential switching curves. The
results yield directly usable estimates for efficient policies in the stochastic set-
ting, comparing favorably with threshold-based policies and Max-Weight policies
for moderately-loaded regimes

Several extensions to this work are of interest. For example, it is interesting
to investigate how our results change if the capacity is also favorably affected by
the numbers of users within each class. For example, in wireless networks the
aggregate transmission rate increases with the number of users, due to opportunistic
scheduling, which exploits multiuser diversity [83]. An intermediate step that is of
interest on its own would be to consider our current model with several possible
service capacity vectors when serving classes in parallel. For example, if in addition
to the service capacities c1 and c2 we can choose c̃1 and c̃2 that are not in the
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convex hull depicted in Figure 1.6. A third direction of interest is to study our
model with more than two classes. This could also serve as an intermediate step
towards handling multiuser diversity gains as mentioned above, which is presumably
more difficult to handle.

Appendix

8.A Proof of Lemma 8.2.2

The proof is by induction on the time index m. For m = 0 the statement holds. In
order to apply induction, assume it holds for Z = Vm. We will show that it holds
for Z = Vm+1 as well. Define

Ṽm+1(~x) := Vm+1(~x) − λ1Vm(~x + ~e1) − λ2Vm(~x + ~e2)

= min
(

µ1Vm((x1 − 1)+, x2) + (µ2 + µ1c1 + µ2c2)Vm(~x),

µ2Vm(x1, (x2 − 1)+) + (µ1 + µ1c1 + µ2c2)Vm(~x),

µ1c1Vm((x1 − 1)+, x2) + µ2c2Vm(x1, (x2 − 1)+) + (µ1 + µ2)Vm(~x)
)

.

By assumption, λ1Vm(~x + ~e1) + λ2Vm(~x + ~e2) satisfies the inequality. In order to
prove that Vm+1(·) does as well, it is sufficient to show that Ṽm+1(·) does. This will
be done in the remainder of the proof. We will show that

(µ1 + µ2)Ṽm+1(~x) + µ1c1Ṽm+1(~x − ~e1) + µ2c2Ṽm+1(~x − ~e2)

≤ µ1Ṽm+1(~x) + µ2Ṽm+1(~x − ~e2) + (µ1c1 + µ2c2)Ṽm+1(~x) (8.36)

is indeed satisfied for all x1, x2 > 0. The proof of

(µ1 + µ2)Ṽm+1(~x) + µ1c1Ṽm+1(~x − ~e1) + µ2c2Ṽm+1(~x − ~e2)

≤ µ1Ṽm+1(~x − ~e1) + µ2Ṽm+1(~x) + (µ1c1 + µ2c2)Ṽm+1(~x)

follows exactly the same steps, but with the role of class 1 and class 2 interchanged.
First assume x1 > 0 and x2 = 1. By definition of Ṽm+1(·) we can write

µ2Ṽm+1(x1, 1) + µ1c1Ṽm+1(x1 − 1, 1) + µ2c2Ṽm+1(x1, 0)

≤ µ2[µ2Vm(x1, 0) + (µ1c1 + µ2c2 + µ1)Vm(x1, 1)]

+ µ1c1[µ2Vm(x1 − 1, 0) + (µ1c1 + µ2c2 + µ1)Vm(x1 − 1, 1)]

+ µ2c2[µ1Vm(x1 − 1, 0) + (µ2 + µ1c1 + µ2c2)Vm(x1, 0)]. (8.37)

Rearranging terms in (8.37), gives

µ1[µ2Vm(x1, 1) + µ1c1Vm(x1 − 1, 1) + µ2c2Vm(x1, 0)]

+ (µ1c1 + µ2c2)[µ2Vm(x1, 1) + µ1c1Vm(x1 − 1, 1) + µ2c2Vm(x1, 0)]

+ µ2[µ2Vm(x1, 0) + µ2c2Vm(x1, 0)]

+ µ1µ2[(c1 + c2)Vm(x1 − 1, 0)− c2Vm(x1, 0)]. (8.38)
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Since Vm(·) is increasing in x1 (see Lemma 8.2.1), c1 + c2 ≥ 1, and since (8.8) holds
by induction for Vm(·), the expression in (8.38) is less than or equal to

µ1[µ2Vm(x1, 0) + (µ1c1 + µ2c2)Vm(x1, 1)]

+ (µ1c1 + µ2c2)[µ2Vm(x1, 1) + µ1c1Vm(x1 − 1, 1) + µ2c2Vm(x1, 0)]

+ µ2[µ2Vm(x1, 0) + µ2c2Vm(x1, 0)]

+ µ1µ2[(c1 − 1)Vm(x1, 0) + Vm(x1 − 1, 0)]

= µ2[µ1Vm(x1 − 1, 0) + (µ2 + µ1c1 + µ2c2)Vm(x1, 0)]

+ (µ1c1 + µ2c2)[(µ1 + µ2)Vm(x1, 1) + µ1c1Vm(x1 − 1, 1) + µ2c2Vm(x1, 0)],
(8.39)

where in the last step we rearranged the terms. Since (8.8) holds by induction for
Vm(·), the expression in (8.39) is equal to µ2Ṽm+1(x1, 0)+(µ1c1 +µ2c2)Ṽm+1(x1, 1).
Hence, (8.36) is proved.

Now assume x1 > 0 and x2 > 1. By definition of Ṽm+1(·) we can write

µ2Ṽm+1(~x) + µ1c1Ṽm+1(~x − ~e1) + µ2c2Ṽm+1(~x − ~e2)

≤ µ2[µ2Vm(~x − ~e2) + (µ1 + µ1c1 + µ2c2)Vm(~x)]

+ µ1c1[µ1Vm(~x − ~e1) + µ2Vm(~x − ~e1 − ~e2) + (µ1c1 + µ2c2)Vm(~x − ~e1)]

+ µ2c2[µ1Vm(~x − ~e2) + µ2Vm(~x − 2~e2) + (µ1c1 + µ2c2)Vm(~x − ~e2)]. (8.40)

Rearranging terms in (8.40), shows that it equals

µ1[µ2Vm(~x) + µ1c1Vm(~x − ~e1) + µ2c2Vm(~x − ~e2)]

+ µ2[µ2Vm(~x − ~e2) + µ1c1Vm(~x − ~e1 − ~e2) + µ2c2Vm(~x − 2~e2)]

+ (µ1c1 + µ2c2)[µ2Vm(~x) + µ1c1Vm(~x − ~e1) + µ2c2Vm(~x − ~e2)]. (8.41)

Since (8.8) holds by induction for Vm(·), the expression in (8.41) is less than or equal
to

µ1[µ2Vm(~x − ~e2) + µ1c1Vm(~x) + µ2c2Vm(~x)]

+ µ2[µ2Vm(~x − ~e2) + µ1c1Vm(~x − ~e1 − ~e2) + µ2c2Vm(~x − 2~e2)]

+ (µ1c1 + µ2c2)[µ2Vm(~x) + µ1c1Vm(~x − ~e1) + µ2c2Vm(~x − ~e2)]

= µ2[(µ1 + µ2)Vm(~x − ~e2) + µ1c1Vm(~x − ~e1 − ~e2) + µ2c2Vm(~x − 2~e2)]

+ (µ1c1 + µ2c2)[(µ1 + µ2)Vm(~x) + µ1c1Vm(~x − ~e1) + µ2c2Vm(~x − ~e2)], (8.42)

where in the last step we rearranged the terms. Since (8.8) holds by induction for
Vm(·), the expression in (8.42) is equal to µ2Ṽm+1(~x − ~e2) + (µ1c1 + µ2c2)Ṽm+1(~x).
Hence, (8.36) is proved. �

8.B Proof of Lemma 8.2.4

We use t+ to denote any element in an interval (t, t + δ], for a sufficiently small
δ > 0. Throughout the proof we use that

Wi(t) > 0 implies Wi(t
+) > 0, and that Wi(t) = 0 implies Wi(t

+) = 0. (8.43)
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This follows since the workload process Wi(t), i = 1, 2, is right-continuous and
increases only with an arrival.

Note that Si(t), i = 1, 2, is continuous. In order to show relation (8.9), we
therefore consider the first time instant t such that (8.9) holds with equality and
is violated immediately after time t. So Sπ

1 (t) = Sπ̃
1 (t), and by (8.1) also Wπ

1 (t) =
W π̃

1 (t), while sπ
1 (t+) < sπ̃

1 (t+), so that Sπ
1 (t+) < Sπ̃

1 (t+). Since Wπ
1 (t) = W π̃

1 (t),
by (8.43) and by construction of policy π we obtain that sπ

1 (t+) ≥ sπ̃
1 (t+). This

gives contradiction and hence (8.9) holds for all t ≥ 0.
Let time t be the first time instant such that either (8.10) or (8.11) holds with

equality and is violated immediately after time t. We will show that such a t does
not exist. The remainder of the proof consists of two parts, depending on whether
equation (8.10) or equation (8.11) is the first to be violated.

Part I: Assume (8.10) is the first equation that fails to hold, i.e., Sπ
1 (t) + Sπ

2 (t) =
Sπ̃

1 (t) + Sπ̃
2 (t), and by (8.1) also Wπ

1 (t) + Wπ
2 (t) = W π̃

1 (t) + W π̃
2 (t), while sπ

1 (t+) +
sπ
2 (t+) < sπ̃

1 (t+) + sπ̃
2 (t+), so that Sπ

1 (t+) + Sπ
2 (t+) < Sπ̃

1 (t+) + Sπ̃
2 (t+). We will

show that

Wπ
1 (t) + Wπ

2 (t) = W π̃
1 (t) + W π̃

2 (t) implies Wπ
i (t) = W π̃

i (t), i = 1, 2. (8.44)

By (8.43) and by construction of policy, Wπ
i (t) = W π̃

i (t), i = 1, 2, implies that
sπ
1 (t+) + sπ

2 (t+) ≥ sπ̃
1 (t+) + sπ̃

2 (t+), and hence we reach a contradiction. So let us
prove (8.44).

• We first assume that there is an interval [u, t) in which policy π̃ has more work
in the system compared to policy π, i.e., Wπ

1 (v) + Wπ
2 (v) < W π̃

1 (v) + W π̃
2 (v)

for all v ∈ [u, t), and at time t, Wπ
1 (t) + Wπ

2 (t) = W π̃
1 (t) + W π̃

2 (t). We can
choose this interval such that π̃ has made up for the lost capacity in one of
the three ways described below. Define M π̃

c (u, t) as the cumulative amount of
time that both classes are served in parallel under policy π̃ in the time interval
[u, t).

(i) During the interval [u, t) policy π̃ has work in the system, while policy π
has an empty system.

(ii) In the interval [u, t) we have M π̃
c (u, t) > 0, while policy π serves class

1 with service capacity 1. Hence Wπ
2 (v) = 0 and Wπ

1 (v) > 0, for all
v ∈ [u, t).

(iii) In the interval [u, t) we have M π̃
c (u, t) > 0, while policy π serves class

2 with service capacity 1. Hence Wπ
1 (v) = 0 and Wπ

2 (v) > 0, for all
v ∈ [u, t).

Note that the three cases are mutually exclusive. We will show that (8.44)
holds for (i), (ii) and (iii). Although not mentioned explicitly, in all three cases
we use that a possible arrival at time t alters the workload in both systems in
the same way. Let t− denote any element in an interval [t − δ, t) with δ > 0
sufficiently small.
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In case (i) we have Wπ
i (t−) = 0 for i = 1, 2. Since at time t it holds that

Wπ
1 (t) + Wπ

2 (t) = W π̃
1 (t) + W π̃

2 (t), we obtain that W π̃
i (t−) = 0, i = 1, 2.

Hence, we have Wπ
i (t) = W π̃

i (t), i = 1, 2.

In case (ii) we have that Wπ
2 (t−) = 0, hence Wπ

2 (t) ≤ W π̃
2 (t). From Wπ

1 (t) +
Wπ

2 (t) = W π̃
1 (t) + W π̃

2 (t) and Wπ
1 (t) ≤ W π̃

1 (t) (follows from (8.1) and (8.9)),
we obtain Wπ

2 (t) ≥ W π̃
2 (t). Hence, Wπ

i (t) = W π̃
i (t), i = 1, 2.

In case (iii) we have

M π̃
c (u, t)(c1 + c2 − 1) = W π̃

1 (u) + W π̃
2 (u) − Wπ

2 (u), (8.45)

since the total amount of additional capacity that policy π̃ gets compared to
policy π in the interval [u, t) (left-hand side in (8.45)), is equal to the difference
in the total workload at time u (right-hand side in (8.45)). Since Wπ

1 (u) = 0,
from (8.1) and (8.11) we obtain that c1W

π
2 (u) = (1− c2)W

π
1 (u) + c1W

π
2 (u) ≤

(1 − c2)W
π̃
1 (u) + c1W

π̃
2 (u). Rewriting this gives W π̃

1 (u) ≤ c1

c1+c2−1 (W π̃
1 (u) +

W π̃
2 (u) − Wπ

2 (u)) = c1M
π̃
c (u, t). Note that Sπ̃

1 (t) − Sπ̃
1 (u) ≥ c1M

π̃
c (u, t) and

A1(u, t−) = 0 (since Wπ
1 (v) = 0 for all v ∈ [u, t)). Together this gives

W π̃
1 (t−) = W π̃

1 (u) + A1(u, t−) − (Sπ̃
1 (t) − Sπ̃

1 (u)) ≤ 0. Since we also know
that Wπ

1 (t−) = 0, it follows that Wπ
1 (t) = W π̃

1 (t), and hence Wπ
2 (t) = W π̃

2 (t).

• Now consider the case when there is an interval [w, t] such that Wπ
1 (v) +

Wπ
2 (v) = W π̃

1 (v) + W π̃
2 (v) for all v ∈ [w, t] and Wπ

1 (w−) + Wπ
2 (w−) <

W π̃
1 (w−) + W π̃

2 (w−). From the previous item, we obtain that Wπ
i (w) =

W π̃
i (w), i = 1, 2. Together with the fact that in the interval [w, t] the to-

tal workload is equal under both policies, and by construction of policy π, it
follows that π̃ did not serve class 2 individually while π serves both classes in
parallel. Hence, Wπ

i (v) = W π̃
i (v) for all v ∈ [w, t], i = 1, 2.

Part II: Assume (8.11) is the first equation that fails to hold, i.e., (1 − c2)S
π
1 (t) +

c1S
π
2 (t) = (1 − c2)S

π̃
1 (t) + c1S

π̃
2 (t), and by (8.1) also (1 − c2)W

π
1 (t) + c1W

π
2 (t) =

(1−c2)W
π̃
1 (t)+c1W

π̃
2 (t), while (1−c2)s

π
1 (t+)+c1s

π
2 (t+) < (1−c2)s

π̃
1 (t+)+c1s

π̃
2 (t+);

so that (1−c2)S
π
1 (t+)+c1S

π
2 (t+) < (1−c2)S

π̃
1 (t+)+c1S

π̃
2 (t+). With slight abuse of

notation, let f1(t
+), f2(t

+), fc(t
+), fI(t

+) be the coefficients that define the capacity
vector in the capacity region S under policy π̃ at time t+, i.e., (sπ̃

1 (t+), sπ̃
2 (t+)) =

f1(t
+) · (1, 0)+f2(t

+) · (0, 1)+fc(t
+) · (c1, c2)+fI(t

+) · (0, 0). Note that 1 = f1(t
+)+

f2(t
+) + fc(t

+) + fI(t
+). We have the following possibilities:

• If Wπ
1 (t) > 0 and Wπ

2 (t) > 0, then by (8.43) and by definition of policy π we
have (sπ

1 (t+), sπ
2 (t+)) = f1(t

+)·(1, 0)+(fc(t
+)+f2(t

+))·(c1, c2)+fI(t
+)·(0, 0),

hence (1 − c2)s
π
1 (t+) + c1s

π
2 (t+) = (1 − c2)(f1(t

+) + c1(fc(t
+) + f2(t

+))) +
c1c2(fc(t

+) + f2(t
+)) = (1 − c2)(f1(t

+) + c1fc(t
+)) + c1(f2(t

+) + c2fc(t
+)) =

(1 − c2)s
π̃
1 (t+) + c1s

π̃
2 (t+).

• If Wπ
1 (t) = 0 and Wπ

2 (t) > 0, then, by definition, policy π serves class 2
individually for a fraction of time 1 − fI(t

+) and otherwise idles. So (1 −
c2)s

π
1 (t+) + c1s

π
2 (t+) = c1(1 − fI(t

+)). Since c1 + c2 > 1, we have that
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c1(1 − fI(t
+)) ≥ (1 − c2)f1(t

+) + c1(fc(t
+) + f2(t

+)) = (1 − c2)(f1(t
+) +

c1fc(t
+)) + c1(f2(t

+) + c2fc(t
+)) = (1 − c2)s

π̃
1 (t+) + c1s

π̃
2 (t+).

• If Wπ
1 (t) > 0 and Wπ

2 (t) = 0, then we have (1 − c2)W
π
1 (t) = (1 − c2)W

π̃
1 (t) +

c1W
π̃
2 (t) and Wπ

1 (t) ≤ W π̃
1 (t) (by (8.9)). Hence Wπ

1 (t) = W π̃
1 (t) and 0 =

Wπ
2 (t) = W π̃

2 (t). By (8.43) we obtain f2(t
+) = 0, so by definition of policy π,

sπ
i (t+) = sπ̃

i (t+), i = 1, 2.

• If Wπ
1 (t) + Wπ

2 (t) = 0, then 0 = (1− c2)W
π̃
1 (t) + c1W

π̃
2 (t). By (8.43) we have

Wπ
i (t+) = W π̃

i (t+) = 0, and hence (1−c2)s
π
1 (t+)+c1s

π
2 (t+) = (1−c2)s

π̃
1 (t+)+

c1s
π̃
2 (t+) = 0.

For all the four possibilities we reached a contradiction with (1 − c2)s
π
1 (t+) +

c1s
π
2 (t+) < (1 − c2)s

π̃
1 (t+) + c1s

π̃
2 (t+) and this concludes the proof. �

8.C Proof of Lemma 8.3.2

By the Filippov-Cesari theorem [122, Chapter 2.8], there exists an optimal control
u∗D(t) and a corresponding optimal trajectory n∗D(t) for the problem

minn(t) s.t. (8.13)−(8.16)

∫D

0
(d1n1(t) + d2n2(t))dt, for any D ≥ 0.

For the moment, assume there exists a function H(·) such that

n∗D
1 (t)+n∗D

2 (t) = 0, for all t ≥ H(d1n1+d2n2), with n = (n1, n2) the initial state.
(8.46)

The proof of (8.46) will be given later on. From (8.46) we obtain

min
n(t) s.t. (8.13)−(8.16)

∫ ∞

0

(d1n1(t) + d2n2(t))dt

≥ min
n(t) s.t. (8.13)−(8.16)

∫ D

0

(d1n1(t) + d2n2(t))dt

=

∫ D

0

(d1n
∗D
1 (t) + d2n

∗D
2 (t))dt =

∫ ∞

0

(d1n
∗D
1 (t) + d2n

∗D
2 (t))dt

≥ min
n(t) s.t. (8.13)−(8.16)

∫ ∞

0

(d1n1(t) + d2n2(t))dt, (8.47)

for all D ≥ H(d1n1+d2n2). Hence, (u∗D(t), n∗D(t)) is an optimal solution of (8.18).
In particular, this implies the existence result for the minimization problem (8.18).
In addition, from (8.47) we obtain that for any optimal trajectory n∗(t) of (8.18),
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it holds that

min
n(t) s.t. (8.13)−(8.16)

∫ ∞

0

(d1n1(t) + d2n2(t))dt

=

∫ ∞

0

(d1n
∗
1(t) + d2n

∗
2(t))dt ≥

∫ D

0

(d1n
∗
1(t) + d2n

∗
2(t))dt

≥ min
n(t) s.t. (8.13)−(8.16)

∫ D

0

(d1n1(t) + d2n2(t))dt

= min
n(t) s.t. (8.13)−(8.16)

∫ ∞

0

(d1n1(t) + d2n2(t))dt,

for all D ≥ H(d1n1 + d2n2). This proves the lemma under the condition that there
indeed exists a function H(·) satisfying (8.46). The latter will be shown in the
remainder of the proof. We use similar arguments as in [88, Proposition 6.1].

Denote by πp the policy that always serves classes 1 and 2 in parallel whenever
possible. Let np(t) be the trajectory that corresponds to policy πp. Under the
stability conditions we know that np(t) hits zero after a finite time and then remains
empty, see Lemma 8.3.1. Denote by T p(ñ, n′) the time it takes for policy πp to move
from ñ to n′. Then, the depletion time, T p(ñ, 0), can be written as follows

T p(ñ, 0) = T p(ñ, axes)+
y1(ñ)

µ1(1 − ρ2

c2
(1 − c1) − ρ1)

+
y2(ñ)

µ2(1 − ρ1

c1
(1 − c2) − ρ2)

, (8.48)

where T p(ñ, axes) = min
(

ñ1

(µ1c1−λ1)+ , ñ2

(µ2c2−λ2)+

)

is the time until the trajectory

hits either one of the axes, and y(ñ) represents the point where the trajectory hits
the axis when started in ñ. Note that y1(ñ) = ñ1 − T p(ñ, axes) · µ1(c1 − ρ1) and
y2(ñ) = ñ2 − T p(ñ, axes) · µ2(c2 − ρ2). Hence, the depletion time scales as follows:
T p(a · ñ, 0) = a · T p(ñ, 0), a ≥ 0.

Let 0 < ζ < 1 be fixed, and x > 0. We now have the following upper bound for
all initial states n with d1n1 + d2n2 = x:

∫ D

0

(d1n
∗D
1 (t) + d2n

∗D
2 (t))dt ≤

∫ D

0

(d1n
p
1(t) + d2n

p
2(t))dt

≤ sup
0≤t≤D

{d1n
p
1(t) + d2n

p
2(t)} · T p(n, 0) ≤ x · ζ · (1 − ζ) · H(x). (8.49)

Here the function H(x) is defined as

H(x) :=
β

ζ · (1 − ζ)
· sup

l:d1l1+d2l2=x
{T p(l, 0)},

with the constant

β := 1 + max(0,
d1(λ1 − µ1c1) + d2(λ2 − µ2c2)

µ1c1 − λ1
,
d1(λ1 − µ1c1) + d2(λ2 − µ2c2)

µ2c2 − λ2
),
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so that for all initial states n with d1n1+d2n2 = x it holds that sup0≤t≤D{d1n
p
1(t)+

d2n
p
2(t)} = max (x, x + T p(n, axes) · (d1(λ1 − µ1c1) + d2(λ2 − µ2c2))) ≤ β · x.
From (8.48) it easily follows that T p(l, 0) is continuous in l. This implies that

supl:d1l1+d2l2=x T p(l, 0) < ∞ and in particular H(x) < ∞ for all x > 0. Assume
D ≥ H(x) (in particular, D ≥ (1 − ζ) · H(x)). From (8.49) we obtain that

τ(x) := arg min
t≥0

{d1n
∗D
1 (t) + d2n

∗D
2 (t) ≤ x · ζ} ≤ (1 − ζ) · H(x), (8.50)

for all initial states n with d1n1 + d2n2 = x.
From continuity of n∗D(t) it follows that d1n

∗D
1 (τ(x)) + d2n

∗D
2 (τ(x)) = x · ζ.

Hence, if n∗D(0) = (n1, n2), then n∗D
(
∑∞

m=1 τ((d1n1 + d2n2)ζ
m−1)

)

= (0, 0). Note
that H(a ·x) = a ·H(x), a ≥ 0. Together with (8.50) it follows that

∑∞
m=1 τ((d1n1 +

d2n2)ζ
m−1) ≤∑∞

m=1 ζm−1(1− ζ) ·H(d1n1 + d2n2) = H(d1n1 + d2n2) < ∞. Hence,
relation (8.46) holds. �
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We construct policy π below. Note that uπ
2 (t) = 0 when nπ

1 (t) > 0.

• If nπ
1 (t) > 0 and nπ

2 (t) > 0, then uπ
c (t) = uπ̃

2 (t) + uπ̃
c (t), uπ

1 (t) = uπ̃
1 (t) and

uπ
2 (t) = 0.

• If nπ
1 (t) = 0 and nπ

2 (t) > 0, then uπ
c (t) = min

(

uπ̃
2 (t) + uπ̃

c (t), ρ1

c1

)

, uπ
1 (t) =

min
(

uπ̃
1 (t), ρ1 − c1u

π
c (t)

)

and uπ
2 (t) = uπ̃

c (t) + uπ̃
1 (t) + uπ̃

2 (t) − uπ
c (t) − uπ

1 (t).

• If nπ
1 (t) > 0 and nπ

2 (t) = 0, then uπ
c (t) = min

(

uπ̃
2 (t) + uπ̃

c (t), ρ2

c2

)

, uπ
1 (t) =

uπ̃
c (t) + uπ̃

1 (t) + uπ̃
2 (t) − uπ

c (t) and uπ
2 (t) = 0.

• If nπ
1 (t) = 0 and nπ

2 (t) = 0, then take uπ(t) such that ρi = uπ
i (t) + ciu

π
c (t),

i = 1, 2.

Once nπ
1 (t) + nπ

2 (t) = 0, policy π will keep the system empty from that moment on
(this is possible since the stability conditions are satisfied). Therefore, we will focus
on states with nπ

1 (t) + nπ
2 (t) > 0.

For policies π and π̃, we will prove the following inequalities:

Uπ
1 (t) + c1U

π
c (t) ≥ U π̃

1 (t) + c1U
π̃
c (t), (8.51)

Uπ
1 (t) + Uπ

2 (t) + (c1 + c2)U
π
c (t) ≥ U π̃

1 (t) + U π̃
2 (t) + (c1 + c2)U

π̃
c (t), (8.52)

(1 − c2)U
π
1 (t) + c1(U

π
2 (t) + Uπ

c (t)) ≥ (1 − c2)U
π̃
1 (t) + c1(U

π̃
2 (t) + U π̃

c (t)). (8.53)

They are similar to the inequalities of the stochastic model (8.9)–(8.11) when setting
Si(t) = Ui(t) + ciUc(t). When multiplying (8.51) by d1µ1 − d2µ2 ≥ 0 and (8.52) by
d2µ2 and adding the two inequalities, we obtain d1µ1U

π
1 (t)+d2µ2U

π
2 (t)+(d1µ1c1 +

d2µ2c2)U
π
c (t) ≥ d1µ1U

π̃
1 (t) + d2µ2U

π̃
2 (t) + (d1µ1c1 + d2µ2c2)U

π̃
c (t). By (8.13) we

get d1n
π
1 (t) + d2n

π
2 (t) ≤ d1n

π̃
1 (t) + d2n

π̃
2 (t) for all t ≥ 0, which was to be proved.
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The remainder of the appendix is devoted to the proof of inequalities (8.51)–(8.53).
Throughout the proof, we consider the workload fluid processes wi(·) = ni(t)/µi,
i = 1, 2.

Note that Uj(t), j = 1, 2, c, is continuous. In order to show (8.51), we therefore
consider the first time instant t such that (8.51) holds with equality and is violated
immediately after time t. So Uπ

1 (t)+ c1U
π
c (t) = U π̃

1 (t)+ c1U
π̃
c (t), and by (8.13) also

nπ
1 (t) = nπ̃

1 (t), while uπ
1 (t+) + c1u

π
c (t+) < uπ̃

1 (t+) + c1u
π̃
c (t+), so nπ

1 (t+) > nπ̃
1 (t+).

Since nπ
1 (t+) > 0, by construction of policy π we obtain uπ

1 (t) + c1u
π
c (t) ≥ uπ̃

1 (t) +
c1u

π̃
c (t), which gives contradiction. Hence (8.51) holds for all t ≥ 0.

Let time t be the first time instant that either (8.52) or (8.53) holds with equality
and is violated immediately after time t. The remainder of the proof consists of two
parts, depending on whether equation (8.52) or (8.53) is the first to be violated.

Part I: Assume (8.52) is the first equation that fails to hold, i.e., Uπ
1 (t)+Uπ

2 (t)+(c1+
c2)U

π
c (t) = U π̃

1 (t)+U π̃
2 (t)+(c1+c2)U

π̃
c (t), and by (8.13) also wπ

1 (t)+wπ
2 (t) = wπ̃

1 (t)+
wπ̃

2 (t), while uπ
1 (t+)+uπ

2 (t+)+ (c1 + c2)u
π
c (t+) < uπ̃

1 (t+)+uπ̃
2 (t+)+ (c1 + c2)u

π̃
c (t+).

In what follows we use the following implication, which will be proved later on:

wπ
1 (t) + wπ

2 (t) = wπ̃
1 (t) + wπ̃

2 (t) implies wπ
i (t) = wπ̃

i (t), i = 1, 2. (8.54)

We now distinguish between three cases: (i) If wπ
1 (t+) > 0 and wπ

2 (t+) > 0, then
by construction of policy π, uπ

c (t+) ≥ uπ̃
c (t+). (ii) If wπ

1 (t+) = 0, then 0 = wπ
1 (t)(=

wπ̃
1 (t)), since w1(·) is continuous. Policy π is able to keep class 1 empty at time

t+ while π̃ might not, so we have ρ1 = uπ
1 (t+) + c1u

π
c (t+) ≥ uπ̃

1 (t+) + c1u
π̃
c (t+). In

particular, uπ̃
c (t+) ≤ ρ1/c1, and by construction of policy π, this implies uπ

c (t+) ≥
uπ̃

c (t+). (iii) If wπ
2 (t+) = 0, then 0 = wπ

2 (t)(= wπ̃
2 (t)), since w2(·) is continuous. In

a similar fashion as in the previous case, we obtain that uπ
c (t+) ≥ uπ̃

c (t+). Hence,
in all cases it holds that uπ

c (t+) ≥ uπ̃
c (t+). Together with c1 + c2 ≥ 1 and uπ

1 (t+) +
uπ

2 (t+)+uπ
c (t+) = uπ̃

1 (t+)+uπ̃
2 (t+)+uπ̃

c (t+), we can conclude that uπ
1 (t+)+uπ

2 (t+)+
(c1+c2)u

π
c (t+) ≥ uπ̃

1 (t+)+uπ̃
2 (t+)+(c1+c2)u

π̃
c (t+), and we reach a contradiction. It

now only remains to prove that the implication in (8.54) is satisfied. We distinguish
between the following two cases:

• Assume there is an interval [u, t) in which policy π̃ has more work in the system
compared to policy π, i.e., wπ

1 (v) + wπ
2 (v) < wπ̃

1 (v) + wπ̃
2 (v), for all v ∈ [u, t).

If the interval is such that wπ
1 (v) > 0 and wπ

2 (v) > 0, for all v ∈ [u, t), then
policy π̃ can never catch up with π (by construction of policy π). Hence, we
can choose the interval [u, t) such that:

(i) For all v ∈ [u, t), wπ
2 (v) = 0 and wπ

1 (v) > 0.

(ii) For all v ∈ [u, t), wπ
1 (v) = 0 and wπ

2 (v) > 0.

Note that the two cases are mutually exclusive. We show that (8.54) holds in
both cases.

By continuity of wπ
2 (·), in case (i) we have as well wπ

2 (t) = 0. Hence, wπ
1 (t) =

wπ̃
1 (t) + wπ̃

2 (t). By (8.13) and (8.51) we have wπ
1 (t) ≤ wπ̃

1 (t). Together this
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gives wπ̃
2 (t) = 0 (= wπ

2 (t)) and wπ̃
1 (t) = wπ

1 (t). Hence, in case (i), (8.54) is
proved.

Let M π̂
j (u, t) =

∫ t

u
uπ̂

j (s)ds be the cumulative amount of time that activity j
occurs under policy π̂ in the time interval [u, t). The total amount of additional
capacity that policy π̃ gets compared with policy π in the interval [u, t) is

(c1 + c2)M
π̃
c (u, t) + M π̃

1 (u, t) + M π̃
2 (u, t) − (c1 + c2)M

π
c (u, t)

− Mπ
1 (u, t) − Mπ

2 (u, t) = (c1 + c2 − 1)(M π̃
c (u, t) − Mπ

c (u, t)),

where we used that M π̃
c (u, t) + M π̃

1 (u, t) + M π̃
2 (u, t) = Mπ

c (u, t) + Mπ
1 (u, t) +

Mπ
2 (u, t). This is equal to the difference in the total workload at time u, so

(c1 + c2 − 1)(M π̃
c (u, t) − Mπ

c (u, t)) = wπ̃
1 (u) + wπ̃

2 (u) − wπ
1 (u) − wπ

2 (u). In
case (ii), wπ

1 (u) = 0, hence we obtain from (8.13) and (8.53) that c1w
π
2 (u) =

(1 − c2)w
π
1 (u) + c1w

π
2 (u) ≤ (1 − c2)w

π̃
1 (u) + c1w

π̃
2 (u). Rewriting this gives

wπ̃
1 (u) ≤ c1

c1 + c2 − 1
(wπ̃

1 (u) + wπ̃
2 (u) − wπ

2 (u)) = c1(M
π̃
c (u, t) − Mπ

c (u, t)).

(8.55)
Note that ρ1(t − u) = c1M

π
c (u, t) + Mπ

1 (u, t) (since in case (ii) class 1 is kept
empty under policy π), and M π̃

1 (u, t) ≥ Mπ
1 (u, t) (by definition of policy π).

Together with (8.55) this gives

wπ̃
1 (t) = wπ̃

1 (u) + ρ1(t − u) − c1M
π̃
c (u, t) − M π̃

1 (u, t) ≤ 0.

By continuity of wπ
1 (·), in case (ii) we have as well wπ

1 (t) = 0. Hence it follows
immediately from wπ

1 (t)+wπ
2 (t) = wπ̃

1 (t)+wπ̃
2 (t) that wπ

i (t) = wπ̃
i (t), i = 1, 2.

• Now consider the case when there is an interval [v, t] such that wπ
1 (u)+wπ

2 (u) =
wπ̃

1 (u) + wπ̃
2 (u) for all u ∈ [v, t] and wπ

1 (v−) + wπ
2 (v−) < wπ̃

1 (v−) + wπ̃
2 (v−).

From the previous item, we obtain that wπ
i (v) = wπ̃

i (v), i = 1, 2. Together
with the fact that in the interval [v, t] the total workload is equal under both
policies, and by construction of policy π, it follows that π does exactly the
same as policy π̃. Hence, wπ

i (u) = wπ̃
i (u) for all u ∈ [v, t], i = 1, 2.

Part II: Assume (8.53) is the first equation that fails to hold, i.e., (1 − c2)U
π
1 (t) +

c1(U
π
2 (t) + Uπ

c (t)) = (1 − c2)U
π̃
1 (t) + c1(U

π̃
2 (t) + U π̃

c (t)), and by (8.13) also (1 −
c2)w

π
1 (t) + c1w

π
2 (t) = (1 − c2)w

π̃
1 (t) + c1w

π̃
2 (t), while (1 − c2)u

π
1 (t+) + c1(u

π
2 (t+) +

uπ
c (t+)) < (1− c2)u

π̃
1 (t+)+ c1(u

π̃
2 (t+)+uπ̃

c (t+)). We have the following possibilities:

• If wπ
1 (t+) > 0 and wπ

2 (t+) > 0, then by definition of policy π we have (1 −
c2)u

π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+)) = (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

• If wπ
1 (t+) = 0 and wπ

2 (t+) > 0, then we distinguish between the following
three cases:

(i) If ρ1 ≤ c1(u
π̃
2 (t+) + uπ̃

c (t+)), then uπ
1 (t+) = 0, uπ

2 (t+) = uπ̃
1 (t+) + uπ̃

2 (t+) +
uπ̃

c (t+) − ρ1

c1
and uπ

c (t+) = ρ1

c1
. Since c1 + c2 > 1, we have

(1 − c2)u
π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+)) = c1(u
π̃
1 (t+) + uπ̃

2 (t+) + uπ̃
c (t+))

≥ (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).
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(ii) If c1(u
π̃
2 (t+)+uπ̃

c (t+)) < ρ1 ≤ uπ̃
1 (t+)+c1(u

π̃
2 (t+)+uπ̃

c (t+)), then uπ
1 (t+) =

ρ1 − c1(u
π̃
2 (t+) + uπ̃

c (t+)), uπ
2 (t+) = uπ̃

1 (t+) − ρ1 + c1(u
π̃
2 (t+) + uπ̃

c (t+)) and
uπ

c (t+) = uπ̃
2 (t+) + uπ̃

c (t+). Together with c1 + c2 > 1, we obtain

(1 − c2)u
π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+))

= (1 − c2)(ρ1 − c1(u
π̃
2 (t+) + uπ̃

c (t+)))

+ c1(u
π̃
1 (t+) + uπ̃

2 (t+) + uπ̃
c (t+) − ρ1 + c1(u

π̃
2 (t+) + uπ̃

c (t+)))

= (1 − c1 − c2)ρ1 + c1(c1 + c2)(u
π̃
2 (t+) + uπ̃

c (t+)) + c1u
π̃
1 (t+)

≥ (1 − c1 − c2)(u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+))) + c1(c1 + c2)(u
π̃
2 (t+)

+ uπ̃
c (t+)) + c1u

π̃
1 (t+)

= (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

(iii) If uπ̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)) < ρ1, then uπ
1 (t+) = uπ̃

1 (t+), uπ
2 (t+) = 0

and uπ
c (t+) = uπ̃

2 (t+) + uπ̃
c (t+). So we have (1 − c2)u

π
1 (t+) + c1(u

π
2 (t+) +

uπ
c (t+)) = (1 − c2)u

π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

• If wπ
1 (t+) > 0 and wπ

2 (t+) = 0, then by continuity of wπ
2 (·) we have wπ

2 (t) = 0.
Hence, (1 − c2)w

π
1 (t) = (1 − c2)w

π̃
1 (t) + c1w

π̃
2 (t). Since also wπ

1 (t) ≤ wπ̃
1 (t),

this gives wπ
1 (t) = wπ̃

1 (t) and 0 = wπ
2 (t) = wπ̃

2 (t). Note that when wπ̃
2 (t+) = 0,

then uπ̃
2 (t+)+c2u

π̃
c (t+) = ρ2. If instead wπ̃

2 (t+) > 0, then uπ̃
2 (t+)+c2u

π̃
c (t+) <

uπ
2 (t+)+c2u

π
c (t+) = ρ2 (the inequality follows from 0 = wπ

2 (t) = wπ̃
2 (t), and the

fact that policy π is able to keep class 2 empty at time t+, while policy π̃ is not).
Hence, it holds that uπ̃

2 (t+) + c2u
π̃
c (t+) ≤ ρ2 (so also uπ̃

2 (t+) + uπ̃
c (t+) ≤ ρ2

c2
).

By construction of policy π, this implies uπ
c (t+) = uπ̃

2 (t+) + uπ̃
c (t+), uπ

1 (t+) =
uπ̃

1 (t+) and uπ
2 (t+) = 0. Hence, (1 − c2)u

π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+)) = (1 −
c2)u

π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

For all the three possibilities we reach a contradiction with (1−c2)u
π
1 (t+)+c1(u

π
2 (t+)+

uπ
c (t+)) < (1 − c2)u

π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)) and this concludes the proof. �

8.E Proof of Lemma 8.3.9

Let N
π∗

i (t), i = 1, 2, T
π∗

j (t), j = 1, 2, c, 0, be a fluid limit of policy π∗. So the

functions N
π∗

i (t), i = 1, 2, satisfy (8.25), and the functions T
π∗

j (·), j = I, 1, 2, c, are
absolutely continuous (follows from Lipschitz continuity), and hence are differen-
tiable almost everywhere. Fix a sample path ω such that there is a subsequence rk

with limrk→∞ N
π∗,rk

i (t) = N
π∗

i (t), i = 1, 2, u.o.c., and limrk→∞ T
π∗,rk

j (t) = T
π∗

j (t),

j = 1, 2, c, u.o.c.. Further, let t > 0 be a regular point of T
π∗

j (t) for all j = I, 1, 2, c.

First assume N
π∗

2 (t) < αµ2

µ1
N

π∗

1 (t). Then there is an ǫ > 0 such that N
π∗

2 (s) <

αµ2

µ1
N

π∗

1 (s) for s ∈ [t− ǫ, t + ǫ]. By the uniform convergence of N
π∗,rk

i (·) to N
π∗

i (·),
i = 1, 2, on [t−ǫ, t+ǫ], we have Nπ∗,rk

2 (rks) < αµ2

µ1
Nπ∗,rk

1 (rks) for all rk large enough
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and s ∈ [t − ǫ, t + ǫ]. Hence, under policy π∗, in the interval [rk(t − ǫ), rk(t + ǫ)]

class 1 is served and we obtain T
π∗,rk

1 (t + ǫ) − T
π∗,rk

1 (t − ǫ) = 2ǫ. Letting rk → ∞
and ǫ ↓ 0 we obtain

dT
π∗
1 (t)
dt = 1.

Now assume N
π∗

2 (t) > αµ2

µ1
N

π∗

1 (t) and N
π∗

1 (t) > 0. Then there is an ǫ such

that Nπ∗,rk

2 (rks) > αµ2

µ1
Nπ∗,rk

1 (rks) and Nπ∗,rk

1 (rks) > 0 for all rk large enough and

s ∈ [t− ǫ, t + ǫ]. Under policy π∗, in this interval both classes are served in parallel,

hence
dT

π∗
c (t)
dt = 1.

Assume N
π∗

2 (t) = αµ2

µ1
N

π∗

1 (t) and N
π∗

1 (t) > 0. Then there is an ǫ such that

Nπ∗,rk

1 (rks) > 0 for all rk large enough and s ∈ [t − ǫ, t + ǫ]. In this interval,

class 2 is never served individually, so
dT

π∗
1 (s)
ds +

dT
π∗
c (s)
ds = 1, for any regular point

s ∈ [t − ǫ, t + ǫ]. Together with (8.25), we obtain

α
µ2

µ1

dN
π∗

1 (s)

ds
− dN

π∗

2 (s)

ds

= µ2

(

−α · (−ρ1 +
dT

π∗

1 (s)

ds
+ c1

dT
π∗

c (s)

ds
) − ρ2 + c2

dT
π∗

c (s)

ds

)

< µ2

(

−c2 − ρ2

c1 − ρ1
· (−ρ1 +

dT
π∗

1 (s)

ds
+ c1

dT
π∗

c (s)

ds
) − ρ2 + c2

dT
π∗

c (s)

ds

)

= µ2

(

−c2 − ρ2

c1 − ρ1
· (c1 − ρ1 +

dT
π∗

1 (s)

ds
(1 − c1)) − ρ2 + c2 − c2

dT
π∗

1 (s)

ds

)

= −dT
π∗

1 (s)

ds
· µ2

c1 − ρ1
·
(

(c2 − ρ2)(1 − c1) + c2(c1 − ρ1)
)

= −dT
π∗

1 (s)

ds
· µ2c2

c1 − ρ1
·
(

1 − ρ1 −
ρ2

c2
(1 − c1)

)

≤ 0, (8.56)

whenever s ∈ [t − ǫ, t + ǫ] is a regular point. Here we used that c1 + c2 > 1, ρ1 <

c1 ≤ 1, ρ2 < 1 − ρ1

c1
(1 − c2), α > c2−ρ2

c1−ρ1
and

dT
π∗
1 (s)
ds +

dT
π∗
c (s)
ds = 1. Equation (8.56)

implies that if at a certain time N
π∗

lies below the switching curve, then it moves

towards the switching curve and if N
π∗

lies on or above the switching curve, it
will move away from (and above) the switching curve. Since at time t we are in a

state on the switching curve, we have N
π∗

2 (s) < αµ2

µ1
N

π∗

1 (s) for s ∈ [t − ǫ, t) and

N
π∗

2 (s) > αµ2

µ1
N

π∗

1 (s) for s ∈ (t, t + ǫ]. Note that
dT

π∗
1 (t−)
dt = 1 and

dT
π∗
c (t−)
dt = 0,

while
dT

π∗
1 (t+)
dt = 0 and

dT
π∗
c (t+)
dt = 1, so that the point t itself is not a regular point.

Finally assume N
π∗

1 (t) = 0 and N
π∗

2 (t) > 0. Then there is an ǫ > 0 such that

N
π∗

2 (s) > αµ1

µ2
N

π∗

1 (s) for s ∈ [t − ǫ, t + ǫ] and hence Nπ∗,rk

2 (rks) > αµ1

µ2
Nπ∗,rk

1 (rks)

for all rk large enough and s ∈ [t − ǫ, t + ǫ]. In this interval class 1 is not served
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individually under policy π∗, hence
dT

π∗
1 (t)
dt = 0. From (8.25) we then have

dN
π∗

1 (t)

dt
= λ1 − µ1c1

dT
π∗

c (t)

dt
. (8.57)

Note that if N
π∗

1 (t + δ) > 0, for all 0 < δ < ∆, then
dT

π∗
c (t+δ)

dt = 1. Since ρ1 < c1,

from (8.57) we see that class 1 will stay empty, and thus
dT

π∗
c (t)
dt = ρ1

c1
. We conclude

that (8.26)–(8.28) are satisfied for each fluid limit T
π∗

(t).

From (8.25) and (8.26)–(8.28) it follows that N
π∗

i (t) is uniquely determined. Us-

ing the correspondence u∗
j(t) =

dT
π∗
j (t)

dt , j = 1, 2, c, with u∗(t) as defined in Propo-

sition 8.3.5, it follows that N
π∗

(t) = n∗(t), with n∗(t) the trajectory corresponding
to the control u∗(t).
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[148] I.M. Verloop and R. Núñez-Queija. Efficient resource allocation in bandwidth-
sharing networks. Performance Evaluation Review, 35(3):49–50, 2007.
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Summary

Scheduling in stochastic resource-sharing systems

In this thesis we study queueing models that arise in the context of resource sharing
in communication networks. We determine scheduling policies that (asymptoti-
cally) optimize the performance of the system, and evaluate policies that share the
resources among the users in a fair manner.

Chapter 1 gives an overview of several concepts related to resource-sharing sys-
tems and introduces the queueing models and main techniques used throughout the
thesis. We describe the work-conserving single-server system, the linear bandwidth-
sharing network, and the parallel two-server model. In the latter two models the
speed at which the system works depends on the scheduling decision taken and on
the types of users presently in the system. These models can therefore be seen as
extensions of the single-server model. The stochastic evolution of the numbers of
users is determined by the scheduling policy, which specifies how the resources are
shared among all users. We use sample-path techniques and stochastic dynamic
programming tools in order to characterize policies that minimize the holding cost.
Since the original stochastic model is not always tractable, we also investigate two
limiting regimes. One of them is the heavy-traffic regime where we let the offered
load approach the maximum capacity. In the other regime we consider the queue-
length processes under the so-called fluid scaling.

In Chapter 2 we focus on the single-server system in heavy traffic and analyze
a generalization of the DPS policy. More specifically, we consider phase-type dis-
tributed service requirements and allow customers to have different weights in vari-
ous phases of their service. In our main result we establish a state-space collapse for
the scaled steady-state queue length vector in heavy traffic. The result shows that
in the limit, the queue length vector is the product of an exponentially distributed
random variable and a deterministic vector. The proof consists in showing that the
joint probability generating function of the queue lengths satisfies a partial differ-
ential equation that allows a closed-form solution after passing to the heavy-traffic
limit. Our result has several interesting consequences for the standard DPS queue.
We derive that, conditioned on the number of customers, the remaining service re-
quirements of the various customers are independent and distributed according to
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the forward recurrence times. In addition, we show that the scaled holding cost
stochastically reduces as more preference is given according to the mean forward
recurrence times of the service requirements.

In Chapters 3–7 we study the linear bandwidth-sharing network. This network
provides a natural modeling framework for the dynamic flow-level interaction among
data transfers in wired communication networks. It models the bandwidth sharing
of data traffic that traverses multiple links and the cross traffic it meets on its route.

Size-based scheduling policies, such as SRPT and LAS, are popular mechanisms
for reducing the number of users in single-server systems by favoring smaller re-
quests over larger ones. In Chapter 3 we prove that straightforward extensions of
such policies may cause instability effects in the linear network and will therefore
certainly not yield optimal performance. For networks with sufficiently many nodes,
instability phenomena may in fact arise at arbitrarily low traffic loads.

In Chapters 4–6 we turn to finding policies that minimize the holding cost in a
linear network. In Chapter 4 we restrict the search to the class of non-anticipating
policies and assume exponentially distributed service requirements. We show that
simple priority rules are optimal for certain settings of the parameters of the service
requirements. For the remaining parameter settings we prove that, in the case
of a two-node linear network, an average-cost optimal policy is characterized by
“switching curves”, i.e., the policy dynamically switches between several priority
rules. Since an exact characterization of these curves is not possible in general, we
study in Chapter 5 the related fluid control problem. We show that the optimal
fluid control can be explicitly described by linear switching curves. In most cases
these curves provide asymptotically fluid-optimal policies in the original stochastic
model as well. For some scenarios however, fluid-based switching curves may result
in a policy that is unstable. In that case, the diffusion scaling is appropriate and
efficient switching-curve policies have a square-root shape.

The class of weighted α-fair bandwidth-sharing policies is commonly accepted
to model the dynamic flow-level bandwidth allocation as realized by packet-based
protocols. Through numerical experiments we evaluate the performance of these
policies by comparing them to asymptotically optimal policies. In Chapter 4 we find
that the gap between α-fair policies and optimal policies is not that large provided
the system load is moderate. In addition, the performance under α-fair policies is
quite insensitive to α, as long as this value is not too small. In Chapter 5 we observe
that weighted α-fair policies can approach the optimal performance when choosing
the weights appropriately.

In Chapter 6 we consider a linear network with generally distributed service
requirements and allow anticipating policies. We focus on policies that allocate the
capacity across the classes such that stability of the system is guaranteed. Motivated
by the size-based scheduling results for single-server systems, we then prioritize
within a class the large requests over the small ones. These size-based scheduling
policies are proven to be asymptotically optimal in a heavy-traffic setting for service
requirements with bounded support. In addition, we show that these policies may
outperform α-fair policies, which are non-anticipating, by an arbitrarily large factor
when the load is sufficiently high.
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In Chapter 7 we first focus on a multi-class queueing system with general inter-
arrival times and service requirements, and give sufficient conditions in order to
compare sample-path wise the workload and the number of users under different
policies. This allows us to evaluate the performance of the system under various
policies in terms of stability and the mean holding cost. We then apply this frame-
work to the linear network under weighted α-fair policies. We obtain stability results
and, in the case of exponentially distributed service requirements, establish mono-
tonicity of the mean holding cost with respect to the fairness parameter α and the
relative weights. In addition, we investigate the monotonicity properties in a heavy-
traffic regime and perform numerical experiments. Furthermore, for a single-server
system with two user classes we obtain that under DPS and GPS the mean holding
cost is monotone with respect to their relative weights. This result is in line with the
monotonicity result for DPS under a heavy-traffic setting as obtained in Chapter 2.

In Chapter 8 we focus on a parallel two-server model with two classes of users with
exponentially distributed service requirements. The study of this model is motivated
by scheduling questions in wireless cellular communication networks. It may model
for example the power control of two interfering base stations. For certain choices
of the parameters of the service requirements we give an exact characterization of
an optimal policy. For the remaining cases we study the related deterministic fluid
control model for which we show that the optimal control is described by a switching
curve. Using similar techniques as in Chapter 5, we prove that policies characterized
by either linear or exponential switching curves are asymptotically fluid-optimal in
the original stochastic model. For a moderately-loaded system, we numerically
compare these fluid-based policies with Max-Weight and threshold-based policies,
which are known to be optimal in a heavy-traffic setting. We observe that the fluid-
based and the threshold-based policies perform well, while significant performance
gains can be achieved over Max-Weight policies.
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