Scheduling in Stochastic
Resource-Sharing Systems

THOMAS STIELTJES INSTITUTE
FOR MATHEMATICS

© Verloop, 1.M., 2009
Scheduling in Stochastic Resource-Sharing Systems / by Ina Maria Verloop

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-2056-5

NUR: 919

Subject headings: queueing theory, optimal scheduling, performance evaluation,
communication networks, bandwidth-sharing networks, parallel-server models
2000 Mathematics Subject Classification: 60K25, 68M20, 90B15, 90B18, 90B22,
90B36

Printed by Ponsen & Looijen b.v.
This research was supported by the Netherlands Organisation for Scientific Research
(NWO) under project number 613.000.436

Scheduling in Stochastic

Resource-Sharing Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op donderdag 26 november 2009 om 16.00 uur

door

Ina Maria Verloop

geboren te Amsterdam

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. S.C. Borst
en

prof.dr.ir. O.J. Boxma

Copromotor:
dr. R. Nunez Queija

Dankwoord (Acknowledgements)

Dit proefschrift beschrijft het promotieonderzoek dat ik in de periode september
2005 tot en met augustus 2009 heb uitgevoerd op het CWI. Het had niet tot stand
kunnen komen zonder de hulp van velen. Tk maak dan ook graag van deze gelegen-
heid gebruik om een aantal mensen speciaal te bedanken.

Allereerst ben ik Sem Borst en Sindo Nunez Queija veel dank verschuldigd voor
de zeer plezierige en stimulerende samenwerking tijdens dit promotieonderzoek.
Sem, jouw scherpe en constructieve opmerkingen, welke me altijd de juiste rich-
ting opstuurden, heb ik erg gewaardeerd. Sindo, ik ben je ontzettend dankbaar
voor onze frequente en altijd zeer leerzame discussies. Kortom, ik had me geen
betere begeleiders kunnen wensen. Verder wil ik Onno Boxma bedanken voor het
nauwkeurig doornemen van het gehele proefschrift en zijn nuttige suggesties. Het
CWI ben ik erkentelijk voor de mij ter beschikking gestelde faciliteiten en de Ne-
derlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) voor de financiéle
ondersteuning.

Ik kijk met veel plezier terug op mijn promotietijd, wat niet in de laatste plaats
te danken is aan de goede sfeer in de PNA2 groep op het CWI. In het bijzonder
wil ik hiervoor mijn mede oio’s, Regina, Pascal, Chretien en Wemke, bedanken.
Daarnaast ben ik Bala dankbaar voor de gezellige tijd in Anchorage en voor zijn
snelle en goede hulp bij IXTEX. Matthieu, ik heb veel geleerd van onze discussies
over stochastische orderingen, alsook van je salsalessen waar ik altijd met veel plezier
heen ging. Veel dank hiervoor. Verder wil ik graag de oio’s in kamer 10.14 op de
TU/e bedanken voor hun gastvrijheid en gezelligheid.

My three-month visit at INRIA Paris-Rocquencourt, which was financially
supported by EURO-NF, has been a valuable experience abroad. I am grateful
to Philippe Robert for offering me this opportunity and making it a pleasant and
fruitful stay, as well as to the members of the RAP-group for their generous hospi-
tality.

Tot slot wil ik ook een aantal mensen op persoonlijk vlak bedanken. Als eerste
noem ik graag mijn ouders. Ik ben jullie zeer dankbaar voor alle steun in de
afgelopen jaren. Annewieke en Lisa, bedankt dat jullie het aandurven om me als
paranimfen bij te staan tijdens de verdediging van dit proefschrift. Ook dank ik
Renske voor de gezellige uurtjes in Capelle aan den IJssel en Amsterdam. Urtzi, jij

ii Dankwoord (Acknowledgements)

hebt zowel op wetenschappelijk als persoonlijk vlak een onmisbare rol in de totstand-
koming van dit proefschrift gespeeld. Ik ben je dankbaar voor je onvoorwaardelijke
steun en vertrouwen in mij.

Maaike Verloop
September, 2009

1

2

Contents

Introduction
1.1 Scheduling in resource-sharing systems
1.1.1 Staticsettingo
1.1.2 Dynamic setting Lo
1.2 Motivating exampleso
1.2.1 Wired communication networks
1.2.2 Wireless communication networks
1.3 The single-server system Lo
1.3.1 Processor sharing
1.3.2 Discriminatory processor sharing
1.3.3 Optimal scheduling,
1.4 Bandwidth-sharing networks.
1.4.1 Weighted o-fair sharing
1.4.2 Flow-level performance
1.5 The parallel-server model
1.5.1 Threshold-based policies
1.5.2 Max-Weight policies
1.5.3 Optimal scheduling in heavy traffic
1.6 Methodology
1.6.1 Sample-path comparison
1.6.2 Stochastic dynamic programming
1.6.3 Fluid scaling
1.6.4 Heavy-trafficregime
1.7 Overview of the thesis

Heavy-traffic analysis of discriminatory processor sharing

2.1 General framework and main result L.

2.2 Functional equation 0L

2.3 Heavy-trafficscaling oo

2.4 Proof of the mainresult
2.4.1 State-space collapse oL

O 00 ~J UL = NN =

iv CONTENTS

2.4.2 Determining the common factor 40

2.5 Size-based scheduling oL oL 41

2.6 The standard DPS queue in heavy traffic 42

2.6.1 Residual service requirements 46

2.6.2 Monotonicity in the weights00 48

2.7 Concluding remarks oL oo 51

3 Stability and size-based scheduling in a linear network 53

3.1 Model and preliminaries oL oL 54

3.2 SEPT scheduling 57

3.2.1 Largeclass-Qusers 57

3.2.2 Small class-0 users 58

3.2.3 Intermediate-size class-O users 58

3.3 SRPT scheduling 59

3.3.1 Largeclass-Qusers 60

3.3.2 Small class-Qusers 65

3.4 LASscheduling 67

3.4.1 Largeclass-0users 68

3.4.2 Small class-Qusers 71

3.5 Concluding remarks L 72

4 Optimal scheduling in a linear network 73

4.1 Model and preliminaries L. 74

4.2 Workload Lo 75

4.3 Optimality results o 76

4.3.1 Priority rules and optimality 76

4.3.2 General structure of an average-cost optimal policy 80

4.4 Numerical evaluation of a-fair policies 83

4.5 Concluding remarks L Lo 85
Appendix

4.A Proofs of Lemmas 4.3.4, 4.3.5, and 4.3.7 86

4.B Proofof Lemma 4.3.10 88

5 Asymptotically optimal switching-curve policies 97

5.1 Model and preliminaries 98

5.2 Fluid analysis Lo 99

5.2.1 Optimal fluid control L. 99

5.2.2 Asymptotically fluid-optimal policies 107

5.3 Diffusion scaling for p1 =poo 112

5.3.1 Free process above the switching curve 114

5.3.2 Free process below the switching curve 114

5.3.3 Shape of switching curve. 116

5.4 Numerical evaluation L. 118

5.4.1 Switching-curve policies 118

5.4.2 Weighted a-fair policies 120

CONTENTS v

5.5 Concluding remarks oL Lo 123
Appendix
5.A Proof of Lemma 5.1.1 123
5.B Proof of Lemma 5.1.3 124
5.C Proof of Lemma 5.2.2 125
5.D Proof of Lemma 5.2.4 126
5.E Proof of Lemma 5.2.9 128
5.F Proof of relations (5.28)—(5.30) 130
6 Heavy-traffic analysis of size-based bandwidth-sharing policies 131
6.1 Model and preliminaries oL Lo 132
6.2 Single-server system in heavy traffic 133
6.2.1 Comparison with processor sharing 135
6.2.2 Optimality properties 137
6.3 Linear network in heavy traffic 138
6.3.1 Favoringclass 0. 138
6.3.2 Favoring classes ¢ = 1,..., L simultaneously 142
6.4 Numerical evaluation o0 oL 144
6.5 Concluding remarks L L o 146
Appendix
6.A Proof of Lemma 6.3.6 147
6.B Proof of Proposition 6.3.10 L. 149
7 Monotonicity properties for multi-class queueing systems 151
7.1 Model description Lo 152
7.2 Comparison of policies oL 153
7.2.1 Stability 156
7.2.2 Mean holding cost oL 157
7.3 Linear network o 158
7.4 Weighted a-fair policies 161
7.4.1 Stability 162
7.4.2 Mean holding cost oL 163
7.4.3 Heavy-traffic regime L. 164
7.4.4 Numerical results oL 165
7.4.5 Time-scale separation 167
7.5 Multi-class single-server system oo 169
7.5.1 GPS and DPS policies 169
7.5.2 Comparison of policies 172
7.6 Concluding remarks o 177
Appendix
7.A Proof of Lemma 7.4.1 177

7.B Proof of Proposition 7.4.6 oL 178

vi CONTENTS

8 Optimal scheduling in a parallel two-server model 181

8.1 Model and preliminaries L Lo 182

8.2 Optimality results 184

8.2.1 Priority rule and optimality oL 184

8.2.2 General structure of an average-cost optimal policy 186

8.3 Fluid analysis L 188

8.3.1 Optimal fluid control 188

8.3.2 Asymptotically fluid-optimal policies for p; #e¢1 196

8.4 Discussion for the case p1 >¢1o 201

8.5 Discussion for the case p1 =¢1 203

8.6 Optimality in heavy traffic. 0. 204

8.6.1 Threshold policies, 205

8.6.2 Max-Weight policies Lo 206

8.7 Numerical evaluation 0 0oL 208

8.7.1 Switching-curve policies 208

8.7.2 Max-Weight policies oL 214

8.8 Concluding remarks L L o 216
Appendix

8.A Proofof Lemma 82.2 217

8.B Proof of Lemma 824 218

8.C Proofof Lemma 83.2, 221

8.D Proofof Lemma 83.3 223

8.E Proofof Lemma 83.9, 226

Bibliography 229

Summary 241

About the author

243

Chapter 1

Introduction

Sharing resources among multiple users is common in daily life. One may think of
resources such as lanes on a highway, agents in a call center, the processing capacity
of a computer system, the available bandwidth in communication systems, or the
transmission power of wireless base stations. In each of these situations, some
scheduling mechanism regulates how the resources are shared among competing
users. It is not always clear what the “best” way is to do this. Besides efficient use
of the available resources in order to meet the demand, issues like fairness and the
performance perceived by the users are important as well.

The random nature of arrivals of new users, and of their corresponding ser-
vice characteristics, motivates the study of queueing-theoretic models. In this the-
sis we concentrate on three queueing models in particular: single-server systems,
bandwidth-sharing networks, and parallel-server models. These models arise in the
context of scheduling in communication networks. We are interested in finding
scheduling policies that optimize the performance of the system, and evaluating
policies that share the resources in a fair manner. Whenever possible, we do this
directly for the stochastic queueing model. Otherwise, we resort to asymptotic
regimes: we either let the offered work approach the available capacity or consider
a related deterministic fluid model.

This first chapter serves as background on the content of the thesis and is orga-
nized as follows. In Section 1.1 we describe the essential characteristics of resource-
sharing systems and introduce the notions of efficient and fair scheduling. In Sec-
tion 1.2 we provide several examples of communication networks that motivate our
study of resource-sharing systems. The queueing models are introduced, and a lit-
erature overview is given in the subsequent sections: in Section 1.3 for single-server
queues, in Section 1.4 for bandwidth-sharing networks and in Section 1.5 for parallel-
server models. In Section 1.6 we describe the main techniques and concepts used
throughout the thesis. Section 1.7 concludes this chapter with an overview of the
thesis.

2 Chapter 1 Introduction

1.1 Scheduling in resource-sharing systems

Deciding how to share the resources among users contending for service is a com-
plicated task. This is in particular due to the following two elements. First of all, it
is uncertain at what time new jobs arrive to the system and what amount or what
kind of service they require. Second, the capacity of the resources is finite and there
may be additional constraints on the way the resources can be shared among the
various jobs. For example, some types of jobs might be processed faster by certain
specialized resources, some types of jobs might need capacity from several resources
simultaneously, etc.

In order to mathematically model the dynamic behavior of a resource-sharing
system, we investigate queueing-theoretic models that capture the two elements as
mentioned above. A queueing model consists of several servers with finite capacity,
which can be allocated to users, possibly subject to additional constraints. The
arrivals of new users and the amount and type of service they require, are described
by stochastic processes.

The evolution of a queueing model is determined by the employed scheduling
policy, which specifies at each moment in time how the capacity of the servers is
shared among all users contending for it. An important body of the scheduling liter-
ature is devoted to seeking a policy that optimizes the performance of the queueing
model. The latter may be expressed in terms of performance measures such as
throughput, holding cost, user’s delay, and the number of users in the system. Be-
sides performance, another important notion is fairness. This relates to maintaining
some level of “social justice”, i.e., fairness in treatment of the users. Fairness is a
subjective notion and much research has been devoted to developing quantitative
measures [11].

A well-studied queueing model is the work-conserving single-server system, as
will be described in Section 1.3. This system works at full speed whenever there
is work in the system. Apart from this model, in this thesis we focus on multi-
class resource-sharing systems that can be seen as an extension of the single-server
queue. More specifically, we study models where the total used capacity might
not be constant over time and may depend for instance on the scheduling decision
taken or on the types of users presently in the system. The fact that the scheduling
decisions affect the total used capacity significantly complicates the task of designing
optimal and fair scheduling policies.

In the remainder of this section we introduce in more detail the notions of optimal
and fair scheduling. We make a distinction between the static regime and the
dynamic regime, which are treated in Sections 1.1.1 and 1.1.2, respectively. In the
static regime the population of users is fixed, while the dynamic regime allows for
departures and arrivals of new users.

1.1.1 Static setting

In this section we describe the notions of optimal and fair scheduling in a static
setting. For a given population of users, indexed by i = 1,...,I, we consider

1.1 Scheduling in resource-sharing systems 3

different ways to allocate the available capacity among the users. Let x; be the rate
allocated to user ¢ and let & = (z1,...,2) be the rate allocation vector. The set
consisting of all feasible rate allocation vectors is denoted by S. Besides the fact
that the capacity of the servers is finite, the shape of S is determined by additional
constraints on the way the capacity of the servers can be shared among the users.

In a static setting it is natural to measure the performance in terms of the total
throughput Zle x;. A feasible allocation that maximizes the total throughput may
be called optimal in the static setting. However, this optimal allocation does not
guarantee that all users are allocated a strictly positive rate. It can be the case that
some types of users obtain no capacity at all, which is highly unfair.

A commonly used definition of fairness has its origin in microeconomics. It relies
on a social welfare function, which associates with each possible rate allocation the
aggregate utility of the users in the system [91]. A feasible allocation is called fair
when it maximizes the social welfare function, i.e., an & € S that solves

max » U;(z;), (1.1)
Tes

with U;(z;) the utility of allocating rate x; to user i. When the functions U;(-) are
strictly concave and the set S is convex and compact, the maximization problem
has a unique solution. An important class of utility functions as introduced in [100]
is described by

Ui(zi) = UL (2:) = (1.2)

if a € (0,00)\{1},

wj

{ w;logx; ifa=1,
s

with w; > 0 a weight assigned to user 7, ¢ = 1,..., . The fact that these functions
are increasing and strictly concave forces fairness between users: increasing the rate
of a user that was allocated a relatively little amount, yields a larger improvement
in the aggregate utility. The corresponding allocation that solves the optimization
problem (1.1) is referred to as a weighted a-fair allocation. The resulting perfor-
mance of this static fairness notion in a dynamic context is discussed in Section 1.4
for the particular case of bandwidth-sharing networks.

The class of weighted a-fair allocations contains some popular allocation
paradigms when w; = 1 for all . For example, as « — 0 the resulting allocation
achieves maximum throughput. Under suitable conditions, the Proportional Fair
(PF) and max-min fair allocations (as defined in [24]) arise as special cases when
a =1 and o — oo, respectively, [100]. These notions of fairness have been widely
used in the context of various networking areas, see for example [90, 100, 118, 136]
for max-min fairness and [71, 100, 111] for PF.

The max-min fair allocation (o« — 00) is commonly seen as the most fair, since it
maximizes the minimum rate allocated to any user. On the other extreme, maximiz-
ing the throughput (o — 0) can be highly unfair to certain users. The parameter «
is therefore often referred to as the fairness parameter measuring the degree of fair-
ness. Typically, realizing fairness and achieving a high throughput are conflicting
objectives.

4 Chapter 1 Introduction

1.1.2 Dynamic setting

In practice, users depart upon service completion and new users arrive into the
system over time. As mentioned previously, this can by modeled by queueing-
theoretic models. In this section we discuss performance and fairness measures to
evaluate different scheduling policies.

A key performance requirement in a dynamic setting is stability. Loosely speak-
ing, stability means that the number of users in the system does not grow unbound-
edly or, in other words, that the system is able to handle all work requested by users.
In this thesis we particularly focus on extensions of the single-server system where
the total used capacity may depend on the scheduling decisions taken. Hence, sta-
bility conditions strongly depend on the policy employed. We therefore distinguish
two types of conditions: (i) stability conditions corresponding to a particular policy
and (ii) maximum stability conditions. The latter are conditions on the parameters
of the model under which there exists a policy that makes the system stable.

Besides stability, another important performance measure concerns the number
of users present in the system. We note that minimizing the total mean number of
users is equivalent to minimizing the mean delay, cf. Little’s law. As we will point
out in Section 1.3.3, size-based scheduling policies, e.g. the Shortest Remaining Pro-
cessing Time (SRPT) policy, are popular mechanisms for improving the performance
by favoring smaller service requests over larger ones. However, this does not imme-
diately carry over to the models we consider in this thesis. There are two effects to
be taken into account. In the short term, it is preferable to favor “small” users that
are likely to leave the system soon. In the long term however, a policy that uses the
maximum capacity of the system at every moment in time, can empty the work in
the system faster. When the total capacity used depends on the way the resources
are shared among the classes, the above-described goals can be conflicting.

The objective of optimal scheduling is often contradictory with fair scheduling.
For example, giving preference to users based on their size (as is the case with SRPT)
may starve users with large service requirements. Similar to the static setting, there
is no universally accepted definition of fairness in the dynamic setting. We refer
to [11, 155, 156] for an overview on definitions existing in the literature.

In general, it is a difficult task to find fair or efficient policies for the dynamic
setting. One may think of a policy as a rule that prescribes a rate allocation for each
given population (as the population dynamically changes, the allocation changes
as well). It is important to note that the use of fair or efficient allocations from
the static setting does not give any guarantee for the behavior of the system in the
dynamic setting. For example, maximizing the throughput at every moment in time,
might unnecessarily render the system unstable, and hence be certainly suboptimal
in the dynamic context (see for example [30, Example 1] and Proposition 3.2.1).

1.2 Motivating examples

In this section we describe several examples of communication networks that moti-
vate the queueing models studied in the thesis. The queueing models are discussed

1.2 Motivating examples 5

in more detail in Sections 1.3-1.5.

1.2.1 Wired communication networks

The Internet is a packet-switched network, carrying data from source to destination.
Each data transfer (flow) is split into several chunks (packets) that are routed indi-
vidually over a common path from source to destination. Along this path, packets
traverse various switches and routers that are connected by links. As a result, data
flows contend for bandwidth on these links for the duration of the transfer.

Data flows can be broadly categorized into streaming and elastic traffic. Stream-
ing traffic, corresponding to real-time connections such as audio and video applica-
tions, is extremely sensitive to packet delays. It has an intrinsic rate requirement
that needs to be met as it traverses the network in order to guarantee satisfactory
quality. On the other hand, elastic traffic, corresponding to the transfer of digital
documents like Web pages, e-mails, and data files, does not have a stringent rate
requirement. Most of the elastic data traffic in the Internet nowadays is regulated
by the Transmission Control Protocol (TCP) [65]. This end-to-end control dynami-
cally adapts the transmission rate of packets based on the level of congestion in the
network. It ensures a high transmission rate to a user when the load on its path is
low, and implies a low rate when links on its path are congested.

Link in isolation

Typically, a given link is transmitting packets generated by several data flows. For
example, in Figure 1.1 (left) the white and black packets each correspond to their
own data flow. When viewing the system on a somewhat larger time scale (flow
level), it can be argued that each data flow is transmitted as a continuous stream
through the link, using only a certain fraction of the bandwidth, as depicted in
Figure 1.1 (right). In case of homogeneous data flows and routers this implies that
the bandwidth is equally shared among the data flows, i.e., the throughput of each
data flow is C'/n bits per second when there are n flows present on a link in isolation
with bandwidth C.

Since the dynamics at the packet level occur at a much faster time scale than the
arrivals and departures of data flows, it is reasonable to assume that the bandwidth
allocation is adapted instantly after a change in the number of flows. Under this
time-scale separation, the dynamic bandwidth sharing coincides with the so-called
Processor Sharing (PS) queue, where each flow receives a fraction 1/n of the total
service rate whenever there are n active flows. Hence, PS is a useful paradigm for

T

Figure 1.1: Two data flows in a link at packet level (left), and flow level (right).

6 Chapter 1 Introduction

evaluating the dynamic behavior of elastic data flows competing for bandwidth on
a single link [22, 104]. The actual bandwidth shares may in fact significantly differ
among competing flows, either due to the heterogeneous end-to-end behavior of data
flows or due to differentiation among data flows in routers. An appropriate model
for this setting is provided by the Discriminatory Processor Sharing (DPS) queue,
where all flows share the bandwidth proportional to certain flow-dependent weights.

Multiple links

Instead of one link in isolation, a more realistic scenario is to consider several con-
gested links in the network. Even though individual packets travel across the net-
work on a hop-by-hop basis, when we view the system behavior on a somewhat
larger time scale, a data flow claims roughly equal bandwidth on each of the links
along its source-destination path simultaneously. A mathematical justification for
the latter can be found in [153]. The class of weighted a-fair allocations, as described
in Section 1.1.1, is commonly accepted to model the flow-level bandwidth allocation
as realized by packet-based protocols. For example, the a-fair allocation with a = 2
and weights wy, inversely proportional to the source-destination distance, has been
proposed as an appropriate model for TCP [108]. In addition, for any a-fair alloca-
tion (defined at flow level) there exists a distributed mechanism at packet level that
achieves the a-fair allocation [71, 100, 130].

Under the time-scale separation assumption, bandwidth-sharing networks as con-
sidered in [94] provide a natural way to describe the dynamic flow-level interaction
among elastic data flows. See also [70, 153], where bandwidth-sharing networks are
obtained as limits of packet-switched networks. In bandwidth-sharing networks, a
flow requires simultaneously the same amount of capacity from all links along its
source-destination path.

An example of a bandwidth-sharing network is depicted in Figure 1.2. Flows of
class 0 request the same amount of bandwidth from all links simultaneously and in
each link there is possibly cross traffic present from other routes. This interaction
between active flows can cause inefficient use of the available capacity. For example,
when there are flows of class 0 present, the capacity of a certain link with no cross
traffic may not be fully used when the capacity of another link is already exhausted.

class 0
link 1 link 2 link 3 link L

class 1 class 2 class 3 class L

Figure 1.2: Linear bandwidth-sharing network with L + 1 classes of data flows.

1.2 Motivating examples 7

/A
\ Cs Cs
class-1 class-2
1 Ch

users users

Figure 1.3: A single base station with two classes (left), and the rate region in case
of TDMA (middle) and CDMA (right).

1.2.2 Wireless communication networks

In this section we focus on elastic data transfers in a wireless cellular network. Such
a network consists of several cells each with their own base station. We concentrate
on data transmissions from the base station to the wireless users (laptops, mobiles)
in the corresponding cell. The transmission rate at which a user receives data
is determined by the control mechanism of the base station. In addition, it is
influenced by physical phenomena like signal fading or signal interference with other
base stations.

Base station in isolation

We first consider a base station in isolation. There are two basic methods to divide
the power of the base station among the users. One method is Time Division
Multiple Access (TDMA) in which the base station transmits in each time slot to
exactly one user. Another method is Code Division Multiple Access (CDMA) in
which the base station transmits simultaneously to several users and the various
data streams are jointly coded. Due to power attenuation, users on the edge of the
cell will have worse channel conditions compared to users close to the base station.
In Figure 1.3 (left) we consider a simple example where a class-1 user (class-2 user)
is close to (far from) the base station and its transmission rate equals C; (Cs), with
C1 > (5, when being allocated the full power of the base station. The corresponding
rate region is depicted in Figures 1.3 (middle) and (right) for TDMA and CDMA,
respectively. The northeast boundaries of the capacity regions are obtained when
the base station transmits at full power. Note however that the aggregate allocated
rate varies depending on the power allocation.

Inter-cell interference

When several neighboring base stations transmit simultaneously, the respective sig-
nals may interfere, causing a reduction in the transmission rates. In Figure 1.4
(left) we consider a simple example of two base stations and two classes of users
each associated with their own base station. We assume that a base station is either
off or is transmitting at full power. When only base station i is on, its transmission
rate equals C;, i = 1,2. However, when both base stations are on, the transmission

8 Chapter 1 Introduction

base station 1 base station 2
A A .,
.(cl ,c2)
class-1 class-2 .
users users ol

Figure 1.4: Two base stations each with their own class (left), and the rate region
(right).

rate of base station i is ¢;, ¢; < Cj;, i = 1,2. The corresponding rate region is
depicted in Figure 1.4 (right) and we note that the aggregate transmission rate is
either C7,Cy, or ¢1 + co depending on the activity of the base stations. At present,
a base station typically transmits at full power as long as there are users present
in its cell. The corresponding flow-level performance is studied in [28] for example.
Recently, however, coordination between base stations has been proposed [29, 152],
motivating the study of efficient coordinated power control of base stations.

1.3 The single-server system

The classical single-server system consists of a single queue and a single server with
fixed capacity. Without loss of generality, the capacity is set equal to one. Users
arrive one by one in the system and each user requires a certain amount of service.
Let A denote the arrival rate to the system, so that A~! is the mean inter-arrival
time. The service requirement of a user represents the amount of time that the
server needs to serve the user when it would devote its full capacity to this user.
This random variable is denoted by B. The capacity of the server may be shared
among multiple users at the same time. When a user is not served, it waits in the
queue. Preemption of a user in service is allowed. In the case of preemption, a user
goes back to the queue awaiting to receive its remaining service requirement. After
a user has received its full service, it leaves the system.

A common assumption is that the inter-arrival times are independent and iden-
tically distributed (i.i.d.), the service requirements are i.i.d., and the sequences of
inter-arrival times and service requirements are independent. This model is referred
to as the G/G/1 queue, a notation that was introduced by Kendall [73]. Here the
G stands for general. When in addition the inter-arrival times are exponentially
distributed, i.e., a Poisson arrival process, the corresponding system is denoted by
the M/G/1 queue where the M stands for Markovian or memoryless. When instead
the service requirements are exponentially distributed, the queue is referred to as
the G/M/1 queue.

In a single-server queue the focus is on work-conserving scheduling policies, that
is, policies that always use the full capacity of the server whenever there is work

1.3 The single-server system 9

in the system. Obviously, the total unfinished work in the system, the workload,
is independent of the work-conserving policy employed. In addition, any work-
conserving policy in a G/G/1 queue is stable as long as the traffic load p := A\E(B)
is strictly less than one [86].

While the workload process and the stability condition are independent of the
employed work-conserving policy, this is not the case for the evolution of the queue
length process and, hence, for most performance measures. There is a vast body
of literature on the analysis of scheduling policies in the single-server queue. In
the remainder of this section we mention the results relevant for the thesis. We
first give a description of two time-sharing policies: PS and DPS. As explained
in Section 1.2.1, these policies provide a natural approach for modeling the flow-
level performance of TCP. We conclude this section with an overview of optimal
size-based scheduling in the single-server queue.

1.3.1 Processor sharing

Under the Processor Sharing (PS) policy, the capacity is shared equally among all
users present in the system. When there are n users in the system, each user receives
a fraction 1/n of the capacity of the server. Below we present several known results
from the literature. For full details and references on the PS queue we refer to [104].

When the arrival process is Poisson and p < 1, the stationary distribution of the
queue length exists and is insensitive to the service requirement distribution apart
from its mean. More precisely, the queue length in steady state has a geometric
distribution with parameter p, i.e., the probability of having n users in the queue is
equal to (1 —p)p™, n=0,1,..., cf. [119]. In particular, this implies that the mean
number of users in the system is finite whenever p < 1. Another appealing property
of PS is that a user’s slowdown (defined as the user’s mean sojourn time divided by
its service requirement) equals 1/(1 — p), independent of its service requirement.

For a PS queue with several classes of users, the geometric distribution carries
over as well. Consider K classes of users, where class-k users arrive according to a
Poisson process with arrival rate \;, and have service requirements By, k= 1,..., K.
Assuming Poisson arrivals, the probability of having nj class-k users in the system,
k=1,..., K, is equal to

(n1+...+ng)! X e
(1_p)'n1!-n2!-...-n1{!-Hpkk’ (13)
k=1
with pg := A\ E(Byg) and p := Zszl Pk, [41, 69]. Another interesting result concerns
the remaining service requirements of the users. Given a population of users, the
remaining service requirements are i.i.d. and distributed according to the forward
recurrence times of their service requirements [41, 69].

1.3.2 Discriminatory processor sharing

The Discriminatory Processor Sharing (DPS) policy, introduced in [77] by Kleinrock,
is a multi-class generalization of PS. By assigning different weights to users from

10 Chapter 1 Introduction

different classes, DPS allows class-based differentiation. Let K be the number of

classes, and let w; be the weight associated with class k, £k = 1,..., K. Whenever
there are ny class-k users present, k = 1,..., K, a class-[user is served at rate
w
Kil, l=1,... K.
D1 WMk

In case of unit weights, the DPS policy reduces to the PS policy. Despite the
similarity, the analysis of DPS is considerably more complicated compared to PS.
The geometric queue length distribution for PS does not have any counterpart for
DPS. In fact, the queue lengths under DPS are sensitive with respect to higher
moments of the service requirements [32]. Despite this fact, in [12] the DPS model
was shown to have finite mean queue lengths regardless of the higher-order moments
of the service requirements.

The seminal paper [51] provided an analysis of the mean sojourn time conditioned
on the service requirement by solving a system of integro-differential equations. As
a by-product, it was shown that a user’s slowdown behaves like the user’s slowdown
under PS; as its service requirement grows large, see also [12]. Another asymptotic
regime under which the DPS policy has been studied is the so-called heavy-traffic
regime, which means that the traffic load approaches the critical value (p T 1).
For Poisson arrivals and exponentially distributed service requirements, in [113]
the authors showed that the scaled joint queue length vector has a proper limiting
distribution. Let Nj denote the number of class-k users in steady state, then

(1—p) (N1, Noy.. . Ng) % x (22 22 PEY as o1,
w1 W2 WK

where % denotes convergence in distribution, gy :=lim,1 px, k=1,..., K, and X
is an exponentially distributed random variable. In Chapter 2 we extend this result
for phase-type distributed service requirements. For more results on DPS under
several other limiting regimes we refer to the overview paper [5] and to Chapter 2.
For the sake of completeness, we briefly mention a related scheduling policy,
Generalized Processor Sharing (GPS) [45, 109]. Under GPS, the capacity is allocated
across the non-empty classes in proportion to the weights, i.e., class [receives

Wil (n,>0)

K
D ket W1 (n,>0)

K

) P)

whenever there are nj class-k users present, k¥ = 1,..., K. As opposed to DPS,
under GPS each non-empty class is guaranteed a minimum share of the capacity
regardless of the number of users present within this class.

1.3.3 Optimal scheduling

There exists a vast amount of literature devoted to optimal scheduling in single-
server systems. A well-known optimality result concerns the Shortest Remaining
Processing Time (SRPT) policy, which serves at any moment in time the user with

1.4 Bandwidth-sharing networks 11

the shortest remaining service requirement [120]. In [121, 127] it is proved that
SRPT minimizes sample-path wise the number of users present in the single-server
system. (Stochastic minimization and other optimality notions used in this section
will be introduced in detail in Section 1.6.)

SRPT relies on the knowledge of the (remaining) service requirements of the
users. Since this information might be impractical to obtain, a different strand of
research has focused on finding optimal policies among the so-called non-anticipating
policies. These policies do not use any information based on the (remaining) service
requirements, but they do keep track of the attained service of users present in
the system. Popular policies like First Come First Served (FCFS), Least Attained
Service (LAS), PS and DPS are all non-anticipating. Among all non-anticipating
policies, the mean number of users is minimized under the Gittins rule [3, 57]. The
latter simplifies to LAS and FCFS for particular cases of the service requirements [3].

The LAS policy [78, Section 4.6], also known as Foreground-Background, which
serves at any moment in time the user(s) with the least attained service, has been ex-
tensively studied. For an overview we refer to [105]. In case of Poisson arrivals, LAS
stochastically minimizes the number of users in the system if and only if the service
requirement distribution has a decreasing failure rate (DFR) [3, 114]. This result is
based on the fact that under the DFR assumption, as a user obtains more service,
it becomes less likely that it will leave the system soon. Therefore, prioritizing the
newest users is optimal.

For a service requirement distribution with an increasing failure rate (IFR), any
non-preemptive policy, in particular FCFS, stochastically minimizes the number of
users in the system [114]. A policy is non-preemptive when at most one user is served
at a time and once a user is taken into service this service will not be interrupted.
This result can be understood from the fact that under the IFR assumption, as a
user obtains more service, it becomes more likely that it will leave the system soon.

We finish this section with an important result for the multi-class single-server
system. We associate with each user class a cost ¢; and let uy := 1/E(By), where
By, denotes the class-k service requirement. A classical result states that the so-
called cu-rule, the policy that gives strict priority to classes in descending order
of ¢k, minimizes the mean holding cost E(Zk ¢ Ng). This result holds for the
M/G/1 queue among all non-preemptive non-anticipating policies [56] and for the
G/M/1 queue among all non-anticipating policies [38, 102]. The optimality of the
cp-rule can be understood from the fact that 1/uy coincides in both settings with
the expected remaining service requirement of a class-k user at a scheduling decision
epoch. Hence, at every moment in time, the user with the smallest weighted expected
remaining service requirement is served.

1.4 Bandwidth-sharing networks

Bandwidth-sharing networks provide a modeling framework for the dynamic inter-
action of data flows in communication networks, where a flow claims roughly equal
bandwidth on each of the links along its path, as described in Section 1.2.1. Math-

12 Chapter 1 Introduction

ematically, a bandwidth-sharing network can be described as follows. It consists of
a finite number of nodes, indexed by [= 1,..., L, which represent the links of the
network. Node [has finite capacity C;. There are K classes of users. Associated
with each class is a route that describes which nodes are needed by the users from
this class. Let A be the L x K incidence matrix containing only zeros and ones, such
that Ay, = 1 if node [is used by users of class k and Aj, = 0 otherwise. Each user
requires simultaneously the same capacity from all the nodes on its route. Let s
denote the aggregate rate allocated to all class-k users. The total capacity used from
node [is Zle Ajrsk. Hence, a rate allocation is feasible when Zle Ase < C,
foralll=1,...,L.

An example of a bandwidth-sharing network is the so-called linear network as
depicted in Figure 1.2. It consists of L nodes and K = L+ 1 classes, for convenience
indexed by j =0,1,..., L. Class-0 users require the same amount of capacity from
all L nodes simultaneously while class-i users, i = 1,..., L, require service at node ¢
only. The L x (L + 1) incidence matrix of the linear network is

110 0 ... 0
101 0 ... 0
A= 1 0 0 1 ... 0 :
1 0 0 0 ... 1
hence the capacity constraints are sg + s; < Cy, i@ = 1,..., L. The corresponding

capacity region in the case of a two-node linear network with C; = Cy = C' is
depicted in Figure 1.5. As this figure indicates, the linear network can be viewed
as an extension of the single-server system. More specifically, the system can be
interpreted as a single server that handles all classes with the special feature that it
can work on classes 1,..., L simultaneously at full speed.

As explained in Section 1.2.1, the linear network provides a flow-level model for
Internet traffic that experiences congestion on each link along its path from other
intersecting routes. A linear network also arises in simple models for the mutual
interference in wireless networks. Consider the following setting. Users can be either
in cell 0, 1 or 2. Users in cells 1 and 2 can be served in parallel by base stations 1
and 2, respectively. Because of interference, a user in cell 0 can only be served when

S0

C

C

S1

Figure 1.5: Capacity region of a two-node linear network in case Ch, = Cy = C.

1.4 Bandwidth-sharing networks 13

either base station 1 or 2 is on and transmits the requested file to the user in cell 0.
Hence, class 0 can only be served when both classes 1 and 2 are not served, which
can be modeled as a linear network consisting of two nodes. As a further motivating
example we could think of write permission in a shared database. Consider L servers
that each perform tasks involving read/write operations in some shared database.
Read operations can occur in parallel. However, if a server needs to perform a
task involving write operations, then the database needs to be locked, and no tasks
whatsoever can be performed by any of the other servers. This may be modeled as a
linear network with L nodes, where class-0 tasks correspond to the write operations.

An inherent property of bandwidth-sharing networks is that, given a population
of users, the total used capacity of the network, Ele Elel Ajx sk, is not necessarily
equal to the total available capacity of the network, Zle C;. This may even be the
case when we restrict ourselves to Pareto-efficient allocations, i.e., allocations where
the rate allocated to a class cannot be increased without reducing the rate allocated
to another class. For example, one may think of the linear network where at a
certain moment in time there are no users of class L present. The Pareto-efficient
allocation that serves class 0 makes full use of the capacity of the network. However,
the Pareto-efficient allocation that serves classes 1 until L — 1 uses only the capacity
of the first L — 1 nodes, and leaves the capacity of node L unused.

The maximum stability conditions of a bandwidth-sharing network are
Zszl Aigpr < Cy, for all 1 = 1,..., L, see [59], i.e., the offered load in each node
is strictly less than its available capacity. In general, the stability conditions cor-
responding to a specific policy can be more restrictive than the maximum stability
conditions. This becomes for example apparent in the linear network with unit
capacities, C; = 1, [= 1,..., L. The policy that gives preemptive priority to
class-0 users is stable under the maximum stability conditions, pg + p; < 1, for all
i =1,..., L. However, the Pareto-efficient policy that gives preemptive priority to
classes 1 through L is stable if and only if py < HiL:l(l — pi), which is a more strin-
gent condition. These stability results will be elaborated on in Section 3.2. Note
that in [59] it is shown that this instability effect can be avoided. It is proved that
any Pareto-efficient policy in a bandwidth-sharing network is stable, provided that
it is suitably modified when the number of users in a class becomes too small.

1.4.1 Weighted a-fair sharing

A popular class of policies studied in the context of bandwidth-sharing networks are
weighted a-fair bandwidth-sharing policies. In state 7 = (n1,...,nx) a weighted
a-fair policy allocates si(7)/ni to each class-k user, with (s1(7),..., sk (7)) the
solution of the utility optimization problem

K
maximize anUk <nk) ,
k=1
K
subject to ZAlksk <C, l=1,...,L, (1.4)
k=1

14 Chapter 1 Introduction

and U,ga)(-), a > 0, as defined in (1.2). Note that the total rate allocated to class k,
Sk, is equally shared among all class-k users, in other words, the intra-class policy
is PS.

For a network consisting of one node, the weighted a-fair policy reduces to the
DPS policy with weights w;/a, k =1,...,K. For the linear network with unit
capacities, the weighted a-fair rate allocation is given by

(wong)'/>

(won)V/e + (D1 wing) /e’

57(’/_7:) = 1(ni>0) . (1 — So(ﬁ)), 1= 1, .. .,L,

see [30]. For grid and cyclic networks, as described in [30], the weighted a-fair rate
allocations can be found in closed form as well.

An important property of weighted a-fair policies in bandwidth-sharing networks
concerns stability. In [30] it is proved that when the service requirements and
the inter-arrival times are exponentially distributed, weighted a-fair bandwidth-
sharing policies (« > 0) achieve stability under the maximum stability conditions,
Zle Appr < Cp, foralll =1,..., L, see also [139, 159]. For phase-type distributed
service requirements, maximum stability is proved for the Proportional Fair (PF)
policy (o = 1 and unit weights) [93]. In [31, 34, 82] stability is investigated when
the set of feasible allocations is not given by (1.4). The authors of [31] prove that for
any convex set of feasible allocations, PF and the max-min fair policy (o« — oo and
unit weights) provide stability under the maximum stability conditions. In [34, 82]
stability is investigated when the set of feasible allocations is non-convex or time-
varying. It is shown that the stability condition depends on the parameter a, and
that for some special cases the stability condition becomes tighter as a increases.

1.4.2 Flow-level performance

Very little is known about the way a-fair sharing affects the performance perceived
by users. Closed-form analysis of weighted a-fair policies has mostly remained elu-
sive, except for so-called hypercube networks (a special case is the linear network)
with unit capacities. For those networks, the steady-state distribution of the num-
bers of users of the various classes under PF is of product form and insensitive to the
service requirement distributions [30, 32]. For all other situations, the distributions
of the numbers of users under weighted a-fair policies are sensitive with respect to
higher moments of the service requirement distributions [32]. In [33], insensitive
stochastic bounds on the number of users in any class are derived for the special
case of tree networks. A related result can be found in [134] where the authors focus
on exponentially distributed service requirements and obtain an upper bound on
the total mean number of users under PF.

A powerful approach to study the complex dynamics under weighted a-fair poli-
cies is to investigate asymptotic regimes. For example, in [49] the authors study the
max-min fair policy under a large-network scaling and give a mean-field approxima-
tion. Another asymptotic regime is the heavy-traffic setting where the load on at
least one node is close to its capacity. In this regime, the authors of [68, 72, 160]

1.5 The parallel-server model 15

study weighted a-fair policies under fluid and diffusion scalings and investigate dif-
fusion approximations for the numbers of users of the various classes. In addition,
when the load on exactly one node tends to its capacity, the authors of [160] iden-
tify a cost function that is minimized in the diffusion scaling by the weighted a-fair
policy. For the linear network, heavy-traffic approximations for the scaled mean
numbers of users are derived in [81]. Bandwidth-sharing networks in an overloaded
regime, that is when the load on one or several of the nodes exceeds the capacity, are
considered in [46]. The growth rates of the numbers of users of the various classes
under weighted a-fair policies are characterized by a fixed-point equation.
Motivated by the optimality results in the single-server system, research has
focused on improving weighted a-fair policies using performance benefits from size-
based scheduling. In [1] the authors propose to deploy SRPT as intra-class policy,
instead of PS, in order to reduce the number of users in each class. Another approach
is taken in [157, 158], where weighted a-fair policies are studied with dynamic per-
user weights that depend on the remaining service requirements. Simulations show
that the performance can improve considerably over the standard a-fair policies.

1.5 The parallel-server model

The parallel-server model consists of L multi-skilled servers that can work in parallel
on K classes of users. A class might be served more efficiently on one server than
on another. We denote by p; := 1/E(By;) the mean service rate of a class-k user at
server [, where Bj; denotes the service requirement of a class-k user when server [
works at full speed on this user. Figure 1.6 (left) shows a parallel-server model with
two classes of users and two servers.

The parallel-server system may be viewed as a simple model for a parallel com-
puter system where processors have overlapping capabilities and the capacity of the
processors needs to be allocated among several tasks. Other applications are service
facilities like call centers. An agent can be specialized in a certain type of calls, but
can also handle other types at a relatively low speed. In the thesis we will specif-

52
server 1
class 1 — 11
— | O e
H21
H12
class 2 — O
E—
- 22
server 2

Cy S1

Figure 1.6: Parallel two-server model with two classes (left), and the capacity region
when ¢; + ¢o > max(Cq, Cs) (right).

16 Chapter 1 Introduction

ically focus on a parallel two-server model with two classes of users, where both
servers can work simultaneously on the same user. This model may represent the
interference of two base stations in a cellular wireless network, as described in the
next paragraph.

Consider a parallel two-server model with two classes where both servers can
work simultaneously on the same user. We define ¢y, co, 41 and ps such that they
satisfy w11 = cipr, p12 = (Ch — e1)p1, po1 = (Co — co)pe and pos = couo, with
C1,C2 > 0. In case of exponentially distributed service requirements, we can now
give an equivalent representation of the parallel two-server model with two classes.
In this equivalent model description, class-k users have a mean service requirement
of 1/uk, k = 1,2. When each class is served by its own server, class k receives
capacity ¢g (since then its departure rate is pgr = ckur). However, when both
servers work together on class k, this class receives capacity Cj (since then its
departure rate is pg1 + ke = crpirp+(Cr—ck)px). The corresponding capacity region
is depicted in Figure 1.6 (right) in case ¢1 4+ ¢2 > max(Cy, Cs), where sj, denotes the
capacity allocated to class k. The application to interference in wireless networks
becomes now apparent: the capacity region coincides with that in Figure 1.4 (right)
and is a simplification for the region of Figure 1.3 (right). Interestingly, the shape of
the capacity region, when setting C; = Cy = 1 (without loss of generality), indicates
that the parallel two-server model with two classes may be viewed as an extension
of the single-server system. There is one main server with capacity one that handles
both classes of users. This server has the special feature that when the server works
on both classes in parallel, its capacity becomes ¢ + ¢s.

The above-described parallel two-server model with two classes has been well
studied under the simple priority rule that server k gives preemptive priority to
class k, k = 1,2, and helps the other server when there is no queue of class k.
Under this policy, the model is also referred to as the coupled-processors model for
which the joint queue length distribution has been analyzed in [50] for exponential
service requirements. In [42] the joint workload distribution is characterized in the
case of general service requirements. Both results in [42, 50] require the solution
of a Riemann-Hilbert boundary value problem. A diffusion approximation for the
queue lengths has been obtained in [25, 26] for a heavily-loaded system with general
service requirements.

The maximum stability conditions of a parallel-server model can be explicitly
described: There exists a policy that makes the parallel-server model stable if and
only if there exist zjy >0, k =1,...,K,l =1,...,L, such that _, x); < 1, and
Ak < > @pipuer, with Ap the arrival rate of class k [132, 135]. Due to the special-
ized servers, Pareto-efficient policies in parallel-server models are not necessarily
stable under the maximum stability conditions. In [137] policy-dependent stability
conditions are characterized for the parallel two-server model with o = 0.

Obtaining closed-form expressions for performance measures and finding efficient
scheduling policies in parallel-server models is a notoriously difficult task. For results
obtained in this area we refer to the overview in [128]. In the remainder of this
section we describe those relevant for the thesis.

1.5 The parallel-server model 17

1.5.1 Threshold-based policies

Popular policies studied in the context of parallel-server models rely on thresholds.
Decisions are taken based on whether or not queue lengths exceed class-dependent
thresholds. For example, in the case of the parallel two-server model with two classes
a threshold-based policy could be that both servers serve their own class. However,
when the number of class-1 users exceeds a threshold, server 2 helps server 1 to
reduce the work in class 1. In the case of phase-type distributed service requirements,
the exact stability conditions have been obtained for this policy [107, 137]. In
particular, it is shown that the threshold should be sufficiently large in order for the
system to be stable.

A general class of threshold-based policies for parallel-server models is proposed
in [129]. An important observation made there is that finding reasonable values for
the thresholds is not trivial since performance can be quite sensitive to the threshold
values. The authors of [129] derive approximate formulas for the queue lengths based
on vacation models and illustrate how these can be used to obtain suitable threshold
values. In [107] the authors consider the parallel two-server model with two classes
of users and propose another class of threshold-based policies. Besides determin-
ing the stability conditions, they evaluate the robustness against misestimation of
load. Approximations for mean response times are given in [106], also incorporating
switching times when a server switches between queues. Threshold-based policies
that achieve optimality in a heavy-traffic setting are described in [19, 20].

1.5.2 Max-Weight policies

Max-Weight policies were first introduced in [135] and have been extensively studied
ever since, see for example [89, 125, 132]. The generalized cu-rule [99], including the
Max-Weight policy as a special case, is analyzed in [89] for a parallel-server model.
This rule myopically maximizes the rate of decrease of certain instantaneous holding
cost. More precisely, when server [is free, it starts serving a user from class k'’
such that k' = argmaxy ukldcd"'T(:”“), whenever there are ny class-k users present,
k=1,...,K, and serves this user until it leaves the system. The function Cj(ny)
can be interpreted as the cost of having nj class-k users present in the system. The
class of Max-Weight policies corresponds to functions of the type Ck(ny) = ’yknf +1,
with G, > 0. In that case, the policy can be described by cones in Rf such
that the decision taken by the Max-Weight policy is based on which cone the queue
length vector currently belongs to. Related projective-cone schedulers have been
studied in [8, 116] where the decision is based on which cone the workload vector
currently belongs to.

Under fairly mild conditions, Max-Weight policies achieve maximum stability
for a large class of queueing networks [125, 132, 135]. However, the framework does
not allow for linear holding cost, i.e., = 0. In fact, a myopic policy based on a
linear cost function can render the system unnecessarily unstable. Besides stability,
another important characteristic is that these policies are robust in the sense that
they do not rely on any information of the inter-arrival processes.

Heavy-traffic results for the parallel-server model have been obtained in [89, 132],

18 Chapter 1 Introduction

where it is in particular shown that the generalized cp-rule minimizes the holding
cost, Zle Ci(Ng(t)), sample-path wise in the diffusion limit. Here Ny (¢) denotes
the number of class-k users at time ¢ under the generalized cu-rule. More details on
the heavy-traffic results can be found in Section 8.6.2.

1.5.3 Optimal scheduling in heavy traffic

Determining the optimal policy in a parallel-server model has so far proved analyt-
ically infeasible. Most research in this area has focused on heavily-loaded systems
under a (complete) resource pooling condition. The latter means that as the system
approaches its capacity, the individual servers can be effectively combined to act
as a single pooled resource. As mentioned in Section 1.5.2, the generalized cu-rule
minimizes the scaled cost sample-path wise in heavy traffic. A complementary re-
sult is obtained in [19, 20], where the authors prove that certain threshold-based
policies minimize the scaled average discounted number of users in a heavy-traffic
setting, see Section 8.6.1 for more details. In [10, 61, 62] several discrete-review
policies are proposed (the system is reviewed at discrete points in time, and deci-
sions are based on the queue lengths at the review moment) for which heavy-traffic
optimality results hold as well. It is important to note that Max-Weight policies are
robust, while efficient threshold-based and discrete-review policies may depend on
the inter-arrival characteristics.

1.6 Methodology

When seeking efficient policies, our goal is to minimize the number of users present
in the system, or more generally, the so-called holding cost. Because of Little’s law,
minimizing the total mean number of users is equivalent to minimizing the mean
sojourn time, and thus equivalent to maximizing the user’s throughput defined as
the ratio between the mean service requirement and the mean sojourn time.

We first discuss several notions of optimality. The strongest notion we consider
relates to stochastic ordering. Two random variables X and Y are stochastically
ordered, X <4 Y, when P(X > s) <P(Y > s) for all s € R. Equivalently, X <Y
if and only if there exist two random variables X’ and Y’ defined on a common
probability space, such that X 4 XY 4 Y’, and X’ < Y’ with probability
one [101, 117]. We call a policy 7 stochastically optimal when it stochastically
minimizes the holding cost at any moment in time, i.e.,

K K
chN,’:(t) <g chN,’;(t), for all t > 0, and for all 7 € I,
k=1 k=1

where ¢}, is a positive cost associated with class k, IT is a predetermined set of policies
to which the search is restricted, and N7 (¢) denotes the number of class-k users at
time ¢ under policy 7, k = 1,..., K. A weaker notion of optimality is obtained
when taking the expectation on both sides, i.e., a policy is called optimal when it
minimizes the mean holding cost, E(Zle ¢ Nk (1)), at any moment in time. When

1.6 Methodology 19

optimal policies in the transient regime do not exist, we further weaken the notion
of optimality. We then focus on policies that stochastically minimize the long-run
holding cost, lim,, % fom Zle ¢k Ni(t)dt, or that minimize the average long-run

holding cost,
1"
lim —E(/ cka(t)dt).

The latter notion is referred to as average-cost optimal. Unfortunately, it is not al-
ways within reach to explicitly determine optimal policies. In such cases, we resort
to asymptotic regimes such as a fluid scaling and a heavy-traffic regime. Optimal-
ity definitions in these regimes will be described in more detail in Sections 1.6.3
and 1.6.4.

In the remainder of this section we sketch the four main techniques used in the
thesis: sample-path comparison, stochastic dynamic programming, fluid scaling,
and the heavy-traffic regime. As such, this section serves as a reference framework
throughout the thesis. In Chapters 4, 7 and 8 we apply a sample-path compari-
son technique to characterize policies that minimize the mean holding cost at any
moment in time. Similar techniques are used in Chapter 3 to obtain stability con-
ditions. Another technique used in Chapters 4 and 8 is dynamic programming in
order to find either stochastically-optimal policies or to determine characterizations
of average-cost optimal policies. Fluid-scaled processes and asymptotically fluid-
optimal policies are investigated in Chapters 5 and 8. Chapters 2, 6 and 8 contain
results for systems in a heavy-traffic regime.

1.6.1 Sample-path comparison

Sample-path comparison is a useful tool in the control of queueing networks. A
sample path corresponds to one particular realization of the stochastic process. As
the name suggests, sample-path comparison techniques aim to compare, sample path
by sample path, stochastic processes defined on a common probability space.

When for each sample path the same ordering on two processes holds, these
processes are ordered sample-path wise. This is closely related to stochastic or-
dering of processes. Processes {X(t)}; and {Y(t)}; are stochastically ordered,
{X(#®)}e <st {Y(t)}4, if and only if (X (t1),..., X (tm)) <st (Y(t1),...,Y (ts)) for
any mand all 0 < t; <ty <...<ty < oo, [101]. Hence, if there exist two processes
{X'(t)}+ and {Y'(t)}+ defined on a common probability space (i.e., these two pro-
cesses are coupled) that are ordered sample-path wise and satisfy { X" (¢)}+ 4 {X ()}
and {Y'(t)} 4 {Y'(t)}+, then the processes {X (t)}+ and {Y (¢)}+ are stochastically
ordered.

In queueing networks, a rather intuitive way of coupling processes corresponding
to different policies is to consider the same realizations of the arrival processes and
service requirements. However, often more ingenious couplings are needed in order
to obtain the desired comparison. We refer to [47, 84] for an overview on sample-path
comparison methods and applications to queueing networks. In [92] (see also [85])
necessary and sufficient conditions on the transition rates are given in order for a

20 Chapter 1 Introduction

stochastic order-preserving coupling to exist between two Markov processes.

The optimality of the cu-rule (denoted by 7) in the G/M/1 queue can be
proved using sample-path arguments [84]. Here we describe the proof in the case
of two classes, since it illustrates the basic steps taken in most of the sample-path
proofs in the thesis. Assume cyu; > capo so that the cu-rule amounts to giving
preemptive priority to class 1, see Section 1.3.3. When the system is initially empty
and the same realizations of arrivals and service requirements are considered under
all policies, the following inequalities hold sample-path wise:

Wi (1) < WT (1) (1.5)

and
W™ () + W (1) < W (t) + WE (), (1.6)

for all ¢ > 0 and for all policies 7, where W[() denotes the workload in class k
under policy 7 at time ¢. Multiplying (1.5) by ¢i1u1 — cape > 0 and (1.6) by capue,
and using that E(W[(¢)) = E(NJ (t))/ s for non-anticipating policies (results from
the memoryless property of the exponentially distributed service requirements), it
follows that c;E(NT™" (¢)) + c2B(NF " (1)) < ciB(NT (t)) + c2B(NJ (1)), for all t > 0
and for all non-anticipating policies 7.

1.6.2 Stochastic dynamic programming

Markov decision theory is a useful framework for modeling decision making in
Markovian queueing systems. So-called stochastic dynamic programming tech-
niques, based on Bellman’s principle of optimality [21], allow to study a wide range
of optimization problems. Although these techniques are well developed, only a few
special queueing networks allow for an explicit solution of the optimal policy, see the
survey on Markov decision problems (MDP’s) in the control of queues [131]. Even
when not explicitly solvable, characterizations of the optimal policies can often still
be obtained. We refer to the textbooks [110, 117] for a full overview on MDP’s.

In the simplest setting, an MDP is described as follows. At equidistant points in
time, ¢ = 0,1,..., a decision maker observes the state of the system, denoted by x,
and chooses an action a from the action space A(x). The state at the next decision
epoch, denoted by y, is described by the transition probabilities p(x, a,y) depending
on the current state and the action chosen. There is a direct cost C(x) each time
state x is visited. The corresponding Markov decision chain can be described by
{ X, A}, where X; and A; represent the state and action at time ¢, respectively.

Markov decision theory allows optimization under finite-horizon, infinite-horizon
discounted, and average-cost criteria. Here we focus on the latter, that is, we search
for a policy that minimizes

m—1
1
lim sup EE(Z C(Xy)).
m— oo —0

An average-cost optimal policy does not necessarily need to exist when the state
space is infinite. There exist, however, sufficient conditions under which existence

1.6 Methodology 21

is guaranteed, see for example [123]. In that case, if (g,V(:)) is a solution of the
average-cost optimality equations

1% + , for all states , 1.7
g+ V(x)=Clx) ag}i&)z:pxay (y), for all states =z (1.7)

then g equals the minimum average cost and a stationary policy that realizes the
minimum in (1.7) is average-cost optimal [117, Chapter V.2]. The function V(-) is
referred to as the value function.

There are two main dynamic programming techniques: the policy iteration algo-
rithm and the value iteration algorithm. The latter is used throughout the thesis.

Value iteration consists in analyzing the functions V,,,(-), m = 0,1, ..., defined as
Vo(z) = 0
Vin = =0,1,. 1.8
(@) (@) + min {Zp (2, a,9)Vin(y)}, m = (1.8)

The functions V;,,+1(x) are interesting by themselves. They represent the minimum
achievable expected cost over a horizon m + 1 when starting in state z, i.e., the
term E(}.}" , C(X¢)|Xo =) is minimized. Under certain conditions it holds that
Vin(1) =mg — V(-) and Vi 41(-) — Vin(-) — g as m — oo [64]. In addition, the min-
imizing actions in (1.8) converge to actions that constitute an average-cost optimal
policy [64, 124]. As a consequence, if properties such as monotonicity, convexity, and
submodularity [79] are satisfied for V,,,(-), for all m = 0, 1,..., then the same is true
for the value function V(-). Together with (1.7) this helps in the characterization of
an optimal policy.

For a finite state space, the value iteration algorithm is useful to numerically de-
termine an approximation of the average-cost optimal policy. This consists in recur-
sively computing the functions V;,,41(+) until the difference between max, (V41 (x)—
Vi (2)) and ming (V41 (z) — Vi, (z)) is sufficiently small. Since the state spaces con-
sidered in the thesis are infinite, in all our numerical experiments we apply the value
iteration algorithm after appropriate truncation of the state space.

In a Markovian queueing system, without loss of generality, one can focus on
policies that make decisions at transition epochs. The times between consecutive
decision epochs are state-dependent and exponentially distributed. We can however
equivalently consider the uniformized Markov process [110]: After uniformization,
the transition epochs (including “dummy” transitions that do not alter the system
state) are generated by a Poisson process of uniform rate. As such, the model can be
reformulated as a discrete-time MDP, obtained by embedding at transition epochs.

Throughout the thesis we use value iteration to find either (characterizations
of) average-cost optimal policies (as described above), or stochastically optimal
policies. The latter is done by setting the direct cost equal to zero, C(-) = 0, and
allowing a terminal cost at the end of the horizon, Vy(-) = C(-). In that case, the
term Vj,41(x) represents the minimum achievable expected terminal cost when the
system starts in state x at m + 1 time units away from the horizon, i.e., the term
E(C(Xm11)|Xo = x) is minimized. Setting C(-) = 1(e()>s), With c() some cost

22 Chapter 1 Introduction

function, this corresponds to minimizing P(¢(X,,) > $/Xo =). The minimizing
action in (1.8) is an optimal action at m + 1 time units from the horizon. Hence, if
the optimal actions do not depend on the time horizon m and on the value for s,
then the corresponding stationary policy stochastically minimizes the cost ¢(X;) for
all ¢.

1.6.3 Fluid scaling

The analysis of fluid-scaled processes has proved to be a powerful approach to in-
vestigate stability and optimal scheduling in queueing networks. A well-known re-
sult is [44], where stability of a multi-class queueing network is linked to that of
the corresponding fluid-scaled model. For more details on fluid analysis, we refer
to [40, 97, 115] and references therein. In this section we describe the fluid scaling
of interest and focus on its application to optimal scheduling.

Consider a sequence of processes, indexed by r € N, such that N[(¢) denotes the
number of class-k users at time ¢ in a queueing network with K classes of users when
the initial queue lengths equal NJ (0) = rng, ng, >0, k=1,..., K. The fluid-scaled
number of users is obtained when both time and space are scaled linearly, i.e.,

Nolt) := 20

L k=1,...,K.

Whenever fluid scaling is applied in this thesis, we assume exponential inter-arrival
times and service requirements, and consider non-anticipating policies. More general
service requirements are allowed when posing additional conditions on the intra-class
policies. Due to the functional strong law of large numbers [40], loosely speaking,
each converging subsequence of N (t) converges to some process N (t), which has
continuous characteristics and deterministic fluid input [44]. This limit is referred
to as a fluid limat.

When it does not seem possible to derive optimal policies for the stochastic
queueing network, fluid-scaling techniques can help to obtain approximations in-
stead. In order to do so, a deterministic fluid control model is considered, which is a
first-order approximation of the stochastic network by only taking into account the
mean drifts. For example, in a multi-class single-server queue, on average \j class-k
users arrive per time unit, and on average ug := 1/E(By) class-k users depart when
class k is given full priority. Hence, in this case the fluid control model is described
by the process (nq(t),...,nk(t)) that satisfies

nk(t) = ng + At — ppUg(t), and ng(t) >0, t >0, k=1,..., K,

with Uy (t) = fg ug(v)dv and where uy(-) are feasible control functions, i.e.,

ug(v) <1, and wug(v) >0, k=1,...,K, forall v>0.

M=

k=1

In this thesis we call a fluid control optimal when it minimizes [~ Zle cpng(t)dt.
The optimal trajectories in the fluid control model are denoted by nj(t),...,n5(t).

1.6 Methodology 23

In the literature, optimal fluid controls have been obtained by using Pontryagin’s
maximum principle, see for example [14] or by solving a separated continuous linear
program, see for example [154].

Motivated by the close relation between stability of the stochastic queueing net-
work and its associated fluid model [44], researchers became interested in connec-
tions between optimal scheduling in the stochastic network and the far simpler fluid
control problem [13, 95, 97]. A crucial question is how to make a translation from
the optimal control in the fluid model to a stable and efficient policy in the actual
stochastic network. The optimal fluid control provides intuition on what a good
policy in the stochastic network should try to achieve, however, difficulties can arise
around the boundaries of the state space where a straightforward translation is not
always adequate, see for example [53] and Chapters 5 and 8.

Once a translation to the stochastic network has been made, one needs to show
that this policy is close to optimal. We use the following concept. Given that the
system is stable, a policy m is called asymptotically fluid-optimal when

D K D K
lim IEJ(/ chﬁ’;ar(t)dt) :/ chn,”;(t)dt,
e 0 k=1 0 k=1

for all D sufficiently large. The main step to prove that a policy is asymptoti-
cally fluid-optimal consists in showing that the fluid limit of the stochastic net-
work under this policy coincides with the optimal trajectories in the fluid control
model, ni(t),...,n5(t). We refer to [15, 53, 88, 90, 96] and Chapters 5 and 8 for
several examples of multi-class queueing networks for which asymptotically fluid-
optimal policies have been derived.

Under suitable conditions, an average-cost optimal policy is asymptotically fluid-
optimal [16], [53], [97, Theorem 10.0.5]. Unfortunately, no guarantee exists for the
average cost of an asymptotically fluid-optimal policy. In fact, the asymptotically
fluid-optimality definition aims at emptying the system efficiently starting from large
initial state conditions, while average-cost optimality is concerned with the steady-
state behavior of the system. In numerical experiments it has been observed that
the average cost under asymptotically fluid-optimal policies is close to optimal. A
first step towards a formal connection has been made in [96]. There, asymptotically
fluid-optimal policies are proposed for which bounds on the average cost exist. In
heavy traffic, these bounds (scaled with 1—p) are tight and coincide with the optimal
(scaled) average cost.

1.6.4 Heavy-traffic regime

Under a heavy-traffic regime the system is investigated as the traffic load approaches
the capacity limit of the system. Analyzing the system in this regime can provide
useful intuition as to how the system behaves when it is close to saturation. Typ-
ical heavy-traffic results relate to optimal control, queue length approximations,
and state-space collapse (reduction in dimension of a multi-dimensional stochastic
process).

24 Chapter 1 Introduction

The earliest heavy-traffic result is due to Kingman [76] who considered the
steady-state behavior of a single-server queue under a non-preemptive policy (for
service requirements with finite second moments). He proved that the steady-state
queue length, scaled with 1 — p, converges in distribution to an exponential random
variable as p — 1. For PS or DPS the queue length is of the order (1 — p)~! as
well, see for example Chapter 2, but this is not true in general. For example, under
LAS it can be either smaller or larger than (1 — p)~!, depending on the service
requirement distribution [105].

So-called diffusion-scaled processes are commonly studied in a heavy-traffic set-
ting to describe the transient behavior. A sequence of traffic parameters, indexed
by r, is considered that converges at an appropriate rate to a heavily-loaded sys-
tem. Let N/ (t) denote the number of class-k users in the 7-th system and define
the diffusion-scaled number of users by

NE(t) == N (rt) /.

Due to the functional central limit theorem, the limit of such a diffusion-scaled
process typically involves a reflected Brownian motion [40, 80]. We refer to [25, 68,
89] for several examples of queueing networks where diffusion-scaled processes have
been analyzed.

For the single-server queue the diffusion scaling consists in letting

lim p" =1 such that lim /ru"(p" —1) =0 € R.
T —00 T —00

It is known that the diffusion-scaled number of users in a non-preemptive single-
server system converges to a reflected Brownian motion with negative drift [40,
80]. Note that the stationary distribution of the latter process is exponential [40,
Theorem 6.2], which coincides with the exponential distribution as mentioned earlier
for the scaled steady-state process. For general networks, it is not obvious whether
this interchange of the heavy-traffic limit and steady-state limit is allowed, and it
has only been proved for some special cases, see for example [55] and Remark 2.6.2.

Optimal scheduling in heavy traffic is a well-studied field, typically focusing on
policies with non-preemptive intra-class policies. For example, in [98] it is proved
that a generalized Max-Weight policy is approximately optimal in the sense that its
average cost is at most |log(1—p)| worse than that of the optimal average-cost policy,
implying optimality in heavy traffic. Other optimality results relate to diffusion-
scaled networks, where the goal is to find a policy that minimizes some diffusion-
scaled cost (either sample-path wise or on average) as r — oo [19, 61, 89, 99, 160].
Asymptotically optimal policies in heavy traffic can serve as useful approximations
for the optimal policy in the original system when the load is high.

1.7 Overview of the thesis

In this chapter we presented several concepts related to resource-sharing systems,
with special attention for the single-server system and two extensions of this model:

1.7 Overview of the thesis 25

the linear network and the parallel two-server model with two classes of users. In
the remainder of the thesis we concentrate on these three systems for which we
investigate efficient scheduling policies and evaluate policies that share the resources
in a fair manner.

In Chapter 2 we focus on the single-server system and analyze a generalization
of the DPS policy. More specifically, we consider phase-type distributed service
requirements and allow customers to have different weights in various phases of their
service. In our main result we establish a state-space collapse for the steady-state
queue length vector in heavy traffic. This result has several interesting consequences.
We derive that in heavy traffic the remaining service requirement of any customer is
distributed according to the forward recurrence time of its service requirement. In
addition, we obtain that the scaled holding cost stochastically reduces as customers
with lower variability in their service requirement obtain larger weights. Chapter 2
presents the results that appeared in [143, 144].

In Chapter 3 we turn to the linear bandwidth-sharing network. We investigate
fundamental stability properties of size-based scheduling mechanisms, such as SRPT
and LAS, applied in a linear network. The results indicate that instability effects
may occur when users with long routes have relatively large service requirements
compared to the ones with short routes. For networks with sufficiently many nodes,
instability phenomena may in fact arise at arbitrarily low traffic loads. When instead
the long routes have relatively small service requirements, size-based scheduling
policies are stable under the maximum stability conditions. This chapter is based
upon [146].

Chapter 4 focuses on optimal scheduling within the class of non-anticipating
policies for the linear bandwidth-sharing network with exponentially distributed
service requirements. We observe that policies that minimize the mean holding cost
strongly depend on the mean service requirements of the various classes. For certain
settings, simple priority rules are optimal. In the case of a two-node linear network,
an optimal policy can be characterized in the remaining cases by “switching curves”,
i.e., the policy dynamically switches between several priority rules. Knowledge of
optimal policies allows to evaluate the performance of the class of a-fair bandwidth-
sharing policies. Through numerical experiments we observe that the gap between
a-fair policies and optimal policies is not that large provided the system load is
moderate. In addition, the performance under a-fair policies is quite insensitive
to a, as long as this value is not too small. Chapter 4 presents the results published
in [147, 151].

Chapter 5 is a continuation of Chapter 4. In Chapter 4 it was shown that in
a two-node linear network an optimal policy is characterized by switching curves,
however, an exact characterization of these curves was in general not possible. In
this chapter we set out to study these switching curves in asymptotic regimes. We
find that linear switching curves are optimal for the related fluid control problem.
Using this fact, we derive that, in most cases, policies characterized by these linear
switching curves are asymptotically fluid-optimal in the original stochastic model
as well. For some scenarios however, fluid-based switching curves may result in
a policy that not only is far from optimal, but may in fact be unstable. In that

26 Chapter 1 Introduction

case, the diffusion scaling is appropriate and efficient switching-curve policies have a
square-root shape. Through numerical experiments we assess the potential gain that
switching curve policies can achieve over weighted a-fair policies in a moderately-
loaded regime, and find that the latter can approach the optimal performance when
choosing the weights appropriately. Chapter 5 builds upon the analysis of [148, 150].

While in Chapters 4 and 5 we concentrated on exponentially distributed service
requirements, in Chapter 6 we turn to generally distributed service requirements.
Since deriving a strictly optimal policy for the linear network does not seem possible,
we instead consider a heavy-traffic regime. Motivated by the size-based scheduling
results for single-server systems, we focus on (anticipating) policies that separate
within a class the large requests from the small ones. Such policies turn out to
be asymptotically optimal in heavy traffic for service requirements with bounded
support. In addition, we show that these size-based policies may outperform a-fair
policies, which are non-anticipating, by an arbitrarily large factor when the load is
sufficiently high. This chapter presents the results published in [145].

In Chapter 7 we consider a multi-class queueing system with general inter-arrival
times and service requirements, and give sufficient conditions in order to compare
sample-path wise the workload and the number of users under different policies. This
allows us to evaluate the performance of the system under various policies in terms
of stability and the mean holding cost. In particular, for the linear network under
weighted a-fair policies we obtain stability results and, in the case of exponentially
distributed service requirements, establish monotonicity of the mean holding cost
with respect to the fairness parameter o and the relative weights. In order to
broaden the comparison results, we investigate a heavy-traffic regime and perform
numerical experiments. In addition, we study a single-server system with two user
classes, and show that under DPS and Generalized Processor Sharing the mean
holding cost is monotone with respect to the relative weights. This result is in
line with the monotonicity result obtained for DPS under a heavy-traffic scaling in
Chapter 2. Chapter 7 is based upon [141, 142].

In Chapter 8 we turn our attention to a parallel two-server model with two
classes of users and set out to study optimal non-anticipating scheduling policies for
exponentially distributed service requirements. For some settings we can determine
the optimal policy exactly, but in general this is analytically infeasible. We therefore
seek asymptotically fluid-optimal policies, using similar techniques as in Chapter 5.
We investigate the fluid control model for which we show that the optimal control is
described by a switching curve. Using this fact, we derive that policies characterized
by either linear or exponential switching curves are asymptotically fluid-optimal in
the original stochastic model. For a moderately-loaded system, we numerically
compare these fluid-based policies with Max-Weight and threshold-based policies,
which are known to be optimal in a heavy-traffic setting. We observe that the fluid-
based and the threshold-based policies perform well, while significant performance
gains can be achieved over Max-Weight policies. Chapter 8 is based upon [149].

Chapter 2

Heavy-traffic analysis of
discriminatory processor sharing

Efficient scheduling in a single-server system is a well-studied field, as described in
Section 1.3.3. In this chapter we focus on Discriminatory Processor Sharing (DPS)
policies and are interested in how the choice of the weight parameters affects the
performance of the system in steady state. In fact, we analyze a generalization of the
DPS queue with phase-type distributed service requirements, and allow customers
to have different weights in various phases of their service. Since the steady-state
analysis will not be tractable in general, we study the system in heavy-traffic con-
ditions.

In the main result of this chapter we establish a state-space collapse for the
steady-state queue length vector in heavy traffic. The result shows that in the
limit, the queue length vector is the product of an exponentially distributed random
variable and a deterministic vector. The reduction of dimensionality of a multi-
dimensional stochastic process under heavy-traffic scaling has been demonstrated
previously in other queueing models, see for example [19, 68, 132]. In addition,
our main result allows to derive several interesting results concerning the residual
service requirements and monotonicity properties of the holding cost.

Our work is inspired by the heavy-traffic analysis in [113] for the traditional
DPS model with exponentially distributed service requirements. After developing a
procedure to determine all moments of the queue length distributions from systems
of linear equations, the authors show that the variability of the queue length vector
is of a lower order than the mean queue lengths, which directly leads to state-space
collapse of the queue length vector. Here we follow a different and more direct
approach by investigating the joint probability generating function of the queue
lengths. This function is shown to satisfy a partial differential equation, which
takes a convenient form after passing to the heavy-traffic limit, allowing a closed-
form solution in that case.

Generalized DPS models similar to the one studied in this chapter were previously
considered in [23, 58, 63]. The analysis in [58] is particularly relevant for the present
study. Through appropriate choices for a quite general functional of the queue length

28 Chapter 2 Heavy-traffic analysis of DPS

process, [58] determined the heavy-traffic distributions of the marginal queue lengths
and sojourn times, when the service requirements have finite second moments. Our
results are complementary to those: On one hand we restrict the focus to the queue
lengths, and on the other hand we study the joint queue length distribution. That
way, we establish a state-space collapse for the queue length vector.

Several papers have analyzed (discriminatory) processor sharing mechanisms as-
suming overload conditions and general service requirement distributions. For ex-
ample, the authors of [7] characterize the queue length growth rates of the standard
DPS model by a fixed-point equation, generalizing the analogous result for the PS
model [66]. More recently, further extensions to bandwidth-sharing networks [46]
and a network setting similar to ours [23] have been obtained. In all these references
the transient behavior of the queue lengths is studied under overload conditions,
while we investigate the convergence of the (scaled) steady-state distribution as the
critical load is approached.

As phase-type distributions lie dense in the class of all probability distributions,
in practice the restriction to this class is not seen as being essential. In the present
chapter, an important caveat must be accounted for, though. Our analysis relies
on heavy-traffic scaling techniques which typically require finite second moments of
the service requirements. Since all phase-type distributions (with a finite number
of phases) have a finite second moment, this restriction is implicit in our modeling
approach. Indeed, our results show that the second moments appear in a natural
fashion in the heavy-traffic limit. We believe that our results do extend to all
distributions with a finite second moment (not necessarily phase-type), but we do
not investigate this here.

Allowing the relative service weights of customers to change over time as they
acquire service, effectively opens up a way to implement size-based scheduling by
assigning relatively high weights in service phases that are more likely to lead to
a quick service completion. Using the heavy-traffic result, we investigate how the
choice of the weights influences the asymptotic performance of the system. In par-
ticular, we prove that the scaled holding cost reduces as more preference is given to
customers in service phases with a small expected remaining service requirement.

The standard DPS queue with phase-type service requirement distributions is
a special case of our model. The state-space collapse allows to show that in a
heavy-traffic setting, conditioned on the number of customers, the remaining service
requirements of the various customers are independent and distributed according to
the forward recurrence times. In addition, we derive that the scaled holding cost in
the standard DPS queue reduces as more preference is given to classes according to
the forward recurrence times of the service requirements. The applicability of this
result for a moderately loaded system is investigated by numerical experiments.

The present chapter is organized as follows. In Section 2.1 we introduce the gen-
eral Markovian framework and state the main result, which establishes a state-space
collapse of the joint queue length vector. As a preparation for the proof of the main
result, the functional equation for the generating function of the joint queue length
process is studied in Section 2.2 and, under the heavy-traffic scaling, in Section 2.3.
The proof of the main result is given in Section 2.4. Section 2.5 discusses size-based

2.1 General framework and main result 29

scheduling. Section 2.6 applies the state-space collapse result to the standard DPS
queue with phase-type distributed service requirements. In addition, it presents the
implications for residual service requirements and monotonicity properties of the
holding cost. Concluding remarks can be found in Section 2.7.

2.1 General framework and main result

We consider a general Markovian system with J customer types. Customers arrive
according to a Poisson process with rate A, and an arriving customer is of type ¢ with
probability pg;, ¢ = 1,...,J. Type-i customers have an exponentially distributed
service requirement with mean 1/pu,;. After service completion, they become of
type j with probability p;;, 7 = 1,...,J, and leave the system with probability
Pio = 1 — E;.Izlpij. Let P be a J x J matrix with P = (p;;), i,5 = 1,...,J.
We assume that customers require a finite service amount with probability one, so
that all customers eventually leave the system. This implies lim,,_.., P* = 0, and
hence, (I — P)~! is well defined. In addition, we assume that none of the J types
are redundant (i.e., eventually all types are observed); this assumption is formalized
following equation (2.1) below.

The J customer types share a common resource of capacity one. There are
strictly positive weights g1, ..., ¢ associated with each of the types. Whenever
there are ¢; type-i¢ customers, ¢ = 1,...,J, present in the system, each type-j
customer is served at rate

9
J 9
D1 9il

We denote the number of type-i customers in steady-state by @Q;.

The above-described framework is a generalization of the DPS queue with phase-
type distributed service requirements: It represents an M/PH/1 DPS queue where
customers may have different weights in various phases of their service.

We let R; denote the remaining service requirement until departure for a cus-
tomer that is now of type . Note that this includes service in all subsequent stages as
the customer changes from one type to another. Since the service time of each type
is exponentially distributed, the expected remaining service requirements can be in-
terpreted as absorption times in an appropriate Markov chain and therefore satisfy
the following system of linear equations: E(R;) = }% + ijl pi; E(R;),i=1,...,J.

Let B(R) = (E(R),...,E(Ry))T and i = (1/p1,...,1/ps)7, so that we can write

j=1,...,J.

E(R) = (I — P)~ .

Denote the total traffic load by

J
pi=A ZPOJ‘E(RJ)~
J=1

30 Chapter 2 Heavy-traffic analysis of DPS

Let ~; represent the expected number of times a customer is of type ¢ during its

visit in the network. Hence, 1, ..., 7, satisfy the following equations
J
j=1

ie, I = pt'(I — P)71, with ¥ = (y1,...,7s)T and po = (po1,--.,pos)’. Note
that It represents the expected cumulative amount of service a customer requires
while Being of type i during its visit in the network. Our assumption that none of
the J types is redundant, entails that 7 is a vector with strictly positive elements.

We denote the load corresponding to customers while they are of type i by

pi = AL
Hi

Hence, for the total traffic load p we may equivalently write

J J J
p =AY poE(Ry) = MR E(R) = M (I - P) i = AT =AY Z—J =S
j=1 =177 =1

(2.2)

Our main result shows that the steady-state distribution of the multi-dimensional

queue length process takes a rather simple form when the system is near saturation,

i.e., p 1 1, which is commonly referred to as the heavy-traffic regime. This regime
can be obtained by fixing the py, P, and m, and letting

2 1
AT A= 77—, 2.3
TR ET %)
since then p = A\pg (I — P)~1m T 1. Although approaching heavy traffic in this way
is natural, the results remain valid for any other sequence of parameters (belonging

to stable systems) that reaches heavy traffic in the limit. In heavy traffic, we denote
by

the load corresponding to customers while they are of type i (E}‘le p;=1).
We can now state our main result, which establishes a state-space collapse for
the queue length vector in the heavy-traffic regime.

Proposition 2.1.1. Consider the general Markovian framework. When scaled with
1 — p, the queue length vector has a proper limiting distribution as (p1,...,pj) —
([)17 s 7ﬁJ)7 such that P T 1,

(1_p)(Q17Q27"'7QJ) i (Qla@?a"'v@J) iX (ﬁa@w'wﬁi)? (24)
gi 92 97

2.2 Functional equation 31

where % denotes convergence in distribution and X is an exponentially distributed
random variable with mean

> hiE(R))

0= ST g,y

(2.5)

The proof will be given in Section 2.4. Here we give some intuition for the result.
Proposition 2.1.1 shows that in heavy traffic, the multi-dimensional queue length
process essentially reduces to a one-dimensional random process: it can be expressed
as a random variable X times a deterministic vector. Given this reduced variability
of the process, the value of the deterministic vector can be understood as follows.
Note that, in general

9;Q;
i=1 Y1

since the expression within the expectation operator reflects the capacity allocated
to type j. Here the function 14 denotes the indicator function, i.e., 14 = 1 if A is
true, and 0 otherwise. Using that the process reduces to one dimension in heavy
traffic, in the limit we may replace Q;/Q; by a ratio of constants a;/a;. Together
with (2.6) and under the assumption that the scaled queue length will be strictly
positive in heavy traffic, this implies that a; = (Z;'le gia;) g—j. The pre-factor), g;a;
P1L P2 PJ

L2 in

is common to all a;, which explains the appearance of the vector (g—l, ARRRET

Proposition 2.1.1.

Numerical illustration of Proposition 2.1.1: We consider two types of cus-
tomers and choose g1 = 2,92 = 1, u1 = 2,02 = 5,p01 = 0.6,pg2 = 0.4,p12 =
0.3,p21 = 0.1. In Figures 2.1 and 2.2 we plot the joint queue length probabili-
ties (obtained by simulation) for loads p = 0.8 (p; =~ 0.59,p2 ~ 0.21), p = 0.90
(p1 =~ 0.66, po ~ 0.24) and p = 0.99 (p1 ~ 0.73, p2 =~ 0.26), respectively. The hor-
izontal and vertical axes correspond to ()1 and Qo respectively. As a consequence
of the state-space collapse stated in Proposition 2.1.1, in heavy traffic the proba-
bilities will lie on a straight line with slope 9—1% ~ 0.72, starting from the origin.
In Figures 2.1 and 2.2 we see that as the load increases, the probable states indeed
tend to concentrate more around this line. For load p = 0.99, this effect is clearly
visible; the probable queue length states are strongly concentrated around the line
with slope 0.72.

2.2 Functional equation

Before focusing on the heavy-traffic regime, we derive a functional equation for
the generating function of the joint queue length process. Denote by) and ¢ the
vectors (Q1,Q2,...,Qy) >0 and (¢1,q2,...,q95) > 0, respectively. The equilibrium

32 Chapter 2 Heavy-traffic analysis of DPS

12 18
16
10
0.15 14 0.08
8 12 0.06
ON . 0.1 ON 10
8 0.04
4 0.05 6 oo
4 %
2 5 .
2 4 6 8 10 12 2 4 6 8 10 12 14 16 18
Ql Ql

Figure 2.1: Joint queue length probabilities for load p = 0.8 (left) and p = 0.90
(right), respectively.

distribution 7(7) := P(Q =) satisfies

J
A (0) = Z pipiom(€:), (2.7)
i=1
and for ¢ # 0,
Z 9iqilbi J
i= — — gl Ql +]- — —
)‘ + 3 W((j) = Z >\P0z5q,7f(q - ei) + Z 7 () szzoﬁ(q + ez)
9igi =1 =13 959+ gi
i=1 7j=1
J
9i(gi +1) L.
+ZZ‘S% T - pipim(+ € — €5), (2.8)
=1j=1 E Imqm + gi
1

where 6, = 1if ¢ > 0, and J, = 0 otherwise, and with é; the i-th unit vector. It will
be notationally convenient to use the following transformation:

R(0)=0 and R(Q)=— (@) , for q¢#0.

; 954j

Also, let p(2) and r(Z) denote the generating functions of 7(¢) and R(q), respec-
tively, where 2= (z1,...,2y) and |z| < lfori=1,...,J:

p(Z) = B2 ... 29 Z Zz w2V 7 (),

q1=0 q7=0

e(Ee) S gy a

ZJ 1 Q59; =0 q;=0

r(2)

2.2 Functional equation 33

80 x 10
70 g
60
50 6
o' 40
4
30
20)
10
0
20 40 60 80
Ql

Figure 2.2: Joint queue length probabilities for load p = 0.99.

where we use the convention that 1/ Z;’:l Q;g; = 0 when Cj . Note that
or(2) 9ids
giZi—az = Z Jlilz‘l“ 2V (). (2.9)
’ 1,47 7y 45>0 ijl 939

Multiplying (2.8) by z{"...z%, summing both sides over ¢1,¢o, ..., ¢y, and adding

equation (2.7), we obtain from (2.9) that

+Z Higi Zz Z Apoi Zzp + Z ,uzgzpvo +Z Z HigiPij %4 —8525) .

=1 j=1
] (2.10)
Since 7(0) = 1 — p, it follows from (2.9) that
J
Z p=p(2). (2.11)

Together with (2.10) this gives the following partial differential equation for r(2):

7
(1 — me'zq:)

J J
or
= Z Higi sz + szjzj z)‘gzzv - ;pojzj) a_zl (2-12)

i=1

This equation turns out to be very useful to analyze the joint queue length distribu-
tion in heavy traffic, as it allows for an explicit solution in that asymptotic regime.
That is the topic of the next two sections. Note that equation (2.12) was derived
in [113] for the case of exponentially distributed service requirements.

34 Chapter 2 Heavy-traffic analysis of DPS

2.3 Heavy-traffic scaling

It will be convenient to use the change of variables z; = e™% with s; > 0,i=1,...,J.

Denote 5= (s1,...,s;7) and e=(17P)F = (e=(I=p)s1 o= (1=p)ss) If
limp(e=(17=P)%) = limE(e~ (=751 Q1. . o= (1=p)ssQu) (2.13)
P11 P11

exists, then there is a (possibly defective) random vector (Ql,Qg, - .,QJ) such
that (1 — p)(Q1,Qx2,...,Q) converges in distribution to (Ql, Qs, ..., QJ), and the
distribution of (Ql, Q, ..., QJ) is uniquely determined by the limit in (2.13) (cf. the
Continuity theorem [52]). For now, we assume that the limit exists; we come back
to this assumption in Section 2.4. In this section we give two lemmas that describe
properties of lim 1 p(e’(lfp)g). In particular, in Lemma 2.3.2 we obtain a partial
differential equation, which will be the key element in the proof of the main result
stated in Proposition 2.1.1.

In order to describe the behavior of the generating function, we define

1— e—S1Q1 e e—SJQJ>
J pay)
Zj:l Qj;9;
where we use the convention that 1/ ijl Q;g; = 0 when Z;]:l Q; = 0. The “1” in

the numerator is to ensure that the expression between brackets remains bounded
when the Q;’s are all near zero. We can now state the following lemma.

7(5) ::E(

Lemma 2.3.1. If lim,}; p(e=(1=P)%) exists, then it satisfies:

J N
lim p(e~(1=P)%) = Z Ji 97 () . (2.14)

P11 ‘ 0s;
i=1

Proof: From (2.11) we have

- or(2)
; —(1=p)3y —_ ; .
lplglp(e) limn 2 vl PN (2.15)
By definition of r(2) we can write
g) oy (Z;-’=1 ngj)
[}%1 8Zi Z=e—(1—p)F o /}%ﬁl 821‘ 7=—e—(1—p)¥
Q, e~ (1=p)s1Q1 . . o—(1-p)ssQu
= limE 5 . g s v
P\ X Q495 ¢ v
> =1 Qj9;
oF
_ o) (2.16)

857;

2.4 Proof of the main result 35

In the third step we used that ZJQi‘Qg cem(=p)siQu L e~ (1=0)ssQs iy ypper
j=1%i9i
bounded by ﬁ()’ and, cf. the continuous mapping theorem [27], converges in
distribution to JQi ces1@ .. e=%Qs. From (2.15) and (2.16) we ob-
Z; 1 Q495
tain (2.14). O
In the following lemma we show that the partial differential equation as given

in (2.12) simplifies considerably in the heavy-traffic regime.

Lemma 2.3.2. If lim,; p(e=(1=P)%) exists, then the function #(3) satisfies the fol-
lowing partial differential equation:

O—ZF

where F(5) = (F1(3),...,F;(5)), and

v
=11

F(5)-v#(5), V3§

J J
Fi(8) Zgi(ﬂi(—sz'-i-Zpiij) +>\ZPOij), (2.17)
j=1 j=1
with X as defined in (2.3).

Proof: Taking Z equal to e~ (1=P)% in (2.12), dividing both sides by 1 — p and taking
the limit of p T 1, this gives

J=1

J 1 —e (- p)sl+2pl((=p)si 1)
Higi
1(1=»

J
1—e =P\ or(%)
_)\gie*(lfp)&i Zpoj) |z e—(1—p)F
= 1—0p 0z;

J
or(s)
Z (m s Zpusj /\Zpojsj) " Os (2.18)
In the second step we used (2.16) and the fact that lim 1 3”1%;1 = In(x). O

2.4 Proof of the main result

This section contains the proof of the main result stated in Proposition 2.1.1. It
consists of two steps. First we show in Section 2.4.1 that

(Qla@?w"vQJ)i(&7@a~~'7p_J)'X7 (219)
g1 g2 gj

36 Chapter 2 Heavy-traffic analysis of DPS

for some random variable X. Second, we demonstrate in Section 2.4.2 that X
is exponentially distributed with mean as given in (2.5). With these two partial
results, the proof can be completed as follows: In Section 2.3 we assumed that
limy p(e*(l”’)g) exists, thereby showing in Sections 2.4.1 and 2.4.2 that there is
a unique limit. For any converging subsequence this analysis can be performed, in
particular for the lim sup and lim inf, which implies that the limit itself exists. This

establishes the state-space collapse (1—p)(Q1, Q2 - - -, QJ) (Q1,Q2,...,Q) with
(Q1,Q2, ...,Q) taking only values on the line described in (2.19).

2.4.1 State-space collapse

In this section we give the proof of (2.19). The proof is based on the fact that the
probability generating function satisfies the partial differential equation as described
in Lemma 2.3.2. From this partial differential equation it can be derived that the
function #(§) is constant on the (J — 1)-dimensional hyperplane

J .
§'26 Zp— ;= c},

as will be shown in Lemma 2.4. 2 From this it follows that the function 7(§) de-

pends on § only through Z is;, so there is a function 7* : R — R such that

Jj=1 g
~ % J P Or(3) _ p; di™(v)
7(8) = (305, g—;sj). From Lemma 2.3.1 and 5~ = z_iT vt By we
9
then obtain
;0 s 07(3) . dit(v)
E(e™ &=1%%i) = lim P)%) D
() pTlp Z Zpl dv v=>"" Sj
j=1 q J
~di*(v)
dv —ZJ 1 2j Sj

which again depends on s only through Z =1 g sj Equivalently, we can write
(e~ Sim Q) = Ee” A Tin Gt Lo Q- B1Q0 . omorii (57Qu-RQn)y

Since this only depends on Z p &1 o S0 it implies that gl Ql = i—ij almost surely
for all 7, j, and we obtain:

(Qla@?a"'7QJ) = (&7&57p_J> : ‘?_1 Al; almost Surel}C
g1 92 9J P1

or equivalently

. . A 4 ~ ~ ~
(Q17Q27"'7QJ):(&7&a"'7pJ>'Xa
g1 92 97

with X distributed as %Ql.

2.4 Proof of the main result 37

ISg 53
F / Flow f(u) F
A A
1 N, ! Ny
i i Y
/ Y
i

F(Flur)).-=~
,,,,,,, ’ Plane H.

;
52/

Figure 2.3: Geometrical interpretation of the proof of Lemma 2.4.2 when J = 3.

Before we proceed to prove that the generating function #(8) is constant on the
hyperplane H. we first give a geometric interpretation for this fact in the particular
case of J = 3. In Figure 2.3 (left) we depict the hyperplane H, for J = 3. For a
given 5y € H., we draw a flow curve f(u), u > 0, defined such that the tangent
at every point is precisely f'(u) := F(f(u)) and f(0) = 5y € H.. We will see in
the proof of Lemma 2.4.2 that the vector F(E) is parallel to the hyperplane H.,
for all § € H., thus the flow f(u) stays in the hyperplane H, for all v > 0. By
Lemma 2.3.2, the vector F(E) and the gradient 77 (3) are perpendicular, for all s,
so f'(u) = F(f(u)) L v#(f(u)). Thus the function # has the same value in every
point on a given flow f(u). In Figure 2.3 (right) we draw several flows in the
hyperplane H.. In the proof of Lemma 2.4.2 we will see that all flows starting in
the hyperplane H,. converge to one common point ¢ - §*. Since the function 7(-) is
continuous and constant on each flow trajectory, it follows that 7(3) is constant on
the whole hyperplane H,, or equivalently, 77(5) L H..

The following technical lemma is used in the proof of Lemma 2.4.2.

Lemma 2.4.1. Consider the matriz A defined as

g1 <—M1 + pipin + ;\p01) g1 <,u1p12 + ;\p02> S g1 Empu + 5\?0‘1;

g2 <,u2p21 + 5\]001) g2 (—Mz + p2p22 + j\poz) S g2\ p2p2s + 5\pOJ

gJ <quJ1 + 5\po1> g7 <quJ2 + 5\p02> e gu (—MJ + papss + 5\p0J>

where X is as defined in (2.3). One eigenvalue of A is 0 (with multiplicity 1), and
all the other eigenvalues have a strictly negative real part. In addition, there exists
a vector ij > 0 with Z;’:l nj =1 such that §* with s} := %—-jnj s an eigenvector of A
corresponding to the eigenvalue 0, and s* € Hy.

38 Chapter 2 Heavy-traffic analysis of DPS
Proof: Define D as the diagonal matrix diagldy,ds,...,d;] with d; := %, and
define S := DAD™!, ie., S equals
g (-Ml + pipi + 5\1301) pr ez (Mlpu + 5\poz) prE-(paprs + Apo.s
g2 | —p2 + pep2z + 5\p02) ﬁzz—j Hep2g + j\pOJ
qJ <_,UJ + pgpsg+ 5\p0J>

D2 g—i (szzl + j\p()l)
ﬁJg—z (MJpn + 5\?02)

Hence, the matrix S is similar to A and therefore A, S and ST have the same
. dJ.(2.20)

i=1,.

ﬁJg_i (MJle + ;\p01>
J

eigenvalues. Using (2.1), it follows that
J
—pipi+) b (uipsi + Mpor) = (=i + poi + D ipsi)
j=1 j=1

Hence, the sum of each row in ST (sum of each column in S) is equal to 0, and the
off-diagonal elements in S” are all positive. This implies that the matrix S7 is a gen-
erator corresponding to a finite-state continuous-time Markov chain. This Markov
chain is irreducible, as will be shown at the end of the proof, and hence it has a unique
equilibrium distribution 7, i.e., 757 = 0 and E;.le n; = 1. This implies that 0 is an

eigenvalue with multiplicity 1 of the matrix ST, and, cf. [9, Proposition 6.2], the real
parts of all other eigenvalues are strictly negative. Since the eigenvalues of A and

ST coincide, the same holds for the matrix A. The eigenvector of A corresponding
to the eigenvalue 0 is given by 5% = D17, since A5* = D"'DAD~1ij= D=157=0.

It remains to be shown that the Markov chain corresponding to the generator S”

is irreducible. Note that, since v; > 0, also p; > 0 for alli =1,...,J. Let
Jo = {]: 1,...,J:p()j >0},
. 'p.jnflj > 0}7

denote the non-empty set of types that receive external arrivals. Let
7jn71 with Pojo * Pjoja

In={j=1,...,J: there exist jo,
n = 1,...,J — 1, denote the set of types such that there is a strictly positive

probability that a customer becomes of this type after n steps. Since J < oo and
eventually all types are observed, we have that U,{;éjn ={1,...,J}.

Now consider the J x J matrix ST. If j € Jo, then the (j,4)-th element of ST,
ﬁig_j(ﬂipij + S\poj), is strictly positive for all i # j. Thus, in the Markov chain

corresponding to the generator ST, from any state in Jy one can reach all other
states. In order to prove irreducibility it is now sufficient to show that from any

state in {1,..., J}\Jo, some state in Jy can be reached.
Assume j € J;. By definition, there exists an ¢ € Jy such that p;; > 0. Hence,
the (j,i)-th element of the matrix S7, ﬁii—j(,uipij + ;\poj), is strictly positive. This
implies that from every state in [J;, a state in Jy can be reached. Now consider a
state j € Jo. By definition, there exists a state i € J; such that p;; > 0. Similarly

2.4 Proof of the main result 39

to the previous case, this implies that the (4,4)-th element of ST is strictly positive,
and we can conclude that from every state in Js, a state in J; can be reached.
Proceeding along these lines, it can be shown that from every state in 7,, a state
in J,-1 can be reached, n = 1,...,J — 1. Since Ui;éjn = {1,...,J}, we obtain
that every state outside Jy can reach a state in the set [y, which concludes the
proof. 1

The following lemma shows that the generating function #(8) is constant on H..
Lemma 2.4.2. For any ¢ > 0, the function 7(5) is constant on H.,.

Proof: From (2.20) it follows that

|b)
I
-

&
Il
_

J J J
Y = F() pi- | mil=si+ Y pijsi)) + XD pojs;
i=1 7 j=1 j=1

N

J
(—pipi + Zﬁj (15pji 4 Apoi))si = 0.

j=1

|
<M“

Il
_

K3

This implies that for all § € H., the vector F (8) is parallel to the hyperplane
H.. Since F is C', for each state § > 0 there exists a unique flow f(u) =
(fi(u),..., fr(u)), parametrized by u > 0, such that

f(0)=35 and d{;iu) = F;(f(u)), foralliand u > 0. (2.21)

—

Since F(5) is parallel to H, for all § € H., when started in H,, the flow f(u) will

—

stay in H.. Another important property of this flow f(u) is that

d

di(f(w) _ 2‘]: dfi(u) 9 (3)
U 1 du

which follows from the chain rule, Lemma 2.3.2, and equation (2.21). Hence, along
cach flow f(u), which lies in H,, the function #(f(u)) is constant. We will now show
that each flow in H. converges to a certain point ¢ - §* > 0 as u — o0o.

Relation (2.21) can be written as f(0) = §and f'(u) = Af(u), with A as defined
in Lemma 2.4.1, see (2.17). In Lemma 2.4.1 it is proved that one eigenvalue of A
is 0 with eigenvector 5 > 6, §* € Hy, and all the other eigenvalues have a strictly
negative real part. Hence, the solution of f’(u) = Af(u) with f(0) € H,. can be
written as f(u) = ¢ - § + §(u), where limy,_o §(u) = 0 and §* > 0. This implies
that all the flows in the hyperplane H, converge to one common point ¢ - §* > 0.

Since the continuous function #(§) is constant along one flow, and all flows in the
hyperplane H. converge to ¢ - §* € H., we obtain that the function #(3) is constant
on H.. O

40 Chapter 2 Heavy-traffic analysis of DPS

2.4.2 Determining the common factor

In the previous section we showed that (Ql, Qo, . .. ,QJ) 4 (%, 5—2, R 2—;) - X,
with X some random variable. In this section we determine the distribution of X.

In order to do so, we consider the total workload in the network, denoted by W.
When scaled with (1 — p) the total workload has a proper distribution as p T 1,
see [76]:

(1—p)W LW,

where W is exponentially distributed with mean
J
E(W) = pE(R)). (2.22)
j=1

The total workload can be represented as
Qj
WYY R

Jj=1h=1

with R; 5 the residual service requirement of the h-th type-j customer. Note that
the remaining service requirements of all customers in phase j are i.i.d. and have

the same phase-type distribution independent of Cj, more precisely, R;p, 4 R; for
all h. Hence,

J
E(e*") = E(e—sZ;;l e Biny =]E(H]E(efsszil Rin|3))
7j=1
J sR
— E(H(E(e_SR-f))Qf) = E(eZ =1 Qi In(E(e™ ")),
7j=1

for s > 0. For the scaled workload we can therefore write

h J ln(]z(e*(lfp)st)

E(e_SW) - hmE(e—(l—p)sW) = hmE(e J=1 W(l—p)SQj)

o P11
= E(e*Zi-1 B(R)Q), -
J ln(E(e_(l—p)st)
. . 1 a—y s (1=p)sQ;
where in the last step we used that e~ /=1 S i b by 1 an
: —(1—p)sR;

converges in distribution to e I E(R)Q; The latter follows from %

— —E(Rj), as p T 1. From (2.23) we obtain that

J
WL > E(R))Q;,

Jj=1

2.5 Size-based scheduling 41

and together with (2.19) this gives

Aii

|b>

(2.24)

Since W is exponentially distributed, the same is true for X. Taking expectations
n (2.24), from (2.22) we obtain

> hiE(R))
Z;‘Izl %E(RJ)

which concludes the proof of Proposition 2.1.1.

E(X) =

)

2.5 Size-based scheduling

Allowing the relative service weights of customers to change over time as they acquire
service, opens up a way to implement size-based scheduling by assigning relatively
high weights in service phases that are more likely to lead to a quick service com-
pletion. In this section we investigate how the choice of the weights influences the

performance of the system. With each type of customers we associate a cost ¢; > 0,
j=1,...,J. As performance measure we take the holding cost Z;]:l ¢ Q.

Recall that we consider the general Markovian framework where type-j customers
have weight g;. In this section we will write Q§g) (Q;g)) instead of Q; (Q;) to
emphasize the dependence on the weights ¢1,...,¢97. From Proposition 2.1.1 we
obtain that the scaled holding cost, (1 — p) Z}le ch;g), converges in distribution
to an exponentially distributed random variable with mean

(9)) S 15? d
ch QW)= = o T Z (2.25)
Zj T =

as p T 1. Using this expression, we obtain the following monotonicity result in the
heavy-traffic regime: The holding cost decreases “stochastically” as more preference
is given to customers of types with a large value of ﬁ.

Proposition 2.5.1. Consider the general Markovian framework and consider two
policies with weights (g1,...,95) and (g1,...,gs), respectively. Let ¢; > 0, j =
., J. Without loss of generality we assume that the types are ordered such that

B 2 By 200 2 B
If g;qj_l = ggi ; f07" allj=1,...,J =1, then

J J

lim(1 = p) D~ ;@5 2 lim(1 = p) 3 Q57

11
i = =

42 Chapter 2 Heavy-traffic analysis of DPS

Proof: We have that (1 — p) ijl cj Qgg) converges in distribution to an exponen-

tially distributed random variable with mean as stated in (2.25). Hence, it only
remains to check that

EL‘] ¢ibj ZJ ibj
J=1 g; > J=1 g

S SE(R;) YL ZE(R;)

This holds since

J J o
Dl B DI
. G J
=1 i =199
1 J
= Z ﬁjﬁz(—c;B(R;) + ‘ CiE(Rj)) +Zf5] —c;E(R;)
g 99 9ig; j=1 797
L,
> 3 ini (= B(R) + ——cE(R)) + Y 5 E(R)
gt 9igj 9i9i = 9i9;

I
-
o
S
2
<
-
|b>
&
—~
=
<$
N—

Here we used that ¢;E(R;)(=% — —%) > ¢;E(R;)(=% — —%-), which follows from

9i9j 959i 9i9;j 95 9i

9i < Ji c;) ; ;
the fact that py < o and 55 > B for i < j. O

As described in Section 1.3.3, the cu-rule minimizes the mean holding cost in an
(i) M/G/1-queue among all non-preemptive policies as well as in an (ii) G/M/1-
queue among all preemptive non-anticipating policies. In both systems the expected
remaining service requirement of a class-k customer at a scheduling decision epoch
is 1/pk. Hence, the cu-rule gives priority according to the cost ¢ divided by the
expected remaining service requirement of a class-k customer. Proposition 2.5.1 can
be seen as an extension of the cu-rule for DPS-based policies in the heavy-traffic
regime: the performance improves as larger weights are assigned according to the
values of ﬁéy_), 7 =1,...,J. In particular, we obtain that a policy that gives
preemptive priority to type ¢ = argmax;—y .. s ﬁéj) minimizes the scaled holding
cost in heavy traffic among all DPS-based policies.

2.6 The standard DPS queue in heavy traffic

In this section we specialize the results obtained so far to the standard DPS queue
with phase-type distributed service requirements. In order to show how this queue
fits into the Markovian framework of Section 2.1, let us give a brief description of
the standard DPS queue.

2.6 The standard DPS queue in heavy traffic 43

We consider a single-server system with capacity one and Poisson arrivals with
rate A. With probability pj an arrival is a class-k customer. Class-k customers have
phase-type distributed service requirements, By, with a finite number of phases. In
particular, this implies that the second moment of By, is finite. Let

ok = A\prE(By)

be the load associated with class-k customers. The capacity is shared among the
customers of the various classes in accordance with the DPS policy. When there are
ny class-k customers present in the system, k = 1,..., K, each class-k customer is

served at rate
Wi

le; winy’
where wy, is the weight associated with class k. It is important to note that the
weight for a class-k customer is independent of the current phase of its service
requirement. Denote by Nj the number of class-k customers in the DPS queue in
steady-state.

The DPS queue with phase-type distributed service requirements fits as follows
into the Markovian framework as described in Section 2.1. Within each customer
class of the DPS queue, we distinguish between customers residing in different ser-
vice phases, and represent them in the general framework as different customer types.
Denoting the number of phases of the class-k phase-type distribution with Jj, the

K
total number of typesis J := > Ji. With slight abuse of terminology, we also refer
k=1

to a class-k customer in the j** service phase as being of type Eé:ll Ji+ 7. We use
k(j) to denote the customer class to which type-j customers belong. If types ¢ and
7 belong to the same customer class, then they are associated the same weight, i.e.,
gi = g5 = wy(j) when k(i) = k(j). The po; in the general framework is taken such
that for { = k(j), poj/pi is the probability that a class-l customer starts with service
phase j. In the DPS queue, no transitions are possible between types belonging to
different customer classes, hence for the general framework this implies that p;; = 0
if k(i) # k(j). If a class-k(i) customer finishes phase ¢, then p;; is the probability
that it continues in phase j (with k(i) = k(j)). The number of class-l customers in
the DPS model can be written as Ny =3, Q.

The mean service requirement of a class-I customer may be written as E(B;) =

2 ik()=i %E(Rj). Hence, the load in class [can be expressed by

o= MiE(B) =X > poE(R;). (2.26)
Jik(j) =l

For the DPS queue, the set of equations as given in (2.1) simplifies: per class there
is a set of equations that can be solved independently. For class [, the correspond-
ing 7;’s can be found from the following set of equations:

Yi = Poi + Z vipji, forall i st. k(i) =L
Jik()=l1

44 Chapter 2 Heavy-traffic analysis of DPS

Applying the same reasoning as we followed to obtain equation (2.2), it follows that
an equivalent representation of o; is

o=\ Z ’YJ_

k=t 1

> s (2.27)

Jik(3)=

Note- tha‘F tl-le to‘Fal load iI.1 the DPS queue e.quals Zzl; o= Ezl; Zj:k(j):l P =:p,
i.e., it coincides indeed with the total load in the general framework.

Before proceeding with the main result of this section, we first give expressions
for the forward recurrence time of the service requirements. For class [, we denote
this random variable by Blf “d From renewal theory we know that the associated
distribution is

w 1 r
]P’(Blf d < a:) = E—Bl ;]P’(Bl > y)dy, (2.28)
and hence IE(Blf wdy — ;E]E((Bgl)). Alternatively we can write
P(Blfwd <z Z pJ . R < Jj) (229)

kG R4
see [9, Chapter III, Corollary 5.3]. Intuitively relation (2.29) can be explained as
follows: Note that % represents the expected number of visits to phase j during
the lifetime of the random variable B;, with k(j) = . As a consequence, 7;/(pit;)
is the expected time spent in phase j. Thus, with probability

i
Dty Pi _ p_j

Zi:k(i):l ﬁ a Ei:k(i):l pi o

the residual life time equals the residual service requirement starting in phase j, and
this gives relation (2.29). Combining (2.28) and (2.29), we obtain that the mean
forward recurrence time of B; satisfies

E(Bzz) _ fwdy Pi ‘
sEB) ~ BB)_j:%_l 5 E(R): (2.30)

We now show the state-space collapse for the standard DPS queue with phase-
type distributed service requirements. When passing p — 1 as described in Sec-
tion 2.1, we actually fix the service requirement distributions and the class prob-
abilities p, while increasing the arrival rate. In particular, the heavy-traffic scal-

. -1
ing as considered in Section 2.1, A 1 A :(ﬁg(l - P)fln_i) , is equivalent with
AT (S pE(B) ™ since S5, piE(B) = Y7 po;E(R;) = p6 (I — P)~lni. We
denote the limiting loads of all classes by 9, = Ap/E(B;), Il = 1,..., K (or equiva-
16nt1y, él = Zj:k(j):l ﬁ])

2.6 The standard DPS queue in heavy traffic 45

Proposition 2.6.1. Assume phase-type distributed service requirements, and con-
sider a standard DPS queue with weights w1, ..., wx. When scaled with 1 — p, the
queue length vector has a proper distribution as p — 1,
d o 0 SN 01 02 0K
(1= p) (N1, No, ... Ng) % (N, Ny, . Ng) 2 x . (2L 22 2K,

== . (231)
w1 W2 WK

where % denotes convergence in distribution and X is an exponentially distributed
random variable with mean

> x PeE(BE)
>k PRE(BR) Jwi”

which is equal to 1 when wy, =1 for all k, i.e., in the case of a standard PS queue.

E(X) = (2.32)

Remark 2.6.2. In the case of exponentially distributed service requirements, in [68]
a related result is proved. The authors consider a sequence of systems indexed by r
such that o], — 0, p" = Z?:l of 11, and \/r(1 — p") — 1, as r — oo, and obtain
that (1 — p")N7"(rt) converges in distribution to

LAOTY 7S

EERLES/ UG T L 2.33
Zk 1 U)kﬂk w1 WK ()

with W(t) the diffusion-scaled workload process, being equal to a reflected Brow-
nian motion with negative drift. The stationary distribution of the latter process
is exponential with mean Zle 5—’;, see also Section 1.6.4. Hence, for exponentially
distributed service requirements, the stationary limit of (2.33) coincides with the
heavy-traffic limit of the steady-state queue lengths (2.31) as derived in Proposi-
tion 2.6.1. Interestingly, this shows that the heavy-traffic limit and the steady-state
limit commute in the case of exponentially distributed service requirements.

Proof of Proposition 2.6.1: Recall that the DPS queue with phase-type dis-
tributed service requirements is a special case of the general framework of Section 2.1
when the parameters are chosen as described in the beginning of this section. In
particular, recall that g; = g; = w; when k(i) = k(j) = [. Since N; = Zj:k(j):l Qj,
01 = (=1 P (see (2.27)), and since for the general framework relation (2.4)
holds, relation (2.31) follows directly where X is an exponentially distributed ran-
dom variable with mean as given in (2.5). We are left with showing that (2.5)
reduces to (2.32).

From (2.26) and (2.30), and since type-j customers belong to class k(j) and have
weight g; = wy;), we obtain that

€|rc

K K K
Z”JE lZi—ll 3 'ZIEJ Z Zwi B (234
=1 =1 =1

Jk(G)=1

46 Chapter 2 Heavy-traffic analysis of DPS

Similarly, we have that

J K ‘ K 2
;ij(Rj) =N o Y ZE®)= o fléfé))

=1 k(=1 & =1

= Z Apy —E(ff) (2.35)

Obviously, equations (2.34) and (2.35) remain valid in heavy traffic. Equation (2.32)
follows after substituting (2.34) and (2.35) into (2.5). O

Note that, although the limiting distribution depends on the second moments
of the service requirement distributions through E(X), the impact of the second
moment on E(X) is uniformly bounded, and in particular

mkinwk <EX) < m]?xwk,

cf. [2]. Similar partial insensitivity results have also been proved for the mean
sojourn time conditioned on the service requirement, [12], and the tail index of the
sojourn time distribution, [36].

The state-space collapse as demonstrated above, allows us to show further inter-
esting properties for the DPS queue. In Section 2.6.1 we obtain heavy-traffic results
for the residual service requirements of the customers in the various classes. In Sec-
tion 2.6.2, monotonicity in the weights of the standard DPS queue is investigated.

2.6.1 Residual service requirements

The distribution of the residual service requirement of a customer, without having
knowledge on the current phase of its service requirement, depends on the used
scheduling policy. For example, in a FCFS queue the residual service requirement
for customers waiting to be served is given by their original service requirement.
In case of a standard PS queue, the residual service requirements are independent
random variables distributed according to the forward recurrence times of the service
requirements. Given that there are nj class-k customers in the system, let B,Q’h
denote the remaining service requirement of the h-th class-k customer, k =1,..., K,
h=1,...,n. The following result is known for PS:

P(Blz,h Sa:;“h, Nk:nk,k:1,...,K,h:1,...,nk)
K ng

=P(Np =np, k=1,....K) [] [] BB < zen).
k=1h=1

with g p > 0, and P(N, = ng, k= 1,...,K) as given in (1.3). In this section we
show that in a heavy-traffic setting a similar result holds for the DPS queue.
Obviously, in the heavy-traffic limit, there will be an infinite number of customers
present in the system. Therefore, we concentrate on the first y; < oo class-k cus-
tomers, k =1,..., K. In the following proposition we show that the scaled number
of customers in the various classes and the remaining service requirements of any
finite subset of customers are independent in a heavy-traffic setting. In particular,

2.6 The standard DPS queue in heavy traffic 47

the remaining service requirement of a class-k customer is distributed according to
the forward recurrence time of its service requirement By. It will be convenient to
set, B,Q’h =0 whenever h > N, k=1,..., K.

Proposition 2.6.3. Assume phase-type distributed service requirements, and con-
sider a standard DPS queue with weights wy,...,wg. Then,

lmE (e—zf; SICETOLYES D DN B)
pTl

—-F (e_ZlK=1 SLNl) .

1

s LBfwd
fTe (),

h=1

b

l

fory € {0,1,...} and sy p,51>0,1=1,...., K, h=1,...,y.

Il
—

Recall that (Nl, No, ... ,NK) 4x. (g £ Q—K) , where X is exponentially

wy? wa’ T wi

K 2
distributed with mean E(X) = %, cf. Proposition 2.6.1.
=1 1 w.

Proof of Proposition 2.6.3: It will be convenient to first analyze the conditional
expectation E e~ T Tk S“‘BZ:’L‘Q). In order to do so, we condition on the

type of the h-th class-I customer, which we denote by I;; and takes values in
{i : k(i) = {}. For convenience, if h > 3., @, then I, has no significance.

Let [= (v, Diyys oo Ik, - - o, Ii gy), which takes values in the set
To={i:k(i11) =1, k(irg) =1, ..., k(ix1) = K, ... k(i) = K}.
Conditioning on the types of the customers, we can write

@) -3 E (e—z{; ShlysunBl

i€l

- =

E(e—zﬁlzi;m.»ﬁz;h =i @) BT =170).

(2.36)

Define the random variable Y; as

Yl::min(yl, Z Qj):min(ylle)a l:]-a“'va
J:k(5)=l

and note that P(Y; = y;) =]P(Zj:k(j):l Qj >y1) — 1,as p 11, cf. Proposition 2.1.1.
Since y; is a deterministic value, this implies convergence of Y; to y; in probability.
By definition, if the h-th class-l customer is of type 4; 5, then the corresponding

residual service requirement has the same distribution as R;, ,, h =1, ..., y;. Hence,

K Y

f: ;, Q) = H H E (e_sl’hRil*h) 5
I=1h=1
K w

— H H E (eisl’hRil'h) , aspll, (2'37)

l=1h=1

K 1 r
E (e* > Z}yzl=1 si,nB

48 Chapter 2 Heavy-traffic analysis of DPS

where the convergence holds in probability (since the conditional expectation on the
left-hand side converges to a deterministic value).

Given the population vector Q, the first chosen class-l customer is of type i,
k(i) = I, with probability ZL The next chosen class-l customer is of type 7,

sik(=t @i
N . .. Qj_l(i=j) .
k(j) = I, with probability Sonom 0T etc. So we obtain
P(I'=1i|Q)
Y,—1
_ Qil’l . Qil 2 74 1=11, 2) . Qil.Yl - h=1 l(il,}L:il,Yl) .
Ej:k(j):l Qj EJ k(j)=1 QJ Zj:k(j):l Qj - -1)
Yi—1
QiK,l) Qix,z - 1(1’;(11:1';(,2))) QiK,yK - hil l(iK.}L:iK,YK)
Zj:k(j):K Qj Zj:k(j):K Qj -1 Zj:k(j):K Qj - (Yg —1)
The latter converges in probability to
Yi A
H H /’l - 3 as p T 1)
=iac &

where we used that (1 — p)(Q1,...,Q) <4 x. (p1/91,---,ps/95) (see Proposi-
tion 2.1.1), the fact that Y; converges in probability to y;, the continuous mapping
theorem [27], g, , = Wi, ,) = wi, and (2.27). Together with (2.29), (2.36) and
(2.37) we now obtain

iez I=1h=1
- ﬁ ﬁ Z @E (efs"’hRiuh) ﬁ ly_[(—si,n B d) |
= o1 e

I=1h=14p:k(is,n)=1
in probability as p T 1. By the law of total expectation we therefore have
HmF (e_ Y si(1-p)Q =205, Yhk, SLhBlT.h)

pT1
= IlimE (ef Z}']=1 SJ’U*P)QJ'E (e_ZLK=1 251:1 si,n B[y, Q))
pT1
Ky e
=k (e o) T I & (™). (2.38)
l=1h=1

The result now follows by settlng 5j = (), J = 1,...,J, in equation (2.38) and
noting that 3. k()= ZQJ O
2.6.2 Monotonicity in the weights

In this section, we investigate how the choice of the weights influences the holding
cost for the standard DPS queue. We denote by dj, > 0 the cost associated with a

2.6 The standard DPS queue in heavy traffic 49

class-k customer. Note that this is a different setting compared to Section 2.5, where
a cost was assigned per type. As we will see in the proposition below, the scaled
holding cost stochastically decreases when relatively larger weights are assigned to
classes according to the values of di/E(BI"%), k =1,..., K. Note that E(BJ"%) =

QE]E(éik?) =3 (V]g(r éf)’“) + E(Bk)), hence customers belonging to classes with highly
variable service requirement distributions should be given lower priority. In addition,
from Proposition 2.6.3 it follows that E(B,{wd) = E(B}) in heavy traffic. This
shows a connection with the cu-rule where priority is given according to the cost dy,
divided by the expected residual service requirement of a class-k customer, see also

Section 2.5.

Proposition 2.6.4. Assume phase-type distributed service requirements and con-

sider two standard DPS queues with weights (w1, ...,wg) and (Wy,..., Wk). Let
dip >0, k =1,...,K. Without loss of generality we assume that the classes are
ordered such that dyJE(B{"") > ... > dx JE(BL").
Wi < ,forallk—l K —1, then
WE41 U)k
K K i
lim(1 - p) Y de NP5 > lim(1 - p) Y de NPT, (2.39)
P11 = P11 = ‘

where N,?PS(w) denotes the number of class-k customers in the DPS queue with
weights w1, ..., Wk .

Proof: From Proposition 2.6.1 we obtain that (1 — p) Zle de,fPS(w) converges
in distribution to an exponentially distributed random variable with mean

gy
S prE(BY),
k

]E32
Ekpk ()

hence we need to check that
d d
Zk 1 Zik Zk 1 Zik
Ok E(B) — or E(B) ’
Zk:l ET];]E(B,C) Zk 1 15)’;1 E(By)
This follows using similar arguments as in the proof of Proposition 2.5.1 and noting

E(B?) fwd
that QIE(Bkk) = E(Bk). U

Note that the cp-rule can be obtained in the limit from a DPS policy by letting
the ratios wy /wi41, k = 1,..., K—1, all go to oco. When the service requirements are
exponentially distributed, it holds that dj /E(B,’:wd) = dj i, so that the optimality
of the cu-rule in heavy traffic is obtained as a special case of Proposition 2.6.4.

In Section 7.5 we will study monotonicity properties similar to (2.39) for the
DPS queue with exponential service requirements outside the heavy-traffic setting.
For general service requirements, however, monotonicity will not necessarily hold in

50 Chapter 2 Heavy-traffic analysis of DPS

=06 =08
45 . ; 16 S ‘
ce- f=01 -e- /=01
4 - f=0.5 | 14 - f=0.5 §
‘..‘f:l ‘--‘f::l
3.5 - f=2 12 ==
=4 — =5 = 0
E - f=10 |} z 0 - f=10 ¢
: ‘ I 2 ' o g
= 25 g BT . z 8]
= \ BT H :
9 |“ F - q
15w
2 e T TR T
. ‘
0 2 4 6 8 10
r T
0o =0.999
40 £ ol - ‘ f=01
-g- f=0. cem /=
35 o [=05 | 5000 = /=05
- f=1 A
0} - f—2 4000} /=2
S — =5 Sl — /=
s o5t : z ' =
‘ - f=10 ' /=10
0 VSN P L
5 20p g \Z“ : -
= P o - :
sl e] 20001}
10
S 100013
5', ----------- TTmmm==m------ ‘
0 2 4 6 8 10 0

Figure 2.4: Total mean number of customers under a DPS policy with weights
wi = 1 and we = r. Class-1 service requirements are hyper-exponentially distributed
and class-2 service requirements are exponentially distributed. The load p = g1 + 02
equals 0.6, 0.8, 0.9 and 0.999, respectively.

a moderately-loaded queue. This is further explained in the example below where
the behavior of the DPS queue with hyper-exponential service requirements is nu-
merically investigated for several values of the load.

Numerical illustration of Proposition 2.6.4: We consider a DPS queue with
two classes. Class-1 customers have hyper-exponentially distributed service require-
ments, i.e., with a certain probability p a class-1 customer has an exponentially dis-
tributed service requirement with mean 1/p17 and with probability 1 — p it has an
exponentially distributed service requirement with mean 1/pu12. Class-2 customers
have exponentially distributed service requirements with mean 1/us. Furthermore,
we assume the load is equally distributed between classes 1 and 2, i.e., 01 = 2.
We will be interested in the total number of customers in the system, hence we set

2.7 Concluding remarks 51

di1 = dy = 1. Note that

2 2
w +(1_p)/M wd
E(pfwdy — /M 2 and E(BIY) =1/u,.
(1) p/ﬂ11+(1_p)/M12 (2) //1’2

Without loss of generality we set w; = 1 and wy = r, with » > 0. Proposi-
tion 2.6.4 states that in a heavily-loaded system the steady-state total number
of customers is stochastically increasing in r when E(B{wd) < E(ngd), is con-
stant in 7 when E(B{wd) = E(ngd), and is stochastically decreasing in r when
E(BI"%) > E(BJ{“?). Note that when r = 1, the policy reduces to standard PS,
and in that case the total mean number of customers is given by 1—in

In Figure 2.4 we plot the total mean number of customers as a function of the
weight parameter 7 (denoted by E(NPPS()). We consider the case 1y = 0.1,
p12 = 10, and gy = 1, while choosing several values for f := E(BJ"“%)/E(BI"%).
The total mean number of customers is obtained by solving a system of linear
equations as described in [51]. For p = g1 + 02 we chose the following values: 0.6,
0.8, 0.9 and 0.999. We see that in the latter case, a heavily-loaded system, the total
mean number of customers is increasing when f < 1, constant when f = 1, and
decreasing when f > 1. As the total load decreases, the monotonicity no longer
necessarily holds. This can be explained as follows. Since p11 < p2 < p12, the cu-
rule suggests to prioritize class-1 customers in phase 2, while the class-1 customers
in phase 1 should receive lowest priority. In the DPS queue no differentiation can
be made between customers residing in different phases. Therefore, the way the
weight r affects the mean total number of customers depends on the typical mix
of numbers of class-1 customers residing in the two phases. In heavy traffic, this
mix is characterized by the loads corresponding to the work of class 1 residing in
phases 1 and 2, cf. Proposition 2.1.1, and is hence independent of r. However, away
from heavy traffic, this mix may itself be influenced by r, leading to the observed
non-monotonic behavior in the figures.

2.7 Concluding remarks

We have studied a multiple-phase network of which the DPS queue with phase-
type distributed service requirements is a special case. In our main result we have
shown that, in heavy-traffic conditions, the queue length process exhibits a so-
called state-space collapse. Based on this result, we found that the DPS model in
heavy traffic inherits several well known properties of PS (not necessarily in heavy
traffic). For example, in the limit, the (scaled) number of customers present in a
DPS model is exponentially distributed, which is the continuous analogue of the
geometric queue length distribution of the PS queue. In addition, in a heavy-traffic
regime the residual service requirements are independent and distributed according
to the forward recurrence times, which is true for PS as well.

We have investigated the performance of a DPS queue in heavy traffic as a
function of the weights and showed that the scaled holding cost reduces as customers
with smaller weighted residual service requirements get larger weights. In Chapter 7

52 Chapter 2 Heavy-traffic analysis of DPS

we will investigate monotonicity properties of the DPS queue outside the heavy-
traffic setting.

This chapter can serve as a first step towards analyzing the steady-state queue
lengths for the class of weighted a-fair policies, of which DPS is a special case. It
would be interesting to investigate whether a heavy-traffic analysis similar to the
one performed in this chapter can be carried out for the linear bandwidth-sharing
network. This will not be a trivial extension, since the work-conserving property,
which was used to derive the exponentially distributed random variable as described
in Section 2.4.2, does not carry over to the linear network.

Chapter 3
Stability and size-based
scheduling in a linear network

Size-based scheduling policies, such as SRPT and LAS, provide popular mechanisms
in single-server systems for improving the overall performance by favoring smaller
service requests over larger ones, see Section 1.3.3. In this chapter we examine
the merits of size-based scheduling in the linear bandwidth-sharing network. More
precisely, the capacity among the various classes is allocated based on the sizes of
the service requirements of the users. We explore fundamental stability properties
of such size-based scheduling policies.

Due to concurrent resource possession in a linear network, size-based scheduling
policies may use the capacity of the nodes inefficiently and persistently leave critical
resources underutilized, even when congestion builds up. As a result, SRPT and LAS
may unnecessarily cause instability, and will then certainly not yield good perfor-
mance. Rather than aiming at a general characterization of the stability conditions,
in this chapter we focus on various (limiting) regimes of the service requirements.
This appears already sufficiently rich to exhibit the instability effects. In particular,
we prove that this occurs when the users with long routes have larger service re-
quirements than the ones with shorter routes. For networks with sufficiently many
nodes, instability phenomena can in fact arise at arbitrarily low traffic loads. In the
opposite regime, where the users with long routes have smaller service requirements
than the ones with shorter routes, size-based scheduling strategies are less prone to
instability effects.

It is worth drawing a distinction with the situation in queueing networks with
feedback where the usual necessary stability conditions are not sufficient either,
as first exemplified in Lu & Kumar [87] for priority scheduling and later studied
in Bramson [37] for FCFS. In these networks, users visit the various nodes along
their route through the network in succession, whereas users in bandwidth-sharing
networks require service at all nodes along their route simultaneously. The way in
which the queues build up in those feedback networks is also qualitatively different,
and typically involves oscillatory behavior.

This chapter is organized as follows. In Section 3.1 we present a model descrip-

54 Chapter 3 Stability and size-based scheduling in a linear network

tion and discuss some preliminary results. The three subsequent sections examine
fundamental stability properties under several size-based scheduling policies. In Sec-
tion 3.2 this is done for SEPT (Shortest Expected Processing Time) policies, which
can be described by simple priority rules. We turn the attention to SRPT and
LAS in Sections 3.3 and 3.4, respectively. In Section 3.5 we make some concluding
remarks.

3.1 Model and preliminaries

We consider a linear network with L nodes and L + 1 classes, where class ¢ requires
service at node ¢ only, ¢ = 1,..., L, while class 0 requires service at all L nodes
simultaneously, see Figure 1.2. For convenience, we assume each of the nodes to
have a unit service rate. Class-j users arrive according to independent Poisson
processes of rate \;, and have generally distributed service requirements B; with
distribution function Bj(z) = P(B; < z), j =0,1,..., L. Define the traffic load of
class j by p;j := \E(B;j). Let A;(0,¢) denote the amount of work from class j that
arrives in the interval (0, ¢], and note that lim;_. M = p;, almost surely (a.s.).

The queue of class-j users is referred to as @;, j = 0,...,L. In bandwidth-
sharing networks, the queue is a purely virtual entity in the sense that the users do
not actually reside in physical queues, but rather keep the bulk of the backlogged
work stored in their own buffers. Denote by N;(¢) the length of @Q; at time ¢, i.e.,
the number of class-j users in the system at time ¢.

In this chapter we focus on scheduling policies that can be described by sized-
based priority ranking. For example, priority is given based on some class parame-
ter (SEPT), remaining service requirement (SRPT), or amount of attained service
(LAS). Since class-0 users require simultaneous service at all nodes, without any
further arbitration mechanism, capacity can be left unused. Therefore the priority
ranking needs to be augmented with a further arbitration mechanism to arrive at
the rate allocation to the various classes. We will distinguish between two options:
(i) weak priority, which means that the capacity in node i that is left unused, is
re-allocated to class 4; (ii) strict priority, which implies that this capacity is left
unused.

In this chapter we use the following definitions for stability of a single queue, a
node and the complete system.

Definition 3.1.1 (Stability). For a given policy, Q;, j =0, ..., L, is stable when

T—o0

S

hmlnff/o 1w =0)dt >0, as.

Node 7,7 =1,..., L, is stable when both @y and @; are stable. The system is stable
when all nodes are stable.

By the Poisson assumption, the process N(t) = (No(t), ..., Np(t)) is a regener-
ative process with regeneration state 0. A common definition for stability used in

3.1 Model and preliminaries 55

the literature, as well as in the chapters of this thesis (with the exception of this
chapter), is that the process is stable when it has a finite mean recurrence time to
state 0. (In the case of a Markov process this is equivalent to state 0 being positive
recurrent.) Note that the process ﬁ(t) has a finite mean recurrence time to state 0
if and only if

T—o0

S
hmlnff‘/0 L w=spdt >0, as, (3.1)

see [138]. A necessary condition for the linear network to have a finite mean recur-
rence time is po+p; < 1foralli =1,..., L, see for example [59]. Note that when the
system is stable according to Definition 3.1.1, i.e., liminfp_, % fOT (N, (t)=0)dt > 0,
a.s., for all j =0,..., L, this does not imply that (3.1) is satisfied or, equivalently,
that the process N (t) has a finite mean recurrence time. Hence, the stability notion
used in this chapter is slightly weaker than the definition that is commonly used.
The advantage of using the weaker notion of stability of the system is that stability
of the individual queues implies that the system is stable as well. This implica-
tion would not go through when using the definition of finite mean recurrence time
instead.

For a given policy, let s;(t) denote the service rate allocated to class j at time ¢.
We define by

17 e
g; = hTHiio%ff/o sj(t)dt and 7, := li;nj;pfA s;(t)dt,
the random variables denoting respectively the minimum and maximum long-term
average service rate of class j, 7 =0,..., L. We have the following lemma.

Lemma 3.1.2. It holds that 0; <7j <pj, as.
If Q; is stable, 5 =1,...,L, then o; = p;, a.s.

Proof: The statement g; < &; < p; follows immediately from fOT sj(t)dt <
A;j(0,T) + W;(0) and the fact that limp_ A;(0,T)/T = p;, a.s. Here W;(t)
denotes the workload in class j at time ¢t. The second statement deserves more
elaboration. Note that

o W) A0,T) 1T _
1%102ij:117“1£10¥ <jT—T/O sj(t)dt | = p; — 7.

Hence, it remains to be shown that if (); is stable, then liminfpr_.o W;(T)/T =0
a.s., or equivalently, if liminfr_. W;(T)/T > 0 with strictly positive probability,
then @); is unstable.

Assume liminfr_.oo W;(T)/T > 0 with strictly positive probability. Hence,
with strictly positive probability we have limgp_.o W;(T) = oo, and there ex-
ists a T > 0 such that 1w, y>0) = 1 for all t > T. We can conclude that
limy oo = fOT 1w, (t)>0)dt = 1 with strictly positive probability, i.e., Q; is unstable.
O

56 Chapter 3 Stability and size-based scheduling in a linear network

For a given policy, it will be convenient to define the function ¢;(t) as follows:
¢;(t) :== s;(t) when N;(t) > 0, and otherwise the term ¢;(t) is defined as the maximal
capacity that could have been allocated to class j (if it would have been present) at
time t without reducing the rates allocated to other users. We define by

I 17
;= 1%1021’?/0 ¢;(t)dt and ¢;:= 11;11j01ipf/0 c;(t)dt,
the random variables denoting respectively the minimum and maximum long-term
average of ¢;(t). In the next lemma we describe the stability conditions in terms of c;
and ¢;. The terms ¢; and ¢; depend on the employed scheduling policy. In general,
they are difficult to obtain, since they are highly influenced by the interaction with
the other classes i # j.

Lemma 3.1.3. If p; < ¢;, a.s., then Q;, j = 0,..., L, 1s stable. If Q; is stable,
then p; <¢j, a.s.

Proof: Note that c¢;(t) < 1, so that 1(x,)=0) = (v, t)=0)¢;(t) = ¢;(t) — s;(t), for
all t. Hence, we obtain that

- _
1¥rilor<1)f T/o v, (t)=0)dt > ¢; — T4, a.s. (3.2)
From this it follows that if ¢; > 7, a.s., then @; is stable. Since 7; < p;, the first
statement in the lemma is proved.

The second statement in the lemma follows from the fact that s;(¢) < ¢;(¢), and
hence, 7; < ¢;, a.s., together with the fact that o; = p; if Q); is stable. 1

Obviously, p; < 1 is a necessary condition for @Q); to be stable, j = 0,...,L.
In the following lemma, useful sufficient stability conditions are presented under
certain conditions on the policies.

Lemma 3.1.4. (i) A sufficient condition for stability of Q;,i=1,...,L, is po+p; <
1, provided that under the employed policy node i operates at the full service rate
whenever Q; is non-empty.

(i) A sufficient condition for stability of node i is po + p; < 1, provided that under
the employed policy node i operates at the full service rate whenever Qg or Q; are
non-empty.

(iii) A sufficient condition for stability of the system is EiL:o pi < 1, provided that
under the employed policy at least one of the nodes operates at the full service rate
whenever the system is non-empty.

Proof: Statement (ii) follows from the fact that node ¢ behaves as a work-conserving
single-server queue with load pg + p;. Statement (iii) follows from the fact that
the total workload of classes 0,1,..., L, is stochastically dominated by that in a
work-conserving system where classes 1,..., L, are never served at the same time.
Statement (i) deserves more elaboration. When node i operates at the full service

3.2 SEPT scheduling 57

rate whenever @; is non-empty, we have 1(n,#)>0) < so(t) + s;(t). Together with
Lemma 3.1.2 this implies

: I
lim sup T/ 1(Ni(t)>0)dt < po + pi, as.
0

T—o0

Hence, Q; is stable if pg + p; < 1. O

For the scheduling policies considered in this chapter (SEPT, SRPT and LAS),
the third property in Lemma 3.1.4 is always satisfied, while the first property only
holds for the variants with weak priority. In the remainder of this chapter, stability
conditions for size-based scheduling policies are further investigated. We do not aim
at deriving stability conditions in the full setting of general service requirements.
Instead, we focus on two particular regimes of the service requirements. Either the
class-0 users have, in some sense, relatively large service requirements compared
to the class-i users, ¢ = 1,..., L, or the class-0 users have relatively small service
requirements.

3.2 SEPT scheduling

In preparation for the analysis of SRPT and LAS, we first consider the Shortest
Expected Processing Time first (SEPT) policy with preemption. SEPT simply
gives preemptive priority to class-i users over class-0 users when E(B;) < E(By)
and vice versa when E(B;) > E(By), i =1,..., L.

3.2.1 Large class-0 users

When E(By) > E(By),...,E(BL), i.e., large class-0 users, SEPT scheduling in a
linear network corresponds to the policy that gives preemptive priority to classes
1,..., L over class 0.

Proposition 3.2.1. Under the priority rule that gives preemptive priority to
classes 1,..., L over class 0, Q; is stable if and only if p;, < 1,71 =1,...,L. In
addition, Qq is stable if po < IE (1 — p;), and unstable if po > = (1 — p;).

Proof: When classes 1...,L are given preemptive priority, class ¢ behaves as in
an isolated M/G/1 queue with class ¢ only. Therefore, Q; is stable if and only if
pi <1l,i=1,...,L. Let N;; i =1,..., L, be the random variable with the time-
average distribution of N;(t). Since Nip,..., Ny are independent, we have P(N; =
0,...,Ny = 0) = IIX (1 — p;). Class 0 is served when there are no class-i users
present, i = 1,..., L. By Lemma 3.1.3, we obtain that if

po <P(N1=0,...,N,=0)=1II"_, (1 - py), (3.3)

then Q) is stable. In addition, if pg > P(N; =0,..., Ny =0) = II% (1 — p;), then
Qo is unstable. O

58 Chapter 3 Stability and size-based scheduling in a linear network

Note that the above condition is more stringent than the maximum stability
condition. In fact, the system can be unstable for arbitrarily low values of pg if the
number of traversed nodes is large. The instability can arise here since this priority
policy can leave a substantial portion of the capacity unused, regardless of how large
the number of class-0 users is. In Sections 3.3 and 3.4 we show that SRPT and LAS
inherit these difficulties.

3.2.2 Small class-0 users

When E(By) < E(By),...,E(BL), i.e., small class-0 users, SEPT scheduling in a
linear network corresponds to the policy that gives preemptive priority to class 0
over all class-i users, ¢« = 1,..., L. Under this priority rule, the system is stable
under the maximum stability conditions, see the next proposition.

Proposition 3.2.2. Under the priority rule that gives preemptive priority to class-0
users, Qo is stable if and only if pg < 1. In addition, Q; is stable if po + p; < 1,
and unstable if po+p; >1,1=1,..., L.

Proof: When class 0 is given preemptive priority, class 0 behaves as in an isolated
M/G/1 queue with class 0 only. Therefore, (o is stable if and only if py < 1.
Since Ny(t) is a regenerative process, we have that limp_,. No(T)/T — 0, a.s.,
when @ is stable. Together with

. Wo(T)