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REASONING ABOUT UPDATE LOGIC 

ABSTRACT. Logical frameworks for analysing the dynamics of information processing 
abound [4, S, 8, 10, 12, 14, 20, 22]. Some of these frameworks focus on the dynamics 
of the interpretation process, some on the dynamics of the process of drawing infer­
ences, and some do both of these. Formalisms galore, so it is felt that some conceptual 
streamlining would pay off. 

This paper is part of a larger scale enterprise to pursue the obvious parallel between 
information processing and imperative programming. We demonstrate that logical tools 
from theoretical computer science are relevant for the logic of information flow. More 
specifically, we show that the perspective of Hoare logic [13, 18] can fruitfully be 
applied to the conceptual simplification of information flow logics. 

Part one of this program consisted of the analysis of 'dynamic interpretation' in 
this way, using the example of dynamic predicate logic [10]; the results were published 
in [7). The present paper constitutes the second part of the program, the analysis of 
'dynamic inference'. Here we focus on Veltrnan's update logic [22]. 

Update logic is an example of a logical framework which takes the dynamics of 
drawing inferences into account by modelling information growth as discarding of 
possibilities. This paper shows how information logics like update logic can fruitfully 
be studied by linking their dynamic principles to static 'correctness descriptions'. 

Our theme is exemplified by providing a sound and complete Hoare/Pratt style 
deduction system for update logic. The Hoare/Pratt correctness statements use modal 
propositional dynamic logic as assertion language and connect update logic to the modal 
propositional logic SS. 

The connection with SS provides a clear link between the dynamic and the static 
semantics of update logic. The fact that update logic is decidable was noted already in 
[2]; the connection with SS provides an alternative proof. The SS connection can also be 
used for rephrasing the validity notions of update logic and for performing consistency 
checks. 

In conclusion, it is argued that interpreting the dynamic statements of information 
logics as dynamic modal operators has much wider applicability. In fact, the method 
can be used to axiomatize quite a wide range of information logics. 

Keywords and Phrases: dynamic interpretation, Hoare logic, dynamic logic, knowl­
edge representation languages. 
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1. INTRODUCTION 

In the logical analysis of information and information processing two 
approaches can be distinguished. One approach takes the notion of 
truth as central. In this static approach growth of information by means 
of an utterance is viewed as adding the truth conditional content of 
the utterance to a given infonnation state. The notion of inference is 
also defined in terms of truth conditions, as meaning inclusion in all 
models. The other approach takes information and information change 
as its central notions. A state of information is given by the set of 
possibilities which it leaves open. The nature of the possibilities varies 
of course with the theory of information at issue. In Lewis [17] the 
possibilities are possible answers to questions like 'Who is the speaker?', 
'What is the current topic of conversation?', etcetera. In Heim [12] and 
Kamp [14] the possibilities are the discoure markers that are salient for 
anaphoric reference at the current stage of the discourse. In Groenendijk 
and Stokhof [1 O] they are possible assignments of values to variables. 
In Gardenfors [8] the possibilities are (in the simplest version of the 
theory) the possible models of a given set of sentences. In Veltman [22] 
the possibilities are possible valuations for a set of proposition letters. 

The first approach to information processing may be called static: 
evaluation at a given state is the basic notion. The second approach 
is dynamic in that information change is at the core of the approach. 
In the dynamic perspective, the meaning of a sentence is equated with 
its information change potential, with the effect that it has on a given 
state of information. Meanings are functions from information states to 
information states. 

If one applies this to the semantics of natural language, (see for 
example Karttunen [15], Stalnaker [21], Kamp [14], Heim [12] and 
Barwise [1]) then the meaning of a text is the change it brings about in 
the information state of anyone who accepts the information conveyed 
by it. One perspective on dynamic semantics for natural language is to 
view this approach as a proposal to represent the meanings of natural 
language sentences not by means of formulae from static logic but 
by means of expressions from a dynamic action language. The action 
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languages that have been proposed display an intriguing mix of features 
of programming languages and features of logical languages. 

It has been demonstrated by example in [1] that under a dynamic 
regime compositional translations become feasible for fragments of 
natural language which include features that have resisted compositional 
treatment in the static representation approach (the most notable features 
being the handling of 'donkey' pronouns and pronominal binding across 
sentence boundaries). 

The move from static logic to dynamic logic raises some interesting 
questions. In the first place, due to this transition we seem to have lost 
the deduction systems that static logical languages carry with them. This 
was noted by Barwise in [11. one of the first papers to propose an action 
language as representation medium for natural language meaning. Here 
the quest for a complete set of axioms for the dynamic inference notion 
that is engendered by the action language is put forward as an open 
problem. Next it can be asked what is the precise relation between the 
static semantics and the dynamic semantics of natural language. Are 
there systematic ways to derive the static meaning of a sentence from 
its dynamic representation? 

These questions are intimately connected. Our contention is that 
they should be tackled together and moreover that theoretical computer 
science can guide the way. In computer science the view that the meaning 
of a program is a function from information states to information states 
is common ground. In the case of imperative programming languages 
this perspective has led to Hoare logic f 13] as a successful means to 
construct deductive systems for reasoning about imperative programs. 

To apply this to infonnation processing in a very general sense, 
consider a reader of a text 1r as an agent who uses 7f' to update her or 
his knowledge 'fl. Unless there is a consistency clash the agent will end 
up with more specific knowledge 1/. Taking our cue from Hoare logic 
we ask the following question. What is the weakest formula ip such 
that any knowledge implying r.p remains consistent during the process 
of absorbing the information from text Tr? This weakest precondition 1.p 

for successful processing represents the static meaning of text 1r. It is 
the careful analysis of these weakest preconditions that leads to Hoare 
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deduction systems which are sound and complete for a given dynamic 
semantics. 

In this paper we will study Veltman's [22] update logic from this per­
spective. The simplest version of update logic is exemplary for dynamic 
approaches to information. Information states are just sets of valuations 
to a set P of proposition letters, i.e. sets of subsets of P. Valuations 
to proposition letters might be called possible worlds, so information 
states are sets of possible worlds. The set W of all possible worlds is 
'PP, the information state W is the state of complete ignorance (no 
possibility is excluded), for any w E W, the state { w} is a state of 
complete information (all possibilities except w have been excluded), 0 
is the absurd information state (nothing is compatible with the informa­
tion). A further simplifying assumption of Veltman's update logic is the 
disregard of information revision (a central aspect of, e.g., Gardenfors 
[8]). 

Update logic can be used for the analysis of the epistemic sense of 
maybe or might. If I say Maybe it rains, or Mary might be at home then 
I wish to convey that the possibility of rain cannot be excluded on the 
basis of what I know, or that my evidence about Mary's whereabouts 
does not exclude her being at home (she took a day off from work, or I 
see light at her window). 

It is hoped that the simplicity of update logic will help us to clarify 
our more general points about the relation between static and dynamic 
concepts in theories of information processing. We are in fact convinced 
that the link between the statics and dynamics of update logic by means 
of a Hoare/Pratt style analysis can be generalised to more complex 
systems of information flow logic. 

To end this introduction, here is an overview of the contents and 
structure of the paper. In Section 2 Veltman's update logic is presented. 
Section 3 consists of a brief review of the tools from propositional 
modal logic that we will need. Section 4 contains the definition of 
validity for the assertion logic that is the foundation of our adaptation 
of Hoare/Pratt assertion reasoning to update semantics. The key notion 
of this section is the notion of a weakest precondition for a program 
of update logic. Section 5 links weakest preconditions to the next state 
conditions for update logic that were proposed by Van Benthem [2]. 
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Section 6 contains the Hoare/Pratt calculus engendered by the notion of 
weakest preconditions of update programs. In Section 7 we prove the 
soundness and in Section 8 the completeness of the Hoare/Pratt calculus. 
In Section 9 we illustrate how the weakest preconditions analysis and 
the link to modal propositional logic can be used for reasoning about 
update logic. Section 10 demonstrates how weakest preconditions and 
the Hoare/Pratt calculus that is based on them can be used for reasoning 
about consistency of update programs. Finally, in Section 11 we wind 
up our story by connecting our program with related work and listing 
some directions for future research. 

2. UPDATE LOGIC: SYNTAX AND SEMANTICS 

The characteristic feature of Veltman's update logic (see Veltman [22]) 
is the epistemic modal operator might. Due to the presence of this 
operator the meanings of 'update programs' have to be phrased in terms 
of input information sets, and have to be phrased dynamically. The 
formulae of update logic have to be distinguished from the formulae of 
the static language used to make assertions about update logic. Because 
of the dynamic flavour of the former we will refer to these as 'update 
programs'. We will see that sequential composition of update programs 
does not in general reduce to Boolean conjunction. 

An update program 7f maps an information state I to a new infor­
mation state [ 7r] (I). To see that might is the key feature, note that the 
semantics for the fragment of update logic without might can be giv­
en by means of a dynamic yes/no function for individual propositional 
valuations, which reduces the semantics immediately to ordinary static 
propositional logic. 

Following Veltman [22] (and in fact, slightly simplifying his syntax), 
we can define the language of epistemic update logic over a set of 
proposition letters P as the smallest set L p such that the following 
hold: 

DEFINITION 1 (Syntax of Update Logic Lp). 

1. ..l E Lp. 
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2. Ifp E Pthenp E Lp. 
3. If 71" and 1r1 E Lp, then (71": 11"1) E Lp, (7r U 7r1) E Lp. 
4. If 7r E Lp, then -.71" E .lp,might 'II" E Lp. 
5. Nothing else is in Lp. 

The semantics of Lp is given in tetrns of input-output behaviour. We 
take the set W of worlds over P to be the set PP. Any subset of W is an 
information state. Progams are interpreted as functions from information 
states to infonnation states, i.e., as functions in PW ~ PW. The 
clauses are as follows: 

DEFINITION 2 (Semantics of Update Logic.) 

1. l..L)(I) = 0. 
2. (p)(I) =In {w Ip E w}. 
3. ['ir; n')(f) = (7r1]((7r)(I)). 
4. [7r u 71"1)(/) = (7r](J) u (7r1]{J). 
5. (-.7r)(f) == I - (7r](J). 

6. (might 7r)(J) = { 01 ifth(7r](~) :fi 0, 
o erw1se. 

We will follow the usual conventions and drop outermost parentheses 
as much as possible. Also, since sequential composition is associative 
we will write both ?r1; ( 7rz; 71"3) and (7r1; 7l"z); 71"3 as 7r1; 7rz; 7r3. 

Intuitively, a program of the fonn might 'IT' does not provide infor­
mation about the world but about available information. A program 
might 1f is acceptable, given an information state I, if there is at least 
one world w E I for which 11" is accepted in the sense that w E (7r) (!). 
If such a w can be found, the output information state of might 71" is 
equal to its input information state; this agrees with the intuition that 
might 7l" does not say anything at all about what the world is like. In 
the other case, i.e., the case were [ir){J) = 0, the output information 
state of might 7r equals 0. 

As was mentioned already, the might operator is the key feature of 
update logic. Yet another way to see this is to note that the semantic 
clause for might 11" introduces an element of non distributivity (this 
terminology is taken from [11]) into the semantics, in the sense that 
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unions of input states do not distribute over output states: ( 1) does not 
in general hold. 

(l) [nJ = LJ ). 
iEl 

More specifically, it does not in general hold that [ii)(l) ~ UiE:t [!7){ { i} ). 
Counterexample: take " equal to might p and let I = {w, w'} with 
p E wand p ~ ·1.J/. Then (might pj( { w}) U [might pi({ w1 }) ::::: {w}, 
but (might pj(J) =I= {w, w1}. 

On the other hand, a simple induction on the complexity of n: shows 
that Lemma 1 holds for all r. E L p and an information states I. In the 
terminology of Groenendijk & Stokhof [ 11 J: epistemic update logic is 
eliminative. 

LEMMA J (Elimination Lemma.) For all I: (11")(1) ~ I. 

3. ASSERTION LOGIC 

The presence of the modal might operator in a dynamic setting which is 
otherwise fully propositional strongly suggests the use a modal proposi­
tional logic as language to make static assertions about update programs 
in, i.e., as assertion language. But we also want to be able to talk about 
execution results, so we add the update programs themselves as a sec­
ond kind of modality. The syntax of our assertion language malp is as 
follows: 

DEFINITION 3 (Syntax of rnalp.) 

I . ..L E nuilp. 
2. If p E Pthenp E malp. 
3. If <p, !/: E malp, then (;p /\ !/~), •<p, Ot.p E malp. 
4. If 'PE malp and n E Lp then {w)ip E malp. 
5. Nothing else is in malp. 

As is customary, we abbreviate -,J_ as T, --{•rp /\ -,'lj;) as ( rp v "If;), 
•( r.p /\ -i'lj•) as ( ::p ---i- ~1), -.<>--.(;C' as Drp, -, (7r) -,rp as [r.J <f?, Also, we omit 



26 JAN VAN EIJCK AND FER-JAN DE VRIES 

outermost parentheses for readability. We will refer to propositional 
modal logic (which is defined by omitting clause 4 from the definition 
of malp) as mlp. 

We consider information states I E PW as universal Kripke models; 
thus, I is considered as the Kripke model with accessibility relation Ix I. 
Recall from the literature (see e.g. [9]) that the modal logic determined 
by the class of finite universal frames is S5. Moreover, for any finite 
universal model (a universal frame with valuations assigned to all of its 
worlds) there is a finite subset I of W validating the same formulae. 
I can be got by throwing away the extra copies of the worlds with 
identical valuations: because of the universal accessibility this makes 
no difference to validity. 

It is convenient to define the interpretation of an malp formula with 
respect to an information state. 

DEFINITION 4 (Interpretation of cp with respect to I.) 

1. llJ-llr = 0. 
2. l!Pllr = {w EI Ip E w}. 

3. llcp /\ 'l/lllr = ll'Pllr n 111/Jllr. 
4. l\•'PllI =I - !l'Pl!r. 
5. \IO,nl\ = {I if \\cpll~ i= 0, 

..,, I 0 otherwISe. 

6. \1(7r)cp\l1 = llcp\\[7r](I)· 

We can now can define the notion I, w II- cp (world w forces formula cp 
in information state I) as w E llc,ol\1. 

In Hoare style reasoning about update logic the notions of rela­
tivisation and localisation of modal formulae play an important role. 
Localisations of modal formulae are defined in Kracht [16]. If cp, t/J are 
in malp, then cpl'ljl, the localisation of cp to 1/J, is given by the following 
definition. 
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DEFINITION 5 (Localised modal formulae 'Pl 'lf;.) 

..Ll'l/J = J_ 

pl'l/J = p /\ 1/J 
(t,or A 1,02H1/J = (cptl'l/J) /\ (cpzl'l/J) 
(-.rp)l'l,b = 'lf;/\•(cpl'l/J) 
(<><p)l'l/J = 'ljJ /\ <>('lf; /\ (cpl'l/J)). 
((n)cp)l1/J = 'ljJ /\ (7r)(1/J /\ (rpl1/J)). 

Localisation is closely related to the usual notion of a relativised modal 
formula. 

DEFINITION 6 (Relativised modal formulae <p'l/J). 

J_.P = .l 
p1/J = 'I/; ---t p 

('PI /\ '/>2)7/> = 'Pf /\ rpf 
(•1.p)1/J = -.(cp1/J) 
(<>cp)'t/J = <>('l/J/\rp1/J). 
( (rr)'P).P = ('rr)('l,b /\ ip1/J). 

The connection between the two notions is given by the following 
lemma. 

LEMMA 2 (VanBenthem.) cpl'l,b iff'P1/J /\·if. 
Proof Induction on the structure of 'P· For example, in the case of 

negation the reasoning is as follows. 

-iipl'l,b = l def 
= ind hyp 
= prop logic 

= 1 def 

'ljJ /\ •( cpl'l/J) 
1/J /\ -.( rp 1/J A 'lj;) 
if;/\ -i(<p1/J) 
'lj; A ( -.i.p )7/J. Ill 

Given this connection, the following lemma will not come as a surprise 
(the first item is from the modal folklore, the second from Kracht [16]). 

LEMMA 3 (Relativisation and Localisation). 

J. ll'P'lj;llI = (J - IJ'l/;ll1) U JlcpJliJ1/Jllr 
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2. l!<f>l'l/Jllr = ll<plliiVillr 
Proof. Both assertions are proved by induction on the complexity of 

cp. • 

4. CORRECTNESS STATEMENTS FOR UPDATE LOGIC 

Once we have a notion of validity for assertions, the assertion language 
can be used to make correctness assertions about update logic. Here is 
the validity notion. 

DEFINIDON 7. Assume <p E malp. Then f= <p if for all I ~ W, 
l= llcpll1-
Now we immediately have the following. 

LEMMA4. F cp t-t (rr)'lj; iffforall I: llcpllr = 11'1/Jll[?r](J)· 
Proof Immediate from Definition 4 and Definition 7. • 

Note that it follows from Lemma 4 that f= cp t-t (rr)T iff for all I: 
I l'P!II = [7r](f). 

The correctness statements suggest the following notion of weakest 
precondition for update logic. 

DEFINIT10N 8. A formula cp E mlp is a weakest precondition (WP) of 
the progran11r E Lp and the formula 1jJ E malp if for all I: ll'Pll1 = 
llt/Jll[11"](J)· 
It is not obvious at first sight that WPs of an L p program 7r and an mal p 

formula 'ljJ always exist (as formulae of mlp ). We will demonstrate now 
that they do, by inductively defining a function wp( 7r, 'ljJ), of which we 
will show that it expresses a WP of 7r and 'l/J. 

DEFINIDON 9 (wp.) 

1. wp(J_, 'l/J) = l... 
2. wp(p,'l/J) = 'l/Jlp. 
3. wp(7r1; 7r2, 'l/J) = wp(7ri, wp( 7r2, 'l/J)). 
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4. wp(n1U71"2, 1/J) = 1f.it(wp(7l"1, T) V wp(11"2, T)). 
5. wp(-i7r, 'If;)= 1f;1-.wp(11", T). 
6. wp(might 7r, 1/1) = <>wp('ir, T) /\ 1,b. 

An easy induction shows that wp(n, 'If;) E mlp, for 7r E Lp and 'I/; E 
malp. Lemma 5 shows that the function wp(11", 'I/;) does indeed express 
a WP of a program 7f and a modal propositional formula 'l/J. 

LEMMA 5 (wp adequacy.) !lwp(11", 'l/;)111 = ll'l/Jll[7rl(I)· 
Proof. We prove the claim with induction on the structure of 1r. 

llwp(l_,7/J)llr = wpdef lfl_ll1 
= 11 llr def 0 
= [] def lltlill[.L]{I)· 

llwp(p,1/1)111 = wp def ll1filPll1 
= Joe lemma ll'ljilillPllr 
= [] def 111/lllCPJ(IJ· 

llwp(ir1;7r2,'1/>)Jl1 = wpdef Jlwp(7r1,Wp{'ir2,'!f))IJ1 
= ind hyp IJwp(7r2, '!f )ll[,qJ(IJ 
= ind fryp lli/illl,,.2]([.,,.1WJ) 
= [ J def ll'lfll ["1;,..2J(I) · 

!lwp(11'1U11'2, 1/i)llr = wp def ll1/J!(wp(7r1, T) V wp(7r2, T))llr 
= loc lemma ll1/Jl111wp(,,.i.TJvwp(,,.2.Tlll1 
= ind hyp, 11111 def 1i'lf;ll[,..1J(I)U[,,.2](I) 

::= [] dej 1i'lf;ll[1qU,,.2JCI)-

llwp(-i7r, 1/J)ll1 = wp def ll'l,lll-iwp(1r, T)l11 
= loc lemma l/V-illi1~wp( ... ,T)ll1 
= 11 llr def ll'4ill1-11wp(.,,.,T)ll1 
= ind hyp, 11111 def llV-illz-[-.JI(!) 
= [] def 111/lll[~"](J)· 

l!wp(might 7r, '!/>) 111 = wp def 
= 11111 def 

ll<>wp(7r, T) A V>llr 
ll<>wp(7r, T)ll1 n lltlillr 

= OdefinS5 

= ind hyp, 111!1 def 

= [] def 

{ 
111/illr if llwp(7r, T)llr :f. 0, 
0 otherwise 

111/illr if [1r}(J) "/ 0, 
0 otherwise 

111/>IJ[might .,..HI)· 

This completes the proof of the lemma. • 
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LEMMA6. 

1. llwp(7r, T)llr = [7r](J). 
2. I= <pH- {7r)T iffforall I: l\wp(7r, T)llr = l\rpllr-

Proof. The first item: 

llwp(n, T)llr = wp adeq 11Tllc11"](I) 
= 11111 def [7r](J). 

The second item follows from Lemma 4 and the first item. 11 

LEMMA 7. llwp(7r,1/l)lir = 117/ilwp(n, T)ll1. 
Proof 

llwp(rr, '1i)llr = wp adeq ll~!l[11](I) 
= Lemma 6 ll~l!itwp(1r,T)llr 
= loc lemma ll~lwp(7r, T)llr· 111 

5. WEAKEST PRECONDITIONS VERSUS NEXT STATE CONDITIONS 

In [2] and [3], Van Benthem has studied update logic by looking at 
update programs n as functions of the form )..J ·NEXT STATE(!, 7r), 
were NEXT STATE is the function producing the information state 
which results from processing 7r in information state I, i.e., 7r is consid­
ered as )J · [rr] (I). The investigation in [2, 3] was carried out in semantic 
terms, without reference to a specific assertion language, but it can easily 
be transposed in a setting of assertions from modal propositional logic. 
Some illuminating conversations between Johan van Benthem and the 
authors, backed up by an exchange of letters of explanation and consec­
utive drafts of the present paper, have fully cleared up the connection 
between his perspective and ours. His generous help in clarifying the 
issues raised in this section is herewith gratefully acknowledged. 

DEFINITION 10. A formula 'ljJ E mlp is a next state condition (NSC) 
of the formula r.p E ml p and the program 7r E L p if for all I: 11'!/J11 r = 
['7!"](\lcpllr ). 
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The following function nsc is a reformulation in modal logic of Van 
Benthem 's characterisation of the next state function. 

DE.FINIDON l l (nsc.) 

I. nsc(<p,..L)=..L. 
2. nsc = p I\ :p. 

3. nsc ( ip, 1ri; r.2) = nsc (nsc ;ri), 7rz). 
4. nsc ( ip, JT1 u rr2) = nsc 71"1) V nsc (;p, n2). 
5. nsc ( ;p, """'Ti) = -,nsc ('f?, 7f) l\ 9. 
6. DSC ( <p, might ir) = Onsc (if, 1r) /\ \{). 

LE:Ml\.1A 8 (nsc adequacy.) J!nsc (.p, 7f)ll1 = fr.W 11 ). 
Proof Induction on the structure of 7f. 

!Jnsc (;p, = nsc def l!J.-!11 
= def 0 

def (1.Hll'Pl!1 ). 
:Jnsc p)]1 = nscdef i!P /\ 1Pll1 

= ii 111 def llP/11 n ll'Pll1 
= [) def [pJ(ilipjjJ ). 

= r.sc def l/nsc (nsc ( rp, ;rr), ;rzJll1 
= ind hyp [ ;r2](1 insc ( <p, ) 

= ind hyp [rr2J((JT1JCl'Pll1 )) 
= n de/ (1ru; ir2Hil<Pl!I). 

jjnsc r.1U?r2)i/1 = nscdef !lnsc(<p, Vnsc(rp,ir2)1i1 
== irui hyp fr.1](1/'PllI) U (7rz](/lip//r) 
= f] def [iri U rr2Wl<Pll1 ). 

!/nsc(1p, '")lit = nscdef 
= 11 llr def 
= indhyp 
= elim lemma 
= [Jdef 

!i-insc (.p, :ir) /\ 'Pll1 
(/ - /lnsc (rp, :ir)ll1) n li,PllI 
(1 - [nJ(ll'f'JJ1)) n ll'Pll 1 

(l!'f!lr - [?rHllcrllr }) n tl'Pll1 
(-iirJ(ll:pll1 ). 

1 lnsc ( .p, might ir) I I / = rise def 

== II 111 de.f 

llOnsc (ip, ir) /1 'Pll1 
llOnsc ('/', 7r)ll1 n ll<Pii1 

""' 0 def in S5 t l!'Pll1 if !Inst (ip, r.)/11 f:. 0, 
0 otherwise 

ll'P!l1 if[irJ(ll'Pll1) i= 0, 
0 otherwise 

== ind hyp 

= l)def (might 7r](l/10ll1 ). 
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This completes the proof of the lemma. 

LEMMA 9. llnsc (T, 7r)llr = [7r](J). 

Proof. 

llnsc(T,7r)llr = nscadeq [7r](llTll1) 
= 11 llr def [7r](J). 

• 

• 
The following theorem gives the precise connections between WPs and 
NSCs. 

THEOREM 10. 

I. llnsc (cp, 7r)llr = llwp(7r, T)lcpllr· 
2. llwp(7r,1/J)llr = ll'efllnsc(T,7r)Jlr· 

Proof The first item: 

nsc(cp,-rr)l\r = nscadeq [7r](\lcp\\1) 

The second item: 

= Lemma 6 llwp(7r, T)llii'Pllr 
= loc lemma 1Jwp(7r, T)LcpJII· 

\\wp(7r, 'l/J)\l1 = wp adeq \l'?/i\\[7r]{I) 
= Lemma 9 ll'?/ilhlnsc(T,7r)lli 
= loc lemma 111/Jlnsc (T, 7r)\II· • 

6. A HOARE/PRATI CALCULUS FOR UPDATE LOGIC 

We now present the axioms and rules of a deduction system for update 
logic based on the concept of WPs from Section 4. We start with the 
axiom schemata for propositional logic. 

A 1 cp-+ ('If;-+ cp). 

A 2 (rp-+ (1/J-+ x))-+ ((cp-+ 'If;) - (cp-+ x)). 
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Next, we take the axiom schemata of SS modal logic for the D modality. 

A 4 D(cp-+ ?./J)-+ (Dcp - 01/J). 

A 5 Dcp - cp. 

A 6 Ocp - DDcp. 

A 7 ODcp-+ cp. 

These are the propositional SS modalities. Here are the axiom schemata 
for the program modalities. 

A 8 _L f--t (J_)cp. 

A 9 'PlP i-t (p}cp. 

A 11 <,01((7r1)T V (7r2)T) -H (1i'1 U 7r2)cp. 

A 12 cpl[7r]..L i-t (•7r)cp. 

A 13 (0(7r)T /\ cp) +--t (might7r)cp. 

The rules of inference are as follows. 

R 1 (Necessitation for D.) Conclude from I- <p to I- Drp. 

R 2 (Necessitation for program modalities.) For every program 7f of 
update logic: conclude from I- cp to 1- [?r]cp. 

R 3 (Modus Ponens.) Conclude from I- cp -+ 1/1 and I- cp to I- 'If;. 

The notion of theoremhood in the calculus is standard. 
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DEFINITION 12. Formula cp is a theorem of the calculus, notation r rp, 
if rp fits one of the axiom schemata or cp follows from theorems in the 
calculus by an application of one of the inference rules. 

Here is an example of a derived schema. 

PROPOSITION 11. For every update program 1r, the K schema. is deriv­
able: 

r ([7r](cp--+ 1/J) /\ [7r]rp) --+ [7r]1/J. 
Proof Induction on the complexity of 7r. • 

7. SOUNDNESS OF THE CALCULUS 

To prove that the calculus is sound, we have to prove that if r rp, then rp 
is valid in the sense defined in Section 4. As usual, soundness is proved 
by induction on the length of the derivation of cp. For this, we have to 
check that every axiom of the calculus is valid and that the rules of the 
calculus preserve validity. 

THEOREM 12 (Soundness.) For all rp E malp: If r rp then F rp. 

Proof First, it is obvious that the axiom schemata of propositional 
logic are valid. Next, observe that it follows from the definition of 11111 
that 

110 II = {I if ll1Pll~ =I, 
rp 1 0 otherwise. 

For the validity of Axiom 4 we have to show (2). 

(2) Foralll, llO(cp--+ 1/J)-+ (Ocp--+ 01fi)ll1 = l. 

This is equivalent to (3). 

(3) For all I, llO(rp--+ 1/J)ll1 ~ llOcp-+ 01fill1-

1\vo cases. If I lrp -t 1/'llr =/:I, then llD{cp--+ '1f')llr = 0, and (3) trivially 
holds. Assume therefore that llrp --+ 1/Jllr = I. This is equivalent to 

\ 
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ll'Pllr ~ ll'!j;llr (*).Now if ll'Pllr-:/= I, then !IDcpllr = r/J and llDcp\11 ~ 
llD1/JIJr, in other words l!Dcp -r D'lj;Jlr =I, and (3) holds. If, on the 
other hand, lllfJI 11 =I, then by*· ll1f.1llr =I, and again (3) holds because 
llDlfJllr <;;;; llD'lj;llr. 

For Axiom 5, observe that llDcp -r cpllr =I iff IJDcpllr <;;;; ll1Pllr iff 
it holds that if I llfJI lr = I then I ~ I !'PI 11, which is always true. 

For Axiom 6, we have to show that JIDcp -r DDcpllr =I, or equiv­
alently, IJDcpllr <;;;; llDDipllr. If ll1Pllr -:/= I then llD'Pllr = 0, and the 
claim holds. If ll'Pllr =I then llD'Pll1 =I, and so llDDip\11 =I, and 
the the claim holds in this case too. 

For Axiom 7, observe: il<>Drp -r 'Pllr =I iff Jl<>DipJlr ~ ll'Pllr iff 
if I IDcpj lr -:/= 0 then I <;;;; I l'PI 11 iff if I l<t?llr = I then I <;;;; ll'Pll1 iff true. 

Axiom 8: JIJ.. +-r (J..)'Pll1 =I iff llJ..111 = II (J..)rpll1iff0 =II (..L)ipll1 
iff true. 

The reasoning for Axiom 9: ll'PlP +-r (p)ipll1 = I iff ll'PlPllr = 
11 (p) 'PI 11 iff (Lemma 3) true. 

Axiom 10: 
\l(rr1)(7r2)1P +-r (7r1; 7r2)'P!l1 =I 
iff 
ll(7r1)(7r2)'Pllr = ll(7r1; 7r2)'Pll1 
iff 
ll(7r2)'Pll[1l';]I = ll(7r1; 7r2)'Pllr 
iff 
li'Pll[7r2]([7ri]/) = l/(7r1; 7r2)1Pll1 
iff true. 

Axiom 11: 
JI cpl( (7r1) TV (1T'2) T) +-r (7r1 U 71"2)'PIJ1 =I 
iff 
ll<i?l((rr1)T V (1T'2)T)llr = ll(7r1U7rz)'Pll1 
iff 
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IJ'PllJ[{71"1 )Tv(7r2)T[[r = 11(71"1 U 71"2)9?1!1 
iff 

ll'Pll[[(71"1 )T[[1 u[[(7r2 )T[[r = il(7r1U1t"2)<pfj1 
iff 
llc,oll[7r1]IU[7r2]l = IJ(7r1U1t"2)9?ll1 
iff true. 

Axiom 12: 
llc,ot[7r]j_ t-+ (•7l")rpll1 =] 

iff 
llcpt[7i]j_ll1 = ll(•7r)cpll1 
iff 

ll'Pl I [7r] .L[[I = l I ( •11) 'PI 11 
iff 
llc,oll1-[7T]l = ll(•7r)1Pll1 
iff true. 

Axiom 13: 
11(<>(7r)T /\cp)....,. (might7r)rpllr =I 
iff 
11<>(71")T /\ rpll1 =II (might7r)rpllr 
iff 
ll<>{11)Tll1 n llc,oll1 = ll(might11)ipll1 
iff 
if II ('rr) T\ \1 # 0 then 11 (mighbr)rpll1 = I !'PI 11, 

otherwise l!(might7r)cp![1 = 0. 
iff 
if [7r]I 10 then ll(might7r)'Pll1 = ll'Pll1. 

otherwise 11 (mighbr) cp 11 r = r/J. 
iff (semantic clause for might7r) true. 

This establishes that all axiom schemata are valid. We now check 
the validity of the rules of inference. 

Rule 1: 
Observe that if for all J, Jlipl 11 =I, then for all I, I IDcpll1 = I. 
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Rule2: 
If for all I, ll'Pll1 = I, then for all J, 11[11"]cpll1 = (I - [7r]I) U 

ll'Pll[.,..]l = (I - [7r]I) U [7r]I =I. 

Rule 3: 
If for all I, 119? --t '1/1111 = I ( *) and for all I, I !'PI 11 = I ( **),then for 

all I, ll'PlllI ~ ll'l/1111 (from*) and thus, by**· for all I, I ~ ll'l/1111, 
i.e., I 11f7111 = I. 

This concludes the checking of the inference rules and the soundness 
~~ . 

8. COMPLETENESS OF THE CALCULUS 

TIIEOREM 13. The calculus is complete, i.e., for all malp formulae <p, 

if f= rp then 1- rp. 

Proof First observe that the following translation function * from 
malp to mlp preserves validity. 

(cpA1jl)* = rp*A1jl* 
( -.rp )* = •<.p* 

( <>rp) * = <>1.p* 
((J-)rp)* = J_ 

((p)ip)* = 1.p*lp 
( ( 11" l; 7r 2)'P )* = ( (7r l) ( 1t'2}'P )* 
((7r1 U7r2)'P)* = ip*l(((7r1}T)* v((7r2)T)*) 
( (-nr)cp)* = cp* !([7rj1-)* 
( (might7r)cp )* = ( <>( (7r) T)* A cp*) 

Thus, it follows from f= cp that f= cp*. Next, use the completeness of 
S5 to conclude from f= cp* that I- cp*. Finally, note that the translation 
steps and their inverses in the definition of * are licensed by Schema 
8 through Schema 13 of the calculus. This allows us to conclude from 
1- rp* that I- cp. • 
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9. REASONING ABOUT UPDATE LOGIC VIA S5 

Just for the record we mention a fact about update logic which follows 
immediately from our 'reduction to S5' (but note that this fact was 
already proved in [2]). 

THEOREM 14. Update logic is decidable. 

Proof The decision problem for update logic is the question: which 
7r E Lp have the property that they are valid (accepted in every input 
state I)? In other words: which 7r have the property that for all I it 
holds that [7r](I) = I? The decision procedure for 7r is as follows. 
Use the definition of wp to find wp(1r, T). By Lemma 6 we know that 
[7r](I) = \lwp(11", T)\lr, so the decision problem for 7r reduces to the 
question whether wp( 7r, T) is SS-valid. Use the decision procedure for 
SS to settle this question. 11 

In update logic there is a distinction between acceptable and accepted 
information, witness the following definition. 

DEFINITION 13. 

1. A program 7f is accepted in I if I= [7r](J). 
2. A program 7f is acceptable in I if [7r] (I) -=!= 0. 

It is the universal version of the first of these which is taken as the notion 
for universal validity, but one might consider the universal version of 
the second one just as well. 

DEFINITION 14. 

1. A program 71" is always accepted (or valid) if for all I it holds that 
[7r](J) = I. 

2. A program 71" is always acceptable if for all I -=!= 0 it holds that 
[7r](J) -=!= 0. 

An obvious question suggests itself: are the notions of being always 
accepted and being always acceptable equivalent? Using the S5 con­
nection it is easy to see that they are not and to clarify the relation 
between them. We need not concern ourselves with the case of I= 0, 
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for the elimination lemma forces [7r](0) = 0 for every n. Thus, there 
is no harm in adopting the usual convention that S5 models have a 
non-empty set of worlds. The 'static' version of n is always accepted is 
(4). 

(4) 85 f= wp(7r, T). 

The 'static' version for 7r is always acceptable, on the other hand, is (5). 
Note that this translation hinges on the assumption of non-emptyness of 
S5 models. 

(5) 85 f= Owp(n, T). 

So the notion of being always acceptable is decidable as well, but it 
does not coincide with the notion of being always accepted. Indeed, 
we have that SS f= cp implies 85 )= Ocp, because of the reflexivity of 
accessibility, so (4) implies (5), but not the other way around. Ta.lee cp 
equal to Op -t p for a simple counterexample. We have 85 ~ Op -t p 
(take a non-p world in a model containing both p and non·p worlds), 
but 85 f= 0 (Op -t p). To see this latter fact, take an arbitrary w 
in an arbitrary universal SS model I. If there are no p worlds, then 
I, w II- <>(Op -t p); if there are p worlds, then there is a p world w' for 
which I, w' I= <>p -t p, so by the fact that accessibility is universal 
again I,w 11-<>(<>p -t p). Note, by the way, that <>(<>p -t p) is the 
modal counterpart of a predicate logical sentence that philosophical 
logicians sometimes refer to as 'Plato's principle': 3x(3xPx -t Px). 

The S5 counterexample can be transposed to update logic, of course: 
p U •might p is an example of a program which is always acceptable 
but not always accepted. 

For a next illustration ofreasoning about update logic via S5 we take 
a quick look at valid consequence in update logic. In his paper [22] Velt­
man discusses various notions of valid consequence. He distinguishes 
the following three definitions. 

DEF1NITION 15. 

1. 71"1 I= i 7r2 if for all I it holds that [ 7r1] ( J) = I implies [ ;r2] (I) = I. 
2. n1 )=2 7rz if for all I it holds that [7r1](J) = [11'2]([11'1] (I)). 
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The following proposition reduces these notions to S5. 

PROPOSITION 15. 

I. 71"1 F=1 11"2 if! S5 I- Dwp( 7f1, T) -t Dwp( 71"2, T). 
2. 71"1 F=2 7r2 if! SS I- wp( 7f1, T) ~ wp( 7r1; 71"2, T). 
3. 71"1 F3 7r2 if! S5 1- ( /1:.. Or.pi) -t ( wp( 7ri, T) ~ wp( 7f1; 7f2, T) ), 

where the 'Pi are all conjunctions oftheform (-.)pi/\···/\ (-.)pn, 
with Pl, ... , Pn the list of proposition letters occurring in 7r1 or 7r2. 

Proof The first item: 

ForallI: [7r1](J) =I implies [rr2](J) =I 
iffforall I: if for all w EI: I, w II- wp(7r1, T) 
then for all w E I: I, w II- wp( 7r2, T) 
ifffor all I: I f= Dwp( ?ri, T) -t Dwp( 7r2, T) 
if! 851- Dwp('rr1, T)-+ Dwp(7r2, T). 

The second item is immediate from the definitions of the validity notions, 
the wp adequacy lemma and the completeness of S5. 

For the third item, note that If= 11:..0r.pi (where f= denotes S5 validity) 
for precisely those information sets I that express total ignorance with 
respect to all proposition letters in 7r1 and 7r2, i.e., for the sets I that are 
indistinguishable from W as far as 7rI and 7r2 are concerned. The SS 
formula expresses that for such I, all worlds in [7r1; 7r2] (J) are worlds 
in [7l"2~(I) and vice versa. This is precisely what the validity notion F3 
expresses. • 
As Willem Groeneveld pointed out to us, this reduction to SS can be 
simplified somewhat by defining wp( 7f, T) directly, as follows. 

DEFINITION16. 

1. wp(-1, T) = -1. 
2. wp(p, T) = p. 
3. wp(7r1; 7rz, T) = wp(7r2, T)l wp(7r1, T). 
4. wp(7r1 U n2, T) = wp(7r1, T) V wp(n2, T). 
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5. wp(-i7r, T) = -iwp(7r, T). 
6. wp(might 7r, T) = <>wp(7r, T). 

10. CALCULATIONS OF CONSISTENCY 

Veltman calls a program 1f of Lp consistent if there is some infonna­
tion state I for which [7r~ (I) =/= 0. Intuitively, consistent programs are 
programs that can be used to convey infonnation. By the soundness 
of the Hoare/Pratt calculus, consistency of an update program 7r boils 
down to the question whether there is some S5 consistent r.p E ml p 

such that I- cp f--7 (7r)top. We illustrate how to check consistency for 
two examples taken from Veltman [22]. We calculate with WPs, but by 
virtue of the fact that WP reasoning and NSC reasoning are equivalent 
(Theorem 10), calculations with NSCs work just as well. 

EXAMPLE 1. might p; -ip is consistent. 

Proof 

wp(might p;--.p, T) = wp(might p;wp(--.p, T)) 

= wp(might p;--.wp(p, T)) 

= wp(might p;--.p) 

= <>p /\ -ip 

Since <>p /\ --.p does have SS models, so it is not SS-provably equivalent 
to 1-. • 

EXAMPLE 2. -ip ; might p is not consistent. 

Proof 

wp(--.p; mightp, T) = wp(-.p;wp(mightp, T)) 
= wp(-.p, <>wp(p, T)) 
= wp(-ip, <>p) 

- Opl -iwp(p, T) 
= OpJ-ip 
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= •P /\ <>(p /\ (pl -.p)) 
= •P /\ <>(p /\ •p)) 
= •p /\ J_ 

J_ 

Ill 

Of course, these results can also be established in our weakest precon­
dition Hoare/Pratt calculus. By using the matching axiom schemata we 
derive that f- (Op /\. --ip) +-+ {might p; •P) T, and that f- ( <>p l --ip) +-+ 
(-ip; might p) T. In short, by our construction of a calculus for update 
logic we claim to have established a clean connection between a species 
of information flow logic and good old static S5. 

11. CONCLUSION 

There is scope for quite a bit of further work. In the first place, one 
could explore Veltman's extended versions of update logic in the same 
spirit. More specifically, a modal study of the preference relation on 
information states that Veltman proposes seems to be worthwhile: this 
would lead to a link to a trimodal system with one modal operator [J] 
reflecting the dynamics of discarding possibilities (basically, our S5 box 
D), a modal operator[}] interpreted in terms of the preference order 
on the set of all worlds (the 'normally' relation), and :finally a modal 
operator [I] interpreted in tenns of the preference relation restricted to 
the current input information set (the 'presumably' relation). Thus, the 
modal perspective on defaults would use a relation of 'being as least as 
likely as' between worlds. [I] rp (for: rp holds by default) would hold 
in a world w E W if in all worlds w' E W that are at least as likely 
as w, rp holds. m rp (for: rp presumably holds) would hold in a world 
w E W, given a current information set I, if in all worlds w' E I that 
are at least as likely as w, rp holds. 

In a different direction, one may study the combination of the calculus 
given here with the calculus from [7] in a system of quantificational 
update logic satisfying the desiderata which Groenendijk and Stokhof 
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list in 1.1 lJ. In such a system one would be able to handle the combination 
of epistemic operators like might or maybe (the province of update 
logic) and pronominal bindings across sentence boundaries (the key 
application area of dynamic predicate logic and dynamic Montague 
grammar [I O]), as in the following example sentence. 

(6) A man walked out. Maybe he was angry. 

A suitable representation medium for such examples is a system of 
dynamic assignment logic with epistemic modalities. Such a system is 
developed in Van Eijck and Cepparello [6] and axiomatized in a similar 
way to the approach of the present paper, but now with modal predicate 
logic instead of modal propositional logic as assertion language. 

The more general moral of the paper, however, is in the demonstra­
tion that techniques from theoretical computer science can be applied 
fruitfully to infonnation logic, broadly conceived. A dynamic logic in 
the spirit of Hoare and Pratt geared to this application was proposed by 
Yan Benthem in f5}, and worked out further in De Rijke [20]. 

In this logic there is an explicit modality ~ for 'becoming more 
specific about what on assumes to be the case', or 'increasing one's 
infonnation'. The process of expanding one's set of assumptions to 
make it include r.p, for example, is given by the program ~; cp?. The 
process of purging one's set of assumptions to take one back to a state 
where t,p fails is given by ~ ·; -.rp? (here· is the operator which takes a 
program to its converse). 

Dynamic modal logics have a procedural part and a propositional 
part which are connected by modes (expand to cp, retract to cp, test for cp) 
and projections (being in the domain of 7r, being in the range of 7r, being 
a fix point for rr ). As is demonstrated in De Rijke [19], such systems can 
be used to analyse information logics which have operations for both 
'updating' and 'downdating' (retracting infonnation). The central point 
of their use remains the Hoare/Pratt style analysis of the connection 
between procedural notions (properties of programs) and static notions 
(properties of states), in the spirit that was demonstrated above. 
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