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ABSTRACT. The link length of a walk in a multidimensional 
grid is the number of straight line segments constituting the 
walk. Alternatively, it is the number of turns that a mobile 
unit needs to perform in traversing the walk. A rectilinear 
walk consists of straight line segments which are parallel to the 
main axis. We wish to construct rectilinear walks with minimal 
link length traversing grids. If G denotes the multidimensional 
grid, let s(G) be the minimal link length of a rectilinear walk 
traversing all the vertices of G. In this paper, we develop an 
asymptotically optimal algorithm for constructing rectilinear 
walks traversing all the vertices of complete multidimensional 
grids and analyze the worst-case behavior of s(G), when G is a 
multidimensional grid. 

1 Introduction. 

The link length of a polygonal path connecting two points in a polygon is 
defined to be the number of straight line segments constituting the path. 
The link distance of two points is the minimum link length of any polyg
onal path connecting the points. Alternatively, it is the number of turns 
that a mobile unit will need to take when traversing a minimum-turn-walk 
connecting the two points in order to move from one point to the other. 
This distance was introduced in [12] and was designed to measure the cost 
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of moving along a path in a simple polygon when straightline motion is 
easy but turns are expensive. 

In this paper, we introduce a new problem which we call the "Minimum 
Link Length Hamiltonian Tour": Given a set of distinguished vertices of a 
polygon determine the link length of a minimum link length Hamiltonian 
path which visits all the vertices. It can be shown [3] that determining the 
minimum link length Hamiltonian path for points in general position is NP
cornplete, since the "edge embedding on a grid problem" [5] can be reduced 
to it. The discussion below is restricted to rectilinear tours which visit 
all the vertices of a complete d-dimensional grid. This restriction greatly 
simplifies the problems considered above, but as will be seen the problem 
at hand remains interesting and non-trivial even in this case. We give the 
exact solution for the problem for 2-dimensional grids and give nontrivial 
bounds for d-dimensional grids, for d > 2. Despite the seeming simplicity 
of the question, the exact solution for 3-dimesional grids remains open. 

1.1 Preliminaries 

Next we introduce some definitions and notations. The d-dimensional grid 
of size n, denoted G~, is the graph with vertices v: = (v1, v2, ... , vd) such 
th?-t 1 ~Vi :::; n, for i = 1, ... , d, and edges (u, v) such that ;:,:=l lui - Vi I 
= 1. To every rectilinear path P, we associate the unique partition (called 
the rectilinear partition) of P, L1, L2, ... , L8 , consisting of the "maximal 
straight line segments" of P. The numbers: = s(P) is the link length of 
the path P. It is not hard to see that for a Hamiltonian path P, s(P) - 1 
is exactly the number of times one must change direction moving along P 
'l order to traverse all the vertices of P. A rectilinear path traversing all 
1e vertices of the grid G is called a complete, rectilinear tour. We also 
efine the rectilinear number of the grid by 

s( G) = min { s( P) : P is a rectilinear path traversing all vertices of G}. 

The present paper studies the problem of determining s(G) for the com
plete multidimensional grids. In particular, we estimate the value of the 
quantity s(G~), for d 2 2, n ~ 1. A straightforward estimate is given in 
the following theorem. 

Theorem 1. 

Proof: For the upper bound, form a complete rectilinear tour of G~ by 
linking the complete rectilinear tours of n copies of a~- 1 . For the lower 
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bound, let Li, L2, ... , Ls be a rectilinear partition of a complete rectilinear 
tour of G~ such that s = s(G~). Let ILil denote the number of vertices in 
Li. Counting the number of vertices involved we obtain that 

8 

sn - (s - 1) ?: IL1I + I)ILil -1) 2: nd. 
i=2 

Simplifying terms we obtain the desired lower bound. 0 

The main result of the paper is to show that the actual value of s( G~) 
satisfies much sharper upper and lower bounds than those implied by the 
above inequality of Theorem 1. 

1.2 Related results and relevant literature 

It is worth mentioning that the following "Mirror Placemene' problem on 
multidimensional grids is, in fact, equivalent to the above rectilinear path 
problem. We are given a light source S to be located at a node of the grid 
G and which is emitting a light beam in a single direction (for example, 
a laser). We want to determine what is the minimum number of mirrors 
that must be placed on individual nodes of the grid in such a way that 
the light beam emanating from the source S will eventually "hit" all the 
vertices by traversing only edges of the grid. Here, of course, we assume 
that the standard law of reflection holds: "angle of reflection" = "angle of 
incidence". 

We can now easily relate the rectilinear numbers with the previously 
mentioned "Mirror Placement" problem. Assuming the above notation, let 
Li consist of the sequence Vr;+i, ... , Vr;+i of vertices, where i = 0, 1, ... , s-

1, ro = 0 < r1 < ... < rs. It is clearly possible to place a mirror at each of 
the nodes Vr 2 , ••• , vr., and the light source at node Vr1 in such a way that 
for each 1 :::; i < s the incidence light beam moves along the straight line 
Li while the reflecting light beam along Li+ 1 · 

It should also be noted that the "Mirror Placement" problem, although 
related, is different from the well-known "Art Gallery" problem, first pro
posed by Klee [11], in which we want to determine the minimum number 
of watchmen (watchmen are not allowed to move but they can see in all 
directions) needed so that every point in the gallery is seen by at least one 
watchman at any time. For example, in the art-gallery problem and for the 
case of the complete d-dimensional grid considered above, a guard must be 
located in every line segment of the grid. It is, therefore, not difficult to see 
that in this case, exactly nd-l watchmen are necessary and sufficient [10, 
11]. 

A number of researchers have also considered restricted versions of this 
art gallery problem [11 J. [7], has recently shown that [n/ 4] watchman are 
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necessary and sufficient for the ca.<re of rectilinear polygons with an arbitrary 
number of holes. [10] studied the question of gallery watchman in incom
plete grids. He gave a polynomial time algorithm for placing watchmen 
in incomplete 2-dimensional grids and showed the problem is NP-complete 
in the case of incomplete 3-dimensional grids. A related problem was in
troduced in [2], that of optimum watchman routes. Here there is a single 
mobile watchman and we are asked to determine a minimum length route 
for the watchman with the property that every point in the gallery is visible 
from at least one point along the route. 

There are also studies of the link distance metric which concentrate on 
algorithms for constructing the link center of an n vertex polygon (in time 
O(n2)), that is, the set of points inside the polygon whose maximal link 
distance to any other point inside the polygon is minimized [9), finding a 
point in the link center of the polygon (in time O(nlogn)) [4], or finding 
the link diameter of the polygon, that is, the maximal link distance between 
any two points (in time O(nlogn)) [13]. 

Our problem is also related to the well-known 11rqueens problem: what is 
the minimum number of queens which can be placed on an n x n chessboard 
so that no queen is guarding any other queen [1, 6], as well as Riordan's 
"non-attacking rooks" problem: in how many ways can k non-attacking 
.rooks be placed on a given side of the main diagonal of an n x n chessboard 
[8]? 

1.3 Outline of the paper 

In Section 2 we describe our main algorithm, the so-called face-peeling al
gorithm, for rectilinear Hamiltonian tours of the d-dimensional grid. To 
facilitate understanding and in order to clarify the main ideas of our algo
rithm we give the construction in different steps starting from dimension 
2, next proceeding with dimension 3, and finally handling the general case 
d ~ 4. In Section 3 we proceed with an analysis of the complexity of the 
algorithm. 

Figure 1: Establishing the upper bound s( G~) :5 2n - 1. 

180 



2 The face-peeling algorithm. 

In this section we give a complete intuitive description of the fac.-e-peeling 
algorithm for constructing rectilinear paths traversing all the vertices of 
multidimensional grids. (The term face-peeling arises from the fact that 
our algorithm generates the required rectilinear path by peeling the faces 
of the grid level-by-level.) 

2.1 Two dimensional grids 

We begin with the simple case d = 2. We can prove the following theorem. 

Theorem 2. For all n ~ 2, s( c;) = 2n - 1. 

Proof: To prove s(G;) $ 2n - 1 consider the path depicted in Figure 1. 
Straightforward counting shows that s(G;) :::; 2n - 1. 

It remains to prove that s(G;) ~ 2n - 1. Put s = s(G~), let P be 
a rectilinear path of G~, with s = s(P) and let L1, L2 , ... , L8 be the 
rectilinear partition of P. Leth (respectively, v) be the number of horizontal 
(respectively, vertical) L; 's. Clearly, s = h + v. By definition of rectilinear 
partitions, for all i < s, if L; is horizontal (respectively, vertical) then Li+ 1 
is vertical (respectively, horizontal). Consequently, 

\h-v\ :S 1. 

Assume that h < n - 1. This means that there is a horizontal line, say 
L, of the grid c; which is not traversed by any of the horizontal L; 's. 
Consequently, the n vertices of L must be traversed by n-many vertical 
L;'s. This implies that v ~ n. It follows from the above inequality that 
h = n - 1 and v = n. A symmetric reasoning shows that if v :S n - 1 then 
v = n - 1 and h = n. In either case, we conclude that if v + h :S 2n - 1 
then s = 2n - 1. Thus, s ~ 2n - 1, as desired. 0 

It is easy to see that the same argument will work for the m x n-grid. 
We single out this simple observation as a corollary which will be used 
frequently in the sequel. 

Corollary 3. Eactly 2 · min(m, n) - 1 turns are necessary and sufficient 
in order to solve the "rectilinear path" problem for the m x n-grid. 

2.2 Three-dimensional grids 

Next we consider the case d = 3. We construct a rectilinear path traversing 
vertices of the three dimensional grid by first traversing a certain identical 
portion of each of the horizontal plane grids. There remains a three dimen
sional rectangular grid which we can traverse easily with a rectilinear path. 
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Joining these path-portions we form the desired rectilinear path traversing 
all the vertices of the grid. 

In more detail, the three dimensional face-peeling algorithm can be de
scribed in the following way. Traverse the bottom horizontal plane grid 
by moving on its periphery from the outside to the inside in a spiral-like 
fashion and covering each time all of the corresponding vertices. The idea 
for doing this is depicted in Figure 2. 

Figure 2: Traversing the vertices of horizontal plane grids. 

Proceed this way until you cover vertices of the plane grid up to a depth 
of [n/ 4] vertices. This leaves an f n/21 x f n/21 square-grid in the middle 
whose vertices must be covered. At this point finish with this plane, draw 
a vertical line (in order to get connected with the next horizontal plane) 
and start moving along this new horizontal plane grid, covering its vertices 
in a similar way, except that now you move from the inside to the outside. 
When you finish traversing its outermost vertices, draw a vertical line and 
move to the next plane grid, and so on. Proceed this way until you cover 
the top horizontal plane with similar straight lines. 

At the end of traversing the top plane grid you are left with a paral
lelepiped grid of dimensions r n/21 x r n/21 x n standing in the middle of 
the three-dimensional grid G~ and whose vertices must be traversed. This 
we do just like in Figure 1 traversing its vertices with vertical lines from 
the top to the bottom plane. (Figure 3 depicts such a path for the three
dimensional 4 x 4 x 4 grid.) To be more exact we traverse the parallelepiped 
in the following way. We think of it as consisting of f n/21-many f n/21 xn 
plane grids each parallel to the yz-plane. Using the algorithmic construction 
in the corollary to Theorem 2 we can see that we need exactly n - 1 straight 
lines to traverse each of these planes. This completes the description of the 
algorithm in the case of three dimensional grids. 
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Figure 3: A rectilinear tour T traversing G~ with s(T) = 27. 

2.3 d-dimensional grids 

The d-dimensional (d 2: 4) face-peeling algorithm can, in fact, be considered 
as (d - 2)-many iterations of the three-dimensional face-peeling algorithm. 
The idea is to apply the above three-dimensional algorithm to each triple 
(x;, X;+1, x1+2) ofcomponents of the d-dimensional grid for i = 1, 2, ... , d-
2. During the ith iteration, the variables (x1,x;+1,xH2) play the role of the 
variables (x, y, z) in the three-dimensional face-peeling algorithm. This will 
give a sequence of d-dimensional rectangular grids, G1 = G~, G2, ... , Gd-2, 
in such a way that the ith iteration of the algorithm transforms Gi into 
Qi+l1 but by only affecting the components Xi and X;+1 of a •. The final 
grid Gd_2 resulting after d - 2 iterations of this algorithm can now be 
traversed in an "efficient" way by a rectilinear path. (It will be determined 
in the next section how efficient this method is.) 

It remains to describe more formally the ith iteration of the face-peeling 
algorithm. We show how to transform G; into GHl · Let G = G1 be a 
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completed-dimensional rectangular grid of dimensions (a1n) x ... x (adn), 
where 1 ::; ai, ... , ad> 0, i::; d - 2 and let 0 < 8 < 1. The ith iteration of 
the face-peeling algorithm gives a rectangular grid H = Gi+1 of dimensions 
(bin) x ... x (bdn) such that bk= ak, fork:::; i -1 or k > i + 1. The values 
bi, bi-\-1 are determined as follows. Consider the four faces parallel to the 
Xi+2-axis covering the outside part of the grid. Peel these faces (as in the 
case of the three-dimensional algorithm) and stretch them like a rectangle 
on the (d - 1)-dimensional plane. Again peel the outside faces (which are 
parallel to the Xi+2-axis) of this new grid and stretch them adjacent to 
the previous rectangle. Continue peeling "outermost" faces up to a depth 
Sn until you are left with the rectangular grid H, where bi = ai - 2/5 and 
bi+1 = ai+l - 26. Now traverse the resulting rectangle, just like in the case 
of the 3-dimensional grid described above, and then bend the rectangle at 
the appropriate points in order to bring it back to its original d-dimensional 
shape. This gives a description of the algorithm. 

To sum up, our algorithm starting from the complete grid G~ generates 
a sequence 

Gi, G2, ... , Gd-2 

of rectangular grids. By summing the "cost" in each of these iterations we 
will obtain an efficient upper bound on the value of s( G~). 

3 3. Analysis of the face-peeling algorithm. 

Our analysis of the algorithm consists of two parts, namely, determining 
both an upper bound and a lower bound for the quantity s(G~). The 
upper bound will be simply a careful analysis of the cost of the face-peeling 
algorithm. The lower bound proof, however, is more difficult and will be 
geometrical in nature. Moreover, to facilitate understanding we will carry 
out this analysis first in the three-dimensional case. We will later indicate 
all the necessary changes in order to extend this argument to d-dimensional 
grids. 

3.1 3.1 Three dimensional grids 

Theorem 4. There is a constant c > 1 such that for all n 2: 3, 

2 3 3 2 
c · n ::; s(Gn) :S 2 · n + n - l. 

Proof: We give separately the upper and lower bounds stated above. 

Proof of the upper bound. To count the number of straight-line changes 
required think of the three-dimensional grid G~ as n horizontal copies of 
the two-dimensional &rrid c; joined by vertical lines. Now the face-peeling 
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algorithm given in the previous section traverses the bottom horizontal 
plane grid by moving on its periphery from the outside to the inside and 
covering each time all of the corresponding vertices. Proceeding this way 
you cover vertices of the plane grid up to a depth of [n/4] vertices. This 
leaves an r n/21 x r n/21 square-grid in the middle whose vertices must be 
covered. At this point we finished with this plane, drew a vertical line (in 
order to get connected with the next horizontal plane) and started moving 
along this new horizontal plane grid, covering its vertices in a similar way, 
except that now you move from the inside to the outside. After finishing 
with the outermost vertices, we drew a vertical line and moved to the next 
plane grid, and so on. Proceed this way until you cover the top horizontal 
plane. The number of straight lines traversed in each plane is 4[n/4], giving 
a total of 4[n/4]n straight lines lying on these planes. To move from plane 
to plane we need n - 1 straight lines just for making the connections. It 
follows that the total number of straight lines used is 

4[n/4]n + n - 1. (1) 

At the end of traversing the top plane grid we were left with a parallelepiped 
grid of dimensions r n/21 x r n/21 x n standing in the middle of the three 
dimensional grid G~ and whose vertices must be traversed. This we did just 
like in Figure 1 traversing its vertices with vertical lines from the top to 
bottom plane. In traversing the parallelepiped we think of it as consisting 
of r n/21-many r n/21 x n plane grids each parallel to the yz-plane. Using 
the corollary of Theorem 2 we can see that we need exactly n - 1 straight 
lines to traverse each of these planes. The total number of straight lines 
used in this case is rn/21 (n - 1) for straight lines lying on the planes 
concerned and r n/21 - 1 for making the plane-to-plane connections, that 
is, a total of 

nrn/21 -1 (2) 

straight lines. Summing the number of straight lines used in (1) and (2) 
above plus 1 (because one additional straight-line is needed when one moves 
from the first type of traversing to the second type) we obtain the desired 
result. 
Optimal choice of depth in the face-peeling algorithm. 

Next we prove that, in fact, the optimal behavior of the peeling algorithm 
is obtained when the size of the remaining, middle grid is ( n/2) x ( n/2) x n. 
Indeed, suppose that we proceed covering vertices of the horizontal planes 
constituting G~ up to a depth of x-many vertices. This leaves a grid in the 
middle of dimensions (n - 2x) x (n - 2x) x n. Using the previous counting 
method we obtain that 

s(G~) ~ 4xn + n - 1 + (2(n - 2x) - 1) (n - 2x) + n - 2x. 
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If we simplify the right-hand side of the above inequality we obtain 

s(G!) :5 2(n - 2x)2 + 4xn + n - 1. 

Differentiating the right-hand side we obtain that the optimal value is ob
tained for x = n/ 4, which proves the optimality of the choice of depth in 
the face-peeling algorithm described above. 
Proof of the lower bound. Let P be a rectilinear path of G~ with rectilinear 
partition L 1, L2 , ••• , L8 , such that s = s(P). For each k let s1r. (respectively, 
8.1,:) be the number oflines in the above rectilinear partition oflength exactly 
(respectively, :5) k. It is then clear that 

s = Sn-1 + Sn-2 + ... + s2 + s1 1 

S = Sn-1 + Sn-2 + • • • + Bn-k + Bn-k-11 

for each k. Hence, counting the number of lines of corresponding lengths, 
replacing Bn-1 with the quantity s - Bn-2 - ... - sn-k - Bn-k-1 and sim
plifying we obtain that for each k, 

n3 -1 :5 (n-l)sn-1 + ... + (n-k)sn-k + (n-k-l)sn-k-1 

= (n- l)s-sn-2-2sn-3- ... v(k- l)sn-.i.:-ksn-k-1 · 

Dividing through by n-1 and simplifying we obtain that for each k = 1, 2, 
... , n-1, 

n3-l Bn-2 + 2sn-3 + ... + (k-l)sn-k + ksn-k-1 
n-1+ n-1 :::;s. 

n particular, for k = n - 2 we obtain that 

n3 -1 Bn-2 + 2sn-3 + ... + (n-3)s2 + (n-2)s1 --+ <_s. 
n-1 n -1 

This last inequality is equivalent to 

n3 -1 8n-2 + 8n-3 + ... + 82 + 81 
n-1 + n-1 :5s. (3) 

So now we concentrate on getting a lower bound for Bn-2 + Bn-3 + ... + 
82 + 81. The idea for doing this is the following. Each of the straight-lines 
constituting the rectilinear partition of the given path is parallel to one of 
the main axis: x, y, z.It follows that there exists an axis, say z, such that 
at least s/3-many of these lines are parallel to the z-axis. Now consider 
the plane grid G~ lying on the x, y-plane. Draw within this grid a new 
co-centric grid D.k with side n - 2k and edges parallel to those of G~ (see 
Figure 4). 
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It follows that there exist exactly 

n 2 
- (n - 2k)2 = 4k(n - k) 

vertices lying inside G~, but outside t11c Moreover, for any straight-line 
Li from the above path, if Li is parallel to the z-axis and in addition L; 
"crosses a vertex that lies" inside the grid t11c then the length of L;+i must 
be ::::; n - k. It follows that 

8 
3 - 4k(n - k) s; Bn-k· (4) 

In fact, we can do better than inequality (4). Let s(x), s(y), s(z), be the 
number of lines in the above rectilinear partition which are parallel to the x, 
y, z-axis, respectively. Further let s1c(x, y), s1c(y, z), s1c(x, z), be the number 
of lines in the above rectilinear partition which are parallel to the (x, y)-, 
(y, z)-, (x, z)-plane, respectively. Now as before we can show that 

s(x) - 4k(n - k) :::; Bn-k(Y, z), 

s(y) - 4k(n - k) ::::; Bn-1c(x, z), 

s(z) - 4k(n - k):::; Bn-1c(x, y). 

~·· ...................... ·~:·····~ 

Figure 4: Proving that s/3 - 4k(n - k) :::; Bn-k 
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Adding these inequalities we obtain 

s 
"2 - 6k(n - k) ~ Sn-k, (5) 

which is an improvement over inequality (4). Now the idea is to sum in
equalities (5) for different values of k in order to get the desired lower 
bound. First notice that the quantity on the left-hand side is zero exactly 
when 

k = n ± Jn2 - s/3. 
2 

Since k ~ n/2, the largest of the two roots, which is n/2, must be rejected. 
Call 

n - Jn2 - s/3 
ko = 2 . 

Hence, the quantity on the left-hand side of (5) is non-negative exactly 
when k ~ ko. Fix k ~ ko and use inequalities (5) for i = 2, 3, ... , kin order 
to obtain from (3) that 

n3 -1 Bn-2 + Bn-3 + ... +Sn-le 
s > -- + ---------- n-1 n-l 

It follows that 

n3 -1 (k-2)s ~ 6i(n-i) 
2 -n---1 + 2(n-1) - L n - 1 

•=2 
n3 -1 (k-2)s k(k + 1)(3n-2k-1) 

= -n---1 + 2(n-1)- n-1 + 6· 

(k-2)s n3 -l k(k+1)(3n-2k-1) 
s- > --+ +6. 

2(n-1) - n-1 n-1 

Factoring outs and dividing through by n - k/2 we obtain 

n3 -k(k + 1)(3n-2k-l) + 6n-7 
s > ---'----'-'-----:---'-----

- n - k/2 
(6) 

Now we need to maximize the quantity in the right-hand side of (6). Setting 
k =a· n, simplifying, and maximizing the resulting fraction (with respect 
to a) we obtain after some calculations that 

s 2 (1.02324576) · n2
, 

which proves the existence of a constant c > 1 satisfying the desired lower
bound result. This completes the proof of the theorem. 0 
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3.2 d-dimensional grids 

As before we first discuss the upper bound. As a first approximation we 
iterate the face-peeling algorithm d - 2 successive steps, up to a depth 
6 = 1/16, that is, a depth of k = n/16 lines. We will later indicate what 
depth should be used in order to optimize the cost. For each such iteration 
we count the number of straight-line-turns used, as well as the dimensions 
of the solid resulting by peeling the faces of the ith iterate. These are 
indicated in the table below. The resulting solid after application of the 
(d - 2)th iteration can be considered as consisting of a)d-3 . nd-3_many 
solids each of dimension 

7 7 
8 

n x B · n x n. 

We cover each of these solids with straight lines by using the 3-dimensional 
face-peeling algorithm up to a depth of n/4. This requires ~~ · n 2 lines per 

1; x 1; x n parallelepiped, for a total of at most ( ~) d-
3 

. ~ . nd- I lines. 

Step Number of Lines Dimensions of Resulting Solid 
1 
2 
3 

4 

d-2 - 1 d-1 ·-·n 7n x 3n x 3n x 3n x 3n x 3n x ... x 7n x n 

By summing the quantities obtained above we obtain that 

(As a matter of fact, for four-dimensional grids we obtain an even better 
upper bound concerning the 3rd order term than the one above, if we 
move up to a depth of n/6 lines, namely, (38/27) · n3 

.) This last upper 
bound generalizes easily to more general "depths". Put 6 = 2·-t and apply 
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the above mentioned face-peeling algorithm. A repetition of the above 
argument will show that 

For 0 < € < 1 put i - 2 = (1 - <:) · log(d - 3) and we easily obtain that 
asymptotically in d, 

Hence, asymptotically, we have that for all 0 < l < 1, 

s(G~) 1 1 ( ( )<] 
nd-1 ::;1+2· (d-3)1--<+exp-d-3 . 

With respect to lower bounds it is easy to see, using the argument for 
proving inequality (5) of Theorem 4, that 

s-d(nd- 1 -(n-2k)d-l) ~ (d-l)sn-k· 

Arguing as before we obtain that the quantity on the left-hand side of the 
above inequality is non-negative exactly when k :::; ko, where 

k0 = ~ . ( 1 - ( 1 - d- 1
) 1 - 1) . 

Using inequality (1), formula (3) of Section 3 and simplifying we obtain 
that 

s. (1 - (d-k~)(nl-1)) ~ (1 - (d-k~)(nl-1)) . nd-1 

d ((n-4)d-l + (n-6)d-1+ ... +(n-2ko)d-I) 

+ (d-l)(n-1) 

>(l ko-1 ) d-i+ko-1 nd-l 
- -(d-l)(n-1) . n n-1 . 

> (i + (ko - l)(d- 2)) . nd-l 
- ( n - 1) ( d - 2) · 

Substituting the above value of k0 we obtain that asymptotically in d 

s(G~);;: (~ - ~ · exp[-1/d(d- l)J) . nd- 1
• 

To sum up we have proved the following theorem. 
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Theorem 5. For all 0 < e:: < 1 the following inequality holds asymptoti
cally in d, 

1+~. [l-exp[-1/d(d-1)]]< s(~~) <1+~. 1 +expf-{d-3n 
2 - n - - 2 (d-3)1-• · 

Thus, we see that there exists a constant cd > 0 depending only on d and 
an arbitrarily small constant c~ .• > 0 depending only on d and e:: such that 

1 s(G~) 1 1 , 
+ cd :S nd-1 :S1+2. (d-3)1-e +cd,•' 

asymptotically in d. 

4 Conclusion. 

We have studied the asymptotic behavior of the link length of rectilinear 
paths traversing all the vertices of multidimensional grids and have given 
nontrivial bounds of the optimal link length of such rectilinear walks. Exact 
bounds for grids of dimension 3 or greater are still unknown. The results 
for the 2 and 3 dimensional cases discussed above (which are, of course, 
often notoriously misleading) lead us to conjecture 

The problem appears to be even more difficult in the case of arbitrary 
(as opposed to rectilinear) walks. For example, our lower bound proof in 
Theorem 4 is not valid anymore if we were to allow "turns" with other 
angles as well, for example, 45, 90 and 135. (However, for such walks in 
two dimensional grids we can show that s(G;) = 2n - 2, n 2:: 3.) 

Questions concerning the link length of tours in incomplete grids, more 
general polygons, or even when the tour is permitted to pass through ver
tices more than once, are entirely open. 
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