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A class of interpolation formulas is defined as the convergent in the mean
Abel-Goncharov series with the interpolation nodes viewed as certain ran-
dom variables. It is shown that a special choice of the distribution of the
random nodes leads to a particularly useful formula. As a first application
of this formula, the expansion is obtained of the arithmetic-geometric mean
difference for positive binary random variables in terms of certain central
moments. As a second application, we obtain an expansion of the Hellinger
integral.

1. INTRODUCTION

In this paper we consider the following interpolation problem for a function f
defined on the interval [0,1]. Let the numeric values be given of the following
functionals of f:

Ao(f) = f(0)
Ai(f) = f(1) - £(0)

Az(f)

I

~
—~
ot
A
|

[\V]
=
N | =
A
+

=
=

245



) = St () 5 (1)
k=

0

Using these values, construct the interpolating polynomial P, (z; f), = € [0, 1],
of degree n such that

Ak(Pn) = Ar(f) (2)

for k =0,...,n (see [6]: the interpolation problem of section 1.5 reduces to our
problem with the special choice of the interpolation nodes xy, = %)

It is easily seen that the problem consists of constructing the polynomials
Cm(z) of degree m for m = 0,...,n, uniquely defined by the conditions

siew={1 il @

where Ak (C,,) = 0 for k > m automatically, since A,,(f) = 0 for every polyno-
mial f of degree m < m (this is a direct consequence of the identity (29)). Note
that Co(z) = 1 and C;(z) = @. The desired interpolating polynomial P, (z; f)
is then expressed as follows:

Po(z;f) = Y Co(@)Am(f)- (4)
m=0

Indeed, Ag(+) is a linear functional so that Ay of the sum on the right hand side
of (4) equals the sum Ag(Co)Ap(f) +...+ Ax(Cn)A,(f). Hence the condition
(3) implies the identity (2).

In Section 2 the various properties of the basic polynomials Cy, Cy, . .. are dis-
cussed. It is shown in particular that these polynomials are easily constructed
by using the recurrence relationship (13). As is shown in Section 3 there is
an interesting link between the polynomials Cgy,Cy,... and the well-known
Goncharov polynomials envolved in the classical Abel-Goncharov interpolation
series (see Section 3 for a short description of the Abel-Goncharov interpolation
problem; see [1], [6], and [11] for more details). Due to this link we will show
that if the Abel-Goncharov series for a function f converges for some z € [0, 1],
then the interpolating polynomial P, (x; f) given by (4) converges to f(z) for
the same value of . Consider for instance the function f(z) = e**, with a
fixed constant a. In this case Ag(f) =1 and

Am(f) = (5 = 1)

for m > 1. It will be seen in section ?? that if |a| < log2, then

o0

e =1+ Y Cp(z)(ew —1)™ (5)

m=1

for each fixed z € [0, 1].
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In Section 5 we will show that the series in (5) converges uniformly in z and
a (see formula (32)). The Sections 5 and 6 are devoted to applications of the
last result.

In Section 6 we consider a binary random variable X which takes on either
the value e® (|a] < log2) with probability « or the value 1 with probability
1 — z. Then the geometric mean e®'°8% of X and the arithmetic mean IEX of
X equal e*® and 1+ z(e* — 1) respectively. By using (5) we will show that the
difference between the geometric mean and the arithmetic mean of X can be
expanded as follows:

oo (3]
oElogX _pY — Z Z O o) [(X% _ IEX%)’”] E [(X% —EX*)" ™| (6)
n=2m=0
where the a’s are universal constants, independent of the distribution of X.

In Section 7 we will give another application of the expansion (5). Let f and
g be positive probability density functions on IR. For n € INt define

[e.e]

mif0)= [ (70

— 00

3=

- g(t)%)n dt. (7)

In case n is even h,(f, g)% is called the Hellinger distance of order n between
f and ¢g. By Newton’s binomial formula

m

ha(f,g) = i(—l)”m( " )Hw,g) ®)

m=0
where H,(f,g) is the Hellinger integral of order z € [0,1] defined by

oo

Ha(f,g) = / F(H)7g(t) dt 9)

(see [10], Section 3.2). Using the expansion (5) we will show that if f and ¢
satisfy (39), then the following relation (inverse to (8)) holds:

H.(f,9) =1+ Y Cu(x) hu(f,9)- (10)

The convergence is uniform in z in the sense of (41).

2. PorynowmiaLs C,
Recall that for nonnegative integers n and m so that n > m, the Stirling
number of the second kind is defined by

m

Snm = % S (=1mk ( ’Z ) k" (11)

k=0
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with the convention that S,,,, = 1ifn >0, S0 =0if n > 1 and S,,,,, = 0 if
m > n (see for example [8]). Apart from the last mentioned zero values, the
Stirling numbers of the second kind are positive integers.

Hence by definition (1) the functional A,,(f) of the special function f(z) =
™ equals the normalized Stirling number

n -

Moreover, the interpolating polynomial P, (z; f) of the monomial f(z) = z™ is

the monomial itself, so that according to (4)
2" =Y Dpm Cp(2). (12)
m=0
Thus starting from Cy(z) = 1, we have the following recurrence relationship
n—1
DpnCn(z) =2" = Y D Cin(x) (13)
m=0

with D,,,, = 2. According to (13) the polynomial Cn(z) := 2L Cp(2) is monic,
i.e. a polynomial with unit leading coefficient. The first 9 solutions of equation
(13) are

@0(95) =1

Cia) = @

Co(z) = a(z—1)

Cs(z) = m(m—%)(m—l)

Culz) = x(m—%ﬁ(z—n

Gs(e) = (e -3 e- -1
Cole) = ale— - 3) =) 1)
Cr(z) = C5(I)(w2—x+%)

Cs(z) = éﬁ(x)(ﬁ—ﬁ%)

It is not hard to prove that in fact all polynomials of odd degree exceeding 5,
have the common factor Cs(z), and all polynomials of even degree exceeding
6, have the common factor Cg(z). Also the property

Cn(z) = (—1)"Cp(l — z) (14)
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is preserved for all n > 2.

3. THE ABEL-GONCHAROV PROBLEM

The Abel-Goncharov interpolation problem is usually formulated for functions
f of a complex variable z, analytic in a certain complex region, i.e. having
all derivatives in this region. If the numeric value of the m** derivative f(™)
evaluated at a certain complex number a,,, is given for all m = 0,1,..., then
the following interpolation problem can be considered. Given the numbers
) (@), m = 0,...,n, construct the interpolating polynomial P,(z; f) of
degree n such that

P (ai; f) = f* (ar) (15)
for k=0,...,n.

It is easily seen that the interpolating polynomial P, (z; f) can be presented
in the following form:

n ™ (a,,)
Pu(zif) = Y Gu(e) L0 (16)
m=0
where G,,(z) for m = 0,...,n are polynomials of degree m, the so-called

Goncharov polynomials, determined by the conditions

G¥(ap) = 0 ifk#£m an
G%”)(z) = m!

Indeed, take all the required derivatives from both sides of (16) and evaluate
them at ag,. .., an, respectively. Due to the conditions (17) we get the identity
(16).

The Goncharov polynomials can be constructed recurrently starting from
Go(z) = 1. Indeed, apply (16) to the monomial f(z) = z" and take into
account that in this case the interpolating polynomial P, (z; f) coincides with
the monomial itself. So, we get

2= zn: Gom(2) < :L ) anm (18)

m=0

i.e.

For instance, G1(z) = z —ag. Forn > 1

Gn(z):n!//---/ dzp -+ dz (20)

ap a
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which is directly verified by checking the property (17) of the integrals on the
right hand side. Note that G,,(z) depends only on ay,...,an—1. If needed, we
will exhibit this dependence by writing G,(z) = Gn.(z;a0,.--,an_1).

The answer to the question whether the sequence of the interpolating polyno-
mials Po(z; ), P1(z; f), . . . converges to f(z) for a fixed z from a certain domain
depends not only on the function f in question but also on the choice of the
numbers ag, aq, ... The usual setting of the convergence problem is as follows:
the considerations are restricted to the domain |z| < 1 (1 can be replaced by
any other positive number) and a class of functions f is characterized for which
the convergence takes place for all numbers ag,ai,... from the same domain.
Evidently, this class of functions f is quite restricted (see [1], theorem 9.11.1
which tells us that it consists of entire functions of exponential type less than
log2). On the other hand, certain special choices of the numbers ag,aq, ...
enlarge the convergence class considerably. For instance, put a, = a for all
n > 0. Then G,(z) = (z —a)” for n > 0, so that the Abel-Goncharov series
reduces to the usual Taylor expansion. If a,, = a + nh with h not necessarily
zero, then G,,(z) = (z — a)(z — a — nh)"~! and we get the classical Abel inter-
polation series (see [1], Section 9.10). As is seen in the next section, it is useful
for certain purposes to view ag, ag, ... as a sequence of random variables.

We conclude this section by the following example of the Abel-Goncharov
series. For a fixed complex number w let f(z) = e¥?. According to [1], theorem
9.11.1, the Abel-Goncharov series for this function f converges absolutely if
|w| < log2 (since in this case the function in question is of exponential type
less than log 2). Namely, for each |z| <1 and |w| < log2

w™

oo
eV = Z G (z)e*m?
m=0

if |am| < 1 for all m € IN. Note that the proof of (21) is based on the following
inequality: for each n € IN and each |z] <1

|Gn(2)] < n!(log2)™" (22)
if ag = 0 and |a,,| < 1 for all m € INT (see [1], formula 9.11.9).

4. LINK BETWEEN C,, AND G,

Suppose that ag,ay,... is a sequence of independent random variables, such
that for all possible outcomes of the random sequence ag,a;,... the Abel-
Goncharov series

0 (m)(a,,
[ =Y () T lm) (23)
m=0 '

is absolutely convergent for each |z| < 1. Note that G,,,(z) = G (z;a0, -+, Gm-1)
is a random variable, independent of f(m)(am). Since the expectation of the
product of independent random variables equals the product of their expecta-
tions, we have
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E{G (200, .-, am-1)f ™ (am)} = BGm(2;a0,. .., 0m_1)Ef™ (a,,).

Using this simple fact, take the expectation of both sides in (23). The left hand
side is non-random and therefore its expectation is f(z) itself. On the other
hand, the expectation of the sum in (23) equals the sum of the expectations,
hence (23) implies

FE) = 3 = BGn(2) B (a) (24

m=0

due to our assumption that the series in (23) converges absolutely. In particular
(21) implies

wz wm A W
eV =" e G (2) B (25)

m=0

Thus if (23) holds for all possible outcomes of the random sequence ag, a1, ...
then also (24) holds, i.e. the convergence class of functions f for (24) includes
(and is in fact wider than) that of the Abel-Goncharov series (23). The char-
acterization of this class (which would heavily depend on the distribution of
the random variables ag,ay,...) is obviously beyond the scope of the present
paper. In the remainder of this section we only discuss two special examples

of the random sequence ag, ay, ... in which the series (24) takes a particularly
transparent form.
First, suppose that ag, a1, ... are independent identically distributed random

variables. If, besides, each a,, has a standard normal distribution, then

oo

1 2
/ ew=32" g = g3 ,
— 00

so that (25) reduces to

zwf—w Z EG,,

with the generating function of the Hermite polynomials on the left hand side.
Hence in this special case the polynomials IEG,,(z) are the Hermite polynomi-
als.

Consider now the triangular scheme of independent identically distributed
random variables

Eeamw —

E\H
R

aii
az1 @22

Am1 v o Amm
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Denote by a,, the arithmetic mean of the random variables in the m!* row, i.e.

1™
= § Amk
m
k=1

and put ap = 0. Besides, suppose that all the random variables a,,; are
uniformly distributed in the interval [0,1]. Using again the fact that the ex-
pectation of the product of independent random variables equals the product
of their expectations, we get

1 m
m w m
w Ak L Frs em —1
:”IEemm: e’m dx = .
k=1 0

So it follows that (25), restricted to real valued w and z (replace them by a
real valued constant a and a real valued variable z), reduces to

3le

e 3 G ok -1 -
m=1 ’

for € [0,1] and |a| < log2. Compare (5) and (26) to conclude that these two
series agree, provided
Cu(®) = 5 EGy (23 a0, ..., an-1). (27)
n!
In the remainder of this section we establish the last relation between the Gon-

charov polynomials G,, and the polynomials C,, of section ??. Note meanwhile
that (20) and (27) yield yet another characterization of the polynomials C,,:

T Ty Tp—1
Cn(x):n"IE// / day - -dxy. (28)
0 ap Ap_1

To prove (27), note first that the functionals A,, defined in (1) can be expressed
for n > 1 as follows

1 1 1
n " tn—1+

+
= / / / f(n)(tnfl)dtnfl -+~ dtg
0 tn_1

so that

n"An(f) = Ef™)(a, /1 /1f ( e )dml -da. (29)

If f is a polynomial of degree m < m, for instance, we get A, (f) = 0, as was
noted in the introduction (see (3) and the remark following it).

Next recall that the normalized Stirling number D,,, equals A,,(f) when
f(z) = 2", and D,,,, = 2. Hence by (29)

n
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nm Dnm —
Sum_ _ :<">1Ea;gm. (30)

m*» ™  Dum m
Finally, take expectations of both sides in (18), using (30) and the independence
of G, and a,,,. We get (replace z by z)

n

z" = Z Do EG,.(z).

mm

m=0

But we also have (12), so that the identity (28) holds.

5. UNIFORM CONVERGENCE
We have already shown in the previous section that the expansion (5) holds for
each z € [0,1] and |a| < log2, which means that the remainder term

n

Rn(waa) =e" —1- Z Cm(w) (e% - l)ma (31)

m=1
evaluated at such z and a, tends to zero as n — oo. In this section we will
show that this convergence is uniform in the sense that for a fixed p € (0,log2)

sup |Rn(z,a)] = 0 as n — oo. (32)
z€[0,1],a€[—p,p]

In fact we will show that for each = € [0,1] and a € [—p, p]

2 9n-|—1
R (z,a)| < 33
Bulara)] < 22 (53)
with § = 25, which implies (32) since 6 € (0,1).
To verify (33) note first that for each n € IN and z € [0, 1]
|Cn(2)] < n™ (log2)~" (34)

due to (22) and (27). Next, apply (29) to f(z) = e**. Since in this case
) (z) = a™e®, Ag(f) =1 and A,(f) = (e % )™ n>1, we get

|n" (en —1)"| < max(1,e%)|a|™ < 2p". (35)

Now, since (5) holds for each fixed z € [0,1] and |a| < log2, the remainder
term (31) can be written in the form

Y Cul2) (em =)™

m=n+1

Thus by (34) and (35) we get (33):

o0 m . 9n+1
|Ra(z,0)] < D [C(@)] [(em —1)™| <2 Z 0 T8
m=n+1 m=n+1
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6. ARITHMETIC-GEOMETRIC MEAN RELATIONSHIP
Suppose that the random variable X takes on either the value e* with proba-
bility « or the value 1 with probability 1 — x, where a is an arbitrary non-zero
constant. Note that any binary random variable X can be presented in this
form by suitable normalization, if needed.

By definition, the arithmetic and geometric means of X are

EX=ze+1—az=1+4z(e*—1)

and

e[ElogX — eaz,

respectively. Therefore if |a| < log2, then by (5)

ePlogX — [EX 4+ Z Cn(z) (e% -1 (36)
n=2
since Co(z) =1 and Cy(z) = x, as we already know.
Compare (6) and (36) term by term. It is then seen that the following
equality has to be satisfied for n > 2

(3]

Gls

O B(X# — EX#)™ B(X# — EX#)"™™ = Cp(z) (% — 1)" (37)

m=0

with a suitable choice of the constants a,,,. For n = 2, for instance, the left
hand side equals

g B(X? — [EX?)?
with
IE(X% — IEX%)2 = z(e? —ze? —14+2)2 4+ (1 —2z)(1—ze? —1+z)?
= a1 -a)e? - 17,

so that agyg = —2 since Cq(z) = 2z(z — 1).
In general, all the central moments for n > 2 required in (37) are easily
determined:

E(X* —EX7)™ = [2(1 - o)™ + (=)™ (1 —2)a™](e* — 1),

with 1 on the right hand side if m = 0, and 0 if m = 1. Hence the equality
(37) is reduced to

(%]

m=0

for n > 2, with the polynomials
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Yno(z) = 2(1 —2)" + (—=1)*(1 — z)z"

which are of degree n, 9,1 (2) =0, and for 2 <m < [§]
Vnm(2) = [2(1 —2)™ + (=1)™(1 = z)z™][z(1 — )" "™+
(=1)" ™1 —=z)z" ],

which are of degree n. Note that the polynomials ¥,,,,(z) so defined possess
the same symmetry property (14) as C,,(z). Therefore the polynomial identity
(38) reduces to a system of linear equations with unique roots au,. This is
not hard to verify, however we do not wish to enter here in required technical
details. Instead, we present explicitly the first few terms of the expansion (6):

ElogX 22 33 1
€ = [EX - E]EQQ(X) + §§E33(X)

_‘i_‘: (%)2 [Ew(X) - [Ean(X)]

T ¥ [IE55(X) — 2 (X) B (X)

6 2
& (%) ﬁ {JE%(X) — Eg(X)[Egy(X) — ?[IE%(X)]Q +...
with By, (X) = E[(X# — EX=)™].

We have shown that the expansion (6) with the constants ., determined by
(38) is identical to the expansion (5), and thus in view of (32) the convergence
of the remainder term in (6) is uniform in 2 and a.

7. HELLINGER INTEGRALS

In this section we will give another application of the expansion (5), namely we
will prove formula (10). Suppose that f and g are positive probability density
functions which satisfy the following condition: there exists a 7 € (1,2) so that

1 t
110 (39)
T~ g(t)
for all t € R. If, for instance, f and g are densities of Cauchy’s distribution
1 o 1 1
=1 e o a0=1 o

then (39) is satisfied if and only if the parameter o € (£,2). In another example
of Laplace’s densities

flit)= % e~ It=0 and g(t) = % e~

(39) is satisfied if and only if |8] < log 2.
We will now prove that under the condition (39) the remainder term in (5)
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n

Ru(@) = Ho(£,9) 1= " Cunl@) hun(£.9) (40)

m=1

vanishes as n — oo in the sense that

sup |R,(x)| — 0. (41)
z€[0,1]

Indeed, put a = log (%) in (31) to conclude by (32) that

sup  |u(t,z) —up(t,z)] = 0 as n — oo (42)
z€[0,1],telR

—

T n 1 m
with u(t,z) = (%) and up(t,z) =1+ E_l Cn(2) ((%) " - 1) . This
yields the desired result (41), since

R,.(z) = / [u(t,z) — un(t,z)] g(t) dt

and
sup / [u(t,z) — un(t,z)] g(t) dt| <  sup  |u(t,z) —un(t,z)| — 0
z€[0,1] z€[0,1],teR
as n — oo.

8. CONCLUDING REMARKS

As was mentioned in the introduction, our interpolation problem is a special
case of Gelfond’s interpolation problem in [6], Section 1.5. In fact the con-
siderations of the present paper can be extended to Gelfond’s general setting
without many difficulties. However such extension would require some extra
technicalities at the expense of the clarity of the exposition. Taking into ac-
count the introductory nature of the present paper we deliberately have chosen
for the concrete setting with the special interpolation nodes %, and focused our
attention to deriving formula (5) with interesting applications in Sections 6sh
and 7.

Gelfond’s method for describing the convergence class of functions is simi-
lar to ours: he also relates his problem to the corresponding Abel-Goncharov
interpolation problem, derives the inequality (22) and consequently (34). How-
ever, the arguments used in [8], section 1.5, are quite complicated (at certain
instances even not quite clear). In this paper we attempt to simplify the con-
siderations: for the inequality (22) we refer to [1], theorem 9.11.1, where (22)
is derived by simple arguments, and then directly infer (34) by noting that the
polynomials C,, on the left hand side are certain expectations of the Goncharov
polynomials G,,. (In fact, the last remark applies to the whole class of Gel-
fond’s basic polynomials, and not only to the special polynomials C,, by taking
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appropriate expectations, but as was said earlier we do not dwell upon this
here). It is perhaps worthwhile to mention here the possibility of using theo-
rem 9.11.3 in [1], instead of theorem 9.11.1, which would allow for the wider
range |a| < 21log(2+1/3) for the constant a in (5), and for p € (0,2log(2++/3))
n (32). As is well known, the last bound cannot be essentially improved (see
[1], p.173).

Regarding the Goncharov polynomials G,,, this means that the upper bound
in (22) cannot be essentially improved. Hence, by the present method of de-
ducing (34) from (22), we can not estimate C,, much better than (34). But
close examination of the explicit expressions of Cn, presented at the end of
Section 8 shows that this upper bound is quite unnatural, and that the first 9
polynomials satisfy the inequality |Cn(m)| < 1ifz € [0,1]. By considerations
quite different from that of the present paper, we will prove in the forthcoming
report [3] that the last inequality holds for all n € IN. Consequently it will be
shown that (32) holds for each p > 0. In this manner we will improve upon re-
sults in Sections 6 and 7, allowing the constants a in Section 6 and 7 in Section
7 to be any positive number.

In conclusion few remarks concerning the applications discussed in Sections
6 and 7. The arithmetic-geometric mean relationship is a classical subject (see
[2] or [9], however the expansion (6) seems new. It is in fact valid not only for
binary random variables, as is stated in the introduction (see [4]). As for the
expansion (10), it might be useful in the context of [5] or [7]. The expansion up
to the second term, for instance, plays a central role in proving the important
functional central limit theorem in [7], p. 554.
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