
ELSEVIER Applied Numerical Mathematics 16 (1994) 201-225

~ APPLIED
~NUMERICAL

MATHEMATICS

Time integration of three-dimensional numerical
transport models *

B.P. Sommeijer *, P.J. van der Houwen, J. Kok
CWI, P.O. Box 94079, 1090 GB Amsterdam, Netherlands

This paper is dedicated to Professor Robert Vichnevetsky to honor him on the occasion of his 65th birthday

Abstract

We analyse three-dimensional models for computing transport of salinity, pollutants, suspended material (such t

sediment or mud), etc. The main purpose of this paper is to present an overview of the various possibilities for the
time discretization of the advection and diffusion terms that can take advantage of the parallelization and
vectorization facilities offered by CRAY -type computers. Among the suitable time integration techniques, we have
both explicit and implicit methods. In explicit methods, the parallelization is straightforward, but these methods are
hampered by a severe time step restriction due to stability. This can be avoided by selecting an implicit method;
however, such a choice necessitates the frequent solution of systems of equations. For the implicit methods
considered in this survey, these systems essentially have a tridiagonal structure. Even for this relatively simple form,
the greater part of the total solution time is spent in solving these systems. Therefore, this part of the algorithm
needs special attention in order to get good performance on parallel/vector architectures. Following a suggestion of
Golub and Van Loan, we have experimented with several implementations on a CRAY YMP4, which will be
reported.

Keywords: Transport models; 30 advection-diffusion equations; Numerical time integration; Parallelism

1. Introduction

The mathematical model describing transport processes of salinity, pollutants, suspended
material (such as sediment or mud), etc., is defined by a system of 3D advection-diffusion-reac-

" The investigations reported in this paper were supported by the NCF (National Computing Facilities Founda
tion) who provided the authors with a grant (CRG 93.01) from Cray's University Research and Development Grant
Program.

* Corresponding author. Fax: (+31-20)592-4199.E-mail:bsom@cwi.nl.

0168-9274/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
SSDI 0168-9274(94)00049-2

202 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

tion equations

ac; a a a
- = - -(uc.)- -(vc.)- -((w-w)c.) at ax I a Y I az f l

a (aci) a (ac;) a (aci)
+ ax Bxax + ay By()y + az Bza_; +g;, (1.la)

where
• c;: concentrations of the contaminants,
• u, v, w: local fluid velocities in x, y and z directions,
• wf: fall velocity, only nonvanishing in the case of suspended material,
• Bx, eY, Bz: diffusion coefficients in x, y and z directions,
• gi: source and reaction terms.

The velocities u, v, w, and the diffusion coefficients Bx, By, Bz are assumed to be known in
advance. The fall velocity We is only relevant in the case of modeling transport of suspended
material, and may be a nonlinear function of the concentration (cf. Toro et al. [18]). The terms
g i describe chemical reactions, emissions from sources, etc., and therefore depend on the
concentrations ci. Thus, the mutual coupling of the equations in the system (l.la) is only due to
the functions gi. In the present paper we shall concentrate on the numerical modeling of a
single transport equation. The extension to systems, including chemical terms, is the subject of
current research. In the following, we omit the index i occurring in (1.la).

The physical domain in space is bounded by the vertical, closed boundary plane p(x, y) = 0,
the water elevation surface z = C(t, x, y), and the bottom profile z = -d(x, y). The functions
p, C and d are also assumed to be known in advance. The boundary conditions along these
boundary planes depend on the particular application at hand. Most considerations in this
paper apply to the case where they are of the general, linear form:

Vertical boundaries: p(x, y) = 0:

Water surface boundary: z = C(t, x, y):

Bottom boundary: z = -d(x, y):

ac
av(t, x, y, z)c +bv- =cv(t, x, y, z), an

ac
a 8(t, x, y)c +b8 - =0, az

ac
aa(t, x, y)c+ba- =cctCt, x, y). az

(l.lb)

Here a;an denotes differentiation along the inward normal, av, a8 , aa, cv, and ea are given
functions and bv, bs and ba are given constants. If the constants bv, b8 or ba vanish, then the
boundary condition will be called a Dirichlet-type condition.

Given the initial concentration c(t0 , x, y, z), the concentration c can be computed in space
and time by solving the initial boundary value problem (1.1). The numerical solution of this 3D
problem requires powerful computing facilities such as offered by the CRAY supercomputers.
In order to exploit these facilities, the spatial computational domain should be as simple as
possible. There are two obvious approaches to simplify the spatial computational domain, viz.
(i) coordinate transformations and (ii) the "dummy-point" approach. In both cases, the spatial

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 203

computatli.onal domain becomes a rectangular box which can be discretized by means of a
uniform rectangular grid leading to efficient implementations on vector computers.

In the case of coordinate transformations, the 3D physical domain itself is mapped on a
rectangular box. This approach has the additional advantage that the physical boundaries are
exactly represented. However, the price we pay is firstly, a much more complicated mathemati
cal model and secondly, as a consequence of the transformation, the possibility of introducing
coefficient functions of large magnitude. The transformation of only one space variable already
leads to quite unattractive formulas. We illustrate this by working out the transformation of the
z-variable, the so-called u-transformation. In the u-transformation, the variables c and z are
replaced by the new variables c * and u which are related according to

c(t, x, y, z) =c·(t, x, y, u) =c*(t, x, y, O(t, x, y, z)),
z-nt,x,y)

u=fJ(t,x,y,z):= , (1.2)
h(t, x, y)

where h is the water height defined by h := d(x, y) + ((t, x, y). Evidently, u takes values in
the unit interval [-1, O]. From (1.2) the transformed equation in terms of c •, t, x, y, and u is
easily obtained by substitutions like

ck ac • ac • ae ac ac • ac • ae ac ac • ae ac •
-=-+-- -=-+-- -=--=-
at at au at ' ax ax au ax ' ... ' az au az hau

Since the function O(t, x, y, z) depends both on t and all spatial variables, the transformed
equation is much more complicated, and therefore more expensive, than the original transport
equation (1.la). Furthermore, these expressions show the introduction of large coefficients
ae /ox and ae ;ay into the model in the case of a rapidly changing bottom profile d(x, y).
Similarly, transformation of the (x, y)-variable introduces large coefficients in the case of a
rapidly changing coast geometry. As a consequence, the numerical solution process should be
based on an implicit time integration in order to avoid restrictive time step conditions.

The second, "dummy-point" approach encloses the whole physical domain in a rectangular
box and considers this box as the computational domain. As a consequence, there may be a lot
of meaningless, dummy grid points. However, in spite of performing calculations at these
dummy points, the regular grid facilitates efficient implementation which compensates the
additional computational effort. Compared with the coordinate transformation approach, the
advantage is the simple mathematical model, the disadvantage is a less accurate representation
of the physical boundaries.

The two approaches just outlined can be combined. For example, in [1], we find such a
combined approach for the shallow water equations. In the present paper, we shall follow the
dummy-point approach.

2. Semidiscretization

A widely used approach for the discretization of (1.1) is to apply the method of lines (MOL).
This semidiscretization process transforms the partial differential equation into a system of
ordinary differential equations (ODEs) by discretizing only the spatial derivatives and leaving
time continuous. Another approach is the so-called direct discretization, in which the deriva-

•

204 B.P. Sommeijer et al. /Applied Numerical Mathematics 16 (1994) 201-225

tives in space and time are simultaneously replaced by discrete analogues. For a comparison of
both techniques we refer to [5]. In this paper we shall follow the MOL approach.

Before applying the semidiscretization process, it is convenient to rewrite equation (1.la) by
taking into account the particular applications we have in mind: we shall only consider the
incompressible case, that is, we assume u x + uY + wz = 0, and furthermore, the diffusion coeffi
cients Bx, By, Bz will be assumed to be constant. Recalling that we concentrate on a single
transport equation, (l.la) simplifies to

ac = -u~ -v oc -w ac + a(wfc) +B(a2c + a2c + a2c) +g.
at ax ay az az ax 2 ay 2 az 2

(2.1)

The first step in the semidiscretization process is to let the physical domain be enclosed by a
rectangular box, containing the grid points

Pj,k,m := (x 0 + jb.x, Yo+ kl1y, z0 + rnD.z),

j=O, .. .,dx+l, k=O, ... ,dy+1, m=O,. .. ,dz+l, (2.2a)

where (x 0 , y 0 , z0) corresponds with the southwest corner point at the bottom of the rectangu
lar box. It will be assumed that the mesh parameters D.x, !1y and D.z are such that the physical
boundaries can be approximated by a subset of grid points with sufficient accuracy. This subset
of boundary grid points will be denoted by 318L Of course, some geometrical constraints on the
location of the boundary points have to be imposed; however, such aspects are beyond the
scope of this paper. The boundary grid points divide the remaining grid points in outer and
inner ones lying "outside" and "inside" a!R. These sets of points are denoted by IEB 0 u1 and IEBin·

Furthermore, we assume that the enclosing box is such that no grid points of a!EB are on the
boundary planes of the box (i.e., the indices j, k and m of the boundary points satisfy
1 ~j ~dx, 1 ~k ~dy, and 1 ~m ~dJ.

Next the spatial differential operators are replaced by finite differences, so that we can
approximate (2.1) by a system of ODEs. There is a considerable amount of literature on the
spatial discretization of advection-dominated partial differential equations. For a recent
overview we refer to [17], in which both symmetric and unsymmetric discretizations (i.e.,
upwind) are discussed. An advantage of upwinding is that so-called "wiggles", which may lead
to negative concentrations, can be suppressed. This positivity is crucial for models in which
chemical terms are involved. This kind of semidiscretization will be discussed in a forthcoming
paper where such a model will be studied in more detail. In the present paper, where the
emphasis is on the vectorization and parallelization features of the various time integrators, we
shall use second-order, symmetric differences (see also [16, p. 24] where the discretization of
nondissipative advection is discussed).

Furthermore, we denote the numerical approximations at Pj,k,m to c, u, . . . by capitals
Cj,k,w ~.k,m' ... , and we introduce the spatial shift operators 2' ±' 'J' ± and .%' ± defined by

CjJ/ c. k := c. k 1 .? ± ;, ,m J, ± ,m'

Then, on the computational set of grid points § defined by

§ == {Pj,k,m: 1 ~j ~dx, 1 ~k ~dy, 1 ~m ~dz} (2.2b)

>f

1-

le

l)

a

l)

1-

al
~t

1e
1e
.d
n·
1e
fy

.n
1e
It
.. ,

Is

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 205

the associated ODEs take the form

dCj,k,m (1 1
dt = - 2.6.x Uj,k,m[2"+-2"_] + 2.6.y VJ,k,m[$"+-$"-]

+-1-w [:z -:z i}c· 2.6.z J,k,m + - J,k,m

+ .s(-1-2 [2"+ -2 + 2"_] + _1 _2 [$"+-2 + j"_]
(A.x) (A.y)

+ _1_2 [2'+ -2 +2: _])cJ.k m
(A.z) , ,

1
+ 2Azw(C)j,k,m[2'+-2:_]Cj,k,m+gj,k,m• (2.3a)

where w(c) == w/c) + cawf(c)/ac.
The next step is to take into account the bounda:ry conditions. If IJ.k,m is a (physical)

bounda:ry point where the bounda:ry condition is of Dirichlet type, then Ci,k,m is explicitly given
(see (l.lb)), so that by means of (numerical) differentiation with respect to time, we obtain
ODEs of the form

dCi,k,m
dt = dj,k,m(t), (2.3b)

which should replace the ODEs occurring in (2.3a) at all Dirichlet-type bounda:ry points (here,
dj,k,m(t) is explicitly determined by the bounda:ry conditions).

If I},k,m is a bounda:ry point of non-Dirichlet type, then the corresponding ODE in (2.3a)
asks for the concentration at one or more outer grid points. By means of the bounda:ry
conditions, the concentrations in these auxilia:ry outer points can explicitly be expressed in
terms of concentrations at inner (or bounda:ry) grid points.

Finally, we assume vanishing concentrations at all points in the computational set § which
are in IEB 0 ut• as well as on the boundaries of the enclosing box, i.e.,

Ci,k,m=O, j=O,dx+l, k=O,dy+l, m=O,dz+l. (2.3c)

In conclusion, the equations (2.3) corresponding to the set of grid points § as defined by
(2.2b) define a second-order consistent semidiscretization of the initial-boundary value prob
lem (1.1) of dimension d == dxdydz. Notice that only the concentrations defined by this system
of ODEs corresponding to the grid points of IEBin and 31EB are relevant.

In the analysis of time integrators for (2.3), it is more convenient to represent the system
(2.3) in the form

dC(t) =F(t, C(t)) :=Ax(t)C(t) +Ay(t)C(t) +Az(t)C(t) +Nz(C(t))C(t)
dt

204 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

tives in space and time are simultaneously replaced by discrete analogues. For a comparison of
both techniques we refer to [5]. In this paper we shall follow the MOL approach.

Before applying the semidiscretization process, it is convenient to rewrite equation (1.la) by
taking into account the particular applications we have in mind: we shall only consider the
incompressible case, that is, we assume ux + vY + wz = 0, and furthermore, the diffusion coeffi
cients ex, eY, ez will be assumed to be constant. Recalling that we concentrate on a single
transport equation, (l. la) simplifies to

ac =-u~-v~-wac + a(wrc) +e(a2c + a2c + a2c)+g.
at ax ay az az ax 2 ay 2 az 2

(2.1)

The first step in the semidiscretization process is to let the physical domain be enclosed by a
rectangular box, containing the grid points

Pj,k,m == (x 0 + jAx, Yo+ kAy, z0 + mAz),

(2.2a)

where (x 0 , y 0 , z0) corresponds with the southwest corner point at the bottom of the rectangu
lar box. It will be assumed that the mesh parameters Ax, Ay and Az are such that the physical
boundaries can be approximated by a subset of grid points with sufficient accuracy. This subset
of boundary grid points will be denoted by all]. Of course, some geometrical constraints on the
location of the boundary points have to be imposed; however, such aspects are beyond the
scope of this paper. The boundary grid points divide the remaining grid points in outer and
inner ones lying "outside" and "inside" aR These sets of points are denoted by !Bout and IEBin·
Furthermore, we assume that the enclosing box is such that no grid points of a!B are on the
boundary planes of the box (i.e., the indices j, k and m of the boundary points satisfy
1 ,,-;_j < dx, 1 < k < dy, and 1 < m < dz).

Next the spatial differential operators are replaced by finite differences, so that we can
approximate (2.1) by a system of ODEs. There is a considerable amount of literature on the
spatial discretization of advection-dominated partial differential equations. For a recent
overview we refer to [17], in which both symmetric and unsymmetric discretizations (i.e.,
upwind) are discussed. An advantage of upwinding is that so-called "wiggles", which may lead
to negative concentrations, can be suppressed. This positivity is crucial for models in which
chemical terms are involved. This kind of semidiscretization will be discussed in a forthcoming
paper where such a model will be studied in more detail. In the present paper, where the
emphasis is on the vectorization and parallelization features of the various time integrators, we
shall use second-order, symmetric differences (see also [16, p. 24] where the discretization of
nondissipative advection is discussed).

Furthermore, we denote the numerical approximations at Pi,k,m to c, u, ... by capitals
Ci,k,w ~,k,m' •.. , and we introduce the spatial shift operators 2' ±' $r' ± and .% ± defined by

$r' c. k == c. k 1 ± J, ,m J, ± ,m'

Then, on the computational set of grid points § defined by

§ := { Pj,k,m: 1 ,,-;_ j ,,-;_ d x, 1 ,,-;_ k ,,-;_ d Y, 1 ,,-;_ m ~ d z} (2.2b)

p--~~~~---------------------------..._11111
I

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 205

the associated ODEs take the form

dCi,k,m (1 1
dt = - 2Ax LJ,k,m[2" + - 2" _] + 2Ay VJ,k,m[j! + - ,r _]

+-1-w [.z -.z 1)c. 2Liz 1,k,m + - J,k,m

\
1 1

+e --2[2"+-2+.2"_] +--2[j!+-2+,r_]
(Ax) (Liy)

+ (A~)2[Z+-2+.%_])ci,k,m
1

+ 2Az w(C)j,k,m[.% + -.% _]Cj,k,m + gj,k,m• (2.3a)

where w(c) == wf(c) + c3wr(c)/3c.
The next .step is to take into account the boundary conditions. If lj,k,m is a (physical)

boundary pomt where the boundary condition is of Dirichlet type, then Cj,k,m is explicitly given
(see (l.lb)), so that by means of (numerical) differentiation with respect to time, we obtain
ODEs of the form

dCj,k,m
dt =dj,k,m(t), (2.3b)

which should replace the ODEs occurring in (2.3a) at all Dirichlet-type boundary points (here,
di,k,m(t) is explicitly determined by the boundary conditions).

If Pi,k,m is a boundary point of non-Dirichlet type, then the corresponding ODE in (2.3a)
asks for the concentration at one or more outer grid points. By means of the boundary
conditions, the concentrations in these auxiliary outer points can explicitly be expressed in
terms of concentrations at inner (or boundary) grid points.

Finally, we assume vanishing concentrations at all points in the computational set § which
are in IEBout> as well as on the boundaries of the enclosing box, i.e.,

Cj,k,m=O, j=O,dx+l, k=O,dy+l, m=O,dz+l. (2.3c)

In conclusion, the equations (2.3) corresponding to the set of grid points § as defined by
(2.2b) define a second-order consistent semidiscretization of the initial-boundary value prob
lem (1.1) of dimension d == dxdydz. Notice that only the concentrations defined by this system
of ODEs corresponding to the grid points of IEBin and 3IB are relevant.

In the analysis of time integrators for (2.3), it is more convenient to represent the system
(2.3) in the form

dC(t) =F(t, C(t)) ==Ax(t)C(t) +Ay(t)C(t) +Az(t)C(t) +Nz(C(t))C(t)
dt

(2.4)

206 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

where C(t) is a vector of dimension d containing all concentrations defined at the points of§,
and A/t), A/t), Az(t), and N/C) are d x d matrices with (at most) three nonzero elements
in each row. Notice that the matrix Nz vanishes if the fall velocity wf is absent in (l.la). The
vectors Bx(t), B/t) and B/t) represent the inhomogeneous contributions of the boundary
conditions at the vertical east and west boundaries, at the vertical north and south boundaries,
and at the surface and bottom boundaries, respectively.

In order to get some insight into the magnitude of the entries in these arrays, we consider
the case where the fluid velocities and the diffusion coefficients can be considered as (locally)
constant in space. Then, ignoring boundary conditions and omitting the spatial subscripts
(j, k, m), the matrices Ax, Ay, Az and Nz are defined by the stencils

1 [1 Ax== --2 e+ z-Ax U
(Ax)

-2e 8 - tAx U] x-ctirection'

1 [1 Ay == --2 e + 2Ay V
(Ay)

1 [1 Az== --2 e+ z-Az W
(Az)

-2e e - tAY V] y-ctirection•

(2.5)

-2e 8 - t A z W] z-ctirection •

1
Nz == 2Az [-w(C) 0 w(C)lz_direction·

These approximate values will be used in our stability analysis of the various time integrators.

3. Basic time integration methods

In this section we discuss potential time integrators for integrating the space-discretized
transport equation (2.4) on CRAY-type computers. We will respectively consider

• stabilized Runge methods,
• locally one-dimensional methods,
• Richardson extrapolation of locally one-dimensional methods,
• operator splitting methods,
• hopscotch methods,
• nested operator splitting methods,
• predictor-corrector methods.

These methods have been selected because of their attractive numerical features (such as
stability and accuracy), and their suitability for an efficient implementation as well (aspects like
vectorization, parallelization and storage requirements). With the exception of the stabilized
Runge method, these methods are implicit; however, this implicitness is of a very mild nature:
these methods are at most "tridiagonally" implicit. Using a special technique called "vectoriza
tion-across-the-linear-systems" (see Section 5), the solution of the tridiagonal systems can be
performed with high speed on a vector processor.

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

3.1. Stabilized Runge methods

Suppose that we apply to (2.4) the explicit method

e<1) =en+ a 1At F(tn, Cn),

e<2) =en+ a 2 At F(tn, CCll),

e<q-Z) = C +a At F(t c<q-3J)
n q-2 n• '

e<q-l) = e + 1at F(t c<q- 2))
n 2 n' '

en+l =en+ At F(tn +tat, c<q- 1>).

207

(3.1)

This method is a q-stage Runge-Kutta method in which the t-arguments in the first q -1
stages are frozen. Per step, it requires q calls of the right-hand side function F(t, e) with only
two different values of the t-argument. Thus, in problems where the t-update of F(t, C) is
costly, the method (3.1) may be attractive, even for larger values of q. In the case of (2.4), the
main effort in evaluating F(t, C) comes from the evaluation of the matrices Ax(t), A/t),
Az(t), and N/t, e(t)), so that (3.1) is effectively a two-stage method. Furthermore, it is
second-order accurate in time for any set of fixed, bounded coefficients {a1, •• ., aq_ 2}, the
storage requirements are modest and the structure of the system (2.4) allows an extremely
efficient implementation on vector computers. Moreover, in the applications we have in mind,
the vector loops are so long that the availability of several parallel vector processors can be fully
exploited without sacrificing vector speed.

The only drawback is the stability condition on the size of the time step which is of the form

A (3(q)
ut~----

"""' p(aF ;ae)' (3.2)

where p(·) denotes the spectral radius function and {3(q) defines the stability boundary of the
method. The coefficients {a1, ••• , aq_ 2} can be employed for relaxing the stability condition
(3.2) (cf. [9]). The resulting method may be considered as a stabilized Runge method (if q = 2,
then Runge's original method appears). A suitable choice of the coefficients depends on the
type of the system (2.4), i.e., the nature of the spectrum of ap ;ae. We distinguish the real,
imaginary and "left halfplane" stability boundary. These boundaries are relevant in the case
where the eigenvalues of aF ;ac are on the negative axis, the imaginary axis and in the left
halfplane, respectively.

If the diffusion terms are dominating in (2.4), i.e., if

Ax«4elUl- 1,

then the eigenvalues of aF ;ac are located in a long, narrow strip along the negative real axis
and the spectral radius is given by

(3.3a)

208 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

In this case, the so-called Runge-Kutta-Chebyshev (RKC) method, which possesses the nearly
optimal real stability boundary {3(q) = 2q 2/3, should be effective [10,15]. Since the computa
tional effort per step increases linearly with q, whereas the stability boundary is quadratic in q,
the RKC method is an efficient time integrator for diffusion-dominated problems.

If advection is dominating, then, within the family of stabilized Runge methods, the
four-stage method with (q, av a 2) = (4, :L t) is recommended. This method has the same
stability polynomial as the standard, fourth-order Runge-Kutta method, that is, it satisfies the
stability condition (3.2) with imaginary stability boundary ,8(4) = 2{2. In advection-dominated
problems, we have

IUI IVI IWl+lwl
p(aF ;ac) ~ - + - + ,

Ax Ay Az
(3.3b)

showing that the stability condition (3.2) requires At to be of O(min(Ax, Ay, Az)). We shall
refer to this second-order, four-stage method as the RK24 method.

The stabilized Runge methods are in a sense special-purpose methods because the coeffi
cients can be tuned to a particular problem class. This makes them suitable candidates for use
in operator splitting methods to be discussed in Section 3.3.

3.2. Locally one-dimensional methods

We shall consider the locally one-dimensional (LOD) method of Yanenko [19] in its original
form and a modification which is of interest for a parallel implementation (cf. [12]).

3.2.1. LOD method of Yanenko
The LOD method of Yanenko is based on the idea of splitting the right-hand side according

to the spatial derivatives and to perform an integration step by integrating the fractional
equations sequentially by means of the highly stable backward Euler method. When applied to
(2.4) we obtain

C(l) -At Ax(tn+i)C<1> = Cn +At Bx(tn+ 1),

c<2> - At A (t)c<2> = c<1> +At B (t) y n+l y n+l '

c<3> - At (Az(tn + 1) + Nz(c<3>) jc<3> = c<2> +At Bz(tn+i),
(3.4)

Cn+i - At G(tn+i • Cn+i) = c<3>,

This method is first-order accurate and will be referred to as the LODl method. In addition to
evaluating the matrices Ax, AY, and Az, the costs per step consist of solving dydz tridiagonal,
linear systems of dimension dx, dxdz tridiagonal, linear systems of dimension dy, dxdy
tridiagonal, nonlinear systems of dimension dz, and d nonlinear scalar equations. We remark
that, without reducing the order of accuracy, the matrix Nz<c<3>) in the third stage may be
replaced by N/Cn). Furthermore, if G does not depend on C, then the fourth stage can be
omitted by replacing B/tn+i) with Bz(tn+i) + G(tn+i) and by setting Cn+i = c<3l,

The overall costs of the method (3.4) seem to be extremely high, both in computational
volume per step and with respect to storage. The present (shared memory) CRAY computers

....... --............................ -
B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 209

offer an amount of storage which is in the order of 1-2 Gigabytes, corresponding to I28-256
Megawords (double precision). Since this LODI method requires I6 arrays (cf. Table I),
including the arrays for storing the velocity fields, grids of up to 8-I6 million grid points can be
treated.

With respect to the computational effort per step, we observe that in this particular case
where so many systems of equal dimension are involved, the solution process can be imple
mented rather efficiently on vector computers by executing the substeps of the many tridiagonal
solvers vectorwise (cf. [2, p. I56] and Section 5 of the present paper). This technique was
successfully used by de Goede [I] in solving the three-dimensional shallow water equations, and
will be referred to as uectorization-across-tridiagonal-solvers. Thus, for LOD methods, the
computational effort per step can be substantially reduced on vector computers. Moreover, the
favourable stability characteristics of the underlying backward Euler method enable us to take
arbitrarily large stepsizes as far as stability is concerned (see e.g. [I4] for a discussion on the
stability of LOD methods). This property, together with the technique of vectorization-across
tridiagonal-solvers, implies that the overall costs of the LOD approach are acceptable. How
ever, since the LODI method is only first-order accurate, large stepsizes may destroy the
accuracy. In order to retain accuracy, we may use Richardson extrapolation, to be discussed in
Section 3.2.3.

3.2.2. Parallel LOD method
Instead of sequential integration of the fractional equations, we may perform parallel

integrations to obtain the method

co) - At Ax(tn+ 1)C<1) =en+ At Bx(tn+ 1),

c<2) - At Ay(tn+i)e<2) =en+ At By(tn+ 1),

c<3) - At [A z(tn+ 1) + Nz(e<3))) e<3> = Cn +At Bz(tn+ 1), (3 .5)

e<4) - At G(tn+l• e<4)) =en,

Cn+1 = {-(e(l) + e<2) + e<3) + e<4>).

This modification of Yanenko's method is again first-order accurate and differs from (3.4) in
that all component equations use the same initial value en, rather than using the result of the
preceding equation as starting value. As a consequence, the vectors eCi), i = I, ... , 4 can be
computed in parallel. This parallel method becomes attractive on computers where not all
parallel vector processors can be fully exploited for vector-loop computations.

The stability is governed by the variational equation

Aen+l =R(At)Aen,

R(At) := t([I-At Ax]- 1 + []-At Ay]-l +[!-!it Az -!it Nz]- 1

+[I-At aa;ac]- 1). (3.6)

Under mild conditions on the matrices Ax, Ay, Az, Nz, and aa;ae, unconditional stability can
be proved along the same lines as followed in [I4].

210 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

3.2.3. Richardson extrapolation
By applying Richardson extrapolation, the accuracy behaviour of LOD methods can be

improved, and, since Richardson extrapolation is highly parallel, the sequential costs are hardly
increased.

Let us represent the LOD method we want to accurize in the compact form

(3.4')

where the operator L defines the particular method under consideration. Assuming that this
method is first-order accurate, we define the two-point and three-point, local Richardson
extrapolation method by the formulas

en+i = -L(At, en) +2L0M, L(~at, en)), (3.7a)

en+l = H L(At, en)-8L(tAt, L(~At, en))+ 9L(1At, L(tAt, L(tat, en)))}' (3.7b)

respectively. The sequential (or, effective) computational costs of the two-point and three-point
methods are twice and three times the costs of applying the operator L, because all terms
occurring in (3.7) can be computed concurrently. Notice that in the case of (3.7b) there is
almost perfect load balancing on two processors, because the computational costs of computing
the first two terms is roughly equal to that of computing the last term. Although the sequential
(effective) costs per step for (3.7b) are a factor 3/2 higher than those for (3.7a), it is likely that,
as far as accuracy is concerned, (3.7b) allows us to take stepsizes that are much more than a
factor 3/2 larger. We shall refer to {(3.4), (3.7a)} and {(3.4), (3.7b)} as the LOD2 and LOD3
methods, respectively.

We computed numerically the stability region of the LOD2 method and found that the
method is, like the LODl method (3.4), unconditionally stable (assuming that the diffusion
coefficient e is nonnegative and the diagonal matrix aG ;ae has nonpositive diagonal entries).
The LOD3 method was verified to be "almost" unconditionally stable in the sense that
amplifications by factors 1.0001 occur if the eigenvalues of Ax, AY, Az, Nz or aG ;ae approach
certain parts of the imaginary axis.

3.3. Operator splitting methods

LOD methods are based on the excellent stability behaviour of the backward Euler method.
However, we have seen that the RKC method and the RK24 method are potential candidates
if, respectively, diffusion and advection are dominating. This suggests replacing the (dimen
sional) LOD splitting of the right-hand side function by diffusion-advection splitting (operator
splitting), that is, we write

de(t)
dt =A 1(t)C(t) + A 2(t)C(t) + Nz(e(t))e(t) + G(t, e(t)) + B 1(t) + B2(t),

where the matrices A 2 and A 1 are symmetric and skew-symmetric, respectively, and where

. 1

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 211

B i(t) and Bz(t) stem from the contributions of the boundary conditions. Next, we integrate the
fractional equations

dC(t)
d t =Ai (t) C (t) + Nz(C (t)) C (t) + Bi (t) ,

de(t)
dt =A 2(t)e(t) + G(t, C(t)) +B2(t). (3.8)

Again, two versions can be distinguished, viz. the Yanenko-type version and a parallel version.

3.3.1. Yanenko-type method
As in the LOD method of Yanenko, the idea is to integrate the fractional equations (3.8)

sequentially in each step. This yields the first-order accurate method

co) =Li(f).t, en), Cn+i =L 2 (1}.t, eu)), (3.9)

provided that Li and L 2 define integration methods that are at least first-order accurate (cf.

[12]). An efficient method is obtained by tuning the operator L 1 to the special properties of Ai
and Nz, and the operator L 2 to the special properties of A 2 and G. Since the eigenvalues of
Ai and Nz are purely imaginary L 1 should define an integration method that is suitable for
equations whose Jacobian matrices possess imaginary spectra, that is, we should choose a
hyperbolic solver. Likewise, the Jacobian associated with the second equation has real eigenval
ues, so that this equation should be integrated by a parabolic solver.

Suppose that the operators Li and L 2 are respectively defined by the RK.24 method and the
q-stage RKC method of Section 3.1. Then, the stability is determined by the stability conditions

2fi 2q 2

At~ , At~ . (3.10)
p(A1(tn) +NZ(en)) 3p(Az(tn) + aG;ae(tn, en))

By means of the parameter q the step of the RKC method can be tuned to that of RK.24.

3.3.2. Parallel versions
Consider the first-order method

Cn+l = H Li(/).t' Cn) + L2(At' en)],

or the second-order modification

en+i =t(L 1(1}.t, L 2 (D..t, Cn)) +L2 (1}.t, L 1(1}.t, e,,))],

(3.1 la)

(3.llb)

where L 1 and L 2 are defined as before, for example, by suitable stabilized Runge methods.
The method (3.lla) modifies (3.9) in the same way as (3.5) modifies (3.4). Evidently, the
expressions L 1(/).t, e) and L 2(At, en) can be computed in parallel. The stability condition for
(3.11) is identical with (3.10).

3.4. Hopscotch methods

The disadvantage of the LOD-type and fractional stabilized Runge methods is their low
order in time due to the fractioning of the differential equation. An alternative approach is

212 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

again based on operator splitting, but it does not integrate fractions of .equation~ b_ut the full
equation in the subsequent stages. Consider a, for the moment, arbitrary sphttmg of the
right-hand side function F in (2.4):

F(t, e(t)) =A(t, e(t)) +B(t, C(t)). (3.12)

Then we can define a family of second-order splitting methods by writing

Cn+1;2 - tat A(tn+1;2• Cn+1;2) =en+ tat B(tn, en),

Cn+l - tat B(tn+l• en+l) = Cn+l/2 +tat A(tn+l/2• en+1;2)· (3.13)

The stability of these methods can be studied by linearizing the operators A and B to obtain

acn + 1 = R(At)A en'

R (At) == [I - t At B) - l [I + t At A) [I - t At A) - l [I + tat B) . (3.14)

Stability requires the eigenvalues of R(At) within the unit circle, or equivalent, the eigenvalues
of

Thus, the stability is essentially determined by the matrices RiAt) and R8(At).
The most familiar splitting is the so-called Alternating Direction Implicit (ADI) splitting

where the right-hand side function is split according to the spatial dimensions. Unfortunately,
within the family (3.13), the ADI idea can only be applied to two-dimensional problems.
However, possibilities for three-dimensional problems are offered by the odd-even hopscotch
(OEH) splitting, the odd-even line hopscotch (OELH) splitting and nested operator splitting
(for a discussion of hopscotch techniques we refer to [3]).

3.4.1. Odd-even hopscotch splitting
For any vector V, let J-:, denote the vector with zero components at all grid points Pi,k,m

where j + k + m assumes even values, and likewise, let ~ denote the vector with zero
components at all grid points Pi,k,m where j + k + m assumes odd values. Then we may define
the odd-even hopscotch (OEH) method by

A(t, C(t)) ==F0 (t, C(t)), B(t, C(t)) ==Fx(t, C(t)).

On substitution into (3.13), we find that {(3.13), (3.16)} can be represented in the form

Cx,n+1;2 = Cx,n +!At Fx(tn, Cn) = Cx,n + (Cx,n - Cx,n-1;2),

eo,n+1;2 = eo,n +!At Fo(tn+112• Cn+1;2),

eo,n+1 = Co,n+1;2 +!At Fo(tn+112• Cn+1;2) = Co,n+1;2 + (Co,n+1;2 - eo,n),

Cx,n+1 = Cx,n+1;2 +!At Fx(tn+1• Cn+1)·

(3 .16)

(3 .17)

q,

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 213

Since only scalarly implicit relations are to be solved, the OEH method is hardly more
expensive than a one-stage explicit RK method. However, in this case were A and B have zero
rows, we cannot use the local-mode analysis as is the case for LOD methods (see e.g. [16] for a
discussion on the local-mode analysis). Hence, we cannot simply require that the eigenvalues of
RA(llt) and Rillt) are within the unit circle to obtain the stability condition for the OEH
method. A more sophisticated analysis is necessary. For the model problem (2.5), such an
analysis has been carried out in [7]. Since the costs per step of the OEH methods are roughly
equivalent to only one function call, the OEH method may offer an alternative to the RK24
method.

3.4.2. Odd-even line hopscotch splitting
Next, let Ya and Vx denote the vectors with zero components at grid points Pj,k,m where j + k

assumes even and odd values, respectively. As before, we define A and B according to (3.16).
The resulting OELH method can again be represented in the form (3.17). Evidently, the
implicit equations for C o,n + 112 and C x,n + 1 become sets of tridiagonally implicit relations that
can be solved efficiently by using the vectorization-across-the-tridiagonal-solvers technique.

The derivation of the stability condition for the OELH method is possible along the lines of
the OEH analysis given in [7].

3.5. Nested operator splitting based on ADI

Suppose that we define the operators A and B in (3.12) by

A(t, C(t)) ==Ax(t)C(t) +Ay(t)C(t) +Bx(t) +By(t),

B(t' C(t)) ==Az(t)C(t) + Nz(C(t))C(t) + G(t' C(t)) + Bz(t). (3.18)

Since this splitting allows the application of the standard normal mode analysis, we conclude
that we have unconditional stability if the eigenvalues of Ax + AY and A z + Nz + oG ;ac are in
the left halfplane. However, this is only true if the two stages of (3.13) are really solved for
C n + 112 and C n + 1. Let us solve these two stages iteratively by operator splitting to obtain a
.. nested" splitting method. In particular, we may apply ADI iteration. For the first stage, this
yields

cU+l/2>-.!.!ltA c(j+l/2)=C +.!.llt[A c(j)+B(t c)+B +B]
2 x n 2 y n> n x y '

c(j+l)_.!.!ltA c(j+l)=C +.!.llt[A cU+ll2>+B(t c)+B +B]
2 y n 2 x n• n x y ' (3.19a)

where the arrays Ax, AY, Bx and By are assumed to be evaluated at tn+ 112 • The iteration error
of this inner iteration method satisfies the recursion

cu+ 1>-cn+i;z = Q(llt)(cu> _ Cn+ 1;2],

I 2[I]-I [I 1-l Q(!lt)==4(llt) 1--zlltAy Ax l--zD..tAx Ay, (3 .20)

so that we have a comparable situation as in the stability recursion (3.14), that is, we have
convergence if the eigenvalues of the matrix

Q * (ll t) == t (ll t) 2 Ax [I - t ll t Ax j - 1 A y [I - t ll t A y] - 1 (3.21)

214 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

are within the unit disk. Since it is now justified to apply the normal mode analysis, we
conclude that we have unconditional convergence if Ax and A Y have their normal mode
eigenvalues in the left halfplane. Furthermore, the low wavenumber components are quickly
removed from the iteration error for sufficiently small !l.t. However, for the high wavenumber
components, we have Q * (!l.t) = 1, so that these components are hardly damped in the iteration
process. A possible remedy is to use smoothing operators for damping of the highly oscillatory
components. In [13], a detailed analysis on general smoothing techniques is given, and an
extremely cheap implementation on vector computers can be found in [11].

The second stage of (3.13) can be solved in a similar way by splitting B according to (3.18):

cu+ 112) _ lat[A +N 1cu+112)
2 z z

= Cn+1;2 +tilt[A(tn+112• Cn+1;2) + G(tn+l• C<i)) +Bz],

cU+l) - tat G(tn+P cu+ 1>)

= Cn +1; 2 +tilt [A(tn+ 1; 2, Cn+1; 2) + Azcu+ 112) + Nzcu+ 112> + Bz], (3.19b)

where now the arrays Az, Nz, and Bz are evaluated at tn+i· We remark that the matrix Nz in
the first stage of this iteration process can be replaced by N/Cn) without reducing the order of
accuracy. Again, we arrive at the convergence condition requiring that the normal mode
eigenvalues of A z + NZ and ao ;ac should be in the left halfplane.

We remark that one iteration in each of the four stages of {(3.19a), (3.19b)} suffices to
achieve second-order accuracy. The initial iterate in (3.19a) may be defined by Cn and in
(3.19b) by the result of (3.19a). The resulting four-stage nested ADI method (3.19) differs from
the four-stage LOD method (3.4) by the right-hand sides and by the factor tat instead of !l.t in
the left-hand sides.

3. 6. Predictor-corrector methods

The methods reviewed so far are either unconditionally, strongly stable but only first-order in
time, or second-order in time but at best marginally stable. In this section, we introduce
predictor-corrector-type methods that are both second-order in time and unconditionally,
strongly stable. For the corrector we choose the second-order backward differentiation formula
(BDF):

(3.22a)

Let F be split according to (3.12). Then, we iterate this BDF corrector by means of the
iteration scheme

cu+ 112)_latA(t cu+ 112>)=L (c<j))-latA(t cul)
3 n+I• n 3 n+I> ' .

cu+ 1l - lat B(t cu+ 1l) =L (cu+ 112)) - lat B(t cu+ 112>) 1 = o, l,
3 n+l• n 3 n+l• '

(3.22b)

Clearly, if this iteration method converges, then it converges to the second-order corrector
solution, and at the same time, it generates an unconditionally L-stable solution.

. !

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 215

In first approximation, the condition for convergence is obtained by linearization of A and
B. Then, the iteration error satisfies

cU+l) _ Cn+i = Q(At)(CU)- en+i],

Q(At) == ~(At)2 [I- tAt B]- 1 A[I- %At A]- 1 B. (3.23)

Again assuming that the normal mode analysis can be applied, that is, A and B share the same
eigensystem, we conclude that we have unconditional convergence if the normal mode eigenval
ues are in the left halfplane (compare the discussion of (3.20)).

The actual solution of the stages in (3.22) again requires an (inner) iteration process. For
example, if A and B are defined according to (3.18), then the inner iteration method can be
defined as in the nested ADI method described in Section 3.5. We remark that the hopscotch
splittings will not lead to unconditional convergence.

In actual computation, we hope to restrict the computational effort to only a few iterations.
As to the order of accuracy, this is justified, because, assuming that the predictor formula
providing the initial iterate c<0l is at least of zero order, all iterates e(j) with j ~ 1 are already
second-order accurate. However, what about the stability when not iterating to convergence.
We shall consider the stability of (3.22) after one full iteration, that is the stability of
en+ 1 = c<l). Assuming that the operators A and B in the splitting (3.12) are linear, we may
write

ALn(C) == -tAen-t + }Aen + tAt[A +B]AC,

ae<1! 2) = [I - %At Ar 1[ALn(e<0)) - ~At Aae<0l]

= t[I- tAt A]- 1[-Aen-I + 4Aen + 2At BAe<0l),

Aen+l = [J - tAt B]- 1[ALn(e0 12>) - tAt BAc<112>]

=.!.[/-lAtB]- 1(-AC +4AC +2AtAAc0 12l] 3 3 n-1 n ·

Hence,

(3.24)

Let us assume that c<0> is computed by a one-step formula satisfying the variational equation

ac<0l =PAC
n'

where P is a given matrix. Let us assume that A, B and P are Toeplitz matrices and have a
common eigensystem. Then, we may expand Cn in terms of CV, where Vis an eigenvector of
A, B and P with eigenvalues A.(A), A(B) and A.(P), and (n is the corresponding coefficient. On
substitution into (3.24) we obtain the characteristic equation

[3 - 2At A.(A)] [3 - 2!:>.t A.(B)]C 2 - 4[3 + (At)2 A.(ABP)](+ 3 = 0. (3.25)

As an example, we consider the splitting (3.12) in which A corresponds to the diffusion part
and B to the advection part of the equation. Hence, A.(A) and >..(B) are assumed to be real and

216 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

purely imaginary, respectively. Defining x == M A(A), i y := /J,.t A(B) and choosing the "trivial"
prediction C(O) = Cn (i.e., p = /), the characteristic equation reads

[3 - 2 x] [3 - 2i y] ~ 2 - 4 [3 + i xy] ~ + 3 = 0. (3.25')

Applying Schur's theorem (cf., e.g., [4, p. 299]), a straightforward, but tedious, calculation leads
to the conclusion that - for all nonpositive x - the roots ~ of (3.25') satisfy I~ I < 1 (with the
exception of the origin, of course, where we have one characteristic root equal to 1). Since the
eigenvalues of the discretized diffusion operator are negative indeed, we conclude that this
predictor-corrector method with the above splitting is unconditionally stable. Finally, it is of
interest to remark that one characteristic root ~ -7 1 if both x and y tend to infinity. However,
along the axis (x = 0 or y = 0), both characteristic roots tend to zero. Hence, in the case of
purely advection or purely diffusion, this method is L-stable.

3. 7. Summary of characteristics of the time integrators

In Table 1, we summarize the main properties of the various integrators discussed in the
preceding sections.

4. Numerical experiments

To test the most promising methods surveyed in Section 3.7, we take the following example
problem

3c 3(UC) 3(VC) 3(WC) (32 32 32)
-+--+--+--=s -+-+- c+g(t x y z) at ax ay az ax 2 ay 2 az 2 ' ' ' '

0 ~ t ~ T,

(4.la)

with Neumann conditions of the form ac ;an= h(t, x, y, z) on all boundaries of the physical

domain 0 ~ x ~ L x, 0 ~ y ~ LY, - L z ~ z ~ 0. In our experiments, it is convenient to have the
exact solution at our disposal. Therefore, we prescribe the concentration c as

(4.lb)

where Lx =LY= 20,000 [m], L 2 = 100 [m], and y is a (dimensionless) parameter which is set to
1.05. The concentration and the diffusion coefficient (to be specified in the tables of results)
are assumed to be measured in kg/m3 and m2/s, respectively.

We distinguish two cases, referred to as the small-scale problem and the large-scale problem.
In the small-scale problem, the spatial grid is defined by dx = dY = 41, dz = 11, and the fluid
velocities u, v and w are kept constant with values to be specified in the tables of results. This
problem will serve to get insight into the stability behaviour and the effect of the diffusion
coefficient on the performance of the selected methods. In the large-scale problem, the grid

-
B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

Table 1
Characteristics of the time integrators

Method RK24

Formula (3.1)
M condition
Stability
Order of accuracy in time
Effective F(t, C) calls per step
Tridiagonal systems per step

Vectorization aspects
Parallelization aspects
Ease of implementation
Number of arrays a

Method

Formula
6.t condition
Stability
Order of accuracy in time
Effective F(t, C) calls per step
Tridiagonal systems per step

Vectorization aspects
Parallelization aspects
Ease of implementation

conditional
strong
2
2
none

++
++
++
3

LOD2b

{(3.4), (3.7a)}
unconditional
strong
2
2
2(dxdy + dxdz
+ dydz)
++
++

OEH

{(3.13), (3.16)}
conditional
weak
2
1
none

+
+
+
4

LOD3 b

{(3.4), (3.7b)}
unconditional
strong
3
3
3(dxdy + dxdz
+ dydz)
++
++

Number of arrays a 26 27

a Excluding the storage needed to store the velocity field (u, v, w).

OELH

{(3.13), (3.16)}
conditional
weak
2
1
dxdy

+
+
+/-
6.5

Nested ADI

(3.19)
unconditional
weak
2
2
dxdy + dxdz
+ dydz
++
+

13

LODI

(3.4)
unconditional
strong
1
1
dxdy + dxdz
+ dydz
++
++

13

BDF-ADI

(3.22)
unconditional
strong
2
;;;. 2
dxdy + dxdz
+ dydz
++
+

14

217

b For the LOD2 and LOD3 methods it is assumed that the terms in (3.7a) and (3.7b) are computed concurrently.
Implementing these methods sequentially would reduce the required number of arrays to 14 and 15, respectively.
However, in that case, the number of effective F-calls and tridiagonal systems per step should be multiplied by a
factor 1.5 for the LOD2 method, and by a factor 2 for the LOD3 method.

parameters are given by dx = dY = 101 and dz = 11, amounting to 105 grid points. The velocity
fields are prescribed by the analytical expressions

u(t, x, y, z) =C1 sin(:x + ;J sin(/3 :Jf(t),

v(t, x, y, z) = C2 cos(:x + ;J sin(/3 :Jf(t), (4.2)

w(t, x, y, z) = - - cos - + - + - sin - + - - - cos f3 - f (t), [C1 (x y) C2 (x y)][Lz (z)]
Lx Lx Ly Ly Lx Ly f3 Lz

with f(t) = cos(t/T) and C1 =3, C2 = 4, f3 = 0.05. These fluid velocities satisfy the relation for
local mass balance, i.e.,

au av aw
-+-+-=0. ax ay az

•

218 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

Table 2
Global errors for the small-scale problem with e = 0

Case u=v w T M Mu/dx dtw/dz OELH LOD3 LOD2 LODI RK24

I 1000 100 0.2 10 0.011 0.011 0.084 4.1 *
50 0.1 5 0.0085 0.0085 0.022 2.1 *
25 0.04 2 0.0077 0.0079 0.0062 0.84 0.0071

II 10 1 2000 50 1.0 5 0.021 0.022 0.024 5.7 *
11 1 2000 50 1.1 5 * 0.020 0.023 5.6 *

III 1 5 2000 50 0.1 25 0.078 0.096 0.43 * *
4000 50 0.1 25 0.16 0.17 0.52 * *

10 4000 50 0.1 50 0.31 0.32 2.3 * *
20 4000 50 0.1 100 0.62 0.62 9.7 * *

IV 0.5 2000 50 0.1 2.5 0.0080 0.0076
4000 50 0.1 2.5 0.016 0.016
8000 50 0.1 2.5 0.033 0.033

3 0.5 2000 50 0.3 2.5 0.0083 0.0078
4000 50 0.3 2.5 0.019 1.54
8000 50 0.3 2.5 0.036 *

The computational complexity of this test problem is substantial and resembles that of the
large-scale problems occurring in realistic situations.

In both test problems, the source function g in (4.la) and the function h defining the
boundary conditions follow from the exact solution (4.lb).

4.1. Stability tests in the pure advection case

Since a vanishing diffusion coefficient yields the most stringent case as far as stability is
concerned and the most difficult case with respect to accuracy, we will first give results for
e = 0. Table 2 lists the global errors (with respect to the PDE solution (4.lb)) for various
methods when applied to the small-scale problem for different values of the fluid velocities.

From this table we see that all LOD methods behave stably, independent of the values of the
fluid velocities and the size of the time step. It is clear, however, that the first-order LOD
method is not sufficiently accurate.

From the results given in the cases II and III the stability constraints for the OELH method
are also clear: since this method is implicit in the vertical, large values for ..dt I w I/ Az do not
cause any stability problems. We might say that the OELH method is "unconditionally stable in
the vertical" (cf. case III). This is in sharp contrast with its behaviour in the horizontal; here we
meet the constraint At max(I u I/ Ax, Iv I/ Ay) ~ 1 (see case II; an * denotes an unacceptable
performance). However, in many practical situations this condition on the time step is not a
very severe restriction. Moreover, if the OELH method behaves stably, then it is very accurate;
the errors are similar to those of LOD3, but OELH is much cheaper per step.

The stability behaviour of RK24 nicely obeys the theoretical considerations discussed in
Section 3.1. The experiments given in case IV show that RK24 behaves unstably as soon as
At(lu I I Ax+ Iv I I Ay + I w I/ Az) gets larger than 2{2. Note that, with respect to the horizon
tal spatial discretization this condition is less restrictive than that of OELH; however, since the

1
c
-c
-
I

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 219

Table 3
Global errors for the small scale problem with e = 0.5

Case u=v w T t:.t t:.t u I ta Iltw/6.z OELH LOD3 LOD2 LOD2 RK.24

1 1 1000 100 0.2 10 0.00086 0.0048 0.037 0.37 *
50 0.1 5 0.00072 0.0025 0.017 0.18 *
25 0.04 2 0.00067 0.00074 0.0042 0.073 0.0071

II 10 1 2000 50 1.0 5 0.00067 0.0026 0.018 0.18 *
11 1 2000 50 1.1 5 * 0.0026 0.018 0.18 *

III 1 5 2000 50 0.1 25 0.0017 0.032 0.20 2.5 *
4000 50 0.1 25 0.0016 0.032 0.20 2.5 *

1 10 4000 50 0.1 50 0.0029 0.091 0.75 9.2 *
1 20 4000 50 0.1 100 0.0055 0.32 3.00 35.1 *

IV 1 0.5 8000 50 0.1 2.5 0.00067 0.00067
3 0.5 8000 so 0.3 2.5 0.00067 0.00067
5 0.5 8000 50 0.5 2.5 0.00070 *

most stringent stability condition is usually imposed by the vertical spatial discretization, OELH
is to be preferred.

4.2. The effect of diffusion on stability and accuracy

Next we illustrate the effect of adding diffusion in the model problem. Its influence on the
stability is quite small (with the current values of Ax, Ay and Az), but the effect on the
accuracy is significant (see Table 3).

Again, the accuracy of the LODl method is not satisfactory, for the LOD2 method it is
acceptable, and the extension to the third-order variant is worth the extra effort. The OELH -
whenever stable - yields a much better accuracy. The same is true for the RK24 method, but
this method is subject to a very stringent stepsize restriction. We remark that, due to stability
conditions, the errors obtained by OELH and RK.24 are dominated by the spatial discretization
error, whereas the accuracies produced by the LOD methods still contain a substantial
contribution from the time integration. Furthermore, for RK24 we observe the small stabilizing
effect of a nonvanishing diffusion, which is in correspondence with the well known shape of its
stability region.

4.3. The large-scale problem

In Table 4 we give the results of a selected number of time integration techniques when
applied to the large-scale problem {(4.1), (4.2)} with e = 0.5 and T = 10,000.

For this problem the spatial discretization error is given by 0.00064. Table 4 shows that the
errors of all methods converge to this value for At--+ 0. However it is clear that the OELH is
the most accurate time integration process, since already for t::..t as large as 500, the time
integration error is almost negligible compared to the spatial error. Again we observe that the
first-order LODl method (and to some extent the second-order variant as well) needs very
small time steps to let the temporal error be of the same order as the spatial error. If the RK24

220 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

Table 4
Global errors for the large-scale problem {(4.1), (4.2)} with e = 0.5 and T = 10,000

No. steps ilt OELH LOD3 LOD2 LODl RK.24

10 1000 0.00089 0.13 0.50 1.81 *
20 500 0.00069 0.030 0.15 0.65 *
40 250 0.00065 0.0062 0.044 0.27 *
80 125 0.00064 0.0013 0.012 0.12 *

160 62.5 0.00063 0.0033 0.056 0.00064
320 31.2 0.00064 0.00093 0.027 0.00064
640 15.6 0.00062 0.013

1280 7.8 0.0068

method is stable, then its accuracy is sufficient, however a stable behaviour requires a (too)
small time step. Again, the use of smoothing techniques may be helpful in such situations (see
[11,13,18]).

In conclusion, for this problem, the OELH method is by far superior, especially if we take
into account the required computational effort per step.

5. lmplementational aspects

In Section 4 we have discussed several experiments in which we focused on the numerical
properties of the various methods (viz., stability and accuracy). The major aim of these tests was
to select an appropriate time integration technique, of course, also taking into account the
parallelization/vectorization properties that the particular methods possess (cf. Table 1). The
actual implementation of the integrator on a CRAY-type machine is described in [6].

From the results presented in Section 4, we draw the conclusion that an implicit method is
most suitable to perform the time integration. Within this class of methods, the OELH and
LOD3 method seem to be very promising candidates. A common feature of both methods is
that they spend most of their time in solving the tridiagonal systems. We recall that the LOD
method has to solve such systems in all three spatial directions, whereas the OELH method is
only implicit in the vertical direction, requiring the solution of dxdy systems of dimension dz.
Therefore, an efficient implementation of this part of the solution process is of crucial
importance and will be discussed in the next subsections.

5.1. Vectorization-across-tridiagonal-systems

Here we will give a brief outline of the vectorization-across-tridiagonal-systems approach;
details can be found in [6].

Both the LOD and OELH integrator give rise to the frequent solution of tridiagonal systems
of the form

Tx=b, (5.la)

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

where T is a block-tridiagonal matrix of the special form

T=l-!ltl,

221

(5.lb)

I being the identity matrix and J denoting the Jacobian matrix resulting from solving the
implicit relation using Newton's method.

Due to the special properties of both time integration techniques, (5.1) represents a large
number of uncoupled tridiagonal systems (cf. Table 1 for details). A straightforward approach
to solve N uncoupled systems, each of dimension d, would be

ALGl.

for i = 1 until N
factorize each of the d X d blocks into LU
and solve the corresponding LUx = b.

Although this i-loop is perfectly parallelizable, the recursive nature of the body of this loop
prevents vectorization and hence ALGl will result in a bad performance on (shared memory)
vector machines.

A great improvement can be obtained by interchanging the loops [2, p. 156]:

ALG2.

for j = 1 until d

perform for each of the N systems the required

calculations in the factorization and

forward substitution process.

for j = d until 1 with step - 1

perform for each of the N systems the

backward substitution process.

Now, the bodies of these loops, which involve vectors of length N, are very well suited for
vectorization. Since usually N » d, we may expect a good performance. Algorithm ALG2 has
been implemented on the CRAY YMP4 and the results (both for scalar mode and vector
mode) are given in Table 5. In this table we list the CPU time and the associated Mflop rate for
a tridiagonal system corresponding to a physical domain with d x = d Y = 101 and d z = 11 (cf. the
large-scale problem discussed in Section 4).

Table 5
CPU times (in milli-seconds) and Mflop rates on a CRAY YMP4, using 1 processor

Scalar mode Vector mode Speed up

CPU Mflops CPU Mflops

102.0 17.1 8.9 197.5 11.5

222 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

In our implementation the tridiagonal matrix J is provided by means of three arrays, housing
the lower-, main- and upper diagonal elements, respectively. Each of these arrays has three
subscripts, two of these correspond to a particular point in the plane and the third one runs
along the elements of the particular system. As a consequence, the ordering of these subscripts
has a serious impact on the performance (recall that LOD-type methods have to solve systems
in all three spatial directions). Therefore, special provisions have been made to cope with this
difficulty, resulting in an almost constant performance, independent of the particular ordering;
full details of these provisions are discussed in [6], where the performance of the total solution
process on a CRAY machine is described.

When comparing the results for scalar and vector mode, we observe a speedup of 11.5, which
is in good agreement with what is expected for the CRAY YMP4 (cf. CF77 Compiling System:
Fortran Reference Manual). To appreciate the obtained Mflop rates, we remark that the peak
performance for this configuration (with one processor) is about 330 Mflops. Note however,
that this number is based on the ideal situation: infinite loops in which the arithmetic
operations can be combined to so-called "linked triads" (giving a speedup with a factor 2).
However, in the current algorithm this facility can only partly be utilized. Taking this into
account, the given Mflop rates indicate that the vectorization-across-tridiagonal-systems ap
proach performs quite efficiently.

5.2. Further refinements

To reduce storage requirements, our tridiagonal solver TRIDIA overwrites the matrix J with
the decomposition of I - t:.t J. However, in a realistic implementation of a time integration
process the time step will change, due to error control. For such situations TRIDIA has an
option to reconstruct the matrix J from the stored decomposition of I - /1t01 ct J, decompose
I - /1tnew J, and solve the system. Apparently, this call of TRIDIA (which will be referred to as
"callnewsre/) is more expensive than the standard call ("callstanctarct") with only decomposition
and solution. Therefore, the user should only resort to this possibility when it would be more
expensive (or not at all possible) to keep copies of the original matrix J. Note that if J has
changed, the only feasible way to call TRIDIA is using the "standard" option. Finally, we
provided TRIDIA with a third option, which can be used when both 11t and J remain
unchanged. In this case the LU-decomposition part of the algorithm can be skipped and only
the forward/backward substitutions are needed to find the solution. This option is denoted by
"call save". In Table 6, we present results of the tests on the CRAY YMP4. This table shows that

Table 6
CPU times (in milli-seconds) and Mflop rates on a CRAY YMP4 (using 1 processor) for various options

Option Scalar mode Vector mode Speedup

CPU Mflops CPU Mflops

call standard 102.0 17.1 8.9 197.5 11.5
call save 58.7 9.3 3.7 147.9 15.9
call newstep 184.0 16.2 16.5 180.0 11.2

~--~~~~---
!
I

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 223

we obtain a satisfactory speedup, also for the nonstandard options (notice that the results of
Table 5 are reproduced with the label callstandard).

6. Summary and future research

In this paper we have discussed several possible time integration techniques for the efficient
solution of a transport model in three spatial dimensions. The first class of methods considered
are the stabilized Runge-Kutta (RK) methods. Since these integration schemes are explicit,
they allow for a straightforward and efficient implementation on vector machines. In spite of
the fact that these RK methods are especially tuned to the transport problem, in the sense that
they have been given optimal stability properties, they have to obey a stepsize condition which
is still rather restrictive. For that reason, we have also considered implicit methods; although
the stability behaviour of such methods is usually appropriate for the present application, the
resulting systems of equations that have to be solved in each time step give rise to a serious
obstacle. To reduce the amount of linear algebra involved, we restricted our consideration to
splitting methods (both operator splitting and dimension splitting). A common feature of these
methods is that implicit relations have to be solved with at most a three-point coupling. The
standard approach to solve "tridiagonal" systems is recursive in nature, and therefore inappro
priate for vector machines. Following a technique, initially proposed by Golub and Van Loan
[2], it is possible to enhance the performance of this part of the algorithm by approximately a
factor 12. Owing to this technique, the amount of linear algebra is reduced to such an extent
that the implicitness in these "tridiagonally" implicit methods is feasible.

We started our survey with the locally one-dimensional (LOD) methods. In spite of their
excellent stability properties, the accuracy of these methods is unacceptably low (since they are
only first-order accurate in time). Therefore, we considered the remedy of Richardson extrapo
lation, resulting in second- and third-order methods. These methods possess (almost) the same
good stability properties as the first-order LOD method, show an increased accuracy indeed,
but are very expensive per step and moreover, they require an enormous amount of storage.

Next, we considered methods based on operator splitting, which means that the terms in the
right-hand-side function originating from the advection and from the diffusion are separated.
Choosing suitable integrators for each of these "fractional equations" may lead to efficient
solvers.

The following class of methods considered are the so-called hopscotch methods. In particu
lar, the odd-even line hopscotch (OELH) variant seems to be very attractive, since this method
is only implicit in the vertical direction. This property is sufficient to maintain overall stability,
since, in the present application, the most restrictive condition on the time step is imposed by
the discretization in the vertical direction.

Subsequently, nested operator splitting methods based on ADI are discussed, and finally, we
analyse a predictor-corrector approach based on a second-order backward differentiation
formula (BDF) as corrector (to achieve the required accuracy and stability). This BDF is solved
by an iteration process in which we employ (nested) operator splitting to reduce the implicit
ness.

224 B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225

All the aforementioned methods were evaluated with respect to their numerical properties
and their suitability for efficient implementation on vector/ parallel machines. From this
evaluation we concluded that the stabilized RK methods, the LOD-type methods and the
OELH scheme are the most promising. These schemes were applied to a large-scale test
example and their (numerical) behaviour was examined. From this comparison we concluded
that the OELH method seems to be the most efficient technique for the present application
since it possesses sufficient accuracy and stability, the storage requirements are quite low, and
the vectorization and parallelization capabilities are almost optimal for a CRAY-type machine.
Here we remark that an extensive performance evaluation of the RK methods and the OELH
method can be found in [6]. The conclusion in that paper is that both types of methods
vectorize extremely well, but that the OELH method is to be preferred because of its better
numerical (viz. stability) properties.

Finally, we remark that the OELH method described in the present paper is only feasible in
the case that a three-point stencil is used for the discretization of the spatial differential
operators (e.g., symmetric, second-order differences). It is well known, however, that symmetric
differences are all right for smooth solutions, but usually lead to so-called "wiggles" whenever
the solution has large spatial gradients. These wiggles may easily lead to negative concentra
tions, which is disastrous when we add chemical terms to the model. In such situations, upwind
discretizations are much more appropriate. However, third-order upwinding will lead, in
general, to a five-point coupling in each spatial direction. This has two consequences: (i) to be
able to exploit the underlying idea of the hopscotch splitting (i.e., uncoupling in the horizontal),
the grid points in each horizontal plane have to be divided into three subsets; a next step is the
construction of a splitting method (based on a splitting of the right-hand side function into
three corresponding functions), which possesses the proper numerical characteristics; and (ii)
the technique of "vectorization-across-the-tridiagonal-systems" should be extended to "vectori
zation-across-the-fivediagonal-systems". The last aspect is relatively easy; the construction of a
new splitting method is certainly not trivial and is subject of present research.

Acknowledgement

The authors are grateful to the referee for carefully reading the manuscript and for the many
valuable suggestions for improvement.

References

[l] E.D. de Goede, Numerical methods for the three-dimensional shallow water equations on supercomputers,
Thesis, University of Amsterdam (1992).

[2] G.H. Golub and C.F. Van Loan, Matrix Computations (The Johns Hopkins Press, Baltimore, MD, 2nd ed.,
1989).

[3] A.R. Gourlay, Hopscotch: a fast second order partial differential equation solver, J. Inst. Math. Appl. 6 (1970)
375-390.

[4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations JI: Stiff and Differential-Algebraic Problems,
Springer Series in Computational Mathematics 14 (Springer, Berlin, 1989).

B.P. Sommeijer et al./ Applied Numerical Mathematics 16 (1994) 201-225 225

[5] W.H. Hundsdorfer and R.A. Trompert, Method of lines and direct discretization - a comparison for linear
advection, Report NM-R9314, CWI, Amsterdam (1993).

[6] B.P. Sommeijer and J. Kok, Implementation and performance of the time integration of a 3D numerical
transport model, Report NM-R9402, CWI, Amsterdam (1994); also: lnternat. J. Numer. Meth. Fluids (to
appear).

[7] J.H.M. ten Thije Boonkkamp and J.G. Verwer, On the odd-even hopscotch scheme for the numerical
integration of time-dependent partial differential equations, Appl. Numer. Math. 3 (1988) 183-193.

[8] M. Toro, L.C. van Rijn and K. Meijer, Three-dimensional modelling of sand and mud transport in currents and
waves, Technical Report No. H461, Delft Hydraulics, Delft, Netherlands (1989).

[9] P.J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-Holland Series in
Applied Mathematics and Mechanics 19 (North-Holland, Amsterdam, 1977).

[10] P.J. van der Houwen and B.P. Sommeijer, On the internal stability of explicit, m-stage Runge-Kutta methods
for large m-values, Z. Angew. Math. Mech. 60 (1980) 479-485.

[11] P.J. van der Houwen and B.P. Sommeijer, Improving the stability of predictor-corrector methods by residue
smoothing, IMA J. Numer. Anal. 9 (1990) 371-378.

[12] P.J. van der Houwen and B.P. Sommeijer, Fractional Runge-Kutta methods with application to convection
diffusion equations, Impact Comput. Sci. Engrg. 4 (1992) 195-216.

[13] P.J. van der Houwen, B.P. Sommeijer and F.W. Wubs, Analysis of smoothing operators in the solution of partial
differential equations by explicit difference schemes, Appl. Numer. Math. 6 (1989) 501-521.

[14] J.G. Verwer, Contractivity of locally one-dimensional splitting methods, Numer. Math. 44 (1984) 247-259.
[15] J.G. Verwer, W.H. Hundsdorfer and B.P. Sommeijer, Convergence properties of the Runge-Kutta-Chebyshev

method, Numer. Math. 57 (1990) 157-178.
[16] R. Vichnevetsky and J.B. Bowles, Fourier Analysis of Numerical Approximations of Hyperbolic Equations (SIAM,

Philadelphia, PA, 1982).
[17] C.B. Vreugdenhil and B. Koren, eds., Numerical Methods for Advection-Diffusion Problems, Notes on Numerical

Fluid Mechanics 45 (Vieweg, Braunschweig, 1993).
[18] F.W. Wubs, Numerical solution of the shallow-water equations, Thesis, University of Amsterdam (1987).
[19] N.N. Yanenko, The Method of Fractional Steps (Springer-Verlag, Berlin, 1971).

Note added in proof

A thorough stability analysis of the OELH method can be found in: J.G. Verwer and B.P.
Sommeijer, Stability analysis of an odd-even-line hopscotch method for three-dimensional
advection-diffusion problems, Report NM-R9422, CWI, Amsterdam (1994).

