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A TRIANGLE INEQUALITY FOR COVARIANCES OF BINARY FKG 
RANDOM VARIABLES1 

BY J. VAN DEN BERG AND A. GANDOLFI 

CWI and Universita di Roma Tor Vergata 

For binary random variables a 1, a2, ... , an that satisfy the well-known 
FKG condition, we show that the variances and covariances satisfy 

1 ::: i, j, k :'."' n. 

This generalizes and improves a result by Graham for ferromagnetic 
Ising models with nonnegative external fields. 

1. Introduction. In several fields, especially statistical mechanics, prob­
lems of the following type frequently occur: a stationary sequence o-o, 0-1, ... 

of binary-valued random variables is given, and one is interested in the exis­
tence of the limit, as n --? oo, of ( -1/n) log Cov( O"o, a-n ). (The inverse of such 
a limit is called correlation length.) For instance, each O"i could be the spin at 
the vertex (i,O,. .. ,0) of ad-dimensional Ising ferromagnet. 

In this type of situation inequalities of the form Cov( o-;, o-k) :::=: Cov( o-;, o-i) 
Cov( a-i, O" k) are useful, since they imply subadditivity and hence [if 
Cov(o-o, o-1 ) i= O] existence of the limit mentioned above. More sophisti­
cated examples of the usefulness of such inequalities, in combination with 
subadditive ergodic theorems, are given by van Enter and van Hemmen 
(1983). 

For ferromagnetic Ising models with all external fields having the same 
sign, the inequality mentioned above has been proved by Graham(1982). We 
show that Graham's result holds for a much larger class of probability distri­
butions. In particular, in the case of Ising ferromagnets, it holds for arbitrary 
external fields. 

Before we state our results, we need some preliminaries. 

DEFINITION 1. Let 0-1, 0"2, ... , o-n be binary random variables. The word 
"binary" here means that each O" i can take only two possible values, denoted by 
ai and b;. Let n denote the product space {a1, bi} x {a2,b2} x · · · x {an, bn}, and 
letµ be the distribution of (0"1, ... , O"n). We say that the collection 0-1, ... , O-n 

satisfies the FKG condition [see Fortuin, Kasteleyn and Ginibre (1971)] if, for 
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µ,(a/\ /3)µ,(a v /3):;:: µ(a)µ({3). 
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Here a/\ {3 is given by (a/\ f3)i = min(ai, f3d and a v /3 is given by (a v /3>i = 
max(ai,/3d, i = l, ... ,n. 

REMARKS. (a) It is well known that if the collection u1, ... , u n satisfies the 
FKG condition, then every subcollection also satisfies that condition. 

(b) The same remark as above holds for the conditional distribution of a 
subcollection, given the values of the others. More precisely, if the collection 
a 1, ... , an satisfies the FKG condition, then for all J c { 1, ... , n} and all 
a E TiieJ {ai,bd, the conditional distribution of the collection <Ti, i ~ J, given 
the event (uj = aj, j E J), satisfies the FKG condition. 

By the FKG theorem we mean the result by Fortuin, Kasteleyn and Ginibre 
(1971), that if µ satisfies the FKG condition, then for all increasing functions 
f and g on n, 

(2) E(fg):;:: E(f)E(g). 

Here E denotes expectation with respect to µ,, and a function f is called 
increasing if f(a):;:: {({3) whenever ai:;:: f3i for all i. 

REMARKS. (i) In particular, the inequality (2) implies that for all 1 ::: i, 
j :::: n, Cov( u i, u j) ::: 0. This special case of the FKG theorem can also be 
proved more directly from the definition quite easily. 

(ii) The FKG theorem is widely used in statistical mechanics. For a different 
kind of application, to certain replacement algorithms in computer storage 
problems, see van den Berg and Gandolfi (1992). 

2. Results. Our main result, Theorem 1 below, follows quite easily from 
the following identity, which holds for any triple of binary random variables. 

PROPOSITION 1. Let X, Y, Z be binary random variables. Then 

[Var(Y) Cov(X, Z) -Cov(X, Y) Cov(Y, Z)] 

(3) 
x [p Var+(X) + (1- p)Var-(X)] 

= [p Cov+(x, Z) + (1- p) Cov-(X, Z)] 

x [Var(X)Var(Y) - Cov2(X, Y)]. 

Here Cov+ and Var+ (Cov- and Var-) denote covariance and variance with 
respect to the conditional distribution given Y takes the maximal (minimal) 
of its two possible values, and p is the probability that Y takes its maximal 
value. 

··1 
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PROOF. If we increase the two possible values of Y by the same amount, 
nothing changes in (3). If we multiply them by the same factor, both sides 
of (3) are multiplied by the square of that factor. Therefore, it is clear that, 
without loss of generality, we may assume that the two possible values of Y 
are 0 and l. Now letµ,+ andµ,- be the conditional distribution given Y takes 
the value 1 and 0, respectively. Express everything in (3) in the obvious way 
in terms of p and expectations with respect toµ,+ andµ,-. For instance, 

Var(Y) = p(l - p),Cov(X, Z) = E(XZ) - E(X)E(Z) 

= pE+(XZ) + (1- p)E-(XZ) - (pE+(X) + (1- p)E-(X)) 

x (pE+(Z) + (1- p)E-(Z)),Cov(Y, Z) = E(YZ) - E(Y)E(Z) 

= pE+(Z) - p(pE+(Z) + (1- p)E-(Z)). 

Then work out the multiplications so that both sides of (3) become sums of 
products of factors p, 1- p, E"(X), E 0 (Z) and E 0 (XZ), where· stands for+ 
or -. Then it appears that the 1.h.s. and r.h.s. of (3) are indeed equal. D 

REMARK. The above proof, although quite laborious, is straightforward. 
Of course, proving a given identity and obtaining that identity are different 
things. The above proof gives no insight at all as to how the identity was 
found. The following sketch does show how it was obtained. It is not meant 
as an alternative proof of the identity (we skip several details, like existence 
of inverse functions and differentiability), but only to show what leads one to 
guess it. 

Denote the distribution of (X, Y, Z) byµ,. Now define, for h = (h1, h2, hs) E 

R3, a new probability distribution /1-h on the same probability space, by 

( ) exp(h1x + h2y + h3z)µ,(x, y, z) 
f..Lh x, y,z = N ' 

where N (which depends, of course, on h) is a normalizing constant. Such 
an operation is very natural in the context ofising models, where the h;'s are 
interpreted as (changes in) the external magnetic fields. We will use properties 
of the partial derivatives w.r.t. the h;'s like 

(4) 

where Eh and Covh denote expectation and covariance with respect to /1-h· 

Now suppose that we start with h1 = h2 = hs = 0 and then change hs, 
but adapt h1 and h2 simultaneously so that the expectations of X and Y 
do not change. Then h1 and h2 can be regarded as functions of hs and one 
may ask what the derivatives hJ. and h2 of these functions (at hs = 0) are. 
The calculation of these derivatives can be done in the following two different 
ways. In the first way, the requirement that the expectations of X and Y 
remain constant leads [after differentiation and using properties like (4)] to 
two linear equations in hJ. and h2. Solving these gives an expression for hJ. 
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equal to -1 times the first factor in the l.h.s. of (3J divided by the second factor 
in the r.h.s. Alternatively, in the second way, we can write 

E1i(X) = p Et( X) + (1- plEj,( X). 

Since, by construction, (d/dh3)p, (d/dh 3 )E,,(X), (rl/oh·2JE"f,(X) and 
(;;I r!h2) Eh ( X) are 0, we now get, after differentiation, one linear equation, 
in h~ only. The solution of this equation is -1 times the first factor in the 
r.h.s. of (3) divided by the second factor in the l.h.s. The equality of the two 
solutions yields the identity. 

Proposition 1 gives the following theorem: 

THEOREM 1. Let 0-1, ... , CTn be a collection of binary random variables sat­
isfying the FKG condition. Then, for any 1 ::: i, j, k ::: n, 

(5) Var( O"j) Cov( (J";, if h) :::: Cov( o-;, if J) Cov(o-j, <Th). 

PROOF. By the same reasons as in the proof of Proposition 1 above, we 
may assume, without loss of generality, that each o-; takes the value 0 or 1. 
Fix i, j and k and denote if;, <r J and if 11 by X, Y and Z, respectively. Then 
the triple ( X, Y, Z) satisfies the FKG condition [see part (a) of the Remark 
after Definition 1]. We may assume that each of X, Y and Z is non-degenerate 
[otherwise both sides of (5) are OJ. By Proposition 1, identity (3l holds. If both 
Var+(X) and Var-(X) are 0, then X is apparently "determined" by Y, so 
P( X = Y) = 1 or P( X = 1 - Y) = 1. It is easy to see that the latter implies 
that Cov( X, Y) is negative and hence is in conflict with the FKG condition, so 
P( X = Y) = 1. However, then both sides of (5) are clearly equal. Concluding, 
we may assume that the second factor in the 1.h.s. of (3) is strictly positive. 
Now we turn to the r.h.s. of (3J: the second factor is nonnegative by Cauchy­
Schwarz, and the first factor is nonnegative by FKG [see Remarks (al and (b) 
after Definition 1 and Remark (i) at the end of Section 1]. Hence the result 
follows. D 

REMARK. It appears from the above proof that the FKG condition is 
stronger than we really need. Sufficient as that is, if we fix the value of one 
of the cr/s, the other random variables have nonnegative covariances (w.r.t. 
the conditional distribution). However, the well-known property of 0-1, ... , cr12 
being associated is not sufficient in general [µ is associated if it satisfies 
(2) for all increasing f and g (i.e., if it satisfies the consequence of the FKG 
theorem)]. For instance, let Y1, Y2, Ya, Y4 be i.i.d. {O, 1}-valued random 
variables with P(Y 1 =0) = P(Y1=1) = 1/2. Define X1 = Y1Y2, X2 = Y2Y3 
and X 3 = Y 3 Y 4 . Since ( Y 1, Y 2, Y 3 , Y,i) satifies the FKG condition, it is 
associated. Hence, since each X; is an increasing function of (Yi, Y 2, Ys, Y 4 ), 
(X 1,X2,X3 ) is also associated. However, (5) [with (u;,crJ,O"k) replaced by 
(X1,X2,X3)] does not hold, because Cov(X1,X3) = 0, while Cov(X1,X2) 
and Cov( X 2, X 3) are strictly positive. 
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COROLLARY 1. Let (0-1, ... , an) be a ferromagnetic Ising system with inter-
actions Ji,J 2: 0, 1 s i < j s n, and external fields hi, ... , hn· For those not 
familiar with Ising models, the above just means that <T1, ... , <T n are { -1, + 1 }-
valued random variables and their mutual distribution is given by 

( ) exp (I:1::::i<J::::n Ji,JlTWJ +Li hwi) 
µ, a1, ... , an = Z , 

with Z a normalizing constant. Our result is that then, for 1 s i, j, k s n, 

(6) Var( u J) Cov(<T i, <T k) 2: Cov( D"i, <T j) Cov( <T j, a k ). 

PROOF. It is well known md easy to check thatµ, satisfies the FKG con­
dition. Hence, the result follows immediately from Theorem 1. 

REMARK. The special case of Corollary 1, where all his have the same sign, 
was proved by Graham [see Theorem 1 of Graham (1982)]. In fact his inequal­
ity is a little weaker since it does not have the factor Var(aj) (which is at 
most 1) in the l.h.s. His method is Ising-model specific. The main consequence 
of Corollary 1 is that Graham's condition (that all fields have the same sign) 
can be dropped. 
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