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Preface

Mathematics is an indispensable tool for many different disciplines in science,
such as, physics, chemistry, biology, weather forecasting, and finance. It is
needed to solve challenging problems arising from those areas. It points out
how and why a specific particle would move in space and time; how the reaction
between particles would be at a particular time; which species would be the
winner in a biological competition; how the weather would be in the next few
days; how tomorrow stocks would look like; et cetera. To obtain predictions, first
a mathematical model is formulated, based on natural properties of the system.
Then, this model is solved by accurate and fast numerical methods. This can be
done efficiently by means of computer simulation. When modeling and solving
the problems as well as explaining phenomena, analytical manipulations are
always involved.

This is exactly what we are doing in the Modeling, Analysis, and Simulation
(MAS) department at CWI. This thesis joins in as part of the department,
particularly, in the subtheme ‘PDEs in the Life Sciences’. The application of this
thesis is a problem arising from biology, which is, the dynamics of phytoplankton
modelled by an integro-partial differential equation. Solving partial differential
equations (PDEs) in general, and the phytoplankton problem in particular, by
analytical tools is very difficult (even impossible). Thus, we solve it numerically.
The main aim of the thesis is to construct, analyze and test efficient algorithms
for the numerical solution of the phytoplankton problem.

The thesis consists of six chapters preceded by an introduction and followed
by a summary. The chapters are based on published and submitted papers.
Details are listed below:

1. Chapter 1 is based on the paper by N.N. Pham Thi, J. Huisman, and
B.P. Sommeijer, entitled Simulation of three-dimensional phytoplankton
dynamics: competition in light-limited environments, published in Journal
of Computational and Applied Mathematics 174, pages 57-77, 2005.

2. Chapter 2 is based on the paper by N.N. Pham Thi, entitled On posi-
tive solutions in a phytoplankton-nutrient model, published in Journal of
Computational and Applied Mathematics 177, pages 467-473, 2005.

3. Chapter 3 is based on the paper, Positivity for explicit two-step methods
in linear multistep and one-leg form, by N.N. Pham Thi, W. Hundsdorfer,
and B.P. Sommeijer, accepted for publication in BIT.

4. Chapter 4 is joint work with B.P. Sommeijer on Implicit-Explicit methods.
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5. Chapter 5 is based on the paper by J. Huisman, N.N. Pham Thi, D.M. Karl,
and B.P. Sommeijer, entitled Reduced mizing generates oscillations and
chaos in the oceanic deep chlorophyll mazimum, published in Nature 439,
pages 322-325, 2006.

6. Chapter 6 is entitled Analysis of phytoplankton blooming, a joint work
with A. Zagaris, A. Doelman, and B.P. Sommeijer on analysis of the
results obtained in Chapter 5, to be submitted.

The introductory chapter is meant to help unspecialized readers to understand
the motivation as well as the flow of the whole thesis. The summary will sum-
marize the conclusions that we have pointed out in the thesis.

Pham Thi Nguyét Nga
Amsterdam, November 2006



Introduction

Lakes, seas, and oceans are inhabited by large numbers of free-floating microor-
ganisms called phytoplankton. Like grass, trees and other plants, phytoplankton
utilize solar energy and carbon dioxide to produce biomass, in a process known
as photosynthesis. Phytoplankton photosynthesis forms the basis for nearly
all aquatic food webs, and thereby has a major impact on the productivity of
aquatic ecosystems. Furthermore, because phytoplankton absorb carbon diox-
ide during photosynthesis, on a global scale phytoplankton remove nearly as
much of the greenhouse gas COs from the atmosphere as all land plants do. As
a result, phytoplankton plays a significant role in scenarios on climate change.
For these reasons, studies of the growth and population dynamics of phyto-
plankton is of great interest. These processes are mathematically modelled
by integro-partial differential equations (integro-PDEs) of advection-diffusion-
reaction type. The major aim of this thesis is to construct, analyze and test
efficient algorithms for the numerical solution of these integro-PDEs.

Like all land plants, phytoplankton need both light and nutrients (e.g., nitrogen,
phosphorus, iron) to grow. In some regions and seasons, nutrients are abundant
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abundantly available and light is the only light and nutrient are limiting fac-
factor limiting phytoplankton growth. tors for phytoplankton growth.

and light is the only factor limiting plankton growth (as shown in the left figure
above). Owing to shading and absorption, light intensity decreases with depth.
Phytoplankton therefore flourish close to the surface of the water column. Below
this layer, populations decrease with decreasing light. Phytoplankton species
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that manage to stay in the upper water layer have plenty of light available
for photosynthesis and have the additional advantage to shade other species at
deeper levels. Although each type of species has a specific light requirement, all
species require a similar environment and hence face the competition from the
others when light is scarce.

In other regions and seasons, apart from light, nutrient becomes a limiting factor
for phytoplankton growth (this situation is shown in the right figure above).
Light is supplied from above, and its intensity decreases with depth. Nutrient
is supplied from the bottom of the water column, and its concentration increases
with depth. Due to these opposing gradients, phytoplankton settle at a depth
at which both light and nutrient are sufficient for phytoplankton to grow.

Phytoplankton dynamics in light-limited environments as well as in light-nutrient
-limited environments will be studied in this thesis. The thesis consists of six
chapters, preceded by this introduction and ends with a summary.

Chapter 1. In the first chapter, we study a model of competition for light
between phytoplankton species in a three-dimensional domain. Here, we have
taken into account the influence of (horizontal) water flow, caused by hydro-
dynamics. The decrease of light intensity with depth appears in the model
as an integral over the dynamic phytoplankton concentrations. The resulting
phytoplankton model is therefore framed in terms of non-linear integro-PDEs.
The spatially discretized system of equations contains a strong coupling of the
components. The coupling originates from the three spatial dimensions, the
interaction of the various species and the integral term. Due to the stiffness
of the discretized system we select an implicit integration method. However,
the resulting implicit relations are extremely expensive to solve, caused by the
strong coupling of the components. To reduce the amount of work in the lin-
ear algebra part, we use an Approximate Matrix Factorization technique. The
performance of the complete algorithm is demonstrated on the basis of two test
examples. It turns out that unconditional stability (i.e., A-stability) is a very
useful property for this application.

Chapter 2. The subject of Chapter 2 is the coupled phytoplankton-nutrient
model. As it turned out from Chapter 1, the vertical direction is the most
important one for the distribution of phytoplankton. Therefore, we study in
this chapter the one-dimensional light-nutrient limited model. The model is
integrated in time by the widely used package VODE [8] (which is also used
in Chapter 1). Unfortunately, used in a default setting, this code produces
a negative steady state solution. We come up with a remedy to avoid this
situation; however, this approach is still far from optimal and needs further
study.

Chapter 3. Therefore, in this chapter, we study numerical methods for ordi-
nary differential equations of Linear Multistep (LM) type that do yield a positive
solution. Because of accuracy considerations, combined with modest memory
demands, we restrict ourselves to second-order two-step methods. We show an
improvement of the results obtained in [37] for explicit methods. It turns out
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that the extrapolated BDF2 method has an optimal positivity property. More-
over, we show that these two-step methods, when formulated in one-leg form,
allow a slightly larger time step. It turns out that positivity of the solution can
only be guaranteed by imposing a rather severe restriction on the time step.

Chapter 4. In a PDE context, positivity of an integration method also requires
a positive spatial discretization (see e.g. the assumption (3.3) in Chapter 3).
For the diffusion terms, second-order central discretization is positive. For the
advection terms, however, only the first-order upwind method guarantees a
positive solution. Unfortunately, this scheme is too inaccurate and produces a
large amount of artificial diffusion. A possible remedy is to use the third-order
upwind-biased scheme (which has been used in Chapter 1 and Chapter 2) in
combination with a limiter. However, this will add additional nonlinearity into
the system to be solved. This will be a serious drawback when we integrate the
discrete system by a fully implicit method, like VODE. Therefore, implicit-
explicit (IMEX) versions of these LM methods are discussed in Chapter 4.
In this approach the nonstiff terms in the model (i.e., advection and growth)
are treated explicitly whereas the stiff diffusion terms are treated implicitly.
Higher efficiency compared to an implicit method is then to be expected. This
is because the difficult and nonlinear terms are calculated by straightforward
substitutions, whereas the diffusion term, which is simple (and linear for the
phytoplankton problem), is treated implicitly for stability reasons.

In general, the stability region of an IMEX method is smaller than that
of the explicit counterpart [21]. However, the implicitly treated diffusion term
gives rise to real eigenvalues. Using this property we derive a condition on the
parameters in the family of two-step IMEX methods such that the resulting
stability is the same as for the fully explicit counterpart.

The advantages of the IMEX approach will be demonstrated by a com-
parison between IMEX-BDF2 and VODE when applied to the phytoplankton
model. The IMEX-BDF2 method is chosen because its stability is as good as
the stability of the explicit version of the method, that is, the extrapolated
BDF2 method. Moreover, as it has been shown in Chapter 3, this method
possesses optimal positivity. The favourable positivity, stability, and damping
properties of the extrapolated BDF2 method are demonstrated on the basis of
two different advection test examples.

Chapter 5. As already mentioned in Chapter 2, in the light-nutrient limited
environment, phytoplankton mainly concentrate at layers with sufficient nutri-
ents welling up from the bottom and sufficient light filtering down from the top.
These layers are called deep chlorophyll maxima (DCMs). DCMs are widespread
in large parts of the world’s oceans. It is often argued that DCMs are stable
features. Here we show, however, that reduced vertical mixing can generate
oscillations and even chaos in phytoplankton biomass and species composition
of DCMs. These fluctuations are caused by a difference in the timescales of two
processes: (1) rapid export of sinking plankton, withdrawing nutrients from
the euphotic zone and (2) a slow upward flux of nutrients fuelling new phyto-
plankton production. Climate models predict that global warming will reduce
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vertical mixing in the oceans. This will suppress the upward flux of nutrients,
leading to a decline in oceanic primary production. Our model indicates that
reduced mixing will generate more variability in DCMs, with implications for
the variability in oceanic primary production and in carbon export into the
ocean interior.

Chapter 6. Based on the results found in Chapter 5, it is of great importance
to understand for which parameter regimes we may expect no bloom, stationary
bloom, or oscillations. An analytical study has been performed in Chapter 6 for
a slightly simplified version of the light-nutrient model studied in the preced-
ing chapter. It turns out that it is possible to derive an analytical expression
to distinguish between bloom- and nobloom regions in the parameter space.
Additional numerical simulations show the validity of this analytical approach.

The coherence of the material presented in the various chapters has been
graphically displayed in the following figure.

Chapter 1

3D light-limited model

Chapter 2

| 1D light—nutrient limited model

VODE

' Needs a positive integration method : i Insight in biological observations

e N
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Implicit-Explicit methods
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Chapter 1

Simulation of three-dimensional
phytoplankton dynamics:
competition in light-limited
environments

In this chapter, we develop computational methods for a three-dimensional
model of competition for light between phytoplankton species. The competing
phytoplankton populations are exposed to both horizontal and vertical mixing.
The vertical light-dependence of phytoplankton photosynthesis implies that the
three-dimensional model is formulated in terms of integro-partial differential
equations that require an efficient numerical solution technique.

Due to the stiffness of the discretized system we select an implicit integration
method. However, the resulting implicit relations are extremely expensive to
solve, caused by the strong coupling of the components. This coupling originates
from the three spatial dimensions, the interaction of the various species and the
integral term. To reduce the amount of work in the linear algebra part, we use
an Approximate Matrix Factorization technique.

The performance of the complete algorithm is demonstrated on the basis of
two test examples. It turns out that unconditional stability (i.e., A-stability) is
a very useful property for this application.

1.1 Introduction

Lakes, seas, and oceans are inhabited by large numbers of free-floating microor-
ganisms called phytoplankton. Like grass, trees and other plants, phytoplank-
ton utilize solar energy and carbon dioxide to produce biomass, in a process
known as photosynthesis [42]. Phytoplankton photosynthesis forms the basis
for nearly all aquatic foodwebs, and thereby has a major impact on the produc-
tivity of aquatic ecosystems including fish production. Furthermore, because
phytoplankton absorb carbon dioxide during photosynthesis, on a global scale
phytoplankton remove nearly as much of the greenhouse gas CO5 from the at-
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mosphere as all land plants do. As a result, phytoplankton photosynthesis has
a major influence on climate change [17, 18]. For these reasons, studies of the
growth and population dynamics of phytoplankton is of great interest.

Phytoplankton is the generic name for many different species from a wide va-
riety of taxonomic groups, including cyanobacteria, prochlorophytes, diatoms,
coccolithophores, and dinoflagellates [26]. The species composition of the phy-
toplankton plays an important role. Some species are sinking species, i.e., they
have a higher specific weight than water. As a result, they transport their biolog-
ically fixed carbon into the deep ocean [3, 29]. Other species are buoyant species
since their specific weight is smaller than that of water. These species remain
near the surface. All these species essentially require the same environmental
resources (light, mineral nutrients, and carbon dioxide) and each phytoplank-
ton species faces competition from the other phytoplankton species when one
or more of these essential resources are available in low quantities only. This
chapter concentrates on competition for light between phytoplankton species.
Competition for light is a major determinant of the species composition of phy-
toplankton communities [30, 31, 33|, as light is the energy source that drives
phytoplankton photosynthesis.

In the context of competition for light, physical mixing processes that affect
the spatial distributions of the phytoplankton species play a prominent role.
In particular, phytoplankton species that manage to stay in the upper water
layer have plenty of light available for photosynthesis and have the additional
advantage to shade other species at deeper levels. During recent years, several
three-dimensional models that combine physical mixing processes and phyto-
plankton growth have been developed [22, 45, 52, 53]. These biological-physical
models have advanced the general understanding of the productivity of marine
ecosystems, and play an increasingly important role in oceanographic research.
However, in many of the numerical applications of these models the special
structure that stems from the vertical light-dependence of phytoplankton pho-
tosynthesis has not been fully recognized. Owing to shading, the decrease of
light intensity with depth appears in the model as an integral over the dynamic
phytoplankton concentrations. The resulting phytoplankton model is therefore
framed in terms of integro-partial differential equations. Competition for light
results in coupling of the population dynamics of the phytoplankton species
through shading, that is, the integro-PDEs are coupled through this integral
term. For this complicated model structure, efficient numerical solution tech-
niques that avoid numerical artifacts are indispensable.

We recently outlined an efficient simulation technique for the one-dimensional
vertical model formulation of phytoplankton competition in light-limited envi-
ronments [33]. In this chapter, we extend our approach by incorporation of
horizontal water flow. The aim of the chapter is to come up with an efficient nu-
merical technique for the simulation of three-dimensional phytoplankton models
that include competition for light between phytoplankton species.

The chapter is organized as follows. In Section 1.2 we formulate our model
system which is based on [31, 33]. Section 1.3 deals with the numerical technique
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to solve this system. Two applications are described in Section 1.4. Section 1.5
is devoted to final remarks and some discussion.

1.2 The model system

We consider a model of competition for light between n species, where we assume
that the species interact with one another indirectly, via shading.

Let ws(z,y,2,t), s = 1,...,n, denote phytoplankton population densities
(cells per unit volume) of n species (the subscripts s indicate the different
species) at position (z,y, z) in a three-dimensional domain  at time ¢ (¢t > 0).
Here z is expressed as the depth of the water column from the surface (z = 0)
to the bottom (z = Z), x varies between 0 and X, y runs from 0 to Y. Hence,
the domain €2 that we consider has the form of a rectangular basin with vertical
boundaries and a flat bottom. This is, of course, far from the actual shape of
the lakes that we encounter in nature. However, in this chapter we focus on the
construction and analysis of efficient numerical solution techniques for the equa-
tions describing the dynamics of phytoplankton (see Eq. (1.6)). Implementing
the resulting algorithms paying full attention to all physical details should be a
next step and is far beyond the scope of the present chapter.

Continuing with the derivation of our model, we first observe that phyto-
plankton use energy in sunlight for photosynthesis. In the water column, light
intensity L decreases with depth according to

L(x,y,2,t) = Ly e Kroze™ Jg (Bicarews(@y.ot)) do (1.1)

At a particular depth, light intensity depends on the incident light intensity
L;y, the background turbidity Kj, due to all non-phytoplankton components in
the water and on the total light attenuation of all phytoplankton species above
that depth. Here 7 denotes the specific light attenuation coefficient of the s-th
species.

The formulation (1.1) explicitly involves light absorption by all phytoplank-
ton species. Thus, the light gradient changes with a change in any species
density distribution.

The change in concentration (density distribution) for each species is deter-
mined by growth and the local transport process through the partial differential
equation (PDE)

Ows 0T, 0Js 0K ) (1.2)

ot _gS(L)“’S_<ax Ty T s

Here g (L(z,y, 2,t)) is the specific growth rate of the s-th species driven by
light availability. Z(z,y, 2,t), Js(z,y, 2,t) and Ks(z,y, 2,t) are defined below,
and are respectively the horizontal and vertical fluxes of the s-th species at
position (z,y,2) and time ¢.

The specific growth rate gs (L(z,y, 2,t)) in the above equation depends on
the balance between the production rate ps (L(z,y, z,t)) and the specific loss



8 Chapter 1. Simulation of three-dimensional phytoplankton dynamics

rate /g
9s(L) = ps(L) — Ls. (1.3)
The production rate ps(L) is modelled by the so-called Monod-function (see e.g.
[30]) .
Psmax
ps(L) = ma (1.4)
where p;_,  denotes the maximum specific production rate and Hy is the half-
saturation constant, both for the s-th species.
The fluxes in Eq. (1.2) depend on the dynamics of the system as determined
by the horizontal flow, the vertical velocity, and the transport of phytoplankton
by turbulent diffusion

Ws

Is(l‘,y,z,t) = a(x,y,z) ws($ay727t) - DH(xayaz) ) ($,y,2,t),
Xz
Owg
js(xayazat) = b($,y,2) ws(x,y,z,t) - DH(x,y,z) ay (ac,y,z,t), (15)

]Cs(xa Y, 2, t) = Cs ws(xa Y, 2, t) - DV($5 Y, 2) %(a}) Y, 2, t)a
where a(z, y, z) and b(z, y, ) are the horizontal velocity components of the water
flow, ¢, is the vertical velocity of the s-th species (which is positive for sinking
phytoplankton and negative for buoyant phytoplankton), and Dy (z,y, 2) and
Dy (z,y, 2) are the horizontal and the vertical turbulent diffusion coefficients.
The minus sign in the second terms on the right hand side indicates that tur-
bulent diffusion is in the direction opposite to the concentration gradient. In
the above formulation the velocities a and b, as well as the diffusion coefhi-
cients Dy and Dy may be space-dependent, whereas the characteristic velocity
¢ is taken constant. However, an extension to more general functions (e.g.,
time-dependent) is straightforward.

Our key system, the system of integro-partial differential equations, follows
now straightforwardly from substituting (1.1), (1.3), (1.4) and (1.5) into (1.2)

Ows
ot

= ps (Line_Kb9267 foz(E;L:1 Tjwj(z:yvaat)) dU) We — gs We —

[(aw,), + (Bw,),, + s(ws)., = (Daw,.), = (Drws,), = (Dves.), |, (16)

where s = 1,...,n. Here, the subscripts =, y, and z denote the spatial dif-
ferentiation in the various directions. From this formula, one can see that a
change in any of the phytoplankton densities w;(z,y,0,t) (¢ < z), within the
integral term, causes a change in the light intensity, which in turn, influences
the population density ws(x,y, 2,t) of all species. In other words, the species
compete with one another for light.

The boundaries of our rectangular lake are assumed to be ‘closed’. By
that we mean that phytoplankton cannot enter or leave the domain. In other
words, the fluxes Z;(z,y, 2, t), Js(z,y,2,t) and Ks(x,y,2,t) all vanish at the
boundaries of the domain 2, defining the boundary conditions for our integro-
PDE system (1.6).
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1.3 Numerical approach

In order to find the numerical solution of the system (1.6), we use a technique
which is based on the popular Method of Lines (MOL) approach, where space
and time discretizations are considered separately [38]. That is, first we derive a
large system of ordinary differential equations (ODEs), which is still continuous
in time, from the discrete approximations of the spatial differential operators
as well as the integral term (Section 1.3.1). Then, that ODE system will be
integrated in time numerically (Section 1.3.2).

Using this approach is motivated by the fact that it is easy to combine various
discretizations for advection and diffusion with the treatment of the reaction
term. Another attractive, practical point is that there exist nowadays many
well developed ODE methods and for these methods sophisticated software is
freely available.

1.3.1 Spatial discretization

There are many ways to discretize the differential operators on the domain €.
The purpose is to approximate the solution at a desired accuracy level, with as
few grid points as possible. Most simple to use is the equidistant grid

1

CL'(]:O, Iiz(lfi)Al', izl,...,Nl, (EN1+1:X,
1 .
=0, =034y j=L....N2y yv11=Y, (1.7)
1
20=0, zr=(k— §)AZ’ k=1,...,Ns, 2zn,+1=Z,

where Az = X/Ny,Ay = Y/No, Az = Z/N3. Each grid point is imaginarily
surrounded by a cell, at the boundaries of which we approximate the derivative
of the fluxes (the terms inside the bracket in (1.2)). In the internal intervals,
the cell faces lie halfway between the grid points. For the end intervals, the grid
points are positioned on the boundary of Q and coincide with the cell faces.
This way of discretizing is based on the so-called finite-volume method [38, 65].
In this way, we obtain conservation of the flux quantity since all contributions
of the fluxes along the interior cell faces cancel [65].

To be more precise, 0Z,/0x in the internal points (x;, y;, 2x) is approximated
by (Zs,; = Zsi_vy;.)/ Az, where I, denotes the flux Z, at (412, j, 21) with
Tiy1/2 = T + %Am, ie.,

ow
Is,-]-k = a(mi+%7yjazk) ws(mi+%ayjazk7t) — Dy 6—;($i+%’yjazk7t)‘ (18)

Here, for simplification, we consider the model with uniform turbulent diffusion
coefficients. The approximation to Z,, , is obtained by using the approach
that is nowadays standard in the field of Computational Fluid Dynamics for
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the numerical solution of advection-diffusion equations [38, 65]. That is, the
diffusion term is discretized symmetrically

aws ws(i )ik (t) - wsijk (t)
Dy %(mw%ayjazkat) ~ Dy —== Az , (1.9)

where w;,;, (t) denotes an approximation to the population density of the s-th
species at (z;,yj,2r) and time ¢. For the advection term, the third-order
upwind-biased discretization is used [38]

a(xi+%’yj’ k) ‘*’S(mﬂr%’yj’ 2k, t) = a(mi+%’yj’ 2k) ws(i+%)jk(t)a (1.10)
wherel!

é (7ws(i—1)jk + 5wsijk + 2w5(i+1)jk) if a(miﬁ-%vij z) > 0,
ws, = (1.11)

i+ 1)k
1 .
§ (2wsyyy +5Ws( 0 — Wepn) i a(ziys,yg,2) <O

This upwind discretization is preferred to the more simple second-order sym-
metric discretization as the symmetric discretization of the advection term more
easily leads to ‘wiggles’ in the numerical solution, which may result in negative
solution components. A negative population density is of course not realis-
tic. To reduce this unwanted property one can use the current upwind scheme.
Higher order upwind schemes may give still better results. However, for these
we need a larger stencil of grid points which makes such methods impractical
in simulation with boundary conditions (see e.g. [38] for more details).

We note that, according to the boundary condition, the fluxes Z;, ;, , Zs y, ;4
vanish. Since we lack sufficient upstream information, a symmetric discretiza-
tion for Z,,,, (or Zs.y, ,);,) has been used in case of a(z1,1,y;,2r) > 0 (or
a(@y, - 1,Yj, 2k <0)

ws2jk + wsljk

W1y 1) 5 if a(xH%,yj,zk) >0,
(1.12)
Wsn ik + Ws(ny 1)k

w
S(Ny-$)ik 2

if a(zy, —1,95,21) <O0.

A complete approximation to Z,, is then obtained by the combination of
(1.9)=(1.12). In the same way we obtain approximations for the fluxes Js,;,
and IC

Using the repeated trapezoidal rule for the integral term within the light
function (L in (1.1)) the light intensity at (z;,y;, 2x) is approximated by

Sijk”

n 1 3 1
Lijk — Line*Kbgzke* 2aTs [ZwSij0+ZwSij1+w5ij2+"'+w51'j(k—1)+§w5ijk] Az (113)

with the solution at the surface, wy, ,,, extrapolated as ws,;, = (3ws,;, —ws,;,)/2.
The corresponding specific growth rate is then g, ., := gs(Lijr) = ps(Lijr) — Ls-

Here we omit the explicit time-dependence in the notation.
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Finally, we arrive at the following set of ODEs
dwsijk(t) o _Isijk _Is(i—l)jk - Jsijk - jsi(j—l)k _ Ksijk - ’Csij(k—l)

dt Az Ay Az (1.14)

+ Gsijn Wsijn

where s, i, 7 and k respectively run from 1 to n, Ny, No and Nj.

1.3.2 Time integration

This section deals with the numerical integration of the above derived ODE
system, which is still continuous in time and can be written in the form

dw(t)

—2 = F(w(t), t>0, (1.15)

where the vector w(t) € RN, N = n Ny Ny N3, contains the components w,,, -
This system is stiff (has widely spread eigenvalues) due to the fact that the
spectral radius of the diffusion part is proportional to the inverse of the square
of the grid sizes [38]. To cope with the stiffness of this ODE system, we use
an implicit BDF integration method, since these methods are known to possess
good stability properties. Due to the implicitness we need to solve, in each
time step, a system of implicit relations to find the solution at the next point in
time, W1, using previously computed values Wi, Wi_1,..., Wii1_m. We
denote this system by

R(Wk+1) = Wk+1 — ’yAtF(Wk+1) — Zaiwk+1_i = 0, (116)

i=1

where W1, is an approximation to w(t) at t = tx1, with At the current step
size and the coefficients «; and « are defined by the method in use.
System (1.16) is iteratively solved by the modified Newton method, that is

[I - 'yAtg—fH [W;C+1 ~will=-RWil), j=1,2,..., (117)
where I denotes the identity matrix and the Jacobian matrix 0F /0w is occa-
sionally evaluated at certain values W,. The superscript j denotes the iteration
index.

The Jacobian matrix has a huge number of entries (Fig. 1.1) since it has
the structure of a matrix which is a tensor product of a N; x N; 5-diagonal
band matrix and a Ny x Ny 5-diagonal band matrix (both originating from
the variable advection and the diffusion parts), a N3 x N3 4-diagonal matrix
(due to the constant vertical velocity of each species) plus a lower triangular
matrix (due to the integral term), and a full n x n matrix (due to multi-species
competition). This pattern of the Jacobian matrix makes it unfeasible, if not
impossible, to solve the linear systems in (1.17) by a direct solver. Such an
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FIGURE 1.1: Structure of the Jacobian matrix in case of 2 species.

approach has a computational complexity which is proportional to the third
power of the dimension (i.e., O((nN1N2N3)?)). An obviously cheaper way to
solve the linear systems is given by the following approach: we approximate the
first term in the left-hand side of (1.17) as

OF OF, OF, OF

where Fj(w(t)), Fa(w(t)) and F3(w(t)) correspond to the three first terms
(derivative of fluxes) in the right-hand side of (1.14). Thus, we have removed
the derivatives of the specific growth rates gs,,, in the Jacobian matrix and
have approximately factorized what remains in [I — YAt 0F /Ow)] in the way as
shown in (1.18). The latter simplification is usually termed Approximate Matrix
Factorization [4, 14, 28, 38] and can be seen as a form of dimension splitting. The
growth rates can be omitted since these terms are non-stiff. Loosely speaking,
the growth rates are now handled by simple successive substitution as in Jacobi
iteration. All diffusion and advection terms are kept in the Jacobian because
these terms contribute to the stiffness. Removing them could cause stability
problems.

Recall that the coupling of the various species entered the model through the
light function L (cf. (1.6)). Hence, by removing the influence of the growth term
in the Jacobian the species have in fact been ‘uncoupled’ as far as the solution
of the linear systems is concerned. Of course, the growth term is still present
in Eq. (1.16), R(Wjy1) = 0, that we have to solve in each step. Moreover,
due to the special splitting of F(w) = Fi(w) + Fa(w) + F3(w), where each
of the F'; is associated with only one spatial dimension, a further ‘uncoupling’
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has been achieved. As a result, the implicit relations can be solved along each
grid line separately. Hence, each of the three matrices [I — yAtOF;/0w), j =
1,2, 3, essentially consists of a large collection of uncoupled band matrices of
small dimension (which even could be solved in parallel). The computational
complexity in solving such a system is linear in the dimension. Summarizing,
the total computational complexity in solving the linear systems in (1.18) by
Approximate Matrix Factorization equals 3n(O(N;N2N3)). Obviously, this is
orders of magnitude lower than what we need in a direct approach since there the
costs increase with the third power of the total number of unknowns. The only
concern that remains is a possibly reduced rate of convergence of the Newton
process. However, as we shall see in Section 1.4.3, the averaged number of
Newton iterations per time step did not exceed 2 (see Figs. 1.9c and 1.11c),
which is of course quite satisfactory.

The time integration technique based on (1.16) has been implemented by
Brown et al. [8] in the code VODE. The results presented in this chapter were
obtained by adapting VODE w.r.t. the Approximate Matrix Factorization tech-
nique defined in (1.18). All strategies in VODE have been left unchanged. This
widely used stiff ODE solver is very robust in the sense that it includes all kind
of strategies, necessary for automatic integration. VODE is freely available from
http://www.netlib.org/ode/ (both in Fortran and C).

Remark 1.1. The authors of VODE have extended this code by incorporating
a Krylov subspace iterative method (GMRES) for solving the linear systems
arising in the Newton iteration. The resulting code, termed VODPK, allows
the user to define a preconditioner to speed up the convergence of the GMRES-
iteration. We refrained from solving our phytoplankton problem with VODPK
because already one GMRES iteration is more costly than solving the three
band matrices in the Approximate Matrix Factorization approach. Since 5-10
GMRES-iterations is quite common in this kind of applications, it is clear that
Approximate Matrix Factorization (in combination with the good convergence
of the Newton process) is a very efficient choice. A speed-up by (at least) a factor
10 compared with the VODPK-approach seems to be a realistic estimate.

1.4 Application

1.4.1 Model structure

We consider competition for light between three typical phytoplankton species:
a sinking species (¢s > 0), a neutrally buoyant species (c¢; = 0), and a buoyant
species (¢; < 0). All these three species have similar growth characteristics.
However, we assume that the sinking species has a higher maximal specific
production rate than the neutrally buoyant species, which in turn has a higher
specific production rate than the buoyant species. We note that a high specific
growth rate allows proliferation under rather low light conditions. In Table 1.1
we specify all parameters characterizing the three species.
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TABLE 1.1: Species parameters (see also [33, Table 2]).

Species ccri ct:z psrlﬂax pmol Izl;sotons gls (:;1.;
(T) (ﬁ) (H) ( cm? s ) (H) (cma)
Sinking species | +4.2 | 3.0-107 | 0.04 1.0-1073 0.01 50
Neutral species | +0.0 | 1.5-10~7 | 0.03 1.0-1073 0.01 | 5000
Buoyant species | —8.3 | 1.5-10~7 | 0.02 2.0-1073 0.01 | 5000
TABLE 1.2: System parameters (see also [33, Table 1]).

X Y 7 DH DV Kbg LG

(m) | (m) | (m) | (220) | (22) | (G | (Mmstbirens)

100 | 100 | 10 100 10 2.0-1073 3.5-1072

Our experiments are performed on the domain 2 with X =Y = 100m
and Z = 10m using an equidistant grid of 50 x 50 x 20 cells. Hence, the total
system consists of 150 000 ODEs. The simulations are carried out with constant
turbulences Dy = 100, Dy = 10, both in cm?/s. All system parameter values?
are summarized in Table 1.2.

For the water flow, we will use two different velocity fields. These flow fields
are given in analytical form and have been chosen mainly for test purposes. In
real-life applications the flow fields have to be computed by a hydrodynamical
solver. Then the output of this solver serves as input for the current phytoplank-
ton competition model. To stay as close as possible to a realistic flow, these two
fields have been chosen divergence free, reflecting the incompressibility property
of water.

Test example 1.1. We start with the so-called Molenkamp velocity field (see

Fig. 1.2a) ) .
G,(ZE, Y, Z) = _7r Yy—= G_QZ/Za
Y 2 (1.19)
2 X —22/7Z ‘
b(z,y,2) = “x T35 ) .

This velocity field has been used by various authors for testing PDE-solvers
(see e.g. [38]). It describes a clockwise rotation around the center water column
(X/2,Y/2,2), with amplitude decreasing over depth. In the horizontal, the
amplitude increases from the center towards the boundary of the domain. It
takes 5Xe?*/7 (s) for species at depth z to rotate for one cycle.

2The spatial-intervals and diffusion coefficients are chosen to be in the critical region of
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a) Molenkamp velocity field. b) Initial values of species.

FIGURE 1.2: Input for the Molenkamp test.

For this velocity field, we start with uniform population densities for each
species over depth. In the horizontal plane, phytoplankton species are all
densely distributed in the location of z = 40 m and y = 40 m (Fig. 1.2b)
according to

—10~6 _ 2 _ 2

Ws (xaya 2,0) = Ws,€ 10 ((z 0-4X)"+(y—0.4Y) )a

where the amplitude w;, is given in Table 1.1. Notice that the neutral and the
buoyant species are both initialized 100 times more abundant than the sinking
species.

Test example 1.2. In the second test example we use the velocity field de-
fined by (see Fig. 1.3a)

a(l’,y,z) = 71 1074){ Sinz(ﬂ'm ) Sil’l(2ﬂ'y)672z/z,
; ! (1.20)

b(I = z 1074Y 2 2 in(2 T —22/7

7yaz) = 5 sin (7ry) sm( W—X)e .

Similar to the Molenkamp velocity field, it is again a clockwise rotation around
the center water column (X/2,Y/2,z), with amplitude decreasing over depth.
The difference with the Molenkamp field concerns the amplitude of the flow in
the horizontal. Here, the flow is minimal in the center and at the boundaries of
the domain, whereas in the Molenkamp field the velocities assume their maximal
values at the boundaries.

For this second test example, we also start with a vertically uniform popu-
lation density for each species. In the horizontal plane, phytoplankton species
are, however, all densely distributed in the location of y = 50 m (Fig. 1.3b)
according to

~107%(y—0.5Y)?
ws(z,y,2,0) = ws,e (v .

‘bloom development’ found in [33].
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a) The velocity field. b) Initial values of species.

FIGURE 1.3: Input for the second test example.

Remark 1.2. At the end of Section 1.2 we have discussed the boundary con-
ditions for the phytoplankton concentrations. These conditions are of the form
aw — Dgdw/0x = 0, with a being the velocity component in the z-direction
(and similar conditions in the other two directions). It should be observed that
these zero-flux conditions concern the phytoplankton concentrations and hold
for all values of the velocity a. This means that for the Molenkamp test, where
a # 0 at the boundaries, we will have a non-zero slope of the solution at the
boundaries because Ow/dz = aw/Dp. In the second test example, where we
have zero water velocities at the boundaries, this condition results in a vanishing
slope of the phytoplankton concentration (perpendicular to the boundary).

1.4.2 Biological observations

Competition behaviour Since the depth of the water column is not large
and the initial concentrations are quite low, the light availability is sufficient in
the whole water column. As a result, in the first 10 days the concentrations of all
three species increase (see Fig. 1.4). The larger phytoplankton concentrations
result in a steeper light gradient. Since the buoyant species has the smallest
Ds,... and largest H (see Table 1.1), its production rate ps(L), defined in (1.4),
will be small, especially on low light conditions. In the competition context,
the buoyant species will therefore loose influence and its concentration starts to
decrease. Consequently, the population of the neutral species has a chance to
rapidly increase until its maximal value (at about 25 days). The light availability
at that time is not sufficient for such a large amount of neutral species. Thus,
the neutral species no longer grows and starts to decrease towards the steady
state (obtained at about 150 days). As the neutral and the buoyant species
populations are getting smaller, the sinking species makes use of its high specific
growth rate property and the relatively high mixing, to proliferate. Eventually,
at the steady state, the sinking species dominates (see also the Figs. 1.5-1.7).
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FIGURE 1.4: Biomasses (integral over space) of species in time, shown for the two
different velocity fields according to test example 1.1 (left) and test example 1.2 (right).
Sinking species: dash-dot line. Neutral species: dash line. Buoyant species: solid line.

We remark that the above competition behaviour is similar to what has been
observed in the one-dimensional competition model [33].

Vertical distribution FEven though phytoplankton species are distributed
uniformly over depth at the onset, all species live close to the surface where
ample light is available, while the populations usually decrease towards the
bottom, because of darkness (Fig. 1.5). This behaviour was already found

in [33].
Phytoplankton population Phytoplankton population
atx=99m, y = 63m atx =99m, y = 99m
of 0— 0 - 0 0r— 0 -
I ! i ! ! ! I ! I
i ! . 1 ! i ! i
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Test example 1.1. Test example 1.2.
FIGURE 1.5: Distribution over depth (z and y fixed) of Sinking species (dash-dot line),
Neutral species (dash line) and Buoyant species (solid line) at 5 days (left), 25 days
(middle) and 150 days (right). The left figures show the results for the Molenkamp test;
the right figures for the velocity field of test example 1.2.
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It is interesting to observe that the final concentration of the sinking species
in case of the second velocity field (i.e., the right-most figure in Fig. 1.5) is
almost constant in depth. Although this figure shows the situation in only one
particular point in the (z, y)-plane (i.e., at z = y = 99 m), a further examination
of the full solution reveals that this constant depth-profile is observed for all
points in the horizontal plane.

Horizontal distribution In contrast to the aforementioned two aspects (com-
petition behaviour and vertical distribution), the two test examples show a
substantial difference with respect to the horizontal distribution.

For the Molenkamp test example we plotted in Fig. 1.6 the horizontal dis-
tribution of the three species just below the surface (at z = 0.25 m) after 1
day of simulation (left column) and at steady state (right column). We observe
that the shapes of the various species are quite similar, whereas the ampli-
tudes largely differ. The change of these amplitudes is in accordance with the
time-behaviour of the biomasses (see Fig. 1.4, left panel).

We remark that the particular horizontal shape of the species shown in the
right column of Fig. 1.6 was already observed after a few days of simulation
and did not change significantly during the remaining part of the integration.
Apparently, already after a short period of time all terms involving spatial
derivatives are in balance and the only contribution to the right-hand side in
(1.6) comes from the growth term.

4
Sinking species X 10

Sinking species

7.23

50
00 %0

Neutral species

615.21
. -~y
1
*1bo s = = 100
00
Buoyant species
534.58

50
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FIGURE 1.6: First test example (Molenkamp test): populations of phytoplankton species
at z = 0.25m at ¢t = 1 day (left) and ¢t = 150 days (right).
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Finally, the particular shape of the horizontal distribution can be partly
explained by taking into account the boundary conditions that we imposed
(see also Remark 1.2 at the end of Section 1.4.1). At all boundaries we use
a condition of the form vw — DOw/Ox = 0, with v the particular velocity
component (see (1.5)). Hence the sign of w/0x = vw/D is determined by the
sign of v. Using the Molenkamp velocity components as defined in (1.19) the
correct slopes at the boundaries can be recognized in the plots.

Moreover, we consider an interior point close to a corner point. Making a
Taylor series expansion of the solution in this interior point around the solution
in the corner point and using the same reasoning as above for the sign of the
derivatives, it can be proved that the solution in the corner point must vanish
as shown in Fig. 1.6.

For the second test example the same information is given in Fig. 1.7. Again,
the three species show a horizontal distribution which is quite similar and the
mutual amplitudes are in accordance with the time-behaviour of the biomasses
(see the right panel in Fig. 1.4). The main difference with the first test exam-
ple is that eventually the horizontal structure has disappeared: the solutions
are completely flat in the horizontal (except for the Buoyant species; the dark
regions in the plot are in fact ‘wiggles’, i.e. numerical artifacts which will be
discussed in Section 1.5). This horizontal solution ‘profile’ is in agreement with
the observation that all derivatives (in normal direction) of the solution at the
boundary vanish for this velocity field (see (1.20) and Remark 1.2 at the end of
Section 1.4.1).

Sinking species x10 Sinking species
16.49 4.2
14.58
100 100
100
50 50
00
Neutral species
1404.39 -
1243.22
100 100 100
50 50
00

Buoyant species

1217.33 .
1 0811.8(7)
100

y-axis 0 0 x-axis

100

FIGURE 1.7: Second test example: populations of phytoplankton species at z = 0.25m
at t = 1 day (left) and ¢ = 150 days (right).
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1.4.3 Numerical observations

To motivate the choice of the numerical techniques described in Sections 1.3.1
and 1.3.2, it is useful to look at certain characteristic numbers, such as the Cell
Péclet number, the Courant-Friedrichs-Lewy (CFL) number and the stiffness
number of our problem. These numbers, which are discussed in many numerical
text books on PDEs (see e.g. [38]), are listed in Table 1.3 (notice that both test
examples have the same maximal velocities). Both the CFL number and the
stiffness number depend on the time step At. In Table 1.3 we have used the
value At = 200(s), since this value turns out to be chosen by the BDF2 code
in a characteristic integration scenario (see the discussion in the sequel of the
section).

TABLE 1.3: |a| and |b| are the maximal velocities in the horizontal direction, |cs| is the
largest velocity of the three species, h: mesh size, D: diffusion coefficient, At: time step.

Characteristic number Horizontal Vertical

Péclet number lalh/D = 1.2566 les|h/D = 0.0115
CFL number (la|/h + |b]/h)At = 1.2566 |es| At/h = 0.0092
Stiffness number 8 At D/h? = 4.0000 | 4 At D/h? = 3.2000

The diffusion coefficient, which plays an important role in the population
dynamics of phytoplankton [31, 33|, varies in a wide range from 10~ !(cm?/s)
in poorly mixed water, to 10%(cm?/s) in well mixed water. This results in a
wide range for the Péclet number as well as for the stiffness number. Hence, for
small D-values, the Péclet number will be large which motivates the choice for
the third-order upwind-biased discretization. On the other hand, for large D-
values, the stiffness number enforces to use an implicit method. Since we want
to capture the whole spectrum of parameter values in one code, we decided to
include upwind discretization as well as an implicit method.

As said in Section 1.3.2, for the time integration we have used VODE (ex-
tended with the Approximate Matrix Factorization technique). We observed
that the behaviour of VODE is a bit erratic, especially when the code tries to
integrate with a high order formula (orders 1 until 5 are available). This erratic
behaviour is probably due to the fact that the BDF formulae of order 3 and
higher lack a part of the left half of the complex plane in their stability region.
The use of these high-order formulae may have led to instabilities, caused by
the complex eigenvalues originating from the (discretization of the) advection
terms. Therefore, we also applied VODE with the maximal order set to 2, since
the BDF formulae of order 1 and order 2 are unconditionally stable (A-stable).
In the results described below, this mode will be denoted by BDF2, whereas
the application of the full code will be denoted by VODE.

We will now discuss the behaviour of both solvers when applied to our two
test examples on the time interval [0, 7], with 7 = 2.5 - 10°(s). For the first
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test example (the Molenkamp test), this interval corresponds to 5 rotations for
each point at the surface. The results for the first test example are listed in
Table 1.4.

From this table one can see that BDF2 is more efficient for the large toler-
ances, both in terms of CPU time and number of steps. Only for the very small
tolerances VODE is more efficient, but those tolerance values are not realistic
for our application (the spatial discretization is of order two).

TABLE 1.4: Test example 1.1. Output for BDF2 (upper part) and VODE (lower part).
RTOL: relative tolerance, NST: number of steps, NNI: number of Newton iterations, NJE:
number of Jacobian evaluations, CFN: number of non-linear convergence failures, ETF:
number of error test failures, Q: order used in the final step, CPU: CPU time (seconds),
GRERR: global relative error in Ly norm.

| RTOL | NST | NNIT | NJE | €PN | BTF | Q | CPU | GRERR |
102] 855 | 1583 | 26| 7| 6] 2] 466 6.233

1073 | 1219 | 1920 24 2 15| 2 601 | 8.79e—4
10~* | 1767 | 2588 32 1 21| 2 767 | 9.55e-H
107° | 2950 | 3747 53 2 46 | 2 | 1233 | 8.46e-6
107¢ | 5268 | 6532 93 2 78 | 2| 2161 | 2.46e-6
1072 | 1547 | 1989 30 3 4| 2 608 | 8.42e-3
1073 | 1789 | 2487 56 17 14 | 3 797 | b5.4le—+4
10~* | 3471 | 5302 59 1 10 | 4| 1642 | 4.58e-H
1075 | 2592 | 4080 48 2 14 | 3| 1239 | 9.48e6
10~ | 4584 | 5766 T 0 33| 4| 1904 | 1.02e-6

Fig. 1.8 presents an accuracy/cost plot. This figure confirms the better
performance of BDF2 in the low accuracy range. The global relative error
GRERR is the time integration error for the semi-discrete system (1.15). This
error has been obtained by comparing the numerical solution with a reference
solution, obtained with a very small tolerance value.

For a better understanding of these results, we will have a closer look at the
time integration statistics for one particular RTOL value, i.e. 10~3. Initially,
VODE increases both the step size and the order as we can see in Fig. 1.9a
and b. Then at steps 125 and 126 two consecutive convergence failures occur.
VODE reacts with a reduction of the step size with a factor 4 for each failure,
maintaining order 5. Next, several error test failures occur which cause a further
reduction of the step size. Then VODE decides to lower the order to 4 and then
to 3, due to an error test failure. After a next convergence failure, the order is
further reduced to 2.

As can be seen in Fig. 1.9a and b, VODE seems to have trouble in finding
an appropriate time step and an appropriate order, especially from step number
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FIGURE 1.8: Test example 1.1. Efficiency plot for BDF2 and VODE.
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FIGURE 1.9: Test example 1.1. BDF2 (solid line) and VODE (dashed line) for
RTOL=10"".

390 to 500, where other convergence failures occur. Finally, beyond step number
500, the time step and order are fixed at 89(s) and 3, respectively. With this
choice, VODE successfully reaches the end of the integration interval without
any failure (see Fig. 1.9a).

The behaviour of BDF2 is different. Here we observe a modest increase of
the step size for the first 436 steps. Then, after a sudden increase of the step
size, also BDF2 encounters two convergence failures at steps 436 and 481. After
a reduction by a factor 4 for each failure, the step size is now appropriate to
reach the end of the interval without any failure.

Observe that it is remarkable that the lower order BDF2 mode completes the
integration with the constant step size At = 206(s) while VODE, using order 3,
seems to feel comfortable with the constant step size At = 89(s) to satisfy the
same tolerance criterion for the local error.

Finally, we will discuss the convergence behaviour which may have suffered
from the fact that we replaced the Newton matrix in (1.17) by the right-hand
side of (1.18).
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As discussed in Section 1.3.2, the linear system in (1.17) has a huge num-
ber of entries. Therefore, we solved this complicated system by removing the
growth term contributions and by successively solving three band-structured
systems (see (1.18)) within each modified Newton iteration. In spite of this
simplification, Newton’s process still works very well: on average (taken over
the steps), both modes need less than 2 Newton iterations per time step. This
is shown in Fig. 1.9c.

For the second test example (defined in (1.20)), the codes show a behaviour
which resembles the behaviour that we obtained for the first test example: again,
VODE behaves rather erratic, in the sense that the global error is far from a
monotone function of the costs. Furthermore, we again found that BDF2 is
more efficient unless a very stringent tolerance-value is used. As can be seen in
Fig. 1.10, these two properties are even more pronounced than in the first test
example. These observations indicate that VODE encounters stability problems
when using a high-order formula, due to the advection terms in the model.
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FIGURE 1.10: Test example 1.2. Efficiency plot for BDF2 and VODE.

This conclusion is supported by the statistical data collected in Table 1.5: for
RTOL=1072,10"%, and 10~°, VODE integrates the last part of the integration
interval using a fourth-order method and the resulting number of steps (and
CPU time) are significantly higher than in case of a third-order formula (as
VODE did for RTOL=10"3, 107%). A close inspection of the performance of
both solvers for RTOL=10"3 is shown in Fig. 1.11.

In Fig. 1.11a we see that both codes try to substantially increase the step
size, in particular BDF2. However, then a convergence failure reduces the step
size to a more realistic value. VODE settles at a constant step size of 102(s)
until the end of the integration interval. After an initial increase of the order
to 5, VODE completes the integration with order 3. BDF2 prefers the second-
order formula, except for a few steps at the end where Backward Euler has been
used (see Fig. 1.11Db).

Finally, from Fig. 1.11c we conclude that the use of Approximate Matrix
Factorization in the Newton process requires not more than 1.5 iteration (on
average) which is a quite satisfactory convergence behaviour.
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TABLE 1.5: Test example 1.2. Output for BDF2 (upper part) and VODE (lower part).
The entries in this table have the same meaning as in Table 1.4.

| RToL | NST | NNI | NJE | €PN | ETF | Q | CPU | GRERR |

1072 422 815 12 3 0] 2 493 | 1.34e-2
1073 226 258 7 2 11 2 182 | 4.96e-3
104 957 | 684 15 3 3| 2 450 | 2.97e-3
1075 | 1034 | 1180 24 5 3] 2 776 | 1.32¢-3
1076 | 2636 | 3374 52 5 11 2 2105 1.40e-6
1072 | 3248 | 5128 95 0 11 | 4 | 3602 | 4.58e-3
1073 | 2431 | 3737 42 1 6| 3| 2669 | 5.67e4
10=% | 4009 | 5346 69 1 7| 4] 5919 | 1.37e4
10=° | 3100 | 5199 52 0 91| 4] 3191 1.38e-5
1076 | 2589 | 3915 47 2 8| 3| 2403 | 8.35e-T7
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FIGURE 1.11: Test example 1.2. BDF2 (solid line) and VODE (dashed line) for
RTOL=10"".

1.5 Discussion

In this final section, we will briefly summarize the approach and discuss our
findings. Here, we distinguish between results from an application (biological)
perspective and from an algorithmic (numerical) point of view.

Biological discussion

Although there exist several buoyant phytoplankton species, particularly among
the cyanobacteria, most phytoplankton species have a slightly higher density
than water. They sink. This particularly applies to many diatom species that
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are heavily armoured with silica, which may result in relatively high sinking
velocities of diatoms compared to other phytoplankton species. Our simulation
results show that such a sinking phytoplankton species wins when in competi-
tion with neutrally buoyant and buoyant phytoplankton. Since buoyant phy-
toplankton species should generally have better access to light, why is it that
buoyant species may lose in competition? How does a sinking phytoplankton
species manage to become dominant? Recent work has shown that the outcome
of competition for light between buoyant and sinking phytoplankton species
depends on the intensity of vertical mixing [29, 31, 33]. During weak vertical
mixing, characterized by a low value of the vertical turbulent diffusion coeffi-
cient, buoyant species will float upwards and are superior competitors for light.
In our simulations, however, the water column is intensely mixed, as the value
of the vertical turbulent diffusion coefficient is relatively high (10 cm?/s, Table
1.2). Such mixing conditions are characteristic of winter and early spring in the
temperate climate zone, with little or no temperature stratification of the water
column [39]. As a result, all phytoplankton species are more or less uniformly
mixed over depth (Fig. 1.5). Furthermore, given the high horizontal diffusivi-
ties, all species are also distributed in a similar form along the horizontal plane
(Figs. 1.6 and 1.7). In this case, when all species are similarly distributed in
both the horizontal and vertical, the superior competitor for light is the species
with lowest critical light intensity (sensu [30]). That is, the strongest com-
petitor for light is the species that is best adapted to grow under low light
conditions. In our simulations, the sinking species grows better under low light
conditions than the neutrally buoyant and buoyant species, because it has a
higher maximum specific production rate (ps___, in Table 1.1) than the other
species, combined with a relatively low half-saturation constant (Hg, in Table
1.1). As a consequence, the sinking species has a higher production rate at low
light intensities than the other species. In conclusion, consistent with numer-
ous field observations (see e.g. [57]), our results point out that sinking species
that are able to grow well under low-light conditions (like many diatoms) can be
strong competitors for light that may dominate the phytoplankton of temperate
regions during intense mixing in winter and early spring.

Numerical discussion

The integro-PDE system modelling the three-dimensional phytoplankton dy-
namics has been solved in two steps.

First, we discretized the spatial differential operators as well as the integral
term. The diffusion term has been discretized symmetrically. For the advection
term, we used the third-order upwind-biased discretization. The integral term
is approximated using the repeated trapezoidal role.

Next, the resulting ODE system has been integrated in time. Due to the
stiffness, we selected an implicit approach, viz. the family of BDF methods.
The automatic integrator VODE, which has actually been used, is based on
this family of implicit methods. Since the structure in the Jacobian gives rise to
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a laborious linear algebra owing to coupling of the competing species through
the integral term of the integro-PDESs, we implemented the Approximate Matrix
Factorization technique in VODE. The effect of this approach is that the cou-
pling of the unknowns in the linear systems is drastically reduced. As a matter
of fact, the only coupling that remains is in one spatial direction. As a result,
the total computational complexity for the Approximate Matrix Factorization
is linear in IV, the total number of unknowns, whereas directly solving the total
linear system would require O(N?) operations. Needless to say that such a
direct approach is simply unfeasible with N-values as large as 1.5 - 10°, as we
have used in our experiments. We have also argued (see Remark 1.1 in Section
1.3.2) that the Approximate Matrix Factorization approach will be much more
efficient than an iterative (Krylov-based) technique to solve the linear systems
within the Newton process. We have made plausible that a speed-up factor of
10 is quite realistic.

Experiments with two test examples indicate that unconditional stability
(A-stability) is a very useful property for the efficient and reliable solution of
the phytoplankton dynamics model. Therefore, in the range of realistic (i.e.,
low) accuracies, the version of VODE in which we restricted the order to 2
shows a superior behaviour. However, based on what we experienced with this
code, we believe that the numerical approach to solve this particular application
can be improved upon. For example, as already mentioned in Section 1.4.2, the
second test problem shows ‘wiggles’, i.e., small oscillations superimposed on a
smooth solution (see the right panel in Fig. 1.7). The origin of such oscillations
can be twofold: (i) spatial discretization and (ii) time integration.

For the spatial discretization of the advection terms we used the third-order
upwind-biased scheme. Although rather accurate and better than a symmet-
ric discretization, this choice does not guarantee that ‘wiggles’ will be absent.
In fact, this is only achieved with the first-order upwind discretization. This
choice, however, has the disadvantage of low accuracy and the introduction of
a large amount of artificial diffusion. A possible remedy to avoid the unwanted
oscillations and to maintain a high-order is to combine the third-order upwind-
biased discretization with limiters (see e.g. [38], p. 215). A disadvantage is,
however, that such a technique introduces additional nonlinearity in the scheme
which is a drawback when implemented in a fully implicit method such as used
in VODE.

The second source of oscillations stems from the time integration method.
Also here we encounter an order 1-barrier. Hence, the A-stability of the BDF2
method is not a sufficient condition to suppress ‘wiggles’. Indeed, the only
so-called positive method possessing this property is the BDF of order 1, i.e.,
Backward Euler. In passing, we remark that we also applied the Backward
Euler scheme to the second test example and observed that the ‘wiggles’ were
still present, although to a much smaller extent. Hence, in our application, the
spatial discretization seems to be the main reason for the ‘wiggles’.

Based on the above considerations and the characteristics given in Table
1.3, an implicit-explicit approach might be a promising alternative. With this
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approach we mean that the non-stiff terms in the model (i.e., growth and advec-
tion) are treated by an explicit time integration method and the (stiff) diffusion
terms are treated implicitly. In this setting, a third-order upwind-biased dis-
cretization combined with limiters only marginally complicates the algorithm
and Approximate Matrix Factorization can still be used to solve the three-
dimensional diffusion part. In this way we can avoid the Newton process since
the diffusion terms are linear. This approach will be subject of Chapter 4.






Chapter 2

On positive solutions in a
phytoplankton-nutrient model

On the basis of an application from aquatic ecology, we discuss the behaviour
of the widely used time integration package VODE by Brown et al. [8]. When
used in a default setting this code smoothly produces a negative steady state
solution, which is not realistic in this application.

2.1 Introduction

Phytoplankton, the generic name of microorganisms living in lakes, seas and
oceans [26], are at the basis of the aquatic foodweb. Their role for a proper
functioning of the aquatic ecosystem has been recognized for a long time and
has been widely studied both empirically [57] as well as theoretically [31, 15].

For their primary production of biomass, phytoplankton use photosynthesis
[42], a process where solar energy (light) and carbon dioxide are utilized. Due
to the sequestration of carbon dioxide, phytoplankton have a significant impact
on the reduction of the greenhouse effect on a global scale (see e.g. [17]).

In many regions (and some seasons) light availability is the major factor lim-
iting phytoplankton growth [70]. In other regions, and seasons, phytoplankton
growth is largely influenced by the availability of nutrients, such as nitrogen,
phosphorous, and iron (see [56, 7, 10]).

In this chapter we consider a model in which both limiting factors, light
and nutrient, are taken into account. These two factors give rise to contrasting
gradients since light is coming from above, whereas nutrients are supplied at
the sediment (see e.g. [43, 72, 13]). As a result, the vertical distribution of the
phytoplankton population can be quite heterogeneous in the sense that a large
aggregation of phytoplankton is formed at a subsurface depth, where both light
and nutrient are just sufficiently available to sustain a population.
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2.2 The mathematical model

Here, we describe the phytoplankton-nutrient model for one single species (a
multi-species extension of the model can be found in Chapter 5). The mono-
species formulation is sufficient for the purpose of this chapter: showing the
peculiar behaviour of the time integrator VODE [8].

We consider a water column in which the depth co-ordinate z runs from
z = 0 (the surface) to z = zp (the bottom). Furthermore, let w(z,t) denote
the population density of a phytoplankton species at vertical position z at time
t > 0. The distribution of phytoplankton is determined by the combined effect
of growth (the main biological factor) and local transport processes (the main
physical factor) through the partial differential equation

Ow oJ
— = - — 2.1
5~ 9Y T 5 (2.1)
where g and J are, respectively, the growth rate and the flux at depth z at
time t.
The flux J is determined by the convective transport, due to the settling
speed v and the diffusive transport, due to mixing,

J(z,t) = vw(z,t) — D(2) (Z_U;(z’t)’ (2.2)

where D(z) is the space-dependent mixing rate.

In our model, the growth rate g is assumed to depend on the light intensity
L and the nutrient concentration A. In fact, it depends on the balance between
the production rate p and the specific loss rate £ as given by

g(L,N) = p(L,N) — ¢ (2.3)

Here, the loss rate is assumed constant and represents grazing by zooplank-
ton, mortality, excretion, etc. The production rate p determines the growth of
phytoplankton and is defined by the two limiting environmental resources (i.e.,
light and nutrient) in the following way (see e.g. [43, 72]),

L N >

2.4
Ly+L Ng+N (2:4)

e~ in

where pu, Ly and Np, respectively denote the maximum specific production
rate and the half-saturation constants of light and nutrient.

Owing to shading and absorption, light intensity (the energy source) de-
creases with depth. At a particular depth, light intensity depends on the in-
cident light intensity L;,, the light absorption coefficient of the water in the
absence of phytoplankton K, and on the total light attenuation of the phyto-
plankton species above that particular depth (see e.g. [33]),

L(2,t) = Lip e Kooz g7 J5 wlot)do (2.5)
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where r denotes the specific light attenuation coefficient.

The change in the nutrient concentration N' — the second environmental
source that drives the growth rate g —is governed by the total amount of nutrient
converted by the phytoplankton species and by the turbulent diffusion

0. 0 0.
G0 = —ape w0+ o (DO T ED). e
where a denotes the conversion factor.

In summary, the phytoplankton-nutrient dynamics are studied through the
following system of integro-partial differential equations (integro-PDEs)

= (e e o5 - 2 (Peg)],
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To complete the model, we prescribe the following boundary conditions:
- Phytoplankton remains between two system boundaries: J(z,t) = 0 at

z=0and z = zp.
- There is no nutrient entering or leaving the surface: ON/9z = 0 at z = 0.

- Nutrient is supplied from the sediment: N (zp,t) = Np.

Remark 2.1. In this chapter we are interested in the long term behaviour
of the solution. Therefore, we derive an explicit expression for the biomass of
phytoplankton (i.e., the depth integral over the concentrations) in steady state.
Dividing the second equation in (2.7) by «, adding to the first equation in (2.7)
and integrating over space, results in

o [*P 1 #B D oN

where we have used the boundary conditions. Hence in steady state we obtain
for the biomass of phytoplankton

=B D ON

2.3 Numerical approach

For the numerical solution of the model (2.7) we follow the so-called Method of
Lines approach. That is, we first discretize the spatial differential operators as
well as the integral term in the light function. Subsequently, the resulting large
system of ordinary differential equations (ODEs), which is still continuous in
time, will be integrated numerically.
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For the spatial discretization we use the same method as described in [33]
and Chapter 1: symmetric second-order discretizations for the diffusion terms
(both in the equations for the phytoplankton species and for the nutrient) and
third-order upwind-biased formulae for the advection terms. For the integral
term the repeated trapezoidal rule has been used. For a detailed discussion on
these aspects, the interested reader is referred to [38].

The resulting stiff ODE system has been integrated in time by means of an
implicit method, because an explicit time integrator has to obey an extremely
severe time step restriction to avoid numerical instabilities. For the concept of
stiffness, as well as other technical details about the time integration process,
we refer to [24, 38]. For our simulations, we have selected the code VODE
of Brown et al. [8]. This widely used code is based on a family of implicit
backward differentiation formulas and proved to be efficient in many cases.
VODE includes all kinds of strategies, necessary for automatic integration. It
is available both in C and Fortran and is freely downloadable from the internet
site http://www.netlib.org/ode/.

2.4 Application
We will discuss the simulation results of the phytoplankton-nutrient model for

a sinking species (i.e., v > 0), the parameters of which have been specified in
Table 2.1. The environmental parameters are given the values D = 1cm?/s,

TABLE 2.1: Species parameters.

v r H Ly Nu / «
2 mo. otons mol nutrien
(92) (&) (L) (wmelbpotonsy (umolmuprient) (L) (const)
+4.2 3-1077 0.04 2.1073 2.1073 0.01 2-1073

Ky = 2- 1023 cm™!, 25 = 100m, Ng = 10 pmol nutrient /cm®, and L;, =
6 - 1072 ymol photons/cm?s. For the initial condition we assume that nutrient
is uniformly distributed over depth (i.e., equal to 10, Vz), whereas phytoplankton
is initialized according to a Gaussian profile with a maximum of 50 cells/cm?
at 50m (halfway down). Based on the experience that we obtained with the
simulations described in Chapter 5, we use an equidistant spatial grid with 500
points. Such a grid is sufficiently fine to adequately capture the spatial variation
in the solution.

To first obtain insight in the exact ODE solution, VODE was applied with
an extremely stringent value for the tolerance parameter. This solution is shown
in Fig. 2.1a. We see that initially the phytoplankton biomass strongly increases
(the peak near ¢t = 0). This is due to a bloom of plankton near the water surface,
since light and nutrient are amply available. This bloom causes a substantial
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consumption of nutrient, which starts to decrease in the upper water level. As a
consequence, also the phytoplankton concentration reduces over there (because
of alack of food) and its maximum shifts downward to a position where light and
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FIGURE 2.1: Left: phytoplankton biomass (solid line) and total amount of nutrient
(dash-dotted line) as functions of time. Right: distributions over depth (vertical axis,

in m) of light intensity (dashed line), phytoplankton density (solid line) and nutrient
concentration (dash-dotted line) at steady state.
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nutrient are just sufficiently available to sustain a phytoplankton population.
Already after about 400 days a stable stationary profile has been established,
which is shown in the right panel of Fig. 2.1a. In passing we remark that, using
a numerical approximation for A /dz at the bottom, it is easily verified that
relation (2.8) is indeed satisfied by the stationary solution.

Next we solve the problem with a coarser resolution in time: setting the
tolerance parameter to 10~# is more realistic in the present context of PDEs.
However, using this value, we observe an unacceptable behaviour of VODE:
it produces a fundamentally wrong solution (even negative components occur),
which is shown in Fig. 2.1b. Although the integration statistics (such as number
of time steps, number of rejected steps, number of Newton iterations to solve
the nonlinear implicit relations, etc.) did not give rise to any suspicion, VODE
returned a steady state with a completely wrong phytoplankton biomass and a
negative value for the total amount of nutrient. This is of course not feasible
(and hence unacceptable) and we did not observe such a behaviour before with
this time integrator. Here we remark that it is known (see e.g., [38, page 187])
that linear multistep methods of order larger than 1 (which are used in VODE)
have to obey a time step restriction for positivity reasons. However, in all
previous simulations, the local error control in VODE prevented the code to
converge to an unrealistic (i.e., negative) steady state solution. As an additional
experiment, we applied VODE with the maximum order set to 1 (viz. the
Backward Euler method, which has no step size restriction w.r.t. positivity).
This test indeed yielded the correct solution, however at a high price, since now
the time steps were kept very small to meet the accuracy requirements.

To prevent the unwanted situation corresponding to Fig. 2.1b and to avoid
the excessive costs when using an extremely small tolerance (or first-order
method), we implemented a provisional remedy by adapting the control strategy
in VODE: after each time step, all solution components are checked for positiv-
ity. If one or more negative components occur, the step will be rejected and the
time step is drastically reduced for a new try. Fig. 2.1c shows the results. Due
to this ‘brute force’ strategy, the solution remains positive and is in fact quite
close to the exact solution, shown in Fig. 2.1a. From this example, it is obvious
that positivity-control is of utmost importance for this application.

2.5 Discussion

We have shown the behaviour of VODE when applied to a model from microbi-
ology. In a default setting, VODE’s behaviour is not satisfactory, since it yields
negative solutions.

Hence, the lesson to learn is that using VODE as a ‘black box’ solver needs
precaution in case of an application where the positivity of the solution is a
prerequisite.

We have implemented an ‘ad hoc’ strategy to enforce positivity but this
approach is far from optimal. Therefore, in the next chapter, we will concentrate
on efficient time integration methods that guarantee positivity of the solution.



Chapter 3

Positivity for explicit two-step
methods in linear multistep and
one-leg form

Positivity results are derived for explicit two-step methods in linear multistep
form and in one-leg form. It turns out that, using the forward Euler starting
procedure, the latter form allows a slightly larger step size with respect to
positivity.

3.1 Introduction

We consider the initial value problem for a positive system of ordinary differen-
tial equations (ODEs) in R™

w(t) = F(tw(),

With positivity (actually, preservation of non-negativity) we mean that the so-
lution vector w(t) > 0, V¢t > 0 if W > 0. Here, and in the sequel, such
inequalities are to be understood componentwise. For such systems of ODEs
we will study whether we can obtain a similar property for the numerical so-
lutions W,, &~ w(t,), t, = nAt, At being the time step, and throughout this
chapter it is assumed that W > 0. Positivity is a natural requirement in appli-
cations where the solution represents, for example, densities or concentrations.
Moreover, the positivity condition is closely related to avoiding undershoots
near steep gradients (see e.g. [38]). In [37], the related concept of monotonicity
with semi-norms for linear multistep methods has been studied. Here we focus
on positivity and adapt the results obtained in [37].

In Section 3.2 we will present an extension in the case of explicit two-step
methods with forward Euler start-up (to compute W), and we will point out
the best method with respect to positivity, i.e., W, > 0 for n > 1, whenever
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W > 0. In Section 3.3 we consider the corresponding one-leg form and show
that this allows a slightly larger step size.

3.2 Positivity for linear two-step methods

Consider the following explicit linear two-step scheme

1
j=0
Observe that the freedom in scaling the coefficients has been used to set the
coefficient in front of W, 15 equal to 1. In the one-leg form we will use a different
scaling.
The scheme (3.1a) is of second-order accuracy if

a0:1_§7a1:£_2750:§_1761:g+1’ (31b)

where ¢ is a free parameter. We note that the scheme is zero-stable (stable
for the trivial equation w’(t) = 0, see [38]) if the condition —1 < ap < 1 is
satisfied, i.e., if 0 < £ < 2. In the remainder of this chapter we shall always
deal with methods that are second-order accurate and zero-stable. In [37], both
implicit and explicit methods have been analyzed. In this section we will extend
the results obtained in that paper for the explicit methods. For monotonicity
results with higher-order methods, we refer to [23, 36].

Following Shu [62], the step in (3.1a) is written as a linear combination of
scaled forward Euler steps yielding

1
ﬁ.

W0 =— E Q; |:Wn+]' + CjAt F(tn+]’, Wn+j)], cj = —j. (32)

=0 J

In the sequel we assume that there exists a Atgpg > 0 such that
v+ AtF(t,v) >0 forall v>0, t>0, 0<At<Atpg. (3.3)

Many ODEs originating from advection-diffusion problems indeed have a right-
hand side function F, for which (3.3) is a relevant condition (see e.g. [38]).
Then, if

B; >0 and o; <0, forj=0,1, (3.4)

and hence ¢; > 0, the terms within the square brackets in (3.2) are non-negative
under the step size restriction 0 < ¢;At < Atpg, j = 0,1. Therefore, W12 > 0
for all At < min(%, é)AtFE, for arbitrary values of Wo, Wy,--- W, 11 > 0.

However, for the class of explicit second-order two-step methods, condition
(3.4) for By leads to £ > 2. Combining this with the zero-stability requirement
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0 < ¢ < 2 gives £ = 2 as the only possible value. This, however, results in
¢1 = oo and hence At < 0. Indeed, for £ = 2 we obtain

Woso = [Wn - Wnﬂ] n [WM 4 OALF (tn1, Wn+1)].

Although the second term gives a positive contribution for At < %At rE, the
first term can be negative for arbitrary positive W, and W, ; which may
result in W12 < 0.

Fortunately, if we consider an appropriate starting procedure, a positive
result can be obtained [37, 36]. If W is obtained by the forward Euler method,
ie.,

Wi=Wgy,+ AtF(to, Wo), (35)

we have W > 0 for all At < Atppg (see (3.3)). By introducing a non-negative
parameter 6, which will be specified later, and subsequently subtracting and
adding ?W,,12_;,7=1,2,--- ,n+1, in (3.1a), in which the added terms with
j=1,2,--- ,n are again written in the form of (3.1a), we arrive at

W’I’L+2 = (_al - G)Wn+1 + ﬁlAt Fn+1
n—1
+ Z 07 [(—ag — 0oy — ez)Wn*j + (Bo + oﬂl)AtFn—j} (3.6)
=0

4ot [eﬂwl ~ oW + 9,30AtF0], n >0,

where F'; denotes F(t;, W ;). Since W was calculated by the forward Euler
method and oy = —1 — vy (see (3.1b)), this relation can be written as

W, io= (—al — H)Wn+1 + B1At F,
n—1 ]
+ S [(1 —0)(0 — ag)W,_j + (Bo + 651)AtF,,_; (3.7)
j=0

+ g [(0 — ag)Wo+ (0 + Bo)AtFO}, n > 0.

Considering this step as a linear combination of scaled forward Euler steps, we
see that if all coefficients are non-negative, i.e.,

_al_ezoﬂ /31ZOa
(1-0)(0—ag) >0, Bo+6B1 >0, (3-8)
0 —ag>0, 0+ By >0,

then W, 1o > 0 under the step size restriction At < v(0)Atpg, where

min<—a1—9 (1—9)(9—(10) 9—0[0)
B Bo+6B81 T 0+0o

= min (A(6), B(9), C(9)).

v(0)
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Obviously, the larger v(6), the better are the positivity properties of the scheme.
The conditions (3.8) define an eligible f-interval, viz. 6 € [fmin, Omax], Where

emin == maX(QOa _%a _BO) = _/607
Omax = min(—ay, 1).

Observe that A(f), B(6) and C(f) are monotonic decreasing functions of 6
(recall the condition 0 < £ < 2). Therefore, we obtain the maximal ~(f)-value

Ymax = min (A(amin)a B(amin)a C(emln))
B(Omin) = 555 if 0<€&< 2,

A(Oin) = 25 if 2 <¢

[\v]
+
ey
wio
IN
[\

Using the above considerations we can formulate the following theorem on the
positivity condition for explicit linear two-step methods.

Theorem 3.1. If W is obtained by the forward Euler method (3.5) then
the explicit two-step method (3.1) is positive under the step size restriction

At < YmaxAtpg where
. § 2-¢
=m — —— . 1

This Ymax is plotted in Fig. 3.1. The ascending part of the ymax-curve (i.e.,
for 0 < £ < 2) gives an improvement of the bound in [37]. We note that in
that paper only the minimum of A(6) and B() was considered in (3.9), leading
to a different value of 6,;,. The forward Euler starting procedure (3.5) was
introduced afterwards, but this does not lead to a positivity result for 0 < £ < %

S i e g :
N : : : : :
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Sk : 7 , . ;
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FIGURE 3.1: The values of Ymax (solid), A(Omin) (dashed), and B(fmin) (dash-dotted)
as functions of &.
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From Fig. 3.1 we see that, within the class of explicit second-order two-step

method, the optimal method with respect to positivity is the £ = % method
(known as the extrapolated BDF2 method [38]). The resulting value for ymax
is %
Remark 3.1. In (3.6), the sequence of subtracting and adding "W, 5 j was
performed until j = n+ 1. In [37] these terms were subtracted and added up to
j = n. It has been proved that the latter choice has no advantages compared
with the choice made in (3.6), i.e., does not lead to a more relaxed condition on
At (see the Appendix at the end of this chapter).

3.3 Positivity for one-leg methods

One-leg schemes were introduced by Dahlquist [12] to facilitate the analysis of
linear multistep methods. Therefore, it is of interest to study the positivity
properties of methods in the one-leg form. Similar to the preceding section, we
will consider explicit methods. We will see that the results are slightly better
than those derived for the linear multistep methods.

A natural scaling for one-leg methods is to require 8y + 81 = 1. Starting
from the linear multistep method (3.1) we multiply the coefficients by a factor

% to obtain
1
asWipio = Z [ —ajWyj+ B At F(ty,j, Wn+j)}, (3.11a)
§=0
where
1 2 1 1 1 1 1
= — -1 =1—-— = — = — — — = — —. 3.11b
o 5 , O §.7 Q2 57 BO 2 57 Bl 2+£ ( )
Since £ > 0 we have
0<as= —(041 + O[()). (312)
The one-leg form of (3.11a) reads
a2Wn+2 = - alwn-l-l —aogW, + AtF (Ea Wn+2) ) (3 13)

Wi = BIW i1 +BoW o,

where ¢ = Bit,y1 + Botn = tn + B1At. This one-leg method is second-order
accurate if the coefficients satisfy (3.11b).

In order to obtain positivity of W,,, n > 1, we follow an approach used in
[35] for a class of BDF2-type methods, applied to linear problems. Let us define

V=W, —0W,_1, 0[0,1), n>1. (3.14)
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Furthermore, we introduce the coefficients

*

af = —a; —a2f, a3 =—ap— a1 — a0 = (1 —0)(af — ap),
B1 = B, B3 = Bo + B10.

The parameter 6 in (3.14) and (3.15) will be chosen such that the coefficients
in (3.15) satisfy

(3.15)

Qi >0, Br>0, j=1,2 (3.16)

Assuming

V>0, Wy>0, (3.17)

we have the following theorem.

Theorem 3.2. Suppose that At < CAtrpg, with C = min (a—i, a—f), and 6
1 P2
is such that the conditions (3.16) and (3.17) are satisfied. Then V, > 0 and
W, >0 for alln > 1.
Proof. The formulae (3.13)—(3.14) give
asViis = aIVrH»l + CY;W” + AtF (E, Wn+2) s (318)

Adding CW ,, 5 to both sides in equation (3.18) we obtain
Vo = (CVI - C,BI)VH+1 + (a; — Cﬁ;)Wn + CWH+2 + AtF (Z, Wn+2) .

The coeflicients in this relation are non-negative, due to the definition of C and
(3.12). Therefore, V10 > 0 if

Vg1 20, W,>0, CW,yo+ AtF ([, W,2) > 0. (3.20)

The term CW,hLz + AtF (f, Wn+2) can be seen as a scaled forward Euler step.
Thus, it is non-negative if W,, ;2 > 0 and At < CAtpg. From (3.19) and (3.16)
we see that W, 1o > 0 if

Va1 >0 and W, >0. (3.21)

Combining (3.20) and (3.21) we have
V2 >0 if Vo >0 and W, > 0. (3.22)
By assumption, we know that V; > 0 and W > 0 (see (3.17)). Thus,
relation (3.14) gives W, = V1 + W, > 0. Moreover, (3.22) yields V5 > 0. As

aresult, Wo =V +0W; >0 (see (3.14)). Again by (3.22) we obtain V'3 > 0
which results in W3 = V3 + 0W4y > 0, etc. for all n > 4. O
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Let us now return to assumption (3.17). If W is calculated by the forward
Euler method then

Vi=Wi—0Wo=(1—0Wy+AtFy >0

under the additional step size restriction At < (1 — 0)Atpg.
Using the above considerations we can formulate the following theorem on
the positivity condition for the one-leg method.

Theorem 3.3. If W is obtained by the forward Euler method (3.5) and 6 is
such that condition (3.16) is satisfied, then the one-leg method (8.18) is positive
under the step size restriction At < y°Y(0)Atpg where

OL o . . o . —Q] — 0429 (1 — 9)((129 — ao) _ >
¥7*(0) = min(C,1 — ) = min ( 5 , Bo 1 Bi0 ,1—-6].
(3.23)

It is illustrative to compare this y°(#) with the v(#) derived in (3.9): Con-
dition (3.16) gives 0 € [Omin, Omax], Where

emin = max(z_ga _%) = _%’

Omax = min(—g—;, 1).
Observe that the terms in the minimum function in (3.23) are monotonic de-

creasing functions of #. Therefore, the optimal y°%()-value is obtained at
0 = Opin = 2=5 and is given by

2+¢
0k, —in (HEIC ) 3¢ )
T @+e7 '2+e)

(3.24)

The result is plotted in Fig. 3.2. From this figure we see that the best method

with respect to positivity is no longer the method with { = 5. The optimal
1 " T T T T T T T 5 =)
SISl C s e
0.8+ \.v\,.\.s,.\..\,.;, ........ it e 1—_6—" ..... ' ........ ............... 5
0.6 -+ omirvimin st \\\\;/, YOL ........... Reouism, ows e ) . T -
0.4 3 : ~Z : 3 1
0.2 : : .
0 | I | | | | | | |
0 02 04 06 08 1 12 14 16 18 2

FIGURE 3.2: Step size restriction for positivity of the one-leg methods (thick lines) and
of the linear two-step methods (thin lines, obtained from Fig. 3.1).
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method with respect to positivity is now the method with £ = %(\/ﬁfl) ~ 0.78.
The corresponding Yok, is then 1(v/17—3) ~ 0.56. Comparing (3.10) and (3.24)

max

we see that the one-leg method allows a slightly larger time step than the linear
two-step method with the forward Euler starting procedure.

Appendix

In this Appendix, we will show that the choice made in [37] has no advantages
compared with the choice made in (3.6), i.e., does not lead to a more relaxed
condition on At.

In (3.6), and hence in (3.7), the sequence of subtracting and adding was
performed until j = n + 1. If we subtract and add W ,15_; up to j = n into
(3.1a), as it was done in [37], we arrive at

Wiio= (ma1 =)Wy + B1At Fryy
n—2 )
+ Z ¢’ [(1 - 9)(9 o aO)Wn—j + (BO + eﬁl)AtFn—j (3‘25)
j=0

+6m [(*0&0 — 0o )Wy + (Bo + 051)AtF; — o yW o + 9,30AtF0],

with n > 1.

The first two lines of the right-hand side in (3.25) is non-negative if

max <a0, —'BO> = —@ < 6 < min(—ay, 1), (3.26)
B B
under the step size restriction
At < min ('3, A(9), B(0))Atrg, (3.27)
where T'y = % is to guarantee positivity of Wy (see [37]), because W acts as

the initial value of the sequence in the summation term in (3.25). The definition
of A(6) and B(0) is given in (3.9).

Since we start with the forward Euler method (3.5), the term within the
square brackets in the last line of (3.25) is written as

(—OZO —00(1 —6)W1 + (BO +0ﬂ1)AtF1 + (—00&0 +(5)W0 + (eﬂo +6)AtF0, (328)

where ¢ is introduced for optimality reasons and will be determined below. This
term is positive if

—Qg — 9a1 -0 Z 0, ,60 + 0,81 2 0, 700&0 + 0 Z 0, 950 + 1) Z 0, (329)
under the step size restriction At < f(§)Atrg, where

—040—9041—(5 —9060+5>
Bo+6B81 7 0By+6 )

f(8) = min < (3.30)
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In summary, W2 > 0 if the conditions (3.26) and (3.29) are satisfied and
At < ¥(0)Atpg,

with
3(0) = min (T2, A(6), B(6), D(8))
and
D(0) = max f(9).
Condition (3.29) gives —3p8 < § < —ap — Hay implying 6 > —% (note
a1 = 208y < 0). Together with (3.26) we have the condition on

o ife> 2,
min(—ay,1) > 6 > max (—%,—%) = A -3 (3.31)
v —% fE< 2,

Observe that both the terms within the minimum function in (3.30) are
monotonic decreasing functions of §. Thus, in the interval [—£¢0, —ag — O],
the maximal f(§)-value is obtained at § = —f3p6 and is given by

—ao — 8B
D) =max f(0) = ————. 3.32
(6) = max 1 (0) = .= (3:32)

As stated in Section 3.2, A(f) and B(f) are monotonic decreasing with 6.
D(#) is a monotonic decreasing function of 6 if £ > % and is monotonic increasing
with 6 if ¢ < 2. Thus, for £ > 2 the maximal 5(6)-value is obtained at § = —'g—‘l’
(see (3.31)) and is

_2-¢

%max = min (F27A(7BO/BI) y 00, OO) =Ty = 2+ ga

which is exactly the same result as given in Theorem 3.3 in [37].

For ¢ < 2, the maximal 5(6)-value is obtained either at the intersection
points of A(6), B(#) and D(6) or at the endpoints of the #-interval. By some
straightforward calculations, it turns out that 8 = —(y, the intersection point
of B(#) and D(0), gives the optimal 7(6)-value. Therefore,

&/max = min (FZa A(—ﬂo), B(—ﬁo), D(_BO)) = B(_ﬁO) = 2£T£
and the optimal d-value is § = —5pf = 62.

Using § = 62 in (3.28), we arrive at the formulation of (3.7), showing that this
formulation cannot be improved by changing the upper bound in the summation
term from n — 1 ton — 2 (n > 2), as was done in [37].






Chapter 4

Implicit-explicit methods

In Chapter 1 and Chapter 2 we have used the fully implicit code VODE [8] to
integrate the phytoplankton model. However, when used as a ‘black box’ solver,
VODE may easily produce negative solution components. This motivated us
to study positivity for linear multistep methods. By accuracy considerations
combined with modest memory demands, we restrict ourselves to second-order
two-step methods. A positivity analysis for these methods has been given in
[37] and an improvement for explicit schemes is shown in Chapter 3.

In a PDE context, positivity of an integration method also requires a posi-
tive spatial discretization (see the assumption (3.3)). Central discretization of
second order of diffusion terms is positive. For advection terms, the third-order
upwind-biased scheme, which has been used in Chapters 1 and 2, is not positive,
unless a limiting technique is used. However, the use of a limiter will add extra
nonlinearity to the system to be solved. This is a serious drawback when inte-
grating with a fully implicit integrator, like VODE. Therefore, we study in this
chapter a class of implicit-explicit (IMEX) methods, in which the advection and
(non-stiff) growth term are treated explicitly, whereas the stiff diffusion term
is treated implicitly. The IMEX methods considered are based on a family of
second-order two-step methods of linear multistep type.

We observe that the implicitly treated diffusion term gives rise to real eigen-
values. This property has been used in deriving a condition on the parameters
in the family of two-step IMEX methods such that the resulting stability re-
gion is the same as for the fully explicit counterpart. It turns out that the
IMEX-BDF2 method, resulting from the extrapolated BDF2 method, possesses
good stability properties when the advection term is discretized by upwind
schemes. Combined with the optimal positivity (Chapter 3) the extrapolated
BDF2 method is superior within the class of explicit two-step methods. This is
illustrated by two different advection test examples.

Finally, the resulting IMEX-BDF2 method shows advantages over VODE
when both are applied to the three-dimensional phytoplankton problem studied
in Chapter 1.
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4.1 Introduction

In many applications, positivity of numerical solutions, such as biological species
densities and chemical concentrations, is of utmost importance. A numerical
method lacking the positivity property can give rise to small oscillations, i.e.,
“wiggles” superimposed on a smooth solution. When solving a space-time de-
pendent problem, for instance an advection-diffusion-reaction problem, such
oscillations can originate from spatial discretization as well as from time inte-
gration.

For the spatial discretization, the second-order central scheme can be used
to discretize diffusion terms, while only the first-order upwind scheme guar-
antees the absence of “wiggles” coming from discretization of advection terms.
However, this choice has the disadvantage of low accuracy and the introduction
of a large amount of artificial diffusion. A possible remedy to avoid unwanted
oscillations and maintain high accuracy of the solution is to use the third-order
upwind-biased discretization scheme in combination with limiters. However,
this technique introduces additional nonlinearity in the scheme, which is a seri-
ous drawback when implemented in a fully implicit time integration method.

For the time integration, it is known that only first-order methods, e.g. the
Backward Euler method, can possess unconditional positivity, while higher order
methods lead to a restriction on the step size. However, the accuracy of first-
order methods is usually too low in practical applications. This disadvantage
can only be overcome by reducing the time step which leads to an expensive time
integration process. On the other hand, a high order scheme is more complicated
to implement. Therefore, as a compromise, we restrict ourselves to a second-
order linear two-step scheme. The second-order in time is usually sufficiently
accurate in a PDE context, whereas the overhead in implementing a two-step
method is still rather modest. Positivity analysis for two-step methods has been
given in [37] and an improvement for explicit schemes is shown in Chapter 3.

Unlike implicit schemes which are expensive because implicit relations have
to be solved in each integration step, explicit schemes are cheap since the so-
lution is found by explicit substitutions. However, explicit time integration
methods are only suitable for non-stiff terms, such as advection and (non-stiff)
reaction terms, because of their limited stability region. For stiff terms, e.g.
diffusion terms, which have a large range of eigenvalues, implicit schemes are
preferred because of their usually large stability regions. Therefore, a suit-
able mixture of implicit (IM) and explicit (EX) methods called IMEX methods,
might result in a more efficient algorithm. With this approach, the combination
of the third-order upwind-biased scheme and limiters applied to advection terms
and implemented explicitly no longer complicates the algorithm. In addition, in
case of a linear diffusion term, one Newton iteration suffices to solve the relation
in the implicit part of the IMEX method.

It is often seen that the stability region of the IMEX method is smaller than
that of the explicit counter part (see [21] and [38]). The eigenvalues of the
implicitly treated diffusion terms are real. This property can be exploited to
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construct a class of IMEX methods whose stability region coincides with that
of the explicit counter part (see also [21]). Within this class, we will choose a
method with a good stability constant.

4.2 Mathematical model and numerical approach

Consider the advection-diffusion-reaction problem

g—(:(:c,t) +V-(aw(z,t)) = V-(DVw(z,t))+g(w(z,t)), z € Q,

aw(z,t) — DVw(z,t) = 0, x € 0Q, (4.1)
w(z,0) = wo(z) >0, Vo €Q,

where t > 0, Q C R", the velocity field a is a vector of dimension n > 1,
D is a diagonal matrix of positive diffusion coeflicients D;,i = 1,--- ,n, and
g(w) denotes the reaction term. Since the application that we have in mind is
a phytoplankton model (see Section 4.4), we have chosen in problem (4.1) for
homogeneous Neumann conditions, i.e., all fluxes vanish at the boundary 92 of
the domain 2.

In order to find the numerical solution of problem (4.1), we follow the popular
Method of Lines (MOL) approach. By this we mean that the spatial discretiza-
tion and time integration are considered separately. We will combine various
spatial discretization schemes for different terms, i.e., advection, diffusion and
reaction terms. The resulting ordinary differential equations (ODEs), which
are still continuous in time, will be integrated numerically by a suitable ODE
method.

4.2.1 Spatial discretization

For simplicity of notation, this section considers the spatial discretization of
advection and diffusion terms on a one-dimensional equidistant grid. An ex-
tension to the multi-dimensional form is straightforward. The approximation
of the reaction term depends on the particular form of g(w) (see Section 4.4 on
phytoplankton dynamics, where we have a rather complicated g-function)?!.

The discretization scheme used here is based on the so-called finite-volume
method, in which we surround each grid point x; by a cell, at the boundaries
of which we approximate the flux F(z) = aw — Dg—:. Then, conservation
is achieved if %—5(:@) is approximated by (F(z;t1/2) — F(xi—1/2))/Ax, where
Tit1/2 = T %Am and Az denotes the grid size. Here, the velocity a and the
diffusion coeflicient D are supposed to be independent of w and given exactly
at the grid points x;11/2, at which w as well as its derivative g—“; need to be
approximated.

n this section, we omit the presence of t.
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For the diffusion term, we use the second-order central scheme. That is,

ow (LE ) o Wi+1 — W;
—(r, 1)~ ———
Oz 'tz Az

where w; stands for the approximation of w at grid point x;. In spite of its
simplicity, this discretization scheme is often successfully used in actual appli-
cations.

For the advection term, one can use the first-order upwind scheme. Although
it is positive, this scheme is in most cases too inaccurate and produces a large
amount of artificial diffusion. On the other hand, common higher-order dis-
cretizations may produce oscillating solutions (because of negative off-diagonal
elements in the Jacobian matrix, see [38]), which might result in negative so-
lution components. That is of course unphysical in many applications, such as
those involving densities and concentrations. In order to have better accuracy
than first-order, but still positivity, we can change to a high-order discretization
by a technique called limiting (see e.g. [38]). That is,

w; +P(0;) (wit1 — wy), if a(xi_l_%) >0,
w(@iy 1) ~ ) ‘
wir1 + ¥(g, ) (Wi —wit1), ifa(zi1) <0,
where
W; — Wi —
0=~ (4.2)
Wit1 — Wy

and the limiter function v satisfies the condition
1

and contains information on the discretization scheme. Associated to the third-
order upwind-biased scheme, the limiter function 1) can be chosen as [38, 44]

1

¥(©) = max (0, min(1, 3

+ %@, 9)), (4.3)
which aims to maintain the high-accuracy property of the third-order scheme in
smooth regions (where © &~ 1), whereas close to the extremum (where © < 0),
the limiter switches to the first-order upwind flux preventing the solution from
oscillations.

Different from the discretization of the diffusion term whose contribution
to the spectral radius is proportional to (Axz)~2 (called stiff), the impact of
the advection discretization scheme is smaller because its contribution to the
spectral radius is only proportional to (Az) ! (called non-stiff). Moreover, from
relation (4.2) we see that the limiter adds nonlinearity to the numerical scheme,
which is a drawback when using a fully implicit time integration. Therefore, the
advection part will be treated explicitly, whereas the diffusion part is integrated
implicitly. This mixture is known as an IMEX method. The computational
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advantage of an IMEX method is that the difficult, nonlinear advection part is
treated explicitly, which is simple, whereas the diffusion part, which needs to
be treated implicitly for stability reasons, is also quite cheap since it results in
the solution of a linear system with a band structure in the matrix.

4.2.2 Time integration

After discretizing the above spatial operators, we obtain an ODE system which
is still continuous in time and needs to be integrated. This system of ODEs will
be written in the form

dw(t)

S = Faltw(®) + Fr(tw(?), (44)

where the vector w contains all discrete solution components, F'g originates
from the discretization of the non-stiff terms (advection and reaction terms),
and F'; comes from the discretization of the stiff terms (diffusion terms).

In order to integrate (4.4) in time, we use an IMEX two-step method (see
Section 4.3), i.e.,

1
R(Wii2) =W, + ZajWn+j -
=0

! 2 (4.5)
Atpia ( > B Fu(tarj;Wnij)+ > B Frltyj, Wn+j))

j=0 j=0
= 0,

where W4, indicates the approximate solution of (4.4) at time level ¢,,+; and
Atpy1 = tpyo — tny1 is the time step. Provided that we start with a positive
spatial discretization, our purpose is to find the coefficients «;, 57, and 8; such
that the method (4.5) produces positive solutions and, in addition, has good
stability properties.

In order to solve the above implicit relation, which is implicit in F'; only,
one can use the modified Newton method. That is,

OF| _ _

I = BAtniq 8—w] [qurz - Wﬁé} =-R(W,3), k=1,2,---, (46)
where the superscript k& denotes the iteration index, I is the identity matrix,
and OF /0w is the Jacobian matrix that is occasionally evaluated along the
numerical solution.

4.3 Analysis of the IMEX method

As a stepping-stone of the IMEX method presented in this section, a general
second-order linear two-step method with variable step sizes is considered first.
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4.3.1 General linear two-step method for w'(t) = F(t,w(t))

Consider the following linear two-step scheme
1 2
Wois+ > Wiy =Atng1 Y B Fltntj, Waij) (4.7a)
i=0 i=0

with the current time step At,, 11 = t12 — tpy1 > 0. Let r = At,y1/At,. By
inserting the exact solution values into the scheme (4.7a) and using the Taylor
expansion around ¢,; the scheme is of second-order accuracy if

14+apg+a; =0,
1 —ag/r—Bo—p1—P2=0,
].+010/’I"2+2,80/’I"—262:0,

yielding
050:7‘_55 alz_l_r+£a
4.7b)
Cor+l ¢ TS B (
Bo = — 5 To. T B = 5 +§*(7"+1)77a B2 =,

where ¢ and 7 are free parameters. We note that the scheme is zero-stable
(stable for the trivial equation w’(¢) = 0, see [38]) if the condition —1 < ap < 1
is satisfied.

In modern practice, ODE problems are usually integrated with variable step
sizes. This approach leads to small (large) step sizes in regions of rapid (slow)
variation of the solution, resulting in efficient computations in term of CPU time
versus accuracy. However, for the sake of the analysis of stability and positivity,
a constant step size At will be used. Hence, in the sequel of this subsection we
will set r = 1.

Stability

Stability of linear multistep methods is studied mainly for linear ODEs and in
particular for the familiar scalar test equation w’ = Aw(t) with A € C™ repre-
senting eigenvalues of the semi-discrete system. For this scalar test equation,
the scheme (4.7a) leads to the recursion

(]. — Zﬂz)Wn+2 + (011 — Zﬂl)Wn+1 + (Ol() — Zﬂo)Wn =0, (48)
where z = AAt. This recursion has the characteristic polynomial
(1 - ZB2)§2 + (011 - Zﬁl)g + (Ot() - Z,Bo) (49)

The stability region S C C of the linear multistep method is defined as the set of
all z for which the sequence {W,,} in (4.8) is bounded. It is well known that this
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requirement is equivalent to the root condition of the characteristic polynomial
(4.9), that is, the set of all z for which the roots (;,7 = 1,2, of (4.9) satisfy

[¢i] <1 and |(;| <1 if ¢; is not simple. (4.10)

To determine S, we use that on the boundary 98, at least one of the roots of
(4.9) has modulus 1. Therefore, on S we have

(1= 2B2)e*® + (o1 — 2B1)e™ + (a0 — 2B0) = 0,

i.e.,
€2 + a1e’ + o
_ : : . pelo,2n].
‘ B2€e%® + Breid + By ¢ € [0, 2]
The method is called A-stable if
SO {ze€C:Rez<0}, (4.11a)

i.e., X is supposed to lie in the left half-plane, and is called A («)-stable if
SO Wa={z€C:|arg(—2)| < a,z #0}, (4.11b)

i.e., A is supposed to lie in the left half-plane within an infinite wedge with
angle o with respect to the negative real axis. The scheme (4.7) with » = 1 is
A-stable iff 8, > 1 (see [37]).

4.3.2 The IMEX two-step method
Applying the scheme (4.7a) to the ODE system (4.4)

d

& = F(t,w) = Fu(t,w) + Fi(t, w)

and extrapolating the non-stiff leading term F g (tp40, W,42) as
Fg(tni2, Wata) = (r+1) Fp(tnt1, Wayt) — 7 Fp(ts, Wy)

we obtain the IMEX-scheme (4.5), with the coefficients g, a1, By, 51 and B2 as
given in (4.7b) and

Bi=bo—rps  =- TPl S -
4.12
Bi=ptring= i1yl

which are the same as setting 1 in (4.7b) to zero. The scheme is of second-
order accuracy, because it originates from the second-order two-step scheme
and second-order extrapolation (see [38], p. 387).
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Stability

In this subsection, we study the stability of the IMEX method (4.5) applied to
the scalar test equation w’ = Aw + xkw, where A and k denote the eigenvalues
of the non-stiff part and the stiff part, respectively. Again, we will perform the
analysis for the case of a constant step size At. Stability of (4.5) is determined
by the location of the roots of the characteristic equation

1 1 2
C+ D il - AAEY BT kALY B¢ =0. (4.13)
j=0 j=0 j=0

That is, a root ¢ has to obey the requirement |¢| < 1, with strict inequality for
multiple roots. Dividing this equation by (2, replacing AAt and kAt by X and
K, respectively, and substituting

z = ]-/Ca A(Z) = 1+a12+a0225 B(Z) = 5{2+53227 C(Z) - BQ+612+/80Z27
the characteristic equation (4.13) is transformed into
A(z) — AB(z) — kC(2) =0, (4.14)

where |z| > 1 is the requirement for stability, with strict inequality for multiple
roots. Thus, the necessary condition for stability is

Kk # oa(z) == |A(z) — )\B(z)} /C(z), for all |z| < 1. (4.15)

This condition implies that ¢ must map a unit circle into the complement of
the region containing . Note that, if the derivation of this criterion was used for
the equation (4.13) instead of (4.14), the exterior of the unit circle (i.e., |{| > 1)
would had been considered. This is of course not a good choice, emphasizing
the beauty of the transformation z = 1/¢ that has been used. Apart from the
possibility of multiple roots, criterion (4.15) is also a sufficient condition for
stability.

Under the criterion (4.15), Frank et al. [21] determined what condition on
the location of A\ ensures stability of the method for all k in the left half-plane.
However, this usually leads to a less favorable stability region, i.e., smaller than
the stability region denoted by S of the explicit version (obtained by setting
F; =0). This is due to the demand of A-stability with respect to . In our
application however, x lies on the negative real axis, i.e., kK € Wy, because it
originates from central discretization of the diffusion term (Section 4.2). There-
fore, the A-stability requirement is too demanding for this application. The
question is whether or not the IMEX method is stable for arbitrary A € S if the
knowledge of k € W is taken into account.

Because k € Wy, ¢a(z) therefore must lie in the complement of the wedge
W, i.e., |arg(pa(z))| <, for all |z] < 1,A € S. We know that

larg (pa(2))] = larg (A(z) — AB(z)) — arg (C(2))|
< |arg (A(z) — AB(2))[ + | arg (C(2)) |-
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Thus, if we have
1 1
larg (A(z) — AB(z))| < 5™ +v and |arg(C(2))| < 3T~ ¥ (4.16)

for all |z] < 1, X € S, the IMEX method is stable for arbitrary A € S (see [21]
for a more general result).

To determine v, we note that a polynomial ¢ + bz + az? with roots z; and
29 can be written as ¢ + bz + az? = ¢(1 — Z)(1 = Z). Thus, A(z) — AB(z) =
(1 — ¢12)(1 — (22), where (3 and (s, are the characteristic roots of the explicit
method, i.e., the roots of (4.13) with x = 0. As mentioned in Section 4.3.1,
for any choice of X in S, these roots satisfy |Ca] < |¢1] < 1 (see (4.10)). Thus,
1—¢1z and 1 — (22 map the unit circle ((0,0),1) into two circles ((1,0), [(1])

and ((1,0),|¢2|) in the right half-plane. By geometrical considerations we have

larg(A(z) = AB(z2))| < [arg(l — i2)[ +[arg(1l — (22)]|

IN

arcsin |¢y] + arcsin | (3|

< & +arcsin(maxyes [¢2]), Vlz| <1,x€eS.

The second inequality changes to an equality when |z| = 1. The last inequality
changes to an equality when A € dS (see [21]). Therefore,

v= arcsin()r\rézgé [C2]). (4.17)

Remark 4.1. Being solutions of (4.13) with k = 0 and A replacing AA¢, (y
and (5 satisfy

G+¢ = —ar+ A5,
GG = a— 5.
Multiplying these two equations by 55 and (7, respectively, we obtain

Bo (C1+¢2) + 81 ¢ ¢ = —a1 By + a0 B
Thus, for A € 0S, we get (; = €'® and

aofi — aufy — Bye'?

By +Bieit 7
Remark 4.2. We know that C(z2) = B2 + 81z + Boz?. Its argument is easily
found if 81 = 0. Because, in that case C(z) = B2 + Bo2% = B2(1+ g—gz2) Hence,
arg(C(z)) = arg B2 + arg (1 + %z2> = arg (1 + %z2> if B > 0. The assump-
tion B2 > 0 is usually imposed for important properties of implicit methods,
such as monotonicity, positivity and boundedness (see Section 3.3). We note
that 1+ 2—222 maps the unit circle ((0,0),1) into the circle ((1, 0), ), which

G = ¢ € |-m, 7. (4.18)

Bo
B2
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is completely in the right half-plane if B—Z < 1. If this condition is satisfied, we
obtain
larg (C(z))| = |arg <1 + %z2> < arcsin | —
2 2

Therefore, we consider the IMEX method with 5; = 0 leading to n = %
(cf. (4.7b)), i.e,

Woa+(E=2)Wy + (1 =W, =
(5 + DAt Fp(tnr, Wait) + (5 — DAL Fp(te, W)+ (4.19)

TNt Fr(tnga, Waga) + 272 At Fr(tn, Wa).

With this n-value, the implicit version (obtained by setting F'g = 0) is A-stable,

because n > % Moreover, g—‘z’ = ‘325;52‘ < 1. Hence,
3¢ -2
larg (C(z))| < arcsin 2£T§ (4.20)

Formula (4.18) gives

(2—&)e’ — (262 — 3¢ +2)
2+ -(2-¢ |

mﬂ=\

from which we derive
2 _ o
G = 1) =52,

where A, B,C,D > 0 and

A [(2-6)%+(2¢6* - 36 +2)*]/ 2,
B = (2-¢)(2€*-3¢+2),

C = €£2+4,

D = 4-¢&,

X = coso.

Since f'(X) = % <0, we have

Therefore,
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Using (4.17) we then have

(4.21)

. + .
UV = arcsin — .~ — arcsin

C+D

Combining (4.16) and (4.20)—(4.21) we formulate the following theorem.

Theorem 4.1. The IMEX method (4.19) is stable for all X € S and K € W
if &€ satisfies

36 -2 ™ (-1 +1
- — _— . 4.22
aresin = ¢ < | 5 —arcsin 5 (4.22)

The corresponding &-interval is shown in Fig. 4.1.

1.5

FIGURE 4.1: Dash-dotted line: arcsin % Dashed line: 7 — arcsin % Solid
lines show the interval of &-value in which the IMEX method (4.19) is stable for all A € S.
The boundaries of this interval are indicated by dotted lines.

Example 4.1. Consider the IMEX-BDF2 method (¢ = 2,7 = 2)

Wn+2 - %WnJrl + %Wn - %AtFE(t'rH»la Wn+1) - %AtFE(tna Wn)+ (4 23)

%AtFI (tnt2, Whio).

From Fig. 4.1 we see that the method (4.23) satisfies condition (4.22) and hence
is stable for arbitrary A € S.

Example 4.2. The inequality (4.22) applied to the IMEX-ADAMS method
(E=1,n= %), ie.,
Woio = W= SAtFg(tni1, Wagt) — sAtFp(t,, W,)+ (4.24)
%AtFI(tn-i—% Wn+2) + %AtFI(tna Wn)a

gives stability of the method (4.24) for all A € S.
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Example 4.3. The IMEX method (4.19) with (¢ = 13,7 = 13), i.e.,

Wn+2 - %Wn+1 — 15_3Wn =
%AtFI(tn—i-Qa Wn+2) + %AtFI(tn, Wn),

satisfies (4.22), see also Fig. 4.1. Hence, the method is stable for all A € S.

This IMEX method has been constructed with a special reason. The £-value
% has been chosen to give its explicit version (obtained by setting F'; = 0) the
same CFL number? as the explicit version of the IMEX-BDF2 method (4.23).
Here, this CFL number is based on a linear advection model, discretized by the
third-order upwind-biased scheme and turns out to be 0.46 (see Table 4.1 and
[38, p. 389]). Hence, with respect to stability, the step sizes of both methods
have to satisfy the same condition.

As we have seen, the stability of the IMEX method with F'; possessing a neg-
ative spectrum is largely determined by the stability region S of the explicit
version of the method. Therefore we plot in Fig. 4.2 the stability regions S of
the above example methods.

0.5 0.5

1 - 1
Z15 -1 -05 0 215 -1 -0.5 0 Z15 -1 -05 0

FIGURE 4.2: Filled regions: Stability regions S of explicit methods with £ = 2 (left),
& =1 (middle) and £ = 1% (right). Dotted lines: Scaled eigenvalues of the third-order
upwind-biased discretization scheme.

4.4 Numerical illustrations

We will start this section by considering a simple test model, i.e., a one-
dimensional, scalar, constant-coefficient advection model, integrated with con-
stant step sizes. The ultimate test example is a realistic application from marine
ecology, i.e., a three-dimensional model of phytoplankton dynamics, which is
presented in terms of a nonlinear integro-PDEs of advection-diffusion-reaction

|a

2That is, the maximal value of Alit, where a denotes the advection coefficient.
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type. However, before treating the full phytoplankton model we will consider -
as an intermediate study - a simplified version of this test model: (i) only the
advection terms with a space-dependent velocity field are taken into account,
and (ii) we restrict ourselves to two space dimensions. For the one- and two-
dimensional advection problems, the explicit versions of the IMEX methods will
be used. The absence of stiff diffusion terms justifies this choice. The major aim
of these tests is to select the best &-value from the ones that we have discussed
so far. To be more specific, we will compare the methods with £ = %, 1, and %,
i.e., the methods (4.23), (4.24), and (4.25), all with F'; = 0. As we will see, the
method with £ = % shows the best performance. Therefore in the final section
discussing the full plankton model, only this ¢é-value will be used. Furthermore,
the corresponding IMEX method will be compared with VODE, a widely-used
time integrator based on the fully implicit BDF-methods. Here we remark that
VODE has also been used in the preceding chapters to solve the phytoplankton
model.

4.4.1 One-dimensional advection test

Consider the one-dimensional advection problem

%—t—i—g—‘;:ﬂ, t>0, 0<z<1, (4.26)
with periodic boundary condition and initial value w(z, 0) = (sin(rz))"*". When
positivity of the numerical solution is a prerequisite, it is essential to use a
positive spatial discretization scheme. For instance, the non-limited third-order
upwind-biased scheme gives rise to a negative solution (Fig. 4.3a), whereas we
obtain a positive solution if the limiter (4.3) is used (Fig. 4.3b). Therefore, in
this test model, as well as in all subsequent applications, we will only consider
the limited third-order upwind-biased scheme.

1 1
I\l I“
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
01 i 0
0.2 0.2
a) 0 0.2 0.4 0.6 0.8 1 b) 0 0.2 0.4 0.6 0.8 1

FIGURE 4.3: ODE solutions (solid lines), at t = 1, obtained by the third-order upwind-
biased scheme without (left) and with (right) limiter. The dashed lines indicate the exact
PDE solution. Az = 1072,
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Test on stability

At points with large spatial variation in the solution, the limiter switches to the
first-order upwind scheme, to prevent a negative solution; in smooth regions,
the third-order upwind-biased scheme is used. Let vy and v3 denote the CFL
numbers, i.e., maximal value of At/Az, of the first-order upwind scheme and
the third-order upwind-biased scheme, respectively. The v;- and v3-values of the
explicit versions of the methods (4.23), (4.24), and (4.25) are listed in Table 4.1.

TABLE 4.1: CFL numbers of the £ = 12, ¢ =1, and £ = 2 methods.

f=1s £=1 £=12

(Special method) | (ADAMS method) | (EBDF2 method)
121 0.3076 0.5000 0.6666
V3 0.4615 0.5801 0.4617

Note, however, that CFL numbers are the result of a stability analysis applied
to the linear advection model problem, whereas the use of a limiter gives rise to
a nonlinear model. Nevertheless, it is an interesting experimental observation
that stability is critically determined by the value of min(vq,v3), as we will
demonstrate now.

Let us first consider the & = % and ¢ = 1 methods. Taking At/Ax
slightly smaller than the critical value min(vy,v3) = v, both methods are sta-
ble (Figs. 4.4a,b). However, for At/Az slightly larger than min(vy,v3) these
two methods give unstable solutions (Figs. 4.4d,e).  This behaviour can be
explained, somewhat heuristically, as follows: due to a lack of positivity and/or
the development of local instabilities, it might happen that some oscillations
show up in the solution (see Figs. 4.4a,b). In that case, the limiter will switch
to the first-order upwind scheme with, as an effect, smoothing of the solution.
In fact, the more oscillatory the solution is, the more often this scheme is used.
Consequently, stability of the methods is mainly determined by vy, which is
smaller than v3 for the £ = % and £ = 1 methods (see Table 4.1). Therefore,
when At/Ax exceeds vy = min(vy, v3) the CFL condition is frequently violated
and these methods show an unstable behaviour.

Next, we consider the EBDF2 method, i.e., £ = % As shown in Fig. 4.4c,
this method behaves stable for At/Az < min(vy,v3) = vs. When At/Az
exceeds the vs-value some oscillations occur due to a lack of positivity and/or
the development of local instabilities (see Fig. 4.5a). Then, the limiter reacts
with a switch to the first-order upwind discretization and, again, the stability is
mainly determined by ;. Since v; > v3 for the EBDF2 method such a switch to
first order will favour the stability of the method. Different from the two above
methods, this method is still stable for At/Az > min(vy,vs) (see Figs. 4.4f
and 4.5a). However, if At/Ax exceeds v4 = max(vy,v3), instabilities quickly
develop (see Fig. 4.5b).
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FIGURE 4.4: Test on stability of the £ = 1, £ = 1, and £ = 2 methods. The time

interval is sufficiently large, i.e., t = 4, to allow development of instability. The ODE
solution is indicated by dashed lines. Az = 1072.
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FIGURE 4.5: The EBDF2 method with Az = 1072 and ¢ = 4.

In summary, the experimentally observed critical stability condition is largely
determined by the min(vy,v3)-value. Moreover, for methods with vy < v3, like
the £ = % and £ = 1 methods, the use of a limiter is a disadvantage with
respect to stability. For methods having vy > v3, such as the EBDF2 method,
the use of a limiter allows a larger time step. An overview of the vq- and vs-
values of the class of explicit second-order two-step methods, parametrized by
&, is shown in Fig. 4.6. This figure suggests to choose £ =~ 0.9 since that -
value yields 1 = v3 &~ 0.57 resulting in the largest possible min(vy, v3)-value.
However, we refrain from considering this £-value since it yields a positivity
constant Ymax ~ 0.4 (see Fig. 3.1). Because the positivity constant is usually
more restrictive than the CFL-number, we prefer a method with an optimal
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FIGURE 4.6: The CFL numbers vy (solid) and v3 (dashed) of explicit second-order
two-step methods.

~Ymax- Lhis criterion is in favour of the EBDF2 method.

Test on positivity

In Figs. 4.4a,b At/Az satisfied the stability requirement for both individual
schemes, i.e., the first-order upwind scheme and the third-order upwind-biased
scheme. Nevertheless, the solutions show oscillations which are probably due to
neglecting the positivity requirement. We recall from Section 3.2 the positivity
condition

At S “Ymax AtFE (427&)
Using limiter (4.3), we obtain (see [38, p. 221])
1
AtFE = §AI (427]:))

The values of Yax for the three above methods are listed in Table 4.2 (see also
(3.10)). If we take At such that the positivity condition (4.27) is satisfied, the
solutions do not oscillate and closely resemble the ODE solution as shown in
Fig. 4.3b.

TABLE 4.2: Positivity constants ymax of the § = 12, ¢ =1, and £ = 2 methods.

£=1s £=1 £=12
(Special method) | (ADAMS method) | (EBDF2 method)
2 1 1
Ymax 1 3 3

We remark that the value of Atpp in (4.27b) was found by the sufficient
condition for positivity of the forward Euler method. In practice, however, this

turns out to be too restrictive. In theory, the £ = %, =1land ¢ = % methods

are positive for & = L 1

As and i, respectively. Nevertheless, these three

11 62
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FIGURE 4.7: Test on positivity of the £ = 12 (solid), £ = 1 (dash-dotted), and ¢ = 2
(dotted) methods. Solutions are plotted at ¢ = 1. The ODE solution is indicated by
dashed lines. Az =102

methods still give positive and non-oscillatory solutions for larger values of %
(see Fig. 4.7). In the first panel, the three solutions are positive, although the
&= % method shows a less accurate solution. If we increase %, this method
gives rise to an oscillatory solution (second panel). The two other methods
still give positive and accurate solutions. If we further increase the ﬁ—;—value,
the ADAMS solution starts to oscillate (see Fig. 4.7c). The first-order upwind
scheme is then often used, resulting in extra damping of the solution. The
EBDF2 method still behaves satisfactory. The £ = % method is not included
in this panel, simply because it is unstable. From Fig. 4.7, we conclude that the
larger the ymax-value, the better the method performs with respect to positivity.
In this respect, the EBDF2 method shows the best performance.

Damping property

Apart from better stability and positivity properties, there is a third reason
why the EBDF2 method is superior to the other methods: a stronger damping
of the high frequency modes. We shall say that a method has good damping
properties if the moduli of the characteristic roots are significantly smaller than
1, especially for the high frequencies which often are a cause of oscillations. The
characteristic roots (; and (> depend on the coefficients of the method, on At,
and on the eigenvalues of the discretized system.

Let us first consider the situation where At has been chosen as large as
possible w.r.t. stability (i.e., using the maximal Courant number). In Fig. 4.8
we plot the values of (s := max(|¢1],|¢2]) of the EBDF2 method, the ADAMS
method, and the £ = % method as a function of the spectrum of the ODE
system. Here we distinguish between the third-order upwind-biased discretiza-
tion scheme (left panel) and the first-order upwind discretization scheme (right
panel). We show both spatial discretization schemes, since the limiter (4.3) that
we use may cause a change from one scheme to the other.

For the high frequency modes, we obtain the value {3 ~ 0.63 for the EBDF2
method and (jr ~ 0.71 for the ADAMS method (Fig. 4.8a). Both values are

substantially below one, showing strong damping of these methods when the
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FIGURE 4.8: The maximum of moduli of the characteristic roots of the EBDF2 method
(solid lines), the ADAMS method (dashed lines), and the £ = 15 method (dash-dotted
lines) when their maximal Courant numbers are used.

third-order upwind-biased discretization scheme is used. Hence, the damping
properties of the EBDF2 method are slightly better. The £ = % method does
not damp the high frequency modes, because it has {3y ~ 1. This observation
is confirmed by the stability regions shown in Fig. 4.2: observing that the high
frequency modes correspond to the left part of the (scaled) eigenvalue curve,
the damping property of a method can be roughly measured by the distance
between this part of the curve and the left boundary of the stability region. The
EBDF2 method indeed shows the largest distance, whereas the £ = % method
has a zero-distance. For the first-order upwind scheme, we see from Fig. 4.8b
that {ar =~ 1 for all three methods, showing that the high frequency modes are
hardly damped in this case.

In the above considerations, the damping property was studied for maximal
Courant numbers of the methods (see Table 4.1). It is interesting to see how
the damping property of these methods depends on the Courant number. As
stated above, we are particularly interested in the damping of the high frequency
modes. Therefore, we plot in Fig. 4.9 the values maxgrn(Cps), where HFM
indicates that we only consider the upper part of the spectrum. Again, the two
panels correspond to the two discretization schemes.

Fig. 4.9 shows some interesting results: in the left panel (i.e., the third-
order upwind-biased scheme) we see that the EBDF2 and ADAMS methods
have maxgrm (Car) less than 1 when the Courant number reaches the associated
critical value (indicated by dots in the figures). This indicates that the stability
is determined by the low-frequency modes for these methods. Again, this can
be understood if we consider the stability region in Fig. 4.2: the eigenvalues
corresponding to low-frequency modes are very close to the boundary of the
stability region. The situation is different for the method with ¢ = %, where
the high-frequencies determine the CFL-number.
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FIGURE 4.9: Damping property of EBDF2 method (solid lines), ADAMS method (dashed
lines), and the £ = 2 method (dash-dotted lines) for different values of the Courant
number. The dots correspond to the maximal Courant numbers of these methods.

For the first-order upwind scheme (Fig. 4.9b) the maximal time step is com-
pletely determined by the high frequencies since the points for which maxgenm (Car)
equals 1 coincide with the critical value of the CFL-numbers of all methods.

As a conclusion of this subsection, we can say that the EBDF2 method is
superior to the other integration methods in terms of stability, positivity, and
damping properties.

4.4.2 Two-dimensional advection problem

In this section we will consider a simplified version of the phytoplankton model
studied in Section 4.4.3. To that end we restrict ourselves to two spatial di-
mensions and concentrate on the most important term, i.e., the advection term.
Therefore, we will still use the explicit version of the IMEX methods, similarly
as in the preceding section. An important difference with that section is that
we will now use variable step sizes based on local error control. Furthermore,
the parameters that we need in this test model have been given realistic values,
in correspondence with the full plankton model.

Again we will compare the various £-values characterizing the methods and
we will see that the conclusion is the same as the one we have drawn for the
model problem: the EBDF2 method (based on ¢ = %) is to be preferred.

The 2D advection model that we consider in this subsection is given by

Ow  I(aw)  Oagw)
ot " or T oy

=0. (4.28)

The space-time domain is given by (z,y) € [0,X] x [0,Y], ¢t € [0,T] with
X =Y =10* cm, T = 5 days. The divergence-free velocity field a = (a1, a2)
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describes the horizontal water flow and is given by (see Fig. 4.10a)

ar(z,y) = ~Ti04x sin2(7r£) sin(27rg),
5 X Y (4.29)
Ty .o, Yy T ’
az(z,y) = —{—310 Y sin (ﬂ'?) sm(27r§),

both components are in cm/s. The solution w represents the concentration of
phytoplankton and is initialized as (see Fig. 4.10b)

wo(z,y) = Ce 10°-05Y)" o — 5 cells/cm®. (4.30)

The problem has been discretized on an uniform 50 x 50 spatial grid. For some
particular points in time, Fig. 4.11 shows the solution.
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FIGURE 4.10: Left panel: the velocity field a = (a1,a2). Right panel: the initial value.
Along the axes, the units are presented in m and this will be the default unit throughout

similar plots.
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FIGURE 4.11: Snapshots of the solution at particular points in time. Dark coloured
regions correspond to larger solutions.

We solve the resulting ODE system by the method (4.7) with n = 0. The
variable step size that we use is subject to two restrictions: (i) the value that is
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suggested by the local error control mechanism, and (ii) by the CFL condition.
The actual time step that we use is the minimum of these two. The local error
control is based on the first-order estimator given by (5.9) in [38, p. 204]. That

is,
r

1+7r

where r = At,1/At, is the step size ratio. For the first step, the formula
(5.11) in [38, p. 204] is used, i.e.,

HWn-&-? - (1 + T)Wn—&-l + TWn”Za

1
§HW1 — Wy — AtgF(to, Wo)ll2-

The step size is chosen such that the estimated local error is close to the specified
tolerance. For crude tolerance values it might happen that the CFL condition
is more restrictive. Therefore, the new step size At,, ;1 is always restricted by

|a1(llay)‘ ‘ag(fﬂ,y”
At, < . 4.31
+1?zz>§< Ar T Ay v (4:31)

Hence, for the velocity (4.29), and using Az = Ay, the maximal value for the

: . 20Az
step size is set to Vaan

For several values of v, Table 4.3 contains integration statistics (the total
number of steps and number of rejected steps) for the various methods with
&= %, &= %, and £ = 1. The actual v-values are the critical CFL-numbers
v1 and vz as listed in Table 4.1. Detailed performance of these methods with
v = min(vy,v3) and v = max(vq,v3) is shown in Figs. 4.12a and b, respectively.
From the table and the figure, the £ = % method is seen to be the most robust
integrator. This will now be discussed in some detail:

TABLE 4.3: Two-dimensional advection problem. NST (= number of accepted steps
+ number of rejected steps) and NETF (= number of error test failures, i.e., number of
rejected steps) for the £ = %, &= %, and £ = 1 methods. The tolerance is set to 107>,
T =5 days.

, | =% €= (=1
NST NETF | NST NETF | NST NETF
0.30 | 5907 0 | 5887 5887
0.46 | 4171 18 | 3866 3867
0.50 | 4177 68 | 3571

0.58 | 4458 381 | 3111
0.66 Unstable 2775
00 Unstable 2756
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c) No step size restriction. The & = % method is simply unstable and hence is
not included here.

FIGURE 4.12: Two-dimensional advection problem: Performance of the £ = 15 (red
lines), £ = 2 (green lines) and £ = 1 (blue lines) methods. Left: the step size. Right: the
L5 local truncation error; the dashed lines indicate the corresponding (same colour, dash
style) reference tolerance, i.e., RTOL |[|W,.42||2, RTOL=10"".
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Setting v equal to min(vy,v3) (Fig. 4.12a), both the individual spatial dis-
cretization schemes, i.e., the first-order upwind scheme and the third-order
upwind-biased scheme, are stable. All three integration methods perform well.
The local errors (the right panel) are always smaller than the reference toler-
ances, especially in the last part of the integration, and error test failures did
not occur. After the transient phase all methods have increased the step size to
the maximal, CFL based value and this step size has been used until the end
of the integration interval. Consequently, the £ = % method needs the largest
number of steps because it has the smallest min(vy, v3)-value.

Next, we set v equal to max(vy,v3) (Fig. 4.12b), and hence one of the indi-
vidual discretization schemes is locally unstable. Except for the £ = 1 method,
the other two methods give an oscillatory behaviour of the At-curve.

With v = max(vy,v3) = 0.46 the £ = I3 method integrates with a wild-
oscillatory At-curve (left panel, Fig. 4.12b). The local error (right panel) is
quite close to the reference tolerance. In the first 600 steps, the local error often
exceeds the tolerance. As a result, a lot of failures occur (NETF=18, Table
4.3). Although the & = % and ¢ = % methods have the same vs-value, their
v1- and ypax-values differ substantially (see Tables 4.1 and 4.2). With the same
v = vz = 0.46 value, the EBDF2 method (in Fig. 4.12a) performs superior to
the & = % method (in Fig. 4.12b) in the sense that it integrates smoothly,
without any failures.

With v = max (v, v3) = 0.66, the EBDF2 method also integrates with non-
constant step sizes (left panel, Fig. 4.12b), although no error test failure occurs.
This is because the code detects that the local error is close to the tolerance.

Compared with the £ = 1 method, the EBDF2 method has a larger error
constant. Moreover, since its max(vy, v3)-value is larger than that of the { =1
method, the chosen step size is also larger. Hence, the local error of the EBDF2
method turns out to be much larger than that of the £ = 1 method. As a result
of the small error, the £ = 1 method always integrates with a constant step size
in the last part of the integration (left panel, Fig. 4.12b).

In some applications, however, it might happen that we do not have prior
knowledge of the CFL condition. Therefore, it is of interest to see how the codes
behave if the step size is only determined by the local error control (i.e., we set
v = 00). To answer this question, we have integrated the system by the ¢ = 2
and ¢ = 1 methods with v = co. The result is plotted in Fig. 4.12c. The £ = %
method is not included here because it already shows unsatisfactory behaviour
for v = 0.46. From the figure we see that both methods choose non-constant
step sizes. However, the At-curve of the £ = 1 method oscillates much more
prominent. The local error of the EBDF2 method is always below the tolerance
curve. In contrast, the local error of the £ = 1 method frequently exceeds
the reference tolerance. As a consequence, an enormous number of error test
failures occur (see the last row in Table 4.3). This is due to the fact that the
¢ = 1 method has less favourable positivity and damping properties (see Section
4.4.1). We therefore conclude that the EBDF2 method give the most robust

integration.
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4.4.3 Model of phytoplankton dynamics

In this final subsection we study the full phytoplankton model in a three di-
mensional domain Q = [0, X] x [0,Y] x [0, Z], where X = Y = 10* ¢cm and
Z = 10® cm, discretized on a 50 x 50 x 20 grid. Here, we briefly summarize
the mathematical model. For more details of the model, interested readers are
referred to Chapter 1.

The PDE for the phytoplankton concentration w reads

g_‘:+v-(aw) - VDV 4 (L) - 0w mQ,  (4.32)

aw—DVw = 0 atoQ. (4.32b)

Here, D = diag(D1, D2, D3) represents the diffusion coefficients and is supposed
to be constant and positive. The growth function p is defined by (see Chapter 1)
p(L) = pmaxﬁ, where H is the so-called half-value, ppnay is the maximal
growth rate, and ¢ denotes the death rate which is assumed constant. The
solution dependent, nonlinear function L

L= Linebegzefk foz w(z,y,0,t)do (433)

denotes the light which penetrates into a water column. Here, L;, denotes
the incident light intensity (i.e., the light at the water surface, correspond-
ing to z = 0) and K3, is the so-called background attenuation due to all non-
phytoplankton components in the water. Hence, K, defines the turbidity of
the water. Finally k is the light attenuation coefficient of the phytoplankton
and is species-specific. The derivation of (4.33) is based on the assumption
that the light gradient is described by Lambert-Beer’s law (see [33] for details).
Due to the integral in the light function we see that the unknown concentration
w at a certain depth z depends on all concentrations above that depth (due
to absorption and shading). This integral term is discretized by the repeated
trapezoidal rule. The parameter values needed in the reaction term are listed
in Table 4.4.

TABLE 4.4: Parameter values (see also Tables 1.1 and 1.2).

14 Pmax H Lin Kbg k
molphotons molphotons cm?
(%) (%) (IL cIr)n2: ) (” crrr)12st ) (cim) (cells)
0.01 | 0.04 1073 3.5-102 2.0-1073 | 3-1077

The divergence-free velocity field a = (a1, az, a3) is chosen as (see Sections 4.4.2
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and 1.4.1)
a(e,y,2) = —F1079X sin’(r ) sin(2n L) e 2%,
az(z,y,2) = +% 101y sinQ(W%) sin(2w%)e*22/z,
ag = ¢

Here, a; and as are components of the horizontal water flow and are the z-
dependent extension of the velocity field (4.29); c¢ is the vertical velocity of
phytoplankton species and is in cm/s. We will consider a neutrally-buoyant
species, that is a species with a vertical velocity ¢ = 0. The phytoplankton
concentration is again initialized by (4.30).

The semi-discretized problem will be integrated in time by an IMEX method,
where the advection and reaction terms are treated explicitly and the diffusion
term implicitly. The actual method that we use is a variable step size version
of the IMEX scheme (4.19). Setting 7 in (4.7b) equal to 3(1 + ﬁ) so that

we have 8; = 0, the variable time step version of (4.19) reads
Wi+ (m1=r+ Wi+ (r =W, =

1 (r +14 %)AthFE(th,WnH) +3 (—(r +1) + %)AthFE(tn,WnH

% <1 + ﬁ) Atn+1FI(tn+27 Wn+2) + % <_1 + 57.((27:—1_11))> Atn-l—lFI(tna Wn)a

(4.34)
where » = At,1/At, is the step size ratio. As shown in Sections 4.4.1 and
4.4.2, the £ = % value gives the most robust integration. Therefore, from now

on we will integrate the ODE system by the method (4.34) with £ = %, i.e., the
IMEX-BDF2 method.

Using this &-value, we will show that the IMEX method is more efficient than
the well-known integrator VODE [8], based on the fully implicit BDF methods.

A comparison of IMEX-BDF2 and VODE

Now we compare the IMEX-BDF2 method with the well-known integrator
VODE [8], both applied to the three-dimensional phytoplankton model (4.32).
We remark that this model also has been studied in Chapter 1, where VODE
was used for the time integration. However, in Chapter 1 the spatial discretiza-
tion was based on the third-order upwind-biased scheme without a limiter. Here
we will always apply the limiter (4.3) because in the comparison of IMEX-BDF2
and VODE we will confine ourselves to time integration aspects. Hence, both
solvers should start from the same positive system of ODEs. Moreover, in this
comparison we do not want to be hampered by negative solution values induced
by a non-positive spatial discretization. We will start with mentioning some
general properties of VODE.

VODE is based on the backward differentiation formulae (BDF) using a
variable order running from 1 to 5, whereas IMEX-BDF2 method is of fixed
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second-order accuracy. The high-order formulae in VODE need information
from the past. Consequently, more storage is required. Furthermore, the higher
the order, the smaller the wedge of the stability region in the negative half
plane (see [24, p. 251] and [38, p. 179]). VODE offers the possibility to fix the
maximal order to be used during the integration process. If we define VODE, to
be VODE with maximum order ¢, then VODE, is A-stable, whereas VODE, »
is only A(«)-stable (see (4.11)). The angle a decreases as g increases (e.g.
a=90°if ¢ = 2 and a = 51.84° if ¢ = 5). When A-stability is an important
property, the higher-order methods will be less efficient. This will be illustrated
below.

Test with several versions of VODE Consider the advection-diffusion-re-
action problem (4.32) with D; = Dy = 10cm?/s and D3 = 1cm?/s. To capture
interesting aspects of the integrators, we consider the problem on a longer time
interval, i.e., 7 = 10 days. Setting the tolerance to 10~%, we integrated the
ODE system by VODE; and VODEs;, and compare the performances of these
two versions of the code. In Fig. 4.13 we plot the order as well as the step
size that these versions choose for the integration. Initially, VODE5 increases
the order up to 3 (see Fig. 4.13a). Then, it decides to lower the order to 2
and further down to 1. However, this low order is too inaccurate and a large
number of convergence failures in the Newton process occur (see Fig. 4.13c).
From Fig. 4.13b we see that the code has problems in choosing a correct time
step. It decides to increase the order to 2, allowing a larger time step. The
code settles at this order as well as a constant step size until the end of the
integration interval.

Different from VODE;, VODE, keeps using the order 2 and gradually in-
creases the step size. Then it integrates the last part with a constant step size,
without any convergence failure. This step size turns out to be slightly smaller
than the one chosen by VODEj5 in the last part of the integration interval.
Consequently, the total number of steps taken by VODE; is slightly larger than
that of VODE; (Fig. 4.13). However, the Newton process converges faster. The
total number of Newton iterations of VODE; and VODE; are 2743 and 3272,
respectively. In other words, the two codes are of similar efficiency.

Next, to increase the stiffness of the problem, we consider the case where
Dy = Dy = 20cm?/s and D3 = 10cm? /s, while all other parameter values are
left unchanged. The results obtained by the two codes are plotted in Fig. 4.14
(see also the first block of results in Table 4.5). From this figure we see that the
majority of the steps taken by VODE5 are based on the third-order formula.
Nevertheless, the chosen time step is much smaller than that of VODE,. As
a result, VODE; needs a much larger number of steps to reach the end point
of the integration. This indicates that increasing the order to 3 is not a good
choice. This is counterintuitively since we expected that a higher order method
would allow larger time steps to satisfy the criterion on the local error. The
results observed for this test indicate that VODE5 has encountered stability
problems.
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FIGURE 4.13: Comparison between performances of VODE; (green lines) and VODE5
(blue lines). Dy = Dy = 10cm?/s, D3 = 1cm?/s. T = 10 days.

400 1
3
300 VODE,
2 200 \ 0
| 100 VODE,
1
0 -
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
Steps Steps Steps
a) Order used. b) Step size. c) Convergence failures.

FIGURE 4.14: Comparison between performances of VODE, (green lines) and VODE5
(blue lines). Dy = Dy = 20cm?®/s, D3 = 10cm®/s. T = 10 days.

Global comparison To reduce the amount of linear algebra in solving the
systems, both VODE and IMEX-BDF2 have been equipped with the Approx-
imate Matrix Factorization (AMF) technique [28]. In this way, solving one
system with a rather nasty structure is converted into the successive solution
of three systems with much simpler algebra involved. Each system associates
with only one spatial dimension. As a result, the implicit relations can be
solved along each grid line separately (see Chapter 1). For the IMEX approach,
the systems to be solved are even more simple, i.e., systems with tridiagonal
matrices.

A disadvantage of AMF is that it has a less rigorous damping of high fre-
quency modes [16, 28]. Moreover, using AMF we need more iterations in the
Newton process. For the IMEX method, we loose the nice property of the linear
system: one Newton iteration is no longer sufficient to obtain the new approx-
imation W, 2, in spite of the fact that the implicitly treated diffusion terms
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are linear3. In addition, AMF will slow down the convergence of the Newton

process*. In VODE, the systems are non-linear, due to the limiting advection
discretization. Hence, we need more than one Newton iteration per step for
solving the systems, with and without the AMF technique.

Due to the disadvantages of AMF, we should be careful in stopping the
Newton iteration process. It is common practice in ODE software to require
that

[|iteration error|| < k |[local error||,

with k a small number to avoid that the iteration error severely interferes with
the local error. The default value used in VODE is k = 0.1. This value has
been used in the two aforementioned tests. For the stiff test (with Dy = Dy =
20cm?/s, D3 = 10cm?/s) we plot in Figs. 4.15a,b the solutions obtained by
VODE; and VODE,, respectively, using x = 0.1. Both solutions show the
unsatisfactory property of high-frequency oscillations.

o
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FIGURE 4.15: Solutions at z = 0.25m obtained by VODE; (left), VODE2 (middle)
and VODEs5/VODE; with the stringent Newton solver (right). Dy = D, = 20 cm2/s,
D3 = 10cm?/s. T = 10 days.

Therefore, as a next test, we choose x as small as 1074 to be sure that the
iteration error is negligible with respect to the local error. Hence, using such
a stringent stopping criterion we might say that we have ‘solved’ the implicit
relations and that VODE really uses the underlying BDF formulae. As a result
of this small k-value we indeed obtain a smooth solution, which is shown in
Fig. 4.15c. Some integration statistics are listed in Table 4.5 (second block of
results) and plotted in Fig. 4.16. Comparing the results shown in Fig. 4.14

3For linear system: take one Newton step to obtain Wﬁié from an arbitrary Wﬁ+2- Then,
Wﬁié always satisfies the implicit relation. However, when AMF is used, this no longer holds,
because ((I — BaAtJ1)(I — BaAtJa)(I — BaAtJs)) L (I—BaAt) # I, where F /0w = J =
J1 + J2 + J3, the Jacobian matrices associated with different spatial dimensions.

4Proof for a scalar problem: the iteration error €* satisfies the recursion e**t1 = (1— M) €F,
where M = ((1 — ﬁgAt}q)(l — ,BzAt)\z)(l — BzAt)\g))71 (1 — ﬁQAt)\) and A = A1 + A2 + As,
eigenvalues of systems in different spatial dimensions. For increasing stiffness, we have \; —
oo, ¢ = 1,2,3, and hence M — 0.
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FIGURE 4.16: VODE; (green lines) and VODE;5 (blue lines) with the stringent Newton
solver. D; = Dy = 20cm?/s, D3 = 10cm?/s. T = 10 days.

(k = 10~') with those in Fig. 4.16 (x = 10=*), we observe some remarkable
differences: the small k-value results in larger step sizes, particularly for the
VODE; version (compare At in Fig. 4.14b and Fig. 4.16b). However, large time
steps in combination with a stringent stopping criterion results in a dramatic
increase of the number of convergence failures. Obviously, this small x-value
leads to many Newton iterations and hence many F-evaluations (NFEE and
NFIE in Table 4.5). Also, as a consequence of the large number of convergence
failures (NCF in Table 4.5), the Jacobian matrix is frequently updated (NJE
in Table 4.5). After each failure, the step size is reduced. Since the implicit
relation has been ‘solved’ due to the small x-value, the local error control is easily
satisfied (the step is accepted). As a consequence, the local error estimator often
suggests to largely increase the step size (for the next step). With such a large
step size, however, a convergence failure is likely to occur. This explains the
wildly-oscillating At-curves in Fig. 4.16b.

As a conclusion from this test we may say that VODE, when equipped with
the AMF technique, needs a stringent stopping criterion in the Newton process
to guarantee a solution which is free of wiggles, however at a high price. Since
a smooth numerical solution is important (especially in long term integrations)
we think that a stringent k-value is unavoidable.

Performance of IMEX-BDF2 This version of VODE will be compared to
the IMEX-BDF2 method that we also applied to this problem. Since IMEX-
BDF?2 also uses the AMF technique, we choose the same small k = 104 in the
stopping criterion for Newton. It should be remarked that a small value for x
is less critical, since the implicit systems in the IMEX method only involve the
linear diffusion terms. Moreover, an accurate Jacobian matrix is available which
needs to be calculated only once. The results for the IMEX-BDF2 method are
given in the last block in Table 4.5. The solution obtained by this method is
smooth and very similar to the VODE solution. Comparing the performance of
both solves we see that the IMEX-BDF2 method is more efficient. It results in a
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TABLE 4.5: Integration statistics of IMEX-BDF2 and VODE. NST: number of steps,
NETF: number of error test failures, NNI: number of Newton iterations, NCF: number of
convergence failures, NFEE: number of F'i evaluations, NFIE: number of F'; evaluations,
NJE: number of Jacobian evaluations, gend: last order used, RERR: relative L, integration
error. The superscript * indicates that the stringent Newton solver is used. The subscripts
0.46 and o.6¢ denote that the IMEX-BDF2 method has used the stringent Newton process
and integrated with Atmayx = 0.46 2222 and Atpmax = 0.66 2222 respectively. D; =

337 33w’
Dy =20cm?/s, D3 = 10cm?/s. T = 10 days.

VODEs; VODE;| VODE;{ VODE; |IMEXg4¢ IMEXg 6
NST 4658 2943 3772 3012 7824 5549
NETF 1 1 1 1 0 0
NNI 6214 5170 18582 15544 11643 8589
NCF 0 0 1793 1759 0 0
NFEE 6215 5171 18583 15545 7825 5550
NFIE 6215 5171 18583 15545 11644 8590
NJE 78 49 3587 3127 1 1
Qend 3 2 3 2 2 2
Last At 190 370 274 516 113 162
NNI/NST 1.33 1.76 4.92 5.16 1.49 1.55
RERR 1.1-:107*  8.5-107°|1.1-1077  1.1-107*| 4.4-1076 1.9-1074

much smaller number of Newton iterations as well as number of F-evaluations
(NFEE and NFIE). The integration is performed without any failures (both
NETF=0 and NCF=0).

Comparison per step Finally, we will discuss the advantages and disadvan-
tages of the two integrators within one step. Since VODE is a fully implicit
solver, the advection, diffusion, and reaction terms are all treated implicitly.
This is more expensive than the IMEX-approach. Firstly, due to the variable
velocity field and the nonlinear reaction term, the Jacobian is non-symmetric
and varies over the steps. As a result, many Jacobian evaluations are needed
(see row 7 in Table 4.5). For the IMEX method, however, the implicitly treated
operator consists of linear diffusion terms only, resulting in a symmetric and con-
stant Jacobian matrix (one Jacobian evaluation is needed). Secondly, because
VODE is fully implicit, NFEE always equals NFIE, whereas, for the IMEX-
method NFEE = NFIE — (NNI—NST), i.e., NFEE is substantially smaller than
NFIE. Finally, since the limiting technique is used, extra nonlinearity is intro-
duced into the ODE system, resulting in additional complexity in solving the
systems in VODE (more Newton-iterations per step, see row 10 in Table 4.5).
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TABLE 4.6: Comparison between VODE and IMEX-BDF?2 integrators.

VODE IMEX-BDF2 method

Global comparison

— Varying orders (1 to 5) — Fixed order 2
— More storage is needed — Less storage is needed

— May allow a large At, with respect to | — At is restricted by the CFL condition
stability

Comparison per step

— All terms are treated implicitly — Advection and reaction terms are
treated explicitly; only diffusion
terms are treated implicitly

— Jacobian matrix is non-symmetric, | — Jacobian matrix is symmetric, exact,
approximated, and varies in time and constant in time

— Many Jacobian evaluations are | — Only one Jacobian evaluation is
needed needed

— Number of Fg-evaluations equals | — Only one F g-evaluation per step
the number of Newton-iterations

— Limiter adds extra complexity in | — Limiter has no influence on the sys-
solving the system tem to be solved

In Table 4.6 we have summarized the advantages and disadvantages of the
two integrators, i.e., VODE and IMEX-BDF2.

4.5 Summary and conclusions

We have analyzed implicit-explicit integration methods to solve the advection-
diffusion-reaction equations, in which we treated the non-stiff advection and
reaction parts explicitly and the stiff diffusion part implicitly. In this way, an
efficient approach is obtained, because the implicitly treated operator consists
of the diffusion term only (which is linear for the phytoplankton model studied
in this thesis), while the difficult and nonlinear advection and reaction terms
are treated explicitly.

The linear multistep methods underlying the IMEX scheme forms a fam-
ily of second-order two-step formulae. This choice is motivated by accuracy
considerations combined with modest memory demands. The IMEX method
was constructed by extrapolating the non-stiff leading term (see Section 4.3.2).
Then, the stability of the resulting method was analyzed. Often, the stability
region of the method is smaller than that of the explicit version. However, using
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the fact that the eigenvalues of the implicitly treated operator are negative and
real, we derived a class of methods whose stability regions coincide with those
of the explicit parts (Section 4.3.2).

Next, we illustrated the above theory by three applications:

First of all, the one-dimensional model advection test was studied (Section
4.4.1). For the spatial discretization, we always used the third-order upwind-
biased scheme combined with the limiter (4.3). In regions with large spatial
variation, this limiter switches to the first-order upwind scheme. For this test
example the IMEX method reduced to the explicit integration method because
of the absence of the diffusion term. The step size was taken constant.

With this application, we found that stability of the method is critically
determined by the minimum of the CFL numbers vy and v3 of the two individual
discretization schemes, i.e., the first-order upwind scheme and the third-order
upwind-biased scheme, respectively. This is interesting since CFL numbers are
the result of stability analysis applied to a linear advection model problem,
whereas the use of a limiter gives rise to a nonlinear model.

Furthermore, we also showed that for the methods having vy > v3, e.g. the
EBDF2 method, the use of a limiter is advantageous with respect to stability.
However, for the methods having v; < v3, e.g. the methods with £ = 1 and
&= %, the use of a limiter is a disadvantage. The ¢ = 1 method was consid-
ered because it corresponds to the popular ADAMS-type method. The & = %
method was studied since it has the same r3-value as the EBDF2 method.
Comparing the performances of these methods, the EBDF2 method showed
the most robust integration with respect to positivity (recall that the EBDF2
method possesses the optimal positivity constant, see Chapter 3) and with re-
spect to stability (because it has vy > v3). Moreover, it has the best damping

of high frequency modes (see Section 4.4.1).

Next, we studied the two-dimensional advection problem, with space de-
pendent velocities. Here we used variable step sizes in the time integration.
Although the problem in this application is more complex than the preced-
ing model problem, we again observed that the EBDF2 method behaves most
satisfactory (Section 4.4.2).

Finally, as suggested by the above applications, we selected the integration
method with £ = % and applied it to the full phytoplankton problem (Section
4.4.3). Due to the presence of the diffusion term, we integrated the ODE system
by the IMEX method. This method has been designed with the aim to have
computational advantages over a fully implicit integration method. Therefore,
we compared the performances of this method and the fully implicit integrator
VODE [8]. The IMEX method turned out to be more efficient in terms of num-
ber of Newton iterations (NNT), number of F-evaluations (NFEE and NFIE),
number of convergence failures (NCFN), and number of Jacobian evaluations
(NJE), see Table 4.5, as well as in terms of complexity, e.g. the symmetry and
variability of the Jacobian and the influence of the limiter on the system to be
solved (see Table 4.6).



Chapter 5

Reduced mixing generates
oscillations and chaos in the
oceanic deep chlorophyll
maximuim

Deep chlorophyll maxima (DCMs) are widespread in large parts of the world’s
oceans [68, 11, 51, 49, 47, 66, 27]. These deep layers of high chlorophyll concen-
tration reflect a compromise of phytoplankton growth exposed to two opposing
resource gradients: light supplied from above and nutrients supplied from below.
It is often argued that DCMs are stable features. Here we show, however, that
reduced vertical mixing can generate oscillations and chaos in phytoplankton
biomass and species composition of DCMs. These fluctuations are caused by a
difference between the time scales of two processes: (1) rapid export of sinking
plankton, withdrawing nutrients from the euphotic zone and (2) a slow upward
flux of nutrients fuelling new phytoplankton production. Climate models predict
that global warming will reduce vertical mixing in the oceans [59, 6, 60, 61]. Our
model indicates that reduced mixing will generate more variability in DCMs,
thereby enhancing variability in oceanic primary production and in carbon ex-
port into the ocean interior.

5.1 Introduction

In oligotrophic waters, where the surface mixed layer is depleted of nutrients,
subsurface maxima in chlorophyll concentration and phytoplankton biomass are
often found (Fig. 5.1). Such deep chlorophyll maxima are permanent features
in large parts of the tropical and subtropical oceans [68, 11, 51, 49, 47]. Further-
more, seasonal DCMs commonly develop in temperate regions [49, 66], and even
in the polar oceans [27] when nutrients are depleted in the surface layer with
the onset of the summer season. It is generally believed that DCMs are stable
features tracking seasonal changes in light and nutrient conditions. However,
here we extend recent phytoplankton models [19, 25, 43, 29, 32] to show that
the phytoplankton populations of DCMs can exhibit sustained fluctuations.
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FIGURE 5.1: Time course of the DCM at Station ALOHA, in the subtropical Pacific
Ocean, North of Hawaii. a, Chlorophyll a. b, Nitrate and nitrite. Data were obtained
from the Hawaii Ocean Time-series (HOT) program.

5.2 Mathematical model

Consider a vertical water column. Let z indicate the depth in the water column.
Let P denote the phytoplankton population density (number of cells per m?).
The population dynamics of the phytoplankton can be described by a reaction-
advection-diffusion equation [19, 25, 43, 29, 32, 55]:

T growth — loss — sinking + mixing (5.1)
5.1
oP 0%pP
= u(N,I)P —mP — Vs + Ko e
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where p(N, I) is the specific growth rate of the phytoplankton as an increasing
saturating function of nutrient availability N and light intensity I, m is the
specific loss rate of the phytoplankton, v is the phytoplankton sinking velocity,
and k is the vertical turbulent diffusivity. The nutrient dynamics in the water
column can be described as [19, 25, 43]:

ON . ..
—— = — uptake + recycling + mixing

ot
0*N
:—C(/UL(N,I)P—FEC(TI'LP—FKZW,

(5.2)

where « is the nutrient content of the phytoplankton, and € is the proportion of
nutrient in dead phytoplankton that is recycled. We assume that light intensity,
1, decreases exponentially with depth according to Lambert-Beer’s law, owing
to light absorption by the phytoplankton population, by water, and by dissolved
substances [29, 32]. To complete the model, we use zero-flux boundary condi-
tions for the phytoplankton. Furthermore, we assume a zero-flux boundary
condition for nutrient at the surface, while nutrient is replenished from below
with a fixed concentration Np at the bottom of the water column. The model
formulation and simulation methods are described in further detail in Section
5.5, Supplementary Information. The model is parameterized for clear ocean
water, reflecting the North Pacific subtropical gyre [47, 41] (Fig. 5.1).

5.3 Simulations

5.3.1 Results for a constant environment

In a first model simulation, with a turbulent diffusivity of 0.5 cm?s™', nutrients
in the top layer are gradually depleted by the phytoplankton. The nutricline
slowly moves downwards, tracked by the phytoplankton population, until the
population settles at a stable equilibrium at which the downward flux of con-
sumed nutrients equals the upward flux of new nutrients (Fig. 5.2a). Thus, a
stable DCM develops. For lower values of turbulent diffusivity, however, the
model predicts that the phytoplankton population in the DCM will oscillate.
Depending on the parameter settings the fluctuations in the DCM may range
from mild oscillations (Fig. 5.2b) to pronounced chlorophyll peaks (Fig. 5.2c).
To investigate this phenomenon further, we ran numerous simulations using a
wide range of turbulent diffusivities. For comparison, vertical turbulent diffusiv-
ities in the ocean interior are typically on the order of 0.1cm?s™! to 1cm?s™!
(refs. [48, 63, 20]). The model simulations predict that the DCM becomes un-
stable when turbulent diffusivity is in the lower end of the realistic range (Fig.
5.3a). By a cascade of period doublings, reduced turbulent mixing can even
generate chaos in the DCM (Fig. 5.3b).

The mechanism underlying these fluctuations is a difference in time scale
between the sinking flux of phytoplankton and the upward diffusive flux of
nutrients. This might be called an ‘advection-diffusion instability’. At low
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FIGURE 5.2: Model simulations at different intensities of vertical mixing. For a-f, the
left panel shows phytoplankton dynamics (P) and the right panel shows nutrient dynam-
ics (N). See Section 5.5, Supplementary Information, for parameter values. a-c, Con-
stant environment. a, Stable DCM (x = 0.50cm?®s™!). b, Mild oscillations in the DCM
(k =0.20cm?s™ ). ¢, Large-amplitude oscillations in the DCM, with double periodicity
(k =0.12cm?s™1).

diffusivity, the phytoplankton sink fast compared to the slow upward flux of nu-
trients. Thereby, the light conditions of the sinking phytoplankton deteriorate
and the phytoplankton population declines. The declining phytoplankton pop-
ulation loses control over the upward nutrient flux, allowing new nutrients to
diffuse further upwards. The upward flux of nutrients reaches a depth at which
light conditions are suitable for growth. This fuels the next peak in the DCM.
Indeed, model simulations indicate that the sinking flux has an important role
in these oscillations, as oscillations were not observed with neutrally buoyant
phytoplankton (results not shown). The period and amplitude of the DCM oscil-
lations increase with increasing phytoplankton sinking velocity (Fig. 5.3c). The
period and amplitude decrease with increasing vertical diffusivity (Fig. 5.3d).
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FIGURE 5.2: d-f, Seasonal environment, in which the model is forced by seasonal changes
in incident light intensity [47]. d, DCM tracks seasonal variability (x = 0.50cm?s™").
e, Double periodicity of DCM locked in a seasonal environment (x = 0.14cm?®s™%).
f, Chaotic DCM in a seasonal environment (x = 0.08 cm®s™").

Thus, the oscillations become more pronounced if the time scale of sinking is
fast compared to the time scale of the upward flux of nutrients.

5.3.2 Results for a seasonal environment

Detailed ocean time series indicate that seasonal changes in light conditions
have a large effect on the dynamics of DCMs [47] (see also Fig. 5.1). To add
more realism to the model, we therefore forced the model by seasonal changes
in incident light intensity typical for the North Pacific subtropical gyre [47],
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FIGURE 5.3: Bifurcation patterns generated in a constant environment. a, Bifurcation
diagram showing the local minima and maxima of the phytoplankton population as a
function of turbulent diffusivity. b, Detail of the chaotic region in the bifurcation diagram.
¢, The period (blue line) and relative amplitude (red line) of the oscillations increase with
phytoplankton sinking velocity. d, The period (blue line) and relative amplitude (red line)
of the oscillations decrease with vertical turbulent diffusivity. In a and b phytoplankton
population density is integrated over the upper 300 m of the water column. See Section
5.5, Supplementary Information, for parameter values.

with a winter minimum of 30mol photonsm~2d~! and a summer maximum
of 60mol photonsm~=2d~!. At high turbulent diffusivity, the DCM tracks the
seasonal changes in light conditions (Fig. 5.2d). When turbulent diffusivity is
reduced, the DCM exhibits a phenomenon known as phase locking, in which os-
cillations are squeezed within the seasonal cycle (Fig. 5.2e). For even lower tur-
bulent diffusivities, seasonal forcing generates irregular phytoplankton blooms
with chaotic multi-annual variability (Fig. 5.2f). Thus, similar to findings for
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other nonlinear oscillators [58, 64], fluctuating DCMs show even more complex
dynamics in a seasonal environment than in a constant environment.

5.3.3 Multispecies in competition context

In reality, DCMs consist of multiple phytoplankton species with different growth
rates, nutrient and light requirements, and sinking velocities. How would such
a diverse assemblage respond to fluctuations in the DCM? To address this is-
sue, we developed a multi-species version of our DCM model, analogous to
earlier phytoplankton competition models [32, 33]. The model is again forced
by seasonal changes in incident light intensity. An example is shown in Fig. 5.4,
where we assume that the blue species has a lower sinking velocity (0.1 md~?;
resembling pico- and nanoplankton) than the red and green species (1md™1;
resembling sinking diatoms). Furthermore, the blue species is a better nutri-
ent competitor, whereas the red and green species are better competitors for
light. Simulations show that all three species persist in this non-equilibrium en-
vironment, which confirms earlier notions that oscillations and chaos promote
phytoplankton biodiversity [34]. Periods with co-dominance of the three species
are alternated with periods in which either the blue species or the red and green
species dominate (Fig. 5.4e). Furthermore, there is a subtle but consistent ver-
tical zonation, with the blue species (better nutrient competitor) inhabiting the
nutrient-depleted upper zone of the DCM, while the red and green species (su-
perior light competitors) peak several meters deeper in the light-deprived part of
the DCM. The model predicts that phytoplankton species with relatively high
sinking velocities (red and green species) show larger fluctuations than small
phytoplankton species with low sinking velocities (blue species; Fig. 5.4c-e).

5.4 Discussion

5.4.1 Conclusions

Although simple models can offer only abstractions of real-world phenomena,
our model adequately reproduces many features of real-world DCMs. First, the
model predicts that DCMs form at a similar depth of ~ 100 m and span a simi-
lar depth range as observed in clear oceans waters [43] (Figs. 5.1, 5.2). Second,
consistent with observations, the model predicts that nutrients are depleted
to near-zero levels above the DCM while the nutrient concentration increases
linearly with depth below the DCM [43] (Fig. 5.4¢). Third, detailed ocean time-
series measurements from the subtropical North Pacific confirm the prediction of
a vertical zonation of species, with different species assemblages dominating at
different depths [67] (see Fig. 5.5, in Section 5.5, Supplementary Information).
Fourth, these ocean time series confirm the prediction that the seasonal light
cycle gives rise to seasonal patterns in chlorophyll and nutrient concentrations
in the DCM [47] (Fig. 5.1). Fifth, the time series support the idea that plank-
ton populations in the DCM show additional fluctuations superimposed upon
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settle at a periodic attractor. d, Phase plane illustrating the periodic attractor of the
phytoplankton species. e, Time series of consecutive depth profiles within a single period.
Coloured lines: depth profiles of the 3 phytoplankton species; dashed line: light intensity;
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concentration are integrated over the upper 300 m of the water column. See Section 5.5,
Supplementary Information, for parameter values.
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the seasonal cycle, often with multi-annual variability in phytoplankton biomass
and species composition [47, 41, 67] (see Section 5.5, Supplementary Informa-
tion). Sixth, as predicted by the model, the time series tentatively suggest that
phytoplankton species with relatively high sinking velocities show larger vari-
ability than phytoplankton species with low sinking velocities (see Section 5.5,
Supplementary Information). In total, time-series data support the theoretical
prediction that deep chlorophyll maxima can exhibit sustained non-equilibrium
dynamics, driven by a combination of external forces and the complex internal
dynamics of DCMs.

5.4.2 Epilogue

Climate models predict that global warming will increase the stability of the
vertical stratification in large parts of the oceans [59, 6]. This will reduce vertical
mixing and suppress the upward flux of nutrients, leading to a decline in oceanic
primary production [6, 60, 61]. Our model predicts that the same process of
reduced vertical mixing may induce oscillations and chaos in the phytoplankton
of the DCM, generated by the difference in time scale between the sinking flux
of phytoplankton and the upward flux of nutrients. Thus, counter-intuitively,
increased stability of the water column due to global warming may destabilize
the phytoplankton dynamics in the DCM, with implications for oceanic primary
production, species composition and carbon export.

5.5 Supplementary Information

5.5.1 Introduction

In the Supplementary Information, we provide detailed information on (1) the
model simulations, (2) the competition model, and (3) fluctuations in phyto-
plankton species composition in a long-term time series of the deep chlorophyll
maximum in the North Pacific subtropical gyre.

5.5.2 Model simulations

We consider a vertical water column of one unit surface area. Let z indicate the
depth in the water column, where z runs from 0 at the surface to a maximum
depth zp at the bottom. Let P denote the phytoplankton population density
(number of cells per m?3), and let N denote the nutrient concentration in the
water column. The dynamics of the phytoplankton population and the nutri-
ent concentration in the water column is described by a system of two partial
differential equations [19, 25, 43, 29, 32, 55]:
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FIGURE 5.5: Time series of different algal pigment biomarkers at Station ALOHA, in
the subtropical Pacific Ocean north of Hawaii. The pigment biomarkers are diagnostic
for different phytoplankton groups [46, 50, 2]: a, total chlorophyll a (all phytoplank-
ton). b, divinyl chlorophyll a (Prochlorococcus), which has been measured from 1994 on-
wards. ¢, 19’-hexanoyloxyfucoxanthin (prymnesiophytes). d, 19’-butanoyloxyfucoxanthin
(pelagophytes). e, fucoxanthin (diatoms). f, peridinin (dinoflagellates). Data were ob-
tained from the Hawaii Ocean Time-series (HOT) program, and are publicly available at
http://hahana.soest.hawaii.edu/hot/hot-dogs.
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where p(N, I) is the specific growth rate of the phytoplankton as an increasing
saturating function of nutrient availability IV and light intensity I, m is the spe-
cific loss rate of the phytoplankton, v is the phytoplankton sinking velocity, x is
the vertical turbulent diffusivity, « is the nutrient content of the phytoplankton,
and e is the proportion of nutrient in dead phytoplankton that is recycled.

We assume that the specific growth rate of the phytoplankton follows the
Monod equation [30], and is determined by the resource that is most limiting
according to Von Liebig’s ‘law of the minimum’ [69]:

N I )
Hy+N H;+1/)°
where fiy.x is the maximum specific growth rate, Hy and H; are the half-
saturation constants for nutrient-limited and light-limited growth, respectively,
and min denotes the minimum function. We note that our findings are robust.

We found similar results for other formulations of the specific growth rate (e.g.,
multiplicative functions).

(N, T) = i i (5.5)

Light intensity, I, is supplied from above and decreases exponentially with
depth according to Lambert-Beer’s law [29, 32]:

I=1I;,exp ( — Kpgz — k/ P(t, U)da), (5.6)
0

where I, is the incident light intensity, K, is the background turbidity of the
water column, k is the specific light absorption coefficient of the phytoplankton,
and ¢ is an integration variable accounting for the non-uniform phytoplankton
population density distribution. To complete the model, we assume zero-flux
boundary conditions for the phytoplankton. Furthermore, we assume a zero-
flux boundary condition for nutrient at the surface, while nutrient is replenished
from below with a fixed concentration Np at the bottom of the water column.

Numerical approach. The integral in (5.6) introduces a nonlocal term in
the model. As a result, the model is a system of integro-partial differential
equations (integro-PDEs), which is computationally quite demanding. Numer-
ical simulation of the model was based on a finite volume method, with spatial
discretisation of the differential operators as well as the integral term. The
advection terms were discretised by a third-order upwind biased formula, the
diffusion terms by a symmetric second-order formula, and the integral term by
the repeated trapezoidal rule [38]. The resulting system of stiff ordinary differ-
ential equations was integrated over time using an implicit integration method
[8] implemented in the computer code VODE (http: /www.netlib.org/ode/).
A detailed presentation of our simulation techniques, with tests of the accuracy
and numerical stability of the simulations, is presented elsewhere (see Chapter 1
and [33]).

The model was parameterized for clear ocean water [42, 47|, with realis-
tic turbulent diffusivities [48, 63, 20], and growth kinetics typical for nutrient-
limited and light-limited phytoplankton [19, 25, 43, 29, 32]. An overview of
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the parameter values used in the simulations, together with their units and
interpretation, is given in Table 5.1.

5.5.3 Competition model

The multi-species version of our DCM model, used in Fig. 5.4, is a straightfor-
ward extension of the single-species model outlined above [32, 33]. Suppose that
a total number of n phytoplankton species compete for nutrients and light in the
DCM. We assume that each species has its own growth and loss characteristics,
its own sinking velocity, and its own nutrient content. The species interact only
indirectly, via their shared resources. That is, all phytoplankton species con-
sume nutrient and absorb light. Hence, the population dynamics of the different
species and the nutrient dynamics in the water column are described as:

OP; oP; %P, .

5 :Ni(NaI)Pi_miPi_UiE"‘rﬁ?azz, i=1,---,n, (5.7)
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Furthermore, the vertical light gradient is now described as:
I =1I;,exp ( — Kpgz — > _ k; / P;(t, a)da). (5.9)
j=1 70

All other aspects of the multi-species model are identical to the single-species
model described above.

5.5.4 Fluctuations in phytoplankton species composition

It is interesting to compare the theoretical predictions with long-term time
series of deep chlorophyll maxima. For nearly two decades, scientists in the
Hawaii Ocean Time-series (HOT) program have collected physical, chemical,
and biological measurements of the DCM in the North Pacific subtropical gyre
[47, 46, 40, 41]. Samples were taken at approximately monthly intervals at Sta-
tion ALOHA, North of Hawaii (22° 45°N, 158° 00°W). The sampling and mea-
surement protocols are described in full detail at http: /hahana.soest.hawaii.
edu, and the time-series data are publicly available at http://hahana.soest.
hawaii.edu/hot/hot-dogs.

Among the key parameters collected at Station ALOHA, phytoplankton
community composition is routinely estimated using a combination of flow cy-
tometry [54, 9] and algal pigment biomarkers [46, 40]. The latter relies on the
fact that various algal groups have diagnostic pigment markers. These diagnos-
tic pigments, measured with high-performance liquid chromatography (HPLC)
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TABLE 5.1: Parameter values and their interpretation

Symbol Interpretation Units Value

Independent variables

t Time h -

z Depth m -

Dependent variables

P Population density cellsm™3 -

I Light intensity pmol photonsm=2s~1  —

N Nutrient concentration mmol nutrient m =3 -

Parameters

L Incident light intensity pmol photonsm—2s~1 600

Ky, Background turbidity m~! 0.045

k Absorption coefficient of m? cell ! 6 x 10710
phytoplankton

ZB Depth of the water column m 300

K Vertical turbulent diffusivity cm?s ! 0.12

Imax Maximum specific growth rate h~! 0.04

H; Half-saturation constant of pumol photonsm~2s~! 20
light-limited growth*

Hpy Half-saturation constant of mmol nutrient m—3 0.025
nutrient-limited growth*
Specific loss rate h~! 0.01

a Nutrient content of phyto- mmol nutrient cell 1 1x107°
plankton

€ Nutrient recycling coefficient dimensionless 0.5

v Sinking velocity* mh~! 0.042

Np Nutrient concentration at zp mmol nutrient m 3 10

*Note: Figure 5.4 uses different sinking velocities and half-saturation constants for

S

different species. Red species: v = 0.042mh~', H; = 20 gmol photonsm
Hy = 0.0425mmolnutrientm™3; green species: v = 0.042mh™', H;
25 pmol photonsm ™ 2s™!, Hy = 0.0165mmolnutrientm >; blue species:

0.0042mh~', H; = 98 pmol photons m~?s™"', Hx = 0.0150 mmol nutrient m~3.

v

-2 -1

I
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[71], can be used to develop an algorithm attributing total chlorophyll into spe-
cific taxonomic groups [46, 50]. The predictions of the algorithm have been
compared to direct electron microscopic analyses with generally good corre-
spondence [2]. We note that a novel algal group (pelagophytes [2]) known to
contain 19’-butanoyloxyfucoxanthin was misidentified as “chrysophytes” in ear-
lier publications [46] from Station ALOHA. The DCM at Station ALOHA is
dominated by Prochlorococcus, which averaged over the years made up nearly
40% of the total chlorophyll, followed by other cyanobacteria (24%), prymne-
siophytes (22%), and pelagophytes (13%) [46]. Diatoms and dinoflagellates also
occur, but are relatively less abundant.

Variations in specific pigment biomarkers have been used to track taxonomic
changes in the phytoplankton assemblage at Station ALOHA. Chlorophyll a,
which is present in all phytoplankton groups, has the highest concentrations
in a depth range of 80 to 120 m. It displays both seasonal and inter-annual
variation (Fig. 5.5a). Divinyl chlorophyll a has been measured since 1994, and
is characteristic of Prochlorococcus, the most abundant phytoplankton group
at Station ALOHA. Prochlorococcus was highly abundant in the DCM during
the years 1996-2002, but less abundant in 1994-1995 and 2004 (Fig. 5.5b). The
pigments 19’-hexanoyloxyfucoxanthin and 19’butanoyloxyfucoxanthin reach the
highest concentrations in the 100 to 140 m depth range, and show seasonal,
inter-annual, as well as inter-decadal variation (Fig. 5.5¢,d). These two pig-
ments typify the prymnesiophytes and pelagophytes, respectively. They were
particularly abundant in the years 1999, 2002 and 2004. Diatoms are charac-
terized by the pigment fucoxanthin. Diatoms were abundant in the DCM in the
years 1997 and 2004, and near the surface in the years 1998 and 2000, whereas
diatoms were quite rare in the years 1994-1996 (Fig. 5.5e¢). Dinoflagellates,
characterized by peridinin, displayed a broad vertical distribution in the years
1990-1992, but a more narrow distribution over the depth range of 80 to 120 m
in 1993, 1998, and 2004 (Fig. 5.5f). They were less abundant in 1995-1996 and
in 2000.

These time series confirm the presence of vertical zonation in key phyto-
plankton groups (prediction 3 in Section 5.4.1). Furthermore, the time series
also clearly demonstrate both seasonal and multi-annual variability in phyto-
plankton abundance and phytoplankton species composition (predictions 4 and
5 in Section 5.4.1). Finally, the time series tentatively suggest that phytoplank-
ton species with relatively high sinking velocities, like the diatoms and dinoflag-
ellates (Fig. 5.5¢,f), display larger variability than small phytoplankton species
with relatively low sinking velocities (Fig. 5.5b-d; prediction 6 in Section 5.4.1),
although longer time series will be required to investigate this model prediction
in full detail. Thus, at least qualitatively, several of the model predictions are
supported by detailed observations of the dominant phytoplankton species in
the subtropical North Pacific.



Chapter 6

Analysis of phytoplankton
blooming

6.1 Introduction

Based on the interesting results found in the previous chapter, it is of great im-
portance to understand for which parameter regimes we may expect no bloom,
stationary bloom, or oscillations. An analytical study will be performed in this
chapter for a slightly simplified version of the light-nutrient model studied in
the preceding chapter. It turns out that it is possible to derive an analytical
expression to distinguish between bloom- and nobloom regions in the parame-
ter space. Additional numerical simulations show the validity of this analytical
approach.

6.2 Statement of the problem

We consider the PDE problem

W, = DW..—vW.+ [uP(L,N)-1]W, (6.1a)
N, = DN.,—auP(L N)W, (6.1b)

for all (¢,z) € Ry x [0,zp], where zg > 0 is a constant, equipped with the
boundary conditions

DW,—vWl|.—9., = 0O, (6.2a)
N..g = 0, (6.2b)
N|,—., = Ng. (6.2¢)

Here, W (z,t) and N(z,t) are the concentrations, at depth z and time ¢, of
the phytoplankton population and the nutrient, respectively, D is the diffusion
coefficient (taken to be identical for both phytoplankton and nutrient because
we work in the turbulent mixing regime), v and [ are the sinking speed and
specific loss rate, respectively, of phytoplankton (both of which are assumed to
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be positive), a > 0 is a constant, zp is the depth of the ocean bed, Np is the
constant concentration of nutrient at the bottom of the ocean, and p denotes
the maximal growth rate. Also, L(z,t) is the light intensity at depth z, given
by the formula

L(z,t) = Lye Kooz =k Jg W(CH)dC (6.3)

where Lj is the intensity of the incident light at the water surface, K3, is the
light absorption coefficient due to the non-phytoplankton components in the
water column, and k is the light absorption coefficient due to the phytoplankton.
Finally, the function P(L, N) is taken to be

LN
(L+Ly)(N+ Ng)’

where Ly and Ng are the half-saturation constants of light and nutrient, re-
spectively. Here, we remark that the function P differs from the corresponding
‘minimum’ function that we used in Chapters 2 and 5. The choice (6.4) is
dictated by our intention to perform analytic calculations on the light-nutrient
model. In particular, the two functions have the same qualitative behavior, but
the function given in (6.4) has the advantage that it is a smooth function of its
arguments.

P(L,N) =

(6.4)

6.3 Nondimensionalization

It is convenient to recast our model in nondimensional variables. First, we let

w = W/[W],
T = t/[t],
z = z/[2],
j = L/L],
n = NJ/[N],
t = 1/u,

where [W], [t], [2], [L], and [N] are constants to be chosen appropriately. Next,
we introduce the notation

, , Jn

p(g,n) = P(LLI, INIn) = ;
) = PAE NI = G5 o+ )

where
. Ly d Nu
]H = — an H — Tnq-
L] (V]
In terms of the new variables the PDEs (6.1) now read
Dt v|t .
w, = B %2] - %wm +ult] (p(4,n) = £) w, (6.5a)
Dlt] aplt][W]

o= el e — P nw. (6.5b)
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The boundary conditions (6.2) become

We make the following choice of parameters:

0 = (w, = L) (22) = o (6.6)
D B
1.(0) = 0, (6.6b)
"(%) = fVWB] (6.6¢)
W) =
t] = 1/p,
[2] zB,
(L] Ly,
[N] = Ng,

and we identify the small parameter ¢ = D/(uz%). Then, Egs. (6.5) become

wr
-

where a = v/(uzg) is a

= EWgz — AWz + (p(J’ 77) - Z)w’ (678‘)

= ¢ (nm - %p(j, n)W> ; (6.7b)

constant the asymptotic magnitude of which will be

tuned in the next sections. The boundary conditions read

(ewy —aw) (0) = (ew, —aw) (1) = 0, (6.8a)
1:(0) = 0, (6.8b)
n(1) = L. (6.8¢)

Finally, we remark that

j(z,7) = e e @A where k= Kygzp and r

_ kDNg

lazg

(6.9)

6.4 Eigenvalues of the local problem

The PDE model (6.7), equipped with the boundary conditions (6.8), has the

steady state

Q(l‘,T) =0,

fj(z,7) =1, forall (r,z)€ Ry x[0,1].

Bloom occurs for those parameter values for which this steady state becomes
unstable. In the rest of this chapter, we identify this regime by looking at the



94 Chapter 6. Analysis of phytoplankton blooming

eigenvalues associated with this steady state and determining when they lead
to an unstable situation.

The linear eigenvalue problem around the steady state (with eigenvalue \)
reads

A = EWgr —aw, + (f(z) — Hw, (6.10a)
Ano= € <nm - %f (x)w) : (6.10b)

where the decreasing function
fz) = @e_:::jH = - +;I;€m, with = - +1nH’ (6.11)

is the linearization of the function p(j,7n) around the steady state. The corre-
sponding boundary conditions remain unchanged, see (6.8).

Noticing that Eq. (6.10a) for w does not depend on 7, we obtain the associ-
ated eigenvalue problem for the rescaled phytoplankton density,

ew” —aw' + (f(z) — L= Nw =0, (6.12)
subject to the boundary conditions
(ew' — aw) (0) = (ew’ — aw) (1) = 0. (6.13)

This is a singularly perturbed problem!. We now proceed with determining the
solutions of the problem for different scalings of the coefficient a.

6.5 Case a= 0(1)

First, we treat the case a = O(1) and show that, in this case, the trivial steady
state is stable for all O(1) values of the parameters, except for a bifurcation
which gives rise to bottom-blooming, rather than a DCM (= Deep Chlorophyll
Maximum, see Chapter 5) that we are looking for.

6.5.1 The scaling A = O(1)

First, we assume that the eigenvalues of the problem are O(1) and we deter-
mine these eigenvalues. Based on physical considerations, we postulate that the
boundary layer is located at x = 1 (a quick calculation verifies the validity of
this assumption). In order to find a solution of this type, we use the boundary-
layer theory which requires to match the slowly varying outer solution (i.e., the
one far away from the boundary-layer) and the rapidly varying inner solution
(i.e., the one close to the boundary-layer).

IThat is, a problem where the highest derivative (i.e., of highest order) is multiplied by a
small constant e.
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Outer solution
To leading order, the outer solution Q(z) = Y ° ", (z) satisfies the ODE
—aQy+ (f(z) —£—XN)Q =0, (6.14)
subject to the boundary condition
Q(0) = 0. (6.15)

Eq. (6.14) is exactly solvable (see the Appendix at the end of this chapter),

L4+
e o ®

(jgr + e—re) et

where Cj is a free parameter. The only solution that satisfies the boundary
condition (6.15) is the trivial one, 2y = 0.

In fact, it is easy to show inductively that the solution at O(g™), Q,, is
identically zero for all n € N. Indeed, 2,, satisfies the ODE

U —aU 4 (f(@) == 20) = D AnQpm =0 (6.17)
m=1

and is subject to the boundary condition
Q,-1(0) —a2,(0) = 0. (6.18)

Since Q,, =0, for all 0 < m < n — 1, by the induction hypothesis, Egs. (6.17)
and (6.18) reduce to

—aQ, + (f(z) —€£—X0)2 =0

and
Q,(0) =0.

Thus, €2, satisfies the exact same equation and boundary condition as €, and
our above analysis shows that Q,, = 0. Hence, Q(z) = 0 for all z € [0, 1].

Inner Solution

Next, we determine the inner solution w(z) = Y-, €"wy () to problem (6.12)—
(6.13). First, we change the independent variable to s = (1 —x)/e, to deal with
the rapidly varying solution close to z = 1. Then, Eq. (6.12) becomes

O+aw+e(f(s)—€—Nw =0, (6.19)
where (-) = d(-)/ds, subject to the boundary condition

(W+aw)(0)=0 (6.20)
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and where B
f(s) = f(1—es). (6.21)
Expanding f(1 — es) in powers of &, we obtain
Fls) = £(1 —25) = £(1) — < (s + O(e?). (6:22)

First, we deal with the leading order problem. The last term on the left
hand side of Eq. (6.19) is of higher order with respect to . Hence, we obtain,
at O(1), the equation

Wo+awyg =0 (623)

together with the boundary condition
(wo + awp) (0) = 0. (6.24)
Equations (6.23)—-(6.24) imply that
wo +awy =0,

whence

wo(s) = Cpoe™**, (6.25)

where Cy is a free parameter. Since a > 0, all solutions of this form satisfy the
matching condition
lim wo(s) =0= lim1 Qo (z), (6.26)
z—

S$—00

and thus no eigenvalues arise at this point.
Next, we look at the O(g) terms of Egs. (6.19)—(6.20). We obtain

i Faw + (f(1)=£€—X)wo =0 (6.27)
and the boundary condition
(w1 +awy) (0)=0. (6.28)
The general solution to this problem is (see the Appendix)
wi(s) = COM <se_“s - 1) + Cre™ %, (6.29)
a a
The matching condition

Jim () = 0 = L 2
implies, then, that
f(A)—£—2Xo

Co
22

:0,

whence to leading order, we obtain the eigenvalue
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Xo = f(1) — £ (6.30)
To obtain the O(g) correction to A, we look at the O(£2) terms of Eq. (6.19),
LIJQ + aLZJ2 — (f’(l)s + )\1)(4}0 = 0, (631)

where we have used Eq. (6.30) to eliminate the term (f(1) — ¢ — X\o)wi. The
associated boundary condition is

((/:)2 + (lOJ2) (0) =0. (632)

The general solution to problem (6.31)—(6.32) is (see the Appendix)

() 5 () +aN (1) +aX
— C _ 4\ as _ J \~) T WAL as J N\ T AL
wa(s) 0 5 s‘e 2 se + 3 (6.33)
+ Che™ %%,
The matching condition
Jim () = 0= liny ()
implies, then, that
fA)+ak
Qg =0
whence we obtain )
1
AL = S ( ) (6.34)
a
Thus, the eigenvalue is
!
1
A:f(l)—e—sfi ) + O(e?). (6.35)

The equation above shows that we have determined only one eigenvalue,
A= f(1) —Z—E@ +0O(e?), instead of an infinite set that is guaranteed to exist
by Sturm-Liouville theory (see [5]). Thus, our working hypothesis A = O(1) on
the asymptotic magnitude of ) is insufficient as far as the determination of the
entire spectrum is concerned.

6.5.2 The scaling A = O(1/e)

After several trials with different scalings of A, that is, A = YA with v € R, it
turns out that no eigenvalues arise, except for v = —1. Therefore, we consider
this only possible scaling A = O(1/¢) for the eigenvalues. Writing

1
A= EA’ where A = O(1),
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we obtain from Eqgs. (6.12)—(6.13) the eigenvalue problem
2w —caw — (A—e(f(z) —)w 0,
(ew —aw)(0) = (ew —aw) (1) = 0.

Performing the change of independent variable ¢ = z/¢ and writing (-) for
d(-)/do, we obtain the eigenvalue ODE

O—aw—(A—e(f(eo) = £)w=0 (6.36)
subject to the boundary conditions
(w—aw)(0) = (w—aw)(l/e) =0. (6.37)

Leading order solution to the eigenvalue problem
To leading order, Egs. (6.36)—(6.37) yield
o —awyg —ANpwg =
(o —awo) (0) = (wo —awo) (1/e) =
The general solution to the ODE above is

ai\/a2—|—4A0

wo(o) = Crel+? + C_et=7, where pi = 5

(6.38)

Thus, also, we obtain the expression
(Wo — awo) (0) = C4(p+ — a)e+? + C_(p— — a)et~7 (6.39)

for the quantity involved in the boundary conditions. Requiring that the bound-
ary conditions are satisfied, we obtain the linear system

Lo o ) (0)
(g —a)ert/s (p_ —a)er-/* C- 0

The necessary and sufficient condition for this system to have nonzero solutions
is that

det (('M - e (“ - oo /E) = —(py—a)(p_—a) (e”+/5 - e“*/5> =0.
Ly —a)e n_ —a)et-

Since Ag # 0 (otherwise A < 1/e, which contradicts our assumption on the
asymptotic magnitude of A), this equation yields

elbr—n)/e — oVa®+4ho/e _ 1,

with solutions )

Ay = _az —e2nn?, forall neN.
Thus, we obtain that
1a?
A= ——— A
-1 + O(e), (6.40)

and thus the trivial steady state is “super-stable” for all O(1) values of a.
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6.5.3 Conclusions for the case a = O(1)

In summary, the full set of eigenvalues is

Xo=f(1)—¢— 6@ +0(e?),

1a?
n= 27 —en®n?, n=1,2,
We see that \,,, n =1,2,---, are super-stable and hence no blooms associated

with these eigenvalues may occur. Nevertheless, \g may become unstable if
f(1) > £. When f(1) > ¢, the profile arising from the instability is that of
bottom-blooming, which is also not what we are looking for.

6.6 Case a = O(y/¢)

The above calculations on the stability of the steady state suggest that we
should take a closer look into the case a = O(4/€), since a zero crossing of the
eigenvalue of the first mode Ay, and thus instability, is only possible in that
parameter regime. To facilitate calculations, we let

a=+tA, where A= 0O(1).
The eigenvalue problem (6.12)—(6.13) becomes, then,
ew”" — Ve Aw' + (f(z) — £ — ANw =0, (6.41)
subject to the boundary conditions

(Vew — Aw) (0) = (Vew' — Aw) (1) = 0. (6.42)

6.6.1 Transformation into Schrodinger form

First, we transform the dependent variable through
w(z) = e A%/ (), (6.43)

so that Eq. (6.41) can be written in Schrédinger form [5] where the first deriva-
tive term is absent. Using the transformation (6.43), we find

S = (W) + 5 ) e,
() = <w”(m) + %w'(m) + j—jw(w)) eAT/2VE,

Substitution into Eqgs. (6.41)—(6.42) yields

cw” = Q(z) w, where Q(z) =A+{(+ ATQ - f(=), (6.44)
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subject to the boundary conditions

<\/Ew' - §w> (0) = (ﬁw' - §w> (1) =o0. (6.45)
Defining
A = f(0)—2— AIQ, (6.46a)
F(z) = £(0) - f(z) (6.46b)
and writing
A=\, = —£°A, (6.47)

where the scaling parameter 3 is to be determined by our analysis, we recast
Q(z) in its final form,

Q(x) = F(z) —ePA, where F(z), F'(z)>0 forall ze[0,1]. (6.48)

6.6.2 WKB approximation

Since @) is an increasing function, we have

min Q(z)=—-e’A <0 and max Q(z)=F(1)—e’A >0,
z€[0,1] z€[0,1]

as long as A > 0.2 Hence, the continuous function @ has a zero x¢ € [0,1],
which corresponds to a turning point for our Schrédinger equation. A formula
for this zero can be obtained readily,

R < Pju +eP(1+ju)A >
0 K ®jy — Pig(1+ ju)A
(1 + ju)*A

= AL EEY 28
5 in® + O(e*)

= £ + 0(e?). (6.49)

F(0)

Next, we construct the leading order WKB approximation to the ODE
(6.44). Using standard formulas (see [5, Ch. 10, Sect. 1]), we obtain, for the
region [zo, 1] where Q(z) > 0,

_ Oy g Qs C. —1 7 JaGs
v~ QA MCCEO - (650)

2A WKB analysis of the case A < 0 shows that no eigenvalues A > ), exist (except for the

eigenvalue A ~ f(1) — £ in (6.35), which persists in this case). Thus, the working hypothesis
A > 0 is justified.
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This solution must satisfy the boundary condition at z = 1, since this point lies
in its region of validity. Using Eq. (6.50), we calculate, to leading order in ¢,

Ve (@) ~ Oy [Q(a)][/ 467 fra VOO (@) /4e™ T2 Jog VAT,

Using the last two equations to substitute w’ and w into Eq. (6.45), we obtain
to leading order the condition

A L1 /Q(s)ds
C’+< Q(l)—5>e~/§f10 Qs)d

-C. <\/Q(1) + g) e Ve Lo VRBIE _

(6.51)

6.6.3 Behavior in the region [0, z]

The solution given in Eq. (6.50) becomes unbounded at 2y because of the de-
nominator [Q(z)]'/* which vanishes at this point. In the region [0, 2], then,
the WKB approximation (6.50) does not describe the actual solution.

To obtain the solution in that region (of length O(¢?), see (6.49)), we ap-
proximate @Q(z) by its first-order Taylor expansion around g,

Q(z) = Qo(z — o) + O((z — z0)*), (6.52)
where
Q) = Q'(z0) = F'(0) + O("). (6.53)
Performing also the change of coordinates

z =z + 0P, (6.54)

where the O(1) scaling parameter 0 is left unspecified for the time being, we

obtain
Q(xzo + 0P 0) = P0Qh 0 + O(%P). (6.55)

Next, we calculate
w =07 and w” = 07272y,

where (-) = d- /do. Letting also oq = 6 1e Pz, we recast Egs. (6.44)—(6.45)
in the form
7072w = £P0QLow,
12-pp-1,. A -1.-8
€ 0 W= S w (=07 e Pxy) = 0.

Dominant balance for the first equation dictates that 8 = 1/3. Choosing also
6 = [Q4]~"/3, the boundary-value problem above becomes, to leading order,

w—ocw = 0, (6.56a)
w(—og) = 0. (6.56b)
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The ODE (6.56a) is an Airy equation [1, 5], with general solution
w(a) = D+Bi(0) + D,Ai(a). (6.57)
Thus, the boundary condition (6.56b) yields

D Bi(—0q) + D_ Ai(—0y) = 0. (6.58)

6.6.4 Asymptotic matching

The expressions for w given in Egs. (6.50) and (6.57) should match in a neigh-
borhood of z( or, equivalently, of ¢ = 0. Since there is only one turning point
in our problem, located at z,, we use the technique presented in [5, Ch. 10,
Sect. 4] to perform the matching. First, we calculate

w(o’) ~ & 0-71/4e§‘73/2 _|_ 7D_

N3 2w
Recalling the definition (6.54) and that 8 = 1/3, 8 = [Q}]~'/3, we obtain

_ _2,3/2
o 1/4e 30707

o =e 2 [Q]'? (x — 20)

and, using this, we recast the asymptotic formula for w(c) in the form

T —xg 112 P+ [ qr-1/12 —1/4 | 522 \/Qp (z—20)*/?
v (El/3[626]_1/3> ~E Nz (o] (z — o) /4 esve V& lommo

D_ 2 7 3/2
+ 51/12 [QB]—I/IQ (.’E _ mo)—1/4 6—3\/51/6,20 (z—2z0) .
2\/m

The WKB approximation (6.50) can be also recast in a similar form in an
appropriate region around z,. Using the Taylor approximation (6.52), we obtain

’ 2
Q@) 4 ~ [Q"V* (z — 0)"V/* and / VQ(s)ds ~ - VO (@ — 20)*.
o
Thus, Eq. (6.50) yields
w(z) ~ Cy [/ (w — mg) /4 e 57 Vb (ema)®? -
6.59
O QYA (3 — ) Ve 5T Vw0,

The matching requirement (the limiting Airy and WKB solutions should
match in a region around z¢) yields, then, the two conditions

Cy QM4 = &t/ % [Qp] /12, (6.60a)
o[yt = a2 2 g, (6.60Db)

N
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6.6.5 Obtaining the eigenvalues

For the system of conditions (6.51), (6.58), and (6.60), to have a nontrivial
solution, we need that

2 B 0 0
det 0 0 Bi(*()’o) Ai(*O’(]) _ O,
Vv Qp) Y/ 0 —el/1? 0
0 2ﬁ[Q6]71/6 0 *81/12

where

2= (VA -y ) e TR

3 = - (Ve +g) e Ve

A direct calculation of the determinant yields, then, the equation

0 = 21/ [Qg]7V/° ( Q) - ?) o T S VA gy
(6.61)
Fe2 rigy)e (VATD + ) e o VAT B,

Since Q(zg) = 0 and Q’'(zg) > 0, the exponentiated integral appearing in this
formula is O(1), and thus

e—ﬁ fmlo A/ Q(s)ds < e% leo Q(s)ds-

As aresult, the determinant condition (6.61) reads, down to exponentially small
terms,

Ai(—0o) = 0. (6.62)

Recalling that o9 = §~1e Pzg, with z( given by Eq. (6.49), and Eq.(6.53), we
rewrite this condition in the form

Ai <—W> =0, (6.63)

A = —[F/(0)2 3¢ = |£/(0) 2 Jen], n=1,2,--.

Here, ¢, < 0 is the n—th root of the function Ai(z), and we have used defini-
tion (6.46b) to calculate that F'(0) = —f/(0) > 0. Thus, recalling Eq. (6.47),
that 8 = 1/3 (see Section 6.6.3), we obtain the first few eigenvalues,

whence

2 A2
An~ A — 3 |£(0))% [cn|, where A, = f(0)—£— = (6.64)
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As a result, the surface

1

A2 12
OB EETIORE (6.69)
corresponds to the bifurcation regime in the parameter space>.

6.7 Numerical simulations

The bifurcation surface is described by Eq. (6.65). First, we recast that expres-
sion in terms of the original parameters. Using Eq. (6.11), we calculate

(o} 1
10 = 1+ju (1 +jm) (L +nm)’
f’(O) - (PKJ.]H - H.jH

(1+jm)? 1+4m)?> (L +nm)

Substituting into Eq. (6.65), we obtain

wlno

S ! —l—¢5 e KJH
4 (1+jm) 1 +nm) ‘ el <(1+jH)2 (l—i-nH)) : (6.66)

Finally, we define the new variable

2 2
A=A2=2 = (6.67)
€ wD
and recall that
1 1

n Nu -~
1 1 Np
We rewrite Eq (666) in the form

2

]. 1 3 2
T <“) oi 4 , (6.68)

A=4 : —
1+jm 2+jg +ig

where |c1| & 2.338 (see http://mathworld.wolfram.com/AiryFunctions.html).

It remains to suggest a numerical procedure in terms of the old parameters
which ensures that the two new parameters A and ® vary while the remaining
new parameters jm, €, k, and ¢ appearing in (6.68) do not.

3X\1 < 0 leads to stable steady state and hence no blooms occur, whereas A1 > 0 corre-
sponds to instability and therefore a bloom exists.
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First, we recall the definitions

A = L
uwD
1
o = N
14 &
B
D
E = —,
pzy,
KR = KngB,
. Ly
JH = LI’
l
‘= —.
1

Then, we observe that, in every run, one may keep v, u, Ny, Ly, Ly, and [
fized, whereas vary D and Np freely, vary zp in such a way that ¢ does not
change (the change in zp counteracts that of D in the definition of ¢), and vary
K34 so that k does not change (the change in K, counteracts that of zp in the
definition of k).

Next, we determine a rectangular region in the parameter plane (A, @)
which contains the bifurcation curve given in Eq. (6.68). First, we observe
that the definition of ® implies that ® € (0,1). Then, the definition of A and
Eq. (6.68) also imply that A € (0, Apax), where

1
Apax = 4 —/|.
o =4[]
Thus, the rectangle [0, 1] x [0, Apyax] contains the entire bifurcation curve.
Next, we use the definitions of A and ® to write the original parameters

that we vary (D and Np) in terms of the new parameters we vary (A and ®).

We find N )
H v
= — d D: —_— .
ot 1 " N

To carry out the numerical simulations, we introduce a regular grid on the rect-

Np

angle [0,1] X [0, Apax]. If each node of the mesh is indexed by the pair (m, n),

then the numerical simulation can run along this blueprint:

% Assign fized values to those parameters that do not change throughout the
% simulation. Values for the Test of the parameters will be assigned at each grid point.
Set values for v, u, Ng, Ly, L1, I, a, k.
% Calculate ¢ and jH.
l . L
t= w JH = L—II’

% Assign fized values to the new parameters ¢ and k, which have to remain unchanged
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% throughout the simulation.
Set values for ¢ and k.
% Calculate the upper bound for A.
Aoy = 4 (ﬁ —e).
% This is the loop that builds the bifurcation diagram in the (®, A)-plane. Here,
% 6® and A correspond to the grid sizes in the ®- and A-directions, respectively.
form=1:1/6P.
% Assign the current ®-value.
D, =mdd.
% Calculate the corresponding Ng-value from the ®-value.
(NB)m = Nu /(' —1).
forn =1:Apax/0A.
% Assign the current A-value.
A, =ndA.
% Calculate the corresponding D-value from the A-value.
D, =v?/(nAy).

% Change zp so as to counteract the change in D and thus keep € constant.

_ D
zZB = E
% Change Ky, so as to counteract the change in zp and thus keep k constant.
— K
Ky, = 5"

% Determine the character of the solution at the current grid point.
integrate PDE — decide: ‘bloom’, ‘no bloom’, ‘oscillation’.
end.

end.

With the above blueprint, we ran numerous simulations for the full model
(6.1), the results of which are plotted in Fig. 6.1. The associated parameter
values are listed in Table 6.1. From Fig. 6.1, we see that the analytical curve
describing the boundary between no-blooming and blooming (i.e., (6.68)) is in-
deed asymptotically close to the border found by simulation (between A and
B&C). The region B indicates that phytoplankton population (as well as nutrient
concentration) tends to a steady state, whereas in region C phytoplankton pop-
ulation oscillates. Although the simulation results have been given, our analysis
only shows the boundary between the no-blooming and blooming regions, rather
than distinguishing between oscillating and non-oscillating solutions. This topic
will be subject of future research.

We will now discuss some interesting observations from Fig. 6.1. We note
that A and ®, along the two axes, are proportional to D~' and Np, respectively.



6.7. Numerical simulations 107

TABLE 6.1: Values for the parameters that are fixed throughout the simulation. The
values of € and k have been motivated by the fact that we observed an oscillatory solution
for D =0.1cm?/s, zp = 10* cm, and Kpy=2-10"3cm™".

v I Ny Ly l
cm mol nutrien mol photons
(<) (3) (Lmegmment) | (Lmethyotons) (3)
1.17-1073 | 1.11-107° 2.0-1073 2.0-1073 2.78-1076
€ K « Ly k
(const) (const) (const) ( %) ( 5311125 )
9.0-10"° 20 2.0-1073 6.0-1072 3.0-1077

B

o0 I PR TN et e I s I
@

FIGURE 6.1: Simulating regions of no-blooming (A) and blooming (B and C). B: no-

oscillations; C: oscillations. The solid line is the analytical curve described by (6.68).

Therefore, the lower boundary of region A corresponds to a large D and small
Np. In other words, this corresponds to an environment with high mixing, but
a lack of nutrient. As a consequence, phytoplankton species are not able to
survive. For the upper part of region A, no matter how abundant the amount
of the nutrient is, sinking phytoplankton has no chance to move upward to
the euphotic layer, because the water is poorly mixed. Again, phytoplankton
will vanish. When the water is sufficiently mixed and nutrient is sufficiently

available, there is always a bloom (regions B and C). For the lower part of region
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B, the water is well mixed (D is large) and phytoplankton population tends to
a steady state. This is consistent with the observation given in Chapter 5. In
region C, the water is relatively-low mixed, and the phytoplankton population
will oscillate. Again, this is what has been observed in Chapter 5. Finally,
Fig. 6.1 shows that there is no direct transition from region A to region C, i.e.,
these regions are always separated by region B. Moreover, the distance between

these two regions increases as A decreases.

Appendix

Derivation of Eq. (6.16)

Equation (6.14), together with Eq. (6.11), yield

(@) 40, ® flo)—€— X 1 T g 4\
- = do = - do — T.
Qo a a(nm +1) (ju +e ") a

Recalling that

— Ko —l<;a')l

e _ (Ju+e
JH e fe k(jo +e ")’

we obtain

-+

log Qo(z) = log(jg +e ™) — Tac + C,

a ak(ng + 1)
where C' is an integration constant. Equation (6.16) follows by exponentiation

of both members of this equation.

Derivation of Eq. (6.29)
Combining Egs. (6.25) and (6.27), we find
(I)l + awl = —Co(f(l) -0 — )\0)6_(18.

Integrating both members once, and recalling the boundary condition (6.28),

we find VY
LU1+CLW1:C()7JC( )_ — 0(6_as—1),
a
whence we obtain
d 1)—¢— )\
%(easwl)zcof( ) 0(176118).

Integrating once again, we find

1) —¢— )\ as
easw1 — 00% <8 _ e) + Cl;

a

where C1 is a constant of integration. Equation (6.29) now follows.
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Derivation of Eq. (6.33)
Combining Eqgs. (6.25) and (6.31), we find
L-L-)2 + ad)g = Co(f/(].)s + )\1)67(15.

Integrating both members once and recalling the boundary condition (6.32), we
find

wy +aws = Cp {f’(l)/ Ue*‘“’da—i—)\l/ e‘wda]
0 0

Co [f’(gl)se‘” — Me*as fl(l)_*—akl} ’

a? a

where we have used that

S —as —as
se e 1
ce?do = — - — + -
0 a a a

This equation yields

4 (e ws) = Co {_

: AUNUEL ST

a? a?
which becomes, upon integration,

P, Ftan FO)+an
2a 5 a2 5+ CL3 €

easw2 — CO [ :| + Cs.

Here, C5 is a constant of integration. Equation (6.33) now follows.






Summary

In this thesis, we study an application from biology, that is, the dynamics of phy-
toplankton. The phytoplankton dynamics has been considered in light-limited
environments as well as in light-nutrient-limited environments. Mathematically,
it is modelled in terms of a system of coupled, nonlinear integro-partial differen-
tial equations of advection-diffusion-reaction type. This thesis aims to develop
efficient numerical methods for solving this complex system of equations.

The numerical method used in the thesis is based on the simple and flexible
Method of Lines approach, in which the spatial discretization and the time

integration are considered separately.

The diffusion term has been discretized by the simple and popular second-
order central scheme. For the advection term, we use the third-order upwind-
biased scheme, which improves the artificial dissipation and artificial dispersion
of the lower-order methods. The repeated trapezoidal rule has been used to

approximate the integral within the reaction term.

The resulting semi-discretized system of ODEs is stiff, due to the discretiza-
tion of the diffusion term. Therefore, an implicit integration method has been
used. The implicit relation has been solved by the modified Newton method.
Due to the strong coupling of the components, mainly caused by the integral
term, the Jacobian matrix has a huge number of non-zero entries. To reduce
the amount of work, we have ‘decoupled’ the components by neglecting the in-
fluence of the non-stiff, nonlinear reaction term in the Jacobian matrix. For the
three-dimensional study (Chapters 1 and 4), we have further ‘decoupled’ the
components by the Approximate Matrix Factorization technique. The resulting

convergence behaviour of the Newton process is still satisfactory.

The above ‘decoupling’ strategies have been adopted in VODE, a popular
ODE solver. Using VODE with various integration orders, we concluded that
unconditional stability is an important property for integrating the phytoplank-
ton problem (Chapter 1). Moreover, using VODE as a ‘black box’ solver needs
precaution in case of an application, such as ours, where positivity of the solu-
tion is a prerequisite (Chapter 2). We came up with a remedy to avoid negative

solutions. However, this approach is still far from optimal.
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Therefore, as an indispensable step, we focused on integration methods that
do yield a positive solution (Chapter 3). Here, we fixed the integration order to
two. The results that we found for the explicit two-step methods showed an im-
provement of the results given in [37]. Moreover, it turned out that the optimal
positive method is the well-known extrapolated BDF2 method. Nevertheless,
the size of the time step has to obey a severe restriction.

Since a positive integration assumes a positive spatial discretization, we im-
proved the discretization of the advection term by using a limiting technique.
The resulting nonlinear system of ODEs, however, is difficult to solve implicitly.
Therefore, we further improved the integration aspect by using the implicit-
explicit (IMEX) version of the methods analyzed. For advection-diffusion equa-
tions the non-stiff, but strongly nonlinear advection part is treated explicitly
whereas the stiff diffusion part is treated implicitly. It turns out that this IMEX
method possesses the same stability region as the explicit version of the method
when applied to the non-stiff part. This valuable result is due to the fact that

the implicitly treated operator gives rise to a negative spectrum (Chapter 4).

Apart from the interesting numerical observations, we have learned several
amazing properties of the phytoplankton dynamics. Although the model of-
fers only abstractions of real-world phenomena, it adequately reproduces many
features of the real-world. Surprisingly, in light-nutrient-limited environments,
we observed that plankton populations show strong oscillations and even chaos
when vertical mixing of nutrients is reduced (Chapter 5). This may have a nega-
tive impact on the food chain of the oceans and on the uptake of the greenhouse
gas carbon dioxide into the oceans. On the other hand, it has a positive effect

on the number of plankton species and thus on the biodiversity in the oceans.

This model prediction was rather unexpected, because it contradicts con-
ventional wisdom that deep plankton in the oceans would represent a stable
system. Consequently, it is of great importance to analyze the phytoplankton
oscillations. We have shown numerically in which parameter regime we may ex-
pect no bloom, stationary bloom, or oscillations (Chapter 6). Additionally, an
analytical analysis has been performed to show the boundary between nobloom-
and bloom regions. The results obtained by these two approaches indeed asymp-
totically match. A further analysis to distinguish between stationary blooms
and oscillatory blooms will be subject of future research.



Samenvatting

In dit proefschrift bestuderen we een toepassing vanuit de biologie, namelijk de
dynamica van fytoplankton. Zowel een omgeving waarin licht de enige beper-
kende factor is, alsook een omgeving waarin licht en nutriénten beide beperkende
factoren zijn, worden beschouwd. Wiskundig wordt de dynamica van fyto-
plankton gemodelleerd als een stelsel gekoppelde, niet-lineaire integro-partiéle
differentiaalvergelijkingen van het advectie-diffusie-reactie type. Het doel van
dit proefschrift is het ontwikkelen van efficiénte numerieke methoden om dit

complexe stelsel vergelijkingen op te lossen.

De in dit proefschrift gebruikte numerieke methode is gebaseerd op de een-
voudige en flexibele Methode-der-Lijnen aanpak, waarin de discretisaties in

ruimte en tijd gescheiden worden uitgevoerd.

De diffusieterm is gediscretiseerd door middel van het eenvoudige en veel-
gebruikte tweede-orde centrale schema. Voor de advectieterm gebruiken we
het zogeheten ‘upwind-biased’ schema van orde drie; dit schema verkleint de
artificiéle dissipatie en dispersie vergeleken met schema’s van lagere orde. De

integraal in de reactieterm is benaderd met de geregen trapeziumregel.

Het resulterende semi-discrete stelsel gewone differentiaalvergelijkingen is
stijf vanwege de discretisatie van de diffusieterm. Om die reden is een implicie-
te tijdsintegratiemethode gebruikt. We gebruiken de gemodificeerde methode
van Newton om de impliciete relaties op te lossen. De Jacobiaanmatrix be-
vat een groot aantal elementen ongelijk aan nul; dit wordt veroorzaakt door
de sterke koppeling van de componenten, vooral vanwege de gediscretiseerde
integraalterm. Om de hoeveelheid rekenwerk te reduceren, hebben we de com-
ponenten ontkoppeld door de invloed van de niet-stijve, niet-lineaire reactieterm
in de Jacobiaan te verwaarlozen. In de driedimensionale modellen (zie Hoofd-
stuk 1 en 4) hebben we een verdere ontkoppeling aangebracht door middel van
de zogeheten ‘Approximate Matrix Factorization’ techniek. Het resulterende

convergentiegedrag van het Newtonproces blijft bevredigend.

Voornoemde ontkoppelingsstrategieén zijn ingebouwd in VODE, een popu-
laire code voor het oplossen van beginwaardeproblemen. VODE is toegepast

met verschillende waarden voor de orde van nauwkeurigheid. Uit de resultaten
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beschreven in Hoofdstuk 1 concluderen we dat onvoorwaardelijke stabiliteit een
belangrijke eigenschap is voor het integreren van het fytoplanktonprobleem.
Bovendien is in toepassingen zoals de onze een positieve oplossing een vereiste.
Wanneer VODE als ‘black box solver’ gebruikt wordt, zijn er voorzorgsmaat-
regelen nodig om dit te bereiken (zie Hoofdstuk 2). We hebben een remedie
bedacht om negatieve oplossingen te vermijden. Deze aanpak is echter nog

verre van optimaal.

Als een noodzakelijke stap concentreren we ons daarom in Hoofdstuk 3 op
methoden die een positieve oplossing genereren. Hierbij fixeren we de inte-
gratieorde op twee. Voor expliciete tweestaps methoden vonden we een resultaat
dat een verbetering is van de resultaten beschreven in [37]. Bovendien bleek de
geéxtrapoleerde BDF2 methode optimaal te zijn wat betreft positiviteit. Niet-

temin geldt er een strenge restrictie voor de grootte van de tijdstap.

Omdat een positief integratieproces een positieve semi-discretisatie veron-
derstelt, hebben we de discretisatie van de advectieterm verbeterd door een zo-
genaamde ‘limiter’ toe te passen. Het resulterende niet-lineaire stelsel gewone
differentiaalvergelijkingen wordt echter lastiger op te lossen met een impliciete
methode. Een verdere verbetering van het tijdsintegratieproces wordt daarom
verkregen door de impliciet-expliciete (IMEX) variant van de geanalyseerde
methoden te gebruiken. Voor advectie-diffusie vergelijkingen wordt het niet-
stijve, maar sterk niet-lineaire advectiedeel expliciet en het stijve diffusiedeel
impliciet behandeld. Het blijkt dat deze IMEX methode hetzelfde stabiliteits-
gebied heeft als de expliciete versie van de methode toegepast op het niet-stijve
deel. Dit waardevolle resultaat is te danken aan het feit dat de impliciet behan-

delde operator aanleiding geeft tot een negatief spectrum (zie Hoofdstuk 4).

Los van de interessante numerieke observaties, zijn we verbazingwekkende
eigenschappen van de dynamica van fytoplankton te weten gekomen. Hoewel
het model slechts een abstractie van de werkelijkheid is, worden veel kenmerken
uit de ‘real world’ adequaat weergegeven. Verrassend was de observatie dat, in
een omgeving waarin licht en nutriénten beide beperkende factoren zijn, fyto-
planktonpopulaties sterke oscillaties en zelfs chaotisch gedrag vertonen indien
de verticale menging van de nutriénten verkleind wordt (zie Hoofdstuk 5). Dit
kan een negatieve uitwerking hebben op de voedselketen en op de opname van
het broeikasgas koolstofdioxide in de oceanen. Anderzijds heeft het een positief
effect op het aantal soorten fytoplankton en daarmee op de biodiversiteit in de

oceanen.

Deze voorspelling van het model was tamelijk onverwacht omdat het in-



Samenvatting 115

druist tegen de traditionele opvatting dat plankton diep in de oceaan een sta-
biel systeem zou vormen. Het analyseren van de oscillaties in het fytoplankton
is daarom van groot belang. We hebben langs numerieke weg bepaald voor
welke parameterwaarden we mogen verwachten dat de populatie zal uitster-
ven dan wel zal groeien. In het laatste geval maken we onderscheid tussen
groei naar een stationaire oplossing en het vertonen van oscillerend gedrag (zie
Hoofdstuk 6). Bovendien is, in de parameterruimte, met een analytische aan-
pak de grens tussen uitsterven en groei bepaald. De resultaten van beide aan-
pakken komen asymptotisch goed overeen. Een verdere analyse om onderscheid
te maken tussen groei naar een stationaire oplossing en oscillaties is onderwerp

van toekomstig onderzoek.
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