
J. Symbolic Computation (1994) 18, 489-495

The STO-problem is NP-hard

KRZYSZTOF R. APTt,t, PETER VAN EMDE BOASt AND ANGELO WELLINGt

tcwJ, P.O. Bo:i: 94079, 1090 GB Amsterdam, The Netherlands
i Dept. of Math. and Comp. Sci., University of Amsterdam, The Netherlands

(Received 9 May, 1994)

A finite set of term equations Eis called subject to the occur-check (STO) if a sequence
of actions of the Martelli-Montanari unification algorithm starts with E and ends with
a failure due to occur-check. We prove here that the problem of deciding whether Eis
STO is NP-hard.

1. Introduction

For efficiency reasons in most Prolog implementations the so-called occur-check is
omitted from the unification algorithm. This naturally calls for a definition of unification
without the occur-check and for a characterization of the se'ts of term equations for
which this omission might be of importance for unification purposes. The latter has
been offered by Deransart, Ferrand and Teguia (1991), who introduced the notion of a
set of equations being STO (Subject To Occur-check). Informally, a set of equations is
STO if some sequence of actions of the nondetenninistic Martelli-Montanari unification
algorithm leads to a situation in which the failure due to the occur-check arises.

As the known unification algorithms - see, for example, Robinson [7, 8], Venturini­
Zilli [10], Martelli and Montanari [5], Paterson and Wegman [6] - are special cases of
the Martelli-Montanari algorithm, this concept describes when unification without the
occur-check might lead to problems. This is apparently as close as one can get to a char­
acterization of the sets of equations for which unification might depend on the presence
of the occur-check. Therefore, not surprisingly, the definition of an STO set of equations
entered the proposal for standard Prolog (see Scowen [9]).

The result of this paper indicates an unexpected difference between the two relevant
properties of sets of equations. As was shown by Paterson and Wegman [6] the property
of being unifiable can be tested in linear time. We prove that the property of being STO is
NP-hard. Recall that a problem is NP-hard, if its solvability in polynomial time implies
that every problem in the class NP is solvable in polynomial time. This shows that,
for all practical purposes, the definition of standard Prolog refers to a computationally
intractable concept.

So the "STO test" apparently cannot be efficiently implemented. A possible remedy
could be to identify a more limited property than that of being STO, which could be
efficiently implemented and which would still be able to capture the original intention
that for a set of equations satisfying the property omission of the occur-check might

074 7-7171/94/050489 + 07 $08.00/0 © 1994 Academic Press Limited

490 K. R. Apt, P. van Emde Boas and A. Welling

be of importance for unification purposes. Such a property could exploit some limited
information available at the implementation level, for example that the equations are
ordered. That is, it could be defined on sequences, rather than sets of equations.

2. Preliminaries

Throughout the paper, the symbol = (resp. ~) is used to indicate syntactic equality
(resp. inequality), the set of variables occurring in any syntactic object 0 is denoted by
Var(O) and the arity of a function symbol f is denoted by Arity(f). A function symbol
of arity 0 is called a constant.

l,Ftom now on we fix a finite set of function symbols F and a finite set of variables V.
The class of terms over F and V is defined recursively as follows:

a variable is a term,
if t 1 , .. ., tn are terms, f E F, Arity(f) = n, then f (ti, ... , tn) is a term.

A substitution is a finite mapping from variables to terms which assigns to each variable
x in its domain a term t different from x. We write it as

where

xi, ... , Xn are different variables,
t1, ... , tn are terms,
Xi ~ ti for 1 :::; i :::; n.

The application of a substitution to a (set of) term(s) and the relation "more general

than" between the substitutions is defined in the usual way. A set of equations E is
a finite set of the form {s1 = t1, s2 = t2, ... , Sn = tn}, where Si and ti are terms, for
1 :::; i S n. A substitution u such that s10' = t10", ... , SnCT = tnO' is called a unifier of E.

A unifier of E is called a most general unifier (in short: mgu) of E if it is more general
than all unifiers of E. Finally, we denote by IEI the number of equations in E.

The problem of deciding whether a set of equations has a unifier is called the unification

problem. This problem was introduced and solved by Robinson [7] by providing a uni­
fication algorithm. For our purposes we need the following nondeterministic unification
algorithm due to Martelli and Montanari [5] (and informally introduced by Herbrand
[4]).

MARTELLI-MONTANARI ALGORITHM

Given a set of equations, choose any equation of a form indicated below and perform the
associated action. If no action applies to any equation, stop with success.

(1) EU {f (si, .. ., sn) = g(t1, .. ., tm)}--+ fail: clash
where f ~ g

(2) EU {f(s1, .. ., Sn)= f (ti, .. ., tn)} --+ EU {s1 = t1, .. ., Sn= tn}
(3)EU{x=x} --+E

where x E V
(4)EU{t=x} --+EU{x=t}

The STO-problem is NP-hard 491

where x E V, t ~ V

(5) EU {x = t} --*fail: positive occur-check
where x E V,t ~ V,x E Var(t)

(6) EU {x = t} --* E{x/t} U {x = t}
where x E V,x E Var(E),x ~ Var(t)

Note that action (1) includes the case of two different constants and action (2) includes
the case c = c for every constant c which leads to deletion of such an equation. The
condition x ~ Var(t) in action (6) is called the occur-check test. The following result is
due to Martelli and Montanari [5].

THEOREM 2.1. The Martelli-Montanari algorithm always terminates. If the original set
of equations E has a unifier, then the algorithm terminates with success and produces an
mgu of E written in an equational form, and otherwise it terminates with failure. D.

Deransart, Ferrand and Teguia (1991) introduced the following notion.

DEFINITION 2.2. A set of equations Eis subject to the occur-check (STD) iff a sequence
of actions of the Martelli-Montanari algorithm starts with E and ends with action (5).
E is not subject to the occur-check (NSTO) iff it is not STO. D.

Intuitively, E is NSTO iff unification and unification without the occur-check coincide
for E. By Theorem 2.1 if an execution of the Martelli-Montanari algorithm terminates
with success, the initial set of equations is NSTO. On the other hand, if an execution of
the algorithm terminates with failure, the initial set of equations may be NSTO or STO.
Consider for example the sets {a= f (a)} and {x = f (x)} with a a constant. Moreover,
for some sets of equations different executions of the algorithm can terminate with failure
for different reasons. Consider for example the set {a= f(a), x = f(x)}.

Scowen [9] lists the requirements for a formal definition of unification within stan­
dard Prolog. One of them (see top of page 934), when properly formalized, states that
unification is undefined if the original set of equations is STO.

We show in this paper that the problem of deciding whether a set of equations is STO
(in short: the STD-problem) is NP-hard.

3. The STO-problem is NP-hard

The following lemma allows us to reduce the STO test to simpler sets of equations.

LEMMA 3.1. (STO)

(i) If j ":f:. g, then EU {f(s 1 , , sn) = g(t1, , tm)} is STO iff Eis STO.

(ii) If x E V, x ~ V ar(E) u Var(t), then E u {x = t} is STO iff Eis STO.

(iii) EU {f (s 1, , sn) = f (t1, , tn)} is STO iff EU {s1 = tl> ... ,Sn= tn} is STO.

(iv) If x E V, then EU {t = x} is STO iff EU {x = t} is STO.

PROOF. Properties (i) and (ii) are obvious whereas (iii) and (iv) were proved in Deransart

and Maluszynski (1993). D

492 K. R. Apt, P. van Emde Boas and A. Welling

Properties (iii) and {iv) state that actions (2) and (4) of the Martelli-Montanari al­
gorithm preserve the STO property. The same obviously holds for action (3). However,
action (6) can affect the STO property. Indeed, for a variable x and a constant a the set
{x = a,x = f(x)} is obviously STO, whereas {a:= a,a= f(a)} is not.

Finally, property (i) states that deletion of the equation to which action (1) applies
does not affect the STO property. The corresponding property obviously fails for action
(5) -just consider the above set {a:= a,x = f(x)}.

DEFINITION 3.2. Given a set of equations E, we denote by Stand(E) the set of equations
which is obtained from E by applying as many times as possible actions (2) and (4) of
the Martelli-Montanari algorithm and by deleting the equations according to the STO
Lemma 9.1.(i) and 9.1.(ii). 0

This brings us to the following conclusion.

THEOREM 3.3. E is STO iff Stand(E) is STO.

PROOF. By the STO Lemma 3.1. 0

To reduce the STO test to still more "elementary" sets of equations we need to apply
action (6) of the Martelli-Montanari algorithm. However, as just observed, this action
can affect the STO property, so we need to be careful. First we introduce the following
notion.

DEFINITION 3 .4. Consider a set of equations E. A subset E' of E is closed within E
if for some variable x 'I. Var(E - E') all equations of E' are of the form x = s, where
x ~ Var(s). 0

For example, the set E = {x = f(y), x = y, z = f (u), y = a} has two subsets closed
within E: {x = f (y), x = y} and {z = f (u)}. Note that {y =a} is not closed within E
since y E Var(E - {y =a}).

Observe that when E' is closed within E, then only action (6) can be applied to an
equation from E'. This brings us to the following definition.

DEFINITION 3.5. Consider a set of equations E and a subset E' closed within E. Given
an equation e E E' we denote by Reduce(E', e) the set of equations obtained from E' by
applying action (6) to the equation e. 0

LEMMA 3.6. Consider a set of equations E and a subset E' closed within E. Then E is
STO iff for some e EE' the set (E - E') U Reduce(E', e) is STO.

PROOF. {=>) Suppose E is STO. Consider a sequence of actions which leads to action
(5). If this sequence does not select (an instance of) an equation from E' somewhere,
the same sequence can be applied to E - E', so a fortiori to (E - E') U Reduce(E', e),
for each e E E'. So suppose now that this sequence selects {an instance of) an equation
x = s from E'. Consider the first such selection. By the form of E' the performed action
is then action (6).

The STO..problem is NP-hard 493

Let E1 be the resulting set of equations. Thanks to the fact that :z: ~ Var(E - E 1)

the actions preceding this selection of x = s do not introduce new occurrences of x in
the considered sets of equations. Consequently, E 1 can also be obtained from E by a
transposed sequence of actions in which the equation :z: = s is selected first and then the
original sequence of actions up to the selection of x = s is performed. Consequently for
some e1 E E 1 the set E1 can be obtained from (E - E 1) U Reduce(E1, e1), so (E - E 1) u
Reduce(E1, e1) is STO.

({::::) By the fact that for all e E E 1 the set E reduees to (E - E 1) u Reduce(E1 , e) by
action (6). D

Intuitively, this lemma states that to determine whether E is STO it is sufficient to
limit one's attention to the sequences of actions which start with action (6) applied to
an equation in a subset of E1 which is closed within E. We are now in position to prove
the desired result.

THEOREM 3.7. The STO-problem is NP-hard.

PROOF. We provide a reduction from the known NP-Complete Satisfiability Problem
(see e.g. Garey and Johnson [3]) to the STO-problem. Let U = { ui, u2, ... , u,,.} be a set
of variables and C = { c1, ... , Cm} be a set of clauses making up an arbitrary instance of
the Satisfiability Problem. A set of equations E is constructed such that Eis STO if and
only if C is satisfiable. E is a union of n disjoint subsets Ei, E2, ... ,En. Each E.; consists
of four equations; two of them are associated with u, and two with u,, the complement
of ui.

First, we define a set V of variable symbols and a set F of function symbols over which
the terms occurring in E are built:

V = { :Z:i I 1 :5 i :5 n} U { Zj I 1 :5 j :5 m }, F = {/', g' I 1 :5 i :5 n} U { h }.

Now, let Ci denote the set of clauses of C which contain an occurrence of ui and C;.
denote the set of clauses of C which contain an occurrence of u,.

The arity of h is independent of the form of the particular instance of Satisfiability
and is equal to one, whereas the arities of ri. and g• do depend on this form and are
respectively equal to the number of clauses in c, and to the number of clauses in c,.
In the following, "+ l" denotes the "increment modulo m" over the set { 1, ... , m }, so
m+l=l.

We are now ready to define the sets E., 1 :5 i :5 n. Two terms, si,l and si,2, are
constructed with the function symbol /';. as the outer constructor. Suppose the kth clause
of Ci is cj. Then the kth argument of s,;,1 is Zj and the kth argument of si,2 is h(zj+I)·
So, informally,

Si,! = 1•(... , Zj, ...) and Si,2 = !'(... , h(Zj+l), ...),

with Zj and h(zj+i) being the kth arguments of, respectively s;.,1 and St,2· C.; contributes
to Ei two equations

:z:,; = s,;,1 and :Z:i = Si,2·

494 K. R. Apt, P. van Emde Boas and A. Welling

In the same way as above two terms ti,1 and ti,2 are constructed using the function
symbol gi. Ci contributes to Ei two equations

Xi = ti,1 and Xi = ti,2·

As an example of this construction, consider the following instance of the Satisfiability
Problem: U = {'u1,u2} 1 C = {ci,c2}, with c1 = {u1,u2} and c2 = {u11ui,u2}. It yields
the following set of equations:

{x1 = / 1{z1,z2) 1 x1 = f 1(h(z2),h(zi)), x1 = g1(z2), x1 = g1(h(z1))}
U {x2 = J2(z2), x2 = f 2(h(z1)), x2 = g2(z1), x2 = g2(h(z2))}.

Given a truth assignment t : U ~ {T, F} we denote below its restriction to the variable
ui by t[i]. Each subset Ei is closed within E, so applying Lemma 3.6 n times we get

E is STO iff there are e1 E E1, ... ,en E En, such that U:=l Reduce(Ei, e.;) is STO.

Fix such a sequence e1 E E 11 ••• ,en E En of equations. By Theorem 3.3

LJ:=i Reduce(E.;, e,) is STO iff Stand(LJ:=i Reduce(Ei, ei)) is STO.

Now for some truth assignment t : U - {T, F}, (namely the one defined by t(ui) =
if e.; E {x.; = Si,li x.; = s.;,2} then T else F fi, 1 $ i $ n)

n n

Stand(LJ Reduce(E., e,)) = LJ{zj = h(zj+1) I Cj is true under t[i]}.
i=l i=l

Indeed, for e, equal to a:, = si,l we have

and Stand({x.; = s.;,1isi,1 = &i,21 s.;,1 = t.;,i,s.;,1 = ti,2}) = {zj = h(zj+1) I Cj EC.;}=
{zj = h(zj+1) I Cj is true under t[i]}. And similarly for e.; equal to one of the other three
equations of E.;.

But for every truth assignment t : U - {T, F}
n

LJ{zj = h(zj+1) I Cj is true under t[i]} = {zj = h{zj+1) I Cj is true under t}.
i=l

Now, {z3 = h(zj+i) I Cj is true under t} is STO iff {z3 = h(Zj+i) I Cj is true under t} =
{zj = h(zj+i) I 1 $ j $ m} iff all clauses of Care true under t. Thus Eis STO iff C is
satisfiable.

It is clear that the construction of E from C can be accomplished in polynomial time,
as for each variable u.; E U at most m clauses have to be checked for the occurrences of
ui and u.;. D

It would be interesting to know whether the STO-problem is NP-complete. We suspect
it is but did not succeed in proving it. Note that a naive implementation of the Martelli­
Montanari algorithm may lead to exponential growth of the set of equations.

References

Deransart P., Ferrand G., Teguia M. {1991). NSTO programs (not subject to occur-check).
In V. Saraswat and K. Ueda, editors, Proceedings of the International Logic Symposium,

The STO-problem is NP-hard 495

533-547. The MIT Press, 1991.
Deransart P., Maluszynski J. (1993). A Grammatical View of Logic Programming. The
MIT Press.
Garey M., Johnson D. (1979). Computers and Jntractibility. A Guide to the Theory of
NP-Completeness. Freeman, New York.
Herbrand J. (1930). Recherches sur la theorie de la demonstration. These de l'Universite
de Paris, 1930. English translation in: Jacques Herbrand: Logical writings. Ed. W. Gold­
farb. Harvard, 1971, 148.
Martelli A., Montanari U. (1982). An efficient unification algorithm. In ACM Transac­
tions on Programming Languages and Systems, Vol. 4, No. 2,258 - 282.
Paterson M., Wegman M. (1976). Linear unification. In Proceedings of the Symposium on
the theory of computing. ACM Special Interest Group for automata and computability
theory, 181 - 186.
Robinson J. A. (1965). A machine oriented logic based on the resolution principle. In
Journal of the Association for Computing Machinery, Vol. 12, No. 1, 23-41.
Robinson J. A. {1971). Computational logic: The unification computation. In Machine
Intelligence, Vol. 6, 63-72.
Scowen RS. (1991). An overview of Prolog standardization - progress, problems and so­
lutions. In K. Furukawa, editor, Proceedings of the Eighth International Conference on
Logic Programming, 922-936, Paris, France,The MIT Press.
Venturini-Zilli M. (1975). Complexity of the unification algorithm for first-order expres­
sions. In Calcolo. Vol. 12, No. 4, 361-372.

