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A very well-known model in software reliability theory is that of 
Littlewood (1980). The (three) parameters in this model are usually 
estimated by means of the maximum likelihood method. The system 
of likelihood equations can have more than one solution. Only one of 
them will be consistent, however. In this paper we present a different, 
more analytical approach, exploiting the mathematical properties of the 
log-likelihood function itself. Our belief is that the ideas and methods 
developed in this paper could also be of interest for statisticians working 
on the estimation of the parameters of the generalised Pareto distri­
bution. For those more generally interested in maximum likelihood the 
paper provides a 'practical case', indicating how complex matters may 
become when only three parameters are involved. Moreover, readers not 
familiar with counting process theory and software reliability are given 
a first introduction. 
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1 Introduction 

165 

To-day it is hard to think of any area of modern society in which computer systems do 
not play a dominant role. In space- and air-navigation, defence, telecommunication 
and health-care, to name a few, computers have taken over the most life-critical tasks. 
Since the early seventies, many researchers have therefore paid attention to the problem 
of estimation and prediction of software reliability. They used various starting­
points, assumptions, and techniques; all aiming at the same goal. In this paper we 
will use the concepts of (error) counting models. Other approaches to software 
reliability are: fault seeding (MILLS, 1972), iterated testing (NAGEL and SKRIVAN, 1982) 
and static complexity analysis {AKIYAMA, 1971, McCABE, 1976, HALSTEAD, 1977). 

1 The author's current address is: Measurement and Computational Applications, Koninklijke/ 
Shell-Laboratorium Amsterdam, P.O. Box 3003, 1003 AA Amsterdam, The Netherlands. 
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Following the dynamic approach of counting processes, we consider the test 
experiment described below. A computer program is tested for a specified length 
of time. Inputs are selected randomly from the input-space in a way that is 
representative for the operational profile. Either the program produces the correct 
output, or a software failure occurs. That is, the software produces the wrong answer 
or no answer at all. After the detection of a failure, the program is sent to a team 
of debuggers. When the fault is found and fixed, available data concerning fault and 
failure are gathered in a database and testing continues with a new input until the 
end of the test period is reached. 

The class of Error-Counting and Debugging Models consists of relatively simple 
models, considering the test experiment as described above, characterised by the fact 
that they are only based on certain test data, such as the occurrence times of failures. 
These error-counting and debugging models do not explicitly depend on factors 
like the length and the structure of the program, the language in which it is written, 
the skill of the programmer, etcetera. By using the information obtained from the 
experiment one can estimate the parameters of the underlying model, in particular 
the total number of faults initially present in the software. Certain functions of these 
model-parameters will yield estimates of other interesting quantities (such as the 
failure intensity, the reliability, the mean time between failures and the release time). 
In practice, however, decisions about when to stop testing are rarely based solely 
on critical values for such quantities. More often, to find an optimal stopping time, 
the reliability model is extended by associating cost functions, modelling the cost of 
testing versus the costs of faults in the field. An optimal stopping rule will tell to stop 
testing as soon as the cost of discovering and fixing the remaining faults is greater 
than the cost of repairs in the field. 

Efforts in describing the evolution of the reliability of computer software during 
testing resulted in the proposal of dozens of error-counting and debugging models 
over the past twenty years. Each individual model is completely characterised by a 
certain set of assumptions. Sometimes, we assume that failures in the software will 
occur independently and that when a failure is detected, the fault is fixed immediately 
with no new faults introduced. This is the case for some very well-known models: 
the Jelinski-Moranda model (JELINSKI and MORANDA, 1972), the Goel-Okumoto 
model (GOEL and OKUMOTO, 1979) and the Littlewood model (LITTLEWOOD, 1980). 

The Jelinski-Moranda model is the oldest and one of the most elementary software 
reliability models introduced so far. In this model the failure rate of the program is 
at any time proportional to the number of remaining faults and each fault makes the 
same contribution to the failure rate. In the Goel-Okumoto model the failures occur 
according to a non-homogeneous Poisson process. The failure rate does not depend 
on the debugging process; it is a simple deterministic function which decreases 
exponentially in time. Both the Jelinski-Moranda model and the Goel-Okumoto 
model are in some sense special cases of a more general model, the Littlewood model. 
The main difference with respect to the two previous models is the fact that 
Littlewood does not assume that each fault makes the same contribution to the 
© vvs. 1995 
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failure intensity. He allows each fault to have its own occurrence probability. 
Littlewood's argument for this is that larger faults will produce failures earlier than 
small ones. The way in which Littlewood assigns occurrence rates to the faults, seems 
rather ad hoe. For some real data-sets, Littlewood's model showed a better fit than 
other models, however. 

Of course we are interested in estimators for the model parameters. The maximum 
likelihood estimation method is generally used for this purpose. With use of Jacod's 
theory AALEN (l 980) derived an expression for the log-likelihood function in a 
counting process context. Maximisation of the log-likelihood is usually done by 
setting partial derivatives of this expression to zero and solving the resulting system 
of highly non-linear likelihood (or score) equations. Apart from numerical problems, 
one should keep in mind that in many cases the system of likelihood equations will 
have more than one solution. Classical theorems state that under suitable conditions 
exactly one of these solutions of the likelihood equations will be consistent and that 
this consistent solution will be asymptotically normally distributed and efficient. 
Here the problem arises how to choose from a couple of candidates (solutions of 
the likelihood equations) the consistent one. More seriously, if one has laboriously 
numerically determined one solution, how can one be sure there are no others? 
LE CAM (1990) addresses those kind of problems too. His advice is to just apply one­
step of the Newton-Raphson method to an initial estimator, which is Jn-consistent. 
It is a well-known result that such an one-step estimator will be asymptotically 
equivalent to the maximum likelihood estimator. Practical results obtained with the 
one-step Newton-Raphson method, however, often tum out to be very disappointing. 
Moreover, it is often actually rather difficult to construct a suitable initial estimator. 

In this paper we present a different, more analytical approach, exploiting the 
mathematical properties of the log-likelihood function itself. The following questions 
may arise: (I) How to find a global maximiser of the log-likelihood function? (2) Can 
this likelihood function be multi-peaked? (3) Is the likelihood-maximiser usually the 
(or an) solution of the likelihood equations? and (4) What can be said about the 
asymptotic properties of the global maximiser (consistency etcetera)? Our belief is 
that the ideas and methods developed in this paper could also be of interest for 
statisticians who try to estimate the parameters of the generalised Pareto distribution 
(a subject that arises more especially when estimating the extreme value index). 

In the next section we introduce Littlewood's parametric software reliability model 
in more detail. In Section 3 we discuss the maximum likelihood estimation method 
for counting processes and show that for the software reliability model of Littlewood 
the likelihood equations can have more than one solution. Hence we face here the 
problem mentioned earlier. In Section 4 we describe an analytical approach to the 
problem, exploiting the mathematical properties of the log-likelihood function of 
the Littlewood model. We will prove that the global maximiser of the likelihood is 
consistent, and discuss how to find it numerically. Recently we found an alternative 
way of constructing consistent estimators for the parameters of the Littlewood 
model. This method, which deals with modified score equation solutions, seems more 
© vvs. 1995 
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generally applicable and will be sketched in Section 5. Finally, in Section 6 we 
compare some numerical results of the different methods, when applied to simulated 
data, generated by the Littlewood model. In the appendix we have included for the 
interested reader a heuristic description of the underlying theory of counting processes. 

2 The Littlewood model 

We assume that a computer program contains a finite but unknown number of N 
faults initially. The repairing of a fault takes place immediately after it produces a 
failure and no new faults are introduced with probability one. Let n(t) denote the 
number of faults detected at time t. If testing could go on indefinitely, all the N faults 
would be detected with probability one. Define T0 := 0, let Ti, i = 1, 2, ... , N, the 
unordered failure times, while Tul• i = 1, 2, ... , N, denote the ordered failure times. 

In the Jelinski-Moranda model, introduced in 1972 and a few years later general­
ised by MUSA (1975), the failure rate of the program is at any time proportional to 
the number of remaining faults. So if at some time t > 0 already (i - 1) faults have 
been detected, the failure rate for the ith occurring failure, ,1,i> becomes 

(1) 

where </>0 is the true failure rate per fault (the occurrence rate) and N0 is the true 
number of faults initially present in the software. In terms of counting processes we 
can write 

A_JM(t) = </>0 (N0 - n(t-)), t E [O, t], (2) 

where .A.(t), t e [O, r] denotes the failure rate at time t. As a consequence the 
unordered failure times T;, i = 1, 2, ... , N, are i.i.d exponentials with parameter <Po. 
The interfailure times, that is the differences l; := Ten - Ti_;- I), are also exponentially 
distributed, with parameter .A.i given by (1), and mutually independent. 

If the computer program is only tested during a specified exposure period [O, t ], 
then those failure times T; that exceed twill be unobserved. The remaining data-set 
can be considered as a truncated data-set, since we do not know how large N0 - n (t) 
is. For the interfailure times t; == Tui - Tu-iJ• i = 1, ... , n(t), we still have the same 
distribution (exponential with parameter ,1,i = </J0 (N0 - i + 1)), but the unordered T; 
follow a truncated exponential distribution. 

In the Littlewood model, introduced by LITTLEWOOD (1980), it is again assumed 
that at any time the failure rate is proportional to the number of remaining errors. 
The main difference in the Littlewood model with respect to the Jelinski-Moranda 
model, is the fact that each fault does not make the same contribution to the failure 
rate .A.(t). He treats </J1, the failure rate offaultj, as a stochastic variable and suggests 
a Gamma distribution. So Littlewood assumes that each of the unordered Ti, 
i = 1, 2, ... , N follow a compound distribution. For j = 1, 2, ... , N, 'I'; has an 
exponential distribution with parameter <fy1, where </JJ itself is random and distributed 
like I'(a0 , b0 ). 

© vvs, 1995 
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One can deduce that the marginal distribution of Ti is given by 

that is, the ~ have a generalised Pareto distribution. Furthermore 

and hence the failure rate of fault j is 

ao 
h0 + t · 

If the computer program is tested during (0, r ], only T;;), i = l, 2, ... , n ( r ), are 
observed. An application of the so called innovation-theorem (AALEN, 1978) now 
shows, that the failure intensity of the software at time t is given by 

A L(t) = a0 (N0 - n(t - )) . 
h0 + t 

By a simple reparametrisation, namely: 

we get from (3): 

lo= -h ' 
() 

1 GL(t) = r:t.o(No - n(t- )) , [O ] 
11. I E , r . 

1 +lot 

(3) 

(4) 

Actually formula (4) provides an extension of the Littlewood model (3), allowing also 
small values of lo :( 0. Restricting ourselves to the conventional parameter space 

8 == {(N, r:t., l) E IR3 IN:;?; 0, a:;?; 0, c:;?; O}, 

which is not compact, we investigate the model behaviour at the boundary of the 
parameter-set. We will see that letting certain combinations of N, a, c converge to 
their boundary limits (zero or infinity) at various speeds, this may lead to different 
limiting models. 

Apart from the null-model (0) (where, as for instance N = 0, nothing happens) we 
can roughly distinguish four non-trivial boundary models: 

(I) The explosion model (Eb): 

If for instance 0 < N < oo, a = oo and 0 < c < oo, the failure-intensity at time 
zero becomes infinite. Thus the expected number of bugs detected makes a jump 
from zero to b at time zero and remains constant for t > 0. The failure-intensity 
drops to zero for t > 0. Special cases are £ 0 (the null-model), EN and £". E'J 
represents the class of all explosion models {EblO :( b :( oo }. 

IQ VVS. 1995 
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Table l. Boundary cases of the Littlewood model (L W) 

N=O O<N<oo N=oo 

€ =0 0<E<CXl E = 00 € =0 O<E<OO E = 00 €=0 O<t<oo € = 00 

IX = 0 0 0 0 0 0 0 HP IP £11 

O<ci<X 0 0 0 JM LW 0 E"' E"' £11 

IX =CC 0 0 0 EN EN 0 or EN E'"" E"' £11 

(2) The Jelinski-Moranda model (JM): 
If O < N < oo, O <a < oo and e = 0, we are dealing with the model we discussed 
earlier, namely the Jelinski-Moranda model (2) with occurrence rate parameter 
<P equal to a. We can therefore treat the Jelinski-Moranda model as a special 
(limit-)case of the Littlewood model. 

(3) The inhomogeneous Poisson model (IP): 
If N ~ oo, a ~o and O < c < oo such that Na ~b, the influence of the past of 
the counting-process n(t - ) is eliminated from expression (4) and the general 
model reduces to an inhomogeneous Poisson model with intensity function 
A(t)=b/(l+lt), tE[O,r]. 

( 4) The homogeneous Poisson model (HP): 
If N ~ oo, a~ O and e ~ 0 such that Na~ o, all time-dependence is eliminated 
from the expression (4) and the general model reduces to a homogeneous Poisson 
model with constant failure intensity b. 

Table 1 shows which of the above mentioned limiting models occur for which 
(N, a, l). Note that for instance for 0 < N < oo, a~ oo and l ~ oo the limiting model 
heavily depends on the way we let a and € increase. In Fig. l we plotted expected 
number of faults detected versus time for various choices of parameter triples (N, a, c) 
approaching the boundary of the parameter-set e. The bold curves represent the 
limit models. 

3 Maximum likelihood estimation for counting processes 

By using the information obtained from the test experiment one can estimate the 
parameters of the underlying model. Mostly maximum likelihood estimation is used 
for this purpose. AALEN (1978) showed using a theorem of JACOD (1975) that the 
likelihood function of the vector-parameter fJ of the stochastic intensity A.(t ), 
associated with a counting process n(t) observed on [O, t], is given by 

L,(fJ) := exp(r log .A.(s; 8) dn(s)- I: .A.(s; 8) ds). 

© VVS, 1995 
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(1) Explosion 
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Fig. I. Boundary cases of the Littlewood model (LW). 
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(2) Jelinski-Moranda 
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For the Littlewood model with intensity (4), parameter e = (N, a, c) and exposure 
period t = r, the log-likelihood function becomes 

n(r) (o:(N - i + 1)) n(r)+I a ( I+ t:T ) 
logL,(N,a,l):= I log 1 T - 2: -(N-i+l)log 1 T' 

i=I +Et i=I E +c i-1 

log (l + n) 
= n(r) log (a) - a(N - n(r))---­

l 

n(r) n(r) log (1 +ET) 
+ 2: log (N - i +I) - (a+£) I ' , 

i= I i= I (. 

where T0 := 0 and Tn(r) + 1 := r. Hence the log-likelihood equations are 

(5) 

o n(r) I log ( 1 + Er) 
'.lNlogL,(N,a,l)=LN_. 1-a =0, (6) 
U i= I I + € 

~logL,(N,rx.,£)=n(r) _(N-n(r))log(l +er) - I log(l +ET;) =0, (7) 
O!X. a E i= J E 

o a(N-n(r))( er ) 
:;-- log L, (N, a, £) = , log (I + Er) - -1--
ul C +er 

a n(r) ( ET ) n(r) T 
+ 2 2: Iog(l+t:T;)--'- -I--'-=O. 

E i=I 1 +ET; i=I 1 +ET; 
(8) 

REMARK 1. Natural questions to ask are whether log L, (N, a, E ), as defined by (5), 
might have more than one (local) maximum, and whether the system of likelihood 
equations (6)-(8) might have more than one solution, which is a different problem. 
The answer to both questions is affirmative. In Remark 4 we will present a data-set 
for which log L,(N, a, c) has a global maximum at the boundary (N = n(r) and E = 0) 
and both a local maximum and a saddle-point in the interior of the parameter-set 

e. D 

REMARK 2. We shall investigate the asymptotic behaviour of the ML-estimators for 
(a, N, c) when the parameters of the counting process evolve in the following way: 
rx.0 and £0 remain fixed, while b0:=N0 a0 (the intensity of the process at time t = 0) goes 
to infinity. D 

For the Jelinski-Moranda model MOEK (1983) gave a criterion on the data, 
satisfied with probability one when the model is true, under which there exists an 
unique solution of the maximum likelihood equations. For the model of Littlewood 
such a criterion, however, is not known and probably will not exist. With use of 
asymptotic theory it is proved (VAN PuL, 1992) that in case of one or more solutions 
of the likelihood equations exactly one of them will be consistent, if we can make 
this choice using the data only. Here the earlier mentioned problem arises: how to 
(() vvs. 1995 
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choose a consistent MLE, when the likelihood equations have more than one 
solution. Also alternative estimation methods do have the same difficulties with the 
Littlewood model. In case ofM-estimation, nonsingularity of the resulting matrix has 
unfortunately not been proved yet (see GEURTS et al. (1988)). 

As the system of the three highly non-linear likelihood equations (6)-(8) obviously 
cannot be solved analytically, MoEK (1984) and GEURTS et al. (1988), using the 
parametrisation (3), suggest to simplify the problem by fixing one of the parameters 
a = 1. Furthermore, Moek was able to express both N and a as functions of b and 
used this to derive an equation f(b) = 0 from which b can be solved numerically 
relatively easy. Criteria were formulated which ensure the existence of at least one 
solution. The problem of the possibility of multiple solutions is ignored. GEURTS et al. 
signal this problem but do not provide a solution. They state that in case of multiple 
solutions exactly one of them will be consistent; moreover this consistent solution is 
asymptotically normal distributed and efficient. 

In BARENDREGT and VAN PuL ( 1991) various approaches are presented to construct 
estimates that are indeed consistent. A first attempt describes how an initial estimator 
can be obtained that is Jn-consistent. Starting with this initial estimator an 
application of the one-step Newton-Raphson method (or an other suitable iterative 
optimisation procedure) will then provide us with an estimator that is asymptotically 
equivalent with the MLE. Practical results obtained with these likelihood equations 
based estimators turned out to be disappointing, especially for small N0 • In Section 4 
of this paper an other, more analytical approach is presented which reduces the 
problem of maximising the log-likelihood function log L,(N, IX, l), given in (5), to a 
one-dimensional one by eliminating first the parameter IX explicitly and then the 
parameter Nimplicitly. A third approach, described in Section 5, is based on finding 
solutions of a slightly modified system of score equations. 

4 Exploiting the mathematical properties of the likelihood function 

For sake of convenience we apply the parameter-transformation 

M== N-n('t'). 

The log-likelihood, as expressed in the new parameters, is given by 

I L ( M ) ( ) I ( ) ~ Jog (I + 1:T;) M log (I + et') 
og t IX, ' l = n ' og IX - l + IX L., - IX 

;- I l l 

n(t) 

+I log(M + i) 
i= I 

(9) 

with parameter-domain {(ix, M, l): ix > 0, M ~ 0, l ;;?; O}. When M and l are kept 
fixed, it is quite easy to maximise log L,(IX, M, l); it can be done analytically. If we 
define the profile-likelihood 

R2(M, l)==sup log L,(IX, M, l); 
a>O 

<1:> vvs, 1995 
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then 

sup log L,(a, M, l) = sup R 2(M, E). 
0: >0,M;?; 0,£ ~ 0 M~ O,c ~o 

Now 

8 n(r) ~log(l+ET;) Mlog(l+er) 
- logL,(a,M, c) =- - L.. -
8a rJ. i= I € l 

and it is easy to check that log L,(a, M, c) for M, l fixed, is maximal for 

( )[~ log(l +cT;) log(l +Er)J- 1 

a=nr L.. +M ; 
i= I l € 

(10) 

so 

[
n(r) log (1 + t.T;) log (1 +Er)] 

R2(M,t)=n(r)logn(r)-n('r)log i~I l +M € 

n(r) n(r) 

- L log(l +a;)+ I log(M +i). ( 11) 
i= I i= I 

In order to maximise R2 (M, l) we will first maximise with respect to M, keeping l 

fixed, and then maximise with respect to c. The first maximisation is relatively easy 
because we can make use of the following theorem: 

THEOREM l. For n integer and ~ 2, and 17 real and > 0, the function z, where 

n 

z(M):= -nlog(M+11)+ I log(M+i) 
i= 1 

has precisely one local supremum, which is realised at: 

• M = 0, for 11 ~ n[l:7= 1 l/W1, 
• M=oo,for17~(n+l)/2, 
• ME (0, oo ), for intermediate values of '1· 

PROOF. It is easy to check that 

d -n n l 
i(M)=-g(M)=--+ I--., 

dM M + '1 i = I M + l 
d2 n n ( J )2 

i(M) = dM2 g(M) = (M + 71)2 - i~t M + i 

If for a finite value M' of M 

i(M') = 0, (12) 

then 

n n ( l )2 I ( n I )2 n ( l )2 
i(M') = (M' + 1J )2 - i~I M' + i =;; i~I M' + i - ;~1 M' + i < O, 

(13) 

© VVS, 1995 
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since n ;:?; 2. So there is at most one finite value M' for M for which (12) holds, as 
if there were two of them, say Mi< M2, then we would have i(M);:?; 0 for either 
one of them, or there would be an intermediate value M3, M; < M3 < M2 for which 
i(MD = 0, z(M3);:?; 0. Both options, however, are excluded by (13). 

•Case 1: 17 ~n[I:7= 1 l/i]- 1• 

It is easy to check that i(O) ~ 0. From this and (13) it follows immediately that 
i(M) < 0 for all M > 0. Hence M = 0 provides the unique local maximum of 
z(M). 

• Case 2: 17 ;:?; (n + 1)/2. 

We find that for all M ~ 0: 

-n " 1 -n n 1 
i(M)=--+ 2:--.~ + 2:--. ~O. 

M+17 i=1M+z M+n+l i= 1M+z 
2 

The last inequality follows from Jensen's inequality applied on the function 
x-+ l/x. So the supremum is reached at M = oo. 

• Case 3: n[I:7= 1 I/nJ- 1 <17( < n + 1)/2. 

We have i(O) > 0, but 

n 

lim M 2i(M) = n17 - L i < 0. 
M~oo i=l 

So there exists a M0 , 0 < M0 < oo such that for all M > M0 we have M 2i(M) < 0 
and hence also i(M) < 0. Thus again there exists a finite positive value M' for 
which i(M') = 0 and the unique local maximum of the function z(M) is realised. 
This completes the proof of Theorem 1. O 

Now R2 (M, £) can be rewritten as 

( log(l +er)) R2(M, £) = n('r) log n(r)- n(r) log £ -n(r) log (M + 17(£)) 

n(T) n(T) 

+ L log(M+i)- L log(l+£T;), (14) 
i= I i= I 

where 

l7(£)== I log (1 + £T;). 
; = I log (} + £!) 

Only the third and the fourth of the terms in the right-hand side of (14) depend 
on M. Their sum has a form similar to the function h(M) of Theorem 1, and so 
R2(M, £) has for £ fixed, exactly one local supremum, which occurs for M = 0 if 
17(£) ~ n [1:7~\ l/i]- 1, for M = oo if 17 (£) ;:?; (n + 1)/2 and for a finite, positive value of 
M otherwise. 
© VVS, 1995 
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REMARK 3. M(£), the value of M which maximises R2 (M, £), cannot be expressed 
explicitly, contrary to the ex of (10). If£ increases, '7(£) increases as well, and so will 
M(l). D 

Finally then, if we define 

R1 (£ ):=R2 (M(£ ), £ ), 

we have to maximise R1 (£).While doing this, one must bear in mind that R 1 (£)might 
reach its maximum for£= 0. As a matter of fact, we have encountered this feature 
several times when analyzing real data-sets. All maximisation results are easily 
obtained by a standard optimisation procedure for one-dimensional functions, called 
Golden section search (see for instance VETTERLING et al., 1985). 

REMARK 4. There exist data-sets for which R 1 (£)has more than one local maximum 
and as a consequence log L(cx, M, £)has more than one local maximum. An example 
of such a data-set is: 

r = 709.5, n(r) = 3; 

T1 =I, T2 = 399.9, T3 = 400.1. 

The function R1 (£) takes its global maximum for£ = 0, a second local maximum for 
£ = 1.152 and a local minimum for£ = 0.023. This corresponds to a global maximum 
for R2 (M, £) for £ = 0, M = 0, a second local maximum £ = 1.152, M = 9 .8, and a 
saddle-point at £ = 0.023, M = 0.0015. The data-set is of course in extremely bad 
agreement with the Littlewood model. It was constructed after mathematical analysis 
rather than encountered while analyzing data. D 

THEOREM 2. The global maximiser of the log-likelihood function for the Littlewood 
model (see expressions (5) or (9)) is consistent, when 50 = N0 ex0 goes to infinity (see 
Remark 2). 

PROOF. It will turn out to be of great advantage to apply the parameter­
transformation 

( •= ex log ( l + £r) . 
€ 

(15) 

With the new parameters N, £ and (, we can rewrite the log-likelihood as follows: 

l L (N Y) _ ( ) l ( y ~ log (1 + £!;) og , , £, ., - n r og - ., L. 
1-e-' ;~ 1 log(l +£r) 

£ n{t) 

+n(r)log 1 (l )-Ilog(l+a;) 
og + £r ;-1 

n(t) 

+ n(r) log (I - e-') - (N - n(r)K + I log (N - i +I) 
i=l 
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n(T) 

=I logh(t;;l,O+n(r)log(l-e-') 
i=l 

n(t) 

- (N - n(r)K + I log (N - i + 1), (16) 
i= I 

where 

C ( log (1 +a)) l 1 
h(t;l,0•= 1-e_,exp -Clog(l+lr) log(l+lt)l+a· 

It is easy to check that h(t; l, O is continuous on [O, r] and for all l ~ 0, C ~ 0: 

t h(s; l,C)ds = 1. 

Hence h(t; l, O can be considered as the continuous density function of a stochastic 
variable with values in [O, r ]. We are now going to eliminate N from the log-likeli­
hood by maximising (16) with respect to N for fixed land C. Let N(O be that value 
of N ~ n(r), for which 

n(r) 

R(N, O •= n(r) log (1 - e-')-(N - n('r))( +I log (N - i + 1) 
i= I 

is maximal and define 
n(r) 

R(O •= n(r) log (1 - e-')-(N(O- n('r))( +I log (N(O- i + 1). 
;-1 

For large values of n(r), R(O is approximately n('r) log n(r) - n(i:) + C /2, but we will 
not need this. We will only use that: 

a 
o~ 8cR<O~L 

Now the log-profile-likelihood for (l, () becomes 
n(r) 

LPL(l, 0 ==I logh(t;; l, O + R((). 
i= I 

(17) 

As in our asymptotic approach N0 -+- oo implies n ( r)-+- oo with probability 1, we 
consider the sequence (T;);.., 1 of i.i.d. random variables with density h(t, l 0 , C0). We 
will prove that the corresponding sequence of profile-log-likelihood maximisers 
(i.,(.) converges to (l0 , Co) with probability 1. With Q = (l, O: l ~ 0, C ~ O}, the 
density function h(t; l, O satisfies all eight assumptions of WALD (1949). The 
verification of the validity of these assumptions is straightforward, except perhaps 
for Assumptions II and V. Now it follows from a theorem of WALD (1949) that for 
all closed subsets w of n, not containing the true value (l0 , C0), we have 

P (1im sup (±log h(t;; l, 0- f, log h(t;; l 0 , Co))= -oo) = 1. 
n-oo (<,C)ew i= I i• I 

Some calculations yield that with probability I there exists a N 1 such that for n > N1: 
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(18) 

where IET denotes the expectation of the stochastic variable with density h(t; l 0 , (o). 
As LPL(l.,(.)'~LPL(l0 ,(0 ) it follows that for n >N,: 

n n 

L log h(t;; l., (.) - L log h(t;; l 0 , ( 0 ) ~ R((0 ) - R((.) 
i=I i= I 

4t 
~ min (0, ( 0 - (.) ~ - ET. 

Let '1 > O be arbitrary. Suppose the sequence(£.,(.) has an accumulation point at 
a distance larger than '1 of (l0 , ( 0 ). So for infinitely many n: 

n n 

sup L log h(t;; E:, 0 ~ L log h(t;; l., (.) 
IC<.C>-«o.Co)I >~ i= I i= I 

and hence 

for infinitely many n. But this event has according to Wald's theorem probability 
zero. Therefore all accumulation points of(€.,(.) are within distance '1 of (l0 , ( 0 ). 

As I'/ was chosen arbitrarily, it follows that 

P(lim (£., (.) = (l0 , (o)) = l. 
n-oo 

This yields the consistency of(€.,(.). Of course N((.) itself is not consistent. We can 
prove, however, as 

0< 1~;_,-NCO<1, 
that 

N((.)--+ E(n(t)) 1 =I. 
No a.s No 1 -e-C 

Full details of the verification of (17), (18) and Assumptions II and V of Wald 
can be found in BARENDREGT and VAN PuL (1993). This completes the proof of 
Theorem 2. D 

5 Investigating solutions of modified score equations 

Recently, the proof of Theorem 2 inspired us to an alternative way of constructing 
estimators for the model parameters of the Littlewood model. We believe this 
method, which is in the spirit of Le Cam's idea to investigate slightly modified but 
more easily tractable score equations, will be more generally applicable. 

We consider again the counting process n(t) with failure intensity according to the 
Littlewood model: 
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, ) ct.0 (No-n(t-)) 
11.(t : . 

I+ lot 

The log-likelihood function in theorems of N, et. and € is given by (see also (5)) 

n(r) ( Cl.) n(<) 

log L,(N, et.,€)= I log(ct.(N - i + 1))- 1 + ~ ;~1 log (l +a;) 

a(N - n(T)) 
- Jog (l + lT). (19) 

€ 

In this section we will construct approximate maximum likelihood estimators 
(N, a, [), sometimes called modified score equation solutions, and prove the consist­
ency of (a, l) and the convergence (in probability) to zero ofvar (N)/R2, when N0 (the 

true value of N) tends to infinity. We rewrite the log-likelihood as follows: 

n(r) (l-(l+£T)-•I<) 
log L,(N, a, c) = ;~i logg(t;; Cl.,€)+ n(T) log a 

n(r) ct.(N - n(T)) 
+ L log(oi(N-i+ 1))- log(l+cT), (20) 

i= I ( 

a(l + a)-•l<-1 
g(t;a,c)= l-(l+ET)-•I<' O;.s;t;.s;T, (21) 

Thus g(t; et.,€) is the density function of a continuous stochastic variable with values 
in [O, T ]. This is true for all parameter combinations (a, c) with et. ;;;,: 0 and € ;;;,: 0. 
Degeneration of the probability distribution only occurs if at least one of the 
parameters et. and £ takes the value oo. For et.> 0, g(t; et.,£) can be viewed as the 
density function of a generalised Pareto distributed variable, that is truncated at T. 

The three remaining terms on the right-hand side of (20) can be compared with 
R(N, 0, defined in the proof of theorem 2. We found that R(N, O was of secondary 
importance once N was replaced by N(O, because of its limited variability (see (17)). 
This led us to estimate (a, c) by maximising the leading term of the log-likelihood 
(20) only: 

n(r) 

L log g(t;; a,£). (22) 
i= I 

The approximate estimator (a,€) we obtain in this way is asymptotically consistent, 
even if we take for the parameter-set Q ={(a,€): et. ;;;,: 0, l ;;;,: O}. This follows directly 
as the truncated Pareto density g(t; et., l) in (21) satisfies all eight assumptions of 

WALD ( 1949). Verification of this is, again apart from conditions (II) and (V) perhaps, 
straightforward. Estimation of N could be performed by substituting a and €in the 
remaining terms of the log-likelihood (20): 

(
1-(l+ET)-•i') n(r) ct.(N-n(-r)) 

n(-r) log et. + ;~i log (ct.(N - i + 1)) - l log (1 

+ET) (23) 

and maximisation of (23) with respect to N. This would yield 
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N= n(t) __ ~ + 0 (-1-)· 
1 -(1 + lt)-•ll 2 n(t) 

(24) 

We will estimate N by neglecting the last two terms in the right hand side of (24). 
Stated more generally, the idea is to regard the failure times T;, conditional on n("r), 
as the ordered outcomes of n(t) independent variables from some parametric 
distribution function F(t, I{!). For the Littlewood model this distribution function is 
the generalised Pareto (t, a, l) distribution. Conditioned on t/1 0 = (oc0 , £0 ), n(t) has a 
binomial distribution with parameters N0 and F(t, 1/10 ). We define 'i/i and N as the 
roots of 

a n<t> f(T;,t/J) 
a·'' .L log F( t/!) = 0, 

"'1=1 r, 
(25) 

n(t) - NF(t, i/i) = 0. (26) 

Although this choice seems rather ad hoe, a closer examination yields that the system 
of equations (25)-(26) is asymptotically equivalent to the system of likelihood 
equations. Let 0, be the system of likelihood equations (6)-(8) and let D, be the 
vector of left-hand sides of (25)-(26). So 0,(0,) = 0 and D,(O,) = 0 and furthermore 
we have 

V,(9) = A,(9)0,(0) + B,(9), 

where A,-+ A, A non-singular and JnBn-+ 0. Under weak boundedness and smooth­
ness conditions on A and B the asymptotic properties of 0 are transferred to e. 

6 Comparison of some numerical results 

In this section we will discuss the results of some simulation experiments. We 
generated failure times according to the Littlewood model (4) with oeo = 1, £0 = 1 and 
different values of N0 (100, 1000 and 10000). The exposure period was kept fixed: 
t = 4. We compare the global maximiser of the likelihood 8 (described in section 4) 
and the modified score equations solution {f (suggested in section 5). For each value 
of N0 we repeated the simulation experiments and parameter estimations ~ = 200 
times and computed /j and 0. Mean square errors for these estimators are given in 
Table 2. 

Table 2. Mean square errors ford and Y with (a) IJ0 = (100, I, I), (b) IJ0 = (1000, I, I), (c) IJ0 = (10000, I, I) 

(a) No= 100 (b) N0 = 1000 (c) N 0 = 10000 

N 0.0237 0.0060 0.0006 
ii 0.0461 0.0052 0.0007 
i 0.5767 0.1322 0.0101 

N 0.1601 0.0099 0.0041 
IX 0.0644 0.0075 0.0017 
i 0.5473 0.1517 0.0545 
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Fig. 2. Histograms for N and N with (a) N0 = 100, (b) N0 = 1000, (c) N0 = 10000. 
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From these figures we may draw several conclusions. All estimators become better 
N0 gets larger. The is not surprising as we have more statistical information. ix can 
be estimated relatively well already for small N0 ; this in contrary to £ which has for 
N0 = 10000 still a large range. The differences in the value of the likelihood function 
are in some cases very small, indicating the extreme flatness of the likelihood in the 
neighbourhood of its maximum. Different triples can lead to almost the same curve 
(up to•) and likelihood. Predictions of events after r will differ, of course. In a few 
cases the likelihood function takes its absolute maximum on the boundary£ = 0. We 
checked that in these cases there are no other (local) maxima. The data here falsely 
suggests the Jelinski-Moranda model. 

Appendix: Counting process theory and maximum likelihood estimation 

We are going to model the occurrence of discrete, random events in continuous time. 
We fix ff= [O, r] for a given finite terminal time r, 0 < -r < oo. Note that we are 
observing a non-deterministic process through the fixed time window ff. The fact 
that the number of faults detected in ff will be stochastic is the reason why we cannot 
use classical maximum likelihood theory for i.i.d. observations in deriving asymptotic 
results. Therefore we introduce a powerful mathematical instrument which we will 
use to solve these problems: the theory of counting processes and martingales. For 
a complete summary we refer to ANDERSEN and BORGAN ( 1985), JA COD and SHIRYAEV 
(1987) or ANDERSEN et al. (1993). 

A counting process n is a stochastic process which can be thought of as registering 
the occurrences in time of a number of discrete events. More formally, a counting 
process is a stochastic process, zero at time zero, with piecewise constant and 
non-decreasing paths, having jumps of size one only. We say that n has intensity 
process A., if A. is a predictable process and the process m, defined by 

m(t)==n(t) - J: A.(s) ds, (Al) 

satisfies the martingale property (A2): 

E(m(t)[m(u), 0 :<::; u :<::; s) = m(s), s :<::; t. (A2) 

That is, the increment of the stochastic process m(t) over an arbitrary time interval 
(t, t + h] given the past has zero expectation. The integral in the right-hand side of 
(Al) is often referred to as the cumulative intensity process or compensator of n. We 
can consider a martingale as being a pure noise process. The systematic part of a 
counting process is its compensator, a smoothly varying and predictable process, 
which, if subtracted from the counting process, leaves unpredictable zero-mean noise. 

Martingales have been studied intensively during the past few decades and a lot 
of nice mathematical properties have been derived by now. Some very important 
martingale results are Kurtz' theorems, Lenglart's inequality and the Martingale 
Central Limit Theorem (MCLT), which can be seen as analogues of the law of large 
© VVS, 199S 



litt/ewood's model in software reliability 183 

numbers and the usual Central Limit Theorem in the classical i.i.d. case. These results 
will be essentially in the proofs of convergence in probability and weak convergence 
for the non-i.i.d. case. For a comprehensive treatment of these and other martingale 
results we refer to ANDERSEN et al. (1993). 

We observe the counting process n(t) on [O, r] with underlying intensity process 
A.. We assume that this stochastic intensity function, depending on the past of n, is 
a member of some parametric family: 

A.(t) = A.(t, 0, n(t - )), 0 e B <;; Rk. (A3) 

We assume the true parameter-value 00 is contained in the interior of B. In all typical 
cases 00 = (N0 , t/10 ), where N0 , the parameter of most interest, represents the scale or 
the size of the problem (sometimes N0 = n( oo )), while t/10 denotes a nuisance vector 
parameter. 

The question is now, of course, how to find estimators for N and t/J. We will use 
the method of Maximum Likelihood Estimation (MLE) for this purpose. Using the 
fact that A.(t) dt represents the conditional probability given the strict past that the 
counting process n(t) jumps in the interval [t, t + dt], we can write for the likelihood: 

L,(O)oc fl ((A.(t,O)dt)dn(ll(l-A.(t,O)dt)1-dn<1>) 
O<t<t 

ocexp (flog A.(t, 0) dn(t) - f
0
' A.(t, 0) dt). (A4) 

For a standard definition of the product integral in the upper expression of (A4) we 
refer to GILL and JOHANSEN (1990). The lower expression in (A5) is also known as 
Jacod's formula (ANDERSEN et al., 1993). 

Maximization of expression (A4) is usually done by setting partial derivatives of 
the log-likelihood to zero and solving the resulting system of highly non-linear 
likelihood (or score) equations: 

a 
aN log L, (N, "') = 0, (AS) 

a 
olf; log L,(N, t/I) = 0. (A6) 

We have assumed in (A5) that the model is also meaningful for non-integer N. The 
direct algebraic solution of the system of non-linear equations (A5)-(A6) is usually 
impossible. The best we can realistically hope for is to solve these equations for a 
subset of the parameters in terms of the remaining parameters. The remaining 
parameters are then estimated using numerical methods. 
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