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Abstract 

We study weighted versions ofDirichlet's theorem on the probability that two integers, 
taken at random, are relatively prime. This leads to a uniform approach in the study of 
several counting problems in discrete and computational geometry relating to incidences 
between points and lines. 

1. Introduction 

An old theorem of G. Lejeune Dirichlet, dating back to the year 1849, 
states that the probability that two integers taken at random are relatively 
prime is 6/n2 (12, p. 324], [10, p. 269]. This theorem is also known in an 
equivalent geometric formulation: the probability that a vertex of the integer 
lattice (of pairs of integers) is visible from the origin (i.e., the open line 
segment joining the origin and the vertex meets no lattice points) is 6/TC2• This 
equivalence is merely due to the simple observation that a vertex of the integer 
lattice is visible from the origin if and only if its coordinates are relatively 
prime. 

* A preliminary version of this work appears in [ 13, I 7). 
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Dirichlet's theorem admits several generalizations. One of them concerns the 
probability that two integer square matrices chosen at random have relatively 
prime determinants [ 9]. Another one concerns the probability that a lattice 
point is visible from each of the points of a fixed subset of the integer lattice. 
This problem was considered by Rearick [ 18] who solved the case where the 
points of the subset are pairwise visible, and Rumsey [ 19] who solved the 
case of arbitrary finite subsets. A nontrivial application of Rumsey's theorem 
is in the study of the camera placement problem, which is concerned with the 
placement of a fixed number of (point) cameras on an integer lattice in order 
to maximize their visibility [ 1 7]. For more related problems the reader should 
consult [ 1,6]. 

1.1. Results of the paper 

This paper is concerned with a geometric formulation of Dirichlet's theorem: 
let A be a bounded region in the plane and let Ao be the set of integer points 
of .d visible from the origin; then 

L 1 "' 6
2 area(A) 

Lio 1C 

as A grows by dilatation to the entire plane [ 10, p. 409]. Our subsequent 
analysis of several geometric problems requires the asymptotic evaluation of 
multidimensional versions of sums of the form 

L:J<x> (I) 
.do 

where f is a real function which is either monotone or satisfies a Lipschitz 
condition. Intuitively one can think of f (x) as a measure (for an observer 
sitting at the origin) of the visibility of the point x, while the sum ( 1) quantifies 
the total visibility from the origin. 

We give a "weighted version" of Dirichlet's theorem and use it to give a 
unified approach to the study of the asymptotic behavior of several counting 
problems in discrete and computational geometry. These problems are: 

( 1) the number of lines passing through at least k integer points of the 
d-dimensional standard cube of size n, the d-dimensional standard simplex of 
size n, and more generally of the Cartesian product of such simplexes, 

(2) the maximal number of incidences between m points and n lines in the 
plane [22], [5, Chapter 6], 

(3) the maximal complexity of the plane region illuminated by a segment 
in the presence of other segments [16, pp. 219-223]. 

We show how to calculate asymptotically optimal bounds for the first prob
lem and constants of known lower bounds for the other two. From a slightly 
modified version of the first problem we deduce the asymptotic average length 
(as well as moments of higher order) of maximal integer segments in the cube 
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(cf. [20,8] and problem E 3217 [ 1987, 549; 1989, 64] in the problem section 
of American Mathematical Monthly). 

2. General results 

Let L1 be a convex domain (compact and full dimensional) of !Rd (d ~ 2) 
of diameter w; we denote by vol (L1) its volume. It is well known {and easy to 
prove) that 

vol(L1) = O(wd), (2) 

where the constant implied by the 0-notation depends only on the dimension d 
(according to the 'isodiametric inequality' [ 7, p. 13] the best constant is the 
volume of the d-dimensional ball of diameter 1, i.e., n:dfl ( ! )d / (-!d)! ). 

We denote by L1 1 the set of integer points in L1, and by L10 the set of integer 
points x = (Xi, ... , xd) in L1 that are visible from the origin, i.e., xi, ... , xd 
are relatively prime. 

Let f be a real function defined on L1. The following two theorems give an es
timate of the difference between LA f (x) and the integral lf'(d) JJ f (x) dx, 
when f is either monotone (i.e.,0 either non-decreasing or non-increasing 
with respect to all the variables off simultaneously) or satisfies a Lipschitz 
condition, respectively. Recall that ( (d) denotes the Riemann zeta function 
Ln~ 1 n-d (see [10, ChapterXVII]). 

Theorem 2.1. Let L1 be a convex domain of !Rd of diameter w ;?; l and let f be 
a monotone real positive function defined on L1. Then 

~ l j ( {wlogw, if d = 2 ) 
L.,,f(x)-r(d) f(x)dx =0 supf d-I h . 

• ., LI w , ot erwzse 
"'O LI 

where the constant implied by the 0-notation depends only on the dimension d. 

Theorem 2.2. Let L1 be a convex domain of [Rd of diameter w ~ 1 and let f 
be a real, positive function defined on L1 and satisfying the Lipschitz condition 
If (x) - f (y) I ~ A Ix - YI, for some constant A > 0. Then 

Lf(x) - ((~) j f(x)dx 
Lio 4 

= o (cw A+ sup/) {w;~~w, if d = 2) 
A w , otherwise 

where the constant implied by the 0-notation depends only on the dimension d. 

We begin with a lemma. 
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Lemma 2.3. Under the hypothesis of Theorem 2.1 we have 

Proof. We first extend f on !Rd by preserving its monotonicity. Without loss 
of generality we may assume that the function f is non-decreasing. Then 
we extend f on !Rd by setting f (x) == inf {f (y) I y E L1, x ~ y} with the 
convention that inf 0 = sup LI f (by abuse of notation we use the same symbol 
for the function f and its extension). It is then easy to verify that the extension 
is still positive, non-decreasing, upper semi-continuous, and that its supremum 
does not change, i.e., supll" f = sup LI f. 

The proof that follows generalizes the principle result of Nosarzewska [ 15]. 
Let T (A) be the set of points whose distance from the boundary of L1 is less 
thanVd {thethickenedboundary),let..d+ = AuT(..d),andA- = ..d\T(.d).Let 
C be the unit cube with vertices the 2d points (x1, ••• , xd) where Xi E {O, 1}. 

Using f (x) = infx+C f and L11 + C ~ J+ we obtain 

'Lf(x) ~ j j(x)dx ~ j f(x)dx. 
Ll1 Ll1+C J+ 

Similarly, using f (x) = SUPx-C f and ..d 1 - C 2 A-, we get 

Lf(x);;?; j f(x)dx;;?; j f(x)dx. 
41 '11-C J-

Using 11- 5; L1 5; L1 + and A + \ Lf - 5; T (..d ) and the above inequalities we obtain 

Lf (x) - J f (x) dx ~ j f (x) dx - j f (x) dx ~ j f (x) dx. 
tl1 LI .if+ J- T(.d) 

The right-hand side of the above inequality is of course bounded above by 
vol(T(Lf)) sup.11 f; so it remains to prove that vol(T(.d)) = O(wd-I ). For 
x E !Rd let r (x) be its symmetric point with respect to its orthogonal projection 
on L1. Due to the convexity of L1 the restriction to T (.d ) \ L1 of the mapping 
T is non-increasing in distance. Consequently vol ( T (A ) ) ~ 2 vol { T (A) \ L1). 
According to the formula of Steiner-Minkowski [2, p. 141], 

d 

vol(T(Ll) \LI)= "£/;(..1)dif2, 
i=l 

where the functions ii. t 2, ••• , fd are bounded on the set of convex subsets of 
the unit ball and satisfy the identities f; (k.d) = kd-if; (J) for i = 1,. .. , d. 



E. Kranakis, M. Pocchiola!Computational Geometry 4 (1994) 309-325 313 

It follows (under the non-restrictive hypothesis 0 E LI) that vol ( T (LI) \ L1) = 
O(wd-I) where the constant implied by the 0-notation depends only on the 
dimension d. This completes the proof of our lemma. O 

Proof of Theorem 2.1. Let Jk be the set of points of A with integer coordinates, 
all divisible by k. We observe that 

L1o = A1 \ LJ Jp. 
pprime 

Using a standard sieve argument (see for example [ 14] ) we can write 

'Lf(x) = Lµ(k)Lf(x) 
4o k;;.I .dk 

where µ is the Mobius function. We now use the previous lemma to estimate 
the sum L:.t1k f (x). It follows from the equality Llk = k (.LI I k) 1 that 

Lf (x) = L f (kx). 
4k (.d/k)1 

Therefore by applying the lemma we obtain 

E f(kx) - j f(kx)dx = 0 (<w/k)d-I supf(kx)) 
(J/k)i .d/k J/k 

= 0 ( (w/k)d-I s~pf). 

By summing on k and using 

j f (kx) dx = kld j f (x) dx 
Jfk J 

we get 

'Lf(x)- L µ~;) j f(x)dx = 0 (wd-J supf L kL1) 
4o k:r;,w J LI k<r;;w 

which we simplify to 

Lf(x) - L µ~~) j f (x) dx 
4o k<r;;w J 

_ 0 ( f {wlogw, ifd = 2) 
- s~p wd- i otherwise · 
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Using the well-known identity "£k~t µ(k)jkd = l/((d) (see [10, p. 250]), 
and the inequality "£k>w ljkd ~ l/((d- l)wd- 1 ), the proof of the theorem 
can be completed without difficulty. O 

To prove Theorem 2.2, it is necessary to prove a second lemma, similar to 
Lemma 2.3. 

Lemma 2.4. Under the hypothesis of Theorem 2.2 we have that 

J f (x) dx - L f (x) == 0 ( wd A + wd-l s~p f) . 
A A1 

Proof. We extend f on !Rd by preserving the Lipschitz condition. By the 
compactness of L1, for each x E !Rd there exists a point x• E L1 such that 

lx-x*I = inflx-yl. 
yEA 

(3) 

Using the convexity of A, it can be shown that for each x the point x* E L1, 
defined as above, is unique (indeed, if both x*, Xi E L1 satisfied (3) then so 
would tx* + ( 1 - t)xi, for all 0 ~ t ~ 1) and the mapping x E !Rd ___, x* E L1 
is non-increasing on distances (i.e., [x* - y*I ~ Jx - yl, for all x,y). This 
guarantees that the function x ;-.; f (x) : = f (x*) (by abuse of notation we 
use the same symbol for the function f and its extension) is well defined for 
x E !Rd and satisfies the same Lipschitz condition. 

We use the thickened boundary T (L1) introduced in the proof of the 
Lemma 2.3. Let L1' = L1 1 + D where D is the unit cube with center the 
origin. Since the symmetric difference (L1 \ L1') u (L1' \ L1 ) <; T (A), it follows 
that 

J f(x)dx- J f(x)dx ~ j f(x)dx, 
A A' T(A) 

which is in O(wd-l sup4 f) (see the proof of the previous lemma). Due to 
the Lipschitz condition on f, we can write 

Lf(x)- j f(x)dx = L J (f(x)-f(u)) du~ A\L1il . 
.d1 j• '11 x+D 

Combining these last two inequalities, together with ]Ail = O(wd), we obtain 
the desired result. O 

Proof of Theorem 2.2. The proof is similar to that of Theorem 2.1. We need 
only mention that if the function x t-> f (x) satisfies the Lipschitz condition 



E. Kranakis, M. Pocchio/a/Computational Geometry 4 {1994) 309-325 315 

with Lipschitz constant A then the function x ~ f (kx) satisfies the Lipschitz 
condition with Lipschitz constant kA. D 

Remark. In the two-dimensional case (d = 2) the convexity condition on the 
domain L1 is not necessary. It is possible to obtain an upper bound on the 
area of T (L1) under the hypothesis that the boundary of L1 is rectifiable; this 
done as follows. Let l (J) be its length. Partition the boundary of L1 in r arcs 
A., . .. , A,, the first r - 1 having length ../2 and the last A, having length less 
than v'2; obviously r ~ L l (A ) / v'2J + 1. Since the boundary of LI is contained 
in the union of r discs each of radius less than v'2, the domain T(Ll) is 
contained in the union of r discs each of radius less than 2v'2; consequently, 
vol ( T (LI)) ~ Birr which less than 4../2.n:l (A) + Sn. Hence the proof of the 
first lemma is valid in this case as well. 

In the next section we use our theorems on relatively complicated functions. 
Here we only mention the case where the function is a monomial and the 
summation is over the standard cube. 

Theorem 2.5. Let a1, ••• , ad be d real numbers greater than -1. Then, for fixed 
d, we have 

0 .... 1····.Xd ... 
p(;el , ... ,Xd) ml 

asymptotically in n. 

In particular taking the a/s equal to zero we get the d-dimensional version 
of the previously mentioned theorem of Dirichlet. 

3. Applications 

In this section we apply our main theorems to the analysis of several counting 
problems in discrete and computational geometry. 

3. J. Counting lines 

As a first application of Theorem 2.1 we give an asymptotic evaluation of 
the number of lines traversing at least k + 1 (k ;;:i: 1 ) integer points of the 
standard cube 

C(d,m) = { (x1,. .. ,xd) E !Rd I 0 ~ Xi. ... ,xd ~ m- l }, 

the standard simplex of dimension d and size m 

S(d, m) = { (x1, ••• ,xd) E IR.d I 0 ~ x 1 + · .. + Xd ~ m - 1 }, 
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S(2,3) x S(l,4) S(l, 3) x S(l, 3) x S(l,4) 

Fig. 1. Examples of products of simplexes. 

and, more generally, a Cartesian product of such simplexes (see Fig. l ). It is 
convenient to use the following notations. Let .J be a partition of { l, ... , d}, 
fixed once for all, and let n = (n1 hEJ be a function of .J into 1'.; we assume 
that min1n1=0(mID'.1 n1 ). Put 

D(n) = { (x1,. .. ,xd) E !Rd I 0 ~ L:xi ~ n1 - l 'r// E .J}. (4) 
iEI 

For example the cube C(d,m) is obtained for J = {{1},{2},. .. ,{d}} and 
n{I} = · ·· = n{d} = m, whereas the simplex S(d, m) is obtained for .J = 
{{1, ... ,d}} and n{l ... .,d} = m. 

In general the set D (n) is the Cartesian product of I.JI simplexes of dimension 
III and size n1 where I E .J, 

D(n) =IT S(lll,n1). 
lE:J 

Let w ( n, k) be the number of lines with positive slope passing through at 
least k + l integer points of the domain D ( n). The following theorem gives 
an asymptotic evaluation of the function w(n,k). 

Theorem 3.1. Let .J be a partition of { l, ... , d} and let n = (n1) IE:J be a 
fanction of .J into ll... The number w(n, k) of lines with positive slope traversing 
at least k + l integer points of the domain D (n ), defined by ( 4 ), is given by 
the formula 

l n21Il { 1 1 } 
w{n,k) = ((d) xi (2lll)! kd - (k + l)d 

({ 
1z~3 tog 1~1, if d = 2 ) 

+ 0 lnl2d-I . 
kd , otherwise 

where lnl = sup1 n1 and where the constant implied by the 0-notation depends 
only on the dimension d. 
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a 

Fig. 2. Lines with slope (!, 1) passing through at least 5 points of the cube C(l l, 2). 

Proof. Let p = (p1, ... ,Pd) E ~d be a positive slope (i.e., a d-tuple of positive 
integers such that gcd(p 1, ••• ,pd} = 1). Let Gdp,n) be the set of lines with 
positive slope p each traversing at least k + 1 integer points of the domain 
D(n) (see Fig. 2); we denote by gk(p,n) the cardinal of the set Gdp,n). By 
partitioning the set of lines according to the value of their slope, the following 
equality is obtained 

w(n,k) == gk(p,n), (5) 
gcci(p,, ... ,pd )= l 

which immediately indicates a possible application of the general theorems in 
the previous paragraph. This is done as follows. 

First, we show that gdp, n) admits a simple expression in the coordinates 
Pi. ... ,Pd of p, namely 

1 111-1 ( ·) + 
gdp, n) == IT j7jT IT n1 - k LPJ + l 

IEJ i=O }El 

1 111-1 ( ·) + -xi j7jT g n1 - (k + 1) fu PJ + 1 , (6) 

where t+ is equal to t if t ~ 0 and 0 otherwise. This is proved as follows. The 
mapping which associates to each line f. E Gdp, n) the unique integer point 
a E f. such that a,a + p,a + 2p, ... ,a+ kp E D(n) and a+ (k + I)p tf. D(n) 
is 1-1 and onto the set of integer points a of the domain D (n) such that 
a+ kp E D(n) and a+ (k + l )p tf. D(n). Let Ek be the set of integer points 
a of the domain D(n) such that a+ kp E D(n). Since Ek+I ~Ek we obtain 
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Now we observe that Ek is the set of integer points of the domain D (n -
kp) where (n - kp) is defined by (n - kp)I = n1 - k L;erP; for all I E 
3; consequently Ek is the set of integer points of the Cartesian product of 
simplexes 

S (111.n1 -k LP;), I E 3. 
iEl 

It remains to observe that the number of integer points of the simplex S (d, m) 
is given by the formula m (m + 1) (m + 2) · · · (m + d - 1) / d! (This result 
follows from the recurrence relations a (1, m) = m, a ( d + 1, m) = a ( d, 0} + 
a(d, 1) + ··· + a(d,m) where a(d,m) is the number of integer points of 
S(d,m)) to obtain the expression of gk(p,n) given in (6). 

Second, we extend the function p i-+ gdp, n) to IR~; this is simply done 
by using the right-hand side of Eq. ( 6) (by abuse of notation we use the 
same symbol for gk(p,n) and its extension). Observe that gk(x,n) = 0 for 
x fJ. D(n/k); hence Eq. (5) can be rewritten 

w(n,k) = L gk(x,n). 
xED(n/k)o 

(7) 

Third, we estimate the maxima of the function x 1-t Kk (x, n) and of its 
partial derivatives. We claim that: 

(1) SUPxeD(n/k)gk(x,n) = O(lnld/(k + 1)), 
(2) SUPxeD(n/(k+I)) 8gk(x, n)/8x; = O(lnld-l ), 

which are proved as follows. Introduce the functions h (t) and f (t) defined 
on !Rd by 

d 

h(t) =ITO-at;+ e;) (8) 
i=l 

and 
d d 

f (t) = II (1 - at; + td - II (I - t; + e;), (9) 
i=l i=I 

where e; and a are parameters which we compute in the sequel. By factoring 
the ni's in the expression of gk (p, n) as given by Eq. (6) it follows that 

gk (x, n) = Bf (t), for x E D(n/ (k + I)), 

and that 

gk(x,n) = Bh(t), for x E D(n/k) \D(n/(k + 1)), 

where B = <Tire.7 nV1/l/I!), which is in O(lnld), a:= k/ (k + 1 ), ei = O(d/m) 
(I is the equivalence class of i), and where 
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Observe that t ranges over [O, I ]d when x ranges over D (n/ (k + 1)) and that 
t ranges over [O, l /a ]d \ [O, 1 ]d when x ranges over D (n/ k) \ D (n/ (k + 1) ). 

It follows that our claims above are a consequence of the affiliation of the 
sizes of the maxima of h, f and of jot; to 0(1/(k + 1)) (on the suitable 
domains) whose proof is given in the next lemma. 

Lemma 3.2. The maxima on the domain (0, I ]d of the function f (t), defined 
by Eq. ( 9), and ()_fits partial derivatives are in 1 / (k + I ) + 0 ( max; e;) . 

The maxima on the domain [0,1/a]d\ [0,l]d ofthefunction h(t), defined 
by Eq. (8), is in l/(k + 1) + 0 (max;ed. 

Proof. The result is trivial for the function h. For the function f we proceed 
as follows. Let f* (t) be the function obtained by substituting in the expression 
of f (t) the ei by 0. Since the function f (t) is bounded on the unit cube we 
have 

f(t) = f*(t) + o( s~pe;). 
Similarly, 

af(t) _ af•(t) o( ·) a - ~ + supe1 • 
[j v t; i 

The expressions of f* and 8 f* / 8 ti are sufficiently simple to allow the cal
culation of the respective maxima. Since the calculations are elementary we 
give directly the results. The search for an extremum on the open unit cube, 
by setting to zero the partial derivatives, shows the existence of a unique 
extremum obtained for t; = lj. We denote by r 1 the extremum off* and by 
r 2 the extremum of &f*/ot;, respectively; their values are 

•1 = (1 _ ad/(d-1) )d-t' 
{ 1 }d-1 

r2 = cx(l - a) 1 - a<d~l~/(d-1) 
Using the fact that the function a -. aa is non-decreasing it can be verified 
that r 1 and r 2 are less than I - a. By examining the values of the functions 
on the boundary of the domain it follows that their maximum is exactly 
1-a::: l/(k +I). D 

Fourth, we mention without proof (the calculation is tedious but elementary) 
that 

J nj111 { 1 1 } (lnl2d-1) 
gdx,n)dx=fl(2/I/)! kd-(k+I)d +O kd . 

JRd IE:J 
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Fifth, we apply Theorem 2.1 on the domain D(n/k)\D(n/(k + 1)) (gk (x, n) 
is decreasing on this domain) and Theorem 2.2 on the domain D (n / (k + l)). 
This completes the proof of our theorem. O 

The following result generalizes the preceding theorem to the case where the 
lines are assigned weights by a function which is homogeneous with respect 
to their slopes. The particular form of this generalization concerns the study 
of the length of segments of the cube C ( d, n). The proof of the following 
theorem resembles the proof of the theorem just derived. Since the technical 
difficulties were resolved during the proof of the previous theorem, we only 
state the result leaving it to the interested reader to verify that the function 
p -+ h (p) I Gk (p) I satisfies on the ad hoe domain a Lipschitz condition with a 
Lipschitz constant in O (na+d-1 / ka). 

Theorem 3.3. Let h be a real function, which is homogeneous of degree a ~ 1 
and of class C 1 on (!R1.)*. Let Gk(P) be the set of lines of positive slope 
p = (pi, ... ,pd) E Nd traversing at least k + 1 integer points of the cube 
C(d, n). The number 

w(h, n, k) = 
gcd (p, , ... ,pd)= 1 

From Theorem 3.3 we can derive the average length ln and standard deviation 
an of the maximal segments of the cube C (d, n). A segment of the cube with 
slope p E l\ld and endpoints A 1 and A2 is called maximal, if for each i one of 
the points Ai ± p is not a point on the cube. Thus using Theorem 3.3 we can 
show that the previous quantities are given by 

22d 
ln,..., 2d _ 1 w(ll ll)n, 

an 2 "' 2J~ 1 (<2C(d + 2)- l)w(ll 11 2 ) - 2;: 1w(ll11) 2)n 2 

where II II is a norm on ~d. For example, in two dimensions and using the 
Euclidean norm Jx2 + y2 we get /11 "' (0.695 ... ) n and an'""' (0.185 ... ) n. 
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3.2. The counting incidence problem 

In [22] it is shown that the maximal number of incidences I (m, n) between 
m points and n lines in the plane is less than I060 (m2/3n2/ 3 + m + n). With 
a different approach [3,4] reduces the constant and shows that 

l(m, n) ~ 3'7'6° m213n213 + 25n + 2m. 

The above bound is tight in the sense that I ( m, n) = 0 ( m213 n213 + m + n). 
The value of I (m, n) is difficult to estimate only when the term m213n213 is 
the largest, i.e., larger than m or n. And this term is the largest precisely when 
m = 0(n2) and n = 0(m2). The example of [5, Theorem 6.18], used to prove 
the lower bound, is based on sets of points and lines of a square grid. Using 
Theorem 2.1 we can make the exact calculations. This leads to the following 
result. 

Theorem 3.4. Assume that m = 0(n2) and n = 0(m2). Then 

l. . f I(m, n) ef6/;26/ 2 
im 1Il 2/3 2/3 ~ 1l • n,m-.oo m n 

Proof. Let i be a line in the grid of size p x p. Denote by I(£) the number 
of points of the grid lying on the line i. Let L be the set of lines of the grid 
with positive slope (p 1, p2 ) ~ a (p, p), and let n .... be the number of such lines. 
Put l(L) = L,,ELI(i). It is clear that /(L) is a lower bound for l(p2,n .... ). 
To calculate precisely the numbers na and I(L) we proceed as follows. Let 
uk(Pi.P2) = (p-kpi)+(p-kp2)+ and 8k(Pi.P2) = udPi.P2)-Uk+iCPi,P2) 
be the number of lines of slope (p1,p2 ), with gcd(p1,p2 ) = I, each traversing 
at least k + 1 points of the grid of size p (see Eq. (5) ). Then we have 

and 

na = L g1 (p1,P2) 
aod<P1-P:1>=l 

P1.P2<ap 

00 

l(L) = L L (k + 1 ){gk (P1oP2) - gk+t (p1,P2)} 
8"c!CP1.P2l=I k= l 

PtoPi"ap 

Trivial calculations show that supg1 {pi,p2 ) = O(ap2) and sup(2u1 - u2) = 
0(p2 ). According to Theorem 2.1 and assuming that ap--+ oo, we obtain 

1 'ii 2 3 no = ((2) p 1 (a) + O(o p logap ), 
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Fig. 3. Grid of size p = 6 and the slopes ~ (3, 3). 

and 

1 
l(L) = ((Z) p 4 fi(a) + O(ap3 logo:p) 

where / 1 (a) = a 3 (1 - 3/4a), / 2 (a) = a:2 (1- l/2a2 ) for a :;;:; l/2 and 
/i(a) == a 2(1- l/2cd2 - 1/16, fi(a) = 2a2 (1 - l/2a) 2 - 1/16 for a~ 1/2. 
Combining these last two equations we obtain 

I(L) = ((2)-tf3n2/3p4/3 fi(a) {i + 0 (lo:Pap) }· 
a f1(a)2/3 .... 

(10) 

Let now m, n be as in the theorem and let p = l vmJ. Since n t/p ~ p ~ Vm 
and n1 ~ p4 ~ m2 , and since na is an increasing function of a we get an 
0 <a < 1 such that na ~ n < n0 + l/p· Furthermore, we can easily verify that 
ap -+ oo and that a-+ 0 from which we deduce that na+ l/p ,..., na "" n. Then 
according to (10) we can write /(L) rv ((2)- 113n 2/3m 213, and we use the fact 
that I (L) is a lower bound for I (m, n) to conclude. D 

3.3. Complexity of the edge visibility region 

The problem is to calculate the plane region illuminated by a segment in 
the presence of other segments. Suri and O'Rourke [ 21 ] have established 
an 0(n4 ) lower bound on the complexity of any algorithm that calculates 
explicitly the boundary of the illuminated region. The example used by [ 16] 
is illustrated in Fig. 4. It consists of a horizontal luminescent edge (y = 0); at 
the vertices (0, 0), (± 1, 0), (±2, 0 ), ... , (± (n - 1),0), light sources are located 
emitting light in all directions. Above and parallel to this edge place two 
rows (y = 1, y = 2) each consisting of n closely spaced line segments, thus 
permitting 0 ( n2 ) beams of light to emerge above them. Since these beams 
intersect in 0(n4 ) points above the second row we obtain a region with 0(n4 ) 

vertices and edges. The mathematical analysis that determines the Q(n4 ) lower 
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luminescent rays 

luminescent edge 

Fig. 4. The visibility region. 

• • • • 
l2 

£3 l I • • 

P1 
duality 

• ,___. 

• • • • • 

• • • • • • • 

Fig. 5. The duality. 

bound is based on the evaluation of the number N (n) of distinct intersections 
located on the half-plane y > 2 between lines passing through the points (±i, 1) 
and (±}, 2) for 0 ~ i,j < n. Theorem 3.1 can be used to give an asymptotic 
evaluation of the number N(n). Indeed, by using the duality which maps the 
line passing through the points (x, 1) and (y, 2) to the point (x,y) (see Fig. 5) 
we see that the number 2 N (n) is also the number of lines with positive slope 
passing through at least two points of the grid of size n. Hence, we get using 
Theorem 3.1 

PI 
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For generalizations and further applications of this duality to computational 
geometry the reader may consult [ 11 ] . 

4. Conclusion 

We have given two general theorems which facilitate calculations of asymp
totic evaluations on the number of incidences between points (with integer 
coordinates) and lines of a cube and more generally of a product of simplexes. 
Two natural questions arise. Is it possible to generalize our results to more 
general classes of convex sets, like spheres and polyhedra? What is the num
ber of incidences between points with integer coordinates and d-dimensional 
subspaces, (d ~ 2)? 

It is clear that our results generalize to convex sets C for which it is possible 
to express "simply" (as a function of the slope and the integer k) the number 
of points with integer coordinates included in the domain 

en (-kp + C) \ (-(k + l)p + C). 

However, the class of convex sets for which this is possible still remains to 
be determined. The answer to the second question seems to be more delicate 
since a subspace of dimension ~ 2 is not uniquely defined by a .. slope" as is 
in the case of lines. 

A natural generalization of our theorems concerns the asymptotic evaluation 
ofsums over visibility sets. If V ( S) is the set oflattice points which are visible 
from each of the points of S then define 

s(f,S,J) := 2: f (x). 
tlnV(S) 

Rumsey [ 19] treats the case where the "weight measure" f is constant and 
the set S is fixed: the density of the set V (S) is given by the infinite product 

fl (i- 1s1:1), 
pprune p 

where S/p denotes the set of equivalence classes of the relation of equality 
modulo p on S. Using techniques similar to those developed in Section 2 it 
can be shown (under ad hoe hypothesis on the function f and for a fixed 
finite set S) that 

s(f,S,J),.., ij (1- IS/%1) j f(x)dx 
ppnme P .1 

as ,1 grows by dilatation to the entire plane. Eventual applications of this result 
as well as its generalization to the case of "variable" sets S (for example when 
it is assumed that the points of S are located on the boundary of the domain 
J ) are still to be explored. 
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