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DEFORMATIONS OF VECTOR FIELDS AND HAMILTONIAN 
VECTOR FIELDS ON THE PLANE 

NICO VAN DEN HIJLIGENBERG, YOURI KOTCHETKOV, AND GERHARD POST 

ABSTRACT. For the Lie algebras L1 (H(2)) and L1 ( W(2)), we study their in­
finitesimal deformations and the corresponding global ones. We show that, as in 
the case of L1(W(l)), each integrable infinitesimal deformation of L1(H(2)) 
and L1 (W(2)) can be represented by a 2-cocycle that defines a global defor­
mation by means of a trivial extension. We also illustrate that all deformations 
of L1 (H(2)) arise as restrictions of deformations of Li( W(2)). 

0. INTRODUCTION 

The investigation of deformations of nilpotent subalgebras L1 (A) of graded 
infinite-dimensional Lie algebras A is a new area of research. In the well-known 
work [ 1 ], A. Fialowski presents a complete description of the deformations of 
L1 ( W ( l)) , the nilpotent part of the Witt algebra. This and similar works like 
[2] and [3] show that the properties of deformations of nilpotent parts are com­
pletely different from those of the corresponding graded Lie algebra. Usually 
A is rigid while L1 (A) has several nontrivial deformations which have a fairly 
simple algebraic description. Often the integrable infinitesimal deformations, 
these are the ones that can be extended to a global deformation, can be repre­
sented by a cocycle for which the Lie square equals zero. So, this cocycle defines 
a global deformation by simply putting the coefficient of tP in the deformed 
commutator equal to zero for all p ?: 2. We call this a trivial extension, as it 
means that the infinitesimal deformation is already a global deformation. 

Our object is to investigate the deformations of L1 (H(2n)), the nilpotent 
subalgebra of the Lie algebra of polynomial Hamiltonian vector fields in (2n)­
dimensional space, and L 1 ( W(m)), the nilpotent subalgebra of the Lie algebra 
of polynomial vector fields in m-dimensional space. In this paper, the cases 
n = 1 and m = 2 are studied. With the help of the Feigin-Fuks spectral se­
quence we compute infinitesimal deformations of these two Lie algebras. Nec­
essary conditions for their integrability will be derived, and we shall prove that 
these conditions are also sufficient by constructing global deformations with the 
prescribed infinitesimal parts. We show that in all cases this can be done by 
means of a trivial extension, and that these global deformations are unique up 
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to a transformation. Most interesting in the results concerning LI ( H ( 2)) is that 
all its deformations as well as their realizations can be regarded as restrictions 
of deformations and realizations of LI ( W (2)) . 

1. DEFINITIONS AND PRELIMINARY REMARKS 

For the reader's convenience, we include here some definitions and remarks 
concerning deformations of Lie algebras. We assume that the reader is fa­
miliar with cohomology of Lie algebras (see, e.g., [6]). For deformations of 
a Lie algebra L , the cohomology of L with coefficients in the adjoint repre­
sentation is important. These cohomology groups are denoted by Hq(L; L) 
(q = 0, 1, 2, ... ). A deformation (also called global deformation) of L is 
usually written as 

00 

[x, Y]1 = [x, y] + L tnrpn(X /\ y), x, y EL, (/Jn E C 2(L; L). 
n=I 

Here, t is a formal parameter (so that strictly speaking [x, Y]t E L[[t]]). A 
deformation is called trivial if [ · , · ]1 is the result of a change of basis /3 : x ~ 
x + E:I tn1(x), 't' E C1(L; L), see [6, page 35] for more details. Now [·, ·]1 

should be a Lie algebra. The requirements that the deformed Lie product should 
be bilinear and anti-symmetric is reflected in (/Jn E C2(L; L). The requirement 
that Jacobi's identity should be satisfied for the coefficient of tn leads to 

(1) 

where 

l n-I 
d(rpn) + 2 LM(rpi, {/Jn-i) = 0, 

i=I 

M(rpi. (/Jj)(x /\.y /\. z) = <fJi(<fJj(X /\.y) /\ z) + <fJi(rpj(Y /\ z) /\x) 

+ <fJi(<fJj(z /\ x) /\ y) + <fJj(<fJi(X /\ y) /\ z) 

+ <p j( (/Jj (y /\. z) /\ x) + rp j (<pi( z /\ x) /\. y ). 

We will call M(rpi, <p j) the product of <fJi , rp j , and M( <p I , <fJI) the Lie square 
of <fJI, and M(rp1, <p2) the Massey cube of rp 1 . 

From equation ( 1), one can see several things. The first is that d ( <p 1 ) = 0 , so 
that <fJI E Z 2(L; L). This rp 1 is called the infinitesimal part of the deformation. 
Now for trivial deformations one can prove that <fJI E B 2 (L; L). Hence, to 
study the possible interesting infinitesimal deformations, one needs to calculate 
H 2(L; L). 

This is always the basis for constructing (nontrivial) deformations. However, 
not every infinitesimal deformation (/JI can be extended to a deformation (said 
differently: can be integrated). For this, one needs to find a sequence ( 'Pn) 
(n = 2, 3, ... ) satisfying equation (1). This is a difficult problem. For example, 
suppose <fJI is given. Then one tries to construct <p 2 • For this, one needs 
M(rpI, <fJI) = 0 as an element of H 3(L; L). In this case we say that the product 
is trivial, and the obstruction is solvable. If so, d (<p2 ) is fixed, but there is still 
freedom in <p2 itself. This freedom cannot be fixed: rp 2 appears in all next 
equations of ( 1 ), and depending on the choice of 1p2 , these equations may or 
may not be solvable. Moreover, different choices of rp 2 may lead to different 
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deformations which cannot be transformed into one another. This happens 
for sure when for two extensions ( rp n) and ( rp~) with rp 111 = rp;n for m = 
1, 2, ... , i - 1, we have that fPi - rp[ is nonzero as an element of H2(L; L). 
Conversely, if fPm = rp'm for m = 1 , 2, ... , i - I and rpi - q>; is zero as an 
element of H2(L; L), then one can find a transformation such that fPi = q>;. 
Hence one can try to match ('Pn) and (rp~) recursively. 

In the sequel we will do the following. We will find infinitesimal deformations 
for H(2) and W(2) and check in what cases these infinitesimal deformations 
can be extended to a deformation. At first we will satisfy ourselves with the 
construction of one such an extension; at the end of the paper we will show that 
this leads to all homogeneous deformations. 

2. DEFORMATIONS OF Li (H(2)) 

2.1. The cohomology space H 2(L 1 ; Li). We consider H(2), i.e., the Lie alge­
bra of polynomial Hamiltonian vector fields on the plane. This Lie algebra is 
isomorphic to the Poisson algebra <C[p, q] modulo its center. An isomorphism 
can be given by mapping pkqc E <C[p, q] to kpk-iqe8q - fpkqe- 1aP E W(2). 
For the sake of convenience we shall make no distinction between these el­
ements. So we view H(2) both as a Lie subalgebra of W(2) as well as a 
quotient algebra of the Poisson algebra. A basis of this quotient algebra is given 
by {Pk qt I k + f > 0 ; k , f ~ 0} , and the commutator satisfies 

(mod 1). 

On H(2) there exist two gradings, which are denoted by deg (degree) and 
wg (weight). With respect to these gradings the monomials are homogeneous: 
deg (pkqe) = k + f - 2 and wg (pkqe) = k - f. For all k in Z we define 
Lk = Lk(H(2)) to be the Lie subalgebra of H(2) generated by the elements of 
degree greater than or equal to k. The two gradings on H(2) induce a bigraded 
structure on the cohomology groups. Let H?d, w) (L1 ; L1) be the cohomology 
group of cocycles c such that 

deg(c(x1 /\ x2)) = d +di + d1 if deg(xi) =di and 

wg(c(x1 /\ x2)) = w + Wi + w2 if wg(xi) = Wi. 

We shall discuss deformations of the nilpotent Lie subalgebra L1. For com­
putational reasons we need to restrict ourselves to the investigation of deforma­
tions of L 1 that are homogeneous with respect to the degree and weight. The 
computation of H(~ ,w)(L1 ; L 1) can be performed by using the Feigin-Fuks 
spectral sequence. The initial term is (see also [4]) 

Ef ,q = EB Hf!:,w'/L1)@ (Li)(d+p,w-w')· 
w' 

From [5] we know that H?d)(L 1) = 0 for all d rt. {-2, -3, -4}. Thus, from 
the spectral sequence we can conclude that nonzero cohomology groups can 
only occur for d ;::: -3 . By means of computer calculations we obtained the 
following result. 
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Theorem 1. There holds 

{
1, 

dimH(~,wl(L1; L1) = ~· 
"d = -2, 
d = -1, 

WE {-4, -2, 0, 2, 4}, 
WE {-3, -1, 1, 3}, 

in all other cases with d :::; 0. 

We did not investigate the case d > 0. The motivation for this is that, since 
H(2) is rigid, we do not expect nontrivial deformations of positive degree to 
be present. 

2.2. Global deformations. For the case d = - 2 , it turned out that the Lie square 
of the cocycles is non trivial. Hence there is no global deformation corresponding 
to these cocycles. Let us consider the case d = -1 . Since w = 3 and w = - 3 , 
respectively w = 1 and w = - 1 , convert to each other after interchanging p 
and q , we consider only w = 1 and w = 3 . 

Case 1: w=l. The cohomology space H?_ 1, I)(L1; L1) is generated by c1, c2 
and C3 with 

{
c1(pq2 f\pkqt) = (k- .f.)pkql, (k' .f.)¥- (1, 2)' 
c2(p2q f\ pkql) = -2.f.pk+lql-I, (k, .f.) -:f. (2, 1), 

C3(pq2 f\pkql) = -(k + f - 2)pkql' (k' .f.) -:f. (1, 2). 

These elements ci are induced by elements bi E C1 (L 1 ; Lo), where Lo is the 
Lie subalgebra of W(2) given by Lo ffi(p 8p + q 8q) . Let us use the notation 
x r--t y for the element b in C 1(L1; Lo), with b(x) = y and b(z) = 0 for all 
other monomials z. One easily checks that Ci = d(bi), where 

b1 = pq2 1--+ pq, b2 = p 2q 1--+ p 2 and b3 = pq 2 1--+ (p 8p + q 8q ). 

The fourth candidate, d ( q3 1--+ q2 ) , is linearly dependent in H?- 1 , 1 l ( L1 ; L 1) . 
This follows from the following observation. We take a E Ct°-i. i)(L1 ; H(2)) 
given by a = 1 1--+ p and compute 

d(a) = 3(q3 I-+ q2) + 2bi + b2 + I: e(pkq' I-+ pkqf-1 ). 
k+f~4 

By applying the coboundary operator d and using d 2 = 0 , we obtain 

3d(q3 1-+ q 2) + 2c1 + c2 E Bf-i. l)(L1; Li). 

This expresses the linear dependency in H?-i, 1i(L1; L 1). 

For the linear combination c = a 1 c1 + a 2c2 + (~ 3 c3 we calculated the ob­
structions. The Lie square is trivial for all values of the parameters, but the 
Massey cube is trivial only if a 2 = 0 or if oq = -(~ 3 • The first case, a 2 = 0, 
describes a plane of cocycles that obviously have a trivial extension. It has the 
following geometrical interpretation. Define <p : Li --+ Lo by rp = id - tb with 
b = a1 (pq2 1-+ pq) + n3 (pq2 1-+ (pop + q Dq )) • For all values of oq and a3, 
rp(L1) is a subalgebra in Lo, and one easily verifies that the deformation given 
by c for a2 = 0 can be written as [x, y) 1 = rp-i ([rp(x), rp(y)]). So this plane 
describes what can be called embedded deformations. 
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The second plane is generated by the cocycles c1 - c3 and c2 • Instead of c2 

we choose a different representative, namely c2 = d(b2), with 

- "'£(£-3) 
b2 = L., c - 1 (qt - qt-i) +LU - 2) (pqe I-> pq'-i) 

£23 f22 

+ L £ (pk qe f-t Pk qP- 1 ) . 

k22,f2i 

Note that (b2 - b.i) E C 1 (Li; Li), so that c2 and Ci are indeed cohomologous. 
We prove that the Lie square of c2 is equal to zero, and that the product of 
c2 and c1 - c3 equals zero. From this, the cocycles in the second plane also 
define a global deformation by means of a trivial extension. In order to prove 
that M(c2 , c2) = 0, one just has to check several cases. Here we only write out 
two of them; all other cases can be handled similarly. First we write down the 
nonzero actions of c2 : 

c2(qf /\ pqm) 

c2_(qe /\ pmqn) 

c2(pql /\ pqm) 

c2(pql /\pmqn) 

We consider the cases 

-2f(f+m-3) qf+m-2 
(f+m-2) 

-2£mpm-iqt+n-2 (m > 2), 

= 2(m _ £)pqf+m-2, 

2(m + n - £m)pmqf+n-l 

(i) !M(c2, c2)(qf /\pqm /\pqn) 

= -2f(f+m-3) {,(qf+m-2 /\ pqn) 
(f+m-2) -

(m ~ 2). 

2( ) - ( m+n-2 /\ qf) + 2f(f+n-3)C (qf+n-2 /\pqm) - m - n Cz pq (f+n-2) 2 

= (m+t+n-S)(4£(£ + m - 3) - 4f(m - n) - 4f(fi + n - 3))qm+n+f-4 = 0. 
(m+f+n-4) 

(ii) !M(c2, Cz)(pq' /\ pqm /\ pqn) 

= 2(m - f)ci(pqm+f-2 /\ pqn) 

+ 2(n - m){z(pqm+n-2 /\pq') - 2(n - £)c2_(pqn+f-2 /\pqm) 

= 2{(m - P)(n - m - £ + 2) + 2(n - m)(f - m - n + 2) 

- 2(n - £)(m - n - £ + 2)}pqn+f+m- 4 = 0. 

The proof of M(c2, c 1 - c3) = O is much simpler. We note that for al! mono­
mials x =F pq2 we have (c1 - c3)(pq2 /\ x) = (deg (x)+wg (x)) · x_. Smee the 
monomial pq2 cannot arise from c2(x /\ y), we only need to consider 

M(c2, C1 - C3)(pq 2 /\ X /\y) 
= (wg(x) + deg(x) + wg(y) + deg(y))c2.(x /\ y) 

-(wg(c2(x /\y) + deg(c2(x /\ y)))c2(x /\ y) 
= -(wg(c2) + deg(c2))c2(x /\ y) = 0. 

With this, the proof is complete. 
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Case 2: w=3. The cohomology space H?-i, 3) (L1 ; Li) is generated by C4, Cs 
and c6, with 

{
C4(q3 /\pkqf) = (k-f)pkqf' (k' f.) -:f. (0, 3)' 
cs(pq2 /\pkqf) = -Upk+lqf-1, (k, £)-:f. (1, 2), 

C6(q3 /\pkqf) = -(k + £ - 2)pkqf' (k' £)-:f. (0, 3). 

Again, one sees that ci = d( bi) , with 

b4 = q3 f-+ pq, bs = pq2 f-+ p2 and b6 = q 3 r-> (pop + q 8q ). 

The Lie square of c = a4c4 + a5cs + a6c6 is trivial, but the Massey cube is 
trivial if and only if one of the following conditions is satisfied: 

( 1) as= 0, 
(2) -a6 + 3as - 30:4 = 0, 
(3) -a6 + 6as - 30:4 = 0. 

A cocycle c in the first plane, a5 = 0, has a trivial extension. This is similar 
to the case a 2 = 0 before. The second plane, -a6 + 3o:5 - 3a4 = 0 , is spanned 
by c4 - 3c6 (which is also in the first plane) and c = c4 + c5 • Instead of c we 
take the new representative c = d( b) , with 

b = :L pkqf f-+ [~]pk+lqf-2, 
k+l:'.::3 

where [x] denotes the floor function (entier) of x. We prove that M(c, c) = 0. 
The nonzero actions of c are given by 

c(pkql/\pmqn) =(k(n-l)-f(m+l))pk+mqf+n-3 , f, even, n odd, 

c(pkql /\pmqn) = !(2k(n - 1) + n - 2m(£ - 1) - f)pk+mqf+n- 3' n' f, odd. 

There are two cases to be considered, of which we only write out the first. This 
is the case with £ , n and t odd in 

!M(c, c)(pkqe /\pmqn /\psqt) 

= (2k(n - 1) - 2m(f - 1) + n - f)c(pk+mqt+n-3 /\ psqt) 

+(2m(t - 1) - 2s(n - I)+ t - n )c(pm+s qn+t-3 /\ pk qt) 

-(2k(t - 1) - 2s(£ - 1) + t - f)c(pk+sqf+t-3 /\ pmqn) 

= !{(2k(n - 1) - 2m(£ - 1) + n - £) 
·(2(k + m)(t - 1) - 2s(£ + n - 4) + t - £ - n + 3) 

+(2m(t- l)-2s(n- l)+t-n) 
·(2(m + s)(f - 1) - 2k(n + t - 4) + £ - n - t + 3) 

-(2k(t- 1) - 2s(f - 1) + n - £) 

= 0. 
·(2(k +s)(n - 1)- 2m(f + t- 4) + n _ f, _ t + 3)}pk+m+sqf+n+t-6 

!he ~roof of M(c, C4 - 3c6) = 0 is similar to the proof of M(c""-2 , c1 - c3 ) = 0; 
it boils down to wg(c) + 3deg(c) = 0. This completes the proof that the cocycles 
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in the second plane define a global deformation by means of a trivial extension. 
One can easily check that the elements in the third plane also have a trivial 
extension. 

There is a geometrical description for the deformations given by the cocycles 
that belong to the first or third plane. Let rp : Li 1-+ L 0 be rp = id - tb, with 
b = q3 1-+ (a4 pq + a6(P op + q 8q )) + 0:5 (pq2 1-+ p2). Clearly, rp defines 

a linear embedding of Li into Lo. We demand rp (L 1) to be a subalgebra 

in Lo ; this is a necessary and sufficient condition for rp to be the realization 
mapping of an embedded deformation of L 1 • There is only one commutator 
that needs to be checked: 

[tp(q3)' tp(pq2)] = [q3 - a4tpq - o:6t(p8p + q8q), pq2 - o:5tp2] 

= -3q4 + t(-0:4 - a6 + 60:5)pq2 - 2t20:4a5p 2 E rp(L1). 

Hence, the compatibility condition is 

a5(-a6 + 60:5 - 30:4) = 0. 

Under this condition we get, by introducing [x, y] 1 = rp- 1([rp(x), tp(y)]), an 
embedded deformation of Li with infinitesimal generator c = a 4c4 + o:5c5 + 
0:6C6 · 

3. DEFORMATIONS OF Li(W(2)) 

3.1. The cohomology space H 2(L1 ; Li). Here, W(2) is the Lie algebra of poly­
nomial vector fields on the plane. As in the previous section, we use the co­
ordinates p and q. A basis for W(2) is {pkq18p, pkq18q, k, f ~ O}. 
On W(2) there also exist two gradings; these are similar to the gradings of 
H(2). The gradings are given by deg(pkqe8p) = deg(pkqeoq) = k + f - 1, 

wg(pkqe8p) = k - f - 1 and wg(pkql8q) = k - f + 1. Again, we define 
Lk = Lk(W(2)) to be the Lie subalgebra generated by the elements of degree 
greater than or equal to k , and we investigate homogeneous deformations of 

Li. 
Our first task is to compute H(~, w) (Li ; L 1). From [6] we know that H?d) (Li) 

f:. 0 can only occur if d E {-2, -3}. Hence, by using the Feigin-Fuks spectral 

sequence, we conclude that H(~, w) (L1 ; Li) = 0 for all d < -2. On account of 

the rigidity of W(2) we do not expect that there are nontrivial deformations 

of positive degrees. So we only calculated H(~, w) (L1 ; Li) for d ::::; 0. Here is 

the result. 

Theorem 2. There holds 

d = -1, 

d = -1, 

d = -1, 

WE {-1, l}, 

WE{-3,3}, 

wE{-5,5}, 

in all other cases with d ::::; 0. 

3.2. Global deformations. The cases of positive and negative weights convert to 
each other after interchanging p and q . Therefore, we will only consider the 

cases with positive weights. 
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Case I: w=S. The space H?·- 1.5/L1; L1) is generated by c = d(b), where 
b E ci (L 1 • Lo) is given by b = q2ap ......, poq . The nonzero actions of c are (-1,5) ' 

{
c(q2ap /\pkq. fop) =pkqeoq -£pk+lqt-18p, (k, £) f- (0, 2), 
c(q2aP /\pkqeaq) = -£pk+1qe-1Dq. 

Since M(c, c) = O, c has a trivial extension. Again this can be geometrically 
interpreted. Define rp : L 1 ......, Lo by rp = id - t b ; then rp ( L 1) is a subalgebra 
in Lo and [x,y]1 =rp- 1([rp(x),rp(y)]) isthedeformationgivenby c. 

Case 2: w=3. The cohomology space H?-i, 3)(L1; L1) is generated by ci (1 :S 
i s; 4) with 

C1 (pqap /\ pk qf i}p) 

C1 (pqop /\Pk q1 oq) 
c2(q2aq /\ pkqeap) 
C2 ( q28q /\ pk qf Oq) 

C3 ( q2 ap /\ pk qt op) 

C3(q2op /\ pkqf oq) 

C4( q2fJp /\Pk qP Op) 
C4(q2op /\ pkqf Oq) 

Again, ci = d(bi), where 

=pkqf&q-£pk+lqf-l[)p, (k,£)=f.(l, 1), 
= -epk+1qe-1 0q, 
= pkqtaq _ epk+1q1-1 8p, 

= -epk+1q1-1 8q, (k, £) =!= (O, 2), 
= -(k - I)pkqt&p, (k, £) i= (0, 2), 
= -kpkqf&q, 

=-fpkqffJp, (k,£)¥(0,2), 
= -(£ - I)pkqe8q. 

b1 = pq8P f--> pDq, b2 = q28q f--> poq, b3 = q28p f-> pop and b4 = q28p f-> qDq. 

The Lie square of c = o: 1 c1 + 0:2C2 + o: 3c3 + o:4c4 is trivial if 
( 1) 0:2 + 2o: 1 = 0 or 
(2) 20:4 - 0:3 + 0:2 - 20:1 = 0. 

In the second case the Massey cube is also trivial; however, in the first case there 
are additional constraints. There are two possibilities: 

(1.i) 0:1=0:2=0, 
(I.ii) 20:4 - a3 - 2oq = 0. 
If these conditions are fulfilled ( l .i or I .ii or 2), then the fourth Massey power 
is also trivial. So there appear to be three options for integrable infinitesimal 
deformations. We will show that in all these cases there exists a cocycle with a 
trivial extension. 

For case ( 1.i) and (2) there is a geometrical description. Define rp : L 1 ,_., Lo 
by rp =id - tb, with b = ()'_ 1b1 + n2b2 + rt 3b3 + n 4b4 , and demand rp(L 1) to be 
a subalgebra in Lo . There are two compatibility conditions: 

[\O(pqop), \O(q2Dp)] = [pqDp - n1tPDq, q2Dp - rt_3fpup - n4tqdq] 

= -q3Dp + t((-2n1 + n4)pq()P + n1q 2Dq) + t 2n1 (-n3 + n4)pdq E rp(L1 ). 

So, n1(20:4-n3+(t2-2n 1)=0. Next, 

[rp(q 28q), rp(q 2Dp)] = [q 2Dq - n2tpuq, q2Dp - rr.3tpdp - (t 4tqdq] 

= 2q 3Dp + t(rr.4 + n2)q2iJq - 2to:2pqDp + t2n2(-n3 + n4)pDq E rp(L1 ). 
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So, 0:2 (20:4 - o:3 + o:2 - 2o: 1) = 0. The compatibility conditions coincide with 
the conditions of ( l.i) and (2), so these cases describe embedded deformations. 

It is interesting to compare these results with the results for L 1 (H(2)). To 
distinguish Lk(H(2)) from Lk(W(2)), we write Lk for Lk(H(2)). Similarly, 
we write bi for bi and a i for the O:i used in the previous section. If we 
restrict rp to L1 , then we have <P : Li r-+ L0 given as in §2.2 with 

From §2.2 we know that there are two possibilities for <P : 

( 1) a 5 = 0 . This is just the restriction of rp with a: 1 = n2 = 0 . 
(2) - a 6 + 6 as - 3 a 4 = 3(20:4 - 0:3 + a2 - 2a 1) = 0. This is the restriction 

of rp in the other case. 

Hence, the embedded deformations of L1 of degree -1 and weight 3 are 
just the restrictions of the embedded deformations of L1 • 

The third case (a2 + 2a1 = 0, 2a:4 - n3 - 2o:i = 0) is a plane which is 
spanned by 2c3 + c4 and c = -1c1 + c2 + 1c3 - 1c4 • Instead of c we take the 
representative c = d(h), with 

b = L pkqf-IOp f-+ (-~pkqf-20q + ~(£ - 2)pk+lql-38p) 
k+£>) 
e even 

+ LPkqe-1aPf-+ £~~;k(-pkql-28q+(£-2+2k)pk+1qe-Jap) 
k+l>3 
f odd 

+ 2:: pkqe 8q f-+ ~pk+1qe-28q 
k+l>2 
f even 

This c satisfies M(c, c) = 0 and M(c, 2c3 + c4 ) = 0. Hence, the cocycles in 
this plane also define a global deformation by means of a trivial extension. If 
we restrict c = d(h) to L1 , then we obtain c = d(b) from case 2 in §2.2. The 
restriction of t(2c3 + c4 ) equals c4 - 3c6 (see §2.2). So, the deformations of 
L1 given by the second plane in case 2 in §2.2 arise by restricting the global 
deformations of L 1 of this plane to L1 . Hence, all global deformations of L1 
of weight 3 are induced by global deformations of L1 . 
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Case 3: w=l. The cohomology space H?-i. ll (L1 ; L,) is generated by Ci ( 1 S 
i ::::.; 6) with 

C1(P20p /\pkqe8p) 

C1(P20p /\pkqlfJq) 

C2(pq8q /\ pkqlop) 

c2 (pq&q /\ pk qe Oq) 

c3 (pq&p A Pk qe Op) 

C3 (pq&p A Pk qe Oq) 

C4(q28q /\pkqlop) 

C4(q2oq /\pkqf&q) 

C5(pq8p /\ pk qf Op) 

Cs (pq&p /\ pk qf Oq) 

c6(q2aq /\pkq'op) 

c6(q2&q /\pkqe&q) 

Again, Ci=d(bi) with 

= pkqeaq _ epk+1qe-1 8P, (k, e)-:/= (2, O), 
= -fpk+1qe-1aq, 

= pkqeaq _ epk+1qe-1 8p, 

= -£pk+1q1- 1oq, (k, £)-:/= (1, 1)' 

= -(k- l)pkqeaP, (k, f)-:/= (1, 1), 
= -kpkqeaq, 

= -(k - l)pkq1Dp, 

= -kpkqeaq, (k, n =1- (O, 2), 

= -fpkqfEJp, (k, £) i- (1, 1)' 

= -(£ - I)pkqeoq' 

= -£pkqf{Jp, 

= -(£ - I)pkqeaq, (k, £)-:/= (O, 2). 

bi = p 2&p f-> poq, b2 = pqoq f-> poq, b3 = pq&p f-> pap, 

b4 = q28q f-> pop' bs = pqfJp f-> qoq and b6 = q28q f-> qoq. 

The seventh candidate, d (q 2Dp r-. q8p) is linearly dependent in Hf-i, 1i(L1; L1). 
This can be seen by taking a = I r-. 8q and computing 

d(o:) = b3 + b2 + 2b6 + 2(q 2&p,..... qop) 

+ I: f(pkqP Op,..... pkqt-1 0P + pkqf Oq,..... pkqP-18q)­
k+P2'.3 

By applying d again, we obtain 

C3 + c2 + 2c6 + 2d(q28p,..... q&p) E Bf_ 1, 1l(L1; L1 ). 

For the combination c = 0:1 c1 + cl'.2C2 + cr3c3 + rr4C4 + o: 5c5 + a6c6 we calculated 
the obstructions. There are three possibilities for which the Lie square and 
Massey cube are trivial: 

(1) a1 = 0:2 = 0 and cr3n6 = 0:50:4; 

(2) a1 = 20:2, cr4 = 2n3, ns = 1X2 and cl'.6 = 2crz; 

(3) 0:1 = 0:5 = 0'.6 = 0. 

It appears that in all three cases there exist cocycles that define global defor­
mations of L1 by means of a trivial extension. The cases (I) and (2) are 
the compatibility conditions for <p : L1 ,..... Lo given by <p = id - tb with 
b = o: 1 b, + et2b2 + n2b2 + rr3b3 + n4b4 + rr5b5 + rl'.6b6 . So in these cases we have 
again embedded deformations. We restrict <p to L1 ; then we have ip : L1 r-. Lo 
as in §2.2, with 
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1 
a 3 = 2(-2a3 + a4 - 2as + 0 6 ). 

In b?th cases, a2 = 0 ·. 1:his is precisely the compatibility condition of §2.2. It is 
o_bv1ous that the restnct1on of the deformations of case (2) are not interesting, 
smce o: 1 = a 2 = a 3 = 0 . The deformations of L1 given by the first plane 
(see case 1 in §2.2) arise as restrictions of the deformations of L 1 described by 
( 1 ). 

In the third case (a 1 = as = a6 = 0) , there is a three-dimensional space of 
cocycles spanned by C3 , C4 and c = c2 - c3 - 2c4 • Instead of c we take the 
representative c = d(b), with 

b = - 2 L qn+2aq ..... pqn{)P + L(n - 1 )(qn+1aq i-. qnaq + qn+iaP ..... qnap) 
n~O n~2 

+ L(n + l)(pmqn+1aq ..... pmqn8q) + L(n - l)(pqn+taP i-. pqnap) 
n>D 
m~I 

+ L(n + l)(pmqn+Iap ..... pmqnop). 
n>D 
m~2 

The products M(c, c), M(c, c3), M(c, c4), M(c3, c3), M(c3 , c4) and 
M(c4, c4) are 0, so we have a three-dimensional space of cocycles that de­
fine global deformations by means of a trivial extension. We can restrict these 
deformations to L1 . The restriction of b equals b2 of case 1 in §2.2, and the 
restriction of a3c3 + a 4c4 equals ~(2a3 - a 4)(c1 - c3). Hence, the deforma­
tions of L1 corresponding to the special plane given in case ( 1) are also just the 
restriction of deformations of L 1 • 

4. CONCLUSION 

We determined all infinitesimal deformations of L 1 (H(2)) and L1 ( W(2)), 
and moreover investigated which of the homogeneous infinitesimal deforma­
tions can be integrated. In case that it can be extended, we gave a possible 
extension. The question arises, whether to any infinitesimal deformation there 
are two nonequivalent extensions. As said before in § 1, this can happen if at 
some point in the two extending series (<p2, <p3, ... ) and (rp2, <p3, ... , (/J;-1, 
<p~ , <r>;+ 1 , ... ) , <p; and <p; are noncohomologous. Since we assume deforma­
tions to be homogeneous, we have that deg (<p;) = i deg(<p1). Hence we can 
conclude that the deformations of L 1 (W(2)) are unique (up to a transforma­
tion) since H 2 (L1(W(2)); Li(W(2)) is only nonzero in degree -1. For 
L 1(H(2)) there could be branching of the deformation in the term <p2, since 
H 2(L1(H(2));L1(H(2)) isnonzeroatdegree (-1 and)-2. Comparingweights, 
one sees that only for degree -1 and weight 1 can there be problems. How­
ever, one can prove that a term <p2 which is nonzero in H2(L1 (H(2)); L1 (H(2)) 
leads to a real obstruction. 

In conclusion, we can state that the constructed homogeneous deformations 
of L 1 (H(2)) and L 1 ( W(2)) are indeed all homogeneous deformations of neg­
ative degree. In this sense, this study is unique. 
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