
.'.\I Q-rterly ---------------

SQuarterly Volume 8 (1) 1995, pp. 31- 45

Control of Discrete Event Systems -

Research at the Interface of

Control Theory and Computer Science

Ard Overkamp
Jan H. van Schuppen

CW/

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

e-mail: overkamp©cwi. nl' schuppen©cwi. nl

This expository paper is directed to a general audience of engineers, mathemati­
cians, and computer scientists. A discrete event system is a mathematical model
(in the form of an automaton, Petri nets, or process algebra) of, for example,
a computer controlled engineering system such as a communication network.
Control theory for discrete event systems aims at synthesis procedures for a su­
pervisor that forces a discrete event system such that it satisfies prespecified
control objectives. As an example it is discussed how the control problem of
blocking prevention for nondeterministic systems may be solved by the use of
failure semantics.

1. INTRODUCTION

The purpose of this paper is to introduce the reader to the research topic of
control of discrete event systems. This expository paper is written for a general
audience of engineers, mathematicians, and computer scientists. No specific
background is needed neither of system and control theory nor of computer
science. Only subsection 4.2 contains results derived at CWI.

The motivation for control of discrete event systems comes from control
of engineering systems, manufacturing processes, and computer systems. Ex­
amples are onliµe scheduling of transactions in databases, control of a rapid
thermal processor, and design of a communication protocol. The control ob­
jectives in such problems are, for example, liveness, safety, and prevention of
blocking.

31

__________ __, ____ 1:1-.10..-r1y ---------------

In modelling of practical control problems use is made of models from com­
puter science: automata, Petri nets, and process algebras. A discrete event
system is often taken to be an automaton in which the outside world can in­
fluence the occurrence of events.

The control problem for discrete event systems is then often formulated as:
Construct a supervisor which observes the events of the system and determines
after every event which elements of the set of possible next events must be
prevented from occurring. Control objectives are as mentioned above, primarily
to guarantee a certain level of liveness and safety.

Control theory for discrete event systems makes use of several subareas of
computer science such as automata theory, process algebras, logic, temporal
logic, complexity, etc.

A description of the paper by section follows. Section 2 contains motivation
and Section 3 models of discrete event systems. Control synthesis problems are
discussed in Section 4. Guidelines for further reading may be found in Section
5.

2. MOTIVATION

Research in control of discrete event systems is motivated by practical control
problems in, for example, communication networks, databases, manufacturing
systems, and traffic systems (metro lines, railways, and freeway traffic). See
for references Section 5.

EXAMPLE 2.1. Consider a telephone network. Subscribers can generate events
such as 'taking the receiver off the hook', 'replacing the receiver', 'press a but­
ton'. The telephone network itself also generates events, such as 'ring the bell',
'start the dialtone', 'establish a connection'. Some sequences of events repre­
sent unwanted behaviour. For instance, a bell should not ring if the receiver
is off the hook. Other sequences represent wanted behaviour. For instance, a
connection should be established if the right protocol is followed by both sub­
scribers. The caller should have taken the receiver off the hook, waited for the
dialtone, dialed the correct number, etcetera. Some of these event sequences
are enforced by the hardware of the telephone network. A receiver can only be
replaced after it is taken off the hook. Some sequences have to be enforced by
a supervisor. In the old days a human operator was necessary to guarantee the
correct behaviour. Nowadays a computer does the job. The challenging task is
to automatically synthesize the computer program when provided information
only about the uncontrolled behaviour of the telephone network and the control
objectives.

Practical control problems in the areas mentioned lead to control problems at
the level of engineering and computer science. Examples of control objectives
for problems at this level are:

1. Safety. Prevent the controlled system from reaching states at which a

32

-------------- ,:;, Q--rly ---------------

disaster may occur.

2. Liveness. Guarantee that the controlled system is able to perform a speci-
fied minimum level of performance.

An example of a safety property is blocking: Prevent that the controlled system
reaches a state from which it cannot proceed to any other state. One speaks of
deadlock in case of a system with two independently operating supervisors in
the situation where both supervisors are waiting for each other [10]. Control
problems at the engineering level are transformed into control problems at the
control theory level, see Section 4 below.

Terminology of systems and control is summarized below. An event is the
occurrence of an action. A discrete event system or plant is a mathematical
model of an object exhibiting a sequence of events. A supervisor is the math­
ematical object that restricts the operation of a discrete event system. The
discrete event system in connection with the supervisor will be called the con­
trolled discrete event system or the closed-loop system. A control objective is a
specification on the behaviour of the closed-loop system.

Control problems for discrete event systems at the level of control theory
lead in general to the following theoretical questions:

Existence. Does there exist a supervisor such that the closed-loop system
satisfies the control objectives?
Decidability. Can a supervisor be constructed with an algorithm that ter­
minates in a finite number of steps?
Algorithm. How to construct an algorithm that produces a supervisor meet­
ing the control objectives?
Complexity. How, polynomially or exponentially, does the number of com­
putations of an algorithm for the construction of a supervisor depend on
the parameters of the problem?

I

It is the aim of control theory for discrete event systems to answer questions
as these.

The approach to control of a discrete event system taken in the research area
of systems and control differs from that taken in computer science. In control
theory the approach is control synthesis. In computer science the approach is
specification and verification. Thus, in computer science a specification is made
that the controlled system is to satisfy, an implementation for the closed-loop
system is made, and finally it is verified whether or not the closed-loop system
meets the specification. The latter step is called verification. Verification can
be done by automata theoretic tools, see [26]. Simulation is a popular method
to test whether an algorithm or program satisfies the specification but for
most practical problems complete testing by simulation is unfeasible. Which
approach to control is to be preferred, that of control theory or that of computer
science? The answer to this question must be based on experience with a large
number of practical control problems for discrete event systems. It will take
several more years to collect such experience.

33

The area of modeling and control of discrete event systems is intertwined
with computer science. Modeling of discrete event systems is based on com­
puter science models. Also logic and temporal logic is used in both areas. The
subject of verification is also of interest to systems and control. The use of com­
puters in engineering and data processing is expected to lead to new control
problems for which systems and control, and computer science will be needed.

The approach of supervisory control is entirely different from control theory
as practised in stochastic control and from control of queues as practised in
operations research. In the latter areas the processing time is of major interest.
Correctness is the major concern in control of discrete event systems. In timed
discrete event systems the concept of time also appears but often in constraints
and not as part of the cost function.

3. MODELLING OF DISCRETE EVENT SYSTEMS
To model practical control problems in terms of computer science concepts the
following model classes are currently used: (1) automata; (2) Petri nets; (3)
process algebras. Automata will be described in detail below.

Which model class is to be preferred for the practical control problems men­
tioned in Section 2? The choice of a model class must be a trade-off between
descriptive power and complexity. In regard to descriptive power it has been
proven that the model class of Petri nets strictly contains the automata, while
the model class of process algebras strictly contains Petri nets. A control prob­
lem in Petri nets or in process algebras may be undecidable, that is, there does
not exist an algorithm for that problem which terminates in a finite number of
steps. The authors prefer automata theory over Petri nets because the concept
of state is more explicit. This makes control synthesis easier. The authors like
the model class of process algebras because of its modeling power. In many
engineering disciplines the model class of Petri nets is rather popular.

There follows terminology and notation on automata.

DEFINITION 3.1. An automaton is a collection

A= (L:;, X, d, Xo, Xm),

where L:; is a finite set of event labels called the alphabet, X is set of states,
x0 E X is the initial state, Xm C X is the set of marked states, and d :
L:; x X --* X is said to be the transition function.

A generator ·is an automaton in which d : :2: x X __. X is only a partial
function. Thus, for x E X there is a subset 2=(x) C :2: such that d(., x) :
L:; (x) __. X is a function.

A finite state system is a generator in which X is a finite set. The term
discrete event system, or for short system or plant, is defined in this paper to
be an automaton.

In an automaton events are modelled as to occur spontaneously. The mecha­
nism that selects an event is not modelled. In a discrete event system there is

34

Q...,,. _____ _

no model for a clock. Events occur sequentially.

dial tone number

on

FIGURE 1. Automaton representing a telephone unit.

EXAMPLE 3.2. A complete model of a system such as a telephone network
consists usually of a number of modules, each representing a part of the total
system. In Figure 1 the automaton representing the behaviour of the telephone
unit is shown. The off-event represents the lifting of the receiver. The on-event
represents putting the receiver back on the hook. Encircled nodes indicate
marked states. The small arrow that does not start at a node points to the
initial state. The automaton describes that a number can only be chosen after
a dialtone is given. This is an abstraction of the fact that buttons can be
pressed before a dialtone is given, but that these actions do not result in an
event inside the system. It is not represented in the automaton that a dialtone
should not be given when the receiver is taken off the hook to answer a call.
This behaviour has to be enforced by a supervisor.

An automaton generates a language which concept is defined below.

DEFINITION 3.3. Let L: be a set which will be called the event alphabet. A
string is a sequence of events

where for n E Z+.• i = 1, ... , n, a; E L The empty string, denoted by E, is
defined to be the string without elements. The set of all strings over E including
the empty string, is denoted by E*. A language is defined to be a subset L C E*.

The prefix closure of a language L, denoted by L, is defined to be the set

L = {s E E*l3t EE* such that st EL}.

The language L C E* is said to be prefix closed if L = L.

DEFINITION 3.4. Let G = (L:, X, d, x0 , Xm) be a generator. Extend the transi­
tion function d : E x X -> X to d : E* x X -> X by

d(c, x)

d(sa, x)

=

=

x ,
d(a,d(s,x)), if well defined and fora E E*,s EE.

35

_________ ___, ___ ,:v.i Q--·ly ---------------

The behaviour of G is defined to be the language

L(G) = {s E :E*ld(s,xo) is defined}, (1)

and the marked behaviour is defined to be the language

Lm(G) = {s E L(G)id(s,xo) E Xm}. (2)

A string in Lm (G) is said to be a marked string.

A string in the behaviour is a finite string that G can generate. A string in
the marked behaviour is a finite string that ends in a marked state. A marked
string represents a completed task. If G is a generator then by definition of
L(G) this set is prefix closed.

Does there exist a generator G for a given language L such that the language
generated by G equals L, or L(G) = L? This representation problem is rather
fundamental in system theory and automata theory. Not every language has
such a representation. A major theorem of automata theory, see [21, [21, Sec­
tion 2.5], states that any regular language can be represented by a finite-state
automaton. The concept of a regular language will not be defined in this paper
because of space limitations. Thus, a finite-state generator produces a regular
language while a regular language can be represented as being generated by a
generator. The formalisms of regular languages and of finite state generators
are thus equivalent. In the remainder of the paper the two formalisms are used
interchangeably, with most results being formulated in terms of languages.

Control can be enforced by synchronization of the plant with a controller
(supervisor). A supervisor can only block events of the plant. It cannot enforce
the execution of a event.

DEFINITION 3.5. The synchronous composition of plant G = p:::, X, d9 , xo, Xm)
and supervisor S = (:E,Q,d8 ,qo,Qm) is the automaton GllS = (E,X x Q,d98 ,

(xo, qo), X,,, x Qm), where

d (a (x)) = { (d9 (a, x 9), d8 (a, q8)), if well defined,
gs ' 9' q,. undefined, otherwise.

Events in the synchronous composition are possible only if they are possible in
the plant as well as in the supervisor. Then

L(GllS) = L(G) n L(S),

Lm(GllS) = Lm(G) n Lm(S).

4. CONTROL SYNTHESIS

The purpose of this section is to describe how practical control problems are
formulated and solved at the level of control theory.

36

4.1. Supervisory control synthesis

In this subsection the basic concepts of supervisory control, as introduced bv
RAMADGE and \VONHAM [39], will be explained. The general problem of co~­
trol theory for discrete event systems is to find a controller (supervisor) that
influences the behaviour of the plant in such a way that it meets the control
objectives.

In some applications the supervisor does not have the ability to block all
events. For instance if an alarm event is executed when some water level exceeds
a treshhold, then this event can be observed by the supervisor but it cannot be
blocked. If this event has to be prevented from occuring then somewhere else
in the system some other events have to be blocked (For instance the closing
of a waste gate) such that the alarm event cannot occur anymore. Usually
the presence of uncontrollable events is modelled by splitting up the event set
into two subsets Ee and Eu, where Ee represents the controllable events, and
Eu the uncontrollable events. It is required that a supervisor never blocks an
uncontrollable evl'nt. Such a supervisor is called complete.

The main objective of control synthesis for discrete event systems is to find
a complete supervisor which allows only legal event sequences. These sequences
together form the legal language. This language is specified by an automaton,
denoted E, which generates exactly all legal strings. The basic control objective
is to find a complete supervisor such that L(CllS) = L(E). It was shown by
Ramadge and Wonham that this supervisor exists only if the plant cannot go
from a legal string to an illegal string by executing only uncontrollable events.
This property is formulated in the controllability condition.

DEFINITION 4 .1. Let G be a plant and E,, the set of uncontrollable events. The

language K is said to be controllable if

KEu n L(G) c;;;: K,

wh.C'te RE,,= {.sa E 2::* Is Ek, a E L:u}·

THEOREM 4.2. Let G be a plant and E a specification of the legal behav·iour,

wdh L(E) c;;;: L(G). There exists a complete super-visor, S, Mtch that L(GJ[S) =
L(E) if and only if the language L(E) is controllable.

If the language L(E) is not controllable then there exists no supervisor such
that C[IS generates exactly all legal strings. The control objectives may be
relaxed such that any system that generates no illegal strings is satisfactory.

Thus, a supervisor is looked for such that L(C[JS) i;; L(E).

THEOREM 4.3. Let G be a plant and E a specification of the legal behaviour,

with L(E) c;;;: L(G). There ei:·ists a complete supervisor, S, such that L(G[[S) i;;

L(E) if and only 'if there exist a prefi:1:-closed and controllable langiwge con­

tained in L(E).

Ramadge and \iVonharn also showed that the set of languages that are prefix-

37

--------------- C'hl G•arterly ---------------

closed, controllable and contained in L(E) is closed under arbitrary unions.
This implies that there is a unique supremal element in this set. That is, there
exists a language such that all languages that are controllable and contained in
L(E) are a subset of this language. From lattice theory a fixed point algorithm
is known that computes this supremal language. This algorithm has polyno­
mial complexity with respect to the number of states in the state space of the
automata G and E. The automaton that generates this supremal language can
be used as supervisor.

4.2. Blocking
The relaxed control objective in the previous section does not guarantee that
the closed-loop system will never block. After the system has generated a
certain string, it may happen that no subsequent event is possible. Either
events cannot be generated by the plant, or the supervisor blocks the events.
The marked behaviour, as defined in Section 2, may be used to guarantee that
systems are nonblocking. Because we will use another definition of nonblocking
later on, we will indicate this form with marking-nonblocking. A system is said
to be marking-nonblocking if every string that the system generates can be
extended to a marked string.

DEFINITION 4.4. System E is said to be marking-nonblocking if

L(E) = Lm(E).

The supervisory control problem for systems with marking is to find a complete
supervisor such that Lm(GjjS) t;;;; Lm(E) and GjjS is marking-nonblocking.
Note that these two conditions together imply that no illegal string will be
generated. That is, L(GjjS) = Lm(GjjS) t;;;; Lm(E) s;;; L(E).

THEOREM 4.5. Let G be a plant and E the specification of the legal be­
haviour, with Lm (E) s;;; Lm (G). There exists a complete supervisor, S, such
that Lm(GjjS) s;;; Lm(E) and L(GjjS) = Lm(GjjS), if and only if there exist a
controllable language contained in Lm (E).

Note that the definition of controllability is given for general, not necessarily
prefix-closed, languages. As in the previous section, the set of languages that
are controllable and contained in Lm(E) is closed under arbitrary unions. This
means that there exists a supremal language in this set. Let K be this supremal
language. Then, the automaton, S, with L(S) = f< and Lm(S) = K can be
used as a supervisor.

If some parts of a system are not completely modelled, or only a part of
the system can be observed, then the system may exhibit nondeterministic be­
haviour. That is, the observed sequence of events does not uniquely determine
the state of the system.

38

DEFINITION 4.6. A nondeterministic automaton is defined to be a automaton

in which the transition Junction d is of the form d : E x X ---+ 2x. The set

d(a, x) precisely contains all states that can be reached from state x by event a.

Consider now the supervisory control problem of blocking prevention for non­
deterministic systems. Marking is not sufficient to guarantee that nondeter­
ministic systems are nonblocking. Consider the following example.

a.

~>
FIGURE 2. Blocking of a nondeterministic automaton.

EXAMPLE 4. 7. Let G be an automaton as in Figure 2.a. Suppose string ab is
illegal. If event b is blocked, then an automaton as in Figure 2.b is obtained.
It is clear that this svstem can block after event a. But this is not detectable
by considering the m~rked language. From L (G) = {a, ac} = { ac} = Lm (G) it
follows that G is marking-nonblocking.

HOARE [19] introduced a different method to deal with blocking in nondeter­
ministic systems. Not only the language of the system is considered but also the
events that cannot be executed are taken into account. If a nondeterministic
system is offered a set of admissible events, via the synchronous composition,
and the system can be in a state in which it cannot execute any of the offered
events, then the system is said to refuse all events in this set. Such a set of
events is called a refusal.

DEFINITION 4.8. The set of refusals or the refusal set of the system G after

string s is defined to be the set

ref(G, s) = {R s;; 2=: 3x E d(s, x0) s.t. Rn ,\(x) = 0},

where ,\(x) ={a E L;/d(ii,x) is defined}.

Note that a refusal is a set of events. In the definition above R is a refusal. So
a refusal set or set of refusals is a set of sets of events.

The method introduced by Hoare is known as failure semantics. Using this
method, blocking of a nondeterministic system can be defined as the situation
in which all events can be refused.

DEFINITION 4.9. The (nondeterrnin'ist'ic) system G is said to be nonblocking
if for alls in L(G), I; (j_ ref(G, s).

39

------------- CWIQ-rly --------------

The controlled system is guaranteed to be nonblocking if the legal behaviour
is nonblocking and the controlled system does not refuse more than the system
describing the legal behaviour. This statement motivates the reduction relation.

DEFINITION 4.10. One says that system G reduces system E, denoted Gf;;E,
if

L(G) ~ L(E), and Vs E L(G), ref(G, s) ~ ref(E, s).

The supervisory control problem for nondeterministic systems is to find a com­
plete supervisor, S, such that GI IS r;; E. It is shown in [37] that an important
condition for the existence of such a supervisor is the reducibility condition.

DEFINITION 4.11. Language K is said to be reducible (w.r.t. G and E) if

Vs EK, VR9 E ref(G, s), p(K, s) U R9 E ref(E, s),

where p(K,s) = {o- E Elsa>/. K}.

THEOREM 4.12. Let G be a nondeterministic system and E a specification of
the legal behaviour. There exists a complete supervisor, S, such that GllS SE,
if and only if there exists a controllable and reducible language contained in
L(E).

Thus, if E is nonblocking and if there exists a controllable and reducible lan­
guage contained in L(E), then there exists a supervisor S such that L(GI IS) ~
L(E) and GllS is nonblocking.

It has been shown that the set of reducible and controllable languages is
closed under arbitrary unions. So a unique supremal language is contained in
the set and is computable by a fixed point algorithm with polynomial com­
plexity. As with deterministic systems, the (deterministic) automaton that
generates this supremal language can be used as supervisor.

5. GUIDELINES FOR FURTHER READING

Practical control problems for which control of discrete event systems has been
analysed include: database operations [27]; rapid thermal multiprocessor [6];
and protocol design for communication networks [13, 17, 40].

Automata theory at an introductory level may be found in [21] and at an
advanced level in [15]. A book on Petri nets is [14] and a book on related
models (4]. The theory of process algebras may be found in [5, 18, 19, 31]. For
temporal logic see [30].

Supervisory control of discrete event systems was started and mainly de­
veloped by W.M. Wonham and his doctoral students, see (38, 39, 41, 43, 45,
47]. An overview paper is [44]. For publications of S. Lafortune and co-workers
see [11, 12, 27, 28]. The supervisory control problem with failure semantics

40

-·-~-~--···~·------···-·--·------·-·---------·-~~~ ~~-~--·····---~--~·-·------------~~-----

is treated in [37]. A large quantity of additional publications remains unmen­
tioned because of space limitations.

Control of infinite string automata was developed by J. G. THISTLE [43]
Such strings are used to express liveness conditions. Techniques to do verifi­
cation for the associated languages were developed by R.P. KURSHAN [26]. A
book by Kurshan will appear shortly. Modeling for control of discrete event
systems by process algebras was considered by K. lNAN and P. VARAIYA [22,
23].

Time plays a role in many practical control problems. Examples of such
problems are the operation of a railway gate [36] or the operation of a telephone
network. Timed discrete event systems are closely related to the computer sci­
ence area of real-time systems. A stimulating discussion on theoretical concepts
for real-time systems is presented in [25, 42]. Modelling of timed discrete event
systems brings with it several new issues compared with untimed discrete event
systems, such as the role of durations and forcing of events. lVIodels of timed
discrete event systems that have been proposed include discrete-time systems
[7], timed automata proposed by R. ALUR and D. DILL [1, 3], temporal logic
[36], and timed process algebras developed by J. S!FAKIS ET AL. [32, 33, 34].
Control of timed discrete event systems is treated in [7, 20, 29, 36, 46] of which
the work by G. Hoffmann and H. Wong-Toi is of particular interest. An ap­
plication to specification and design of a telephone exchange is presented in
[24].

A hybrid systen1 is a mathematical model of a phenomenon in which the
model includes logical variables and continuous variables described by differ­
ential equations. Many computer controlled engineering systems are hybrid
systems, for example a temperature controller for a house or the controller of
an air plane. Models for hybrid systems were proposed in [2, 9, 16, 34, 35]. For
an approach to control of hybrid systems, see [8].

6. CONCLUDING REMARKS
What has been achieved in control of discrete event systems? For practical
problems with logical variables discrete event systems have been formulated as
mathematical models. These systems are the basic building blocks for control.
Control synthesis results yield algorithms that produce supervisors that will
satisfy a specified level of performance.

What research directions should be explored in control of discrete event
systems? First experience must be gained with realistic and practical problems
as they appear in industrial laboratories. Modeling of discrete event systems
would benefit from a deeper analysis of the trade-off between modeling power
and complexity. Hierarchical decomposition may be a direction to explore. A
discrete event system has little mathematical structure hence it is difficult to
enlist the aid of parts of traditional mathematics. The developments in theo­
retical computer science should be watched closely. Control theory of discrete
event systems should also concentrate attention on decentralized control mo-

41

tivated by the use of networks of computers. Faster algorithms for control
synthesis would be useful in practice.

Control of timed discrete event systems needs more motivation by realistic
and practical problems. Experience must be gained with the model classes of
timed discrete event systems and timed process algebras. Control of hybrid
systems leads to a diverse set of problems. Research in this area has only
recently started.

ACKNOWLEDGEMENTS
The authors acknowledge their influence by the pioneering research in control
of discrete event systems of W.M. Wonham (University of Toronto) and his
doctoral students. They also acknowledge discussions on the subject with R.K.
Boel, K. Inan, S. Lafortune, F. Vaandrager, and P. Varaiya.

REFERENCES
1. R. ALUR, C. COURCOUBETIS, and D. DILL (1990). Model-checking for

real-time systems. Proc. of the 5th IEEE Symposium on Logic in Computer
Science, pages 414-425.

2. R. ALuR, C. CouRcouBETrs, T. HENZINGER, P. Ho, X. NrcoLLIN,
A. OLIVERO, J. SIFAKI, and S. YOVINE (1994). The algorithmic analysis
of hybrid systems. In G. COHEN and J.-P. QUADRAT, editors, 11th Inter­
national Conference on Analysis and Optimization of Systems Discrete
Event Systems, number 199 in Lecture Notes in Control and Information
Sciences, pages 331-351, London, Springer-Verlag.

3. R. ALUR and D. DILL (1992). The theory of timed automata. In J.W.
DE BAKKER, C. HUIZING, and W.P. DE ROEVER, editors, Real-time: The­
ory and practice, Proceedings of the REX Workshop, Mook, The Nether­
lands, June 3-7, 1991, number 600 in Lecture Notes in Computer Science,
pages 45-74, Berlin, Springer.

4. F.L. BACCELLI, G. COHEN, G.J. 0LSDER, and J.-P. QUADRAT (1992).
Synchronization and linearity - An algebra for discrete event systems. John
Wiley & Sons, Chichester.

5. J.C.M. BAETEN and W.P. WEIJLAND. Process algebra. Cambridge Uni­
versity Press, Cambridge, 1990.

6. S. BALEMI, G.J. HOFFMANN, P. GYUGYI, H. WONG-TOI, and G.F.
FRANKLIN (1993). Supervisory control of a rapid thermal multiprocessor.
IEEE Trans. Automatic Control, 38:1040-1059.

7. B.A. BRANDIN and W.M. WONHAM (1994). Supervisory control of times
discrete event systems. IEEE Trans. Automatic Control, 39:329-342.

8. M.S. BRANICKY, V.S. BORKAR, and S.K. MITTER (1994). A ·unified
framework for hybrid control: Backgro·und, model, and theory. Report
LIDS-P-2239, Laboratory for Information and Decision Systems, M.I.T.,
Cambridge, MA.

42

9. R.\V. BROCKETT (1993). Hybrid models for motion control systems. In
H.L. TRENTELMAN and J.C. WILLEMS, editors, Essays on control: Per­
spectives in the theory and its applications, pages 29-53. Birkhiiuser, New
York.

10. A. BURNS and A. WELLINGS (1990). Real-time systems and their program­
ming languages. Addison-Wesley, Reading, MA.

ll. E. CHEN and S. LAFORTUNE (1991). Dealing with blocking in supervisory
control of discrete-event systems. IEEE Trans. Automatic Control, 36:724-
735.

12. SHENG-LUEN CHUNG, S. LAFORTUNE, and FENG LIN (1992). Limited
lookahead policies in supervisory control of discrete event systems. IEEE
Trans. Automatic Control, 37:1921-1935.

13. R. CIESLAK, C. DESCLAUX, A.S. FAWAZ, and P. VARAIYA (1988). Super­
visory control of discrete-event processes with partial observations. IEEE
Trans. Automatic Control, 33:249--260.

14. R. DAVID and H. ALLA (1992). Petri nets and grafcet. Prentice Hall, New
York.

15. S. EILENBERG (1974, 1976). Automata, lang'uages, and machines (Volumes
A and B). Academic Press, New York.

16. R.L. GROSSMAN, A. NERODE, A.P. RAVN, and H. RISCHEL, editors.
(1993). Hybrid systems. Number 736 in Lecture Notes in Computer Science.
Springer, New York.

17. E. HAGHVERDI and' K. INAN (1992). Verification by consecutive projec­
tions. FORTE 92 Proceedings.

18. M. HENNESSY (1988). Algebraic theory of processes. M.I.T. Press, Cam­
bridge, MA.

19. C.A.R. HOARE (1985). Communicating sequential processes. Prentice/Hall
International, Englewood Cliffs, NJ.

20. G.J. HOFFMANN and H. WONG-TOI (1992). The inp1Lt-o·utput control
of real-time discrete event systems. Report ISL/GFF /92-1, Information
Systems Laboratory, Stanford University, Stanford.

21. J.E. HoPCROFT and J.D. ULLMAN (1979). Introduction to automata the­
ory, languages, and comp·utation. Addison-Wesley Publishing Company,
Reading, MA.

22. K. lNAN and P. VARAIYA (1988). Finitely recursive process models for
discrete event systems. IEEE Trans. A·utomatic Control, 33:626-639.

23. K.M. lNAN and P.P. VARAIYA (1989). Algebras of discrete event models.
Proc. IEEE, 77:24-38.

24. A. KAY and J.N. REED (1993). A rely and guarantee method for times
CSP: A specification and design of a telephone exchange. IEEE Trans.
Software Eng., 19:625-639.

25. R. KuRKI-SUONIO (1994). Real-time: Further misconceptions (or half­
truths). Computer-, 27:71-76.

26. R.P. KURSHAN (1994). Automata-theoretic verification of coordinating
processes. In G. COHEN and J.-P. QuADRAT, editors, 11th International

43

Quo-riy ---------------

Conference on Analysis and Optimization of Systems - Discrete Event Sys­
tems, number 199 in Lecture Notes in Control and Information Sciences,
pages 16-28, Springer-Verlag, London.

27. S. LAFORTUNE (1988). Modeling and analysis of transaction execution in
database systems. IEEE Trans. Automatic Control, 33:429-447.

28. s. LAFORTUNE and ENKE CHEN (1990). The infimal closed controllable
super language and its application in supervisory control. IEEE Trans. Au­
tomatic Control, 35:398-405.

29. Y. LI and W.M. WONHAM (1988). Supervisory control ofreal-time discrete
event systems. Information Sciences, 46:159-183.

30. z. MANNA and A. PNUELI (1992). The temporal logic of reactive and
concurrent systems - Specification. Springer-Verlag, Berlin.

31. R. MILNER (1989). Communication and concurrency. Prentice-Hall, En­
glewood Cliffs, N J.

32. X. NICOLLIN and J. SIFAKIS (1994). The algebra of timed processes ATP:
Theory and applications. Information and Computation, 114: 131-178.

33. x. NICOLLIN, J. SIFAKIS, and s. YOVINE (1992). Compiling real-time
specifications into extended automata. IEEE Trans. Software Engineering,
18:794-804.

34. x. NICOLLIN, J. SIFAKIS, and s. YOVINE (1992). From ATP to timed
graphs and hybrid systems. In J.W. DE BAKKER, c. HUIZING, and W.P.
DE ROEVER, editors, Real-time: Theory and practice, Proceedings of the
REX Workshop, Mook, The Netherlands, June 3-7, 1991, number 600 in
Lecture Notes in Computer Science, pages 45-7 4, Springer, Berlin.

35. x. NICOLLIN, J. SIFAKIS, and s. YOVINE (1993). From ATP to timed
graphs and hybrid systems. Acta Informatica, 30:181-202.

36. J. S. OSTROFF (1989). Temporal logic for real-time systems. Research
Studies Press Ltd., Taunton, England.

37. A. OVERKAMP (1994). Supervisory control for nondeterministic systems. In
G. COHEN and J.-P. QuADRAT, editors, llth International Conference on
Analysis and Optimization of Systems - Discrete Event Systems, number
199 in Lecture Notes in Control and Information Sciences, pages 59-65,
Springer-Verlag, London.

38. P.J. RAMADGE and W.M. WONHAM (1987). Supervisory control of a class
of discrete event processes. SIAM J. Control Opt·im., 25:206-230.

39. P.J.G. RAMADGE and W.M. WONHAM (1989). The control of discrete
event systems. Proc. IEEE, 77:81-98.

40. K. RUDIE and W.M. WONHAM (1992). Protocol verification using discrete­
event systems. In Proceedings of the 31st IEEE Conference on Decision and
Control, pages 3770-3777, New York. IEEE Press.

41. K. RUDIE and W.M. WoNHAM (1992). Think globally, act locally: De­
centralized supervisory control. IEEE Trans. Automatic Control, 37:1692-
1708.

42. J.A. STANKOVIC (1988). Misconceptions about real-time computing: A se­
rious problem for next-generation systems. Computer, 21, No. 10 (Oct.):10-

44

19.
43. J.G. THISTLE (1991). Control of infinite behavio·ur of discrete-event sys­

tems. PhD thesis, Department of Electrical Engineering, University of
Toronto, Toronto.

44. J.G. THISTLE (1994). Logical aspects of control of discrete event systems:
A survey of tools and techniques. In G. COHEN and J.-P. QUADRAT, ed­
itors, 11th International Conference on Analysis and Optimization of Sys­
tems - Discrete Event Systems, number 199 in Lecture Notes in Control
and Information Sciences, pages 3-15, Springer-Verlag, London.

45. K.C. WONG (1994). Discrete-event control ar·chitecture: An algebraic ap­
proach. Systems and control group report, University of Toronto, Toronto.

46. HOWARD WONG-TOI and G. HOFFMANN (1992). The control of dense
real-time discrete event systems. Report STAN-CS-92-1411, Department of
Computer Science, Stanford University, Stanford.

47. W.M. WONHAM and P .J. RAMADGE (1987). On the supremal controllable
sublanguage of a given language. SIAM J. Control t'.1 Opt., 25:637 659.

45

