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Abstract. We develop a perturbation theory for strongly continuous backward evolutionary systems and 
their ad joint systems. The theory is not based on generating families but on certain operator families called 
step responses and cumulative outputs. The perturbation problem is reduced to solving an abstract Stieltjes 
integral equation of nonconvolution type. The theory is well suited for treating structured population 
models. 

1. Introduction. Many mathematical models which are traditionally written as linear 
partial differential equations or functional differential equations, can alternatively and with 
advantage be formulated as abstract Cauchy problems 

d 
-u(t) = A(t)u(t), t > s, 
dt 

u(s) = x, 

(1.1) 

where the initial state x belongs to the Banach space X and {A(t)} is a family of linear 
operators in X. In the autonomous case, A = A(t) for all t and proving well-posedness 
of the problem ( l. 1) amounts to showing that the operator A generates a semigroup. This 
can be done for instance by employing the (generalized) Hille-Yosida theorem, which gives 
necessary and sufficient conditions for A to be the infinitesimal generator of a strongly 
continuous semi group on X. 

The time-dependent case is much more difficult than the autonomous one. There are 
known sufficient conditions guaranteeing that the family {A(t)} generates (in a certain pre
cise sense) an evolutionary system { U (t, s)} on X. These conditions include the complicated 
Kato stability conditions and the requirements that for fixed t the operator A(t) generates 
a strongly continuous semi group and that the intersection of all domains D(A (t)) is dense 
in X (see Kato (1953), Pazy (1983)). Another notion of generating family, together with 
interesting generation results, is given by Dorroh and Graff (1979). On the other hand, 
given an evolutionary system, there seems to be no way of defining a generating family that 
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perturbations mapping into a super space and applied their theory to retarded functional
differential equations and age-dependent population dynamics. Their approach is, however, 
less well-suited for structured population problems with higher dimensional individual state 
space -the difficulty being the identification of the so-called sun-space x 0 and the domains 
of the infinitesimal generators. 

One of the main messages of this paper is that the difficulties described above are some
times due to our insistence on using differential equations as the language for formulating 
mathematical models. The derivation of a differential equation involves taking limits, which 
in the infinite dimensional case amounts to calculating domains of unbounded operators. 
This can sometimes be a formidable mathematical task that does not necessarily give any 
insight into the underlying physical problem. We shall therefore present a perturbation the
ory based on integral equations that all together avoids unbounded operators. This theory 
corresponds to a very natural approach to modeling structured populations, see Diekmann, 
Gyllenberg, Metz, and Thieme (1994). 

To explain our ideas and to motivate our approach we start by doing some formal cal
culations. Assume that there is an evolutionary system Vo somehow associated with the 
family {Ao(t)} and that equation ( 1.5) has a unique solution given via a perturbed evolution
ary system U, that is, u (t) = U (t, s )x. Then U should satisfy the variation-of-constants 
formula 

U(r, s) = Uo(r, s) + 1r Uo(T, a)B(a)U(a, s) da. (1.6) 

If one multiplies formula ( 1.6) from the left by B ( r) and integrates from s to t with respect 
to r one obtains 

V(t, s) = V0 (t, s) + 11 
V0 (t, a)V(do-, s), 

where we have introduced the notation 

Vo(t, s) = 11 
B(r)Uo(r, s) dr, 

V(t, s) = [ B(r)U(r, s) dr, 

and the integral in (1.7) is to be understood as a Stieltjes integral. 

(l.7) 

(1.8) 

(1.9) 

For a given state x E X at time s, B (t) U 0 (t, s )x may be considered as the instantaneous 
output at time t of the unperturbed system (which is immediately fed back into the sys
tem). Vo (t, s )x then stands for the cumulative output from times up to time t. A formal 
manipulation shows that Vo is connected to Uo through the algebraic relation 

V0(t, r)x - V0 (s, r)x = V0 (t, s)Uo(s, r)x, 0 ::=: r ::=: s ::=: t, x EX. (1.10) 

The identity (I. I 0) has a clear and useful interpretation. The difference on the left hand 
side gives the cumulative output from times to time t of the unperturbed system, which had 
state x at time r, and this is alternatively obtained by letting the system evolve from time 
r to time s and then calculating the cumulative output of this new state from time s up to 
time t. 

Notice that using ( 1.9) the variation-of-constants formula (I .6) can be rewritten as 

U(t, s) = U0 (t, s) + 11 
Uo(t, r)V(dr, s), (l.11) 
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which is an explicit formula for the perturbed evolutionary system U once V has been solved 
from (1.7). 

We emphasize once more that our manipulations above have been entirely formal, that 
we have not defined the abstract Stieltjes integrals occurring in formulae ( 1.6), ( 1. 7), and 
( 1.11 ), and that the operators Ao(t) and B(t) need not be well-defined. The key point in our 
approach is to forget about these operators and define the perturbation problem as follows: 
Given an evolutionary system Uo and a corresponding cumulative output Vo (i.e., an operator 
family related to U0 by (1.10)), solve the Stieltjes integral equation (1.7) and define U by 
the explicit formula ( 1.11) and finally prove that U is an evolutionary system and that V is 
a cumulative output for U. 

We have formulated the problem above in forward terms since these are easier to interpret. 
As is well known (cf. Feller (1966)), the corresponding backward problem is often easier to 
solve and we shall therefore concentrate on the pre-dual problem of perturbing a backward 
evolutionary system by a so called step response. Results for the forward problem are then 
obtained by taking adjoints. 

The perturbation problem mentioned above has been treated in the autonomous case by 
Diekmann, Gyllenberg and Thieme (1993a) and it is the purpose of this paper to extend 
those results to time-dependent problems. 

In Section 2 we give rigorous definitions of backward and forward evolutionary systems 
and of step responses and cumulative outputs. We then develop the theory from a purely 
algebraic point of view assuming that a Stieltjes integral having all the usual properties 
has been defined. The abstract integral is defined and its basic properties are derived in 
Section 3. Section 4 is devoted to verifying that our assumptions are indeed satisfied in the 
case of strongly continuous backward evolutionary systems and in Section 5 we draw the 
appropriate conclusions for such systems and their adjoints. In Section 6 we investigate 
continuous dependence of solutions on the data. Our definition of the Stieltjes integral is in 
the spirit of Honig ( 1975) using operator families of bounded semivariation. Many of the 
results in Sections 3 and 4 can be found in a slightly different guise in that book. For the 
sake of completeness and convenience of the reader we have included precise statements 
of these results. Full proofs can be found in Diekmann, Gyllenberg and Thieme (l 993b ). 
We would like to mention that Stieltjes integrals have been used in semigroup theory before 
to study the regularity of solutions to inhomogeneous Cauchy problems. Webb ( 1977) 
considers inhomogeneities of bounded variation, while Travis ( 1981) studies C0 semigroups 
of bounded semivariation. 

The perturbation problem can be solved if the step response of the unperturbed system 
satisfies a certain regularity condition, which can be hard to verify in applications. It is a 
very pleasant fact - proved in Section 7 - that this regularity condition is automatically 
satisfied for positive evolutionary systems perturbed by positive step responses. As nobody 
gets a negative number of children, this kind of positivity is a main feature of structured 
population models. 

In Section 8 we apply the theory to structured population dynamics. Here it becomes clear 
that our approach is very similar to the branching process approach to population dynamics 
(cf. Jagers (1975,1989,1991,1992), Kimmel (1982,1983), Arino and Kimmel (1993)). In 
Section 9 we formulate a concrete size-structured population model in cumulative terms 
and point out the advantages of this formulation in comparison to the traditional PDE 
formulation. 
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2. Cumulative outputs, step responses, resolvents, and perturbation of evolutionary 
systems. Let p ER r E (p, ool and let t::,.p,r denote the triangle 

f).p,r = {(r, t); p Sr St < r). 

If T < oo, the closure of t;,.p,r is of course given by 

t::,.p.r = {(r, t); PS r St Sr). 

We also introduce 

/::,.;.p = {(t, r); p Sr St< r} 

and 

t..;,p = {(t. r); p Sr St Sr). 

A family U = { U (r, t) b.nEio.,.,, of bounded linear operators on the Banach space X is 
called a backward evolutionary system if 

U(r, t) = U(r, s)U(s, t), p Sr S s St < r, 

U(r,r)=l. pSr<T, 

with I denoting the identity map on X. A family U = { U (t, r) lu.rJEio.;,,,, of bounded linear 
operators on the Banach space X is called a forward evolutionary system if 

U(t, r) = U(t, s)U(s, r), p Sr S s St< r, 

U (r, r) = I, p S r < r. 

At this point we do not specify any continuity properties of U. Notice that the dual U* of a 
backward evolutionary system U (r, t) defined by 

U*(t,r) = (U(r,t))* 

is a forward evolutionary system and vice versa. Notice the change in the order of the 
arguments. 

Definition 2.1. A family V = { V (t, r)} u ,r 1 a;,, of bounded linear operators from X to a 
Banach space Y is called a cumulative output family for a forward evolutionary system U if 

(i) V(t, r) - V(s, r) = V(t, s)U(s, r), p Sr S s St< r. 
A family V = { V ( r, t) }i,.,1 JELO.,,,, of bounded linear operators from Y to X is called a step 
response for a backward evolutionary system U if 

(i)' V(r,t)-V(r,s)=U(r,s)V(s,t), pSrSsSt<r. 
Setting r = s = t in either (i) or (i)' we see that necessarily 

(ii) V(r,r)=O, pSr<T. 
If Y = X we say that Vis a cumulative output (step response) on X. 

It is of course possible and meaningful to consider step responses of forward evolutionary 
systems and cumulative outputs of backward evolutionary systems. The defining relations 
are 

V(t, r) - V(t, s) = U(t, s)V(s, r), p Sr S s St< r 

for a step response V of a forward evolutionary system U and 

V(r, t) - V(s, t) = V(r, s)U(s, t), p Sr S s St < T 



l2l0 ODO DIEKi\!ANN. MATS GYLLENBERG. AND HORST R. THIEME 

for a cumulative output V of a backward evolutionary system U. 
A step response has the interpretation suggested by the name: in the backward case 

V (r, t)x is the state at timer when the final state at time t is zero and a constant input x 
is applied to the system in the interval (r, t) and in the forward case V (t, r )x is the state at 
time t when the initial state at time r is zero and a constant input x is applied in (r, t). 

In this paper we concentrate on the setting of Definition 2.1, because that gives what we 
need in the case of structured population problems. 

The next elementary proposition states that cumulative output and step response are dual 
concepts. 

Proposition 2.2. Let U be a backward evolutionary system on a Banach space X and let 
V be a step response from Y to X for U. Then V * (t, r) = ( V (r, t)) * is a cumulative output 
from X* to Y* for U*. 

We are interested in the following perturbation problem: Given a backward evolutionary 
system U0 and a step response Vo for U0 , under what conditions does the Stieltjes integral 
equation 

V(s, t) = Vo(s, t) + [ V(s, dr)Vo(r, t) 

have a unique solution V? Is it true that U defined by 

U(s, t) = Uo(s, t) + [ V(s, dr)Uo(r, t) 

(2.1) 

(2.2) 

is a backward evolutionary system and that V is a step response for U? The problem of 
course subsumes the question of existence of the Stieltjes integrals in (2.1) and (2.2). We 
obviously also have a dual problem in terms of forward evolutionary systems and cumulative 
outputs. 

To begin with we shall neglect the problem of defining Stieltjes integrals and concentrate 
on the actual perturbation problem. Equation (2.1) has the form of a resolvent equation 
and we shall therefore start by recalling from Gripenberg et al. ( 1990, Ch. 9.3) some purely 
algebraic facts about resolvent kernels. 

Let A be an associative algebra with product *· If Vo E A and V E A satisfies the 
equation 

V = Vo + Vo* V = Vo + V * Vo, (2.3) 

then V is called the resolvent kernel of V0 • If it exists, the resolvent kernel is necessarily 
unique. 

A left module over A is an Abelian group M such that the elements of A induce endo
morphisms f --+ V * f on M satisfying the following familiar laws: 

V*(j+g)=V*f+V*g, VEA, f,gEM, 

(V + W) * f = V * f + W * f, V, W EA, f E M, 

(V * W) * f = V * (W * f), V, WE A, f EM. 

(2.4) 

(2.5) 

(2.6) 

Right modules are defined analogously, see Jacobson (195 I) or any other textbook on 
algebra. 

As is customary, we have denoted the product in the algebra and the operation inducing 
the endomorphisms by the same symbol *· In our applications the * will always denote 
some sort of a Stieltjes product (see (2.14) below). 
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Proposition 2.3 (Gripenberg et al. (1990, Lemma 3.4, p. 233)). Let M be a left module 
over A and let Uo E M. If Vo E A has a resolvent V E A, then the equation 

U = Uo + V0 * U (2.7) 

has a unique solution U EM. This solution is given by the variation-of-constants formula 

U = Uo+ V *Uo. (2.8) 

The following analogue for right modules is proved in exactly the same manner. 

Proposition 2.4. let M be a right module over A and let W0 E M. If Vo E A has a 
resolvent V E A. then the equation 

W = Wo+ W *Vo 

is uniquely solved by 

W = Wo+ Wo* V. 

In Section 3.2 we shall define a Stieltjes integral J: V(dr)W(r) = J; dr[V(r)]W(r) 
for .C(X)-valued functions with the following natural properties (at least under appropriate 
continuity assumptions): 

1r V(dr)W(r) = 0, 

11 
V(dr)W(r) = [' V(dr)W(r) + J1 

V(dr)W(r), r:::: s:::: t 

11 
V(dr)Z(r) = 11 

W(dr)Z(r), 

(2.9) 

(2.10) 

(2.11) 

whenever W = V + C with C E .C(X) constant. For C E .C(X) the following equations 
also hold 

11 
dr[CV(r)]W(r) = C 11 

V(dr)W(r), 

11 
([V(dr)]W(r)C) = (1 1 

V(dr)W(r))C. 

(2.12) 

(2.13) 

Any object called an integral has to satisfy (2.10), whereas (2.9) and (2.11) are characteristic 
of Stieltjes integrals. As integrals are defined by limits of sums the properties (2.12) and 
(2.13) are natural as well. We shall also show that for a large class Ap., of Volterra operator 
kernels, i.e., operator families defined on some triangle l::!.p,r• the Stieltjes product 

(V * W)(s, t) := J1 
V(s, dr)W(r, t) (2.14) 

is well defined and makes Ap'.r' into an associative algebra for all p', r' satisfying p :::: p' S 
r':::: r. 
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Theorem 2.5. Let Jlp, r be an algebra of Volterra kernels on 6.p. r with respect to the 

Stieltjes product (2.14) and let M p. r be a set of Volterra kernels on /::,,. p. r that forms a left 

module over Ap.r (also with respect to the Stieltjes product (2.14)). Let V0 E Mp,r be 

a bachvard evolutionary system and let Vo E Jlp, r be a step response for Vo having a 

resolvent V E Jlp,r· Define U by 

U =Vo+ V * Uo. (2.15) 

Then U E Mp.r• U is a backward evolutionary system and Vis a step response for U on 

X. Moreover, U is the unique solution of the equation 

U =Vo+ Vii* U. 

Proof. For r :::: s :::: t we have 

V(r, t) =Vo(r, t) + f 1 V(r, dp)Vo(P, t) 

=Vo(r, s) + Uo(r, s)Vo(s, t) +ls V(r, dp)[Vo(p, s) + Vo(P, s)\1(1(.1, t)] 

+ [ 1 
dp[V(r, p) - V(r, s)]Vo(P, t) 

(2.16) 

=Vo(r, s) + [' V(r, dp)Vo(p, s) + [ Vo(r, s) + j' V(r, dp)V0 (p, s)] \!(1(s, t) 

+ [ dp[V(r, p) - V(r, s)]Vo(p, t) 

=V(r, s) + V(r, s)Vo(s, t) + [ dp[V(r, p) - V(r, s)]\!(1(p, t), (2.17) 

where we have used (2.1 ), (2.15), the fact that Vo is a step response for V0 , and the properties 

(2.9)-(2.11), (2.13) of the Stieltjes integral. Fix (r, s) E 6.p,r· Setting 

W(t) := V(r, t) - V(r, s), Wo(t) := V(r, s) V0 (s, t), (2.18) 

for s ::':: t < r we can rewrite the identity (2.17) as 

W(t) = Wo(t) + [ W(da)V0 (a, t), s:::: t < r. (2.19) 

Clearly all functions on [s, r) of the type t r-+ C Z (s, t) with C E .C( X) and Z E A. r form 
a right module Mover A.r with respect to 

(W * V)(t) = [ W(da) V(a, t), s ::':: t < r 

for W E M, V E .As,r· As Wo belongs to M it follows from Proposition 2.4 that W is 
given by 

W(t) = Wo(t) + [ Wo(dp)V(p, t), s ::':: t < r. (2.20) 
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Substituting (2.18) into (2.20) we find 

V(r,t)-V(r,s) = U(r,s)Vo(s,t)+ [
1 
dp[U(r,s)Vo(s,p)]V(p,t) 

= U(r, s) Vo(s, t) + U(r, s) [
1 

dp[Vo(s, p)]V(p, t) ~ U(r, s) V(s, t), 

which shows that V and U are related by condition (i)' of Definition 2.1. 
Since Mp,r is a left module it is clear that U defined by (2.15) is also an element of 

M p. r and, by Proposition 2.3, U is the unique solution of equation (2.16). To complete the 
proof we check that U is an evolutionary system. Since U0 (r, r) = I, it follows from (2. 15) 
and (2.9) that U(r, r) =I. Let r:;: s :::: t. Then 

U(r, t) = Uo(r, t) + [ V(r, dp)Uo(p, t) 

= Uo(r, s)Uo(s, t) + 1• V(r, dp)Vo(p, s)Uo(s, t) + [ 1 
dp[V(r, p) - V(r, s)]U0 (p, t) 

= [vo(r,s)+ f" V(r,dp)Uo(p,s)]Uo(s,t)+ [
1 
dp[U(r,s)V(s,p)]U0(p,t) 

= U(r, s) [ Uu(s, t) + [ V(s, dp)Uo(p, t)] = U(r, s)U(s, t), 

where we have again used the properties (2.9) -(2. I 3) of the Stieltjes integral. O 

Theorem 2.5 shows that the perturbation problem is reduced to the question whether or 
not the step response of the unperturbed system has a resolvent kernel. The standard way to 
prove existence of a resolvent kernel is to actually construct it through the series expansion 

(2.21) 

The main problem is now to define a reasonable sense in which the series in (2.21) converges. 
In some applications this is very easy. In models of structured population dynamics V0 (t, s) 
are the reproduction operators giving the expected number of children in the time interval 
[s, t] as distributed with respect to their individual state at birth. Vi* (t, s) corresponds in the 
same manner to grand children, V2* (t, s) to great grand children and so on ( cf. Diekmann, 
Gyllenberg, Metz, and Thieme ( 1994) for more details). If one assumes that neonates cannot 
immediately produce offspring of their own, then for any fixed (t, s) at most finitely many 
of the operators Vn* (t, s) are non-zero and hence the sum in (2.21) contains at most finitely 
many terms for every fixed (s, t). Hence there is no convergence problem. 

To treat the general case we shall in Section 4 equip an algebra of Volterra kernels with a 
locally convex vector topology that is also compatible with the Stieltjes product*· We shall 
then show that if Vo satisfies an additional regularity condition, then the series converges 
with respect to this topology and thus Vo has a resolvent. 

3. Stieltjes integration with operator-valued functions of bounded semi-variation. 
In this section we analyze the properties of the Stieltjes integral introduced by Honig ( 1975) 
to justify the formal calculations of the preceding section. Most of the proofs are omitted 
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and can be found in Diekmann, Gyllenberg and Thieme (1993b), which is a more detailed 
precursor of the present paper. 

3.1. Operator-valued functions of bounded semi-variation. Let X, Y, Z be Banach 
spaces and let V : [r, t] -+ .C(Y, Z) be a family of bounded linear operators from Y to Z. 
We want to define Stieltjes integrals 

[ V(ds)y(s) 

for continuous functions y : [r, t] -+ Y and 

[ V(ds)W(s) 

for operator families W : [r, t] -+ .C(X, Y). In order to treat the strong operator topology 
and uniform operator topology cases simultaneously we use the notion of a bilinear triple 
(cf. Honig, 1975). 

By a bilinear triple B = (X, Y, Z) we understand a triple of Banach spaces X, Y and 
Z, with a bilinear continuous mapping X x Y-+ Z. If x E X and y E Y, then xy E Z 
denotes the value of the bilinear mapping. After equivalent renormalization we can assume 
that 

llxyll :5 llxllllYll- (3. l) 

As pointed out above, themainexampleswehaveinmindareX = .C(Y, Z), Y = Y, Z = Z 
and X = .C(Y, Z), Y = .C(X, Y), Z = .C(X, Z) for given Banach spaces X, Y, Z . .C(X, Y) 
denotes the bounded linear operators from X to Y with the uniform operator topology. 
The respective bilinear mappings are the application of an operator to an element and the 
composition of two operators. In these cases the inequality (3.1) holds by definition without 
any renormalization. 

Given a bilinear triple it is possible to define a Stieltjes integral for step functions. A 
function y : [r, t] -+ Y is called a step function (cf. Dieudonne (1969)) if there exists a 
partition r = to < · · · < tn+I = t such that y is constant on (tj, fj+I) for j = 0, ... , n. The 
space of step functions on [r, t] with values in Y is denoted by P([r, t], Y). Let Pc[r, t], Y) 
denote its closure under the supremum norm. Elements of P([r, t], Y) are called regulated 
functions (Dieudonne,1969). Notice that P([r, t], Y) contains the continuous functions on 
[r, t] with values in Y. Equivalent characterizations ofregulated functions can be found in 
(Dieudonne, 1969, p. 145). 

If x and y are functions defined on [r, t] with values in X and Y, respectively, y a step 
function, then we define the Stieltjes integral 

[ x(ds)y(s) = ~(x(tj+i) - x(tj) )y(sj), r < t 

fr x(ds)y(s) = 0, 

(3.2) 

where the partition r =to < · · · < tn+I = t has been chosen as above and Sj E (tj, tj+1). 

The definition is independent of the choice of tj, Sj. 

We recall that a function x : [r, t] -+ X into a Banach space X is of bounded variation if 

n 

v;Cr; t) :=sup { L llx(lj+1) - x(tj)ll} < oo, 
j=O 

(3.3) 
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where the supremum is taken over all partitions r = to < ... < tn+I = t. The number 

v; (r; t) is called the variation of x on [r, t]. If x is of bounded variation, then it is certainly 

possible to extend the Stieltjes integral from the step functions to the continuous or even to 

the bounded Borel measurable functions y from [r, t] to y (see Section 3.3). Notice that 
the variation is additive, i.e., 

v: ( r; t) = v: ( r; s) + v; (s; t) . r :::; s :::; t. 

This leads to the estimate 

llf
1
x(ds)y(s)ll s {lly(s)!lv:(r; ds):::; ,:~fr! lly(s)llv.;(r; t), y E P([r, t], Y), (3.4) 

with the second integral being a standard scalar Stieltjes integral. 

If X = L(Y, Z) for some Banach spaces Y, Z, the notion of bounded variation is over 

restrictive as we have pointed out in Example 5.1 in Diekmann, Gyllenberg and Thieme 
(I 993a). 

Let B = (X, Y, Z) be a bilinear triple. A function x : [r, t] -+ X is said to be of 
bounded B-variation on [r, t] if 

ll 

v~(r; t) :=sup {II L(x(tj+1) - x(tj) )Yj II} < oo, (3.5) 
1=0 

where the supremum is taken over all partitions 

r =to< ... < tn+I = t and all Yj E Y with llYjll:::; l. 

The number v_~ (r; t) is called the B-variation of x on [r, t ]. 

Notice that, in the definition of v_~, the partition r = t0 < ... < t11+ 1 = t can be replaced 

by r :::; to < ... < t11 +1 :::; t. This is possible by choosing some of the Jj equal to 0. After 

this remark one easily sees that 

v~(r; t):::; v~(r; s) + v~(s; t), r:::; s:::; t. (3.6) 

It follows that v~(r; t) is monotone non-increasing in rand monotone non-decreasing in t. 

The B-variation fails to be additive and there is no analogue of formula (3.4). This is why 

integration with respect to functions of bounded B-variation will be less satisfactory than 

with respect to functions of bounded variation. 
A function x : [a, r) -+ X is said to be locally of bounded B-variation (on [a, r)) if it 

is of bounded B-variation on every interval [a, t] with a:::; t < r. 

Let us connect this more general notion of bounded variation to the usual one. 

Lemma 3.1. (a) A function x : [r, t] -+ X into a Banach space X is of bounded variation 

(f and only ifx is of bounded B•-variationfor the bilineartriple B" = (X, X*, C) and 

v7(r; t) = v~· (r; t). 

(b) A function x* : [r, t] -+ X* into the dual space of X is of bounded variation if and only 

!fit is of hounded B0 -variationfor B0 = (X*, X, C) and 

v;. (r; t) = v~.0 (r; !). 

As we have pointed out before, we shall mainly be concerned with two special cases, 

namely, for given Banach spaces X, Y, Z, 

B1 = (L(Y, Z), Y, Z) and B2 = (L(Y, Z), L(X, Y), L(X, Z)), 

with the natural bilinear mappings. Fortunately, for these two triples, the concepts of 

bounded B-variation are the same. Moreover, one can always reduce a bilinear triple to a 

triple of the form of B1 which is quite convenient for some proofs. 
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Proposition 3.2 (Diekmann, Gyllenberg, and Thieme, l 993a, Proposition 2.1 ). 
(a) Let X, Y, Z be Banach spaces, X ¥- {0}, 81 = (.C(Y, Z), Y, Z) and let 82 = 
(.C(Y, Z), C(X, Y), .C(X, Z)). Let V be a function from [r, t] to .C(Y, Z). Then V is of 
bounded 8 1-variation if and only if it is of bounded 82-variation and v~ 1 (r; t) = v~2 (r; t). 

(b) Let 8 = (X, Y. Z) be a bilinear triple, x : [r, t] -+ X. Then V(t)y := x(t)y 
defines a function V : [r, t] -+ .C(Y, Z). We have that x is of bounded 8-variation if 
and only ifV is of bounded 8 1-variationfor the bilinear triple B' = (£(Y, Z), Y, Z)and 
v~(r; t) = v~' (r; t). Moreover 

f 1 
x(ds)y(s) = f1 

V(ds)y(s), y E P([r, t], Y). 

A function V : [r, t] -+ C(Y, Z) which is of bounded 8-variation with respect to either 
(and hence both) of the bilinear triples 8 1, 8 2 of Proposition 3.2 (a) is said to be of bounded 
semi-variation on [r, t]. If V : [0, r) -+ .C(Y, Z) is of bounded semi-variation on every 
interval [0, t], 0 :S t < r, then V is said to be locally of bounded semi-variation. 

3.2. Stieltjes integration with operator-valued functions of bounded semi-variation. 
The following fundamental existence result which can be found in Honig (1975), p. 24, 
explains the importance of the notion of bounded B-variation. Similar results in somewhat 
more general settings can be found in Bartle (1956) Sections 1 and 2, and in Dinculeanu 
(1966), paragraphs 7 and 9. 

Theorem 3.3. Let 8 = (X, Y, Z) be a bilinear triple and let x : [r, t] -+ X be of bounded 
8-variation. For y E P([r, t], Y) (in particular if y is continuous) the Stieltjes integral 

f 1 
x(ds)y(s) 

exists. If y is a step function, the integral is given by (3.2). !fr= t, the integral is 0. The 
following estimate holds 

II [ x(ds)y(s)ll :S v~(r, t) r~~~1 lly(s)!I. (3.7) 

Sometimes we shall also use the notation 

[ ds[x(s)]y(s) :=I' x(ds)y(s). 

We shall now proceed to show that the Stieltjes integral has all the properties (2.9)-(2.13) 
listed and used in Section 2. Property (2.9) is included in Theorem 3.3 and (2.11) follows 
from (3.7) since v.~ (r, t) is zero for constant functions x. Property (2.10) will be proved in 
Proposition 3.6 (b), (2.12) in Proposition 3.8, and (2.13) in Proposition 3.9. 

We start by relating the Stieltjes integral to something more familiar through the following 
result on integration by parts: 

Proposition 3.4. Let B = (X, Y, Z) be a bilinear triple and let x : [r, t] -+ X be continuous 
and of bounded B-variation. If y : [r, t] -+ Y is continuously differentiable we have 

It x(ds)y(s) = x(t)y(t) - x(r)y(r) - It x(s)y'(s)ds 

with the second integral being defined in the sense of Riemann. 

In the following we need a couple of properties of the Stieltjes integral ( cf. Honig, 197 5, 
Ch. I, Theorem 5.8). 
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Proposition3.5. let B = (X, Y, Z) be a bilinear triple and letx : [r, t] ~ X be of bounded 
B-variation. let Xk : [r, t J ~ X be of bounded B-variation such that v~ (r: t) is a bounded 

sequenceandxk(s) ~ x(s)fork ~ oopointwiseins E [r,tJ. let y,yk E P{[r,t],Y) 
and _Vk (s) ~ y (s) fork ~ oo uniformly in s E [r, t ]. Then 

[ xk(ds)yk(s) ~ [ x(ds)y(s), k ~ oo. 

Our next proposition gives some results in the case of continuous functions y. 

Proposition 3.6. let B = (X, Y, Z) be a bilinear triple, let x: [q, u] ~ X be of bounded 
B-variation and let y : [q, u] ~ Y he continuous. 

(a) Forr E [q, u] we have 

11 l' x(ds)y(s)- (x(u)-x(q))y(r)ll :'.': v~(q; u) 4 ~~~11 JJy(s) -y(r)ll-

(b) For q :'.': r :'.': u one has 

i" x(ds)y(s) = ir x(ds)y(s) +Ju x(ds)y(s). 

(c) lfx, y are continuous on [q, u], then J: x(ds)y(s) isa continuous function of(r, t), 
q Sr:'.': t :'.': u. 

(d) {f Xj, Yi· j E J, with J being some index set, are continuous functions from [q, u] 
to X, Y respectively and Xj is of bounded B-variation on [q, u] with v.~ (q: u) being 
hounded in j E J and if the families {x;} and {yj} are equicontinuous, then the 
family offunctions (r, t) ~ J: Xj (ds )yj (s) is equicontinuous. 

We shall also need the following Fubini type result, which is a special case of Honig 
( 1975, Ch. II, Theorem LI). 

Proposition 3.7. Let B = (X, Y, Z) he a bilinear triple and let x : [r, t] ~ X be of 
bounded B-variation. Let y : [r, t]2 ~ Y be continuous. Then 

f 1 
x(ds) ([ y(s, u)du) = [ ([ x(ds)y(s, u)) du. 

Consider a bilinear triple B = (X, Y, Z) and a bounded linear operator B : Z ~ U into 
a Banach space U. Then the definition 

(B"x)y = B(xy) 

yields a bounded linear operator Btl : X ~ £(Y, U) with II B~ll :S llB II. Let B~ 
( £ ( y, U), y, U) with the canonical pairing. In our two main examples where x is a bounded 
linear operator as well, snx = Bx is the composition of the two linear maps x and B. 

Proposition 3.8. Let B E £(Z, U) and let x : [r, t] ~ X be of hounded B-variation. Then 
s 1-7 B c x ( s) is <Jf bounded En- variation, 

v~~dJ(r; t) ::= llBllv~(r; t) and B [ x(ds)y(s) = [ ds[B~x(s)]y(s). 
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Let us now explicitly tum to the case that x = V, y = Ware operator-valued functions, 
V : [r, t] -+ ..C(Y, Z), W : [r, t] -+ C(X, Y). We assume that V is of bounded semi
variation and that W is strongly continuous, i.e., s ~ W(s)x is continuous for any x EX. 
Then we can define a linear bounded operator I: V (ds) W (s) from X to Z by 

([ V(ds)W(s)) x = [ V(ds)(W(s)x), x EX, (3.8) 

with the second integral being taken with respect to the bilinear triple B1 = (..C(Y, Z), Y, Z). 
If W is operator-norm-continuous, we can also consider J: V (ds) W (s) as an integral with 
respect to the bilinear triple B2 = (C(Y, Z), £,(X, Y), C(X, Z)). As one realizes from (3.2) 
and the approximation by step functions, the two integrals coincide. We note the following 
obvious consequence. 

Proposition 3.9. Let V : [r, t] -+ .C(Y, Z) be of bounded semi-variation and let W : 
[r, t] -+ ..C(X, Y) be strongly continuous. Let B : U -+ X be a bounded linear operator. 
Then 

([ V(ds)W(s))B = [ V(ds)(W(s)B) 

with the operator integrals being understood in the pointwise sense of(3.8). lfW is operator
nonn-continuous, then they can also be understood with respect to the triple 82. 

3.3. Stieltjes integration with respect to functions of bounded variation. If f3 = 
(X, Y. Z) is a bilinear triple and x : [r, t] -+ X is of bounded variation, then it is of bounded 
B-variation. In particular the integral I: x(ds) y(s) is defined for continuous y : [r, t] -+ Y. 
Moreover the estimate (3.4) still holds. The integral 

is a non-negative continuous linear functional for continuous scalar-valued functions efJ 
defined on [r, t]. Hence, by Riesz's representation theorem, there exists a non-negative 
finite regular Borel measure ~ on [r, t] such that 

II { x(ds)y(s)ll ~ / 1 
lly(s)llHds), y E C([r, t], Y). 

Hence the integral J; x(ds)y(s) can be extended to functions y E L 1 ([r, t], Y; O with 

L 1 ([r, t], Y; n denoting the completion of C([r, t], Y) with respect to J: lly(s) ll~(ds ). As 
~ is regular, the integral is defined for bounded Borel measurable functions y. Finally a 
theorem of bounded pointwise convergence holds. 

Proposition3.10. Let l3 = (X, Y, Z) be a bilinear triple and x : [r, t] -+ X be of bounded 
variation. Let Yj : [r, t] -+ Y be a sequence of uniformly bounded Borel measurable 
functions such that Yj(s)-+ 0, j-+ oo, pointwise ins E [r, t]. Then 

[ x(ds)yj(s)-+ 0, j-+ oo. 
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3.4. Duality. We specialize Proposition 3.8 to the case that U = C, hence B = z* for 
some z* E Z*. In this situation it is suggestive to write 

(B 0x)y = {xy, z*) =: (y, x*z*) = (x*z*)y. 

Indeed, the second equality defines a bounded linear operator x* : Z* --? Y* for any x E X. 
BU becomes (Y*, Y, C). Again, in our two main examples, where x is a bounded linear 
operator itself, x* is the dual operator of x. 

We have the following dual characterization of bounded B-variation. 

Proposition 3.11. (a) Let B = (X, Y. Z) be a bilinear triple. A function x : [r, t] --+ X 
is of bounded B-variation if and only if the function s ~ x*(s)z* from [r, t] into Y* is of 
bounded variation for any z* E Z*. 
(b) If x is of bounded B-variation, 

Vx(r; t) = sup v:*(-lz'(r; t). 
llz* 11:::: i 

(c) If x is of bounded B-variation and y: [r, t]--+ Y is continuous, then 

([' x(ds)y(s), z*J = [' ds[x*(s)z*]y(s), 'V z* E Z*. 

Proof. Assume that x is of bounded B-variation. Then, by Proposition 3.8, x*z* is of 
bounded (Y*, Y. C)-variation, i.e., by Lemma 3.1 (b), of bounded variation. :::: in (b) now 
follows from Lemma 3.1 (b) and Proposition 3.8. 

Next we assume that s ~ x*(s)z* from [r, t] into Y* is of bounded variation for any 
z* E Z*. Let us denote the set of Y-valued step functions y with sup[r,rJ II y II s 1 by 
Pi = Pi ([r, t], Y). For any y E Pi, we define linear bounded operators Ty : Z* --? C by 

Ty(z*) = ([' x(ds)y(s), z*) = [
1 
(x*(ds)z*)y(s) 

with the second integral being taken with respect to the bilinear triple (Y*, Y. C). Notice 
that 

II f1 x(ds)y(s)IJ = llTylJ. (3.9) 

From (3.4), 
sup ll~vCz*)ll :S v:•oz•(r; t). (3.10) 
yeP, 

By the uniform boundedness theorem, there is some constant c > 0 such that II Ty II < c, 
y E Pi. Let r = to < · · · < tn+I be a partition of [r, t], Yj E Y. llYj II s 1. Define y E Pi 
by y(s) = yj. lj < s < lj+i· Then 

Hence x is of bounded B-variation. As for part (b ), by (3 .10), 

Vx(r; t) .S sup v;'Oz*(r; t) .S Vx(r; t), 
llz'll::::l 
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where the second inequality has already been proved at the beginning. Part (c) is a direct 
C.Hhcqui:nce of Proposition 3.8. 0 

In view of Proposition 3.5 one wonders whether Proposition 3.10 of bounded pointwise 
comergence (in y) would also hold if x is only of bounded semi-variation. We do not know 
about such a theorem. Even if one alternatively tries a more measure-theoretically oriented 
cippmach (sec Bartle ( 1956)) a theorem of dominated convergence in measure seems to be 
the he~! one can achieve. A bounded convergence theorem holds in the weak topology, 
however. 

Proposition 3.12. Let Yi be a uniformly bounded sequence of continuous functions from 
t l _..., Y. and let V : [r, t] -+ .C( X. Y) be of bounded semi-variation. If II Yj (s) II -+ 0, 

j - x. pointwise j(Jr s E [r, t ], then 

(/
1 
V(ds)yj(S),z:)--.. 0, j-+ 00, z* E Z*. 

If V : [r. t J -+ ,C( Y. Z) is of bounded semi-variation, the functions s 1-+ V* (s)z* are of 
bounded variation for any z* E Z* by Proposition 3.8. By Lemma 3. l (a) this is equivalent 
to s r-. V*!s);* being of bounded B-variation for B = (Y*, Y**, C). Hence we can define 

j 1 
d,(V*(s)z*)y**(s) 

for any continuous y** : [r, t J -+ Y**. Moreover 

II [ 1 
d.,(V*(s)z*)y**(s) II :::: sup 11.v**ll llz*ll vv(r; t). 

r [r,t] 

Setting 

f1 
y**(s)V*(ds)z* = f 1 

ds(V*(s)z*)y**(s) 

v.e obtain an element 

1' y**(s)V*(ds) E Z**. 

Lei J be the canonical embedding of Z into Z**. Apparently, for continuous y : [ r, t I -+ y 

f1 
V(ds)y(s) = f 1 

Jy(s)V*(ds). 

In the following we identify Z with J z and X with J x. 
Let now W' · [rt] -+ .C(Y* X*) b · " ·1 · · h' : , * . . . . · • . • e a iamr Y of bounded lmear operators such 

t ,.'lt H (s).\ 1s strongly contmuous for any x E X Then w d fi , * · . 
J' w· ' (I) V*(ds) E L(Z* X*) b . . e can e ne a w -integral r • . . ' y settmg 

(x. ([ Wx(s)V*(ds)) z*) = / 1 
d.JV*(s)z*)Wx*(s)x. (3, 11) 

We have the estimate 

II [I wx(s)V*(ds>ll:::: sup 11wx Jlvv(r; t). 
r ~~ 
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We conclude with the remark, that, for a strongly continuous operator family U : [r, t] -+ 
£,(X, Y), we have 

([ V(ds)U(s))* = [ U*(s)V*(ds). (3.12) 

4. The Stieltjes product and existence of a resolvent kernel. Let as before 

/",,. 1u = {(r, t): p :Sr :St< r}, t,,.p,a = {(r,t): p:::: r:::: t <a}, 

where p ER, a E (p, oo), r E (p, oo]. 

Definition 4.1. Let B = (X, Y, Z) be a bilinear triple, A Volterra kernel, that is a function 

V : fip,a -+ X, is called a B-kernel if V (r, ·) is of bounded B-variation on [r, a] for any 
r E [p, er] and 

v~(r; a):= v~(r, 1(r, a) ( 4.1) 

is a bounded function of p :::: r :::: a. 

The Volterra kernel V : t,,.p, r -+ X is called a local B-kernel if it is a B-kernel on fip,a 

for any er E (p, r). 

It is convenient to introduce 

Then 

V~(r; t) = sup v~(s; t), 
r-::;.s 'St 

ll 

V~(r; t) =sup II I)VCto, ti+1) - V(to, tj))yj 11-
j=O 

(4.2) 

where the supremum is taken over all r :S to < , , · < ! 11 +1 :St and all Yj E Y, llYj II :S I. 
Let B1 = (.C(X), X, X) and B2 = (£(X), £(X), £(X)) for some Banach space X. 

It follows from Proposition 3.2 that a Volterra kernel is a B1 -kernel if and only if it is a 
B2-kernel and that in this case 

V~' (r; t) = V~2 (r; t), 

Definition 4.2. A Volterra kernel V : fip,a -+ £(X) is called a Volterra-Stieltjes operator 

kernel if it is a B-kemel with B either B1 or B2 . We set 

B 
Vv(r; t) = vv'(r; t), 

A Volterra-Stieltjes operator kernel V is called regular if 

vv(r;t)-+0, t-r-+0. (4.3) 

Subsequently the word ''operator" will usually be omitted. 

Without an explicit statement to the contrary, topological concepts of Banach spaces 

like continuity will always refer to the norm topology, Thus, for instance, a continuous 

Volterra-Stieltjes operator kernel is a continuous mapping from l:,.p,a to £(X), equipped 

with the uniform operator topology. 
As any continuous function x : [O, t] -+ X that is of bounded variation has the property 

that v;(O; s) -+ 0, s-+ 0 (see Dunford and Schwartz (1958, IILS.16)), one might expect 

that a similar property is true for the B-variation, or that any continuous Volterra-Stieltjes 
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operator kernel is automatically regular. However, this conjecture is false as is shown by a 
counter example given in the Appendix. 

Theorem 3.3 guarantees the existence of the Stieltjes product 

(V *X)(r. t) =ft V(r, ds)x(s, t). 0 _:::: r < t < T, (4.4) 

satisfying (V * x) (r. r) = 0 for a local Volterra-Stieltjes kernel V and a continuous function 
x : t-,P-' ~ X. If U: f>.p.r ~ l(X) is continuous, then the Stieltjes product 

(V * U)(r, t) =ft V(r, ds)U(s, t), 0 _:::: r < t < T, (4.5) 

makes sense in the uniform operator topology. If U is only strongly continuous, then the 
Stieltjes product ( 4.5) can still be defined pointwise: 

(V * U)(r, t)x = [ V(r, ds)U(s, t)x, 0 ::Sr< t < T, x EX. (4.6) 

The estimate (3.7) shows that ( V * U)(r, t) is a bounded linear operator on X. 
The next result also follows from the estimate in Theorem 3.3. Compare the proof of 

Proposition 2.4 in Diekmann, Gyllenberg and Thieme ( 1993a). 

Proposition 4.3. Let B = (X, X, X) be a bilinear triple and let V : 'l:,.p,n ~ X be a 
continuous B-kernel, satisfying V (s, s) = 0 for all p _:::: s _:::: CJ. 

(a) Let p _:::: r <a and y : [r, o-] ~ X be of bounded B-variation. Then the function 

x(t) = f1 
y(ds)V(s, t), r _:::: t _:::: o-, 

is c!f bounded B-variation on [r, a] and 

v~(r; t)::: v~(r; t)V~(r; t). 

(b) If W : 'l:,.p,a ~ X is a continuous B-kernel, so is W * V and 

V~.v(r; t) _:::: V~(r; t)V~(r; t). 

Proposition 4.4. Let l3 = (X, Y, Z) be a bilinear triple and let W : t-,p,r ~ X, V : 
t-, 11 , r ~ Y be continuous functions. Assume that W is a local B-kernel. Then W * V is a 
continuous function from 6p, r to Z that can continuously be extended to [p, T ) 2 by setting 
it 0 on [p, r)2 \ /',p,r· 

Proof. Consider sequences r1, t1, j E N, such that (r1, t1) E 6p.r and ri -+ r, ti ~ 
t, .i ~ oo, (r, t) E 6p,r, r < t. Set x1(s) = W(r1, s) ifs'.'.: r1 and Xj(S) = 0 otherwise, 
y1(s) = V(s, ti) ifs :S tJ and Yi(s) = 0 otherwise, x(s) = W(r, s), y(s) = V(s, t). Then 

II (W * V)(ri, t1) - (W * V)(r, f) II 

.::::11 lj x1(ds)yJ(s)- [ x1(ds)y1(s)ll +II [ x1(ds)yi(s)- f1 
x(ds)y(s)ll· 

The first term converges to 0 for j -+ oo by Proposition 3.6 (d), because v~ (p; CJ) is 
I 

bounded for some a E (t, r) and the continuity of y1(s) ins is uniform in j. The second 
term converges to 0 for j ~ oo by Proposition 3.5, because y1(s) ~ y(s), j ~ oo 
uniformly ins E [r, t]. If r = t, we have (W * V)(r1 , t1) ~ 0 = (W * V)(r, r) from 
Proposition 3.6 (a). D 

The next proposition on the associativity of the Stieltjes products could be formulated in 
greater generality, but we prefer to state it only in terms of operator families. 
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Proposition 4.5. Let V : l:::.p.r --+ .C(X) be a continuous local Volterra-Stieltjes kernel 
satisfying V (r, r) = 0, p :S r < T. Then the following statements hold: 

(a) Let p :Sr :St < r be fixed and f : [r, t] --+ X be continuous and W : [r, t] --+ 
.C(X, Y) be of bounded semi-variation. Then 

[
1 

W(ds) (it V(s,du)f(u)) = f 1 
du [[u W(ds)V(s, u)J f(u). (4.7) 

(b) If U(r, t) is a strongly continuous family of bounded linear operators and V, W 
are continuous local Volterra-Stieltjes kernels from f<:..p, r to £:,(X) vanishing on the 
diagonal, then W * (V * U) = (W * V) * U. 

Proof. (a) First of all we notice that both double Stieltjes-integrals in (4.7) make sense. 
The same proof as for Proposition 4.4 shows that J: V (s, du) f (u) is continuous and so 
the first double Stieltjes-integral is defined. By Proposition 4.3 the function x(u) = 
fs" W (ds) V (s, u) is locally of bounded semi-variation such that the second double Stielt
jes integral is defined as well. We can assume that f (s) is continuously differentiable ins. 
Otherwise we approximate f by continuously differentiable functions and the result follows 
from the estimates in Theorem 3.3 and Proposition 4.3. Integrating by parts (Proposition 
3.4) we obtain 

[ W(ds) (it V(s, du)f(u)) = - [' W(ds) (/
1 

V(s, u)f'(u)du - V(s, t)f(t)). 

As V (s, s) = 0 we can extend V continuously by V (s, u) = 0 for u :S s and so we can 
continue the identity by writing 

= - [ W(ds) ([ V(s, u)f'(u)du - V(s, t)f(t)). 

By Proposition 3.7 we can interchange the integration and continue our equation by 

= [ ([ W(ds)V(s, u)) f'(u)du + / 1 
W(ds)V(s, t)f(t) 

= - f' ([u W(ds)V(s, u)) f'(u)du +ft W(ds)V(s, t)f(t). 

Another integration by parts (Proposition 3.4) proves our claim. 
The assertion in b) immediately follows from a) by fixing r and setting f (s) = U (r, s )x. 
We collect our results so far in the following theorem. 

Theorem 4.6. Let X be a Banach space, p < a < r. The set Ap.a of all continuous 
Volterra-Stieltjes kernels V : :ip.cr --+ .C(X) satisfying V (r, r) = 0, p :S r :S a, is 
a Banach algebra with Stieltjes product as multiplication and V v (p; a) as norm. The 
Abelian group (with respect to ordinmy addition of operators) of all strongly continuous 
Volterra kernels f:.p,a --+ .C(X) is a leji module over Ap,a· 

Theorem 4.6 implies a preliminary existence result forresolvent kernels. It is well known 
(Rudin, 1973, Theorem 10. 7) that an element Vo of a Banach algebra with norm less than 
one has a resolvent given by the Neumann series 

00 

V = L Vn, Vn+ l = Vo * Vn. 
)=0 
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So every continuous Volterra-Stieltjes operator kernel V : ~p.a -+ .C(X) vanishing on 
the diagonal and having semi-variation Vv(p, a) less than one has a unique resolvent. In 
most applications this is too weak a result and we therefore proceed to prove existence of 
resolvents of regular elements of a larger algebra. 

Let A denote the set of all continuous Volterra-Stieltjes operator kernels V : 6.p. r -+ 
.C(X) that satisfy V(r, r) = 0 for all r E [,o, r). In other words, V EA if and only if the 
restriction of V to ~P-" belongs to Ap,a for all a E (p, r). A is obviously an algebra. 

Define for all V E A and all A. :::: 0 

ll 

llV llA.a = sup II L (V Uo. tj+I) - V (to, tj) )e'-Uo-rj l Xj II· 
j=O 

(4.8) 

where the supremum is taken over all partitions p s t 0 < · · · < tn+I ::::: a and all elements 
x1, ... , x 11 +1 E X with llxJ II s I. For each t 2: p, A. 2: 0, the mapping V 1--+ llV 11,_,1 is a 
norm on Ap,a. The mapping a 1--+ II V llA.a is monotone, non-decreasing, non-negative, and 
bounded on bounded intervals. For each a, the norms II · 11>-.a are equivalent to the norm 
II· llo.u = Vv(p; a), the norm introduced in Theorem 4.6. Notice that 

sue~ that the convergence in II · lli.,a implies convergence in the operator norm uniformly 

on 6. P"" 

Lemma 4.7. (a) If V E Aa. and E > 0, then 

l!Vlli.,u:=:: sup vv(r;r+E)+e-'-'llVllo.a· 
0:0r:Oa-E 

(b) If Wand V belong to Ap.a then 

(4.9) 

Proof (a) The statement is easily seen by introducing new partition points with elements 
x1 = 0 if needed. 

(b) Let 0:::: to < · · · tn+I :::: a, Xj E X, llx1 II ::::: 1. Then 

II t(cw * V)(to, 1J+ 1) - (W * V)(t0 , t1))ei.uo-tjlx1 II 
j=l 

As V (s, s) = 0 we can extend V continuously by setting V (s, u) = 0, s :::: u and obtain 

ll 

II L ( (W * V)(to, fJ+J) - (W * V)(to, t1) )e>-Un-rjJ x1 II 
j=l 
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n 

fA.(s) = L( V(s, lj+i) - V(s, tj))e!,\i-t,lXj· 
j=I 

can be approximated by sums 

n 

L(WCto,sj+1)-W(to,s1 ))e!.Uo-s1 l.f~(s1 ). 
)=0 
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(4.10) 

Hence its norm can be estimated from above by llWll>-.a sup0<s<a 11.f)Js)ll. By (4.10) we 
have - -

II /J. (s) II :S: II V JI :C,a • 

This implies the assertion. 

Theorem 4.8. (a) The set A of all continuous Volterra-Stieltjes operator kernels V 
,6.p,r --+ .C(X) vanishing on the diagonal is an algebra. 

(b) For every fixed r E [p, r) the operation 

(V * /)(t) := [ V(r, ds)f(s), VE A f E C([r, r); X) 

makes the Abelian group C([r, r); X) of continuous functions into a le.ft module over A. 
(c) The Ahelian group of all strongly continuous Volterra kernels V : 6.,,.r --+ .C(X) is 

a lefi module over A. 
( d) For every fixed r E [ p, r) the operation 

(W * V)(t) := [ W(ds)V(s, t), V EA 

makes the Abelian group of all.functions W : [p, r) -+ £(X, Y) that are locally of bounded 
semi-variation into a right module over A. 

( e) For each A. :::::: 0 the family {II · 111..a laE(p, r 1 of norms defines a locally convex topology 
on the algebra A which is compatible with the algebraic structure. These topologies are 
equivalent for all A. :::::: 0. 

(f) Every regular Vo E A has a unique regular resolvent kernel V E A. V is given by 
the series 

OG 

V=LV,n V,,+1 =Vo* Vn. ( 4.11) 
j=O 

which converges in A. 

Proof. (a) Obvious. 
(b) By Theorem 3.3 ( V * j)(t) is well defined and the same proof as for Proposition 4.4 

shows that it is continuous in t (this was already observed in the proof of Proposition 4.5). 
Thus f --+ V * f is an endomorphism of the Abelian group C([r, r); X) and Proposition 
4.5 (a) shows that C([r, r); X) is a left module over A. 

(c) Obvious. 
(d) This also follows from Proposition 4.5 in a similar manner as (b). 
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(e) By a standard result in functional analysis (Rudin, 1973, Theorem 1.37) the separating 

family of (semi) norms induces a locally convex topology on A compatible with the vector 

space structure and Lemma 4.7 (b) shows that it is also compatible with the Stieltjes product. 

We have already noticed that the norms II · ll;,.,a are equivalent for all A. :=::: 0 and hence the 
induced topologies are equivalent. 

(f) If Vo E A is regular, it follows from Lemma 4.7 (a) that for fixed CJ E (p, r) one 

can choose A.::=:: 0 so large that llVolka < L It follows that the series in (4.11) can be 
majorized in this norm by a converging geometric series and hence it converges (for details, 

see Diekmann, Gyllenberg and Thieme ( l 993a, Theorem 2. 7). 

We now apply Propositions 2.3 and 2.4 to the present situation and obtain the following 
theorem. 

Theorem 4.9. Let V0 be a regular Volterra-Stieltjes kernel. Let V be the resolvent kernel 

of V0 . Let p :::: r < r be fixed. 

(a) Let f be a continuousfunctionfrom [r, r) to X. Then the Stieltjes integral equation 

v(t) = 11 
Vo(r. ds)v(s) + f(f), r:::: t < r, 

is uniquely solved by 

v(t) = 11 
V(r, ds)f(s) + f(t), r :St < r. 

(b) Let Vo : [r, r) ---). L(X) be a strongly continuous family of bounded linear operators on 

X. Then the operator Stieltjes integral equation 

U(t) = Uo(t) + 11 
Vo(r, ds)U(s), r:::: t < r 

is uniquely solved by 

U(t) = Uo(t) + 11 
V(r, ds)U0 (s), r:::: t < r. 

(c) Let Wo : [r, r) ---). L(X, Y) be locally of bounded semi-variation. Then the Stieltjes 
integral equation 

W(t) = Wo(t) + 11 
W(ds)Vo(s, t), r :St < r, 

is uniquely solved by 

W(t) = Wo(t) + 11 
Wo(ds)V(s, t). 

Remark 4.10. Translated into our framework, Honig ( 1975, chapter 4, § 1) shows existence 
and uniqueness of a Volterra-Stieltjes kernel 

R(r, t) =I+ 11 
Vo(r, ds)R(s, t) =I+ 11 

R(r, ds)V0 (s, t), p::: r:::: t < r, 
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where I is the identity operator on X. Honig calls R the resolvent kernel of Vo and he 
uses R instead of V to solve the Stieltjes integral equations in Theorem 4.9. These two 
concepts of resolvent kernels can be transformed into each other, because one easily checks 
the following relations: If V0 (r, r) = 0, p :::: r < r, then 

V (r, t) = f 1 
Vo(r, ds)R(s, t) = f 1 

R(r, ds) V0 (s, t), 

and, from Theorem 4.9 (b), (c), R(r, t) = I+ V(r, t). Existence and uniqueness of both 
V and R as well as their relation were shown by Kimmel ( 1982) in the case that X is a 
finite-dimensional euclidean vector space. Kimmel (1982, 1983) also explains how they 
can be interpreted as certain moments in age- and time-dependent branching processes. We 
prefer V over R in our context because of its interpretation as step response of the perturbed 
evolutionary system V (see Sections 2 and 5). The resolvent kernel V will be a paramount 
tool for generalizing our theory to nonlinear perturbations. 

5. Perturbation of strongly continuous and dual evolutionary systems. 
Definition 5.1. A step response for a backward evolutionary system is called regular if it is 
a regular continuous local Volterra-Stieltjes operator kernel vanishing on the diagonal. 

Theorem 5.2. Let Vo = { Vo(r, t) lrr.l)E.6., .. , be a strongly continuous backward evolutionary 
system on a Banach space X and let Vo = { Vo(r, t) }(r.t)E.6."·' be a regular step response for 
Vo on X. let V be the unique solution of the Stieltjes integral equation 

V(r,t)=Vo(r,t)+ f 1
V(r,da)V0 (a,t), p::::r:=::t:=::r (5.1) 

and let V be defined by 

V(r, t) = V0 (r, t) + [ V(r, dp)Vo(p, t), p :::: r:::: t :::: r. (5.2) 

Then U is a strongly continuous backward evolutionary system and V is a regular step 
response for U on X. Moreover, 

V(r, t) = Uo(r, t) + [ V0 (r, da)U(a, t), p:::: r:::: t:::: r. (5.3) 

Finally, V* is a cumulative output for V* and U* is given by the variation of constant 
formula 

U*(t, r) = u;u, r) + [ v;(t, s)V*(ds, r), p :s r:::: t:::: T. (5.4) 

The Stieltjes integral in (5.4) is in the weak* -sense, see Section 3.4, in particular formula 
(3.11) 
Proof. By definition, Vo is a regular element of the algebra A of Theorem 4.8. By that 
theorem Vo has a unique (regular) resolvent kernel V E A. Since Vo belongs to the left 
module of strongly continuous operator families, Theorem 2.5 implies that V is the unique 
solution of (5.3). That V* is a cumulative output follows from Proposition 2.2 and finally 
(5.4) follows by taking adjoints of equation (5.2). 
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In the situation of Theorem 5 .2 we say that the evolutionary system U and its step response 
V are obtained from the evolutionary system U0 via perturbation by the step response V0 . 

Similarly we say that the dual system U* and its cumulative output V* are obtained via 
perturbation of the dual system U0 by the cumulative output V0*. 

An immediate consequence of Theorem 5 .2 is that for any x E X and t E (p, r l, 
u (r) := U (r, t )x is the unique solution of the backward equation 

u(r) = U0 (r, t)x + j 1 
V0 (r, dCJ)u(CI). 

Without additional assumptions a similar interpretation of u*(t) := U*(t, r)x*, x* E X* 
as the solution of a forward equation is not valid. The next theorem tells us what kind of 
equation is satisfied by u*. 

Theorem 5.3. Under the assumptions of Theorem 5.2 let r E [p, r), x* E X* and define 
u* (t) := U* (t, r)x*, v* (t) := V* (t, r)x*. Then (u*, v*) is the unique solution <>f the system 

u*(t) = U0(t, r)x* + j 1 
U0(t, s)v*(ds), r s t < r, (5.5) 

v*(t) = Vr;U, r)x* + f 1 v*(ds) Vo(s, t), r s t < r. (5.6) 

v* : [r, r) --+ X* is locally of bounded variation and (norm) continuous and u* : [r, r) --+ 
X* is weakly* continuous. 

Proof. Since t --+ V*(t, r )x* is locally of bounded semi-variation considered as a function 
from [r, r) to X* = £(X, C), we can apply Theorem4.9 (c) to express the unique solution 
of (5.6) as 

v*(t) = V0*(t, r)x* + j 1 
d.1 [V0*(s, r)x*]V(s, t) = V0*(t, r)x* + j 1 

d,[x*V0 (r, s)]V(s, t) 

=x* (v0(r,t)+ [ V0(r,ds)V(s,t)) =x*V(r,t) = V*(t,r)x*. (5.7) 

In the third equality in (5.7) we have used Proposition 3.8. 
By Lemma 3.1 (b), v* is in fact locally of bounded variation. Since Vis continuous from 

t:,,p, r to £(X) equipped with the uniform operator topology and since the norm is preserved 
when taking adjoints, V* is continuous from t:,,;,p to £(X*) and hence v* is continuous to 
X* with its norm topology. 

Since (5.5) is now an explicit formula there is no uniqueness problem for u* and we only 
have to check the validity of the formula. To this end, notice that 

(x,u*(t)) = (U(r,t)x,x*) =(Uo(r,t)x+ j 1 
V(r,ds)U0 (s,t)x,x*) 

= (x, U0(t, r)x*) + j 1 
ds[x*V(r, s)]Uo(s, t)x (5.8) 

= (x, U0(t, r)x*) + j1 
v*(ds)Uo(s, t)x, 
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where the last Stieltjes integral has been taken with respect to the bilinear triple (X*, X, C). 
Since 

(x, ft U0(t, s)v*(ds)) = f 1 v*(ds)Uo(s, t)x 

we obtain 

u*(t) = U0(t, r)x* +ft U0(t, r)v*(ds), 

that is, (5.5) holds. The weak*-continuity of u* follows from (5.8) since U0 is weakly*
continuous. 

6. Continuous dependence of solutions. The perturbation of strongly continuous 
backward evolutionary systems by step responses is surprisingly robust with respect to 
small changes of both the evolutionary system and the step response. This is important in 
view of applications where data can only be collected with certain errors. 

We consider a sequence of strongly continuous backward evolutionary systems Ul : 
~p.rr -+ X which converges in the strong operator topology uniformly on ~p.cr. Then 
the limit U 0 is also a strongly continuous backward evolutionary system. We have for any 
x EX, 

U/(s, t)x-+ U 0 (s, t)x, j-+ oo uniformly on b..p,cr· (6.1) 

Further, there are regular step responses V 0 , V/ : l:i.p,rr -+ X associated with U 0 , Ui0 

respectively with the following properties: 

IJV;0 (r, t) - V 0 (r, t)ll -+ 0, j-+ 00, uniformly on b..p,rr• (6.2) 

Further, we assume that the semi-variation of V/ is bounded: 

supVv 0 (p;a) < oo. 
. 1 

(6.3) 
J 

Finally, we assume that their regularity is uniform in j: 

vv/(r; t)-+ 0 fort - r ">I 0, p ::=:: r < t ::=::a, uniformly in j EN. (6.4) 

Theorem 6.1. Consider the setting described above. Let Vi, V be the resolvent kernel 
associated with V/, V 0 respectively and Uj, U be the evolutionary systems obtained from 
Ul, U0 via perturbation by the regular step responses V/, V 0 • Then the relations (6.1)
(6.4) are preserved under perturbation, i.e., Uj, U satisfy (6.1) and Vj, V satisfy (6.2)-6.4). 

The surprising part of this theorem consists in the fact that we do not need the convergence 
of V/ to V 0 in semi-variation (cf. Gripenberg et al., 1990, Lemma 9.3.11). The drawback 
of not assuming convergence in semi-variation consists in not obtaining any estimates for 
the speed of convergence. This problem will be addressed when we tum to quasilinear 
problems in future work. 

The rest of this section is devoted to an outline of the proof of Theorem 6.1. We first 
notice that, by (6.3) and (6.4), we can choose a fixed A > 0 such that the A-norms defined 
in (4.8) satisfy 

IJV/lkrr :'.S 1/2 '<lj EN. 
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This implies that the convergence of the series in (4.11) with respect to the A.-norm is uniform 
in j. In particular II Vi lka :::: 1 which implies, by the equivalence to the original norm, that 
(6.3) holds for V;. Moreover, by (2.3) and Theorem 4.9 (a) 

Hence ( 6.4) is inherited by Vj from V/. 
In order to show (6.2) for Vj, V we recall the remark following formula ( 4.8). It implies 

that the series in (4.11) converges in the operator norm, uniformly on bp.a and uniformly 
in j. ( 6.2) now follows for Vj, V from ( 4.11) and from 

l!Vn.j(r, t) - V,,(r, t)ll--+ 0, j--+ oo, uniformly for 0 :'.Sr :'.St :'.Sa 

which, in tum, follows from the following lemma (with X = Y = Z = J:(X)) by induction. 

Lemma 6.2. Let B = (X, Y, Z) be a bilinear triple and W, W1 : bp,a --+ X be continuous 
Stieltjes kernels, F, Fj : bp,a -+ Y be continuous. Assume 

sup V~(O; a) < oo, 
• J 

J 

llWj(r, t) - W(r, t)ll + llF;(r, t) - F(r, t)ll-+ 0, j--+ oo, 

uniformly in (r, t) E 6.p,a· Then 

Wj * Fj -+ W * F, j --+ oo, uniformly on bp.a. 

Proof. If the statement does not hold, we find sequences r1 :'.S t1 and E > 0 such that 

(6.5) 

Wi * F1 and W * F are continuous by Proposition 4.4 and can continuously be extended to 
[p, a ]2 by setting it 0 outside of 6.p.a. After choosing a subsequence, we can assume that 
r1 -+ r, 11 -+ t. j -+ oo and (W * F)(rj, s) -+ (W * F)(r, s) uniformly ins E [p, a j. 
Apply Proposition 3.5 with Xk(s) = Wdrko s), yds) = F(s, td obtaining a contradiction 
to (6.5). 

After having shown (6.2) for v1, V we finally tum to (6.1) for Uj, U. Here we use 
u1 = UJ' + v1 * Uj' and U = U 0 + V * U 0 • We again employ Lemma 6.2, but this time 
with X = £(X), Y = Z = X and F1(r, t) = U/(r, t)x, F(r, t) = U"(r, t)x for fixed, but 
arbitrary x E X. 

7. Isotone operator kernels on abstract M-spaces and order preserving perturba
tions of evolutionary systems. Integration with respect to functions of bounded semi
variation is less satisfactory than with respect to functions of bounded variation. The reason 
why we go through this is an important class of operator kernels on a Banach space of 
continuous functions for which bounded semi-variation is automatically given, whereas 
bounded variation is not. 

Let Q be alocallycompactHausdorffspace andletX = C0(Q), be the closure of the space 
of continuous functions with compact support in the Banach space of bounded continuous 
functions, with all three spaces being endowed with the supremum norm. Somewhat loosely 
we call Co(f.l) the space of continuous functions on Q that vanish at infinity. 
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The dual space of X is as usually identified with the Banach space M(Q) of regular 
complex Borel measures on Q with the total variation as norm. X is also a Banach lattice 
with the natural ordering, 

x ::S: y {=:::} x(8) ::': y(8) VB E Q. 

Let X + denote the cone of non-negative elements in X. The lattice structure is inherited by 
X* with the cone X~ of non-negative functionals, 

x* Ex: {=:::} (x, x*) ~ 0 "Ix E X+. 

The isomorphism between X* and M(Q) is also order-preserving, i.e., non-negative func
tionals correspond to non-negative regular Borel measures. We note that, for x* correspond
ing to.; E M(Q), 

llx*ll = _;(Q), x* EX~. (7.1) 

More generally, let X be an abstract M-space, i.e., X is a Banach lattice whose norm satisfies 

llx v Yll = llxll v ilyll, X, y EX+. 

with x v y denoting the supremum of two elements in a Banach lattice. The dual space X* 
of an abstract M-space is an abstract L-space, i.e., 

llx* + y*ll = llx*ll + lly*ll, x*, y* Ex:. 

See (Schaefer, 1974, Chapter II). We will need this relation in the following form: 

llx* - y*ll = llx*ll - lly*ll, 0 ::S: y* ::': x*, x*, y* EX*. (7.2) 

We have the following surprising result: 

Proposition 7.1. Let X be an abstract M-space and Z be a Banach lattice. Let L : [r, t] -+ 
£(X, Z) be nondecreasing, i.e., 

(L(s2) - L(s1))(X+) s; Z+ whenever r S s1 S s2 ::S: t. 

Then L is of bounded semi-variation and 

vL(r; t) :S llL(t) - L(r)ll. 

Proof. Guided by Proposition 3.11 (with the bilinear triple (£(X, Z), X, Z) ) we consider 
v~nz• (r; t) for llz* II ::; 1. Let r =to < · · · tn+I = t be a partition of [r, t]. As the dual of a 
non-negative operator is also non-negative we have 

t 11 (i *(tj+t) - L*(tj) )z· 11 

j=O 

n n 

::: L II ( L *Cti+1) - L *(tj)) lz*I II = L II L *CtH1)lz*I - L *(ti)lz*I II· 
j=O j=O 
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As L • (tj + 1 ) Jz* I 2: L * (tj) I z* I and these two elements belong to the abstract L-space X*, we 
can use (7.2) and continue by 

~ t (JIL*Uj+1)Jz*llJ- lll*(tj)Jz*li1) = lll*(t)Jz*lll - llL*(r)Jz*ilJ 
j=O 

= ll(L*(t)- l*(r))Jz*lll :'.S Jll*(t)-l*(r)JI = lll(t)- l(r)JI, 

because, in the Banach lattice Z*, II z* II = 111 z* I JI. The assertion now follows from Propo
sition 3.11. 

Definition 7.2. A Volterra kernel V : 6.p,<1 -+ .C+(X) or V : flp.r -+ .C+(X) is called an 
isotone Volterra kernel if V (r, t) is monotone non-decreasing in t, i.e., 

V(r, s) :'.S V(r, t) whenever 0 :'.Sr :'.S s :'.St. 

The following is now an easy consequence of Theorem 7 .1. 

Theorem 7.3. Anv isotone Volterra kernel on an abstract M-space is a Volterra-Stieltjes 
operator kernel. Any continuous isotone Volterra kernel vanishing on the diagonal on an 
abstract M-space is regular. 

We conclude this section by showing that perturbation of backward evolutionary systems 
by step responses that are isotone Volterra kernels is positivity-preserving. 

The following lemma is a straightforward consequence of the definition of the Stieltjes 
integral and is left to the reader. 

Lemma 7.4. Let V : 6.p,<1 -+ .C+(X) be an isotone Volterra kernel and let U : 6.p,rr -+ 
.C+(X) be a strongly continuous operator family. 

a) Then V * U is a family of non-negative operators. 
b) lfV, U are continuous isotone Volterra kernels vanishing on the diagonal, so is V *U. 

Using the series expansion (4.11) and induction this leads to the following result. 

Theorem 7.5. Let X be an abstract M-space. If Vo is a continuous isotone (local) Volterra 
kernel on X vanishing on the diagonal, so is its resolvent kernel V. 

The variation-of-constants formula U = U0 + V * U0 provides a perturbation result for 
evolutionary systems in which positivity is preserved. We notice that a non-negative step 
response for a non-negative backward evolutionary system is an isotone kernel automatically. 

Corollary 7.6. Let X be an abstract M-space and Uo : flp,r -+ .C(X) be a strongly 
continuous backward evolutionary system of non-negative operators and let Vo : flp,r -+ 
.C(X) be a continuous step response for U0 consisting of non-negative operators as well. 
Then the perturbation of Uo by Vo leads to a strongly continuous evolutionary system U 
that also consists of non-negative operators. 

8. Applications to physiologically structured population models. Consider a popu
lation the individuals of which are characterized by an n-dimensional state vector (i-state ). 
The set n C Rn of feasible i-states is called the i-state space. Traditional modeling of de
terministic dynamics of such structured populations starts by prescribing the i-state specific 
rates of change of i-state ('growth'), of dying and of giving birth, and the distribution of 
i-states of neonates. Lifting the model from the individual level to the population level is a 
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matter of careful book-keeping and leads to a population balance equation, which generally 
has the form of a first order hyperbolic partial (functional) differential equation. We refer 
the reader to the book by Metz and Diekmann (1986) for a general account of modeling 
structured populations as well as a wealth of examples and also mention the paper by Tucker 
and Zimmerman (1988). 

Trying to analyze the PDE describing population balance, one faces all the difficulties 
mentioned in the introduction. In this section we shall formulate the population model in 
'cumulative' terms as opposed to rates and show that with this formulation structured pop
ulation dynamics fits nicely into the abstract framework developed in the previous sections. 

We distinguish between two processes on the individual level: (i) i-state change and 
survival, and (ii) reproduction. 

The change of i-state is modeled by prescribing a function Y (t, s, y), giving the i-state 
at time t of an individual who had i-state y at times provided the individual has not died 
in the mean time. The survival function :F(t, s, y) gives the probability that an individual 
who had i-state y at time s is still alive at time t. The interpretations require that Y should 
have the semigroup property 

Y(t, r, y) = Y(t, s, Y(s, r, y)), Y(s, s, y) = y (8.1) 

while :F should satisfy the consistency relation 

:F(t, r, y) = F(t, s, Y(s, r, y)):F(s, r, y), F(s, s, y) = l. (8.2) 

Reproduction is modeled by prescribing a reproduction kernel A defined as follows: 
A (t, s, y )(w) is the expected total number of direct offspring (i.e., children but not grand 
children, great grand children, etc.) with state-at-birth in the (measurable) subset w of Q, of 
an individual who had i-state y at times, in the time-interval [s, t]. A is thus a function from 
~;.p x Q to M(Q). Here M(Q) is the Banach space ofregular Borel measure on Q, which 
we identify with the dual space of C0(Q), see Section 7. Notice that in the definition of A 
we do not condition on survival of the individual till time t. Consequently, the appropriate 
consistency relation is 

A(t, r, y) = A(s, r, y) + A(t, s, Y(s, r, y)):F(s, r, y). (8.3) 

The model ingredients on the individual level are Y, :F and A. Next we use these to define 
forward and backward evolutionary systems and corresponding cumulative outputs and step 
responses. 

The unperturbed systems describe i-state change and survival, disregarding reproduction. 
Using the above description of i-state change and survival we can immediately write down 
the time evolution on the population level of a sterile population. By the state of the 
population (p-state) we understand the (unnormalized) distribution of i-states. Let <P E 

M (Q) be the p-state at time s. Then the generation development operator family U0 : 
6~.p-+ L'.(M(Q)) defined by 

cu;(t, s)</J)(w) = l Xw(Y(t, S, y)):F(t, s, y)rjJ(dy), (8.4) 

where x denotes the characteristic or indicator function, gives the p-state at time t of the 
zeroth generation (i.e., those present at times). The consistency relations (8.1) and (8.2) 
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guarantee that V0 is a forward evolutionary system on M(Q). It is the (formal) adjoint of 
the backward evolutionary system Vo: l:ip,r---+ .C(Co(Q)) defined by 

(Uo(s, t)f)(y) = f(Y(t, s, y))F(t, s, y), f E Co(Q). (8.5) 

Next we take reproduction into account. The (cumulative) direct offspring operator family 
V0* : !::i;,p ---+ .C(M(Q)) is defined by 

(V0*(t, s)<J>)(w) = l A(t, s, y)(w)<J>(dy). (8.6) 

If, at times, the p-state of the population is given by the measure <J>, then V0* (t, s )</>yields the 
expected cumulative number of direct offspring in the time-interval [s, t], as distributed with 
respect to the i-state at birth. The consistency relation (8.3) shows that V0* is a cumulative 
output for U0. V0* is the (formal) ad joint of Vo : l:ip, r ---+ .C( Co (Q)) defined by 

(Vo(s, t)f)(y) = l f(x)A(t, s, y)(dx). (8.7) 

Obviously V0 is a step response for Uo. 
We are interested in the time-evolution of the whole population and not only of the 

zeroth generation. So let the (cumulative) total offspring operator V*(t, s) be the analogue 
of V0*(t, s) when considering the total clan, i.e., including offspring of offspring, etc .. 
(V*(t, s)<J>)(w) is thus the expected number of all births with i-state at birth in the set 
w C Q, in the time-interval [s, t], given that the p-state at times was</>. Consistency 
requires that 

V*(t, s) = V0*(t, s) + 11 v;u. a)V*(da, s) (8.8) 

since any newborn is either the offspring of an individual already present at time s or of 
an individual born after time s. Once the equation (8.8) is solved the time-evolution of the 
population is given by the population development operator family U* : !::i;,p ---+ .C(M(Q)) 
defined by 

U*(t, s) = U0(t, s) + 11 
U0(t, a) V*(da, s). (8.9) 

The (pre) adjoint equations of (8.8) and (8.9) are of course 

V(s, t) = Vo(s, t) + 11 
V(s, da)V0 (a, t) (8.10) 

and 

U(s, t) = Uo(s, t) + 11 
V(s, da)U0 (a, t), (8.11) 

respectively. 
We are now exactly in the situation described in Theorem 5.2. To solve the population 

problem, that is, to find the population development operator, we have to impose conditions 
on the model ingredients Y, :F and A that guarantee that Vo is a strongly continuous backward 
evolutionary system and that Vo is a regular step response for V0 . Since Vo and Vo act on 
the abstract M-space Co(Q) we can use the results of Section 7. 
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Theorem 8.1. Let Y : .ti.;,p x Q ~ Q, :F : .ti.;,p x Q ~ [O, l) and A : .ti.;,p x Q ~ M(Q)+ 
satisfy the relations (8.l)-(8.3) and assume that they are continuous in (t, r) on .ti.;,p, 
unifonnly in y E Q and continuous in yon Qfor each (t, r) E .ti.;,p. Assume further that 
for every (t, s) E .ti.;,p and every Borel set w E Q the function A (t, s, ·) (w) belongs to 
Co(Q) and that for any (t, s) E .ti.;,p either 

(i) the function F(t, s,-) belongs to C0 (Q), or 
(ii) for any compact subset K of Q there exists another compact subset K of Q such 

that Y(t, s, y) E S1 \ K whenever y E Q \ f<. 
Then Uo defined by (8.5) is a strongly continuous backward evolutionary system and Vo 
defined by (8. 7) is a regular step response for Uo on C0(Q). The perturbation of Uo by Vo 
leads to a strongly continuous evolutionary system U. 

Proof. The continuity assumptions imply that Uo is strongly continuous and that Vo is 
continuous with respect to the uniform operator topology. The assumptions that A (t, s, ·) (w) 

belongs to Co(Q) and either (i) or (ii) guarantee that U0 (s, t) and Vo(s, t) both belong to 
.C(Co(Q)). As pointed out above, the relations (8.1)-(8.3) guarantee that Uo is a backward 
evolutionary system and that Vo is a step response for U0 • The positivity of :F and A imply 
that Uo and Vo consist of positive operators. The result now follows from Corollary 7.6. 

It is also easy to see that the solution U (s, t) depends continuously on the model ingre
dients Y, :F and A. This is the content of the following theorem. 

Theorem 8.2. Let Y, Yj, :F, Fj and A, Aj satisfy the hypotheses of Theorem 8.1 and let 
U0 , Uf, V0 , V/ be the corresponding evolutionary systems and step responses according 
to (8.5) and (8.7). If Yj ~ Y, Fj ~ :F and Aj ~ A uniformly on .ti.;,p x Q as j ~ oo, 
then the assumptions of Theorem 6.1 are satisfied. 

Proof. This is a consequence of Proposition 3.5 and the fact that the variation of the 
non-increasing functions Fj (., r, y), :F(-, r, y) are bounded by l. 

9. A size structured population model. In this section we illustrate the advantages 
of the cumulative formulation by an example of a size structured population model. The 
first step in modeling structured populations is usually a verbal description of assumptions 
about growth, survival and reproduction. The verbal formulation of the model assumptions 
can be translated in different ways into consistent mathematical formulation. At first this 
mathematical formulation is formal. It is, subsequently, the task of the analyst to make this 
formulation precise. Below we give an example, where this task turns out to be quite awk
ward if one uses a PDE formulation, whereas it is relatively easy if one uses the cumulative 
approach. 

In our model we assume that individuals are fully characterized by the number y E 

Q := [y8 , oo) called "size". All individuals are assumed to have the same size y8 at birth. 
If modeling is based on rates one obtains the following well-known problem for the size 
density n (t, y) of the population. 

a a 
at n(t, y) +By (g(t, y)n(t, y)) = -µ(t, y)n(t, y), YB < y < 00, s < t < t', 

g(t, Ys)n(t, Ys) = 100 
f3(t, y)n(t, y)dy, s < t < t', 

YB 

n(s, y) = </>(y), (9.1) 

where g (t, y) is the growth rate of an individual of size y at time t, µ (t, y) and f3 (t, y) are 
the size specific death and birth rates at time t and</> is the initial size distribution. 
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We assume that individuals do not reproduce until they reach a certain threshold size y A 

(A for adult). The birth rate f3 therefore has the form 

{ 
0, if y B ::5 Y < YA 

f3(t, y) = f3o(t, y), if YA< y. 
(9.2) 

Observe that we do not require f3 to be continuous at y = y A. In fact, in concrete models it 
is often advantageous to allow for discontinuous rates, because in this way models remain 
parameter sparse - continuous rates often require too many parameters. Notice also that 
we do not specify the value of f3 (t, y) at y = YA. The reason is that there is usually no 
biological indication from observations or inherent logic how the birth rate should be defined 
at y =YA· 

The model (9.1) has the property that even ifthe initial p-state is an absolutely continuous 
measure with an arbitrarily smooth density n(s, ·) = </>, the solution need not remain 
absolutely continuous. This typically happens when individuals are born under conditions 
when they cannot grow (g(t, y8 ) = 0 for an extended time) and so a cohort (mathematically 
represented by a Dirac 8-measure) at the birth size y8 is formed. The noninvariance of the 
space of absolutely continuous measures is no problem per se, solutions can still be defined 
in a weak* -sense. 

If cohorts always cross the critical size YA with positive speed (i.e., if g(t, YA) is always 
strictly positive), there are still no problems with the model (9.1 ), see Calsina and Saldana 
(preprint) who even deal with the case that g depends on total population size. But suppose 
a cohort has been fonned at YB as described above. If g(t, y) becomes positive this cohort 
starts moving to the right. No smoothening will occur and eventually the cohort reaches 
the threshold size YA· If g(t, y) becomes zero again exactly when the cohort reaches YA 
the problem is not well-posed. The solution depends on the specific choice of the value of 
f3(t, YA). In nonlinear problems where f3 does not depend explicitly on t but only through 
the environment, which in turn changes as a consequence of the activity of the population, 
the situation is even worse: then uniqueness may fail if cohorts stop at the critical size, see 
Thieme (1988). 

Whether or not well-posedness will hold is, as seen by the example above, determined 
by the global and combined effect of the rates. These problems are completely hidden in the 
PDE formulation (9.1) and only a complete mathematical analysis of that model will reveal 
whether or not the model is "good", that is, well-posed. In the cumulative formulation the 
basic ingredients Y, :F and A already reflect such global and combined effects. The test of 
well-posedness is therefore part of the model-building and not of the subsequent analysis 
of the model. Assume now that the model is originally, say on the basis of mechanistic 
arguments and physiological measurements, formulated in terms of rates as in (9.1). The 
model can then be recast in cumulative terms by constructing Y, :F and A from the given 
rates. This reformulation is not simply a matter of mathematical convenience. It introduces 
a phase between model-building and analysis and whether the model is good or not is tested 
in this phase. To illustrate this we next formulate the population model in cumulative terms. 

To be specific we make the following smoothness assumptions about the rates. 

(Hg) g : [p, r] x [yn, oo) -+ R is nonnegative, bounded and continuous, and satisfies 
the following Lipschitz condition: For each b > y 8 there exists an l > O such that 

lg(t, y) - g(t, .Y)I ::: Lly - )ii, P ::5 t ::5 T, YB ::5 y, y ::5 b. (9.3) 

(Hµ) µ : [p, r] x [yn, oo) -+ R is nonnegative, Borel measurable with respect to its first 
argument and continuous with respect to its second argument. 
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(Hfl) f3 : [p, r] x [y B, oo) -+ R is nonnegative, bounded and Borel measurable and 

lim f3(s, y) = 0, uniformly for p S s Sr. (9.4) 
y_.oo 

The function Y (t, s, y) describing i-state change is the unique solution to the initial value 
problem 

d 
d/(t, s, y) = g(t, Y(t, s, y)), s < t Sr, 

(9.5) 

Y(s, s, y) = y, 

and the survival function is given by 

F(t, S, v) = e-f: µ(O",Y(O",s,y))dO". (9.6) 

The reproduction kernel has the form 

A(t,s,y) = 11 
f3(a, Y(a,s,y))F(a,s,y)da8y8 , p St Sr, YB Sy. (9.7) 

Observe that the range of A(t, s, y) is one dimensional. We shall also make use of the 
corresponding conditional (on survival) reproduction kernel A. defined by 

A.(t,s,y):= 11
{3(a,Y(a,s,y))da. (9.8) 

In the sequel we shall always denote by Y, F, A and A the functions corresponding tog, µ, 
and f3 through formulae (9.5)-(9.8). When we consider families of functions g, µ, and f3 
indexed in a certain way, the corresponding functions Y, F, A and A will without explicit 
mentioning be indexed in the same way, that is, Yi corresponds to gj through (9.5) etc. 

We want to apply Theorem 8.1 to deduce the well-posedness of the population problem. 
It is obvious that the functions Y, F and A satisfy the consistency relations (8.1 )-(8.3). 
The hypotheses (Hg) and (Hµ) clearly imply that Y and F have the continuity properties 
required in Theorem 8.1. Since g is assumed to be non-negative one has Y (t, s, y) :::: y for 
all (t, s) E t'.1.~.p and therefore condition (ii) of Theorem 8.1 is automatically satisfied. By 
assumption (9.4) one has 

lim A(t, s, y)(w) = 0 
y-HXl 

for all (t, s) E t'.l.~.p and all Borel sets w c [y8 , oo) and therefore the crucial condition 
to check is the continuity of the reproduction kernel A. It is clear from formula (9.7) 
that continuity properties of A are consequences of combined properties of f3 and g. The 
following notion of g-continuity is appropriate to describe this combined effect. First we 
introduce the symbol 

BM = BM([p, r] x [y8 , oo)) 

to denote the space of real-valued bounded Borel measurable functions fJ on [p, r] x [y 8 , oo). 

Definition 9.1. The function f3 E B M is called g-continuous if it has the following two 
properties: 

(i) Fors E [a, r], y E [ya, oo): 

g(s, y) = 0 ===> Jim {J(s, 17) = f3(s, y). (9.9) 
~--Y 

(ii) For any 8 > 0, b > YB· there is a set Ns £; [ya, b] such that the Lebesgue measure 
of [yB, b] \ N8 is less than 8 and for y E Ns 

lim f3(s, TJ) = f3(s, y) uniformly for p S s Sr. (9.10) 
~ ..... y 

Notice that in the time independent case, where f3 does not depend ons, condition (ii) is 
automatically satisfied by Lusin's theorem. 
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Lemma 9.2. Let ,BE BM beg-continuous. Then A(·, r, y) is globally Lipschitz continuous 

for each r E [p, T), y E Lv8 , oo) and A(t, ·, ·) is continuous for each t E (p, a]. 

Proof. The Lipschitz continuity of A(t, r, y) in t follows from the boundedness of fJ. To 

show the continuity of A(t, r, y) in randy consider sequences r; __,. r. YJ --;. y, j -i> oo. 

Since, if t = r, 

A(t, r1, YJ) - A(t, r, y) = i" {J(s, Y(s, rj, YJ))ds -i> 0, j __,. oo 
r1 

we can assume that t > r, ri. 
From Fatou's lemma and the boundedness of ,B we obtain 

limsup IA(t. ri, YJ) - A(t, r, y)i sit limsup lfJ(s, Y(s, rJ. YJ)) - ,B(s, Y(s, r, y))ids. 
1........,.00 r }--'?CXJ 

As ,B is g-continuous we obtain 

limsup IA(t, r1, y1) - A(t, r, y)I 
)-'>00 

S i 1 
limsup i,B(s, Y(s, rj, Yj)) - ,B(s, Y(s, r, y))i X{s;ig(s.YC1,r.yJ)i>ll)(s)ds. 

r J-+OO 

As the integrand is bounded and the measure of the set {s E [r, t]; ig(s, Y(s, r, y))i > 8) 

converges to the measure of the set {s E [r, t]; lg(s, Y(s, r, y))i > 0) as o '..,. 0, we find for 

any E > 0 some o > 0 such that 

limsup IA(t, r1, YJ) -A(t, r, y)I 
j-+oo 

S i1 
limsup lfJ(s, Y(s, rj, YJ)) - f3(s, Y(s, r, y))iX{s;ig{s.Y(.1,r,y))i>li)(s)ds + E 

r J-+OO 

Sit li~~P r~~~ 1 lf3(p, Y(s, r, y)) + Y(p, 'J· YJ) - Y(p, r, y)) - fJ(p, Y(s, r, y))I 

1 
x 8ig(s, Y(s, r, y))lds +E. 

With the substitution i.; = Y(s, r, y) we obtain 

limsup IA(t, r1, YJ) - A(t, r, y)I 
j-+co 

s ~ { limsup sup l,B(p,i.;+Y(p,rJ.YJ)-Y(p,r,y))-,B(p,i.;)ldi.;+E. 
o JY{[r,tj,r,y) j->oo r:Sp::OJ 

Here Y([r, t], s, y) denotes the set {Y(p, s, y); r s p s t). Let b > y8 be such that 

Y (t, s, y) s b for r :S s s t. Then we use the property formulated in Definition 9.1 (ii) for 

this b. Using again that the integrand is bounded we find a set N, such that 

Jim sup IA(t, ri, YJ) - A(t, r, y) I 
j-+OO 

S ~ { limsup sup lf3(p, i.;+ Y(p, 'J· YJ) - Y(p, r, y))-,B(p, Olds+ 2E J Y([r,1],r,y)nN, j->oo r:Sp::::Ct 

S 2E 

because Y(p, ri, YJ) - Y(p, r, y) -i> 0 for j __,. oo uniformly in p < p s T and (9.10) 
holds. 
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Corollary 9.3. Let the conditions (Hg), (Hp ), (Hp) hold and assume that f3 is g-continuous. 
Then all the assumptions of Theorem 8.1 hold. 

Proof. The only thing that remains to be checked is that /\(t, s, y) defined by (9.7) is 
continuous in (t, s) on t.i.;,p uniformly in y E [_v8 . oo) and continuous in y on [y 8 , oo) for 
each (t, s) E t.i.;,p. But this follows readily from the preceding lemma, the continuity of F 
and the fact that F is less than one. 

Next we tum to the question of the influence on A of a change of the birth rate on a set of 
Lebesgue measure zero. As we have seen in the example above such a change may indeed 
have the undesirable effect of altering A if g happens to be zero for an extended period of 
time in the null-set where f3 is modified. We make the following definition. 

Definition 9.4. f3 1• fh E B M are called g-equivalent if the following two conditions hold: 
(i) For any s E [a, r], y E [y 8 , oo), 

g(s,y)=O ==? f31(s,y)=f32(s,y). (9.11) 

(ii) There exists a subset N of [y 8 , oo) of Lebesgue measure 0 such that 

/31(s, y) = f32(s, y) Vs E [p, r], y E Q \ N. (9 .12) 

Note that g-equivalence is indeed an equivalence relation. The name "g-equivalent" is 
motivated by the following result. 

Lemma 9.5. If {3 1 E BM and /32 E BM are g-equivalent, then A.1 = A.2. 

Proof. Let N be the set of y for which /3 1 and /32 are different. Let c be the bound of 
lf3 1(s, y) - /32(s, y)I for r :'.':: s :'.':: t. Then, by (9.11) and (9.12), 

IA.1(t, r, y) - A.2(t, r, y)I :'.':: c f' XN(Y(s, r, y))x{s;[g(s,Y(s,r,y))[>O}(s)ds 

= Emcf
1 

XN(Y(s,r,y))x{s;lg(s,Y(s,r,ylll>l/j}(s)ds 
.1_,,00 r 

.:::: .Jim c fr XN(Y(s, r, y))Jlg(s, Y(s, r, y))\ds 
1~00 r 

= .Jim c fr XN(Y(s, r, y))Jlg(s, Y(s, r, y))\ds = _Jim cj { XN(17)dry = 0. 
J-+OO r J_,.OO JY([r,t],s,y) 

Here Y([r, t], s, y) denotes the set {Y(p, s, y); r.:::: p.:::: t}. 

Corollary 9.6. If {3 1 E B M and /32 E B M are g-equivalent, then A 1 = /\2. 

Proof. Obvious by the preceding lemma and the fact that F is less than one. 

Let us now return to the population problem with birth rate given by (9.2). Corollary 9.3 
and Corollary 9.6 show us what extra assumptions we have to impose on f3o in order to get 
a well-posed problem that does not depend on the specific value of {J(s, YA). Indeed, if /30 
is continuous and satisfies 

lim f30 (s, y) = 0, uniformly for s E [p, r], 
Y-1- oo 

and if for any s E [p, r] 

g(s, YA)= 0 ==} fJo(s, YA)= 0, (9 .13) 
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then, whatever value between 0 and ,Bo(t, y A) we choose for ,B (t, y A), the reproduction kernel 
A will not depend on this choice. Moreover, for any of these choices, ,B is g-continuous. 
For a concrete example concerning waterftea dynamics and a biological interpretation of 
(9.13) in tem1s of individual energy budgeting, see Thieme (1988), Section 2 and Section 
5, see also Kooijman (1993). 

As mentioned above, the reason for modeling birth rates as functions with jumps is to 
keep the concrete expression for the birth rate parameter-sparse. It is therefore important to 
reflect upon the question when exactly it is justified to replace a steep (but still continuous) 
increase of the birth rate around a threshold value y A by a jump at y A. This is obviously a 
question of continuous dependence of A on g and ,B. 

Definition 9.7. Let f3 and ,Bj, j E N, be functions in B M. Then ,Bj is called g-convergent 
towards ,B for j --+ oo if and only if the following two properties hold: 

(i) If p S s ST and y, Yi E Q, Yj --+ y for j--+ 00, then 

g(s, y) = 0 ==> .Iim ,Bj(s, Yj) = /3(s, y). 
J-+00 

(ii) For any o > 0, b > YB there exists a set N& s;; [ys, b] such that the Lebesgue 
measure of [ys, b] \ N8 is less than o and, for y E N8, 

/3j(s, y + h)--+ ,B(s, y) for j --+ oo, h--+ 0, uniformly ins E [p, r]. 

Lemma 9.8. Assume that gj, g are bounded continuous real-valued functions on [p, T] x Q 
and that 

8i --+ g for j --+ oo uniformly on [p, r] x Q. 

Moreover let ,B, /3j. j E N, be functions in BM with a uniform bound, ,Bj g-convergent 
towards ,B for j --+ oo, and let /3 and /3j be g and gj continuous respectively. Then the 
following holds. 
(a) Yj --+ Y uniformly on Ll;,p x Q as j --+ oo 
(b).A.j--+}.. uniformly on Ll;,p x [yB,b] as j--+ ooforanyb > YB· 
(c) If, in addition, 

/3j(s, y), ,B(s, y)--+ Ofor y--+ oo uniformly in j EN, s E [p, r] 

then Aj --+ A. uniformly on il;,p x Q as j --+ oo. 

Proof. (a) This is a standard result in the theory of ordinary differential equations. 
(b) Assume that the assertion does not hold. Then we find sequences p :::; rj :::; tj :::; r 

and Yi E [O, b] and some E > 0 such that 

(9.14) 

We can assume that rj--+ r, tj--+ t, Yj --+ y for some 0:::; r:::; t :::; t :::; O", 0:::; y :::; b. 
As A. is continuous by Lemma 9.2 we have 

lim sup l'Aj(lj, rj, Yj) - A.(tj ,rj, Yj) I :::; lim sup IJ..j(lj ,rj, yj) - 'A(t, r, y) 1. 
j-+OO j-+OO 

From Fatou's lemma and the boundedness of f3 we obtain 

li~sup l'Aj(tj. rj, yj)-A.(tj. rj, Yj)I S 1' Jim sup l/3j(S, Yj(s, rj, y;))-,B(s, Y(s, r, y))lds. 
J-+DO r j-+DO 



PERTURBING EVOLUTIONAR\" SYSTElvIS 1241 

As f31 is g-convergent to {3, we obtain from Definition 9.7 (i) and the fact that Y1(s. r;, Y.i) 
-+ Y (s, r, y) that 

limsup IA.1(tj, r1, YJ) -A.(t1, lj, YJ)\ 

:S f. 1 
limsup lf31(s, Y1(s, r;, Y;)) - f3(s, Y(s, r, y))I X!s;lg(s,Y(s.r.y))l>O}(s)ds. 

r J-+OO 

As the integrand is bounded and the measure of the set {s E [r, t]; \g(s, Y(s, r, y))i > o} 

converges to the measure of the set {s E [r, t]; \g(s, Y(s, r, y))i > O} as 8 "" 0, we find 

some 8 > 0 such that 

limsup \A.1(tJ. rJ. YJ) -A.(ti, r;. )';)I 
j __. 00 

:S f. 1 
lim sup lf31(s, Yj(s, rj. YJ)) - f3(s, Y(s, r, y))\ X{s;lg(s.Y(s.r.y)>l>Sl(s)ds + E/4 

r J-~ oc 

fr . I 
:'.S limsup \f31(s, Y1(s, r1, YJ)) - fJ(s, Y(s, r, y))\-ig(s, Y(s. r, y))lds + E/4 

r }-+OC 0 

:Sf 1 li~~p .. ~~~JB1 (p, Y(s, r, y) + Y1(p, r1, YJ) - Y(p, r, y)) - f3 (p, Y(s, r, y)) I 
1 

x ;slg(s, Y(s, r, y))\ds + E/4. 

With the substitution ( = Y(s, r, y) we obtain 

limsup \A.j(fJ, r1, YJ) -A(t1, rJ, YJ)i 

Let b > 0 be such that Y (t, s, y) :::; b for r :=: s :=: t. Then we use the property formulated 

in Definition 9.7 (ii) for this b. Using once more that the integrand is bounded we find a set 

N, such that the property in Definition 9. 7 (ii) holds and 

limsup IA.;(tJ, rJ, YJ) - A.(tj, ri, Y1ll 

As YJ (p, rJ, YJ) - Y (p, r, y) -+ 0 for j --+ oo uniformly in p E [r, t] we have by the 

property in Definition 9.7 (ii) that, for ( E N/'J, 

lf3J(P, s + Y1(p, rJ, YJ) - Y(p, r, y)) - f3(p, s )j--+ 0 

for j --+ oo uniformly in p E [r, t]. Hence 

limsup \A.1(t1, rJ, YJ) - A.(tJ, rJ, Y1)\ :'.S E/2 
}->DO 

in contradiction to (9.14 ). This completes the proof of (b) 
(c) follows because AJ(t, r, y), )..(t, r, y) --+ 0 for y --+ oo uniformly in p :=: r :=: t :=: 

r, j EN. 
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Corollary 9.9. Let g, gj, fJ, {Jj satisfy all the hypotheses of Lemma 9.8 and let Fi ~ F 
un~formly on D.;,p x Q as j ~ oo. Then the assumptions of Theorem 6. l are satisfied. 

Proof. This follows immediately from Lemma 9.8 and Theorem 8.2. 
Let us finally apply this result to the approximation of steep continuous birth rates by a 

birth rate with a jump. 
Let {Jj (t, y) be a sequence a continuous bounded functions such that 

f3j(s, y) ~ 0, y ~ oo uniformly in j EN, s E [p, r] 

and 

fJj(s, y) ~ 0, j ~ oo, y E [y 8 , YA), uniformly in s E [p, r], 

fJj(s, y) ~ fJo(s, y), j ~ oo, y >YA· uniformly ins E [p, r]. 

It is easy to check that fJj is g-convergent towards f3 in the sense of Definition 9. 7. Applying 
Corollary 9.9 with gi = g, :F'j = F we see that our perturbation procedure is robust with 
respect to replacing a steep (continuous) increase of the birth rate in a neighborhood of a 
threshold value YA by a jump at this threshold value provided that the steep increase only 
occurs if g(t, YA) is sufficiently different from 0. 
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Appendix. In this appendix we give an example of a continuous step response for a 
strongly continuous semigroup which is not regular. Hence our regularity assumption is not 
redundant except in the situation of Section 7. 

Consider the Banach space B M ([0, n] x [0, I]) of real-valued bounded Borel measurable 
functions with the supremum norm and let X be the closed subspace of those functions x 
such that x (a, e) is continuous in a uniformly in e, x (n, e) = 0. Then 

(T(s)x)(a, e) = x(s +a, e) 

defines a strongly continuous semigroup on X. Let 

{ e sin ( 0 [ 1 ]) 
Xo(a, e) = 0 Ii Ii 

if O:::asen, 

if a > en. 

Here [r] denotes the largest natural number n with n :::=: r. This has the consequence that 
Xo(en, e) = 0. Hence x 0 is a Borel measurable function on [0, oo) x [0, I], uniformly 
continuous in a (uniformly in e), and has support in [O, n l x [O, l ]. Moreover Xo (a' 8) is 
continuously partially differentiable in a E (0, en). We define 

(V (s)x)(a, e) = x(O, 0) ( x 0 (s +a, B) - x 0 (a, 8)), 

Notice that V (s) is of the form ( T (s) - !) C and hence a step response for T. One easily 
calculates that 

1min(r,8rr) lmin(~.rrllf, I 
Vv(O; r) = sup lilsx0 (s, e)I ds = sup {} !cos (s)i ds. 

o:s11:s1 o o:se:s1 o 
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Hence, on the one hand, 

vv(O; r) S 7T, Yr::=:: 0, 

but on the other hand, choosing () = l, j E N, 
J 

vv(O;r)::=::Iiminf~ fj"lcos(s)lds::=::2, Yr>O. 
1- 00 J lo 
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