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One of the most powerful methods for solving initial value problems for ordinary differential equations is an 
implicit Runge-Kutta method such as the Radau IIA methods. These methods are both highly accurate and highly 
stable. However, the iterative scheme needed for solving the implicit RK equations requires a lot of computational 
effort. The arrival of parallel computer systems has changed the situation in the sense that the effective 
computational effort can be reduced to a large extent. One option is the application of the iteration scheme 
concurrently at a number of step points on the t-axis. In this paper, we shall analyse the convergence of a special 
class of such step-parallel iteration methods. 
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1. Introduction 

We consider parallel methods for solving d-dimensional initial value problems (IVPs): 

y'(t) =f(y(t)), Y(to) =yo, (1.1) 

One of the most powerful methods for solving this IVP is an implicit Runge-Kutta (RK) 
method such as the Radau HA methods. These methods are L-stable and have order 
p = 2s - 1, s being the number of stages. However, the iterative scheme needed for solving the 
implicit RK equations requires a lot of computational effort. Because of this, implicit RK 
methods have never been popular on sequential computers. Parallel computer systems have 
changed the situation, and various attempts have been made to develop parallel iteration 
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schemes for solving the implicit RK equations. We mention the work of Jackson and N0rsett 
[6], Lie [7], Bellen et al. [1,2] and Chartier [4]. Also at CWI, parallel iteration schemes have 
been investigated. For stiff problems, we applied Newton-type iteration in which the sd-by-sd 
Jacobian matrix of the implicit equations was approximated by a block diagonal matrix with 
d-by-d blocks (cf. [10]). The sequential (or effective) costs per iteration of the resulting 
"simplified" Newton iteration method are reduced to solving s linear systems of dimension d 
in parallel. This iteration method was called the PDIRK iteration method (Parallel Diagonal­
implicit Iterated RK method). Following the ideas of Bellen and co-workers, a further level of 
parallelism was introduced in [11-13] by applying the PDIRK iteration scheme concurrently at 
a number of step points on the t-axis. In this paper, we shall analyse the convergence of these 
step-parallel PDIRK methods. 

2. The iteration scheme 

Our starting point is the same corrector formula as in [12]. Using the General Linear Method 
notation of Butcher, the corrector formula reads (cf. [3,5]) 

Yn = (E®l)Yn-i +hn(A ®I)F(Yn), n = 1, ... ,N. (2.la) 

Here, hn denotes the stepsize tn - tn_ 1, the s-by-s matrices A and E contain the method 
parameters, and F(Yn) contains the derivative values (f(Yn)), where Yn,i• i = l, 2, ... , s, denote 
the d-dimensional components of the stage vector Yn. In this paper we will assume that (2.la) 
possesses s implicit stages and that the last stage corresponds to the step point tn (e.g. Radau 
HA-type methods). The s components Yn i represent numerical approximations at the interme­
diate points t n _ 1 + c ih n• i = 1, ... , s, where c = (c) = Ae, e being the vector with unit entries. 
Furthermore, the matrix I is the d-by-d identity matrix, ® denotes the Kronecker product, and 
we define Y0 = e 18! y0 . The dimensions of I and e may change, but will always be clear from the 
context. 

Confining our considerations to RK methods, the matrix E in (2.la) is of the form 

E •~ ( ! : )) (2.lb) 

However, most of our analysis applies to the case of a General Linear Method where E is more 
general. 

We approximate the solution Yn of (2.1) by successive iterates r;n satisfying the iteration 
scheme 

yn< 1l to be defined by the predictor formula, 

yyi -hn(B 18! I)F(YYl) = (E 18! /)fn(~~j'-1) + hn((A -B) ® I)F(Yy- 1>), 
j = 2, ... , m, (2.2) 

yw = y<m) 1· > m 
n n ' ' 

where n = 1, 2, ... , N, B is an s-by-s matrix, YJn = e ® y0 for all j, and j • is an integer greater 
than or equal to 1. It will be assumed that the sequential costs of applying the predictor 
formula and the correction formula are comparable. 
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Irrespective the choice of the matrix B, the iteration scheme (2.2) possesses parallelism 
across the steps. For instance, if j • is constant, then (2.2) shows that for a given j ~ 1, the 
iterates {Yn(j)' yn<~ +{" l, Y;~~2n,. . ., Y1U+nJ • -r >} can be computed concurrently. The sequential 
(or effective) costs consists of Nseq := m + (N - l)j • applications of the correction formula (if 
m depends on the step number n, then m is understood to be the number of iterations at the 
endpoint). Notice that for j • = m, the iteration method (2.2) reduces to the conventional 
iteration strategy without step parallelism. 

The matrix B defines the iteration method within a single step and therefore plays a crucial 
role in the degree of parallelism within the steps. There are several options for choosing the 
matrix B. For example, the case B = 0 (fixed point iteration) was studied in [11] and the 
resulting method was called the PIRKAS method (Parallel Iterated RK Across the Steps). In 
addition to parallelism across the steps, PIRKAS methods also have parallelism across the 
components of the iterates, because all components of F(fnU- 1>) can also be evaluated in 
parallel. Methods where B is a diagonal matrix D with positive diagonal entries minimizing the 
spectral radius of the matrix I - D-1A (such matrices can be found in [10]) were applied in [12] 
and were called PDIRKAS methods (Parallel Diagonal-implicitly Iterated RK Across the 
Steps). These methods are implicit because we have to solve nonlinear relations in each 
iteration. But the diagonal structure of B enables us to solve the components of ynu> in 
parallel. Hence, we again have both parallelism across the steps and across the components of 
the iterates. 

In an actual implementation, the number of iterations m performed at t n and the parameter 
j • are defined dynamically. The value of m is determined by the condition that for j = m the 
iterates ynw satisfy the corrector equation (2.1) within a given tolerance. The value of j* turn: 
out to be decisive for the overall performance of the iteration process. It should be sufficient!~ 
large in order to have satisfactory convergence at tn. Hence, both m and j • may depend on tn. 
In a theoretical analysis, however, it seems not feasible to allow the parameters m and j • to be 
arbitrary functions of n, so that in deriving convergence results, m and j* are assumed to be 
constant. In our first investigations of step-parallel iterations schemes in [11,12], we hoped that 
sufficient robustness could already be obtained for j • = 1. We therefore analysed convergence 
only for j • = 1. However, our numerical experiments have shown that j • is at best 2 or 3. In 
this paper, we extend our earlier analysis to the case where j • is allowed to be greater than 1. 

3. Stability and convergence 

Assuming that the corrector equation (2.1) is unconditionally stable and that the corrector 
equation is solved within a given tolerance, the method (2.2) will be stable whenever it is 
convergent. We shall discuss convergence for the familiar basic test equation y'(t) = ,.\y(t), 
where A is assumed to run through the spectrum of a/ ;ay. Furthermore, we assume h, m and 
j * independent of n. When applied to the test equation, the iteration scheme assumes the form 

yn<t) to be defined by the predictor formula, 

\

KY.U+i'-1) + zyU-1) 
( ') n - I n ' Y'= n y<m) 

n ' 

j=2, ... ,m, 
j>m, 

(3.1) 
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where 

K==(I-zBr 1E, Z==z(I-zBr\A-B), z==A.h. 
In [11,12] we discussed convergence of (3.1) for the case j* = 1. In this paper, we shall allow 

j • to be greater than 1. As already observed in [11], the convergence analysis of (2.2) cannot be 
restricted to a local analysis of the iteration errors at a fixed point tn, but should be a global 
analysis where iteration errors at all preceding step points are involved. We shall distinguish 
two situations: (i) the predictor is based on iterates generated by the iteration scheme (3.1), and 
(ii) the iterates Y; 1> are generated independently, that is, the predictor is completely indepen­
dent of the iteration scheme. In the first situation, it is required that the predictor formula is 
explicitly given (to be referred to as the given-predictor case). In the second case, the predictor 
formula itself is not used in deriving the convergence conditions and may therefore have any 
form (the independent-predictor case). However, in the case of large integration intervals where 
n becomes large, the predictor formula should be sufficiently stable in order to generate useful 
first iterates. In fact, for large n, the region of convergence of (3.1) will be limited by the 
stability region of the predictor. In the given-predictor case, we confine our considerations to 
predictor formulas of the form 

Y;1> =P(Yn(~·n. (3.2) 

For the test equation, the predictor formula (3.2) takes the form yp> = pyn<~·{, where P = P( z) 
is an s-by-s matrix, to be called the predictor matrix. Thus, the step-parallel iteration method 
can be characterized by the matrices K, Z and P (if the predictor formula is explicitly 
specified). 

In order to analyse convergence, we derive a relation between the vectors of iterates at t n 

and t n _ 1. Repeated application of the recursion (3.1) yields 

U>-( ji! zk-1KY;~~i'-k>+zi-lyn(I>, j=2,. .. ,m, 
yn - k= I 

r,,<m>, j>m. 
(3.3) 

Let e = 0 and (} = 1 respectively refer to the independent-predictor and given-predictor cases 
introduced above. Then the recursion (3.3) can be written in the compact form 

yu·i 
n 

y<r +I) 
n 

V = SV + (1 - O)CY(I) V := y<r +2> 
n n-1 n ' n n (3.4) 

y<m+j'-1) 
n 

ezr-1p zr-2K K 0 0 zr-1 
· ezrp zi'-IK zr-2K K 0 0 zr 

S== ezm-lp zm-2K zm-3K C== zm-1 K 

ezm-1p zm-2K zm-3K K zm-1 
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Sand Care an m-by-m and an m-by-1 block matrix, respectively. In both matrices, the last j* 
block rows are identical. If j • = 1, then the first block row of S reduces to (OP 0 ... 0), so that 
S becomes a lower triangular block matrix. 

If 8 = 0, then the predictor matrix P is ignored in (3.4). Instead, the predictor values yy>, 
n = 1, 2, ... , are involved. These values may be any sequence of initial iterates. If e = 1, then 
the special form of the predictor formula Y,~'> = pynC(/ is taken into account. 

3.1. The iteration error 

In the conventional iteration process where j * = m, we can derive a relation between the 
iteration error s~n == y,;n - Yn and e~j- ll. However, if j * < m, then this is no longer possible. In 
[11,12] it was shown that if, and only if, j * = 1, then there exists a relation between the set of 
iteration errors sUl == (sFl, sVl, ... , s~jl) and c,U-1). For j • > 1, (3.4) allows us to express c,~> in 
terms of the predictor errors introduced at the points t 1, t 2, ••• , t n· Thus, given the predictor 
errors, we can get insight into the effect of the parameters j *, m and n on the iteration errors. 

Let us introduce the ms-dimensional vector Un== e ® Yn, where Yn denotes the solution of 
(2.1). Then, we may define the stage vector iteration errors 

sn == V,, - Un, s<jl := y;n - yn' j = j * ' ... ' m + j * - 1, 

and the predictor error vector L1n 

on 
On-I 

L1n := 

o, 

(3.5) 

(3.6) 

Theorem 3.1. Let the block rows of the matrix SkC be denoted by [Skc]<n, j = j •, j * + 1, ... , 
m + j * - 1. Then, for any vector of predictor errors ..1.n, the iteration errors e~n, j = j *, ... , m, are 
given by 

(3.7) 

If 8 = 1, then the error equation can be written as 
n-1 

s~j) = iF)Yo, iij) := E [skcrj)( p - (I -zA)-l E)( (I -zAr I E(-k-l. (3.7') 
k=O 

Proof. On substitution of YYl = Yn + s~n into (3.4), we obtain 

cul= [S]cns + [s]<jlu + (1- e)zj-ly(lJ -Y '-"n n-1 n-1 n n 

= [S](j).sn-l + [ezj-lp + jr.l zk-tK]Yn-i + (1 - &)zj- 1Y;1l - Yn 
k=l 

= [ Sj Ul sn _ 1 + ezj- lpyn- t + (I - zj- l )(I - Z)-1 KYn- i + (1 - &)zj-l ynCll - Yn 

= [ s J (j) en - 1 + z j - 1 [ (} pyn - 1 + ( 1 - e) YY) - yn J = [ s] (j) en - I + z j - I 0 n ' 
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where j = j *, ... , m + j * - 1. Hence, en= Sen_ 1 + C5n, and repeated application yields 

n-1 

en= :E skcan-k• 
k=O 

n-1 
u>- "[skc]<j>;;:, ·-·· ·• 1 en - £,.., un-k• 1-1 , ... ,m+1 - · 

k=O 

This leads to the representation (3.7). If (} = 1, then it follows from (3.6) and (2.la) that 

1 1 n-1 
on:=PYn_ 1 -Yn=(P-(I-zA)- E)((I-zAr E) Y0 , 

and substitution into (3.8) yields the result (3.7'). D 

(3.8) 

(3.6') 

The s-by-s matrix [SkC]U> in (3.7) determines the amplification of the predictor error on-k 
at the point tn-k• and the accumulated amplification is determined by the matrix !~j)· This 
amplification matrix, and therefore also e<j\ depends not only on j, n and on the variable z, 
but also on the parameters j * and m. In general, e<j> will decrease in magnitude as j * and m 
increase. However, if for given j, n and j *,the value of m becomes greater than j + (n - l)(j * 
- 1), then e<j> does not depend on m anymore. The result (3.7') takes the predictor formula 
into account, but again the matrix [SkC](j) plays a crucial role in the amplification matrix iF>. 

Let us assume that the predictor error vector An is bounded. Then, with respect to a norm 
II · II and for given values of j * and n, the region of convergence associated with (3.7) is defined 
by the set 

C9(n, j*) := {z: II !~n II --+ 0 as m = j--+ oo}. (3.9) 

Similarly, the region of convergence associated with (3.7') is defined by 

C 1 ( n, j* ) := { z : 11 .t~n II --+ 0 as m = j --+ oo} . (3.9') 

Furthermore, adapting a definition given in [9, p. 88], we define for (3.7) and (3.7') the averaged 
speed (or rate) of convergence by 

. * . ·= - 2-_ (j) R 9(n,1 ,1,m,z)· .logll!9 II, 
1 

(3.10) 

_,,2. A convergence theorem for (} = 0 

In order to determine the region of convergence and to get insight into the speed of 
convergence, we first derive an upper bound for ll[SkC]U> II. We confine our considerations to 
the case of arbitrary predictor formulas (i.e. () = 0). In deriving the upper bound for II [SkC](j) II, 
an important tool is provided by the s-pseudo-spectra of matrices which are defined as follows 
(see e.g. Reichel and Trefethen [8]): 

Definition 3.2. Let II· 11 2 denote the 2-norm and let e > 0. Then, (i) µ, is an e-pseudo-eigenvalue 
of the matrix M if II(µ,/ -M)- 1 II 2 > e-1, (ii) A8(M) is the s-pseudo-spectrum of M if it 
contains all 1:-pseudo-eigenvalues of M, and (iii) p,(M) is thee-pseudo-spectral radius of M if it 
equals the maximal modulus of the points in A 8 (M). 
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Obviously, for any positive 8, all eigenvalues of M are included in the s-pseudo-spectrum of 
M. Furthermore, for a given matrix Mand parameters, and sufficiently large values of I J.L I, we 
have that ll(J.Ll-M)- 1 112= IJ.L- 1 1(1+0(J.L- 1))<8- 1. Hence, the 8-pseudo-spectrum of M 
constitutes a finite set in the complex plane. 

Theorem 3.3. Let A/Z) and Pe(Z) respectively denote the 8-pseudo-spectrum and the 8-pseudo­
spectral radius of Z, let L0 (Z) denote the length of the boundary aA,/Z) of A8(Z), and define 

8 -1 .• 
I'e(Z):= ·+i max ll(U-Z) Z 1 \\2, 

(Pe(Z)) 1 aAe<Z) 

1 ., 
y,,(Z) == - II K II 2(Pe(Z))1 . 

8 

If j ~ j * + 1, m ~ oo and p(Z) < 1, then for any E > 0 we have that 

11[skcr1)112 < L;(z) r£(z)(P"(Z))1( Y.,(Z))k, 
1T8 

ll!Ulll ~L.,(Z)I'(Z)( (Z));l-(y,.,(Z)( 
o 2~ 21T8 e Pe 1-y,.(Z) 

(3.11) 

(3.12) 

Proof. The result (3.11) can be proved by means of convolution properties of the Fourier 
transform. Because the proof is rather lengthy, it is given in Appendix A to this paper. The 
estimate (3.12) directly follows from (3.11) by writing 

n-1 L (Z) n-1 

II !6n 112 < k~o II [skcf1> 112 < ;1Ts rE(Z)(Pe(Z))1 k~o ( Ye(Z))k. o 

The 8-pseudo-spectral radius pe(Z) is continuous in s and monotonically decreasing to p(Z) 

as £ ~ 0. Since Le(Z)/21T8 is bounded for all 8 and because there is always an E with 
p,/Z) < 1 (provided that p(Z) < 1), we conclude that, for fixed n, II ! 0(j) \\ 2 converges to 0 as j 

increases. Thus, as a first corollary of Theorem 3.3 we have: 

Corollary 3.4. If the conditions of Theorem 3.3 are satisfied, if()= 0 and n is finite, then for all 
j * the convergence region of the PDIRKAS method is given by Co(n, j *) == {z: p(Z( z)) < 1}. 

Furthermore, it follows from Theorem 3.3 that, given the values of j * and n, the speed of 
convergence is bounded below according to an inequality of the form 

ae(n, j*, z) 
R 0(n, j*, j, m, z) ~-log Pe(Z(z)) - . , 

J 
(3 .13) 

where ae(n, j*, z) does not depend on j. This estimate illustrates the crucial role played by the 
£-pseudo-spectral radius of the matrix Z(z). 
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Table l 
Values of p,(Z), I',(Z) and y,(Z) for the four-stage Radau IIA method at z = lOi 

j' E =LOO E =0.25 E = 0.1 f = 0.05 E = 0.001 

p,.(Z) 2.478 1.451 1.080 0.903 0.542 

I',(Z) 2 0.177 0.503 0.823 1.063 1.910 
I'.(Z) 3 0.053 0.268 0.558 0.807 1.899 
I'.(Z) 4 0.014 0.114 0.305 0.516 1.852 

y.(Z) 2 06.04 08.28 11.47 16.04 289.0 
y,( Z) 3 14.97 12.02 12.39 14.49 156.60 
y.(Z) 4 37.09 17.44 13.39 13.08 084.89 

In order to see the effect of the quantities pE(Z), I'/Z) and y.(Z) on the convergence, we 
have listed their values in Table 1, for the four-stage Radau IIA corrector with matrix B = D as 
defined in [10] with Z evaluated at the point z = lOi (this point is in the neighbourhood where 
experimentally the convergence speed is minimal). These figures together with the estimate 
(3.12) indicate that for larger values of j and n, the convergence behaviour is largely 
determined by the factor (p/Z))j( yE(z))n- 1• Hence, given the value of j*, roughly the same 
reduction factor is obtained if jn - i is constant. 

3.3. Stiff and nonstiff convergence for (} = 0 

In this section, we consider the convergence in the neighbourhood of the origin (nonstiff 
convergence) and at infinity (stiff convergence). For the nonstiff convergence, it is convenient 
to have an alternative representation for the inequality (3.12). As a second corollary of 
Theorem 3.3 we have: 

Corollary 3.5. Let the conditions of Theorem 3.3 be satisfied and define the matrix 

Z 0 == z- 1z =(I - zB)- 1(A -B). 

Then (3.12) can be represented in the form 

L(Z) .1-1 1<j'-l)n( (Z))n 
lltu>11 ~ • 0 lzlj-II'(Z )( (Z ))1 z .. % 0 

o z 2ire E o P, o 1- I z I; -1%(Zo) (3.12') 

Let j and j • be fr.xed with j • > 1. Then, the nonstiff convergence factor is uniformly bounded for 
all n. 

Proof. From the definition of the e-pseudo-spectral radius it is easily seen that for any matrix 
Mand any constant a, the relation p/aM) =I a I pr,(M), where 5=Ia1- 1e. Since Z =zZ0 , 

we have 
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where 8 := I z 1- 1e. Hence, 

II [ skc](j) 112 ~ L;~Z;) I z I i- 1I'8(Z0 )(µ 5 ( Z 0 ) )i (I z I r- 1y8(Z0 ) (. 

Because this inequality holds for any positive 8, we may replace 8 with e to obtain (3.12'). 
For j * > 1, (3.12') implies 

. L.,(Z0 ) . . 

ll!b')ll2~ 2 lzl'- 1I'.(Z0 )(p"(Z0 ))'(l+O(zi'- 1)) as z~o. 
"ITE 

Thus, this bound on the nonstiff convergence factor does not anymore depend on n. D 

We remark that for j * = 1, -y.,(Z0 ) = e- 1 II K II 2p8 (Z0). Hence, unless we can find an e such 
that -Ye(Z0 ) < 1, the bound on 11ig>11 2 will increase exponentially with n. Since II K 11 2 ~ 1 and 
Z 0 ~A - B as z ~ 0, we obtain the condition p.,(A - B) < e which is usually not fulfilled. 

For the stiff convergence we have: 

Corollary 3.6. Let the conditions of Theorem 3.3 be satisfied, and let j and j • be fixed. Then, the 
stiff convergence factor is uniformly bounded for all n. 

Proof. It follows from Theorem 3.3 and the observation II K(z) 11 2 = O(z- 1) as z ~ oo, that for 
all j * 

. L 8 (Z) i 
ll!b')ll2~ 2 I'e(Z(oo))(Pe(Z(oo))) +O(z- 1) asz~oo, 

"ITE 

so that the stiff convergence factor is uniformly bounded in n. D 

3.4. Minimal speed of convergence for (J = 0 

In order to see the effect of the value of n, j *, m and j on the true speed of convergence a., 
defined by (3.7) and (3.10), we have computed the minimal value of R 0(n, j*, j, m, z) in the 
left-hand z-plane. This value will be denoted by R0 (n, j •, j, m). Of course, R0 (n, j •, j, m) 
refers to a "worst-case" situation, and restricting z to special subregions (e.g. the negative axis) 
would lead to larger speeds of convergence. However, the qualitative behaviour would not be 
changed. 

In particular, we consider the PC pair consisting of an unconditionally stable predictor and 
the four-stage Radau IIA corrector with matrix B = D as in Table 1. Using the infinity norm, 
Table 2 lists R0 (n, j *, j, m) for a few values of n and j * with j = m = 32 (we recall that for 
j • = m, (2.2) reduces to the conventional iteration strategy without step parallelism). These 

Table 2 
Minimal convergence speeds for j = m = 32 and fJ = 0 

n j* = 1 j* =2 j* =3 j' =4 j* = 32 

2 0.144 0.153 0.163 0.172 0.222 
4 0.025 0.047 0.069 0.091 0.222 
8 -0.144 -0.113 -0.075 -0.031 0.222 
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Table 3 
Minimal convergence speeds for n = 8 and () = 0 

j=m j' = l j. = 2 j' =3 j' =4 J' = m 

8 - 0.605 -0.675 -0.600 - 0.463 0.050 

32 0.025 0.047 0.069 0.091 0.222 

64 0.017 0.041 0.066 0.091 0.250 

figures show the dramatic effect of n on the amplification factors. It is also clear that the 
n-effect is less as r is larger. 

Next, we computed R0(n, j*, j, m) as a function of m and j* for n fixed with j = m. Table 
3 lists results for n = 8. As expected, the performance improves as m increases. 

From a practical point of view, we have to take into account the sequential costs when 
discussing the performance of the iteration process. Recalling that the sequential costs of 
iteration across n steps are measured by the value of Nseq = (n - l)j • + m, we see that large 
values of m are less alarming than they would be in conventional iteration processes with 
j • = m, where the sequential costs after n steps are given by N.,eq =nm. As long as j • is less 
than the number of iterations required by conventional iteration, across-the-steps iteration will 
be more efficient. We illustrate this for the case where n = 8 and Nseq is constant for all j *. 
Table 4 lists values of R(~ ( n, j *, j, m) for Nseq = 96. After a rapid increase until j * = 9, the 
convergence speed starts to decrease because m becomes too small. We also listed the value of 
jR(;(n, j*, j, m) that may be considered as a measure of the efficiency of the iteration process 
after j iterations. Surprisingly, for j * :( 9, the efficiency hardly depends on j *. Apparently, the 
decrease of the number of iterations m per step is fully compensated by the increase of j *, 
until m becomes too small at j * = 10. 

3.5. Minimal speed of CO!ll'ergence for e = 1 

Finally, we study the effect of including the predictor formula into the convergence analysis 
(the given-predictor case with e = 1). Two special predictor formulas are considered, viz. the 
modified correction formula 

Y,~n -hn( B © I)F( yyi) = ( E © l)Yn<~·/ + hn(( A - B) © I)F( { E * © I)Yn<~·?), 

E*=UX- 1, W==(~c;), X==((c-e);- 1), i=l, ... ,s, 

Table 4 
Minimal convergence speeds and efficiency for j = m, n = 8. Nseq = 96 and (J = 0 

j= m = 96-7} • 
R1)(n. }', j, m) 
jRli(n, i'. j, m) 

}'=I }'=2 j*=3 j*=7 }'=8 j'=9 

~ ~ ~ ~ ~ n 
0.075 0.082 0.091 0.149 0.175 0.200 
6.7 6.7 6.8 7.0 7.0 6.6 

j' = 10 j' = 11 

26 19 
0.200 0.168 
5.2 3.2 

(3.14) 

j* = 12 

12 
0.125 
1.5 

Table 5 
Minimal 1 -Predictor -(3.14) 
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Table 5 
Minimal convergence speeds for j = m = 32 and n = 4 

Predictor Error formula j' = 1 j' = 2 j* = 3 j* =4 

(3.14) Rt(n, j*, j, m, z) 0.016 0.034 0.056 0.081 
(3.15) R i' (n, j ', J, m, z) 0.041 0.063 0.084 0.106 

and the backward Euler formula 

Y,~ 1 >-h(D* 0I)F(Yn°>) = (E0!)Ync~·?, D* == diag(c). 

j' = m 

0.212 

0.238 

407 

(3.15) 

For (3.14) and (3.15), the matrix P occurring in the error formula (3.7') is defined by 
P =(I - zB)- 1(£ + z(A -B)E *) and P = (/ - zD * )- 1£, respectively. Again using the infinity 
norm, Table 5 lists the minimal convergence speed R.; (n, j *, j, m) in the left-hand z-plane. 
This table shows that, in spite of its low order, the backward Euler predictor is more effective 
than the high-order modified correction predictor. This indicates that the stiff iteration error 
components play a crucial role in the iteration process. Note that both cases show roughly the 
same increase of the convergence speed as j * increases. 
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Appendix A. Proof of Theorem 3.3 

The proof of Theorem 3.3 in this paper was given by the first author. 
First, we show that in Theorem 3.3, m ~ oo can be replaced by m = oo, without sacrificing any 

generality. For m = oo the iteration process (3.2) is well defined. Furthermore, all the theory 
developed in the paper is still valid. Only the expression for the sequential costs should be 
reformulated. It is apparent from (3.2) that if m = oo and e = 0, ynUl depends only on 
r,;~· 1+ 1>, ... , Y,;(1· 1 +J>. Applying this repeatedly, we see that y~n depends only on 
y1u·+ 1>, ... ,Yt<n-I)(j'- 1>+j). Therefore r;n is independent of m, provided that m ~(n - l)(j* 
- 1) + j. Hence, [SkC]Ul with m = oo equals [SkC]Ul with m ~ (k - l)(j * - 1) + j. 

The proof consists of two parts. First, [SkC]U> will be written as a line integral along the unit 
circle (see Lemma A.I). Thereafter, we obtain an upper bound for this integral (see Lemma 
A.2). In the proofs of these lemmas we shall use matrix Fourier analysis and more specifically 
the convolution property and the inverse Fourier transform. 

Lemma A.l. If 8 = 0, m = oo and p(Z) < 1 then, for j ~ j* + 1, 

[skcrj) = - 1-. ~ [R(Z, t)K]k R(Z, t)(Ck-l>j'+j-i d( zr 
2'ITI l?l=l 

with R(Z, () = ({I-z)- 1. 



408 W.A. uan der Veen et al./ Applied Numerical Mathematics 18I1995) 397-411 

Proof. In the case () = 0 the iterates Yn° · + ll, Y~j· +zi, ... , do not depend on y_;(/, see Eq. (3.3). 
Therefore we redefine the block vectors Vn and C and block matrix S as follows: 

V = Y.n(j' +2) 
( y<; •+I) 

n n c~ ( 2:1~ 1 ). (A.l) 

zr-1K zr-2K K 0 

S= 
Zj'K zj'-IK ZK K 0 

zr+1K zrK Z 2K ZK K 0 

With these changes Vn = SV,, _ 1 + CY,; 1l still holds. It can easily be seen that also Eq. (3.7) is still 
valid. The new matrix S is a so-called Toeplitz matrix. This is a matrix that represents a 
convolution. For showing that S is a convolution operator and for doing Fourier analysis we 
shall use as general argument for the operator S any V of the form 

(
vu·+ l)l 

V= vu:+2) , 

where vUJ, j = j * + 1, j * + 2, ... , are matrices of orders. For simplifying the Fourier analysis, 
we introduce the notation: V(j) = v(r + 1 +jl, j = 0, 1, .... In particular, this notation will be 
tpplied to C, SC, S 2C, .... Furthermore, these block vectors are considered as being se-
1uences of s-by-s matrices, that is with the block vector V corresponds the sequence {V(j)}]=o· 

The new matrix S is of the form 

Ao A1 Az 

A -1 Ao A1 Az 

A -- 2 A -I Ao A1 Az 

In our case Aj = zj'-I-jK if j ~j* -1 and Aj = Os*·' if j > j* -1. Though S is a double 
infinite matrix, Sk V is well defined for any sequence V of s-by-s matrices. This is because for 
any k and r, the rth row of Sk contains a finite number of nonzero entries. In terms of the 
sequence {A).f= _00 the product SV can be written as 

00 00 

[SV](l)= [A_ 1+FU)= [A_u-nV(j), l=O, 1, .... (A.2) 
j=O j=O 

Eq. (A.2) shows that S is a convolution operator: SV = {A _1} * V. To obtain a formula for 
[SkC]Ul we shall employ Fourier transforms along with their convolution property. The Fourier 
transform of an infinite sequence of matrices {Ai}~= _00 is defined by 

00 

ST(A)(w)= '"' A e-iwm 
f._, m ' 

m= -co 

a: 

l 
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and the convolution property gives: 

sr(SV) =ST({A_1}*V) =7({A_i})sr(V). 

Let H( w) be defined by 
00 

H(w) =ST({A_i})(w) = L 
p= -oo 

00 j*-1 

A e-iwp 
-p 

L Apeiwp = L zi'-1-pKei"'P 
p= -co p= -oo 

00 

= [, ZPKe-iwpeiw(j"-1)= (J-e-i"'Z)-lKeiw(j"-1). 
p=O 

409 

(A.3) 

The series L.R=oZPe-iwp is convergent because p(e-iwz) =p(Z) < 1. Using the convolution 
property (A.3J repeatedly, we can calculate S'f(SkC) as follows 

ST(SkC)(w)=ST({A_i}* ··· *{A_1}*C) 

=Hk(w)S'f(C)(w). 

For the block vector C (see (A.1)), we have that C(j) = zr +i, j = 0, 1 .... The Fourier 
transform of C is 

00 

ST(C) = [, ZPe-iwpzr =Zi'(J-e-i"'Zf 1• 

p=O 

Finally the Fourier transform of SkC is 

ST(SkC) = [(I - e-iwzf 1 K] \1 - e-iwz)-1 zr eiwkU' -1>. 

Since we have been able to obtain an explicit expression for the Fourier transform of SkC, the 
inverse Fourier transform can be used to calculate [SkC]U> as follows: 

[skct> = [skc](j-j* -1) = - 1 J'Tr sr(SkC)(w)eiwu-r- 1> dw 
2'TT --rr 

= _l_j-rr [(!- e-iwzf1 K]\1- e-iwzf1eiw[kU"-1>+i-r-11 dw zr. (A.4) 
2'1T --rr 

In this formula and in all formulas below, it is assumed that j;;?; j • + 1. Substituting ( = ei"', 
(A.4) can be written as 

[skcri>= _1_.,h [(I-c1zf1Kr(I-C1zf1(<k-1>r+i-k-2 d( zi' 
2'1TI ~(I= 1 

= _1 __ ,h [cc1-z)-1x]\o-z)-1(<k-1)j"+j-1 d( zr, 
2'1TI ~'l=l 

(A.5) 

which proves Lemma A. l. D 
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Remark. The integral in (A.5) can be calculated by using the calculus of residues. This gives: 

i1+ ... +ik+l=(k-l)j'+j-k-1 

where the indices i 1' ••• , i k + 1 assume all positive values as long as 

i1 + ... +ik+l = (k - l)j* + j - k - 1 

is satisfied. It is difficult to find a sharp upper bound based on (A.6). 

(A.6) 

A suitable bound based on the previous lemma can be obtained by using the concept of the 
e-pseudo-spectrum of a matrix, which was defined in Section 3.2. We shall prove: 

Lemma A.2. Let AE(Z), p.(Z), I',(Z) and y,(Z) be defined as in Theorem 3.3. If 8 = 0, m = oo 

and p(Z) < 1, then for any j ~ j • + 1 and e > 0 

11[skcrj)112 ~ L2,(z) rE(Z)(pe(Z))j[ r.(z)t. 
'!Te 

Proof. The integrand of the integral in (A.5) is analytic outside A,,(Z) for any e > 0. Therefore 

[skcri>= _1 __ ,+. [((/-zr1K)\{l-Z)-1(<k-1>r+i-1 d( zr, 
2'1Tl ~.1,(Z) 

.vith E any positive real number. Now the integral can be bounded in the following way 

II [ 5kct) 112 ~ - 1 II K 11trf.. II((/ - zr I zr 112 II ({J - Z)- 1 Iii' I {I (k-l)j"+j-I Id{ I 
211" ~.1,(Z) 

L(Z) {l)k+I 
~ -i;--11 K ll2k -; I:(Z)[p,(Z)]kr +i. 

This proves Lemma A.2. O 

The assertion (3.11) in Theorem 3.3 is identical with the assertion of Lemma A.2. 
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