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Abstract 

In this paper the construction of diagonal manices, in some sense approximating the inverse of a given square matrix, 
is described. The matrices are constructed using the well-known computer algebra system Maple. The techniques we show 
are applicable to square manices in general. Results are given for use in Parallel diagonal-implicit Runge-Kutta (PDIRK) 
methods. For ans-stage Radau IIA corrector we conjectures! possibilities for the diagonal matrices. 
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1. Introduction 

In this paper the construction of diagonal matrices D, approximating the inverse of a given 
square matrix A, is described. The diagonal matrices are chosen such that the spectral radius 
p(I - n- 1 A) = 0. The diagonal matrices are constructed using the well-known computer algebra 
system Maple. In this paper we construct diagonal matrices for a special class of square matrices. 
However, the techniques we use are independent of the choice of the square matrices. 

2. The construction of diagonal matrices D using Maple 

We are solving p(I -n-1A) = O. This is equivalent to det(D-1A - ll) = 0 having s unit zeros: 

det(D- 1A - ll) = (1 - A.). 
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Evaluation yields 

(2.1) 

where the Xi denote the coefficients of the characteristic polynomial of D-1A. The "/) equal the swn 
of the ith degree principal minors (symmetrical with respect to the main diagonal) of D-1A. In 
particular, x1 = trace(D-1A) and Xs = det(D-1A). In (2.1), the left-hand side polynomial equals the 
right-hand side polynomial if the corresponding polynomial coefficients are equal. This gives us a 
nonlinear system in s unknowns · 

X; = G). i = 1, •.. ,s, (2.2) 

where, since A is given, the Xi are multivariate polynomials in the diagonal matrix elements of 
D-1 := diag(di. ... ,d3 ). Since a Xi consists of G) terms (multivariate polynomial coefficients in 
di, ... ,d3 ), the nonlinear system (2.2) will have I::=1 C) = 23 - 1 terms in total. 

For given s, p(I - D- 1A) = 0 means an eigenvalue 0 with algebraic multiplicity s. This eigen
problem is extremely bad conditioned. For the value of a numerically computed p(I - D- 1A), we 
expect something of the order \(8, where e denotes the machine precision. The Maple engine uses 
Digits decimal digits (user specifiable), so Maple's machine precision is e = 101-D;girs. The ex
tremely bad conditioned eigenproblem is the reason that we need to compute in higher precision, 
however, for growing s, the number of terms in our nonlinear system grows exponentially: 23 - 1. 
Using a higher precision, by using multiple machine words to represent a :ftoating point number, 
implies a quadratic growth (in the number of machine words) of the computational complexity of 
a multiplication, say. The exponential growth in the nwnber of terms and the quadratic growth 
in the number of machine words together are the reason we cannot compute the D in arbitrary 
precision. 

3. The construction of D matrices for PDIRK methods 

Van der Houwen and Sommeijer introduced the Parallel Diagonal-Implicit Iteration of Rwige
Kutta (PDIRK.) methods [2] for the solution of stiff initial value problems: 

y'(t) = f(y(t}), y(to) =Yo. y,f E IR". 

The PDIRK. method can be presented as follows: 
for n = 1, .. . ,N 

YJ0> = P(~'.'.'.LYn-1) 
for j = 1, ... ,m 

YJj> -hn(D ®ld)F(Y~i>) = e ® Yn-1 +hn((A-D) ®ld)F(YJi-1>) 
Yn = Yn-1 + hn(bT ®ld)F(YJm>) 

where s denotes the number of stages of the Runge-Kutta method, described by c, A, and b. 
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The vector Yn consists of the s stacked stage vectors Yn. 1, ••• , Yn,s• each being an approximation to 
the solution at the intermediate time points tn-l + c,hn, and F(Yn) consists of the stacked vectors 
f(Yn,1), .. .,f(Yn,s). Id denotes the d-dimensional identity matrix and e = (1, ... , ll E R9 • P denotes 
a predictor, N is the number of time-steps, and m is the number of iterations needed to solve the 
corrector equation to some prescribed precision. By requiring D being a diagonal matrix, the s stage 
vectors in Y~i> can be computed in parallel. Otherwise, D is still free and can be used to obtain 
good convergence. 

Let Z(z) denote the iteration matrix of the PDIRK method with z = ).}z, h being the stepsize 
and with ). running through the spectrum A(J) of the Jacobian J. In [2] it was shown that Z(z) = 
z(I - zDr1(A - D). It is desirable to have p(Z(z)) small in the closed left halfplane. Because 
p(Z(z)) is an analytic function in the closed left halfplane, its maximum in m(z)~O is asswned on 
the boundary, i.e., on the imaginary axis. 

For izl --> 0, corresponding with the nonstiff error components, Z(z) --> z(A - D). For lzl --> oo, 
corresponding with the stiff error components, Z(z)--> I -D-1A, which is the matrix in the equation 
p(l - D-1A) = 0 we try to solve. 

In their paper, Van der Houwen and Sommeijer [2] discuss several possibilities for the choice 
of the matrices D for several types of Runge-Kutta correctors. The approach for the choice of 
the D matrix adopted in this paper is based on the minimization of the spectral radius of the 
matrix I - n-1A, resulting in a strong damping of the stiff error components. For the two-stage 
Radau IIA corrector, the matrix D was computed straightforwardly in such a way that the spec
tral radius p(I - n-1A) = 0 (giving two solutions). For s > 2 the D matrices were computed 
using a numerical minimization routine on p(l - v-1 A). (The bad condition of the eigenprob
lem is one of the reasons, the minimization routine used in [2] had a hard time searching for 
solutions.) 

In 't Hout [I] suggested not just minimizing p(l - n-1A) for s > 2, but merely solving p(J -
n-1A) = 0. This way, Sommeijer [3] was able to construct D matrices for three-stage Radau IIA 
and Gauss-Legendre correctors. In both cases, there are exactly four real solutions. In this paper, 
we shall extend this approach for s > 3. 

Using Maple, being a computer algebra system for doing symbolic computations, suggests we 
are going to use symbolic computations throughout. However, for Rad.au IIA and for many other 
Runge-Kutta methods the entries of c, that in turn define the matrix A, are the roots of an s
degree polynomial P(x), say. In general, explicit roots in terms of radicals for polynomials of 
degree greater than 4 do not exist. Since for Radau IIA, P(x)/(x - 1) is irreducible for at least 
s = 2, ... , 8 we cannot compute the c and therefore A and b symbolically for s > 5. Although 
we can compute A for s = 4, 5 symbolically, we refrain from doing so for reasons we will ex
plain below. Because we are still using a computer algebra system, we can, once we found an 
approximate solution, refine this solution to any given accuracy. This can be done using Maple's 
fsolve, in this case a numerical nonlinear system solver, with a more accurate approxima
tion of the nonlinear system and a small interval containing the approximation found thus 
far. 

In the next subsections, we derive the matrices n-1 = diag( d 1, ••• , d s) for the Radau IIA correctors 
with s = 2, ... , 8. If there are multiple solutions to p(l -n-1 A) = 0 we choose the D that minimizes 
max(p(Z(z))) over the closed left halfplane. 
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Table l 
D matrices and some statistics for Radau HA, s = 2 

D 

diag(j - ~J6. ~ + io./6) 

diag(j + iJ6. t - io-16> 

p(A -D) 

~ - ftJ6 
~ + -fs./6 

z, max(p(Z(z))) 

./6i, J0 (6 - ./6)(16 + ./6) 

J6i, 2~0(6 + v'6)(16 - v'6) 
0 

0 

3.1. Construction of diagonal matrix D for Radau IIA, s = 2 

The Radau IIA matrix for s = 2 is given by 

A= ( ffe ~fi), n-1A = ( ffed1 ~i;_d1). 
4 4 4d2 4d2 

Equating the polynomial coefficients, as described in the previous section, gives rise to the following 
nonlinear system 

{ 
trace(D-1A) = (i) {:} { f'id1 + ~d2 = 2 

det(D-1A) = @ kd1d2 = 1. 

Solution of this system is straightforward and gives the following two solutions: 

di=¥ 1= ~v'6. d2 = 4± v'6. 
This leads to the figures listed in Table 1. Clearly, the first solution in this table gives the best 
overall convergence because its max(p(Z(z))) is smallest. 

3.2. Construction of diagonal matrix D for Radau !IA, s = 3 

For s = 3 we still use the symbolically computed A matrix. However, the solution of the nonlinear 
system involves the roots of an irreducible 6th degree polynomial. The d2 in the solutions are the 
roots of 

(19 772 + 6483 v'6)x6 + (-425 520 - 125 280 v'6)x5 + (3 502 800 + 767 700 J6)x4 

+(-14 308 800 - 1126 800 J6)x3 + (30 844 800 - 3 337 200 J6)x2 
+(-34041600 + 10022400 v'6)x + 16 358400- 6177 600v'6, 

the d 1 and d3 belonging to the root chosen for d2 are both algebraic expressions containing this root. 
Although we still can compute the D elements in an arbitrary precision, we no longer can compute 
them symbolically. This is where we switch to numerical computations. By using 60 digits (so our 
Maple machine precision s = 10-59 ), we may expect and also get a p(/ -D-1A) value in the order 
of magnitude of 10-20• We give the D matrix elements in 16 digits accuracy, enough for 64 bit 
IEEE floating point arithmetic used by most today workstations. Since the 6th degree polynomial 
only has 4 real-valued roots, we only get 4 solutions in Table 2. Clearly, the first solution in this 
table gives the best overall convergence because its max(p(Z(z))) is smallest. 
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Table 2 
D matrices and some statistics for Radau IIA, s = 3 

D 

diag( 0.3203827776857808, 0.1399668046773267, 0.3 716674595229115) 
diag(0.5587475041000601, 0.1365365144606963, 0.2184662437345018) 
diag(0.1040499402500167, 0.3328127454285067, 0.4812901402100924) 
diag(0.7476215577338980, 0.4040614917633793, 0.05517209443861934) 

3.3. Construction of diagonal matrix D for Radau /IA, s = 4 

z,max(p(Z(z))) 

5.86i, 0.401 
4.l 7i, 0.466 
5.39i, 0.472 
8.72i, 0.658 

0.226. 10-18 

0.743 . 10-18 

0.257 · 10-18 

0.149. 10-18 

39 

The nonlinear system for s = 4 (here presented with truncated precision floating point values for 
the multivariate polynomial coefficients) looks as follows: 

0.113d1+0.207d2 + 0.189d3 + 0.0625d4 = 4, 

0.0328d1d2 + 0.0158d1d3 + 0.00925d1d4 + 0.0585d2d3 + 0.00610d2d4 + 0.0198d3d4 = 6, 

O.OlOld1d2d3 + 0.000756d1d2d4 + 0.00145d1d3d4 + 0.00672d2d3d4 = 4, 

0.00119d1d2d3d4 = 1. 

If we compute the nonlinear system for s = 4 symbolically, every attempt solving this system ended 
with Maple's error message 'Error, (in expand/bigprod) object too large'. As we will 
explain in the next subsection, for s > 4, we cannot detennine all solutions anymore if we switch 
to using floating-point arithmetic. However, we are stiU able to approximate all solutions by first 
solving a rational approximation of this nonlinear system. We do this by taking a rational approx
imation for the multivariate polynomial coefficients. This way, the Maple object for the nonlinear 
system becomes much smaller than the symbolically determined nonlinear system. Even follow
ing this approach, Maple needs some help: first we solve {di.d2,d3 } from Eqs. (1), (2) and (4) 
yielding d 1, d2 and d3 as expressions containing the roots of a 6th degree polynomial with d4 in 
its coefficients. Substituting these solutions in Eq. (3) yields d 4 as roots of a 24th degree poly
nomial and roots of a 4th degree polynomial. All roots of the 4th degree polynomial appear to 
be spurious solutions either introduced by the substitution or introduced by Maple's nonlinear sys
tem solver. Every d 4, root of the 24th degree polynomial, corresponds with exactly 1 root of the 
6th degree polynomial in the expressions for di. d2 and d3 • However, if we substitute a d4 in 
the d 1, d2 and d3 expressions containing the roots of a 6tb degree polynomial with d4 in its co
efficients, we find 6 solutions. By looking at the residues we are able to select the correct root. 
Thus, we find 24 solutions for the D matrices. Of these 24 solutions only 8 are real-valued (the 
complex solutions all have a significant imaginary part). Using the previously found 8 real-valued 
approximations as starting values for Maple's numerical nonlinear system solver, we refined the 
solutions. The results are presented in Table 3. Clearly, the first solution in this table gives the 
best overall convergence because its max(p(Z(z))) is smallest. Note that the best solution is only 
marginally better than the third solution in this table, which corresponds with the D and refines the 
D presented in [2]. 
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Table 3 
D matrices and some statistics for Rad.au IIA, s = 4 

D 

diag(0.1527853137467750, 0.08774983992555644, 
diag(0.2486697765179635, 0.08780166100259280, 
diag(0.3192979656769842, 0.08871403314492813, 
diag(0.3813455220335083, 0.2236996990743941, 
diag(0.3247262709818679, 0.2121007378979642, 
diag(0.05363587665020470, 0.1829772752695088, 
diag(0.4736365821033994, 0.3205127563668334, 
diag(0.5589306159049463, 0.4027756536996861, 

0.2636113044230077, 
0.1959784536013074, 
0.1809065091618870, 
0.07777745058977572, 
0.07907332247161736, 
0.3149333835926415, 
0.07509019550034840, 
0.1964584550831966, 

0.3368439415344046) 
0.2782189143400108) 
0.2323154243215252) 
0.1794250018603748) 
0.2185904187299887) 
0.3851673585460386) 
0.10443 52044 734334) 
0.02691713787967921) 

3.4. Construction of diagonal matrices D for Radau I/A, s = 5, ... , 8 

z, max(p(Z(z))) 

7.35i, 0.516 
9.55i, 0.527 
8.83i, 0.528 
10.7i, 0.575 
I 0.5i, 0.592 
10.7i, 0.626 
8.0 li, 0.627 
23.l i, 0.828 

For s = 2 we found 2 solutions and for s = 3 we found 6 solutions (two complex conjugated 
roots, leaving only 4 interesting ones). Fors = 4 we found 24 solutions, 8 of them being real-valued. 
If we look carefully at the structure of the nonlinear system and look what happens if we try the 
eliminations for s = 4 by hand, we see that eliminating the first equation gives rise to equations of 
degree 2. Eliminating an equation of degree 2 we have 2 solutions and the other equations become 
of degree 3. Eliminating an equation of degree 3 we have 3 solutions and the other equations become 
of degree 4, and so on. Thus, we are tempted to formulate the following conjecture. 

Conjecture 1. For Radau /IA matrices, the nonlinear system has s! solutions. 

This conjecture is true for s::::;; 3, since we found s! solutions analytically. For s = 4 we did not 
formally prove s! solutions, however, using interval arithmetic, the s! numerical solutions found, can 
almost probably be proven to be solutions. 

However, not all solutions have to be useful. The solutions not only have to give rise to positive 
real numbers, but also max(p(Z(z))) < 1 should hold on the imaginary axis. (In fact, for s = 8 we 
found a solution with the property max(p(Z(z))) > 1.) 

For s > 4 we could not find an attack for finding all solutions. Using a rational approximation 
of the nonlinear system, as we did for s = 4, and trying to follow the heuristic reasoning lead
ing to the conjecture above, does not work: inevitably, we will end up with some d 1 being the 
roots of a too high-order polynomial containing drs, j i- i, for which we cannot solve the roots 
explicitly. 

Fors> 4 we solve a floating-point approximation of the nonlinear system using Maple's fsolve 
(solve using floating-point arithmetic) in this case a numerical nonlinear system solver. Since fsolve 
attempts to compute a single real root, we have to specify search intervals for finding different real 
roots. Finally, for s = 9, even using 1 word per multivariate polynomial coefficient, the nonlinear 
system became too big for Maple to solve: 'Error, (in expand/bigprod) object too large'. 

In Tables 4 and 5 we only present the solutions fou,nd with the smallest max(p(Z(z))) for s = 
2, 3, 4. For s = 5, ... , 8 we found multiple solutions - definitely not all - and for given s, we 
present the one with minimal max(p(Z(z))). Consequently, we do not claim the tabulated D to be 
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Table 4 
D matrices for Radau IIA, s = 2, ... , 8 

s 

2 
3 
4 
5 

6 

7 

8 

D 

diagn - ~Y6. ~ + tov'6) 
diag(0.3203827776857808, 0.1399668046773267, 0.3716674595229115) 
diag(0.1527853137467750, 0.08774983992555644, 0.2636113044230077, 
diag( 0.2030587241544029, 0.1359509620271233, O.o6346726719772161, 

0.2170008621974159) 
diag(0.2821041897853654, 0.2357235133749619, 0.1599420020814069, 

0.07251837230026628, 0.08684056941170265) 
diag(0.2532796578435856, 0.224126225156999 7' 0.1760533860274691, 

0.03277289179381600, 0.05092805103490849' 0.060432560781I1305) 
diag(0.2276829014827774, 0.2081000197483005, 0.1752690782773552, 

0.08443170368046534, 0.02463906053066605, 0.03760391949430076, 

Table 5 
Some statistics of the D matrices presented in Table 4 

s 

2 
3 
4 
5 
6 
7 
8 

0.5 

0.4 

~ 0.3 
~ 
er 0.2 

0.1 

0_3 

p(A -D) z, rnax(p(Z(z))) p(l -D- 1A) 

~ - -fsv6 v'6i, 2~0(6 -v'6)(16 + Y6) 0 
0.155 5.86i, 0.401 0.226. 10-18 

0.199 7.35i,0.516 0.129. 10-14 

0.113 14.6i, 0.622 0.816. 10- 12 

0.191 16.5i, 0.720 0.149. 10-9 

0.181 23.l i, 0.813 0.478. 10-s 
0.168 32.1i,0.898 0.571 . 10-1 

-2 -1 

- log~(-z) 
0 1 

Fig. 1. p(Z(z)) in the second quadrant for Radau IIA, s = 4. 

0.3368439415344046) 
0.1739534363905672, 

0.04488279025401561, 

0.1147022645744301, 

0.1328007951785409, 
0.04467448935548895) 

3 

optimal in the sense that max(p(Z(z))) is minimal, for s > 4. An impression on the behavior of 
p(Z(z) ), can be found in Figs. 1 and 2. 
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0.5 

0.4 

- 0.3 -~ 
~ 
~ 

0.2 

0.1 

0 1 

log~(z) 

2 

Fig. 2. p(Z(z)) along the positive imaginary axis for R.adau IIA, s = 4. 

4. Conclusions 

3 

We were able to construct D matrices for the PDIRK method with the Radau IIA corrector for 
s = 2, ... , 8. There is no reason why we could not use the same method for other correctors. The 
machine readable coefficients can be obtained from the author. 
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