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Finding All Periods and Initial Palindromes of 
a String in ParalleP 

D. Breslauer2 and Z. Galil 3 

Abstract. An optimal O(log log n)-time CRCW-PRAM algorithm for computing all period lengths 
of a string is presented. Previous parallel algorithms compute the period only if it is shorter than half 
of the length of the string. The algorithm can be used to find all initial palindromes of a string in the 
same time and processor bounds. Both algorithms are the fastest possible over a general alphabet. We 
derive a lower bound for finding initial palindromes by modifying a known lower bound for finding 
the period length of a string [9]. When p processors are available the bounds become E>(j nip l + log 
log, 1 +p;n12p). 
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1. Introduction. A string Y7[0 .. n] has a period Y7[0 .. p - 1] of length p if 
.9"[ i] = Y'[i + p] for i = 0 · · · n - p. The period of Y7[0 .. n] is defined as its shortest 
period. Periodicity properties of strings have been studied extensively [18] and 
are practically used in almost all efficient sequential and parallel string-matching 
algorithms. 

A palindrome is a string that reads the same forward and backward. Formally. 
a string Y'[O .. k] is a palindrome if Y'[i] = Y7[k - i] for i = 0 · · · k. A string 
.9"[0 .. n] is said to have an initial palindrome of length kif the prefix Y'[O .. k - l] 
is a palindrome. Palindromes have been studied for centuries as word puzzles [3] 
and more recently have some uses in complexity theory [14]. 

A parallel algorithm is said to be optimal if its time-processor product, that is. 
the total number of operations performed, is equal to that of the fastest sequential 
algorithm for the same problem. Note that simple parallel algorithms can compute 
all periods and all initial palindromes of a string in constant time using an 
n 2 -processor CRCW-PRAM. These algorithms are not optimal since both prob­
lems have linear-time sequential algorithms [17], [20]. Our goal in this paper is 
to design fast optimal parallel algorithms. 

The period length of a string is computed in linear time in a step of Knuth et 
al.'s [17] sequential string-matching algorithm and in optimal O(log log n) time 
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on a CRCW-PRAM in a step of Breslauer and Galil's [8] parallel string-matching 
algorithm. A recent lower bound that was discovered by Breslauer and Gali! [9] 
for finding the period length of a string shows that the O(log log n) bound is the 
best possible over a general alphabet, where the only access the algorithm has to 
the input string is by pairwise symbol comparisons. However, Breslauer and Galil's 
(8] parallel string-matching algorithm as well as an O(log n)-time optimal string­
matching algorithm that was discovered by Vishkin (22] compute the period 
length p only if p <I n/21; knowing the fact that p ~ I n/21 is sufficient to 
obtain efficient string-matching algorithms. An earlier string-matching algorithm 
that was designed by Gali! (13] can find all periods and all initial palindromes of 
a string in O(log n) time on an n-processor CRCW-PRAM. This algorithm can be 
made optimal by reducing the number of processors to n/log n, if the input symbols 
are drawn from a constant-size alphabet. Other parallel string-matching algo­
rithms that are based on the Karp-Miller-Rosenberg (15] sequential string­
matching algorithm (10], [16] can also be adapted for these problems but require 
O(log n) time, n processors ([16] requires only n/log n processors), superlinear 
space, and a restricted alphabet. 

In this paper we show that given an optimal parallel string-matching algorithm, 
all periods, including those which are longer than half of the length of the input 
string, can be computed in the same processor and time bounds of the string­
matching algorithm. In particular, Breslauer and Galil's [8] algorithm can be 
used to obtain an optimal O(log log n)-time CR CW-PRAM algorithm that com­
putes the period length of a string exactly, even if it is long. This reduction 
establishes that the task of computing the period length of a string in parallel is 
not harder than string matching. 

To find the initial palindromes, we use a known reduction from the sequential 
setting [12] to show how the algorithm that finds all periods of a string can find 
all initial palindromes in the same time and processor bounds. We also prove 
a matching lower bound for this problem under the assumption of a general 
alphabet. 

The paper is organized as follows: In Section 2 we overview the algorithms for 
finding all periods and initial palindromes. Section 3 contains the details of these 
algorithms and in Section 4 we prove the lower bound for finding the initial 
palindromes. 

2. Finding the Periods. We describe an algorithm that computes all period 
lengths of a given string 51'[0 .. n]. The output of the algorithm is a Boolean array 
P[l.. n] such that P[i] = true if[ i is a period length of 5"(0 .. n]. 

One of the major issues in the design of PRAM algorithms is the assignment 
of processors to their tasks. We ignore this issue in this paper and use a general 
theorem that states that the assignment can be done. 

THEOREM 2.1 [ 4]. . Any synchronous parallel algorithm of time t that consists of a 
total of x elementary operations can be implemented on p processors in lx/pl + t 
time. 
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This theorem can be used for example to slow down a constant-time p-processor 
algorithm to work in time t using p/t processors. We describe an O(log log n)-time 
algorithm using n/log log n processors. Some of the steps in our algorithm are 
described as constant-time steps using n processors. 

We prove the following theorem: 

THEOREM 2.2. An algorithm exists that computes P[l .. n] and takes O(log log n) 
time using n/iog log n processors. If p processors are available the algorithm takes 
Off n!pl + log log 11 +p;.1 2p) time. 

CoROLLARY 2.3. The exact period length of a string .9'[0 .. n] can be computed in 
the same time and processor bounds. 

PROOF. The period length of .Sf'[O .. n] is the smallest i such that P[1] is true. We 
use a technique of Fich et al. [11] to compute the minimum of n integers in the 
range 1 .. n in constant time using an n-processor CRCW-PRAM. (By Theorem 
2.l this step can be slowed down to work in optimal O(log log n) time or in O(n/p) 
time on p processors.) D 

COROLLARY 2.4. All initial palindromes of a string .'l'[O .. n] can be computed in 
the same time and processor bounds. 

PROOF. Suppose we want to compute all initial palindromes of a string w that 
does not contain the symbol$. We present w$w1< (where wR is the string w reversed) 
as input to the algorithm that computes all periods of a string. Each period of 
this string corresponds to an initial palindrome of w. Two copies of the string 
w$wR are aligned with each other shifted by some offset and the overlapping parts 
are identical if and only if the overlapping part is an initial palindrome of w. This 
reduction was used by Fischer and Paterson [12]. D 

EXAMPLE The string abaab has an initial palindrome aba. This initial palindrome 
corresponds to the period abaab$ba of the string abaab$baaba. 

PROOF OF THEOREM 2.2. The algorithm proceeds in independent stages which 
are all computed simultaneously and are described in the next section. In stage 
number 'I· 0 ~ 17 < m, the algorithm computes only P[n - I,+ 1 .. n - I,+ i]; 
where the sequence {I,} is a decreasing sequence defined as 10 = n, l.,+ 1 = Ul,J and 
m is the smallest integer for which l,. = 0. Note that each stage is assigned to 
compute a disjoint part of the output array P and the entire array is covered. 

By breaking the output array into segments that are handled separately, we are 
able to use periodicity properties of strings [18] in each segment. These properties 
let us represent and manipulate the output of some string-matching problems 
efficiently. These ideas were successfully applied in several other parallel algorithms 
for string problems (1], [2], [7]. [5], [6]. 
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We denote by T,, the time it takes to compute stage number Y/ using P~ 
processors. The number of operations at stage Y/ are denoted by Oq = T,,Pq. 
We show later how to implement stage number Y/ in T,, = O(log log lq) time 
and 0 11 = l" operations using Breslauer and Galil's (8] parallel string-matching 
algorithm. 

Since all stages of our algorithm are executed in parallel the total number 
of operations performed in all stages is Iq o'I ::::; Iq mqn = O(n) and the time is 
max T.i = O(log log n). By Theorem 2.1 the algorithm can be implemented using 
njlog log n processors in O(log log n) time. 

It remains to show that if the number of available processors is p the algorithm 
takes 0(1n/p1 + log lo~ 1 +pinl2p) time. If p < njlog log n, then by Theorem 2.1 
the algorithm can be slowed down to work in O(n/p) time. If njlog log n s p :::; n, 
then the bound above is still O(log log n). If p > n, then stage number Y/ can be 
implemented in T,, = O(log log11 +pfn-f..2p/n)lq) time using (p/n)lq processors. The 
total number of processors used for all stages is 2::11 (p/n)l" ::::; I 11 (j)" n = O(p) and 
the time is max T,, = O(log lo~ 1 +p/nl2p). 0 

3. A Single Stage. In this section we describe a single stage ry, 0 s rt < rn, that 
computes P[n - lq + 1 .. n - lq+ 1] in optimal O(log log /q) time. Note that since a 
period oflength p implies that Y[O .. n - p] = Y'[p .. n ], there must be occurrences 
of 51'[0 .. 1'1 + 1] starting at each position p which is a period length of 51'[0 .. n] 
and is in the range computed by this stage. 

Stage Y/ starts with a call to a string-matching algorithm to find all occurrences 
of .9"[0 . .lq + 1] in Y'[n - lq + I .. n]. Let q;, i = 1 · · · r, denote the indices of all these 
occurrences (all indices are in the string 51'[0 .. n], thus n - lq < q; s n - 111 + 1). 

If no occurrences were found, the string 51'[0 .. n] has no period length in the 
range computed by this stage and all entries of P[n - lq + l .. n - I~+ 1] can be se1 
to false. Otherwise, we continue with another call to a string-matching algorithrr 
to find all occurrences of .9"[0 . . 111 + 1] in 51'[0 .. l~ - 1]. Let p;, i = 1 · · · k, denote the 
indices of all these occurrences (note that p1 = 0). 

If there was only one occurrence of 51'[0 .. lq+ 1] in .9"[n - lq + 1 .. n], thi: 
occurrence can be verified to be a period length in O(lq) operations. However, i 
there are r > I occurrences, O(rl~) operations may be needed to verify all of them 
Luckily the sequences {p;} and {q;} have a "nice" structure as we show in th1 
following lemmas. This structure enables us to proceed efficiently to test which o 
the q;'s is actually a period length of 51'[0 .. n]. 

LEMMA 3.1 [19]. If a string of length m has two periods of length p and q an 
p + q :::; m, then it has also a period of length gcd(p, q). 

LEMMA 3.2. If a string A[l .. l] has period length p and occurs only at positio1 
p1 < p2 • • • <Pk of a string B[l .. nllJ, then the p;'s form an arithmetic progressio 
with difference p. 
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me k ;;::: 2. We prove that p = Pi+ 1 - Pi for i = 1 · · · k - 1. The string 
:riod of length p and q =Pi+ 1 - Pi· Since p sq s ll/21, by Lemma 
s a period of length gcd(p, q). However, p is the length of the 
. sop = gcd(p, q) and p must divide q. The string B[p; .. Pi+ 1 + l - 1] 
1gth p. If q > p, then there must be another occurrence of A at 
'of B; a contradiction. O 

The sequences {p;} and {qi} form an arithmetic progression with 
ihere & is the period length of 9"[0 .. lq+ 1]. 

sequences Pi and qi are indices of occurrences of a string of length 
ngs of length lq. Recall that I,,+ 1 = Lil,,J. By Lemma 3.2 the p;'s and 
trithmetic progression with a difference &, the period length of 

0 

:es {p;} and { q;} can be represented using three integers (each): the 
equence, the difference, and the length of each sequence. This 
can be easily obtained from the output of the string-matching 

onstant time and I,, processors. 
q;'s can be ruled out of being period lengths of 9"[0 .. n] immediately, 
the following lemma. 

lfk < r, then qi is not a period length of 9"[0 .. n]for 1 s is r - k. 

me that qi is a period length of 9" and 1 ::;; i s r - k. In this case 
'[O .. n - q;]. The string 9"[qi .. n] has r - i + 1 > k occurrences of 
hich are q;, ... , q,. However, 9"[0 .. n - qi] is of the same length and 
:urrences of 9"[0 .. I,,+ 1]; a contradiction. O 

t be two reasons why q, + & is not included in the {q;} sequence: 

1 •• JV] 'f= 9"[0 .. .;V - q, - &], and JV = min(n, q, + & +I,,+ 1 ) we call 
;h. 
110 mismatch, then the only reason that q, + & is not in the {qi} 
that q, + & + l,,+ 1 > n. We call this case an overflow. 

A Mismatch). If 9"[q, + 91' .. JV] # 9"[0 .. JV - q, - 91'], then 
:t most one period whose length is in the range computed by this stage. 
fble period length may exist ifk s r, and it is qr-k+I· 

Lemma 3.4 all qi, 1 s i < r - k + 1, are not period lengths. 
l period length and i > r - k + 1, then .9"[q; .. n] = 9"[0 .. n - q;]. 
- i + 2 s k and Pi= (j - 1)&, 9"[q, + & .. A"] = 9"[pr-i+2 .. •. ·V -
;sumption of a mismatch 9"[ q, + & .. A'] if:. 9"[0 .. .,V - q, - &] . 
.. JV-q;]#.9"[0 .. Al-q,-&]. However 9"[Pr-i+2 .. Pr-i+2+ 
.lq+ 1] and also JV - q, - 91' s I,,+ 1 ; a contradiction. 0 
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LEMMA 3.6 (An Overflow). If Y'[qr + fJ .. n] = Y'[O .. n - q, - &], then: 

(a) If k > r, then q 1 , •.• , q, are period lengths of Y'[O .. n]. 
(b) Ifk s r, then q,-k+ 2 , ••. ,q,are period lengths of Y'[O .. n]. In this case qr-ktt 

may also be a period length of Y'[O .. n]. 

PROOF. Assume Y'[q, + fJ .. n] = .9"[0 .. n - q, - &]. It is enough to show that 
q; is a period length of .9" for max(r - k + 2, 1) s i s r. 

By the definition of the { q;} and {P;} sequences 

(1) 

since both substrings are covered by r - i + 1 occurrences of Y'[O .. lq+ 1]. Also, 
since r - i + 2 s k, 

(2) 

However, n - q, - & < lq+l and Y'[q, + & .. n] = Y'[O .. n - q,-PJ]. By taking 
prefixes of (2) 

By combining equalities (1) and (3), we get that .9"[0 .. n - q;] = Y'[q; .. n]. D 

The computation in stage Y/ can be summarized as follows: 

1. Compute the {q;} and {p;} sequences. 
2. If k s r, check if qr-k+ 1 is a period length of .9"[0 .. n]. 
3. If Y'[q, + g> .. ./V] = Y'[O .. Ar - q, - &], then: 

(a) If k > r, then q 1 , ... , q, are all period lengths of Y'[O .. n]. 
(b) If k s r, then q,_k+ 2 , .•. , q, are all period lengths of .9'[0 .. n]. 

LEMMA 3.7. Stage number Y/ correctly computes &[n - lq + 1 .. n - ln+ 1]. It takes 
O(log log lq) time and uses O(lq) operations. 

PROOF. Correctness of the algorithm follows from Lemmas 3.4-3.6. The two calls 
to a string-matching algorithm to compute the { q;} and {pi} sequences take 
O(log log lq) time and O(lq) operations if we use Breslauer and Galil's [8] 
string-matching algorithm. The sequences { q;} and {p;} can be represented by three 
integers which can be computed from the output of the string-matching algorithm 
(which is assumed to be a Boolean vector representing all occurrences) in constant 
time and O(/q) operations. Steps 2 and 3 can also be done in constant time and 
O(/n) operations. D 
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LEMMA 3.8. Stage number '1 can be implemented in O(log lo~i+r•~2p/n)l,) time 
on (p n)l., processors if p ;;::: n. 

PROOF. The calls to Breslauer and Galil's [8], [9] string-matching algorithm 
take O(log 10~ 1 +P n~2p/n)l.,) time if p;;::: n and (p/n)l., processors are available for 
stage number '1· The rest of the work can be done in constant time since the 
number of processors is larger than l.,. O 

4. A Lower Bound. Given a string .9'{0 .. n], we say that it has an initial 
palindrome of length kif .9'[1] = 9'[k - i - 1) for i = 0, ... , k - 1. We modify the 
lower bound of [9] to a lower bound for determining whether a string 9'[0 .. n) 
has an initial palindrome whose length is larger than n/2. This lower bound holds 
even for deciding if the string .9'[0 .. n] has any initial palindrome other than the 
trivial initial palindrome of length one. Since there are some modifications in the 
details of the lower bound we repeat most steps of the proof. The missing proofs 
can be found in the original paper. 

The model for which the lower bound is proved is similar to Valiant's parallel 
comparison tree model (21]. We assume the only access the algorithm has to the 
input string is by comparisons that check whether two symbols are equal or not. 
The algorithm is allowed p comparisons in each round, after which it can proceed 
to the next round or terminate with the answer. We give a lower bound on the 
minimum number of rounds necessary in the worst case. This lower bound holds 
even if an algorithm is allowed to perform order comparisons that can result in 
less than, equal, or greater than answers [9]. In the case of a general alphabet a 
CRCW-PRAM must use comparisons to solve any string problem and our lower 
bound holds. 

We show a strategy for an adversary to answer! log log n rounds of comparisons 
after which it still has the choice of fixing the input string 9' in two ways: in one, 
the resulting string has an initial palindrome whose length is larger than n/2, 
and in the other it does not have any such initial palindrome. This implies that 
any algorithm that claims to compute all initial palindromes in fewer rounds can 
be fooled. 

We say that an integer k is a possible period length of 9'[0 .. n] if we can fix 
/I' consistently with answers to comparisons made in earlier rounds in such a way 
that k is a period length of .9'. For such k to be a period length we need each 
residue class modulo k to be fixed to the same symbol, thus if I = j mod k, then 
9'[1] = Y'[j]. 

We say that an integer k is a possible initial palindrome of 9'[0 .. n] if we can 
fix Y' consistently with answers to comparisons made in earlier rounds in such a 
way that 9' has an initial palindrome of length k. For such k to be an initial 
palindrome length we need that if I = k - j - l, then Y'[l] = 9'[J]. 

For an integer k to be a period length and an initial palindrome length we need 
both conditions to hold. That is, if l = j mod k or if I = - j - l mod k, then 
9'[1] = .<l'[j]. We call such k a palindromic-period length. 
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Let I= qk + r such that 0 s; r < k. That is, r = l mod k. Define </>k(l) as: 

if r<rnl 
otherwise. 

Using this notation, k is a palindromic-period length of!/ if, for any two indices 
l and j that satisfy <Pk([)= </Jk(j), !/[l] = !/[j]. If l =j mod k, we say that I 
and j are in the same residue class modulo k. If l = - j - 1 mod k, we say 
that l and j are in symmetric residue classes modulo k. The function <Pk maps 
integers which are in the same residue class or in symmetric residue classes modulo 
k to the same value. We say that such integers are in the same extended residue class 
modulo k (this is an equivalence relation on the integers). 

At the beginning of round i the adversary will maintain an integer k; which is 
a possible palindromic-period length. The adversary answers the comparisons of 
round i in such a way that some k;+ 1 is a possible palindromic-period length and 
few symbols of 9' are fixed. Let K; = n1 - 4 -u-n. The adversary will maintain the 
following invariants which hold at the beginning of round number i: 

1. ki satisfies tK; s; k; s; K;. 
2. If !/[/] was fixed, then, for every j such that <Pk,([) = </>k,(j), .9"[j] was fixed to 

the same symbol. In other words, the entire extended residue class of I modulo 
k; was fixed to the same symbol. 

3. If a comparison was answered as equal, then both symbols compared were 
fixed to the same value. 

4. If a comparison between positions l and j was answered as unequal, then: 
(a) I and j are in different extended residue classes modulo ki. That is 

<Pk,([) # cPk,(j). 
(b) If the symbols .9"[1] and !/[j] were fixed, then they were fixed to different 

values. 
5. The number of fixed symbols Ji satisfies Ji s; Ki. 

Note that invariants 3 and 4 imply consistency of the answers given so far. 
Invariants 2-4 imply that ki is a possible palindromic-length: if we fix all symbols 
in each unfixed extended residue class modulo ki to a new value, using the same 
value within an extended residue class but different values for unrelated residue 
classes, we obtain a string which is consistent with the comparisons answered so 
far and has a palindromic-period length k;. Such a string will have initial 
palindromes of all lengths which are integral multiples of k;. 

We start at round number one with k1 = K 1 = 1. It is easy to see that the 
invariants hold initially. We show how to answer the comparisons of round i and 
how to choose k<+ 1 so that the invariants still hold. All multiples of k; in the range 
tK;+ 1 ·•• Ki+l are candidates for the new k;+i· A comparison .9"[/] = !/[j] must 
be answered as equal if I and j are in the same extended residue class modulo 
ki+ 1; that is, if <Pk,+,m = </J;+ 1U). We say that k;+i forces this comparison. 
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LEMMA 4.1. If p, q, r 2:: ji;/k; and are relatively prime, then a comparison 
Y[s] = Y'[t] is forced by at most two of pk;, qk;, and rk;. 

PROOF. A comparison can be forced by some pk; because the indices of the 
compared symbols are in the same residue class or because they are in symmetric 
residue classes. 

Assume s and t are in the same residue classes modulo pk; and qk,, thus 
s = t mod pk; and s = t mod qk;. Then s = t mod pqk. However, pqk; > n and 
O ::;; s, t s n which implies that s = t; a contradiction. 

If s and t are in symmetric residue classes modulo pk; and qk;, then 
s = - t - 1 mod pk; and s = - t - I mod qk,. Then s + t + 1 = 0 mod pqk;. 
However, pqk, > 2n and 0 s s, t ::;; n; a contradiction. 

The only remaining case is when s and tare in the same residue class modulo 
one of pk; or qk; and in symmetric residue classes modulo the other. In this case 
we go back to the third candidate rk; and consider the pairs rk, and pk;, and rk; 
and qk;- One of these pairs is in one of the categories above; a contradiction to 
the existence of the third candidate. D 

LEMMA 4.2. The number of candidates fork;+ 1 which are prime multiples of k; and 
satisfy ~K;+ 1 s k,+ 1 s K;+ 1 is greater than K;+ i/(4K; log n). Each such candidate 
satisfies the condition of Lemma 4.1. 

LEMMA 4.3. A candidate fork;+ 1 in the range !K;+ 1 ••· K;+ 1 that forces at most 
(8nK; Jog n)/K;+i comparisons. 

PROOF. By Lemma 4.2 there are at least K;+ i/(4K; log n) such candidates which 
are prime multiples of k; and satisfy the condition of Lemma 4.1. By Lemma 4.1 
each of the n comparisons is forced by at most two of them. So the total number 
of comparisons forced by all these candidates is at most 2n (at most two 
comparisons forced by each candidate). Thus, there is a candidate that forces at 
most (8nK; log n)/K;+ 1 comparisons. 0 

LEMMA 4.4. For large enough n and is k log Jog n, 1 + n2·4-'64 log n s n3·4 -'. 

LEMMA 4.5. Assume the invariants hold at the beginning of round i and the 
adversary chooses k;+ 1 to be a candidate which forces at most (8nK; log n)/K;+ 1 

comparison. Then the adversary can answer the comparisons in round i so that the 
invariants also hold at the beginning of round i + 1. 

PROOF. By Lemma 4.3 such k;+ 1 exists. For each comparison that is forced by 
k; + t> and is of the form 9"[1] = 9"[}] where c/>k,+ ,(I) = c/>k,. ,(}), the adversary fixes 
the symbols in the residue class modulo k;+ 1 and its symmetric residue class (the 
extended residue class) to the same new value (a different value for different 
extended residue classes). The adversary answers comparisons between fixed 
symbols based on the values they are fixed to. All other comparisons involve 
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symbols that are not in the same extended residue class modulo k;+ 1 (and at least 
one unfixed symbol) and are always answered as unequal. 

The extended residue classes form a partition of the set of integers between 0 
and n. This partition is refined when we move from extended residue classes 
modulo k; to extended residue classes modulo k;+ 1 . Since k;+ 1 is a multiple of k;, 
the extended residue classes modulo k; split. This means that if two indices are in 
different extended residue classes modulo k;, then they are also in different extended 
residue classes modulo k;+ 1; and if two indices are in the same extended residue 
class modulo k;+ 1, then they are also in the same extended residue class modulo k;. 

We show that the invariants still hold. 

1. The candidate we chose for k;+ 1 was in the required range. 
2. Extended residue classes which were fixed in earlier rounds split into several 

extended residue classes, all are fixed. Any symbols that is fixed at this round 
causes its entire extended residue class modulo ki+ 1 to be fixed to the same 
value. 

3. Equal answers of earlier rounds are not affected since the symbols involved 
were fixed to the same value by the invariants held before. Equal answers of 
this round are either between symbols which were fixed before this round to 
the same value or are within the same extended residue class .modulo k; + 1 and 
the entire extended residue class if fixed to the same value. 

4. (a) Unequal answers of earlier rounds are between different extended residue 
classes modulo k; + 1, since extended residue classes modulo k; split. Unequal 
answers of this round are between different extended residue classes, because 
comparisons within the same extended residue class modulo k; + 1 are always 
answered as equal. 

(b) Unequal answers to comparisons that involve symbols which were fixed in 
earlier rounds are answered according to the symbol values and, therefore, 
these symbols must have been fixed to different values. Unequal answers 
to comparisons that involve symbols which are fixed at the end of this 
round and at least one fixed at this round are consistent since a new value 
is used for the symbols in each extended residue classes that is fixed. 

5. We prove inductively that h+i s K;+ 1. We fix at most (16nK;logn)/K;+ 1 

residue classes modulo k; + 1 . There are k; + 1 such classes and each class has at 
most ln/k;+ 1l s 2n/k;+ 1 elements. By Lemma 4.4 and simple algebra the 
number of fixed elements satisfies 

r r 2n 16nK; log n 
Ji+ 1 s Ji+ -------

ki+ l K;+1 

s K{l + (K~+~Y 64 log n J 
s n1 - 4 -<;-''(l + n2·4 -;64 log n) 

s ni-4-; = K;+1· 0 
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THEOREM 4.6. Any comparison-based parallel algorithm for .finding the initial 
palindromes of a string 51'[0 .. n], using n comparisons in each round, requires 
! log log n rounds. 

PROOF. Fix an algorithm which finds the initial palindromes of 51' and Jet the 
adversary described above answer the comparisons. After i = ! log log n rounds 
r k i -4-111•11os1os" 12fi>Sn /2 Th d . l fi 
Ji+l• i+1 s n = n s n . ea versary can st1l x 51' to have 
a palindromic-period length ki+ 1 by fixing the symbols in each remaining residue 
class modulo k;+ 1 and its symmetric residue class to the same value, and different 
values for each class. In this case any integral multiple of k;+ 1 is also an initial 
palindrome. Alternatively, the adversary can fix all unfixed symbols to different 
values. Note that this choice is consistent with all the comparisons answered so 
far by invariants 3 and 4, and the string does not have any initial palindrome of 
length larger than n/2. In fact, in the latter case, the string will not have any initial 
palindrome except the trivial initial palindrome of length one. Consequently, any 
algorithm which terminates in less than ! log log n rounds can be fooled. 

This proof also gives a lower bound for computing the period length of a 
string. O 

THEOREM 4.7. Any comparison-based parallel algorithm for finding the initial 
palindromes of a string 51'[0 .. n] using p comparisons in each round requires at least 
Q(rn/pl +log logr1 +p/nl 2p) rounds. 

5. Discussion. The algorithm described in this paper uses a string-matching 
procedure as a "black-box" that has a specific input-output functionality, without 
going into its implementation details. By using Breslauer and Galil's [8] 
string-matching algorithm, we obtained an optimal O(log log n)-time algorithm 
which is the best possible in the case of a general alphabet, as implied by a lower 
bound of Breslauer and Gali! [9]. It is unknown if faster optimal string-matching 
algorithms exist in the case of a fixed alphabet. If such an algorithm exists it 
would immediately imply a faster algorithm for finding the periods. Note that 
a fast CRCW-PRAM implementation requires the computation of certain func­
tions, such as the log function and powers of j within the time and processor 
bounds. 
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