
Linear Approximation of Shortest Superstrings 

AVRIM BLUM 

Massachusetts Institute of Technology, Cambridge, Massachusetts 

TAO JIANG 

McMaster University, Hamilton, Ontario, Canada 

MING LI 

Uni1 1ersity of Waterloo, Waterloo, Ontario, Canada 

JOHN TROMP 

CW!, Amsterdam, The Netherlands 

AND 

MIHALIS Y ANNAKAKIS 

AT & T Bell Laboratories, Murray Hill, New Jersey 
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length of the optimal superstring. A common conjecture states that the above greedy procedure 
produces a superstring of length O(n) (in fact, 2n), yet the only previous nontrivial bound known 
for any polynomial-time algorithm is a recent O(n log n) result. 

We show that the greedy algorithm does in fact achieve a constant factor approximation, 
proving an upper bound of 4n. Furthermore, we present a simple modified version of the greedy 
algorithm that we show produces a superstring of length at most 3n. We also show the superstring 
problem to be MAX SNP-hard, which implies that a polynomial-time approximation scheme for 
this problem is unlikely. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical Algorithms and Problems-computations on discrete structures; G.2.1 [Discrete 
Mathematics]: Combinatorics-combinatorial algorithms 

General Terms: Algorithms 

Additional Key Words and Phrases: Approximation algorithm, shortest common superstring 

1. Introduction 

Given a finite set of strings, we would like to find their shortest common 
superstring. That is, we want the shortest possible string s such that every 
string in the set is a substring of s. 

The question is NP-hard [Gallant et al., 1980; Garey and Johnson, 1979]. 
Due to its important applications in data compression [Storer, 1988] and DNA 
sequencing [Lesk, 1988; Li, 1990; Peltola et al., 1983], efficient approximation 
algorithms for this problem are indispensable. We give an example from the 
DNA sequencing practice. A DNA molecule can be represented as a character 
string over the set of nucleotides {A, C, G, T}. Such a character string ranges 
from a few thousand symbols long for a simple virus to approximately 3 x 109 

symbols for a human being. Determining this representation for different 
molecules, or sequencing the molecules, is a crucial step towards understanding 
the biological functions of the molecules. With current laboratory methods, 
only small fragments (chosen from unknown locations) of at most 500 bases 
can be sequenced at a time. Then from hundreds, thousands, sometimes 
millions of these fragments, a biochemist assembles the superstring represent­
ing the whole molecule. A simple greedy algorithm is routinely used [Lesk, 
1988; Peltola et al., 1983] to cope with this job. This algorithm, which we call 
GREEDY, repeatedly merges the pair of (distinct) strings with maximum 
overlap until only one string remains. It has been an open question as to how 
well GREEDY approximates a shortest common superstring, although a com­
mon conjecture states that GREEDY produces a superstring of length at most 
two times optimal [Storer, 1988; Tarhio and Ukkonen, 1988; Turner, 1989). 

From a different point of view, Li [1990] considered learning a superstring 
from randomly drawn substrings in the Valiant [1984] learning model. In a 
restricted sense, the shorter the superstring we obtain, the smaller the number 
of samples are needed to infer a superstring. Therefore, finding a good 
approximation bound for shortest common superstring implies efficient learn­
ability or inferability of DNA sequences [Li, 1990]. Our linear approximation 
result improves Li's O(n log n) approximation by a multiplicative logarithmic 
factor. 

Tarhio and Ukkonen [1988] and Turner [1989] established some performance 
guarantees for GREEDY with respect to the "compression" measure. This 
basically measures the number of symbols saved by GREEDY compared to 
plainly concatenating all the strings. It was shown that if the optimal solution 
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saves l symbols, then GREEDY saves at least 1/2 symbols. But, in general, this 
implies no performance guarantee with respect to optimal length since in the 
best case this only says that GREEDY produces a superstring of length at most 
half the total length of all the strings. 

In this paper, we show that the superstring problem can be approximated 
within a constant factor, and in fact that algorithm GREEDY produces a 
superstring of length at most 4n. Furthermore, we give a simple modified 
greedy procedure MGREEDY that also achieves a bound of 4n, and then 
present another algorithm TGREEDY, based on MGREEDY, that we show 
achieves 3n. 

The rest of the paper is organized as follows: Section 2 contains notation, 
definitions, and some basic facts about strings. In Section 3, we describe our 
main algorithm MGREEDY with its proof. This proof forms the basis of the 
analysis in the next two sections. MGREEDY is improved to TGREEDY in 
Section 4. We finally give the 4n bound for GREEDY in Section 5. Section 6 
presents a simple comparison of the performance of these algorithms. In 
Section 7, we show that the superstring problem is MAX SNP-hard that implies 
that there is unlikely to exist a polynomial-time approximation scheme for the 
superstring problem. 

2. Preliminaries 

Let S = {s 1, ••• , s m} be a set of strings over some alphabet k. Without loss of 
generality, we assume that the set S is "substring-free" in that no string s; E S 
is a substring of any other sj E S. A common superstring of S is a string s such 
that each s; in S is a substring of s. That is, for each s;, the string s can be 
written as U;S;U; for some u 1 and u1• In this paper, we use n and OPT(S) 
interchangeably for the length of the shortest common superstring for S. Our 
goal is to find a superstring for S whose length is as close to OPT(S) as 
possible. 

Example. Assume we want to find the shortest common superstring of all 
words in the following sentence: "Alf ate half lethal alpha alfalfa". The word 
"alf' is a substring of both "half' and "alfalfa'', so we can immediately 
eliminate it. Our set of words is now 50 ={ate, half, lethal, alpha, alfalfa}. A 
trivial superstring is "atehalflethalalphaalfalfa" of length 25, which is simply 
the concatenation of all substrings. A shortest common superstring is 
"lethalphalfalfate", of length 17, saving 8 characters over the previous one (a 
compression of 8). Looking at what GREEDY would make of this example, we 
see that it would start out with the largest overlaps from "lethal" to "half' to 
"alfalfa" producing "lethalfalfa". It then has 3 choices of single character 
overlap, two of which lead to another shortest superstring "lethalfalfalphate", 
and one of which is lethal in the sense of giving a superstring that is one 
character longer. In fact, it is easy to give an example where GREEDY outputs 
a string almost twice as long as the optimal one, for instance on input 
{c(ab)k, (ba)k, (ab)kc}. 

For two strings s and t, not necessarily distinct, let v be the longest string 
such that s = uv and t = vw for some non-empty strings u and w. We call \v\ 
the (amount of) overlap between s and t, and denote it as ov(s, t). Further­
more, u is called the prefix of s with respect to t, and is denoted pref(s, t). 
Finally, we call \pref(s, t)\ = \u\ the distance from s to t, and denote it as 
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d(s, t). So, the string uvw = pref(s, t)t, of length d(s, t) + ltl =is!+ It! -
ou(s, t) is the shortest superstring of s and t in which s appears (strictly) 
before t, and is also called the merge of s and t. For s;, s E S, we will 
abbreviate pref(s;, sf) to simply pref(i, j), and d(s;, s) and od/, s) to d(i, j) 
and ou(i, j) respectively. The overlap between a string and itself is called a 
self-overlap. As an example of self-overlap, we have for the string s = 
undergrounder an overlap of ov(s, s) = 5. Also, pref(s, s) = undergro and 
d(s,s) = 8. The string s = alfalfa, for which ov(s, s) = 4, shows that the 
overlap is not limited to half the total string length. 

Given a list of strings s; 1, s,,, ... , s;,, we define the superstring s = (s;, ... , s;) 
to be the string pref(i 1 ,io)prefUo,i~)··· pref(i,_ 1,i,)s;. That is, sis the short­
est string such that s; 1, s;,, ... , s;~ appear in order in that string. For a super­
string of a substring-free set, this order is well-defined, since substrings cannot 
"start" or "end" at the same position, and if substring s1 starts before sk, then 
s1 must also end before sk. Define flrst(s) = s;, and last(s) = s;,- In each 
iteration of GREEDY the following invariant holds: 

CLAIM 1. For two distinct strings s and tin GREEDY's set of strings, neither 
flrst( s) nor last( s) is a substring of t. 

PROOF. Initially, flrst( s) = last(s) = s for all strings, so the claim follows 
from the fact that S is substring-free. Suppose that the invariant is invalidated 
by a merge of two strings t 1 and t2 into a string t = (t1, t 2 ) that has, say, 
first( s) as a substring. Let t = u first(s) I.'. Since first(s) is not a substring of 
either t 1 or t 2 , it must properly "contain" the piece of overlap between t 1 and 
t 2 , that is, l.first(s)i > ou(t 1, t 2 ) and lul < d(t 1, t 2 ). Hence, odt1, s) > odt 1, t2 ); 

a contradiction. o 
So when GREEDY (or its variation MGREEDY that we introduce later) 

chooses s and t as having the maximum overlap, then this overlap ou(s, t) in 
fact equals ov(last(s ), first(t )), and as a result, the merge of s and t is 
(flrst(s), ... , last(s), first(t), ... , last(t)). We can therefore say that GREEDY 
orders the substrings, by finding the shortest superstring in which the substrings 
appear in that order. 

We can rephrase the above in terms of permutations. For a permutation rr 
on the set {l, ... , m}, let Srr = (srrO>' ... , srr<m»· In a shortest superstring for S, 
the substrings appear in some total order, say srr(I)' ... , s1T(m)' hence it must 
equal Srr. 

We consider a traveling salesman problem on a weighted directed complete 
graph Cs derived from S and show that one can achieve a factor of 4 
approximation for TSP on that graph, yielding a factor of 4 approximation for 
the shortest-common-superstring problem. Graph G5 = (V, E, d) has m ver­
tices V = {1, .. ., m}, and m 2 edges E = {(i, j): l s i, j s m}. Here we take as 
weight function the distance d(, ): edge (i, j) has weight d(i, j) = d(s;, s), to 
obtain the distance graph. This graph is similar to one considered by Turner 
[1989] in the end of his paper. Later, we take the overlap ou(,) as the weight 
function to obtain the overlap graph. We call s, the string associated with 
vertex i, and let pref(i, j) = pref(s;, sf) be the string associated with edge (i, j). 

As examples, we draw in Figure l the overlap graph and the distance graph 
for our previous example S0 = {ate, half, lethal, alpha, alfalfa}. All edges not 
shown have overlap 0. Note that the sum of the distance and overlap weights 
on an edge (i, j) is the length of the string s;. 
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FIG. 1. The overlap and distance graphs. 

Notice now that TSP(G5 ) ::::;; OPT(S) - ov(/ast(s), first(s)) ::::;; OPT(S), where 
TSP(G5 ) is the cost of the minimum weight Hamiltonian cycle on Gs. The 
reason is that turning any superstring into a Hamiltonian cycle by overlapping 
its last and first substring saves on cost by charging last(s) for only 
d(last(s), first(s)) instead of its full length. 

We now define some notation for dealing with directed cycles in Gs. Call two 
strings s, t equivalent, s = t, if they are cyclic shifts of each other, that is, if 
there are strings u, u such that s = uv and t = vu. If c is a directed cycle in Gs 
with vertices i0 , ••• , i,_ 1 in order around c, we define strings(c) to be the 
equivalence class [pref(i 0 , i 1)pref(i1, i 2 ) ••• pref(i,_ 1, i 0 )] and strings(c, ik) the 
rotation starting with pref(i k, i k + 1 ), that is, the string pref(i k, i k + 1) .. • 

pref(ik- 1' ik), where subscript arithmetic is modulo r. Let us say that an 
equivalence class [s] has periodicity k (k > 0), if s is invariant under a rotation 
by k characters (s = uv =vu, lul = k). Obviously, [s] has periodicity lsl. A 
moment's reflection shows that the minimum periodicity of [s] must equal the 
number of distinct rotations of s. That is the size of the equivalence class and 
denoted by card([s ]). Furthermore, it is easily proven that if [s] has periodici­
ties a and b, then it has periodicity gcd(a, b) as well. (See, e.g., Fine and Wilf 
[1965].) It follows that all periodicities are a multiple of the minimum one. In 
particular, we have that lsl is a multiple of card([s ]). 

In general, we denote a cycle c with vertices i 1, ••• , i, in the order by 
"i1 -7 •·· -7 i, -7 i 1." Also, let w(c), the weight of cycle c, equal lsl, s E 

strings(c). For convenience, we say that sj is in c, or "sj E c" if j is a vertex of 
the cycle c. 

Now, a few preliminary facts about cycles in Gs. Let c = i0 -7 ... -7i,_1 -7 

i0 and c' be cycles in G5 . For any string s, sk denotes the string consisting of k 
copies of s concatenated together. 

CLAIM 2. Each strings;. in c is a substring of sk for all s E strings(c) and 
sufficiently large k. 1 

PROOF. By induction, s;. is a prefix of pref(~,i1.·+i>··· pref(i.+ 1_ 1,i.+)s; 
for any I~ 0 (addition modulo r). Taking k = 1 ls; l/w(c)l and i = kr,1 we get 
!hat s!; is a pre~ix of pref(ij, ij+l) ··· pref(ij+kr-l' i~+kr) = strings(c, ij)k, which 
itself is a substrmg of sk+ 1 for any s E strings(c). o 
~LAIM 3. If eac? of {sh, ... , si} is a substring of sk for some string s E 

stnngs(c) and sufficzently large k, then there exists a cycle of weight lsl = w(c) 
containing all these strings. 
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PROOF. In a (infinite) repetition of s, every string s; appears as a substring 
after every lsl characters. This naturally defines a circular ordering of the 
strings {sh, ... , sj) and the strings in c whose successive distances sum to 
lsl. D 

CLAIM 4. The superstring < s; , ... , s; ) is a substring of strings(c, i 0 )s; . 
U r- t 0 

PROOF. String <s; , ... , s; ) is clearly a substring of (s,. , ... , s,. , s,. ), 
0 r- I O r- l 0 

which by definition equals pref(i0 , i 1) ··· pref(i,_ 1, i0 )s;" = strings(c, i0 )s;0 • D 

CLAIM 5. If strings(c') = strings(c), then there exists a third cycle c with weight 
w( c) containing all vertices in c and all those in c'. 

PROOF. Follows from claims 2 and 3. D 

CLAIM 6. There exists a cycle c of weight card(strings(c)) containing all vertices 
in c. 

PROOF. Let u be the prefix of length card(strings(c)) of some strings 
s E strings(c). By our periodicity arguments, Jui divides lsl = w(c), and s = uj 
wher.e j = w(c)/lul. It follows that every string in strings(c) = [s] is a substring 
of u 1+ 1• Now use Claim 3 for strings(c) and u. o 

The following lemma has been proved in Tarhio and Ukkonen [1988] and 
Turner [ 1989]. Figure 2 gives a graphical interpretation of it. In the figure, the 
vertical bars surround pieces of string that match, showing a possible overlap 
between v- and u +, giving an upper bound on d(v-, u + ). 

LEMMA 7. Let u,u+,v-,u be strings, not necessarily different, such that 
ov(u, v) 2: max{ou(u, u+), ou(u-, u)}. Then, ov(u, u) + ov(u-, u+) 2: ou(u, u+) 
+ ov(v-, v), and d(u, v) + d(v-, u+)::; d(u, u+) + d(u-, v). 

That is, given the choice of merging u to u + and v- to v or instead merging 
u to v and v - to u +, the best choice is that which contains the pair of largest 
overlap. The conditions in the above lemma are also known as "Monge 
conditions" in the context of transportation problems [Alan et al., 1989; Barnes 
and Hoffman, 1985; Hoffman, 1963]. In this sense, the lemma follows from the 
observation that optimal shipping routes do not intersect. In the string context, 
we are transporting "items" from the ends of substrings to the fronts of 
substrings. 

3. A 4 · OPT(S) Bound for a Modified Greedy Algorithm 

Let S be a set of strings and Gs the associated graph. Now, although finding a 
minimum weight Hamiltonian cycle in a weighted directed graph is in general a 
hard problem, there is a polynomial-time algorithm for a similar problem 
known as the assignment problem [Papadimitriou and Steiglitz, 1982]. Here, the 
goal is simply to find a decomposition of the graph into cycles such that each 
vertex is in exactly one cycle and the total weight of the cycles is minimized. 
Let CYC(Gs) be the weight of the minimum assignment on graph Gs, so 
CYC(Gs) ::; TSP(Gs) ::; OPT(S). 

The proof that a modified greedy algorithm MGREEDY finds a superstring 
of length at most 4 · OPT(S) proceeds in two stages. We first show that 
an algorithm that finds an optimal assignment on Gs, then opens each cycle 
into a single string, and finally concatenates all such strings together has a 
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-d(u, u+)L..~.-----f------
u 

-4(u, v}~~-----1----- v 
v 

-d(v-,v)-

FIG. 2. Strings and overlaps. 

performance ratio of at most 4. We then show (Theorem 10) that in fact, for 
these particular graphs, a greedy strategy can be used to find optimal assign­
ments. This result can also be found (in a somewhat different form) as 
Theorem 1 in Hoffman [1963]. 

Consider the following algorithm for finding a superstring of the strings in S. 

Algorithm Concat-Cycles 

(1) On input S, create graph Gs and find a minimum weight assignment Con Gs. Let C be 
the collection of cycles {c1, ... , c P}. 

(2) For each cycle c; = i 1 --> ··· --> i,--> i 1, lets;= (s; , ... ,s;) be the string obtained by 
opening c;, where i 1 is arbitrarily chosen. The string s; has length at most w(c) +is; I 
by Claim 4. ' 

(3) Concatenate together the strings s; and produce the resulting string s as output. 

THEOREM 8. Algorithm Concat-Cycles produces a string of length at most 
4 · OPT(S). 

Before proving Theorem 8, we first need a preliminary lemma giving an 
upper bound on the amount of overlap possible between strings in different 
cycles of C. The lemma is also implied by the results in Fine and Wilf [1965]. 

LEMMA 9. Let c and c' be two cycles in a minimum weight assignment C with 
s E c and s' E c'. Then, the overlap betweens and s' is less than w(c) + w(c'). 

PROOF. Let x = strings(c) and x' = strings(c'). Since C is a minimum 
weight assignment, we know x -=F x'. Otherwise, by Claim 5, we could find a 
lighter assignment by combining the cycles c and c'. In addition, by Claim 6, 
w(c) ::; card(x). 

Suppose that s and s' overlap in a string u with lul ~ w(c) + w(c'). Denote 
the substring of u starting at the ith symbol and ending at the jth as , u ;, j· 
Since, by Claim 2, s = tk for some t E x and large enough k and s' = t'k for 
some t' Ex' and large enough k', we have that x = [u,,w<c) and x' = [u 1,w(c)· 

From x -:F x', we conclude that w(c) -=F w(c'); assume without loss of generality 
that w(c) > w(c'). Then 

Ul,w(c) = U1+w(c'),w(c)+w(c') = U1+w(c'),w(c)Uw(c)+l,w(c)+w(c') = U1+w(c'),w(c)Ul.w(c')· 

This shows that x has periodicity w(c') < w(c) ::; card(x), which contradicts 
the fact that card(x) is the minimum periodicity. D 

PROOF OF THEOREM 8. Since C = {c1, ... , cP} is an optimal assignment, 
CYC(Gs) = l:f= 1w(c;) ::; OPT(S). A second lower bound on OPT(S) can be 
determined as follows: For each cycle c;, let W; = w(c) and l; denote the 
length of the longest string in C;. By Lemma 9, if we consider the longest string 
in each cycle and merge them together optimally, the total amount of overlap 
will be at most 2l:f= 1w;. So the resulting string will have length at least 
Lf= 1l; - 2w;. Thus, OPT(S) ~ max(Lf= 1w;,Ef= 1l; - 2w). 
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The output string s of algorithm Concat-Cyc!es has length at most "Lf'= 1 l; + w; 
(Claim 4). So, 

p 

isl S Lfi + W; 

i= 1 

p p 

= L l; - 2w; + L, 3w; 
i= 1 

s OPT(S) + 3 · OPT(S) 

= 4 · OPT(S). D 

We are now ready to present the algorithm MGREEDY, and show that it in 
fact mimics algorithm Concat-Cycles. 

Algorithm MGREEDY 

(1) Let S be the input set of strings and T be empty. 
(2) While S is non-empty, do the following: Choose s, t E S (not necessarily distinct) such 

that 01•(s, t) is maximized, breaking ties arbitrarily. Ifs '* t, then removes and t from S 
and replace them with the merged string ( s, t ). If s = t, then just remove s from S and 
add it to T. 

(3) When S is empty, output the concatenation of the strings in T. 

We can look at MG REEDY as choosing edges in the overlap graph ( V = 

S, E = V X V, ov(, )). When MG REEDY chooses strings sand t as having the 
maximum overlap (where t may equal s), it chooses the directed edge from 
last(s) to first(t) (see Claim 1). Thus, MGREEDY constructs/joins paths, and 
closes them into cycles, to end up with a collection of disjoint cycles M c E 
that cover the vertices of G5 . We will call M the assignment created by 
MGREEDY. Now think of MGREEDY as taking a list of all the edges sorted 
in the decreasing order of their overlaps (resolving ties in some definite way), 
and going down the list deciding for each edge whether to include it or not. Let 
us say that an edge e dominates another edge f if e precedes f in this list and 
shares its head (or tail) with the head (or tail, respectively) of f. By the 
definition of MGREEDY, it includes an edge f if and only if it has not yet 
included an edge dominating f. 

THEOREM 10. The assignment created by algorithm MGREEDY is an optimal 
assignment. 

PROOF. Note that the overlap weight of an assignment and its distance 
weight add up to the total length of all strings. Accordingly, an assignment is 
optimal (i.e., has minimum total weight in the distance graph) if and only if it 
has maximum total overlap. Among the maximum overlap assignments, let N 
be one that has the maximum number of edges in common with M. We shall 
show that M = N. 

Suppose this is not the case, and let e be the edge of maximum overlap in 
the symmetric difference of M and N, with ties broken the same way as by 
MG REEDY. Suppose first that this edge is in N \ M. Since MG REEDY did 
not include e, it must have included another adjacent edge f that dominates e. 
Edge f cannot be in N (since N is an assignment), therefore f is in M \ N, 
contradicting our choice of the edge e. Suppose that e = k ~ j is in M \ N. 
The two N edges i ~ j and k ~ l that share head and tail with e are not in M, 
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and thus are dominated by e. Since ov(k, j) ~ max{ov(i, j), ov(k, l)}, by Lemma 
7, ov(i, j) + ov(k, l) :::; ov(k, j) + ov(i, l). Thus, replacing in N, these two 
edges with e = k - j and i - l would yield an assignment N' that has more 
edges in common with M and has no less overlap than N. This would 
contradict our choice of N. o 

Since algorithm MGREEDY finds an optimal assignment, the string it 
produces is no longer than the string produced by algorithm Concat-Cycles. On 
fact, it could be shorter since it breaks each cycle in the optimum position.) 

4. Improving to 3 · OPT(S) 

Recall that in the last step of algorithm MGREEDY, we simply concatenate all 
the strings in set T without any compression. Intuitively, if we instead try to 
overlap the strings in T, we might be able to achieve a bound better than 
4 · OPT(S). Let TGREEDY denote the algorithm that operates in the same 
way as MGREEDY except that in the last step, it merges the strings in T by 
running GREEDY on them. We can show that TGREEDY indeed achieves a 
better bound: it produces a superstring of length at most 3 · OPT(S). 

THEOREM 11. Algorithm TGREEDY produces a superstring of length at most 
3 · OPT(S). 

PROOF. Let S = {s1, ••• , sm} be a set of strings and s be the superstring 
obtained by TGREEDY on S. Let n = OPT(S) be the length of a shortest 
superstring of S. We show that lsl :::; 3n. 

Let T be the set of all "self-overlapping" strings obtained by MG REEDY on 
S and C be the assignment created by MGREEDY. For each x E T, let ex 
denote the cycle in C corresponding to string x, and let wx = w(cx) be its 
weight. For any set R of strings, define llRll = Lx e Rlxl to be the total length of 
the strings in set R. Also let w = LxeTwx. Since CYC(G5 ):::; TSP(Gs):::; 
OPT(S), we have w :::; n. 

By Lemma 9, the compression achieved in a shortest superstring of T is less 
than 2w, that is, llTll - n7 :::; 2w. By the results in Tarhio and Ukkonen [1983) 
and Turner [1989), we know that the compression achieved by GREEDY on set 
T is at least half the compression achieved in any superstring of T. That is, 

llTll - nT llTll - n 7 
llTll - lsl ~ 2 = llTll - nT - 2 ~ llTll - nT - w. 

So, lsl :::; n7 + w. 
For each x E T, let si be the string in cycle c x that is a prefix of x. Let 

S' = {si Ix E T}, n' = OPT(S'), S" = {strings(cx, i)s; Ix E T}, and n" = 
mnrl · 

By Claim 4, a superstring for S" is also a superstring for T, so n 7 :::; n", 
where n7 = OPT(T). For any permutation TT on T, we have IS~ I :::; IS~ I + 
Lx E rWx, so n" :::; n' + w, where s~ and s~ are the superstrings obtained by 
overlapping the members of S' and S", respectively, in the order given by TT. 

Observe that S' ~ S implies n' :::; n. Summing up, we get 

n 7 s n" s n' + w:::; n + w. 

Combined with lsl :::; n 7 + w, this gives lsl :::; n + 2w :::; 3n. o 
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5. GREEDY Achieves Linear Approximation 

One would expect that an analysis similar to that of MGREEDY would also 
work for the original GREEDY. This turns out not to be the case. The analysis 
of GREEDY is severely complicated by the fact that it continues processing 
the "self-overlapping" strings. MGREEDY was especially designed to avoid 
these complications, by separating such strings. Let GREEDY(S) denote the 
length of the superstring produced by GREEDY on a set S. It is tempting to 
claim that 

GREEDY(S u {s}) ~ GREEDY(S) +is[. 

If this were true, a simple argument would extend the 4 · OPT(S) result for 
MGREEDY to GREEDY. But the following counterexample disproves this 
seemingly innocent claim. Let 

Now 

GREEDY(S) =learn+ 1cmbm+ 1c/ = 3m + 4, 

whereas 

GREEDY(S U {s}) = /bmcmbm+ 1am+ 1cmam/ 

= 6m + 2 > (3m + 4) + (2m + 2). 

With a more complicated analysis, we nevertheless show that 

THEOREM 12. GREEDY produces a string of length at most 4 · OPT(S). 

Before proving the theorem formally, we give a sketch of the basic idea 
behind the proof. If we want to relate the merges done by GREEDY to an 
optimal assignment, we have to keep track of what happens when GREEDY 
violates the maximum overlap principle, that is, when some self-overlap is 
better than the overlap in GREEDY's merge. One thing to try is to charge 
GREEDY some extra cost that reflects that an optimal assignment on the new 
set of strings (with GREEDY's merge) may be somewhat longer than the 
optimal assignment on the former set (in which the self-overlapping string 
would form a cycle). If we could just bound these extra costs, then we would 
have a bound for GREEDY. Unfortunately, this approach fails because the 
self-overlapping string may be merged by GREEDY into a larger string which 
itself becomes self-overlapping, and this nesting could go arbitrarily deep. Our 
proof concentrates on the innermost self-overlapping strings only. These so 
called culprits form a linear order in the final superstring. We avoid the 
complications of higher level self-overlaps by splitting the analysis in two parts. 
In one part, we ignore all the original substrings that connect first to the right 
of a culprit. In the other part, we ignore all the original substrings that connect 
first to the left of a culprit. In each case, it becomes possible to bound the extra 
cost. This method yields a bound of 7 · OPT(S). By combining the two analyses 
in a more clever way, we can even eliminate the effect of the extra costs and 
obtain the same 4 · OPT(S) bound as we found for MGREEDY. A detailed 
formal proof follows: 

PROOF OF THEOREM 12. We need some notions and lemmas. Think of both 
GREEDY and MGREEDY as taking a list of all edges sorted by overlap, and 
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going down the list deciding for each edge whether to include it or not. Call an 
edge better (worse) if it appears before (after) another in this list_. Better edges 
have at least the overlap of worse ones. Recall that an edge dommates another 
iff it is better and shares its head or tail with the other one. 

At the end, GREEDY has formed a Hamiltonian path 
S1 --+ S2 --+ ••• --+ Sm 

of "greedy" edges. (Without loss of generality, the strings are renumber~d to 
reflect their order in the superstring produced by GREEDY.) For convemence 
we usually abbreviate s; to i. GREEDY does not include an edge f iff 

(1) f is dominated by an already chosen edge e, or 
(2) f is not dominated but it would form a cycle. 

Let us call the latter "bad back edges"; a bad back edge f = j --+ i necessar­
ily has i :::;; j. Each bad back edge f = j --+ i corresponds to a string 
(s;,S;+ 1, ... ,s) that, at some point in the execution of GREEJ?Y, has _more 
(self) overlap than the pair that is merged. When GREEDY considers /, 1t has 
already chosen all (better) edges on the greedy path from i to j, but not yet the 
(worse) edges i - 1 --+ i and j --+ j + 1. The bad back edge f is said to span 
the closed interval I1 = [i, j]. The above observations provide a proof of the 
following lemma. 

LEMMA 13. Let e and f be two bad back edges. The closed intervals le and If 
are either disjoint, or one contains the other. If I,, :::>If, then e is worse than f 
(thus, oi>(e) :::;; ov(f)). 

Thus, the intervals of the bad back edges are nested and bad back edges do 
not cross each other. Culprits are the minimal (innermost) such intervals. Each 
culprit [i, j] corresponds to a culprit string (s;, S;+ 1, ... , sj >. Note that, because 
of the minimality of the culprits, if f = j --+ i is the back edge of a culprit [i, j], 
and e is another bad back edge that shares head or tail with f, then I,. :::> I1, 
and therefore f dominates e. 

Call the worst edge between every two successive culprits on the greedy path 
a weak link. Note that weak links are also worse than all edges in the two 
adjacent culprits as well as their back edges. If we remove all the weak links, 
the greedy path is partitioned into a set of paths, called blocks. Every block 
consists of a nonempty culprit as the middle segment, and (possibly empty) left 
and right extensions. The set of strings (nodes) S is thus partitioned into three 
sets S1, S,," S, of left, middle, and right strings. The example in Figure 3 has 
seven substrings, of which 2 by itself and the merge of 4, 5, and 6 form the 
culprits (indicated by thicker lines). Bad back edges are 2 --+ 2, 6 --+ 4, and 
6 ~ 1. The weak link 3 ~ 4 is the worst edge between culprits [2] and [4, 5, 6]. 
The blocks in this example are thus [l, 2, 3] and [4, 5, 6, 7], and we have S1 = {l}, 
Sm = {2, 4, 5, 6}, S, = {3, 7}. 

The following lemma shows that a bad back edge must be from a middle or 
right node to a middle or left node. 

LEMMA 14. Let f = j ~ i be a bad back edge. Node i is either a left node or 
the first node of a culprit. Node j is either a right node or the last node of a culprit . 

. PROOF. Let c = _[k, /]?e. the leftmost cul~rit in If. Now either i = k is the 
first node of c, or 1 < k 1s m the left extension of c, or i < k is in the right 
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FIG. 3. Culprits and weak links in Greedy merge path. 

extension of the culprit c' to the left of c. In the latter case, however, 11 
includes the weak link, which by definition is worse than all edges between the 
culprits c' and c, including the edge i - 1 ~ i. This contradicts the observa­
tion preceding Lemma 13. A similar argument holds for sj. o 

Let Cm be the assignment on the set S"' of middle strings (nodes) that has 
one cycle for each culprit, consisting of the greedy edges together with the back 
edge of the culprit. If we consider the application of the algorithm MG REEDY 
on the subset of strings Sm, it is easy to see that the algorithm will actually 
construct the assignment Cm. Theorem 10 then implies the following lemma: 

LEMMA 15. cm is an optimal assignment on the set Sm of middle strings. 

Let the graph G1 = (J .. /, E) consist of the left/middle part of all blocks in 
the greedy path, that is, JI/ = S1 U Sm and £ 1 is the set of non-weak greedy 
edges between nodes of JI/. Let M 1 be a maximum overlap assignment on JI/, as 
created by MGREEDY on the ordered sublist of edges in JI/ x JI/. Let 
V,. = Sm U S,, and define similarly the graph G, = (V,., £,) and the optimal 
assignment M, on the right/middle strings. Let le be the sum of the lengths of 
all culprit strings. Define 11 = L.; Es d(s;, s;+ 1) as the total length of all left 
extensions and l, = L.; E s/Cs;R, s;R- 1) 'as the total length of all right extensions. 
(Here xR denotes the reversal of string x.) The length of the string produced 
by GREEDY is 11 + (. + l, - ow, where ow is the summed block overlap (i.e., 
the sum of the overlaps of the weak links). 

Denoting the overlap L.e E E ov( e) of a set of edges E as ov( £), define the 
cost of a set of edges E on a set of strings (nodes) V as 

cost(E) = IJVll - ov(E). 

Note that the distance plus overlap of a string s to another equals lsl. Because 
an assignment (e.g., M 1 or M,) has an edge from each node, its cost equals its 
distance weight. Since JI/ and V,. are subsets of S and M 1 and M, are optimal 
assignments, we have cost(M1) s n and cost(M,) s n. For E1 and E,, we have 
that cost(E1) = 11 +le and cost(E,) = l, + ( .. 

We have established the following (in)equalities: 

11 +le + f, = (ii + l) + (le + /,) - le 

= cost(E1) + cost(E,) - f.. 

= llJ;/11 - ov(E1 ) + llV,.11 - ov(E,) - le 

= cost ( M1) + ou ( M1) - ov ( £ 1) + cost ( M,) + ov ( M,) 

- ov(E,) - le 

s 2n + ov(M1) - ov(E1) + ov(M,) - ov(E,) - l". 
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FIG. 4. Left/middle and middle/right parts with weak links. 

We proceed by bounding the overlap differences in the above equation. Our 
basic idea is to charge the overlap of each edge of M to an edge of E or a 
weak link or the back edge of a culprit in a way such that every edge of E and 
every weak link is charged at most once and the back edge of each culprit is 
charged at most twice. This is achieved through combining the left/middle and 
middle/right parts carefully as shown below. For convenience, we will refer to 
the union operation for multisets (i.e., allowing duplicates) as the disjoint 
union. 

Let V be the disjoint union of Vi and V,., let E be the disjoint union of £ 1 

and Er, and let G = (V, E) be the disjoint union of G 1 and G,. Thus, each 
string in S1 U S, occurs once, while each string in S 111 occurs twice in G. We 
modify E to take advantage of the block overlaps. Add each weak link to E as 
an edge from the last node in the corresponding middle /right path of Gr to 
the first node of the corresponding left/middle path of G 1• This procedure 
yields a new set of edges E'. Its overlap equals ou(E') = ov(E1) + ov(E,) +ow. 
A picture of ( V, E') for our previous example is given in Figure 4. 

Let M be the disjoint union of M 1 and M,, an assignment on graph G. Its 
overlap equals ov(M) = ov(M1) + ov(M,). Every edge of M connects two Vi 
nodes or two V,. nodes; thus, all edges of M satisfy the hypothesis of the 
following lemma. 

LEMMA 16. Let N be any assignment on V. Let e = t _,. h be an edge of 
N \ E' that is not in V, X Vi- Then e is dominated by either 

(1) an adjacent E' edge, or 
(2) a culprit's back edge with which it shares the head h and h E V,, or 
(3) a culprit's back edge with which it shares the tail t and t E JI";. 

PROOF. Suppose first that e corresponds to a bad back edge. By Lemma 14, 
h corresponds to a left node or to the first node of a culprit. In the latter case, 
e is dominated by the back edge of the culprit (see the comment after Lemma 
13). Therefore, either h is the first node of a culprit in V, (and case (2) holds), 
or else h E Vi- Similarly, either t is the last node of a culprit in Vi (and case (3) 
holds) or else t E V,.. Since e is not in V, X JI";, it follows then that case (2) or 
case (3) holds. (Note that, if e is in fact the back edge of some culprit, then 
both cases (2) and (3) hold.) 

Suppose that e does not correspond to a bad back edge. Then e must be 
dominated by some greedy edge since it was not chosen by GREEDY. If the 
greedy edge dominating e is in E', then we have case ( 1). If it is not in E', then 
either h is the first node of a culprit in V, or t is the last node of a culprit in Vi, 
and in both cases f is dominated by the back edge of the culprit. Thus, we have 
case (2) or (3). D 
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Although Lemma 16 ensures that each edge of M is bounded in overlap, it 
may be that some edges of E' are double charged. We modify M without 
decreasing its overlap and without invalidating Lemma 16 into an assignment 
M' such that each edge of E' is dominated by one of its adjacent M' edges. 

LEMMA 17. Let N be any assignment on V such that N \ E' does not contain 
any edges in V, x Ji/. Then there is an assignment N' on V satisfying the following 
properties: 

(1) N' \ E' has also no edges in V, X v;, 
(2) ov(N') 2 ov(N), 
(3) each edge in E' \ N' is dominated by one of its two adjacent N' edges. 

PROOF. Since N already has the first two properties, it suffices to argue 
that if N violates property (3), then we can construct another assignment N' 
that satisfies properties 1 and 2, and has more edges in common with E'. 

Let e = k ---+ j be an edge in E' - N that dominates both adjacent N edges, 
f = i ---+ j, and g = k---+ !. By Lemma 7, replacing edges f and g of N with e 
and i ---+ l produces an assignment N' with at least as large overlap. To see 
that the new edge i ---+ l of N' \ E' is not in V, x Ji/, observe that if i E V, then 
j E V, because of the edge f = i ---+ j (N \ E' does not have edges in V, x V';), 
which implies that k is in V, because of the E' edge e = k---+ j (E' does not 
have edges in v; x V,), which implies that also l E V, because of the N edge 
g = k---+ l. 0 

By Lemmas 16 and 17, we can construct from the assignment M another 
assignment M' with at least as large total overlap, and such that we can charge 
the overlap of each edge of M' to an edge of E' or to the back edge of a 
culprit. Every edge of E' is charged for at most one edge of M', while the back 
edge of each culprit is charged for at most two edges of M': for the M' edge 
entering the first culprit node in V, and the edge coming out of the last culprit 
node in v;. Therefore, ov(M) :::;:: ov(M') :::;:: ov(E') + 2oe, where oc is the 
summed overlap of all culprit back edges. Denote by we the summed weight of 
all culprit cycles, that is, the weight of the (optimal) assignment Cm on Sm from 
Lemma 15. Then, le =we + oc. As in the proof of Theorem 8, we have 
oc - 2we :::;:: n and we :::;:: n. (Note that the overlap of a culprit back edge is less 
than the length of the longest string in the culprit cycle.) Putting everything 
together, the string produced by GREEDY has length 

11 +le + lr - ow :::;:: 2n + ov(M1) - ov(E1) + ov(Mr) - ov(Er) - le - Ow 

:::;:: 2n + ov(M') - ov(E') - le 

:::;:: 2n + 2oc - le 

= 2n + oc - we 

:::;:: 3n +we 

:::;:: 4n. 

6. Which Algorithm is the Best? 

0 

Having proved various bounds for the algorithms GREEDY, MGREEDY, 
and TGREEDY, one may wonder what this implies about their relative 
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performance. First of all, we note that MGREEDY can never do better than 
TGREEDY since the latter applies the GREEDY algorithm to an intermedi­
ate set of strings that the former merely concatenates. 

Does the 3n bound for TGREEDY then mean that it is the best of the 
three? This proves not always to be the case. In the example 
{c(ab)\ (ab)k + 1a, (ba)kc}, GREEDY produces the shortest superstring 
c(ab)k+ 1ac of length n = 2k + 5, whereas TGREEDY first separates the 
middle string to end up with something like c(ab)kac(ab)k+ 1a of length 
4k + 6. 

Perhaps then GREEDY is always better than TGREEDY, despite the fact 
that we cannot prove as good an upper bound for it. This turns out not to be 
the case either, as shown by the following example. On input 
{cab\ abkabka, bkdabk- 1}, TGREEDY separates the middle string, merges the 
other two, and next combines these to produce the shortest superstring 
cab"dab'abka of length 3k + 6, whereas GREEDY merges the first two, 
leaving nothing better than cabkabkabkdabk- 1 of length 4k + 5. 

Another greedy type of algorithm that may come to mind is one that 
arbitrarily picks any of the strings and then repeatedly merges on the right the 
string with maximum overlap. This algorithm, call it NAIVE, turns out to be 
disastrous on examples like 

{ abcde, bcde#a, cde#a#b, de#a#b #c, e#a#b#c#d, #a#b#c#d#e}. 

Instead of producing the optimal abcde#a#b#c#d#e, NAIVE might pick 
#a#b#c#d#e as a starting point to produce 

#a#b#c#d#e#a#b#c#de#a#b#cde#a#bcde#abcde. 

1t is clear that in this way superstrings may be produced whose length grows 
quadratically in the optimum length n. 

7. Lower Bound 

We show here that the superstring problem is MAX SNP-hard. This implies 
that if there is a polynomial time approximation scheme for the superstring 
problem, then there is one also for a wide class of optimization problems, 
including several variants of maximum satisfiability, the node cover and inde­
pendent set problems in bounded-degree graphs, max cut, etc. This is consid­
ered rather unlikely. 1 

Let A, B be two optimization (maximization or minimization) problems. We 
say that A L-reduces (for linearly reduces) to B if there are two polynomial 
time algorithms f and g and constants a and f3 > 0 such that: 

(1) Given an instance a of A, algorithm f produces an instance b of B such 
that the cost of the optimum solution of b, opt(b), is at most a· opt(a), and 

(2) Given any solution y of b, algorithm g produces in polynomial time a 
solution x of a such that lcost(x) - opt(a)I ~ {3 lcost(y) - opt( b )I. 

Some basic facts about L-reductions are: First, the composition of two 
L-reductions is also an L-reductions. Second, if problem A L-reduces to 
problem B and B can be approximated in polynomial time with relative error E 

1In fact, Arora et al. [1992] have recently shown that MAXSNP-hard problems do not have 
polynomial time approximation schemes, unless P = NP. 
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(i.e., within a factor of 1 + E or 1 - E depending on whether B is a minimiza­
tion or maximization problem), then A can be approximated with relative error 
a {3E. In particular, if B has a polynomial time approximation scheme, then so 
does A. The class MAXSNP is a class of optimization problems defined 
syntactically in Papadimitriou and Yannakakis [1988]. It is known that every 
problem in this class can be approximated within some constant factor. A 
problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced to 
it. 

THEOREM 18. The superstring problem is MAX SNP-hard. 

PROOF. The reduction is from a special case of the TSP with triangle 
inequality. Let TSP(l, 2) be the TSP restricted to instances where all the 
distances are either 1 or 2. We can consider an instance to this problem as 
being specified by a graph H; the edges of H are precisely those that have 
length 1 while the edges that are not in H have length 2. We need here the 
version of the TSP where we seek the shortest Hamiltonian path (instead of 
cycle), and, more importantly, we need the additional restriction that the graph 
H be of bounded degree (the precise bound is not important). It was shown in 
Papadimitriou and Yannakakis [1993] that the TSP(l, 2) problem (even for this 
restricted version) is MAX SNP-hard. 

Let H be a graph of bounded degree D specifying an instance of TSP( 1, 2). 
The hardness result holds for both the symmetric and the asymmetric TSP (i.e., 
for both undirected and directed graphs H). We let H be a directed graph 
here. Without loss of generality, assume that each vertex of H has outdegree 
at least 2. The reduction is similar to the one of Gallant et al. [ 1980] used to 
show the NP-completeness of the superstring decision problem. We have to 
prove here that it is an L-reduction. For every vertex of L' of H, we have two 
letters u and u'. In addition, there is one more letter #. Corresponding to each 
vertex v we have a string v # v', called the connector for L'. For each vertex v, 
enumerate the edges out of l.' in an arbitrary cyclic as (l', w0 ), ••• , ( u, wt!_ 1) (* ). 
Corresponding to the ith edge (v, w) out of u, we have a string p;(o) = 

v'w;_ 1v'w;, where subscript arithmetic is modulo d. We say that these strings 
are associated with v. 

Let n be the number of vertices and m the number of edges of H. If all 
vertices have degree at most D, then m ::::; Dn. Let k be the minimum number 
of edges whose addition to H suffices to form a Hamiltonian path. Thus, the 
optimal cost of the TSP instance is n - 1 + k. We shall argue that the length 
of the shortest common superstring is 2m + 3n + k + 1. It will follow then 
that the reduction is linear since m is linear in n. 

Consider the distance-weighted graph G5 for this set of strings, and let G 2 

be its subgraph with only edges of minimal weight (2). Clearly, G 2 has exactly 
one component for each vertex of H, which consists of a cycle of the associated 
p strings, and a connector that has an edge to each of them. We need only 
consider "standard" superstrings in which all strings associated with some 
vertex form a subgraph of G 2 , so that only the last p string has an outgoing 
edge of weight more than 2 (3 or 4). Namely, if some vertex fails this 
requirement, then at least two of its associated strings have outgoing edges of 
weight more than 2, thus we do not increase the length by putting all its p 
strings directly after its connector in a standard way. A standard superstring 
naturally corresponds to an ordering of vertices v 1, v 2 , • •• , on. 



646 A. BLUM ET AL. 

For the converse, there remains a choice of which string q succeeds a 
connector u;#u;. If H has an edge from U; to V;+ 1 and the "next" edge out of 
u; (in (* )) goes to, say uj, then choosing q = u; U;+ 1u; uj results in a weight of 3 
on the edge from the last p string to the next connector U;+ 1#u;+ 1' whereas 
this weight would otherwise be 4. If H doesn't have this edge, then the choice 
of q doesn't matter. Let us call a superstring "Standard" if in addition to being 
standard, it also satisfies this latter requirement for all vertices. 

Now suppose that the addition of k edges to H gives a Hamiltonian path 
u" u2 , ••• , un_ 1, un. Then, we can construct a corresponding Standard super­
string. If the out-degree of U; is d;, then its length will be E?= 1(2 + 2d; + 1) + 
k + 1 = 3n + 2m + k + 1. 

Conversely, suppose we are given a common superstring of length 3n + 2m 
+ k + 1. This can then be turned into a Standard superstring that is no longer. 
If v1, v2, ••• , vn is the corresponding order of vertices, it follows that H cannot 
be missing more thank of the edges (u;, V;+ 1). D 

Since the strings in the above L-reduction have bounded length (4), the 
reduction applies also to the maximization version of the superstring problem 
[Tarhio and Ukkonen, 1988; Turner, 1989]. That is, maximizing the total 
compression is also MAX SNP-hard. 

8. Open Problems 

We end the paper with several open questions raised from this research: 

(1) Obtain an algorithm that achieves a performance better than 3 times the 
optimum. 

(2) Prove or disprove the conjecture that GREEDY achieves 2 times the 
optimum. 
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