
Linear Approximation of Shortest Superstrings

AVRIM BLUM

Massachusetts Institute of Technology, Cambridge, Massachusetts

TAO JIANG

McMaster University, Hamilton, Ontario, Canada

MING LI

Uni1 1ersity of Waterloo, Waterloo, Ontario, Canada

JOHN TROMP

CW!, Amsterdam, The Netherlands

AND

MIHALIS Y ANNAKAKIS

AT & T Bell Laboratories, Murray Hill, New Jersey

Abstract. We consider the following problem: given a collection of strings s1, ••• ,sm, find the
shortest string s such that each s; appears as a substring (a consecutive block) of s. Although this
problem is known to be NP-hard, a simple greedy procedure appears to do quite well and is
routinely used in DNA sequencing and data compression practice, namely: repeatedly merge the
pair of (distinct) strings with maximum overlap until only one string remains. Let n denote the

A. Blum was supported by a National Science Foundation (NSF) Graduate Fellowship. Part of
this work was done while A. Blum was visiting AT & T Bell Labs.
T. Jiang was supported in part by a grant from SERB, McMaster University and NSERC
Operating Grant OGP0046613.
M. Li was supported in part by the NSERC Operating Grants OGP0036747 and OGP0046506.
J. Tromp was supported in part by NSERC Grant OGP0036747 while the author was visiting at
the University of Waterloo.
Authors' present addresses: A. Blum, School of Computer Science, Carnegie-Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213. E-mail: avrim@theory.cs.cmu.edu; T. Jiang, Depart­
ment of Computer Science, McMaster University, Hamilton, Ont., Canada L8S 4Kl. E-mail:
jiang<Q•maccs. mcmaster.ca; M. Li, Department of Computer Science, University of Waterloo,
Waterloo, Ont., Canada N3L 30 I. E-mail: mli@watmath.waterloo.edu; J. Tromp, CWI, P.O. Box
4079, 1009 AB Amsterdam, The Netherlands. E-mail: tromp@cwi.nl; M. Yannakakis, Room
2C-319, AT&T Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974. E-mail: mihalis@re­
search.att.com.

Permission to copy without fee all or part of this material is granted provided that the copies arc
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
© 1994 ACM 0004-5411/94/0700-0630$03.50

Journal of the Association for Computing Machinery, Vol. 41, No. 4, July 1994, pages 630-647.

Linear Approximation of Shortest Superstrings 631

length of the optimal superstring. A common conjecture states that the above greedy procedure
produces a superstring of length O(n) (in fact, 2n), yet the only previous nontrivial bound known
for any polynomial-time algorithm is a recent O(n log n) result.

We show that the greedy algorithm does in fact achieve a constant factor approximation,
proving an upper bound of 4n. Furthermore, we present a simple modified version of the greedy
algorithm that we show produces a superstring of length at most 3n. We also show the superstring
problem to be MAX SNP-hard, which implies that a polynomial-time approximation scheme for
this problem is unlikely.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-computations on discrete structures; G.2.1 [Discrete
Mathematics]: Combinatorics-combinatorial algorithms

General Terms: Algorithms

Additional Key Words and Phrases: Approximation algorithm, shortest common superstring

1. Introduction

Given a finite set of strings, we would like to find their shortest common
superstring. That is, we want the shortest possible string s such that every
string in the set is a substring of s.

The question is NP-hard [Gallant et al., 1980; Garey and Johnson, 1979].
Due to its important applications in data compression [Storer, 1988] and DNA
sequencing [Lesk, 1988; Li, 1990; Peltola et al., 1983], efficient approximation
algorithms for this problem are indispensable. We give an example from the
DNA sequencing practice. A DNA molecule can be represented as a character
string over the set of nucleotides {A, C, G, T}. Such a character string ranges
from a few thousand symbols long for a simple virus to approximately 3 x 109

symbols for a human being. Determining this representation for different
molecules, or sequencing the molecules, is a crucial step towards understanding
the biological functions of the molecules. With current laboratory methods,
only small fragments (chosen from unknown locations) of at most 500 bases
can be sequenced at a time. Then from hundreds, thousands, sometimes
millions of these fragments, a biochemist assembles the superstring represent­
ing the whole molecule. A simple greedy algorithm is routinely used [Lesk,
1988; Peltola et al., 1983] to cope with this job. This algorithm, which we call
GREEDY, repeatedly merges the pair of (distinct) strings with maximum
overlap until only one string remains. It has been an open question as to how
well GREEDY approximates a shortest common superstring, although a com­
mon conjecture states that GREEDY produces a superstring of length at most
two times optimal [Storer, 1988; Tarhio and Ukkonen, 1988; Turner, 1989).

From a different point of view, Li [1990] considered learning a superstring
from randomly drawn substrings in the Valiant [1984] learning model. In a
restricted sense, the shorter the superstring we obtain, the smaller the number
of samples are needed to infer a superstring. Therefore, finding a good
approximation bound for shortest common superstring implies efficient learn­
ability or inferability of DNA sequences [Li, 1990]. Our linear approximation
result improves Li's O(n log n) approximation by a multiplicative logarithmic
factor.

Tarhio and Ukkonen [1988] and Turner [1989] established some performance
guarantees for GREEDY with respect to the "compression" measure. This
basically measures the number of symbols saved by GREEDY compared to
plainly concatenating all the strings. It was shown that if the optimal solution

632 A. BLUM ET AL.

saves l symbols, then GREEDY saves at least 1/2 symbols. But, in general, this
implies no performance guarantee with respect to optimal length since in the
best case this only says that GREEDY produces a superstring of length at most
half the total length of all the strings.

In this paper, we show that the superstring problem can be approximated
within a constant factor, and in fact that algorithm GREEDY produces a
superstring of length at most 4n. Furthermore, we give a simple modified
greedy procedure MGREEDY that also achieves a bound of 4n, and then
present another algorithm TGREEDY, based on MGREEDY, that we show
achieves 3n.

The rest of the paper is organized as follows: Section 2 contains notation,
definitions, and some basic facts about strings. In Section 3, we describe our
main algorithm MGREEDY with its proof. This proof forms the basis of the
analysis in the next two sections. MGREEDY is improved to TGREEDY in
Section 4. We finally give the 4n bound for GREEDY in Section 5. Section 6
presents a simple comparison of the performance of these algorithms. In
Section 7, we show that the superstring problem is MAX SNP-hard that implies
that there is unlikely to exist a polynomial-time approximation scheme for the
superstring problem.

2. Preliminaries

Let S = {s 1, ••• , s m} be a set of strings over some alphabet k. Without loss of
generality, we assume that the set S is "substring-free" in that no string s; E S
is a substring of any other sj E S. A common superstring of S is a string s such
that each s; in S is a substring of s. That is, for each s;, the string s can be
written as U;S;U; for some u 1 and u1• In this paper, we use n and OPT(S)
interchangeably for the length of the shortest common superstring for S. Our
goal is to find a superstring for S whose length is as close to OPT(S) as
possible.

Example. Assume we want to find the shortest common superstring of all
words in the following sentence: "Alf ate half lethal alpha alfalfa". The word
"alf' is a substring of both "half' and "alfalfa'', so we can immediately
eliminate it. Our set of words is now 50 ={ate, half, lethal, alpha, alfalfa}. A
trivial superstring is "atehalflethalalphaalfalfa" of length 25, which is simply
the concatenation of all substrings. A shortest common superstring is
"lethalphalfalfate", of length 17, saving 8 characters over the previous one (a
compression of 8). Looking at what GREEDY would make of this example, we
see that it would start out with the largest overlaps from "lethal" to "half' to
"alfalfa" producing "lethalfalfa". It then has 3 choices of single character
overlap, two of which lead to another shortest superstring "lethalfalfalphate",
and one of which is lethal in the sense of giving a superstring that is one
character longer. In fact, it is easy to give an example where GREEDY outputs
a string almost twice as long as the optimal one, for instance on input
{c(ab)k, (ba)k, (ab)kc}.

For two strings s and t, not necessarily distinct, let v be the longest string
such that s = uv and t = vw for some non-empty strings u and w. We call \v\
the (amount of) overlap between s and t, and denote it as ov(s, t). Further­
more, u is called the prefix of s with respect to t, and is denoted pref(s, t).
Finally, we call \pref(s, t)\ = \u\ the distance from s to t, and denote it as

Linear Approximation of Shortest Superstrings 633

d(s, t). So, the string uvw = pref(s, t)t, of length d(s, t) + ltl =is!+ It! -
ou(s, t) is the shortest superstring of s and t in which s appears (strictly)
before t, and is also called the merge of s and t. For s;, s E S, we will
abbreviate pref(s;, sf) to simply pref(i, j), and d(s;, s) and od/, s) to d(i, j)
and ou(i, j) respectively. The overlap between a string and itself is called a
self-overlap. As an example of self-overlap, we have for the string s =
undergrounder an overlap of ov(s, s) = 5. Also, pref(s, s) = undergro and
d(s,s) = 8. The string s = alfalfa, for which ov(s, s) = 4, shows that the
overlap is not limited to half the total string length.

Given a list of strings s; 1, s,,, ... , s;,, we define the superstring s = (s;, ... , s;)
to be the string pref(i 1 ,io)prefUo,i~)··· pref(i,_ 1,i,)s;. That is, sis the short­
est string such that s; 1, s;,, ... , s;~ appear in order in that string. For a super­
string of a substring-free set, this order is well-defined, since substrings cannot
"start" or "end" at the same position, and if substring s1 starts before sk, then
s1 must also end before sk. Define flrst(s) = s;, and last(s) = s;,- In each
iteration of GREEDY the following invariant holds:

CLAIM 1. For two distinct strings s and tin GREEDY's set of strings, neither
flrst(s) nor last(s) is a substring of t.

PROOF. Initially, flrst(s) = last(s) = s for all strings, so the claim follows
from the fact that S is substring-free. Suppose that the invariant is invalidated
by a merge of two strings t 1 and t2 into a string t = (t1, t 2) that has, say,
first(s) as a substring. Let t = u first(s) I.'. Since first(s) is not a substring of
either t 1 or t 2 , it must properly "contain" the piece of overlap between t 1 and
t 2 , that is, l.first(s)i > ou(t 1, t 2) and lul < d(t 1, t 2). Hence, odt1, s) > odt 1, t2);

a contradiction. o
So when GREEDY (or its variation MGREEDY that we introduce later)

chooses s and t as having the maximum overlap, then this overlap ou(s, t) in
fact equals ov(last(s), first(t)), and as a result, the merge of s and t is
(flrst(s), ... , last(s), first(t), ... , last(t)). We can therefore say that GREEDY
orders the substrings, by finding the shortest superstring in which the substrings
appear in that order.

We can rephrase the above in terms of permutations. For a permutation rr
on the set {l, ... , m}, let Srr = (srrO>' ... , srr<m»· In a shortest superstring for S,
the substrings appear in some total order, say srr(I)' ... , s1T(m)' hence it must
equal Srr.

We consider a traveling salesman problem on a weighted directed complete
graph Cs derived from S and show that one can achieve a factor of 4
approximation for TSP on that graph, yielding a factor of 4 approximation for
the shortest-common-superstring problem. Graph G5 = (V, E, d) has m ver­
tices V = {1, .. ., m}, and m 2 edges E = {(i, j): l s i, j s m}. Here we take as
weight function the distance d(,): edge (i, j) has weight d(i, j) = d(s;, s), to
obtain the distance graph. This graph is similar to one considered by Turner
[1989] in the end of his paper. Later, we take the overlap ou(,) as the weight
function to obtain the overlap graph. We call s, the string associated with
vertex i, and let pref(i, j) = pref(s;, sf) be the string associated with edge (i, j).

As examples, we draw in Figure l the overlap graph and the distance graph
for our previous example S0 = {ate, half, lethal, alpha, alfalfa}. All edges not
shown have overlap 0. Note that the sum of the distance and overlap weights
on an edge (i, j) is the length of the string s;.

634 A. BLUM ET AL.

01

~~-~
C lethal half l I ate

'~~~./
u4

FIG. 1. The overlap and distance graphs.

Notice now that TSP(G5) ::::;; OPT(S) - ov(/ast(s), first(s)) ::::;; OPT(S), where
TSP(G5) is the cost of the minimum weight Hamiltonian cycle on Gs. The
reason is that turning any superstring into a Hamiltonian cycle by overlapping
its last and first substring saves on cost by charging last(s) for only
d(last(s), first(s)) instead of its full length.

We now define some notation for dealing with directed cycles in Gs. Call two
strings s, t equivalent, s = t, if they are cyclic shifts of each other, that is, if
there are strings u, u such that s = uv and t = vu. If c is a directed cycle in Gs
with vertices i0 , ••• , i,_ 1 in order around c, we define strings(c) to be the
equivalence class [pref(i 0 , i 1)pref(i1, i 2) ••• pref(i,_ 1, i 0)] and strings(c, ik) the
rotation starting with pref(i k, i k + 1), that is, the string pref(i k, i k + 1) .. •

pref(ik- 1' ik), where subscript arithmetic is modulo r. Let us say that an
equivalence class [s] has periodicity k (k > 0), if s is invariant under a rotation
by k characters (s = uv =vu, lul = k). Obviously, [s] has periodicity lsl. A
moment's reflection shows that the minimum periodicity of [s] must equal the
number of distinct rotations of s. That is the size of the equivalence class and
denoted by card([s]). Furthermore, it is easily proven that if [s] has periodici­
ties a and b, then it has periodicity gcd(a, b) as well. (See, e.g., Fine and Wilf
[1965].) It follows that all periodicities are a multiple of the minimum one. In
particular, we have that lsl is a multiple of card([s]).

In general, we denote a cycle c with vertices i 1, ••• , i, in the order by
"i1 -7 •·· -7 i, -7 i 1." Also, let w(c), the weight of cycle c, equal lsl, s E

strings(c). For convenience, we say that sj is in c, or "sj E c" if j is a vertex of
the cycle c.

Now, a few preliminary facts about cycles in Gs. Let c = i0 -7 ... -7i,_1 -7

i0 and c' be cycles in G5 . For any string s, sk denotes the string consisting of k
copies of s concatenated together.

CLAIM 2. Each strings;. in c is a substring of sk for all s E strings(c) and
sufficiently large k. 1

PROOF. By induction, s;. is a prefix of pref(~,i1.·+i>··· pref(i.+ 1_ 1,i.+)s;
for any I~ 0 (addition modulo r). Taking k = 1 ls; l/w(c)l and i = kr,1 we get
!hat s!; is a pre~ix of pref(ij, ij+l) ··· pref(ij+kr-l' i~+kr) = strings(c, ij)k, which
itself is a substrmg of sk+ 1 for any s E strings(c). o
~LAIM 3. If eac? of {sh, ... , si} is a substring of sk for some string s E

stnngs(c) and sufficzently large k, then there exists a cycle of weight lsl = w(c)
containing all these strings.

Linear Approximation of Shortest Superstrings 635

PROOF. In a (infinite) repetition of s, every string s; appears as a substring
after every lsl characters. This naturally defines a circular ordering of the
strings {sh, ... , sj) and the strings in c whose successive distances sum to
lsl. D

CLAIM 4. The superstring < s; , ... , s;) is a substring of strings(c, i 0)s; .
U r- t 0

PROOF. String <s; , ... , s;) is clearly a substring of (s,. , ... , s,. , s,.),
0 r- I O r- l 0

which by definition equals pref(i0 , i 1) ··· pref(i,_ 1, i0)s;" = strings(c, i0)s;0 • D

CLAIM 5. If strings(c') = strings(c), then there exists a third cycle c with weight
w(c) containing all vertices in c and all those in c'.

PROOF. Follows from claims 2 and 3. D

CLAIM 6. There exists a cycle c of weight card(strings(c)) containing all vertices
in c.

PROOF. Let u be the prefix of length card(strings(c)) of some strings
s E strings(c). By our periodicity arguments, Jui divides lsl = w(c), and s = uj
wher.e j = w(c)/lul. It follows that every string in strings(c) = [s] is a substring
of u 1+ 1• Now use Claim 3 for strings(c) and u. o

The following lemma has been proved in Tarhio and Ukkonen [1988] and
Turner [1989]. Figure 2 gives a graphical interpretation of it. In the figure, the
vertical bars surround pieces of string that match, showing a possible overlap
between v- and u +, giving an upper bound on d(v-, u +).

LEMMA 7. Let u,u+,v-,u be strings, not necessarily different, such that
ov(u, v) 2: max{ou(u, u+), ou(u-, u)}. Then, ov(u, u) + ov(u-, u+) 2: ou(u, u+)
+ ov(v-, v), and d(u, v) + d(v-, u+)::; d(u, u+) + d(u-, v).

That is, given the choice of merging u to u + and v- to v or instead merging
u to v and v - to u +, the best choice is that which contains the pair of largest
overlap. The conditions in the above lemma are also known as "Monge
conditions" in the context of transportation problems [Alan et al., 1989; Barnes
and Hoffman, 1985; Hoffman, 1963]. In this sense, the lemma follows from the
observation that optimal shipping routes do not intersect. In the string context,
we are transporting "items" from the ends of substrings to the fronts of
substrings.

3. A 4 · OPT(S) Bound for a Modified Greedy Algorithm

Let S be a set of strings and Gs the associated graph. Now, although finding a
minimum weight Hamiltonian cycle in a weighted directed graph is in general a
hard problem, there is a polynomial-time algorithm for a similar problem
known as the assignment problem [Papadimitriou and Steiglitz, 1982]. Here, the
goal is simply to find a decomposition of the graph into cycles such that each
vertex is in exactly one cycle and the total weight of the cycles is minimized.
Let CYC(Gs) be the weight of the minimum assignment on graph Gs, so
CYC(Gs) ::; TSP(Gs) ::; OPT(S).

The proof that a modified greedy algorithm MGREEDY finds a superstring
of length at most 4 · OPT(S) proceeds in two stages. We first show that
an algorithm that finds an optimal assignment on Gs, then opens each cycle
into a single string, and finally concatenates all such strings together has a

636 A. BLUM ET AL.

-d(u, u+)L..~.-----f------
u

-4(u, v}~~-----1----- v
v

-d(v-,v)-

FIG. 2. Strings and overlaps.

performance ratio of at most 4. We then show (Theorem 10) that in fact, for
these particular graphs, a greedy strategy can be used to find optimal assign­
ments. This result can also be found (in a somewhat different form) as
Theorem 1 in Hoffman [1963].

Consider the following algorithm for finding a superstring of the strings in S.

Algorithm Concat-Cycles

(1) On input S, create graph Gs and find a minimum weight assignment Con Gs. Let C be
the collection of cycles {c1, ... , c P}.

(2) For each cycle c; = i 1 --> ··· --> i,--> i 1, lets;= (s; , ... ,s;) be the string obtained by
opening c;, where i 1 is arbitrarily chosen. The string s; has length at most w(c) +is; I
by Claim 4. '

(3) Concatenate together the strings s; and produce the resulting string s as output.

THEOREM 8. Algorithm Concat-Cycles produces a string of length at most
4 · OPT(S).

Before proving Theorem 8, we first need a preliminary lemma giving an
upper bound on the amount of overlap possible between strings in different
cycles of C. The lemma is also implied by the results in Fine and Wilf [1965].

LEMMA 9. Let c and c' be two cycles in a minimum weight assignment C with
s E c and s' E c'. Then, the overlap betweens and s' is less than w(c) + w(c').

PROOF. Let x = strings(c) and x' = strings(c'). Since C is a minimum
weight assignment, we know x -=F x'. Otherwise, by Claim 5, we could find a
lighter assignment by combining the cycles c and c'. In addition, by Claim 6,
w(c) ::; card(x).

Suppose that s and s' overlap in a string u with lul ~ w(c) + w(c'). Denote
the substring of u starting at the ith symbol and ending at the jth as , u ;, j·
Since, by Claim 2, s = tk for some t E x and large enough k and s' = t'k for
some t' Ex' and large enough k', we have that x = [u,,w<c) and x' = [u 1,w(c)·

From x -:F x', we conclude that w(c) -=F w(c'); assume without loss of generality
that w(c) > w(c'). Then

Ul,w(c) = U1+w(c'),w(c)+w(c') = U1+w(c'),w(c)Uw(c)+l,w(c)+w(c') = U1+w(c'),w(c)Ul.w(c')·

This shows that x has periodicity w(c') < w(c) ::; card(x), which contradicts
the fact that card(x) is the minimum periodicity. D

PROOF OF THEOREM 8. Since C = {c1, ... , cP} is an optimal assignment,
CYC(Gs) = l:f= 1w(c;) ::; OPT(S). A second lower bound on OPT(S) can be
determined as follows: For each cycle c;, let W; = w(c) and l; denote the
length of the longest string in C;. By Lemma 9, if we consider the longest string
in each cycle and merge them together optimally, the total amount of overlap
will be at most 2l:f= 1w;. So the resulting string will have length at least
Lf= 1l; - 2w;. Thus, OPT(S) ~ max(Lf= 1w;,Ef= 1l; - 2w).

Linear Approximation of Shortest Superstrings 637

The output string s of algorithm Concat-Cyc!es has length at most "Lf'= 1 l; + w;
(Claim 4). So,

p

isl S Lfi + W;

i= 1

p p

= L l; - 2w; + L, 3w;
i= 1

s OPT(S) + 3 · OPT(S)

= 4 · OPT(S). D

We are now ready to present the algorithm MGREEDY, and show that it in
fact mimics algorithm Concat-Cycles.

Algorithm MGREEDY

(1) Let S be the input set of strings and T be empty.
(2) While S is non-empty, do the following: Choose s, t E S (not necessarily distinct) such

that 01•(s, t) is maximized, breaking ties arbitrarily. Ifs '* t, then removes and t from S
and replace them with the merged string (s, t). If s = t, then just remove s from S and
add it to T.

(3) When S is empty, output the concatenation of the strings in T.

We can look at MG REEDY as choosing edges in the overlap graph (V =

S, E = V X V, ov(,)). When MG REEDY chooses strings sand t as having the
maximum overlap (where t may equal s), it chooses the directed edge from
last(s) to first(t) (see Claim 1). Thus, MGREEDY constructs/joins paths, and
closes them into cycles, to end up with a collection of disjoint cycles M c E
that cover the vertices of G5 . We will call M the assignment created by
MGREEDY. Now think of MGREEDY as taking a list of all the edges sorted
in the decreasing order of their overlaps (resolving ties in some definite way),
and going down the list deciding for each edge whether to include it or not. Let
us say that an edge e dominates another edge f if e precedes f in this list and
shares its head (or tail) with the head (or tail, respectively) of f. By the
definition of MGREEDY, it includes an edge f if and only if it has not yet
included an edge dominating f.

THEOREM 10. The assignment created by algorithm MGREEDY is an optimal
assignment.

PROOF. Note that the overlap weight of an assignment and its distance
weight add up to the total length of all strings. Accordingly, an assignment is
optimal (i.e., has minimum total weight in the distance graph) if and only if it
has maximum total overlap. Among the maximum overlap assignments, let N
be one that has the maximum number of edges in common with M. We shall
show that M = N.

Suppose this is not the case, and let e be the edge of maximum overlap in
the symmetric difference of M and N, with ties broken the same way as by
MG REEDY. Suppose first that this edge is in N \ M. Since MG REEDY did
not include e, it must have included another adjacent edge f that dominates e.
Edge f cannot be in N (since N is an assignment), therefore f is in M \ N,
contradicting our choice of the edge e. Suppose that e = k ~ j is in M \ N.
The two N edges i ~ j and k ~ l that share head and tail with e are not in M,

638 A. BLUM ET AL.

and thus are dominated by e. Since ov(k, j) ~ max{ov(i, j), ov(k, l)}, by Lemma
7, ov(i, j) + ov(k, l) :::; ov(k, j) + ov(i, l). Thus, replacing in N, these two
edges with e = k - j and i - l would yield an assignment N' that has more
edges in common with M and has no less overlap than N. This would
contradict our choice of N. o

Since algorithm MGREEDY finds an optimal assignment, the string it
produces is no longer than the string produced by algorithm Concat-Cycles. On
fact, it could be shorter since it breaks each cycle in the optimum position.)

4. Improving to 3 · OPT(S)

Recall that in the last step of algorithm MGREEDY, we simply concatenate all
the strings in set T without any compression. Intuitively, if we instead try to
overlap the strings in T, we might be able to achieve a bound better than
4 · OPT(S). Let TGREEDY denote the algorithm that operates in the same
way as MGREEDY except that in the last step, it merges the strings in T by
running GREEDY on them. We can show that TGREEDY indeed achieves a
better bound: it produces a superstring of length at most 3 · OPT(S).

THEOREM 11. Algorithm TGREEDY produces a superstring of length at most
3 · OPT(S).

PROOF. Let S = {s1, ••• , sm} be a set of strings and s be the superstring
obtained by TGREEDY on S. Let n = OPT(S) be the length of a shortest
superstring of S. We show that lsl :::; 3n.

Let T be the set of all "self-overlapping" strings obtained by MG REEDY on
S and C be the assignment created by MGREEDY. For each x E T, let ex
denote the cycle in C corresponding to string x, and let wx = w(cx) be its
weight. For any set R of strings, define llRll = Lx e Rlxl to be the total length of
the strings in set R. Also let w = LxeTwx. Since CYC(G5):::; TSP(Gs):::;
OPT(S), we have w :::; n.

By Lemma 9, the compression achieved in a shortest superstring of T is less
than 2w, that is, llTll - n7 :::; 2w. By the results in Tarhio and Ukkonen [1983)
and Turner [1989), we know that the compression achieved by GREEDY on set
T is at least half the compression achieved in any superstring of T. That is,

llTll - nT llTll - n 7
llTll - lsl ~ 2 = llTll - nT - 2 ~ llTll - nT - w.

So, lsl :::; n7 + w.
For each x E T, let si be the string in cycle c x that is a prefix of x. Let

S' = {si Ix E T}, n' = OPT(S'), S" = {strings(cx, i)s; Ix E T}, and n" =
mnrl ·

By Claim 4, a superstring for S" is also a superstring for T, so n 7 :::; n",
where n7 = OPT(T). For any permutation TT on T, we have IS~ I :::; IS~ I +
Lx E rWx, so n" :::; n' + w, where s~ and s~ are the superstrings obtained by
overlapping the members of S' and S", respectively, in the order given by TT.

Observe that S' ~ S implies n' :::; n. Summing up, we get

n 7 s n" s n' + w:::; n + w.

Combined with lsl :::; n 7 + w, this gives lsl :::; n + 2w :::; 3n. o

Linear Approximation of Shortest Superstrings 639

5. GREEDY Achieves Linear Approximation

One would expect that an analysis similar to that of MGREEDY would also
work for the original GREEDY. This turns out not to be the case. The analysis
of GREEDY is severely complicated by the fact that it continues processing
the "self-overlapping" strings. MGREEDY was especially designed to avoid
these complications, by separating such strings. Let GREEDY(S) denote the
length of the superstring produced by GREEDY on a set S. It is tempting to
claim that

GREEDY(S u {s}) ~ GREEDY(S) +is[.

If this were true, a simple argument would extend the 4 · OPT(S) result for
MGREEDY to GREEDY. But the following counterexample disproves this
seemingly innocent claim. Let

Now

GREEDY(S) =learn+ 1cmbm+ 1c/ = 3m + 4,

whereas

GREEDY(S U {s}) = /bmcmbm+ 1am+ 1cmam/

= 6m + 2 > (3m + 4) + (2m + 2).

With a more complicated analysis, we nevertheless show that

THEOREM 12. GREEDY produces a string of length at most 4 · OPT(S).

Before proving the theorem formally, we give a sketch of the basic idea
behind the proof. If we want to relate the merges done by GREEDY to an
optimal assignment, we have to keep track of what happens when GREEDY
violates the maximum overlap principle, that is, when some self-overlap is
better than the overlap in GREEDY's merge. One thing to try is to charge
GREEDY some extra cost that reflects that an optimal assignment on the new
set of strings (with GREEDY's merge) may be somewhat longer than the
optimal assignment on the former set (in which the self-overlapping string
would form a cycle). If we could just bound these extra costs, then we would
have a bound for GREEDY. Unfortunately, this approach fails because the
self-overlapping string may be merged by GREEDY into a larger string which
itself becomes self-overlapping, and this nesting could go arbitrarily deep. Our
proof concentrates on the innermost self-overlapping strings only. These so
called culprits form a linear order in the final superstring. We avoid the
complications of higher level self-overlaps by splitting the analysis in two parts.
In one part, we ignore all the original substrings that connect first to the right
of a culprit. In the other part, we ignore all the original substrings that connect
first to the left of a culprit. In each case, it becomes possible to bound the extra
cost. This method yields a bound of 7 · OPT(S). By combining the two analyses
in a more clever way, we can even eliminate the effect of the extra costs and
obtain the same 4 · OPT(S) bound as we found for MGREEDY. A detailed
formal proof follows:

PROOF OF THEOREM 12. We need some notions and lemmas. Think of both
GREEDY and MGREEDY as taking a list of all edges sorted by overlap, and

640 A. BLUM ET AL.

going down the list deciding for each edge whether to include it or not. Call an
edge better (worse) if it appears before (after) another in this list_. Better edges
have at least the overlap of worse ones. Recall that an edge dommates another
iff it is better and shares its head or tail with the other one.

At the end, GREEDY has formed a Hamiltonian path
S1 --+ S2 --+ ••• --+ Sm

of "greedy" edges. (Without loss of generality, the strings are renumber~d to
reflect their order in the superstring produced by GREEDY.) For convemence
we usually abbreviate s; to i. GREEDY does not include an edge f iff

(1) f is dominated by an already chosen edge e, or
(2) f is not dominated but it would form a cycle.

Let us call the latter "bad back edges"; a bad back edge f = j --+ i necessar­
ily has i :::;; j. Each bad back edge f = j --+ i corresponds to a string
(s;,S;+ 1, ... ,s) that, at some point in the execution of GREEJ?Y, has _more
(self) overlap than the pair that is merged. When GREEDY considers /, 1t has
already chosen all (better) edges on the greedy path from i to j, but not yet the
(worse) edges i - 1 --+ i and j --+ j + 1. The bad back edge f is said to span
the closed interval I1 = [i, j]. The above observations provide a proof of the
following lemma.

LEMMA 13. Let e and f be two bad back edges. The closed intervals le and If
are either disjoint, or one contains the other. If I,, :::>If, then e is worse than f
(thus, oi>(e) :::;; ov(f)).

Thus, the intervals of the bad back edges are nested and bad back edges do
not cross each other. Culprits are the minimal (innermost) such intervals. Each
culprit [i, j] corresponds to a culprit string (s;, S;+ 1, ... , sj >. Note that, because
of the minimality of the culprits, if f = j --+ i is the back edge of a culprit [i, j],
and e is another bad back edge that shares head or tail with f, then I,. :::> I1,
and therefore f dominates e.

Call the worst edge between every two successive culprits on the greedy path
a weak link. Note that weak links are also worse than all edges in the two
adjacent culprits as well as their back edges. If we remove all the weak links,
the greedy path is partitioned into a set of paths, called blocks. Every block
consists of a nonempty culprit as the middle segment, and (possibly empty) left
and right extensions. The set of strings (nodes) S is thus partitioned into three
sets S1, S,," S, of left, middle, and right strings. The example in Figure 3 has
seven substrings, of which 2 by itself and the merge of 4, 5, and 6 form the
culprits (indicated by thicker lines). Bad back edges are 2 --+ 2, 6 --+ 4, and
6 ~ 1. The weak link 3 ~ 4 is the worst edge between culprits [2] and [4, 5, 6].
The blocks in this example are thus [l, 2, 3] and [4, 5, 6, 7], and we have S1 = {l},
Sm = {2, 4, 5, 6}, S, = {3, 7}.

The following lemma shows that a bad back edge must be from a middle or
right node to a middle or left node.

LEMMA 14. Let f = j ~ i be a bad back edge. Node i is either a left node or
the first node of a culprit. Node j is either a right node or the last node of a culprit .

. PROOF. Let c = _[k, /]?e. the leftmost cul~rit in If. Now either i = k is the
first node of c, or 1 < k 1s m the left extension of c, or i < k is in the right

Linear Approximation of Shortest Superstrings 641

------------------------------------ ---
' --------........,

- - - ->(!)k___ >i@)).~1----71>0

FIG. 3. Culprits and weak links in Greedy merge path.

extension of the culprit c' to the left of c. In the latter case, however, 11
includes the weak link, which by definition is worse than all edges between the
culprits c' and c, including the edge i - 1 ~ i. This contradicts the observa­
tion preceding Lemma 13. A similar argument holds for sj. o

Let Cm be the assignment on the set S"' of middle strings (nodes) that has
one cycle for each culprit, consisting of the greedy edges together with the back
edge of the culprit. If we consider the application of the algorithm MG REEDY
on the subset of strings Sm, it is easy to see that the algorithm will actually
construct the assignment Cm. Theorem 10 then implies the following lemma:

LEMMA 15. cm is an optimal assignment on the set Sm of middle strings.

Let the graph G1 = (J .. /, E) consist of the left/middle part of all blocks in
the greedy path, that is, JI/ = S1 U Sm and £ 1 is the set of non-weak greedy
edges between nodes of JI/. Let M 1 be a maximum overlap assignment on JI/, as
created by MGREEDY on the ordered sublist of edges in JI/ x JI/. Let
V,. = Sm U S,, and define similarly the graph G, = (V,., £,) and the optimal
assignment M, on the right/middle strings. Let le be the sum of the lengths of
all culprit strings. Define 11 = L.; Es d(s;, s;+ 1) as the total length of all left
extensions and l, = L.; E s/Cs;R, s;R- 1) 'as the total length of all right extensions.
(Here xR denotes the reversal of string x.) The length of the string produced
by GREEDY is 11 + (. + l, - ow, where ow is the summed block overlap (i.e.,
the sum of the overlaps of the weak links).

Denoting the overlap L.e E E ov(e) of a set of edges E as ov(£), define the
cost of a set of edges E on a set of strings (nodes) V as

cost(E) = IJVll - ov(E).

Note that the distance plus overlap of a string s to another equals lsl. Because
an assignment (e.g., M 1 or M,) has an edge from each node, its cost equals its
distance weight. Since JI/ and V,. are subsets of S and M 1 and M, are optimal
assignments, we have cost(M1) s n and cost(M,) s n. For E1 and E,, we have
that cost(E1) = 11 +le and cost(E,) = l, + (..

We have established the following (in)equalities:

11 +le + f, = (ii + l) + (le + /,) - le

= cost(E1) + cost(E,) - f..

= llJ;/11 - ov(E1) + llV,.11 - ov(E,) - le

= cost (M1) + ou (M1) - ov (£ 1) + cost (M,) + ov (M,)

- ov(E,) - le

s 2n + ov(M1) - ov(E1) + ov(M,) - ov(E,) - l".

642 A. BLUM ET AL.

~ 0
--~

>@) >®
----~ 0 >@) >® >(})

FIG. 4. Left/middle and middle/right parts with weak links.

We proceed by bounding the overlap differences in the above equation. Our
basic idea is to charge the overlap of each edge of M to an edge of E or a
weak link or the back edge of a culprit in a way such that every edge of E and
every weak link is charged at most once and the back edge of each culprit is
charged at most twice. This is achieved through combining the left/middle and
middle/right parts carefully as shown below. For convenience, we will refer to
the union operation for multisets (i.e., allowing duplicates) as the disjoint
union.

Let V be the disjoint union of Vi and V,., let E be the disjoint union of £ 1

and Er, and let G = (V, E) be the disjoint union of G 1 and G,. Thus, each
string in S1 U S, occurs once, while each string in S 111 occurs twice in G. We
modify E to take advantage of the block overlaps. Add each weak link to E as
an edge from the last node in the corresponding middle /right path of Gr to
the first node of the corresponding left/middle path of G 1• This procedure
yields a new set of edges E'. Its overlap equals ou(E') = ov(E1) + ov(E,) +ow.
A picture of (V, E') for our previous example is given in Figure 4.

Let M be the disjoint union of M 1 and M,, an assignment on graph G. Its
overlap equals ov(M) = ov(M1) + ov(M,). Every edge of M connects two Vi
nodes or two V,. nodes; thus, all edges of M satisfy the hypothesis of the
following lemma.

LEMMA 16. Let N be any assignment on V. Let e = t _,. h be an edge of
N \ E' that is not in V, X Vi- Then e is dominated by either

(1) an adjacent E' edge, or
(2) a culprit's back edge with which it shares the head h and h E V,, or
(3) a culprit's back edge with which it shares the tail t and t E JI";.

PROOF. Suppose first that e corresponds to a bad back edge. By Lemma 14,
h corresponds to a left node or to the first node of a culprit. In the latter case,
e is dominated by the back edge of the culprit (see the comment after Lemma
13). Therefore, either h is the first node of a culprit in V, (and case (2) holds),
or else h E Vi- Similarly, either t is the last node of a culprit in Vi (and case (3)
holds) or else t E V,.. Since e is not in V, X JI";, it follows then that case (2) or
case (3) holds. (Note that, if e is in fact the back edge of some culprit, then
both cases (2) and (3) hold.)

Suppose that e does not correspond to a bad back edge. Then e must be
dominated by some greedy edge since it was not chosen by GREEDY. If the
greedy edge dominating e is in E', then we have case (1). If it is not in E', then
either h is the first node of a culprit in V, or t is the last node of a culprit in Vi,
and in both cases f is dominated by the back edge of the culprit. Thus, we have
case (2) or (3). D

Linear Approximation of Shortest Superstrings 643

Although Lemma 16 ensures that each edge of M is bounded in overlap, it
may be that some edges of E' are double charged. We modify M without
decreasing its overlap and without invalidating Lemma 16 into an assignment
M' such that each edge of E' is dominated by one of its adjacent M' edges.

LEMMA 17. Let N be any assignment on V such that N \ E' does not contain
any edges in V, x Ji/. Then there is an assignment N' on V satisfying the following
properties:

(1) N' \ E' has also no edges in V, X v;,
(2) ov(N') 2 ov(N),
(3) each edge in E' \ N' is dominated by one of its two adjacent N' edges.

PROOF. Since N already has the first two properties, it suffices to argue
that if N violates property (3), then we can construct another assignment N'
that satisfies properties 1 and 2, and has more edges in common with E'.

Let e = k ---+ j be an edge in E' - N that dominates both adjacent N edges,
f = i ---+ j, and g = k---+ !. By Lemma 7, replacing edges f and g of N with e
and i ---+ l produces an assignment N' with at least as large overlap. To see
that the new edge i ---+ l of N' \ E' is not in V, x Ji/, observe that if i E V, then
j E V, because of the edge f = i ---+ j (N \ E' does not have edges in V, x V';),
which implies that k is in V, because of the E' edge e = k---+ j (E' does not
have edges in v; x V,), which implies that also l E V, because of the N edge
g = k---+ l. 0

By Lemmas 16 and 17, we can construct from the assignment M another
assignment M' with at least as large total overlap, and such that we can charge
the overlap of each edge of M' to an edge of E' or to the back edge of a
culprit. Every edge of E' is charged for at most one edge of M', while the back
edge of each culprit is charged for at most two edges of M': for the M' edge
entering the first culprit node in V, and the edge coming out of the last culprit
node in v;. Therefore, ov(M) :::;:: ov(M') :::;:: ov(E') + 2oe, where oc is the
summed overlap of all culprit back edges. Denote by we the summed weight of
all culprit cycles, that is, the weight of the (optimal) assignment Cm on Sm from
Lemma 15. Then, le =we + oc. As in the proof of Theorem 8, we have
oc - 2we :::;:: n and we :::;:: n. (Note that the overlap of a culprit back edge is less
than the length of the longest string in the culprit cycle.) Putting everything
together, the string produced by GREEDY has length

11 +le + lr - ow :::;:: 2n + ov(M1) - ov(E1) + ov(Mr) - ov(Er) - le - Ow

:::;:: 2n + ov(M') - ov(E') - le

:::;:: 2n + 2oc - le

= 2n + oc - we

:::;:: 3n +we

:::;:: 4n.

6. Which Algorithm is the Best?

0

Having proved various bounds for the algorithms GREEDY, MGREEDY,
and TGREEDY, one may wonder what this implies about their relative

644 A. BLUM ET AL.

performance. First of all, we note that MGREEDY can never do better than
TGREEDY since the latter applies the GREEDY algorithm to an intermedi­
ate set of strings that the former merely concatenates.

Does the 3n bound for TGREEDY then mean that it is the best of the
three? This proves not always to be the case. In the example
{c(ab)\ (ab)k + 1a, (ba)kc}, GREEDY produces the shortest superstring
c(ab)k+ 1ac of length n = 2k + 5, whereas TGREEDY first separates the
middle string to end up with something like c(ab)kac(ab)k+ 1a of length
4k + 6.

Perhaps then GREEDY is always better than TGREEDY, despite the fact
that we cannot prove as good an upper bound for it. This turns out not to be
the case either, as shown by the following example. On input
{cab\ abkabka, bkdabk- 1}, TGREEDY separates the middle string, merges the
other two, and next combines these to produce the shortest superstring
cab"dab'abka of length 3k + 6, whereas GREEDY merges the first two,
leaving nothing better than cabkabkabkdabk- 1 of length 4k + 5.

Another greedy type of algorithm that may come to mind is one that
arbitrarily picks any of the strings and then repeatedly merges on the right the
string with maximum overlap. This algorithm, call it NAIVE, turns out to be
disastrous on examples like

{ abcde, bcde#a, cde#a#b, de#a#b #c, e#a#b#c#d, #a#b#c#d#e}.

Instead of producing the optimal abcde#a#b#c#d#e, NAIVE might pick
#a#b#c#d#e as a starting point to produce

#a#b#c#d#e#a#b#c#de#a#b#cde#a#bcde#abcde.

1t is clear that in this way superstrings may be produced whose length grows
quadratically in the optimum length n.

7. Lower Bound

We show here that the superstring problem is MAX SNP-hard. This implies
that if there is a polynomial time approximation scheme for the superstring
problem, then there is one also for a wide class of optimization problems,
including several variants of maximum satisfiability, the node cover and inde­
pendent set problems in bounded-degree graphs, max cut, etc. This is consid­
ered rather unlikely. 1

Let A, B be two optimization (maximization or minimization) problems. We
say that A L-reduces (for linearly reduces) to B if there are two polynomial
time algorithms f and g and constants a and f3 > 0 such that:

(1) Given an instance a of A, algorithm f produces an instance b of B such
that the cost of the optimum solution of b, opt(b), is at most a· opt(a), and

(2) Given any solution y of b, algorithm g produces in polynomial time a
solution x of a such that lcost(x) - opt(a)I ~ {3 lcost(y) - opt(b)I.

Some basic facts about L-reductions are: First, the composition of two
L-reductions is also an L-reductions. Second, if problem A L-reduces to
problem B and B can be approximated in polynomial time with relative error E

1In fact, Arora et al. [1992] have recently shown that MAXSNP-hard problems do not have
polynomial time approximation schemes, unless P = NP.

Linear Approximation of Shortest Superstrings 645

(i.e., within a factor of 1 + E or 1 - E depending on whether B is a minimiza­
tion or maximization problem), then A can be approximated with relative error
a {3E. In particular, if B has a polynomial time approximation scheme, then so
does A. The class MAXSNP is a class of optimization problems defined
syntactically in Papadimitriou and Yannakakis [1988]. It is known that every
problem in this class can be approximated within some constant factor. A
problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced to
it.

THEOREM 18. The superstring problem is MAX SNP-hard.

PROOF. The reduction is from a special case of the TSP with triangle
inequality. Let TSP(l, 2) be the TSP restricted to instances where all the
distances are either 1 or 2. We can consider an instance to this problem as
being specified by a graph H; the edges of H are precisely those that have
length 1 while the edges that are not in H have length 2. We need here the
version of the TSP where we seek the shortest Hamiltonian path (instead of
cycle), and, more importantly, we need the additional restriction that the graph
H be of bounded degree (the precise bound is not important). It was shown in
Papadimitriou and Yannakakis [1993] that the TSP(l, 2) problem (even for this
restricted version) is MAX SNP-hard.

Let H be a graph of bounded degree D specifying an instance of TSP(1, 2).
The hardness result holds for both the symmetric and the asymmetric TSP (i.e.,
for both undirected and directed graphs H). We let H be a directed graph
here. Without loss of generality, assume that each vertex of H has outdegree
at least 2. The reduction is similar to the one of Gallant et al. [1980] used to
show the NP-completeness of the superstring decision problem. We have to
prove here that it is an L-reduction. For every vertex of L' of H, we have two
letters u and u'. In addition, there is one more letter #. Corresponding to each
vertex v we have a string v # v', called the connector for L'. For each vertex v,
enumerate the edges out of l.' in an arbitrary cyclic as (l', w0), ••• , (u, wt!_ 1) (*).
Corresponding to the ith edge (v, w) out of u, we have a string p;(o) =

v'w;_ 1v'w;, where subscript arithmetic is modulo d. We say that these strings
are associated with v.

Let n be the number of vertices and m the number of edges of H. If all
vertices have degree at most D, then m ::::; Dn. Let k be the minimum number
of edges whose addition to H suffices to form a Hamiltonian path. Thus, the
optimal cost of the TSP instance is n - 1 + k. We shall argue that the length
of the shortest common superstring is 2m + 3n + k + 1. It will follow then
that the reduction is linear since m is linear in n.

Consider the distance-weighted graph G5 for this set of strings, and let G 2

be its subgraph with only edges of minimal weight (2). Clearly, G 2 has exactly
one component for each vertex of H, which consists of a cycle of the associated
p strings, and a connector that has an edge to each of them. We need only
consider "standard" superstrings in which all strings associated with some
vertex form a subgraph of G 2 , so that only the last p string has an outgoing
edge of weight more than 2 (3 or 4). Namely, if some vertex fails this
requirement, then at least two of its associated strings have outgoing edges of
weight more than 2, thus we do not increase the length by putting all its p
strings directly after its connector in a standard way. A standard superstring
naturally corresponds to an ordering of vertices v 1, v 2 , • •• , on.

646 A. BLUM ET AL.

For the converse, there remains a choice of which string q succeeds a
connector u;#u;. If H has an edge from U; to V;+ 1 and the "next" edge out of
u; (in (*)) goes to, say uj, then choosing q = u; U;+ 1u; uj results in a weight of 3
on the edge from the last p string to the next connector U;+ 1#u;+ 1' whereas
this weight would otherwise be 4. If H doesn't have this edge, then the choice
of q doesn't matter. Let us call a superstring "Standard" if in addition to being
standard, it also satisfies this latter requirement for all vertices.

Now suppose that the addition of k edges to H gives a Hamiltonian path
u" u2 , ••• , un_ 1, un. Then, we can construct a corresponding Standard super­
string. If the out-degree of U; is d;, then its length will be E?= 1(2 + 2d; + 1) +
k + 1 = 3n + 2m + k + 1.

Conversely, suppose we are given a common superstring of length 3n + 2m
+ k + 1. This can then be turned into a Standard superstring that is no longer.
If v1, v2, ••• , vn is the corresponding order of vertices, it follows that H cannot
be missing more thank of the edges (u;, V;+ 1). D

Since the strings in the above L-reduction have bounded length (4), the
reduction applies also to the maximization version of the superstring problem
[Tarhio and Ukkonen, 1988; Turner, 1989]. That is, maximizing the total
compression is also MAX SNP-hard.

8. Open Problems

We end the paper with several open questions raised from this research:

(1) Obtain an algorithm that achieves a performance better than 3 times the
optimum.

(2) Prove or disprove the conjecture that GREEDY achieves 2 times the
optimum.

ACKNOWLEDGMENTS. We thank Samir Khuller and Vijay Vazirani for discus­
sions on the superstring algorithms (Samir brought the authors together), and
Rafi Hassin for bringing Hoffman's and others' work on Monge sequences to
our attention. We would also like to thank the referees for their helpful
comments.

REFERENCES

ALON, N., COSARES, S., HOCHBAUM, D., AND SHAMIR, R. 1989. An algorithm for the detection
and construction of Monge Sequences. Lin. Alg. Appl. 114/ 115, 669-680.

ARORA, A., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992. Proof verification and
hardness of approximation problems. In Proceedings of the 33rd IEEE Symposium on the
Foundations of Computer Science. IEEE, New York, pp. 14-23.

BARNES, E., AND HOFFMAN, A., 1985. On transportation problems with upper bounds on leading
rectangles. SIAM J. Alg. Disc. Meth. 6, 487-496.

FINE, N., AND WILF, H. 1965. Uniqueness theorems for periodic functions. Proc. Amer. Math.
Soc. 16, 109-114.

GALLANT, J., MAIER, D., AND STORER, J. 1980. On finding minimal length superstrings. J.
Comput. Syst. Sci. 20, 50-58.

GAREY, M., AND JOHNSON, D. 1979. Computers and Intractability. Freeman, New York.
HOFFMAN, A., 1963. On simple transportation problems. In Convexity: Proceedings of Symposia in

Pure Mathematics, vol. 7. American Mathematical Society, Providence, R.l., pp. 317-327.
LESK, A. (ED) 1988. Computational Molecular Biology, Sources and Methods for Sequence Analysis.

Oxford University Press.

Linear Approximation of Shortest Superstrings 647

LI, M. 1990. Towards a DNA sequencing theory. In Proceedings af the 3Jst IEEE Symposium on
Foundations of Computer Science. IEEE, New York, pp. 125-134.

PAPADIMITRIOU, C., AND STEIGLITZ, K. 1982. Combinatorial Optimization: Algorithms and Com­
plexity. Prentice-Hall, Englewood Cliffs, N.J.

PAPADIMITRIOU, C., AND y ANNAKAKIS, M. 1988. Optimization, approximation, and complexity
classes. In Proceedings of the 20th ACM Symposium on Theory of Computing (Chicago, Ill., May
2-4). ACM, New York, pp. 229-234.

PAPADIMITRIOU, c. AND y ANNAKAKIS, M. 1993. The traveling salesman problem with distances
one and two. Math. Oper. Res. 18, 1, 1-11.

PELTOLA, H., SODERLUND, H., TARHIO, J., AND UKKONEN, E. 1983. Algorithms for some string
matching problems arising in molecular genetics. In Information Processing 83 (Proceedings of
JF/P Congress, 1983). Elsevier Science Publishers R. V. (North-Holland), Amsterdam, The
Netherlands, pp. 53-64.

STORER, J. 1988. Data compression: methods and theory. Computer Science Press, Rockville, Md.
TARHIO, J., AND UKKONEN, E. 1988. A Greedy approximation algorithm for constructing shortest

common superstrings. Theoret. Cornput. Sci. 57, 131-145.
TURNER, J., 1989. Approximation algorithms for the shortest common superstring problem. lnf.

Cornput. 83, 1-20.
VALIANT, L. G. 1984. A Theory of the learnable. Commun. ACM 27, 11 (Nov.), 1134-1142.

RECEIVED JULY 1991; REVISED DECEMBER 1992; ACCEPTED JANUARY 1993

Journal of the Association for Computing Machinery, Vol. 41, No. 4, July 1994.

