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Abstract—Valiant’s concept of Randomized Load Balancing
(RLB), also promoted under the name ‘two-phase routing’,
has previously been shown to provide a cost-effective way of
implementing overlay networks that are robust to dynamically
changing demand patterns. RLB is accomplished in two steps; in
the first step, traffic is randomly distributed across the network,
and in the second step traffic is routed to the final destination.
One of the benefits of RLB is that packets experience only a
single stage of routing, thus reducing queueing delays associated
with multi-hop architectures. In this paper, we study the queuing
performance of RLB, both through analytical methods and
packet-level simulations usingns2on three representative carrier
networks. We show that purely random traffic splitting in the
randomization step of RLB leads to higher queuing delays than
pseudo-random splitting using, e.g., a round-robin schedule.
Furthermore, we show that, for pseudo-random scheduling,
queuing delays depend significantly on the degree of uniformity
of the offered demand patterns, with uniform demand matrices
representing a provably worst-case scenario. These results are
independent of whether RLB employs priority mechanisms
between traffic from step one over step two. A comparison with
multi-hop shortest-path routing reveals that RLB eliminates the
occurrence of demand-specific hot spots in the network.

I. I NTRODUCTION

Emerging data communication services as well as content
distribution and file sharing applications create an increasing
amount of uncertainty and dynamism in the traffic distribution
across carrier networks. Examples of such services are virtual
private networks (VPNs), peer-to-peer networking, or remote
storage and computing applications [1]. These services are
well captured by thehose model[4], [5]. The hose model
only specifies the node ingress/egress capacities, but does not
specify the actual point-to-point demands. Thus it is up to the
service provider to determine efficient routing and distribution
of traffic within the network.

The traditional approach to routing and traffic distribution
relies heavily on the accurate estimation of the traffic matrix.
Accurate estimation is essential to avoid network congestion
and to guarantee Quality of Service (QoS). Traffic matrix
estimation requires fine-grained traffic monitoring which does
not scale. When used for fine grained measurements, traf-
fic monitoring based on the widely used Simple Network
Management Protocol (SNMP) will significantly impact router
performance. Therefore to account for the uncertainty of actual
traffic demands, service providers often over-provision their
networks.

One of the key requirements for networks to support emerg-
ing data services is the ability to handle extreme traffic vari-

ability and deal with hose constrained demand specifications.
Ideally, to support a hose constrained traffic demand, a routing
strategy must (i) be robust under the hose constraint; (ii )
route traffic without creating hot spots; (iii ) avoid the need for
real time reconfiguration of capacity. All of these criteria are
satisfied by theRandomized Load Balancing(RLB) scheme
also known asTwo-Phase Routing.

The basic idea of RLB is to route demands from network
edge nodes intwo steps. In the first (load balancing) step,
all nodes randomly distribute their traffic among all nodes
(or among a carefully chosen subset of nodes [19]) in the
network. Traffic splitting may be performed on a packet-
level or flow-level, and may be either done on layer 3 (IP)
or layer 2 (Ethernet). In the second (routing) step, each
node processes the traffic it received in step 1, and sends
it to its final destination. Both steps of RLB carry traffic
on statically pre-configuredcircuits or paths1. Due to the
traffic randomization in step 1 of RLB, the architecture can
handle extreme traffic variability. Hence, no reconfiguration is
required to address dynamic changes. Furthermore, since each
packet is only processedoncebetween source and destination,
RLB reduces the need for multiple packet buffering, thus
providing improved QoS, especially in terms of delay jitter.

A. Related Work

The RLB architecture was first proposed by Valiant in
the context of processor interconnection networks [21]. This
concept was then extended to the design of scalable switches
[17]. The scheme has recently received further attention for
architecting high-capacity internet packet routers [3], [7], [22].
More recently RLB has been proposed at anetwork levelas
an efficient way of designing backbone networks [10], [18],
[23]. Reference 10 describes algorithms for optimizing RLB
link resources in capacitated networks that allow fractional
(multipath) routing. Reference 23 is primarily focused on
measuring the effects of RLB on minimizing the fanout of
routers at the edge. RLB has also received attention to address
the challenges posed by new network applications such as file

1When referring to a ‘circuit’ or a ‘path’, we mean a logic connection
between two end nodes that does not require any packet processing en-route.
Such an object may be implemented, e.g., using SONET or WDM technology.
More generally, it may also be implemented using MPLS tunnels; however,
the latter do not constitute ‘circuits’ in the strict sense, since (unlike SONET)
MPLS requires packet label look-ups and buffering at each transit node. A
more detailed account on this topic can be found in [19].



sharing and the Internet Indirection Infrastructure (i3). Ref-
erence 12 provides a linear program that computes the paths
for maximum throughput to support highly variable service
overlay traffic. References 11 and 19 show that compared to
other routing strategies RLB requires less network resources.

B. Our Contribution

All of the previous work has proven the benefits of RLB
by consideringtime-averagedcapacities required for transport
and switching in the network. In this paper we study the
performance of RLB on apacket level. In particular, we
investigate the queueing performance of RLB, both through
analytical methods and through packet-level simulations using
ns2. We show that purely probabilistic traffic splitting in
the randomization step of RLB [24] leads to higher queuing
delays than pseudo-random splitting using, e.g., a round-
robin schedule. Furthermore, we show that, for pseudo-random
scheduling, queuing delays depend significantly on the degree
of uniformity of the offered demand patterns, withuniform
demand matrices representing a provablyworst-casescenario.
These results are independent of whether one implements pri-
ority mechanisms between traffic from step 1 over traffic from
step 2 in RLB. A comparison with packet-switched (multi-hop)
architectures based on shortest-path routing reveals that RLB
eliminates the occurrence of demand-specific hot spots in the
network.

This paper is organized as follows: Section II reviews RLB
in some more detail and outlines the architectural choices
regarding queueing. Sec. III then presents a queuing analysis
of RLB for various queueing options. In Sec. IV we describe
the packet-level simulation and the underlying traffic model,
followed by a discussion of results in Sec. V. Finally, Sec. VI
summarizes the most important findings of this paper.

II. RANDOMIZED LOAD BALANCING (RLB)

Figure 1 visualizes RLB from a queuing perspective for
a four-node network. Each node consists of a local packet
routing engine and an interface to a full mesh of paths.

In step 1 of RLB [Fig. 1(a)], the ingress trafficD is split
and delivered to the routing engines of all other nodes, with
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Fig. 1. Basic RLB architecture. Each node consists of a small routing engine,
capable of routing an amount of traffic corresponding to the respective node’s
ingress/egress demandD, as well as an interface to the underlying circuit
network, making up a full mesh of static circuits with capacityD/N .

1/N -th being kept locally, assuming that each node has the
same amount of ingress/egress traffic. The traffic distribution
in step 1 is random in the sense that it is totally agnostic of the
demand matrix and does not require any routing decisions at
the ingress. We will consider two different implementations
of random traffic splitting in our analyses and simulations
below, one based onprobabilistic traffic splitting and the
other based on apseudo-random(e.g., round-robin) schedule.
Generalizing to different traffic marginalsDi at each node,
the amount of traffic to be distributed in step 1 of RLB
is the product multicommodity flow [14] induced by the
Di’s, i.e., the capacity required for the link between nodes
i and j is DiDj/

∑
i Di. Furthermore, it has been shown in

Ref. 19 that load-balancing across a carefully chosen subset of
K < N intermediate nodes can provide cost and performance
advantages; in this case ofselectiveRLB, the ingress traffic
would be split only amongK nodes. Traffic splitting may be
performed on a packet-by-packet basis or on a per-flow basis,
and may be done on layer 3 (IP) or on layer 2 (Ethernet).

In step 2 of RLB [Fig. 1(b)], a total traffic ofD (with
D/N stemming from each node in the network) is processed
at each node’s routing engine, and is statistically multiplexed
on a path leading to its final destination, which, like in step 1,
has capacityD/N for equal node ingress/egress capacities and
DiDj/

∑
i Di for different capacities. Note that the traffic in

steps 1 and 2 is uniform on average,regardlessof the actual
demand matrix to be routed, with fluctuations being accom-
modated by appropriate buffering within the routing nodes,
as will be quantified later in this paper. The uniform nature
of the traffic in each step of RLB permits pre-allocation of
staticnetwork capacity, which dramatically simplifies network
reliability and design.

Since RLB performs strict double-hop routing, all traffic
is buffered only once(at the beginning of step 2). This
reduces random buffering delays when compared to a multi-
hop network architecture, which buffers traffic at each node.
Furthermore, sincethrough-traffic is not processed multiple
times on a packet level on its way from source to destination,
the network scalability problem associated with the difficulties
in building large packet routers [7] is ameliorated by RLB.

One obvious disadvantage of RLB (as with any other
architecture employing multi-path routing) is the routing of
traffic over paths with significant time-of-flight differences. If
traffic splitting is done on a packet level rather than per flow,
the resulting delay spread can lead to packet mis-sequencing
which potentially asks for packet re-ordering. Note, however,
that these time-of-flight differences donot contribute to ran-
dom delay jitter, but are fullypredictable based on easily
accessible knowledge of the two paths used by a packet on its
way from source to destination. Therefore, these propagation
delay differences can be counteracted by deterministic delays
at the ingress, intermediate, or egress nodes, similar to what
is being done when using virtual concatenation (VCAT) over
multiple parallel routes in SONET. Recently in this context
[15], a novel contention resolution mechanism was presented
that enforces packet ordering in a load balanced switch ar-
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Fig. 2. In RLB, a link can be shared among step 1 and step 2 traffic, or
capacities can be segregated.

chitecture. The maximum propagation delay in RLB is about
twice the propagation delay of the longest path in the network,
which depending on the underlying application may restrict the
geographic dimensions of such networks.

III. QUEUING ANALYSIS

We now analyze the queueing dynamics for both the random
and the pseudo-random traffic splitting schemes. We consider
the queues associated with step 1 (traffic splitting) as well as
step 2 (routing). We will distinguish between two scenarios,
depending on whether the two queues share the total link
bandwidth of2D/N in a work-conserving manner [Fig. 2(a)],
or receive dedicated portions ofD/N each [Fig. 2(b)]. For
convenience, we assume in the analysis that the packets have
a fixed size and that the system operates in a time-slotted
fashion, with the duration of a time slot equal to a packet
service time.

A. Pseudo-random traffic splitting

We first examine the pseudo-random traffic splitting scheme.
In preparation for the queueing analysis, we start with de-
termining the statistical characteristics of the packet arrival
processes on the link from nodek to node j. Let αij =
(1−ε)dij be the probability that during an arbitrary time slot a
packet arrives at (ingress) nodei destined for (egress) nodej,
with dij = Dij/D. Denoteαj =

∑N
i=1 αij .

By virtue of the traffic splitting scheme, the arrival pattern
of the step-1 traffic is statistically identical for allj. Hence, we
drop the indexj, and letBk be a random variable representing
the number of packet arrivals of the step-1 traffic per time slot.
Note thatBk is simply a 0–1 random variable withP{Bk =
1} = αk and thusP{Bk = 0} = 1− αk.

By construction, the arrival pattern of the step-2 traffic is
statistically identical for allk. Hence, we suppress the indexk,
and letAj be a random variable representing the number of
packet arrivals of the step-2 traffic per time slot. ThenAj

may be represented asAj =
∑N

i=1 Aij , where theAij ’s are
independent 0–1 random variables withP{Aij = 1} = αij

and thusP{Aij = 0} = 1− αij . Denote byα(m)
j := E{Am

j }
the m-th moment ofAj . Note thatα(1)

j =
∑N

i=1 αij = αj ,

α
(2)
j = αj(αj + 1)−

N∑
i=1

α2
ij , (1)

and

α
(3)
j = αj(α2

j + 3αj + 1)− 3(αj + 1)
N∑

i=1

α2
ij + 2

N∑
i=1

α3
ij

= −αj(2α2
j + 3αj + 2) + 3(αj + 1)α(2)

j + 2
N∑

i=1

α3
ij .

It is easily verified from convexity arguments that, for a fixed
mean αj , the values ofα(2)

j , α
(3)
j are minimal for binary

matrices{dij} and maximal for uniform matrices{dij}, i.e.,
dij = 1/(N − 1) (assumingdjj ≡ 0), yielding

αj ≤ α
(2)
j ≤ αj(αj + 1)−

α2
j

N − 1
≤ αj(1 + αj), (2)

αj ≤ α
(3)
j (3)

≤ αj(α2
j + 3αj + 1)− 3(αj + 1)

α2
j

N − 1
+ 2

α3
j

(N − 1)2

≤ αj(α2
j + 3αj + 1). (4)

The above upper bounds forα(2)
j , α

(3)
j correspond to the

second and third moment of a Poisson distributed random
variable Ãj with meanαj , and will be quite tight whenN
is not too small and theαij ’s are close to uniform.

1) Segregated bandwidth:Armed with a statistical descrip-
tion of the packet arrival processes, we are now in a position to
analyze the queueing behavior. LetQk,1(t) andQj,2(t) be the
queue sizes at the start of thet-th time slot for the step-1 (link
to intermediate nodek) traffic and the step-2 (link to egress
nodej) traffic, respectively. We first investigate the scenario
where the total link bandwidth is statically partitioned between
the two queues. Observe thatQk,1(t) will be identically zero,
since no more than one packet arrives per time slot in the
pseudo-random case [Fig. 2(b)]. LetAj(t) be the number of
packet arrivals between the start of thet-th and(t+1)-th time
slot. The evolution of the processQj,2(t) over time may be
described by the simple recursion

Qj,2(t + 1) = [Qj,2(t) + Aj(t)− 1]+, (5)

with the notational convention[q]+ := max{0, q}. If the
destinations of arriving packets at the ingress nodes in suc-
cessive time slots are assumed to be uncorrelated, then the
Aj(t)’s are independent and identically distributed (i.i.d.)
copies of the random variableAj . Let Aj(z) := E{zAj} and
Qj(z) := E{zQj,2} be the probability generating functions
(pgf’s) of the random variablesAj andQj,2, respectively, with
Qj,2 representing the steady-state version ofQj,2(t). It may
then be derived from the recursion (5),

Qj,2(z) =
(1− αj)(1− z)

Aj(z)− z
,



which gives

E{Qj,2} =
α

(2)
j − αj

2(1− αj)
, (6)

E{Q2
j,2} = 2(E{Qj,2})2 + E{Qj,2}+ R, (7)

stdev(Qj,2) =
√

(E{Qj,2})2 + E{Qj,2}+ R, (8)

with

R :=
α

(3)
j − 3α

(2)
j + 2αj

3(1− αj)
.

Using the upper bounds forα(2)
j , α

(3)
j in equations (2), (4),

we obtain

0 ≤ E{Qj,2} ≤
α2

j

2(1− αj)
,

where the lower bound is attained for binary matrices{dij}
and the upper bound, corresponding to a Poisson arrival
processÃj(t), is approached for uniform matrices{dij} when
N is not too small.

2) Intermezzo: Before moving to the case of shared
bandwidth, we first pause to make some important
observations.

Stochastic majorization properties
The above results indicate that the mean queue size

is minimal for binary matrices{dij} and maximal for
uniform matrices{dij}. This result is in fact an implication
of a far more general property, namely that the queue
size Qj is ‘larger’ when the vector(α1j , . . . , αNj) is
‘more balanced’. In order to formalize the above statement,
we need to introduce some technical concepts. For a
given vector α ∈ UN := [0, 1]N , define the associated
random variableAα :=

∑N
i=1 Ai, with P{Ai = 1} = αi

and P{Ai = 0} = 1 − αi. Also, for a given random
variable A, define the processQA(t) by the recursion
QA(t) := [QA(t− 1) + A(t− 1)− 1]+. The next proposition
states thatQAα′ is larger thanQAα′′ in the increasing convex
ordering sense when the vectorα′ majorizes the vectorα′′.
(For definitions of these concepts, see Refs. 16 and 20.)

Proposition 1 If α′ ≺ α′′, thenQAα′ (t) ≥icx QAα′′ (t) for
all t = 1, 2, . . . , QAα′ ≥icx QAα′′ , andE{Qm

Aα′} ≥ E{Qm
Aα′′}

for all m = 1, 2, . . . . In particular, if α = a(1, 1, . . . , 1)
then QAα ≥icx QAβ

for any vector β ∈ UN with∑N
i=1 βi/N = a < 1.

Observe thatα(K) = (1/K, 1/K, . . . , 1/K)
∑N

i=1 αi ≺ α
for any N -dimensional vectorα, N ≤ K. In addition, it
may be shown that the random variableA(K) converges to a
Poisson distributed random variablẽAj with mean

∑N
i=1 αi

as K → ∞. These two observations imply that, informally
speaking, the queueing behavior is guaranteed to be ‘better
than Poisson’, which is formalized in the next corollary.

Corollary 1 For any vectorα, QAα
≤icx QÃ.

Heavy-traffic behavior
The above results also show thatstdev(Qj,2)/E{Qj,2} → 1

as ε ↓ 0, i.e., αj ↑ 1. Moreover, for given relative fractions
αij = (1−ε)dij , the mean queue sizeE{Qj,2} approximately
grows linearly with1/ε. These two results are again conse-
quences of a more general property, namely that the scaled
queue sizeεQj,2 converges to an exponentially distributed
random variable with mean(1− d

(2)
j )/2 as ε ↓ 0, i.e.,

lim
ε↓0

P{εQj,2 > x} = e−2x/(1−d
(2)
j ),

with d
(2)
j :=

∑N
i=1 d2

ij . Note that1−d
(2)
j arises as the limit of

α
(2)
j −αj asαj ↑ 1 for given relative fractionsαij = (1−ε)dij .

This suggests the following approximation for the queue size
distribution:

P{Qj,2 > x} ≈ e−2(1−αj)x/(α
(2)
j −αj) = e−x/E{Qj,2} = σx

j ,

with −1/E{Qj,2} the asymptotic decay exponent andσj :=
e−1/E{Qj,2} the asymptotic decay factor.

3) Shared bandwidth:We now proceed to the scenario
where the total link bandwidth is dynamically shared between
the two queues in a work-conserving manner [Fig. 2(a)]. Let
Qjk(t) := Qk,1 + Qj,2(t) be the total queue size at the start
of the t-th time slot. The evolution of the processQjk(t) over
time may be described by the recursion

Qjk(t + 1) = [Qjk(t) + Aj(t) + Bk(t)− 2]+, (9)

with Aj(t) andBk(t) i.i.d. copies of the random variablesAj

andBk. Let Qjk(z) := E{zQjk} be the pgf ofQjk, with Qjk

representing the steady-state version ofQjk(t). Then it may
be derived from the recursion (9),

Qjk(z) =
(q0 + (q0 + q1)z)(1− z)

Aj(z)Bk(z)− z2
,

with qm := P{Qjk = m}, m = 0, 1. The probabilitiesq0, q1

can be expressed in terms of the roots of certain equations,
but can generally not be expressed in closed form. However,
there are simple sharp lower and upper bounds:

α
(2)
j − α2

j − α2
k + αk

4(1− αj+k)
− αj+k ≤ E{Qjk} ≤

α
(2)
j − α2

j − α2
k + αk

4(1− αj+k)
,

with αj+k := (αj + αk)/2. Assumingαj = αk = α, we
obtain

α
(2)
j − α

4(1− α)
− α/2 ≤ E{Qjk} ≤

α
(2)
j − α

4(1− α)
+ α/2. (10)

Note thatthe dominant term is exactly half the mean queue
size E{Qj,2} in the case of segregated bandwidth, and
henceE{Qjk}/E{Qj,2} → 1/2 as α ↑ 1.



The behavior of the two individual queue sizes depends on
precisely how the total bandwidth is shared. However, as long
as the step-1 traffic is guaranteed to receive at least half of
the total bandwidth,Qk,1(t) continues to be identically zero,
which meansQj,2(t) ≡ Qjk(t).

B. Random traffic splitting

We now turn the attention to the purely random traffic
splitting scheme, and will indicate the variables with a hat to
distinguish them from those used in the pseudo-random case.
As before, we first analyze the statistical characteristics of the
packet arrival processes on the link from nodek to nodej
before proceeding to the queueing analysis.

Let B̂k be a random variable representing the number of
packet arrivals of the step-1 traffic per time slot. ThenB̂k

may be represented as

B̂k =
N∑

l=1

B̂kl,

where theB̂kl are independent 0–1 random variables with
P{B̂kl = 1} = αk/N and thusP{B̂kl = 0} = 1 − αk/N .
Denote byβ̂(m)

k = E{B̂m
k } them-th moment ofB̂k. Note that

β̂
(1)
k = αk. One can also calculate the higher momentsβ̂

(m)
k

in a similar fashion as before. However, the more relevant
observation is that̂Bk is again smaller (in the convex ordering
sense) than a Poisson distributed random variableÃk with
meanαk. The latter upper bound will be quite tight as long
as N is not too small,regardlessof the degree of (non)-
uniformity of theαij ’s.

Turning to the step-2 traffic now, let̂Aj be a random
variable representing the number of packet ‘arrivals’ per time
slot. The word ‘arrivals’ is put in quotes, because not all
of these packets may actually make it to step 2 right away
due to possible queueing at step 1. The variableÂj may be
represented as

Âj =
N∑

i=1

N∑
l=1

Âijl,

where theÂijl are independent 0–1 random variables with
P{Âijl = 1} = αij/N and thusP{Âijl = 0} = 1 − αij/N .
Denote byα̂(m)

j = E{Âm
j } them-th moment ofÂj . Note that

α̂
(1)
j = αj . One can also calculate the higher momentsα̂

(m)
j

in a similar fashion as before. However, the more relevant
observation is that̂Aj is again smaller (in the convex ordering
sense) than a Poisson distributed random variableÃj with
meanαj . The latter upper bound will be quite tight as long as
N is not too small, even when theαij ’s are far from uniform.

1) Segregated bandwidth:Having obtained a characteriza-
tion of the packet arrival procesess, we now analyze the queue-
ing behavior. We first examine the scenario where the total link
bandwidth is partitioned between the two queues [Fig. 2(b)].
From the recursion̂Qk,1(t + 1) = [Q̂k,1(t) + B̂k(t)− 1]+, it
can be shown that

E{zQ̂k,1} =
(1− αk)(1− z)

E{zB̂k} − z
,

and one can calculate the moments ofQ̂k,1 as done before for
Qj,2 with α

(m)
j replaced byβ̂(m)

k . Moreover, it can be shown
that Q̂k,1 is smaller in the increasing convex ordering sense
than Q̃k,1, with

E{zQ̃k,1} =
(1− αk)(1− z)

E{zÃ} − z
,

with E{zÃk(z)} = e−αk(1−z), so that

E{Q̃k,1} ≤ E{Q̃k,1} =
α2

k

2(1− αk)
,

E{Q̃2
k,1} ≤ E{Q̃2

k,1} =
α3

k

3(1− αk)
+E{Q̃k,1}+2(E{Q̃k,1})2.

The above upper bounds will be quite tight whenN is not too
small.

It is difficult to determine the distribution of̂Qj,2. However,
it can be shown that̂Qj,2 is larger than the queue sizeQj,2

in the pseudo-random case.

2) Shared bandwidth:Finally we investigate the scenario
where the total link bandwidth is dynamically shared between
the two queues in a work-conserving manner [Fig. 2(a)]. Let
Q̃jk be the size of a queue fed by a Poisson arrival process
Ãj+k(t) with meanαj+k = (αj + αk)/2. Assumingαj =
αk = α, it can be shown that̂Qjk is smaller (in the increasing
convex ordering sense) thañQjk, with

E{zQ̃jk} =
(1− α)(1− z)

E{zÃj+k} − z
,

with E{zÃj+k} = e−α(1−z), so that

E{Q̂jk} ≤ E{Q̃jk} =
α2

2(1− α)
, (11)

E{Q̂2
jk} ≤ E{Q̃2

jk} =
α3

3(1− α)
+ E{Q̃jk}+ 2(E{Q̃jk})2.

(12)
The above upper bounds will be quite tight whenN is not
too small. Comparing the above results with those for the
case of segregated bandwidth, we conclude thatthe total
queue sizeQ̂jk is now about as large as just the queue
size Q̂k,1 of the step-1 traffic in the latter case.

We conclude the section with an important remark. In the
above queueing analysis we have assumed that the destinations
of the arriving packets at the various ingress nodes are i.i.d.
from slot to slot. Of course, there are a far broader range
of arrival processes imaginable which satisfy the marginal
statistics implied by the matrices{dij}, and in particular ones
which exhibit strong temporal correlations. Correlations in
the destinations of arriving packets render an exact analysis
intractable in general, and a detailed treatment is beyond the
scope of the present paper. However, it can be shown along
similar lines as in Ref. 2 that under mild assumptions the
random variablesAj(t) converge to a sequence of independent
Poisson distributed random variables̃Aj(t) with mean αj ,



and the resulting queue sizes also converge to those of a
queue fed by a Poisson arrival process asN grows large. We
refer to Ref. 13 for related results in the context of RLB.
This suggests that random traffic splitting schemes provide
an effective mechanism for ‘breaking’ temporal correlations
in the activity patterns of individual node pairs, in a similar
way as the impact of correlations in the activity of individual
sources diminishes at high levels of statistical multiplexing. It
further provides justification for drawing on available queueing
results for models with Poisson arrivals as approximations [17]
for more intricate and bursty traffic processes.

IV. PACKET-LEVEL SIMULATIONS

A. Simulation model

We implemented RLB as a new application inns2 for
packet-level simulations. In this application, each node marks
the packets with the address of the destination node and sends
them to an intermediate node. The intermediate nodes are se-
lected with a round-robin scheme for investigating the behavior
of pseudo-random schedules. To investigate the behavior of
a fully random schedule, the intermediate nodes are selected
by generating a uniform random integer between 1 andN .
At every ingress node, the rate at which a particular node is
selected as the destination is determined by randomly chosen
traffic matrices satisfying the hose constraint (see Sec. IV-C).
Upon receiving a packet, the intermediate node looks up the
destination from the packet and forwards it to the destination
node. Flows from step 1 and step 2 of RLB, as defined in
Sec. II, are considered parts of two different traffic classes, and
class-based queuing (CBQ) can be used to assign priorities to
these classes.

For comparative purposes (Sec.V-D), a shortest path routing
scheme was also implemented, using Dijkstra’s algorithm
based on the delay metric. The delay metric was obtained from
the propagation delays on each of the links on the respective
topologies.

B. Example networks

We use the three representative carrier networks depicted
in Fig. 3 as examples to study the queuing performance
of different network architectures: the UK research network
Janet, the US research backbone Abilene, and the European
research network Geant. The key network characteristics are
summarized in Tab. I.

Also shown in Tab. I is the sum of all required link
capacities in the three networks that guarantees routing of all
possible hose matrices using shortest-path (SP) routing, VPN-
Tree routing, and RLB. These capacities, taken from Ref. 19,
are the results of linear programming (LP) formulations and
are normalized toD = 1. In VPN-Tree routing, one deter-
mines that tree on the physical network topology that yields
lowest total link capacities under the hose constraint and only
assigns capacity to the links that are part of that tree. It has
been shown [6] that VPN-Tree routing represents the optimum
routing strategy for hose traffic in the sense that it uses the least
amount of total link capacities. Note that (i) RLB always uses

TABLE I
MAIN CHARACTERISTICS OF OUR THREE EXAMPLE NETWORKS.

Janet Abilene Geant
Number of nodes 8 11 27
Number of links 10 14 40
Average link distance [km] 184 1,317 797
Link capacities× km (SP) 3,437 37,019 69,142
Link capacities× km (VPN) 2,302 22,621 36,823
Link capacities× km (RLB) 2,776 30,087 56,312

at least as much link capacity as VPN-Tree routing and (ii ) SP
routing in general uses more link capacity than RLB for the
same degree of robustness to traffic pattern variations [19]. In
this work we only focus on RLB and SP, since we assume that
the set up, maintenance, and restoration costs associated with
VPN-tree topologies are non-trivial and hence may outweigh
their capacity advantages.

C. Traffic model

To study the queuing performance of our three example
networks, we used sets of randomly generatedhose traffic
matrices[5], [4]. Hose matrices are characterized by the fact
that each nodei has fixed ingress capacitiesDi,ingress and
egress capacitiesDi,egress, which is a reasonable assumption
motivated by the physical connection speed attached to each
node. The point-to-point demandsdij of the hose matrices
obey the ingress and egress relationships

∑
j dij = Di,ingress

and
∑

i dij = Dj,egress, and there is no traffic from any node
destined to itself, i.e., the matrices have zero diagonals. No ef-
fort is made to symmetrize the traffic matrices, i.e.,dij 6= dji.
However, we do assume all ingress and egress capacities to
be equal for all nodesi, i.e., Di,ingress= Di,egress= D. In our
packet-level simulations we further assumeD = 1 Mbps, with
fixed-size 1500 byte packets.

Motivated by the findings of our queuing analyses in
Sec. III, in particular Eq. (1), we took the sum-of-squares of
all matrix elements as our metricµ to describe different traffic
matrices,

µ =
∑
i,j

d2
ij . (13)

We randomly generated 10 hose matrices for each prescribed
metric µ. In agreement with our findings in Sec. III, the
smallest metric ofD2N/(N − 1) is obtained foruniform
matrices withdij = D/(N−1). Conversely, the largest metric
of D2N is obtained for random permutations (with non-zero
diagonal) of the identity matrix. Figure 4 depicts the metrics
µ for the random hose matrices generated for our 27-node
(Geant), 11-node (Abilene), and 8-node (Janet) networks. Each
horizontal slot (indicated by the dotted vertical lines) contains
10 randomly chosen hose matrices with roughly the same
metricsµ.

V. RESULTS AND DISCUSSION

In this section, we discuss the results of our packet-level
simulations capturing the queuing behavior of RLB on our
three example networks; we compare these results to our
analyses in Sec. III.



Fig. 3. Three example networks considered in this paper [http://www.ja.net; http://www.abilene.iu.edu; http://www.geant.net].

A. Impact of step 1 traffic splitting on queue sizes

In studying the queuing performance of RLB, we first note
that due to the randomization process in step 1 of RLB,
all queues are statistically identical. We verified this fact by
comparing the statistical parameters of all individual queues
on our example networks. Therefore, we looked at network-
averaged queue parameters in the frame of our studies.

Figure 5 shows the network-averaged queue sizes2 (red)
as well as the queue size standard deviations (blue) as a
function of time for the three networks under consideration.
Each time slot indicated by the dotted vertical lines comprises
ns2-simulations of 10 randomly different hose traffic matrices
with similar metricsµ [cf. Fig. 4]. As time progresses, the
matrices gradually change from uniform to highly skewed.
Each traffic matrix is applied for 100 s and the queues are
monitored every 10 s, which was verified to be large enough
for the queues to reach their steady states. The offered network
load is chosenε = 5% below capacity, i.e. the links have
capacityD/N and the ingress traffic is0.95D.

Figure 5(a) applies to the aggregate (step 1 plus step 2)
queue of RLB withprobabilistic step 1 traffic splitting on the
Janet network. We observe that theaverage queue size as well
as its standard deviation are virtually independent of the
applied traffic matrix . This is expected from the complete
traffic randomization process performed in step 1 and also
agrees with our analyses in Sec. III.

2The queue sizes are measured in kB, with the understanding that
1 kB=1000 B.
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Fig. 5. Mean queue sizes (red) and standard deviations (blue) as a function
of time for RLB using probabilistic step 1 traffic splitting (a,c,e) and pseudo-
random splitting (b,d,f) on our example networks. As time progresses, the
random test matrices become increasingly skewed (increasing metricsµ).

Fig. 5(b) applies to apseudo-randomtraffic distribution on
the Janet network, which in our case was implemented as a
round-robin schedule. We again see close agreement between
mean and standard deviation of the queues. Interestingly, the
average queue size takes on its worst-case values for
uniform traffic matrices, while highly skewed matrices
result in smaller queues, in agreement with our predictions of
Sec. III. This behavior can be intuitively understood from the
fact that a deterministic step 1 schedule maximally smoothens
the distribution of final packet destinations at an intermediate
node if the ingress traffic at each node is destined for just



one other egress node. In this case, within a time duration
corresponding toN packets, each intermediate node receives
exactly one packet destined for each output node, which
matches the allocatedD/N link capacity for step 2 traffic and
thus eliminates any queue build-up. Uniform traffic patterns,
on the other hand, may lead to multiple packets out ofN
packets arriving at an intermediate node that are destined for
one particular output node, which is larger than what theD/N -
link can support and thus lets queues build up, similar to the
probabilistic traffic splitting scenario.

By comparing Figs. 5(a) and (b), we note that theworst-
case queue size for the pseudo-random schedule is lower
than the queue size for probabilistic traffic splitting. This
can be understood from the fact that a pseudo-random step 1
schedule assigns any given intermediate node to exactly 1 out
of N packets upon step 1 traffic splitting, which matches the
D/N link capacities for step 1 and therefore avoids any step 1
queue build-up and (for networks operating below capacity)
frees up any unused step 1 link capacity for step 2 traffic, i.e.,
there is a service rate of(1 + ε)D/N available on each link
for step 2 traffic, while the offered load is(1− ε)D/N . This
is equivalent to an offered load of(1 − ε)/(1 + ε)D/N ≈
(1− 2ε)D/N over a link of capacityD/N , as opposed to an
offered load of(1− ε)D/N over a link of capacityD/N for
RLB using probabilistic traffic splitting.

We also observe that throughout our simulations thestan-
dard deviation of the queue size equals its mean, which
is indicative of an exponential queue size distribution. The
exponential nature of the queue size distribution (straight lines
on a logarithmic scale) is indeed confirmed by numerically
evaluating the cumulative queue size densities, shown in
Fig. 6(a) for probabilistic traffic splitting and (b) for pseudo-
random traffic splitting under different levels of offered load
for the Janet network. In (b), the matrix metricµ is assumed
mid-way between the minimum and maximum possible values.

Looking at the average queue size and its standard deviation
for the Abilene and Geant networks [Figs. 5(c,d) and (e,f),
respectively], we note that thestudied queueing parameters
(means and standard deviations) do not depend on on the
size of the networkunder consideration.

B. Priority mechanisms between step 1 and step 2 queuing

Having understood the importance of the nature of step 1
traffic splitting in RLB, we investigate whether the queueing
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behavior of RLB might be improved by implementing a
priority mechanism between step 1 traffic and step 2 traffic
when entering their common queue with service rate2D/N .
To this end, we performedns2-simulations for RLB with both
probabilistic and pseudo-random step 1 traffic splitting where
we assigned different priorities to the two traffic streams at
each queue, favoring either step 1 traffic or step 2 traffic by
different amounts. However, by doing so we did not observe
any changes in the average queue size or its standard deviation.
This indifference to prioritization is attributed to the lack of
correlations in the packet arrival process.

C. Queue sizes versus offered load

Figure 7 shows the average queue sizes as well as their stan-
dard deviations as a function of offered load(1− ε) for RLB
using probabilistic step 1 traffic splitting (left column) and
pseudo-random traffic splitting (right column) for all three of
our example networks. The symbols representns2-simulations
(squares: mean queue sizes; circles: standard deviations), and
the lines are the analytic solutions obtained by our queuing
analysis of Sec. III, Eqns. (10,11,12).The theory is seen to
be in excellent agreement with the simulations in all cases.

As discussed in Secs. III and V-A, the traffic pattern has no
impact on queue statistics for probabilistic step 1 traffic split-
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Fig. 8. Mean queue size and its standard deviation for SP routing on the
Janet network assuming two different classes of hose traffic matrices.

ting, while it has for pseudo-random traffic splitting. There-
fore, we plot three families of curves representing different
matrix metrics for pseudo-random splitting:µ = N/(N − 1),
corresponding to uniform traffic matrices,µ = N , correspond-
ing to permutations of the identity matrix, as well as one
value ofµ falling midway in between. In agreement with our
discussion in Sec. V-A, the queues remain empty for highly
skewed traffic patterns (µ = N ), and for uniform traffic, the
queuing behavior is close to the one for probabilistic splitting
with half the slack parameterε.

D. Comparison to shortest-path routing

Finally, Fig. 8 shows the performance of the shortest-path
architecture on the Janet network for comparison. In order to
set the link capacities for the SP network for a fair comparison
with RLB, we first determined the link capacities that would
be required to support all hose matrices on the network using
the LP formalism described in Ref. 19, and then scaled back
the link capacities such that the sum of all link capacities
equaled the total capacity required for RLB. According to
Tab. I, the scaling factor is 81%. We assumed traffic matrices
that were close to uniform [µ = N/(N − 1)] as well as
highly skewed ones [µ = N ]. As expected from our capacity
scaling, queues start to build up at 81% load for SP routing
under highly skewed traffic patterns. We observe astrong
dependence of queue build-up on the traffic matrix, as
well as a large standard deviation of the queue sizes across
the network, indicatingsevere hot spots in the network.
For larger networks, we observed even more pronounced
differences as well as the expected instabilities resulting from
a lack of capacity to support all demand patterns.

VI. CONCLUSIONS

We have studied the queueing behavior of randomized
load balancing (RLB) across networks, using both analytical
techniques as well as packet-level simulations based onns2.
Our results show that (i) for probabilistic traffic splitting,
queueing delays are independent of the traffic pattern, (ii ) for
pseudo-random splitting, queueing delays are lower than for
probabilistic splitting. For the latter case, queuing delays are
provably worst for uniform traffic matrices and best for highly
skewed matrices, which are becoming particularly important
for emerging network applications. We have also shown that
queuing behavior of RLB is uniform across the network, which

in contrast to shortest-path routing avoids hot spots due to
dynamically changing demand patterns.
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