
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 15 (1995), pp. IOl-114

CRYPTOGRAPHY, STATISTICS AND PSEUDORANDOMNESS. I

BY

STEFAN BRANDS (AMSTERDAM) AND RICHARD GILL (UTRECHT)

Abstract. In the classical approach to pseudorandom number
generators, a generator is considered to perform well if its output
sequences pass a battery of statistical tests that has become standard.
In recent years, it has turned out that this approach is not satisfactory.
Many generators have turned out to seriously bias the outcome of
some simulation experiments in which they were put to use. From
a theoretical point of view, the classical approach does not at all
explain in what way a completely deterministic algorithm can be said
to simulate randomness.

Much less known is that cryptographers, who have a need for
pseudorandom numbers of very high quality, have developed a theory
that actually explains why a pseudorandom number generator can
simulate randomness. Our aim in this two-part paper is to make this
theory more accessible for mathematical statisticians and probabilists.

1. INTRODUCTION

The classical approach to simulating randomness by purely deterministic
means has proved to be effective in many applications where randomness is
needed. However, as computers get faster and applications more sophisticated,
the demand for more and more high quality pseudorandom numbers rapidly
increases. In recent years, many of the classical pseudorandom number
generators have turned out to exhibit statistical properties that can seriously
bias the results of simulation experiments. Even "state of the art" random
number generators can turn out to be rather poor for some applications; see,
e.g., [5].

Although the classical approach consists of a large body of useful
information, in our opinion it somehow misses the point: in what way can
a completely deterministic algorithm be said to simulate randomness? In fact,
"probability theory" is notably absent in treatments of the classical approach
to pseudorandom number generation. Most of the literature is devoted to
finding long periods of iteratively and deterministically determined integers

102 S. Brands and R. Gill

which over a complete period have nice uniformity properties. If sequences

produced by a generator pass a standard set of several statistical tests, then

the scnerator is generally accepted as satisfactorily pseudorandom. See Knuth

[7] for the classical theory; and Marsaglia and Zaman [9] for more recent

devck>pments.
In cryptography there is a need for specially reliable random num

ber aenerators. The reason for this is that a secret key, used for en

cryption of messages or other purposes, is hardest to guess by adver

saries when it is chosen uniformly at random from the set of all al

lowed keys. For effective use in practice the key often must be pro

duced deterministically, by a pseudorandom number generator. However,

by studying the observable effects (e.g., encrypted messages) of using the

lta'Ct key in a particular cryptographic application, an adversary may

for example guess the secret key with significant probability of success.

In particular, in many applications the algorithm used to generate the

keys cannot be assumed to remain known only to the legitimate user.

Therefore, pseudorandom number generators useful for cryptographic

applications mll3t satisfy very strong requirements concerning their statis

tical properties.

To this end, cryptographers have not just invented their own pseudo

random number generators but even developed an elaborate and elegant

theory, containing nice probabilistic and statistical ideas, which actually

ex;plams why a pseudorandom number generator can simulate randomness.

In the cryptographic approach, a generator is considered to be pseudorandom

if the amount of information that can be computed from it in a feasible

amount of time is essentially the same as what can be got out of a truly

random sequence. The algorithm that is to extract such information may

koow the me~hod of generation; in fact, only the seed is supposed to be

-~.to 1t To . formalise this approach, intriguing notions based on

llfori hmic compkx1ty theory are needed, such as one-way permutations
and hard-core bits.

In this article. and its sequel [4], we aim to make the cryptographic

theory more a<:cesgjble for mathematical statisticians and probabilists. We will

lllOftover argue that it is highly relevant to the actual use of pseudorandom

Mmbcr ecaerators in statistica.l simulation experiments bootstrapping and so
an. F\trther beck nd · · · ' '

grou matenal 1ncludmg results on statistical testing of the
new ICDerators is given in [3].

mudl 1!: paper is an ~yistic introduction to the cryptographic theory. It.

Ille pro,:o:: earlier ~ersion wh_ich appeared as Section 14 in [6]. In [4]

eliaent of the new thema~ analysis of the QR-generator, one of the most

,__ cenera ors. The results are not new but they are scattered
-·- maay papers and the proof: ft ' .
ill the field. s are o en not very accessible for non-experts

Cryptography, statistics and pseudorandornness. I 103

2. NEYMAN AND RANDOM NUMBER GENERATORS

In this special issue of Probability and Mathematical Statistics it is
appropriate to emphasize a fundamental connection between our subject and
the work of J. Neyman. The theory of reliable pseudorandom number
generators presented below is based on the idea that a good pseudorandom
number generator should "pass every (feasible) statistical test" of the generator.
Passing a statistical test means: the power of the test to detect a departure from
randomness of the given generator is not larger than the size of the test - the
probability it rejects a truly random sequence. The Neyman-Pearson theory of
statistical testing, and in particular the concepts of size and power of
a statistical test, are in fact at the heart of this theory.

Neyman made much use of pseudorandom number generators in his work
with Betty Scott. We are grateful for the following remarks made for us by
L. Le Cam.

"In the early fifties, Neyman and Scott worked on a cluster model for
galaxies. To see whether the model had a chance they generated a lot of
'random galaxies' (the random sample was not clustered enough).

"Another time Neyman was worried about the power of one of his c(a)
tests. He and Betty generated thousands and thousands of random data and
tried the tests. They also tried t-tests and found to their dismay that the
t-distributions varied periodically along the generated samples. They talked to
Dick Lehmer [inventor of the linear congruential generator] who gave them
another generating algorithm.

"Neyman was often quite cautious in applications. Unless there was sound
theory, he tried his test or estimates on random data. When I met him around
April 1950 (in Paris) he asked me to provide him with a hundred samples of
size 12 from a uniform distribution, just to illustrate the point that confidence
intervals based on a maximum are shorter and better than those based on the
means."

3. THE CLASSICAL APPROACH

A classical pseudorandom number generator is an algorithm which, given
a starting number called the seed, produces a sequence of numbers according to
a simple deterministic recursion. Usually, the numbers are integers in a given,
finite range, hence the sequence eventually becomes periodic. For instance, the
well-known linear congruential generator, starting with an integer seed x 0 ,

produces a sequence of integers (xn)n;i, 0 according to the rule

(1) Xn=aXn-1+b (modm),

where the integers a, b and m are integer parameters chosen beforehand. By
x (modm) we mean the least positive remainder of x when divided by m.

104 S. Brands and R. Gill

Most research on this method has been aimed at finding values of the
parameters a, band m such that the resulting sequence (given a specific seed x0

as input) passes the statistical tests thought to be representative for pseudoran
domness. Scores of papers have been written on this subject, establishing
period lengths for various choices of the parameters and the seed, and
reporting on results of statistical tests. Much attention has been paid to the
question whether the choice b # 0 is better or worse than b = 0; indeed, it has
been shown that essentially there is no difference. The choice of b is important
only in that a bad choice may shorten the length of the period. The same is true
for the seed value. For an appropriate choice of a, b and m, it can be
guaranteed that the numbers xn follow a cycle which is actually a permutation
of the set Zm = {O, 1, ... , m-1} of the integers modulo m (see, e.g., [7]).

On the other hand, it is known that if one uses n-tuples of these numbers
to represent points in the unit cube in n-space, one finds that the points, rather
than appearing to be randomly spread throughout then-dimensional cube, fall
on a lattice with relatively large spacing compared to what is expected under
the null hypothesis of true randomness.

For this reason, it might be worthwhile to investigate whether the
performance can be improved by outputting only part of the bits of xn. The
numbers

Un= xJm
seem to behave reasonably like independent uniform[O, 1) random variables
and

Yn = L2unJ
as independent Bemoulli(1) variables (fair coin tosses). Note that Yn is the most
significant bit of the number un expressed as binary fraction. Since a uniform
[O, 1) random variable is approximated on the computer by a number of fixed,
finite precision, and since the successive bits in a uniform[O, 1) random variable
are independent Bernoulli(t) variables, a pseudorandom bit generator which
produces independent Bernoulli(!) variables is all we really need.

4. THE CRYPTOGRAPHIC APPROACH

The classical approach in fact is concerned with the randomness of single
sequences: a sequence is considered random enough if it passes several statistical
tests. This seems somewhat illogical. Furthermore, the battery of tests that
a sequence ought to pass is rather arbitrary. The cryptographic approach is
concerned with the randomness of collections of sequences of bits.

4.1. Motivation. The new generators from cryptography are not much
different from the classical generators. For example, the so-called quad-

Cryptography, statistics and pseudorandomness. I 105

ratic-residue or QR-generator is defined as follows: given suitably chosen
integers x 0 and m, define

(2)

and let

{
x;_ 1 (modm)

xn = 2
m-(xn-l (modm))

if x; _ 1 (modm) < m/2,
otherwise

Yn = lsb(xn)

denote the least significant bit of xn. Then it can be shown that the Yn can
excellently approximate fair Bernoulli trials. The theorem which guarantees
this (under a certain unproven but generally accepted assumption) is an
asymptotic theorem, for the case that the binary length k of the modulus
converges to infinity. The assumption is that it is infeasible to factor the
modulus m if it is the product of two distinct primes of approximately equal
length that are both congruent to 3 modulo 4 (such composites are called Blum
integers). The problem of factoring composites is widely assumed to be an
infeasible task, and Blum integers are thought to be among the hardest
composites to factor. At this point, it will be unclear in what sense the
infeasibility of factoring Blum integers relates to the pseudorandomness of the
QR-generator. After discussing the general cryptographic theory, we will return
in detail to the QR-generator in [4].

A minor difference from the classical generators is that what would be
a fixed parameter m is now also considered part of the seed. The only
parameter of the QR-generator is in fact the chosen length k of the numbers xn
produced inside the generator.

The basic idea in the cryptographic approach is that a pseudorandom
number generator is not a device for creating randomness but rather a device
for amplifying randomness. If we consider the seed as truly random, then the
output sequence (yn)n;ioo is also random, and we may ask how close its
distribution is to the distribution of fair Bernoulli trials.

For simplicity, let us suppose that the seed is a k-bit integer, chosen
uniformly at random from all possible bit strings of this length. Clearly, the
joint distribution of the output sequence (Yn)n,,, 0 is highly degenerate, especially
if it is long. Suppose we generate y 1 , ... , Yt(kJo where I(·) is some polynomial in
k of degree at least 2. There are only 2k possible, equally likely values for the
whole sequence (assuming they are all different) out of an enormous 2!(k)

equally likely values of a truly random binary sequence of length l(k). However,
the degeneracy can be so well hidden that we are not aware of it. And this must
hold for the classical random number generators which are routinely used by
statisticians and others at exactly the kind of scale described here.

Obviously, the degeneracy can be found if one looks for it. A powerful
statistical test for determining whether y 1 , ... , Yt(k) are truly random or only
pseudorandom consists of checking if the sequence is one of the 2k sequences

106 S. Brands and R. Gill

produced by the generator or one of the other 2z(k) _ 2k sequences possible with
a truly random sequence. This constitutes a statistical test with size ap
proaching zero if k increases (more specifically, the size is 2k-l(k>) and power is
equal to one. There is a big drawback to this test however: it takes a lot of
computing time. Suppose for example that the seed is one hundred bits long,
and that l(k) = k4. Then we are talking about using one hundred fair coin
tosses to simulate one hundred million. Producing a single sequence of
100 OOO OOO bits for the statistical simulation experiment is very feasible, but
producing all 2100 possible sequences is definitely not feasible; it would take
a million supercomputers that can each produce a million sequences per
second about forty billion years to get the job finished! So the just-mentioned
statistical test is certainly infeasible. However, there might exist statistical tests
which only require feasible computational resources yet just as conclusively
detect pseudorandomness from true randomness.

4.2. Founding the theory on algorithmic complexity theory. The aim of
the cryptographic theory is to construct pseudorandom number generators
such that no feasible statistical test can show up the difference between
a deterministically generated sequence and a truly random sequence. The use
of the word "feasible" sounds vague but can be made completely precise
through standard notions of algorithmic complexity theory. "Feasible" in
algorithmic complexity theory means computable in polynomial time by an
algorithm (which can be formalised using, e.g., Turing machines). That is, the
running time of the algorithm used to compute the test is at most polyno
mial in the size of the input (here, we measure the size of numbers by their
binary length). Note that feasibility is formalised in an asymptotic sense: only
asymptotically (in the size of a given problem) can one distinguish between
problems that are feasible to solve and problems that are infeasible to solve.
The formal distinction between feasible and infeasible problems is generally
agreed to correspond rather closely to the practical distinction between
problems which, as their size gets larger, remain tractable or become
intractable.

At the same time, "feasible" is formulated in a probabilistic sense: the
algorithm must run in (expected) polynomial time. The probability aspect
stems from the fact that the algorithm is allowed to be probabilistic, i.e., it is
allowed to make choices based on flipping a fair coin.

"Showing up the difference" between a generated sequence and a truly
random sequence can also be made precise. We have a statistical testing
problem with, as null hypothesis, true randomness; as alternative, the distri
bution induced by the generated sequence from the distribution of the seed.
A given statistical test shows up a difference if there is a difference between the
size and power of the test. Again, this has to be formulated in an asymptotic
sense.

Cryptography, statistics and pseudorandomness. I 107

Note that if the size and power of a given statistical test are different, one
can independently repeat the test a number of times and build a new test whose
power and size lie even further apart. In fact, if the power and size differ by at
least one divided by a polynomial in the size of the input to the test, then only
a polynomial number of replications of the test suffice to bring the size close to
zero and the power close to one. Thus, "failing a feasible statistical test" in the
weak sense of power being just "slightly" bigger than size means that there
exists a much more conclusive feasible test which the generator also fails.

In [4] we will give a fairly detailed overview of the proof that the
QR:.generator is pseudorandom in this sense, provided it is true (as most
people believe) that factoring Blum integers is infeasible on average. The proof
consists of converting a statistical test which shows up the nonrandomness of
this pseudorandom number generator into a probabilistic polynomial-time
algorithm for factoring the modulus m.

The linear congruential generator, as defined by (1), can be shown not to
be pseudorandom in this sense: one can essentially recover the seed from the
sequence in polynomial time, and hence come up with a statistical test that
overwhelmingly rejects its randomness; see [2]. It is an interesting open
question whether modifications exist that do pass all polynomial-time statis
tical tests, although several partial results suggest that this is unlikely to be the
case.

4.3. Historical perspective. The idea to classify a generator as pseudoran
dom if no polynomial-time statistical test can distinguish its outputs from truly
random sequences is in fact a very natural one, as is reflected in the history of
pseudorandom number generators. Around 1938, a sequence output by
a number generator was considered fine if it passed the four tests devised by
Kendall and Babbington (being the frequency test, the serial test, the poker test
and the gap test). Then some other tests were added; for quite a while the series
of tests described in Knuth [7] was thought to be very representative.
Nowadays, it seems that this set of tests is not stringent enough for
sophisticated applications. This has led to the development of some extra tests
that are more difficult to pass by sequences that are not good enough, yet pass
all the tests in [7]. For details about such stringent tests, see Marsaglia [8].
From this perspective, the cryptographic theory is a natural next (big) step
forwards, considering all feasible statistical tests, with the interpretation of
feasible in terms of polynomial time making the theory very robust under
future technological developments.

5. THE RELEVANCE OF THE CRYPTOGRAPHIC APPROACH

Before embarking on the cryptographic theory we should pay some more
attention to its relevance. In practice, does it make sense to suppose that the
seed of a pseudorandom number generator is chosen at random? What has

108 S. Brands and R. Gill

"passing all feasible statistical tests" got to do with how a generator is actually
used in practice?

As an example, let us consider the statistical simulation experiments
carried out in [10], which aimed to show that a generalised likelihood ratio
test, in a certain semiparametric model for bivariate data estimated by
non-parametric maximum likelihood, has the same asymptotic properties as in
the parametric case. During the simulations the nominal P-value of the log
likelihood ratio test, assuming an asymptotic chi-square distribution to be
applicable under the null hypothesis, was calculated for a large number of large
samples from the null model. If the conjectured asymptotic theory is true and if
the chosen sample size is large enough to make it a reasonable approximation,
these P-values should be approximately a sample from a uniform distribution
on [O, 1]. The simulations were summarised by plots of the empirical
distribution function of the observed P-values. At larger sample sizes, the plots
looked very much indeed like pictures of the uniform empirical distribution
function, supporting the conjectured results.

Suppose the plot is based on 1000 replications at sample size 1000. We see
1000 points, lying closely along the diagonal in the unit square. Each point
represents a single P-value based on a sample of size 1000 from some bivariate
distribution. Thus, supposing real numbers were represented by strings of 30
bits, about 60 million simulated fair coin tosses are needed to draw the graph.
In fact, the 60 million coin tosses are the completely deterministic output of
a pseudorandom number generator, starting with a seed represented as a string
of about 100 bits. The seed was the result left at the end of the previous
simulation experiment; alternatively one may let the system choose the seed
itself in some way (using the system clock, perhaps) or the user can set it:
perhaps with real fair coin tosses but more likely using a coding of his or her
birthday or bank account number or just with the first string of numbers which
came to mind. In any of these cases it seems completely justified to consider the
initial seed, for this experiment, as truly random and even uniformly distributed
on its range. (If one carries out a number of simulation experiments at the same
workstation using subsequent segments of the same cycle of pseudorandom
numbers, different experiments are not independent of one another, however
this does not change the interpretation of what is going on in one given
experiment.)

As we discussed before, the joint distribution of the whole output sequence
does not remotely look like what it is supposed to simulate. However, one is
not interested in the joint distribution of the whole output sequence but just in
the distribution of a few numerical statistics, perhaps even a single zero-one
valued statistic. The statistics of interest depend on the application for which
the random numbers are needed. For instance, the conclusion drawn from the
plot we have discussed is "this looks like a uniform sample." One could
quantify this impression by calculating some measure of distance of the plotted

Cryptography, statistics and pseudorandomness. I 109

curve from the diagonal, or just carry out a Kolmogorov-Smirnov test at the
5% level (with conclusion "O.K.").

Also in applications of the bootstrap and in other statistical applications,
it is common to use a hundred or so essentially random, fair coin tosses, to
generate several million up to several billion, and then compute from these just
a few numerical quantities. For example, the result of a bootstrap experiment is
the measurement of one or two empirical quantiles, to be used in the
construction of a confidence interval. The only important thing about these
observed quantiles (based on several thousand replicates of a statistic com
puted on samples of one hundred or a thousand observations) is that they lie
with large probability, under pseudorandomness, in the same small interval
(about "the true bootstrap quantile") as under true randomness.

The gist of this is that, even if we produce millions of random numbers in
a statistical simulation experiment, we are only interested in the outcome of
a few zero-one variables computed from all of them. The use of the simulation
is based on a reliance that these variables have essentially the same distribution
under pseudo randomness as under true randomness: in other words, they
should be of no use as a statistical test of randomness against pseudorandom
ness. If the distributions were different and known in advance, we could even
use our simulation experiment as a statistical test of our generator. It would be
the most sensible test to use since it tests exactly the aspect of the generator
which is important for the application! However, the probabilities in question
are not known in advance and cannot be easily calculated, which is after all
exactly the reason for doing a simulation experiment in the first place. Note
also that even if the simulation experiment of Nielsen et al. [10] is large, it still
gets finished in reasonable time and if necessary could be repeated a few times.
The statistical test of randomness which the use of the experiment represents is
a polynomial-time test.

The point is that a pseudorandom number generator which passes all
feasible tests is a number generator which we can safely use for all practical
applications. Of course, since the requirements for the cryptographic genera
tors are stated in asymptotic terms, in practice the length of the seed to the
generator must be chosen with lower bound which is assumed to be sufficient
to approximate the asymptotic results.

6. THE CRYPTOGRAPHIC THEORY

Now back to cryptography. Two notions are central to the theoretical
construction of pseudorandom number generators: one-way permutations and
hard-core predicates.

6.1. One-way permutations. Informally, a one-way permutation is a per
mutation which is easy to compute, while computing its inverse is difficult on

110 S. Brands and R. Gill

average. Easy and difficult mean here: in polynomial time, and not in
polynomial time, respectively. The notion is therefore an asymptotic notion
and we are really applying it to a sequence of permutations fk (·), typically
defined on a subset of the set of binary strings of length k.

More specifically, a permutation f(·) is (strongly) one-way if, on the one
hand, f(·) can be computed in time polynomial in the length of its argument,
but on the other hand, for all polynomials p(·) and (probabilistic) polyno
mial-time algorithms M,

Pk(M(f (x)) = x) < 1/p(k)

for all sufficiently large k. By M(y) we mean the result of applying the
algorithm M to the input y. The probability distribution Pk is taken over
{O, l}k and the internal coin tosses of M. Note that the inverting algorithm
Mis allowed to be probabilistic. The distribution of x over {O, 1 }k in general
will not be the uniform distribution, but usually will assign the uniform
distribution on an appropriate subset Dk of {O, 1 }k.

The assumption that one-way permutations exist is at least as strong as the
famous NP =F P conjecture of algorithmic complexity theory. Namely, if
NP= P, then the inverse under f(·) can be correctly guessed in polynomial time.
This implies, because the NP versus P question is unresolved, that permutations
can only be proven one-way under some unproven assumption. In fact, since
a one-way permutation is defined to be difficult to invert on the average, whereas
the complexity class NP considers only the worst-case complexity of problems,
NP =F P does not imply the existence of a one-way permutation.

Note that a necessary but not sufficient condition for a one-way
permutation is that the number of elements in the domain Dk grows
superpolynomially with k. If this were not the case, then a simple polyno
mial-time inverting algorithm exists that successively evaluates the permuted
value of each element in the domain until the inverse is found. Likewise there
must exist a probabilistic polynomial-time algorithm that can sample elements
from the domain according to some specified distribution (usually the uniform
distribution).

6.2. Hard-core predicates. If a permutation f(·) is one-way, then for the
majority of elements in its range it cannot be the case that all the bits of the
inverse can be computed in polynomial time; at least one bit of x must be hard
to predict givenf(x). Indeed, there may exist more, perhaps even all of the bits
of x are hard to predict. More generally, there must exist at least one
polynomial-time computable function from a subset of the bits of the argument
off(·) to {O, 1} that is at least somewhat hard to compute givenf(·). Intuitively,
the idea of the cryptographic approach is to extract this bit and use it to
construct the output of the generator. This is formalised through the notion of
a hard-core predicate.

Cryptography, statistics and pseudorandomness. I 111

Formally, a predicate B(-) is hard-core for the permutation/(·) if, on the
one hand, B(fO) can be computed in polynomial time, but on the other, for all
polynomials p(·) and probabilistic polynomial time algorithms M,

IPk(M(x) = B(x))-tl < 1/p(k)

for all sufficiently large k. Again, the probability distribution is defined over the
set Dk s; {O, 1 }k and the internal coin tosses of M.

Intuitively, one should think of BO as assigning to x a particular hard to
compute bit of its inverse under the mapping defined by f (-). Knowing x, it is
hard to compute its inverse under/(·) because/(·) is one-way. Some bits of such
an element may be easily computable but by definition not the hard-core bit.
A hard-core predicate maintains in a very strong sense the one-way property of
the permutation /(·).

As an example, consider a one-way permutation that is defined on a set
that consists purely of odd integers. Although it is infeasible on the average to
compute x fromf(x), the least significant bit of the argument of JO is certainly
not hard-core, since it is always a 1.

The only known method to rigorously prove that a predicate B(-) is
hard-core for a permutation /(·) is to show that the existence of a feasible
algorithm that computes it would imply the existence of a feasible algorithm to
invert/('), which would be a contradiction with /(·) being one-way. This is
called a (probabilistic) polynomial-time reduction. Probabilistic reductions often
involve ingenious "oracle" sampling techniques, based on statistical techniques;
a good example of such a reduction will be given in part II of this paper [4],
where we discuss the proof that the least significant bit of the function
displayed in (2) is hard-core.

We next set up the definitions needed to discuss pseudorandom number
generators.

6.3. Statistical tests. A bit generator JO is actually a sequence of polyno
mial-time computable functions fkO mapping, say, {O, 1 }k to {O, 1 }1<k> for some
polynomial function /(·). The domain is called the seed domain and given an
appropriate probability distribution. A feasible statistical test T of a generator
JO is a sequence of (probabilistic) polynomial-time algorithms 1i<k> that take
inputs from {O, 1 }'<k>, and output a zero or a one. The outcome should be
interpreted as "accept" or "reject," and the algorithm 1i<k> is in fact a statistical
test of the null hypothesis that the output sequences follow the uniform distri
bution on strings of length l(k) against the alternative that they have the
distribution induced through the generator by some distribution over strings of
length k. We say that/(-) passes the statistical test T if, for all polynomials, the
difference between the power and size of the statistical test is eventually smaller
than one divided by that polynomial, which implies that this difference cannot
be "significantly" amplified by polynomially many repetitions of the test.
A generator is pseudorandom if it passes all feasible statistical tests.

112 S. Brands and R. Gill

Intuitively, this criterion for pseudorandomness can be visualised by
viewing the sequences of length l(k) produced by the generator as points
scattered throughout the set of all bit strings of length l(k). A feasible statistical
test can be thought of as inducing a "very simple" partition (such as a line) of
the set of all strings of length l(k) into two categories: those strings that it
accepts and those that it rejects. The test is passed if the pseudorandom points
are divided in approximately the same proportion as the set of all points.

6.4. Unpredictability. An apparently less stringent criterion of a generator
is (next-bit) unpredictability. This means that for each position from 1 up to
l(k)-1 in the output sequence, no feasible probabilistic algorithm exists which
predicts, with success probability "significantly" exceeding a half, the next
output bit of the sequence, given the preceding bits up to this position. If
a generator is predictable, then for some position in the output sequence one
can, with non-negligible success probability, feasibly predict the next bit from
the preceding ones.

An important theorem of Yao [11] states that the property of being
unpredictable is actually equivalent to being pseudorandom. In other words,
passing all feasible next-bit statistical tests implies passing all feasible statistical
tests. Since pseudorandomness does not depend on whether the output bits are
taken in their usual order or in reverse order, we have the corollary: forwards
unpredictability is equivalent to backwards unpredictability. Thus, the notion
of unpredictability of next bits (or previous bits) forms a "universal" test of
randomness with respect to polynomial-time computation. The relevance of
this is most of all that it is much easier in general to prove (perhaps under some
assumption) that a generator is unpredictable than to show directly that it is
pseudorandom. Indeed, the proof of correctness of the general construction
discussed in the next subsection depends on this fact.

Here is a sketch of the proof of the theorem. It is easy to see that if
a generator is predictable, then it is not pseudorandom, since we can obviously
construct a feasible statistical test, that the generator fails, from a successful
prediction of one of its output bits. For the converse, suppose the generator
is not pseudorandom. This means that there exists a feasible statistical test
whose size and power are "significantly" different from one another. De
note the output sequence of the generator by y = (y 1 , ... , Yt<k)) and let
y* = (yf, ... , Y~k)) denote a truly random sequence. From these two consider
all the "cross-over" combined sequences:

Y(n) - (y * *) - l• ... , Yn-1• Yn ' •.• , Yl(k)' n = 1, .. ., l(k).

Apply the statistical test to both of y(n) and y(n+ 1>. Since there is an appreciable
difference between the probabilities of rejecting y* and rejecting y, there has to
be somewhere, at least, some "significant" difference between the probabilities
of rejecting y<nl and y<•+ 1>, since the first element of the first of these pairs

Cryptography, statistics and pseudorandomness. I 113

is y* and the second element of the last of the pairs is y. Here we use the fact
that l(k) is a polynomial in k: a probability which is larger than one divided by
some polynomial also has this property when divided by l(k) (pigeonhole
principle!).

Now, if one can distinguish between y<n) and y<n + 1) for some n, it seems
plausible that one can predict, with some success, Yn from (y1 , ... , Yn- i),
since the only difference between y<n) and y<" + 1) is whether the n-th bit con
tains the deterministically formed Yn or the fair coin toss y:. Indeed, one
can show that a feasible probabilistic prediction algorithm can be built on
comparing the results of the statistical test applied to the two sequences:
(yp ... , Yn-1• 0, Y:+1 • ... , yt) and (y1 , .•. , Yn-1• 1, Y:+ 1, ... , yt). Note that
the resulting next-bit test is probabilistic because it has to supply the fair coin
tosses (Y:+1, ... , yt).

6.5. The construction of Blum and Micali. To conclude our overview of the
general cryptographic theory, we show that given any one-way permutation!(-)
with a hard-core predicate B(·}, one can construct a pseudorandom generator
g(·) by iteratingf(·}, and outputting successive values of B(f(-)) (both of which
are easy to do). That is,

g(x) = (B(f (x)), B(f (f (x))), ... , B(f1(k)(x))),

where the seed x is sampled from the same distribution as that defined for the
arguments off(·). This elegant and important construction is due to Blum and
Micali [1].

To see why this results in a bit generator that is pseudorandom, we show
that g(·) is not backwards predictable by a feasible statistical test. If g(-) were
backwards predictable, we could feasibly guess, with some degree of success,
the value of, say, B(f"(x)), given the values of B(f"+ 1 (x)), ... , B(f1(k)(x)). This
latter set of values can be feasibly computed frornf"(x). So givenf"(x) one can
apparently guess B(f"(x)) with success probability that "significantly" exceeds
1/2. But this contradicts BO being hard-core, since the fact that f O is
a permutation implies that f"(x) has the same distribution as f(x).

REFERENCES

[I] M. BI um and S. Micali, How to generate cryptographically strong sequences of pseudorandom
bits, SIAM J. Comput. 13 (1984), pp. 850-864.

[2] J. Boyar, Inferring sequences produced by pseudorandom number generators, J. ACM 36 (1989),
pp. 129-141.

[3] S. A. Brands, The Cryptographic Approach to Pseudorandom Bit Generation, Master's Thesis,
Dept. Math., Univ. Utrecht, 1991.

[4] - and R. D. Gill, Cryptography, statistics and pseudorandomness. II, Probab. Math. Statist.
16 (1996), to appear.

8 - PAMS 15

114 S. Brands and R. Gill

[5] A. M. Ferren berg, D. P. Landau and Y. J. Wong, Monte Carlo simulations: hidden errors
from 'good' random number generators, Phys. Rev. Lett. 69 (1992), pp. 3382-3384.

[6] R. D. Gill, Lectures on Survival Analysis, in: Lectures on Probability Theory, Ecole d'Ete de
Probabilites de Saint Flour XXIl-1992, P. Bernard (Ed.), Lecture Notes in Math. 1581,
Springer, 1994, pp. 115-241.

[7] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
Addison-Wesley, 1981.

[8] G. Marsaglia, A current view of random number generators, in: Proceedings, Computer
Science and Statistics, 16th Symposium on the Interface, Atlanta 1984.

[9] - and A. Zaman, A new class of random number generators, Ann. Appl. Probab. 1 (1991),
pp. 462-480.

[10] G. G. Nielsen, R. D. Gill, P. K. Andersen and T. I. A. S121rensen, A counting process
approach to maximum likelihood estimation in frailty models, Scand. J. Statist. 19 (1992),
pp. 25-43.

[11] A. C. Yao, Theory and applications of trapdoor functions, Proc. 23rd IEEE Syrop. Found.
· Comp. Sci., 1982, pp. 458-463.

Centre for Mathematics
and Computer Science

Kruislaan 413, 1098 SJ Amsterdam
Netherlands

Received on 8.3.1994

Mathematical Institute
University Utrecht

Budapestlaan 6, 3584 CD Utrecht
Netherlands

