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Abstract. Spatial and temporal load variations, e.g. flash overloads and
traffic hot spots that persist for minutes to hours, are intrinsic features of
wireless networks, and give rise to potentially huge performance repercus-
sions. Dynamic load balancing strategies provide a natural mechanism for
dealing with load fluctuations and alleviating the performance impact. In
the present paper we propose a distributed shadow-price-based approach
to dynamic load balancing in wireless data networks. We examine two
related problem versions: (i) minimizing a convex function of the trans-
mitter loads for given user throughput requirements; and (ii) maximizing
a concave function of the user throughputs subject to constraints on the
transmitter loads. As conceptual counterparts, these two formulations
turn out to be amenable to a common primal-dual decomposition frame-
work. Numerical experiments show that dynamic load balancing yields
significant performance gains in terms of user throughputs and delays,
even in scenarios where the long-term loads are perfectly balanced.

1 Introduction

Even more so than other communication networks, wireless data networks are
characterized by the occurrence of large spatial and temporal load variations.
The spatial variations manifest themselves in flash overloads in persistent hot
spots in dense urban areas due to mobility, transportation busy hours, accidents,
and other unpredictable events. Temporal fluctuations occur in time scales from
milliseconds and minutes to hours and days. On the latter time scales, the traf-
fic load varies according to predictable day-of-week and hour-of-day aggregate
patterns. On the former time scales, the load fluctuates not only because of the
intrinsic randomness in user arrivals and session durations, but also due to vari-
ations in the transmission rates that rapidly change due to fast fading. Clearly,
the spatial and temporal variation and uncertainty in the traffic will only tend to
be more pronounced in ad-hoc deployment environments compared to carefully
planned commercial cellular networks.

Third-generation cellular systems aim to provide high-speed data services de-
spite these spatio-temporal variations. In fact, the fast temporal fluctuations
are taken advantage of by the base station to allocate resources based on chan-
nel feedback and backlog through careful scheduling [1,5,9,15,17]. In all existing
systems, however, including CDMA, UMTS and even IEEE 802.11, each base
station, or access point, independently arbitrates among users in its coverage
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area. Users simply select the strongest received base station, and each base sta-
tion allocates resources without any coordination with other base stations in
its vicinity. As a result, one base station or access point may experience severe
overload, while resources might be abundant at surrounding base stations, thus
providing scope for performance gains through some form of coordination.

Coordinated resource allocation has recently been considered in several stud-
ies, see for instance [7,8,18]. The work in [8] shows the gains due to coordination
to be significant. Despite these gains, however, coordinated resource allocation
among cells remains a challenging task. Centralized coordination requires huge
processing capability as well as exchange of vast amounts of information among
all users in a geographical area and the coordinating entity.

A possible remedy comes from decentralized or self-organizing schemes where
a sufficient degree of coordination is achieved with minimal exchange of state.
In previous work [6], the authors considered distributed load balancing as a
mechanism for achieving such functionalities for power-controlled services, such
as voice connections. In that work it was shown that shadow prices for carefully
selected critical resources provide the additional means to dynamically allocate
users to cells based on load considerations, in addition to the standard notion
of proximity, and thus achieve a high degree of optimization, without the need
for centralization. Dynamic association of users with access points has also been
considered in the context of IEEE 802.11 networks, see for instance [2].

In the present paper we combine the utility maximization framework that
has been successfully leveraged for scheduling and resource allocation in the un-
coordinated case [20,21] with the distributed optimization approach developed
in [6]. Even though the aim is not to enable full-fledge network-wide scheduling,
we show that significant gains result from suitable assignment of users to cells
and efficient allocation of resources. Additional per-cell scheduling will obviously
further improve the performance. The proposed mechanism relies on distributed
shadow prices for dynamic load balancing. We examine two related problem ver-
sions: (i) minimizing a convex function of the transmitter loads for given user
throughput requirements; and (ii) maximizing a concave function of the user
throughputs subject to constraints on the transmitter loads. As conceptual coun-
terparts, these two formulations turn out to be amenable to a common primal-
dual decomposition framework. Numerical experiments indicate that dynamic
load balancing yields significant performance gains in terms of user throughputs
and delays, even in scenarios where the long-term loads are perfectly balanced.

The remainder of the paper is organized as follows. In Section 2 we examine
the problem of minimizing a convex function of the transmitter loads for given
throughput requirements. In Section 3 we turn attention to the problem of max-
imizing a concave function of the user throughputs subject to constraints on the
transmitter loads. We describe how the merits of load balancing schemes can be
evaluated in terms of transfer delays and user throughputs in Section 4. In Sec-
tion 5 we present the numerical experiments that we conducted to benchmark
the performance gains from dynamic load balancing. We make some concluding
remarks in Section 6.



1026 S.C. Borst, I. Saniee, and P.A. Whiting

2 Load Minimization

2.1 Model Description

We consider a wireless data network with C transmitters. For now we will focus
on a static scenario with M users, and address the problem of determining which
users should be allocated resources from which transmitters.

Denote by rmc the feasible transmission rate of user m when served by trans-
mitter c. By feasible rate, we mean the long-term rate that the user would receive
if it were allocated all the transmission resources (time slots, power, frequencies)
of the transmitter. Let xmc be the actual amount of resources of transmitter c
allocated to user m. We assume the transmissions to be (roughly) orthogonal,

so that user m receives a total rate of (approximately) Tm :=
C∑

c=1
rmcxmc. Let

Lc :=
M∑

m=1
xmc be the total load (resource utilization) at transmitter c. Denote

by τm the rate requirement of user m, and by σc the maximum sustainable load
on transmitter c, when applicable.

The coefficients rmc only serve as a parsimonious representation of the rate
statistics, and likewise the parameters τm are only meant to provide a coarse
characterization of the traffic demands. We abstract from the specific details of
the air-interface structure, and also ignore the burstiness in the traffic processes
and the fact that actual transmission rates vary over time because of fast fad-
ing. While the latter aspects are clearly crucial for the scheduling at each of the
transmitters on a fast time scale, they are less relevant in deciding which users
should be served by which transmitters. Also, the quantities xmc will only play
the role of decision variables in coordinating the assignment of users to transmit-
ters, with the actual allocation of resources governed by local schedulers residing
at the individual transmitters.

2.2 Problem Formulation

We first examine the problem of minimizing a convex function F (L1, . . . , LC) of
the transmitter loads for given throughput requirements τ1, . . . , τM . This formu-
lation is particularly natural when the users have intrinsic rate requirements and
conservation of transmission resources (e.g. battery life) is of vital importance,
or when the level of congestion is a critical performance measure.

min F (L1, . . . , LC) (1)

sub Lc =
M∑

m=1

xmc c = 1, . . . , C (2)

Tm =
C∑

c=1

rmcxmc ≥ τm m = 1, . . . , M (3)

xmc ≥ 0 m = 1, . . . , M, c = 1, . . . , C.
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Convex duality implies that the optimal solution to the above problem may be
found from the Lagrangian formulation maxμ∈R

M
+

F ∗(μ), with F ∗(μ) =
minx∈R

M×C
+

L(x, μ),

L(x, μ) := F (L1, . . . , LC) +
M∑

m=1

μm(τm −
C∑

c=1

rmcxmc),

and μ1, . . . , μM Lagrangian multipliers.
The optimality conditions for the latter formulation read ∂F

∂Lc
≥ rmcμ

∗
m, with

the complementary slackness conditions x∗
mc

(
∂F
∂Lc

− rmcμ
∗
m

)
= 0 for all m =

1, . . . , M , c = 1, . . . , C, and μ∗
m(τm −

C∑

c=1
rmcx

∗
mc) = 0 for all m = 1, . . . , M .

Note that the problem (1)–(3) will have a feasible solution (and the Lagrangian
will have a finite solution) as long as min

c=1,...,C
rmc > 0 for all m = 1, . . . , M . Also,

there exists an optimal solution with at most M + C − 1 non-zero variables
x∗

mc, which means that there will be at most C − 1 additional ‘legs’ beyond the
minimum number that is necessary to connect all the M users.

We now focus on the case where the objective function is of the form F (L1, . . . ,

LC) =
C∑

c=1
Kc(Lc), with Kc(·) some strictly convex differentiable function. In

that case, x∗
mc satisfies K ′

c(L∗
c) = rmcμ

∗
m for all m ∈ Mc, Mc := arg

max
m=1,...,M

rmcμ
∗
m, and x∗

mc = 0 for all m /∈ Mc. A particular example is Kc(Lc) =

L1+β
c /(1+β) for some parameter β > 0, which governs the trade-off between min-

imizing the total load and the maximum load across all transmitters. As β ↓ 0,

the objective function becomes
C∑

c=1
Lc, which is minimized by simply assigning

each individual user m to the strongest transmitter cm := arg max
c=1,...,C

rmc. In

contrast, when β → ∞, the problem amounts to minimizing max
c=1,...,C

Lc, which

deserves special treatment and will be examined in further detail below.
The Lagrangian formulation may be interpreted as follows. Each of the users

can be allocated resources from each of the transmitters. The cost associated
with the load imposed on the transmitter c is specified by the function Kc(·),
while each unit of throughput obtained by user m carries a reward μm. There
are two opposing players. Player 1 aims to allocate the resources to users so as
to minimize the net cost (or maximize the net revenue) for given rewards μm.
Player 2 aims to set rewards μm, so as to maximize the net cost incurred (min-
imize the net revenue earned) by the first player.

In principle, the above problems may be readily solved using standard rou-
tines. However, these algorithms generally involve centralized computation and
require global knowledge of all parameters. To circumvent these issues, an Arrow-
Hurwicz type dual-ascent scheme [11] may be used which, while slower to con-
verge, is mostly distributed in nature, and only involves a limited exchange of
information among transmitters and users. Such a scheme may be interpreted as
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a repeated game between the two opposing players as described above. Because
of page constraints a detailed description of the algorithm and the convergence
proof is omitted.

We now investigate the case where the objective function is of the form
F (L1, . . . , LC) = max

c=1,...,C
wcLc, i.e., the maximum weighted load across all trans-

mitters. In that case, problem (1)–(3) reduces to the following linear program:

min L (4)

sub L ≥ wcLc = wc

M∑

m=1

xmc c = 1, . . . , C (5)

Tm =
C∑

c=1

rmcxmc ≥ τm m = 1, . . . , M (6)

xmc ≥ 0 m = 1, . . . , M, c = 1, . . . , C.

The dual version of the above linear program reads:

max
M∑

m=1

τmμm

sub
C∑

c=1

λc ≤ 1

rmcμm ≤ wcλc m = 1, . . . , M, c = 1, . . . , C

λc, μm ≥ 0 m = 1, . . . , M, c = 1, . . . , C,

with λc and μm representing the dual variables or shadow prices associated with
the constraints (5) and (6), respectively.

Since optimality demands
C∑

c=1
λ∗

c = 1 and μ∗
m = min

c=1,...,C
wcλ

∗
c/rmc, the latter

variables may be eliminated, and the dual problem may be more succinctly cast

as maximizing V (λ1, . . . , λC) subject to
C∑

c=1
λc = 1 and λc ≥ 0, c = 1, . . . , C,

with V (λ1, . . . , λC) :=
M∑

m=1
τm min

c=1,...,C
wcλc/rmc. The latter problem may be

interpreted in a similar fashion as above. Each of the users can be allocated
resources from each of the transmitters. User m needs to receive throughput τm,
while each unit of resource allocated by transmitter costs wcλc, so the cost when
transmitter m provides the entire througput required by user m is wcλcτm. There
are two ‘opposing’ players. Player 1 aims to allocate transmission resources to
the users so as to minimize the total cost for given prices λc while satisfying the
throughput requirements. Player 2 aims to set prices λc so as to maximize the
total cost incurred by the first player.

The problem (4)–(6) may be solved by a dual-ascent scheme similar to the
one that will be described in the next section.
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3 Throughput Maximization

We now turn attention to the problem of maximizing a concave function G(T1, . . . ,
TM ) of the user throughputs for given load (resource utilization) constraints
σ1, . . . , σC . This formulation is appropriate when users have elastic traffic demands
and the consumption of transmission resources (e.g. power) is constrained by hard
limits, but not a crucial criterion otherwise.

max G(T1, . . . , TM ) (7)

sub Tm =
C∑

c=1

rmcxmc m = 1, . . . , M (8)

Lc =
M∑

m=1

xmc ≤ σc c = 1, . . . , C (9)

xmc ≥ 0 m = 1, . . . , M, c = 1, . . . , C.

The above formulation is conceptually similar to the multi-path extension of the
basic utility maximization problem in [12], i.e., joint routing and rate control,
see also for instance [13,14,19,22].

Convex duality implies that the optimal solution to the above problem may be
found from the Lagrangian formulation minλ∈R

C
+

G∗(λ), with G∗(λ) =
maxx∈R

M×C
+

L(x, λ),

L(x, λ) := G(T1, . . . , TM ) +
C∑

c=1

λc(σc −
M∑

m=1

xmc),

and λ1, . . . , λC Lagrangian multipliers.
The optimality conditions for the latter formulation read ∂G

∂Tm
≤ λ∗

c/rmc,

with the complementary slackness conditions x∗
mc

(
∂G

∂Tm
− λ∗

c/rmc

)
= 0 for all

m = 1, . . . , M , c = 1, . . . , C, and λ∗
c(σc −

M∑

m=1
x∗

mc) = 0 for all c = 1, . . . , C.

It may be checked that there exists an optimal solution of the problem (7)–(9)
with at most M + C − 1 non-zero variables x∗

mc, which means that there will be
at most C − 1 additional ‘legs’ beyond the minimum number that is necessary
to connect all the M users.

We now focus on the case where the objective function is of the form G(T1, . . . ,

TM ) =
M∑

m=1
Um(Tm), with Um(·) some strictly concave differentiable function. In

that case, x∗
mc satisfies U ′

m(T ∗
m)=rmcμ

∗
m for all c ∈ Cm, Cm :=arg min

c=1,...,C
λ∗

c/rmc,

and x∗
mc = 0 for all c �∈ Cm.

We will specifically consider the family of α-fair utility functions defined by
Um(Tm) = Uα(Tm) = T 1−α

m

1−α for some α > 0. The parameter α represents a fair-
ness coefficient which characterizes the trade-off between the total throughput
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and the minimum throughput across all users [16]. In particular, the cases α ↓ 0,
α → 1 and α → ∞ correspond to maximum throughput, Propertional Fairness
and max-min fairness, respectively. As α ↓ 0, optimality is achieved by simply
allocating all the resources of each individual transmitter c to the strongest re-
ceived user mc := arg max

c=1,...,C
rmc. In contrast, when α → ∞, the problem merits

special treatment and will be revisited below.

Algorithm description for problem (7)–(9)

1. Initialize λ = (λ1, . . . , λC), e.g., λ
(0)
c = M/C for all c = 1, . . . , C.

2. For given λ = (λ1, . . . , λC), find resource allocations xmc that maximize L(x, λ) :=
M∑

m=1
Um(Tm) +

C∑

c=1
λc(σc −

M∑

m=1
xmc). This amounts to allocating each individual

user m resources from the most attractive transmitter cm := arg min
c=1,...,C

λc/rmc;

xmcm satisfies U ′
m(xmcmrmcm ) = λcm/rmcm , and xmc = 0 for all c �= cm. In the

special case where Um(x) = Uα(x) = x1−α/(1 − α) for some α > 0, we obtain
xmcm = (λmcm/rcm)−1/α/rmcm = r

1/α−1
mcm λ

−1/α
cm .

3. Let Lc(λ(i)) be the optimal load at transmitter c for given λ(i) = (λ(i)
1 , . . . , λ

(i)
C ) as

determined in step 2. Update λ
(i)
c as

λ(i+1)
c := λ(i)

c + �i(Lc(λ(i)) − σc).

To guarantee convergence, it is required that lim
i→∞

�i = 0 and
∞∑

i=0
�i = ∞. For example,

one may take �i = �i−1/2+ε for positive constants ε, �. To ensure that λ
(i+1)
c > 0 for

all c = 1, . . . , C, truncate the update step if needed.
4. Let xmc(λ(i)) be the optimal amount of resources allocated by transmitter c to user m

for given λ(i) = (λ(i)
1 , . . . , λ

(i)
C ) as determined in step 2. Update x

(i)
mc as

x(i+1)
mc = (1 − ςi)x(i)

mc + ςixmc(λ(i)),

with ςi := �i/
i∑

j=0
�j .

5. Repeat the above steps until some convergence/stopping criterion is satisfied.

The convergence proof is skipped because of page limitations.
Observe that, in view of the complementary slackness conditions, the optimal

shadow price vector λ∗ ≡ (λ∗
1, . . . , λ

∗
C) suffices to determine which users should

be served by which transmitters. The exact amount of resources allocated to
the various users will in practice be governed by local schedulers at each of
the transmitters. In that sense step 4 is optional, as it only serves to obtain
the optimal resource allocations x∗

mc, and plays no role in finding the optimal
shadow price vector.

In the case where the objective function is of the form G(T1, . . . , TM ) :=
min

m=1,...,M
Tm, i.e., the minimum throughput across all users, problem (7)–(9) is



Distributed Dynamic Load Balancing in Wireless Networks 1031

equivalent to problem (4)–(6) with vm = 1/τm and σc = 1/wc in the sense that
the optimal solutions are related.

4 Dynamic Setting

In the previous section we addressed the problem of maximizing a through-
put utility function for a given static user population. While utility maximiza-
tion provides a useful guiding principle for fair and efficient resource sharing
among competing users, the utility function does not necessarily have any phys-
ical meaning in terms of actual perceived performance. In particular, the exact
numerical value of the utility function or the fact that the aggregate system
utility has been maximized may not be of any direct relevance to a data user.
What a data user does perceive, is the performance experienced in terms of
delays or actual received throughputs for example, and hence we will evalu-
ate the merits of the load balancing schemes in terms of these metrics. In or-
der to do so, we will consider a dynamic setting where users generate random
finite-size data transfers over time. For convenience, we assume that users be-
long to one of K classes, with transmission rates taking values in a discrete
set of values, but the results easily extend to scenarios with a continuum of
rates. Class-k users arrive as a stationary ergodic process of rate νk, and have
generally distributed service requirements with mean βk (bits). Define ρ :=
(ρ1, . . . , ρK), with ρk := νkβk the traffic intensity associated with class-k users.
Denote by Rkc the feasible transmission rate of class-k users when served by
transmitter c.

In order for delays and user throughputs to be meaningful, a first prereq-
uisite is that the system is stable. Define the rate region of the system by

R := {r ∈ R
K
+ : ∃x ∈ X : rk ≤

C∑

c=1
xkcRkc for all k = 1, . . . , K}, with

X := {x ∈ R
K×C
+ :

K∑

k=1
xkc ≤ σc for all c = 1, . . . , C} representing the set of fea-

sible resource allocations. Clearly, ρ ∈ R is a necessary condition for the existence
of a resource allocation strategy that achieves stability, while ρ ∈ interior(R) is
a sufficient condition.

We will consider four different scenarios.

(i) The ‘greedy’ scheme simply assigns users to the strongest received trans-
mitter. Thus, class-k users are statically assigned to transmitter ck :=
arg max

c=1,...,C
Rkc. Let Kc := {k : ck = c} be the set of user classes assigned

to transmitter c, and define σ̄c :=
∑

k∈Kc
ρk/Rkc as the resulting load on trans-

mitter c. It is easily seen that the greedy assignment achieves stability if and
only if σ̄c < σc for all c = 1, . . . , C.

(ii) The ‘fractional’ α-fair strategy assigns users to transmitters so as to max-
imize the aggregate α-fair utility. Specifically, suppose that there are Nk class-k
users at some point in time. Then the fractional α-fair strategy solves the fol-
lowing optimization problem:
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max
K∑

k=1

Nk∑

n=1

Uα(Tkn)

sub Tkn =
C∑

c=1

Rkcxknc n = 1, . . . , Nk, k = 1, . . . , K (10)

Lc =
K∑

k=1

Nk∑

n=1

xknc ≤ σc c = 1, . . . , C (11)

xknc ≥ 0.

It is easily verified that all the class-k users will receive the same through-
put, and thus the above problem can alternatively be phrased as maximizing
K∑

k=1
Uα(Tk/Nk) subject to (T1, . . . , TK) ∈ R. Since R is a convex set, it then fol-

lows that the fractional α-fair strategy achieves stability for any ρ ∈ interior(R),
provided α > 0 [3].

(iii) The ‘integral’α-fair strategy also assigns users to transmitters so as to max-
imize the aggregate utility, but subject to the additional constraint that users can
only be assigned to a single transmitter. It is readily checked that in this case all the
class-k users assigned to the same transmitter will receive the same throughput.

Also, the above problem can be equivalently stated as maximizing
K∑

k=1
Uα(Tk/Nk)

subject to (T1, . . . , TK) ∈ R(N1, . . . , NK). Here R(N1, . . . , NK) ⊆ R is some sub-
set with the property that limN1,...,NK→∞ R(N1, . . . , NK) = R. This implies that
the integralα-fair strategy also achieves stability for any ρ ∈ interior(R), provided
α > 0 [4].

(iv) The ‘ideal’ scenario is where the resources of all the transmitters can
be pooled into a single transmitter which offers a transmission rate Rmax

k :=
max

c=1,...,C
Rkc to class-k users. This is a hypothetical scenario in typical propagation

conditions, and is only meant to provide an absolute bound on the achievable
performance. It is easily seen that stability occurs in the ideal scenario if and

only if
C∑

c=1
σ̄c <

C∑

c=1
σc.

In conclusion, both the fractional and the integral α-fair strategies achieve
stability whenever feasible. The greedy assignment may generally fail to do so,
while the stability region for the ideal scenario will typically be strictly larger
than R, except in the rather special circumstance that σ̄c ≡ σ̄ for all c = 1, . . . , C.
In that case the stability regions for both the greedy assignment and the ideal
scenario coincide with interior(R).

We now compare the performance in terms of delays and perceived through-
puts in the various scenarios. Clearly, if ρ ∈ interior(R), but σ̄c > σc for some
c = 1, . . . , C, i.e., the loads are imbalanced, but the total load is sustainable,
then the delay under the greedy assignment will be infinite, whereas it is finite
under both the fractional and integral α-fair schemes. Now consider the case
σ̄c < σc ≡ 1 for all c = 1, . . . , C. If we assume Poisson arrivals and fair sharing
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of resources among competing users, then the mean number of active users un-

der the greedy assignment is ENgreedy =
C∑

c=1

σ̄c

1−σ̄c
, whereas the mean number of

users in the ideal scenario is EN ideal =
(

C∑

c=1
σ̄c

)

/

(

C −
C∑

c=1
σ̄c

)

. It is easily ver-

ified that for a given value of
C∑

c=1
σ̄c, ENgreedy is minimal if σ̄c ≡ σ̄ =

C∑

c=1
σ̄c/C,

and then equal to Cσ̄/(1 − σ̄) =
C∑

c=1
σ̄c/(1 −

C∑

c=1
σ̄c/C) = CEN ideal.

Thus, even in the best-case scenario where the loads are perfectly balanced,
the mean number of active users under the greedy assignment is C times as
large as in the ideal scenario. Because of Little’s law, this implies that the mean
delays will be C times as large as well, and thus the throughputs (defined as
the ratio of service requirement and delay) will be C times lower. Although
the delays for the fractional and integral α-fair strategies are expected to be
“somewhere in between”, this appears difficult to prove, let alone quantify where
exactly they fall relative to the greedy scheme and the ideal scenario. Hence, we
will examine the delay performance in the various scenarios in the next section
through numerical means.

5 Numerical Experiments

We now discuss the numerical experiments that we conducted to benchmark
the performance gains from dynamic load balancing. We consider a dynamic
setting where users generate random finite-size data transfers as described in
the previous section, and evaluate the performance in terms of transfer delays
and blocking rates.

We first examine a linear network with just two transmitters. While admit-
tedly simple, a two-transmitter scenario is likely to provide conservative esti-
mates for the potential gains, since the scope for load balancing increases with
the number of neighboring transmitters, as will in fact be confirmed later.

The two transmitters cover an interval [0, D] and are located at positions
D/6 and 5D/6, respectively. The path loss q behaves as a function q = d−γ

of distance d, with γ = 3.5. The feasible transmission rate r at transmitter c
(in bits/second behaves as a function rc = ζ log(1 + snrc) of the Signal-to-Noise
Ratio (SNR), with snrc = qc/(η+θqc+q3−c), c = 1, 2, with ζ, θ, η system-specific
parameters. Throughout we take η = 0.01, θ = 0.1, ζ = 800.

Users arrive as a Poisson process of rate ν (per second), and have service
requirements with mean β (in bits). Throughout we take β = 250 Kbits (31.25
Kbytes). At most 40 users are admitted into the system simultaneously. Users
that generate a transfer request when there are already 40 transfers in progress,
are blocked and lost. Let (R1, R2) be the rate pair of an arbitrary user. The
nominal average load on transmitter c under the greedy assignment may then
be derived as
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νβE{ 1
Rc

I{Rc>R3−c}} = νβE{ 1
max{R1, R2}

}P{Rc > R3−c}.

We compare the four scenarios described in the previous section as well as the
dual-ascent scheme. We take U(x) = log(x), i.e., α → 1, which corresponds to
Proportional Fair (PF) scheduling. In the dual-ascent scheme, we only executed
30 iterations for every change in the user population, with i = 0.5/

√
i.

We first consider a scenario where the user locations are uniformly distributed
across the coverage area. In this case, the nominal load on each of the two
transmitters is ρ/2, with ρ := νβE{ 1

max{R1,R2}}. Since the long-term loads are
perfectly balanced, this provides a lower bound for the potential gains from load
balancing.

Figure 1 shows the mean transfer delay as function of the arrival rate. Note
that the delay in the ideal scenario is roughly half of that under the greedy
assignment, as indicated by the analysis in the previous section. At high load,
the relative difference reduces though. This may be explained from the fact that
a significant fraction of the users are blocked under the greedy assignment (not
shown in the figure), effectively reducing the load on the system, while the block-
ing in the ideal scenario remains negligible throughout. Also recall here that the
latter scenario is entirely hypothetical and only serves to provide an absolute
performance bound, as it assumes that users can be offered the same transmis-
sion rate by all transmitters, which will be far from the case under power-law
propagation conditions. Further observe that the performance of the dual-ascent
scheme is virtually indistinguishable from that of the globally optimal integral
or fractional PF allocation. Given the small number of iterations, this indirectly
demonstrates that the dual-ascent scheme converges rapidly enough to achieve
similar performance as a globally optimal allocation. It also suggests that the
dynamic load balancing is hardly hindered by refraining from soft hand-off and
assigning users to just a single transmitter. The mean transfer delay in each of
these three cases is approximately 15–25% lower than under the greedy assign-
ment, even though the long-term loads are perfectly balanced.
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We now look at a scenario where the density of users is three times higher in
one half of the coverage area than the other. In this case, the nominal loads on
the two transmitters are ρ/4 and 3ρ/4, respectively.

Figure 2 plots the mean transfer delay as function of the arrival rate. As
before, the performance of the dual-ascent scheme is practically identical to that
of the globally optimal integral or fractional PF allocation. The reduction in
mean transfer delay in each of these three cases varies from 30% to 80%, which
means that the improvement in perceived user throughput can be as large as
500%. Further note that at high load the relative improvement diminishes. This
reflects the fact that a substantial fraction of the users are blocked under the
greedy assignment, as shown in Figure 3, essentially lowering the load on the
system, while the blocking with load balancing remains moderate. Observe that
even with load balancing the system will become overloaded at some point, but
load balancing helps to move that point significantly further out.

We now investigate a network with a square coverage area [0, D]× [0, D], with
four transmitters located at positions (D/6, D/6), (D/6, 5D/6), (5D/6, D/6),
(5D/6, 5D/6). In this case, the SNR at transmitter c is determined by snrc =
qc/(η +

∑4
d=1 qd − (1− θ)qc), with qd the path loss to transmitter d governed by

a negative power-law as function of distance with exponent γ = 3.5 as specified
earlier. At most 80 users are admitted into the system simultaneously. We only
present the results for the dual-ascent scheme, and not for the globally optimal
integral and fractional PF allocation.

We first consider a scenario where the user locations are uniformly distributed
across the coverage area. In this case, the nominal load on each of the four
transmitters is ρ/4, with ρ := νβE{ 1

max{R1,R2,R3,R4}}.
Figure 4 shows the mean transfer delay as function of the arrival rate. Note

that the delay in the ideal scenario is now roughly a quarter of that under the
greedy assignment, as predicted by the analysis in the previous section. At high
load, the relative difference decreases again because a significant fraction of the
users are blocked under the greedy assignment, effectively shedding load from the
system, while the blocking in the ideal scenario remains negligible throughout.
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The mean transfer delay for the dual-ascent scheme is now 30–50% lower than
under the greedy assignment, which corroborates the earlier assertion that the
gains from load balancing tend to increase with the number of transmitters.

We now look at a scenario where the density of users is three times higher in
one square corner of the coverage area than elsewhere. In this case, the nominal
load on one transmitter is ρ/2 and ρ/6 on the other three.

Figure 5 plots the mean transfer delay as function of the arrival rate. The
reduction in mean transfer delay achieved by the dual-ascent scheme ranges
from 50% to 90%, which means that the improvement in perceived user through-
put can be as large as 1000%. Further note that at high load the relative improve-
ment diminishes again because a substantial fraction of the users are blocked
under the greedy assignment, as shown in Figure 6.

6 Conclusion

In the current generation of wireless networks, base stations or access points
either statically or independently allocate resources such as frequencies or time
slots to users within their coverage areas. Because wireless networks typically
cater to mobiles, it is common for these networks to experience significant spatio-
temporal load fluctuations. Coordinated action during these typical load surges,
it has now been shown, significantly improves throughput and performance. Co-
ordinated action via centralized resource controllers is not scalable for emerging
micro- and pico-cellular structures, however. In this paper we constructed a
utility optimization framework for decentralized network-wide resource control.
The basic approach involves a decentralized mechanism consisting of two steps:
1) propagation of candidate “shadow prices” by the base stations (e.g. via pi-
lot signals) and 2) asynchronous updating of these prices via bids from mo-
biles (e.g. tentative association of the mobiles with their “least-cost suppliers”)
through power-control type of iterative updates. We show through numerical
experiments that the proposed schemes yield significant performance gains in
terms of throughput and/or delays, even in scenarios where the long-term loads
in the cell’s coverage areas are completely balanced.
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