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ABSTRACT

In this paper we consider a single-server queue wilnlinput, and in particular its workload proce% ):>o, focusing

on its correlation structure. With the correlation function defined (&s:= Cov(Qo,Q:)/VarQp (assuming the workload
process is in stationarity at time 0), we first study its transfggfm(t)e~?!dt, both for the case that thetlky process has
positive jumps, and that it has negative jumps. These expressions allow us to prové )th&tpositive, decreasing, and
convex, relying on the machinery of completely monotone functions. For the light-tailed case, we estimate the behavior of
r(t) for t large. We then focus on techniques to estimdt¢ by simulation. Naive simulation techniques require roughly
(r(t))~? runs to obtain an estimate of a given precision, but we develop a coupling technique that leads to substantial variance
reduction (required number of runs being roughiyt))~1). If this is augmented with importance sampling, it even leads

to a logarithmically efficient algorithm.
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1 INTRODUCTION

Consider a queueing system, and, more particularly, its workload prd€gsso. Where one usually focuses on the
characterization of the (transient or steady-state) workload, another interesting problem relates to the identification of the
workload correlation function (t) := Cov(Qo, Qt)/VarQp, assuming that the workload process is in stationarity at time 0.

For several queueing systems this correlation function has been explicitly compuiade (1959, for instance, analyzes

the number of customers in the M/M/1 queue. Often explicit formulae are hard to obtain, but the analysis simplified greatly
when looking at the transform

(8) = /(;mr(t)e’mdt.

(Bene& 1957 managed to compui(-) for the workload in the M/G/1 queue; relying on the concept of complete monotonicity,
(Ott 1977 elegantly proved that, in this case}) is positive, decreasing and convex. We further mention the survey by
(Reynolds 197h and interesting results byAbate and Whitt 1994

The primary aim of this paper is to explore the workload correlation function for the class of single-server queues fed
by Lévy processesNotice that the M/G/1 queue is contained in this class; then #hg lprocess under consideration is a
compound Poisson process with drift. We focusspectrally one-sidedé&vy input processeslistinguishing between those
with only positive jumps (also referred to apectrally positivie and those with only negative jumpspectrally negative
For the spectrally positive case it was already showrEisr$aghouani and Mandjes 20QBatr(-) is positive, decreasing,
and convex; our first contribution is that we use results Pigtorius 2004Doney 200% to show that these properties carry
over to the spectrally-negative case. We also estimate the asymptoti¢s) &or t large. These results can be found in
Section 2.

A second contribution of the paper (Section 3) considers an intimately related problem: the analysis of the distribution of
the residual busy period, where the queue starts in stationarity at time 0. For spectrally one-sided input we first derive the
Laplace transform op(t) :=P(7 >t). Then we use this transform to estimate the taipg for the case of light-tailed &vy
input, which exhibits (essentially) exponential decay. The factpligt— O fort — o implies that estimation through ‘naive’
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simulation may take prohibitively long for larde We develop a logarithmically efficient importance sampling algorithm; in
this scheme the &vy input (in the interval0,t]) is given a constant exponential twist, but, remarkably, also the workload
present at time 0 needs to be sampled from an alternative distribution as well.

The third contribution, presented in Section 4, concerns efficient simulation schemes for estiftgtithgse intensively
rely on results that we found for the busy-period distributjg(h). Again, the factr(t) — 0 (ast — ) entails that naive
simulation will be extremely time-consuming; we show it takes roughly))~2 runs to obtain an estimate of a given
precision. Then we propose a coupling-based approach yielding substantial variance reduction (so that the number of run:
required is just of the orde(r(t))~1. For the light-tailed case (in whict(t) vanishes essentially exponentially) we propose
an importance-sampling based algorithm, of which we prove it is asymptotically efficient (i.e., the number of replications
needed grows subexponentiallytin

2 MODEL AND STRUCTURAL RESULTS

In this section we find an expression for the transfgrtn) of the correlation function, which is used to derive a number
of structural properties of(-), as well as asymptotics. We start this section, however, with a formal introduction of our
gueueing system.

2.1 Lévy Processes
Let (X )t>0 be a Levy process, with drif£X; < 0. We consider two cases.

(A)  (X)i=0 has no negative jumps. Then the Laplace exponent is given by the fungtipn [0,) — [0,), i.e.,
¢(a) :=logEe X1, It is known thate(-) is increasing and convex i, «), with slope ¢’(0) = —[EX; in the
origin. Therefore the inversg(-) of ¢(-) is well-defined on[0,). In the sequel we also require thétis not a
subordinator i.e., a monotone process; thXs has probability mass on the positive half-line, which implies that
liMg_—ow @(a) = co.

(B) (X )t=0 has no positive jumps. Now we defidg ) := logEef*1, which is well-defined for any > 0. Again ruling
out thatX; is a subordinator (and recalling thé(0) = EX; < 0), we see thatb() is no bijection on[0,«); we
define theright inverse through¥(q) :=sup{ > 0: ®(B) = q). Realize that¥(0) > 0.

Important examples of suchély processes are the following. (Byownian motion with drift being actually both
spectrally positive and negative. We writec Bm(u, 6%) when ¢(a) = —au + 30262, (2) Compound Poisson with drjft
which is spectrally positive. Non-negative jobs arrive according to a Poisson process df; rite jobsB,B,,... are
i.i.d. samples from a distribution with Laplace transfobfu) := Ee~*B; the storage system is continuously depleted at a
rate 1. We writeX € CP(A,b(-)); it can be verified thatp(a) = a — A + Ab(a). Clearly, if the drift would be positive, and
the jobs would be i.i.d. samples from a non-positive distribution (that is, the jumps are downward), the process is spectrally
negative.

2.2 Reflected levy Processes; Queues

We consider the reflection @i )i>o at 0, which we denote b§Q;)i>o. It is formally introduced as follows, see for instance
(Asmussen 20Q3Ch. IX). Define the decreasing procgd4:):>o and the resulting reflected process (or: workload process,
queueing procesg )i>o through

M, = o'gr;‘;tXS? Qt =X +max{—M, Qo};

observe that); > 0 for allt > 0. Then the steady-state distributigh:= lim;_. Q;, which exists due t&X; < 0, is known
(in terms of its Laplace transform) for both the spectrally positive and spectrally negative case. For spectrally positive input,
we have thegeneralized Pollaczek-Khinchine formulasually attributed toZolotarev 1963

k(o) :=Ee *Q = O;P(Iég)‘ 1)
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This result evidently enable the computation of all moments of the steady-state Quényerepeated differentiation and
inserting 0). From now one we assufi€? to be finite, so that := VarQ is well-defined.

For spectrally negative input, realize tHae% is a martingale, with3o := W(0) > 0. ‘Optional sampling’ Williams
1991, Ch. A14) thus gives, for any positive P(3t > 0: X% > x)e* =1, and axQ is distributed as the supremum oer 0
of X (‘Reich’s identity’), we obtainQ is exponentially distributed with meary flp. It follows thatv = 1/[35.

2.3 Correlation Structure of the Queue

In this paper we are interested in the correlation structure of the queue pr@éss. For the spectrally-positive case,
structural results were already found iBstSaghouani and Mandjes 200&Relying on the transform o®r (whereT is
exponentially distributed with meatt—1) given thatQo = x, see e.g. Asmussen 2003Section 1X.3) and Kella, Boxma,
and Mandjes 2006 they found that

vy'(9)  y(9)

Then the machinery of completely monotone functioBerfistein 19290tt 1977 was used to prove that:) is a positive,
decreasing, and convex function. We now do the same for the spectrally-negative case.

Following the setup of Chapter 8 dfkyprianou 2008, we first introduce, for spectrally negativé\y processes, families
of functionsW(@(.) and (9 (.) as follows. LetW((x) be a strictly increasing and continuous function whose Laplace
transform satisfies

© e 1 9"0) @O 1 1
p(9):= [ riye mdtZE—‘gi}z) ‘fngz){ }

/0 " e BWO (x)dx = B> W(q). @)

1
®(B)—-q’

In addition,
290 =1+ [ W)y @)

W (.) andZ(@(.) are usually referred to as thescale functions. Then the results figtorius 2004 in conjunction with
Exercise 8.5 (both parts (i) and (ii)) oKyprianou 2008 lead, with some abuse of notation, to the following transform (with
respect ta) of the density ofQ, given thatQg = x:

/0oo e AP, (Q =y)dt = e—W<q)qu((JQ)2<Q) (X) — W@ (x—y).

It is now a matter of straightforward calculus to show that the previous display leads toT vdénoting an exponential
random variable with meaq 1,

/e’ﬁXExe*“Qde:Il—lz; Il::/ / qeﬁxeO‘Ve“’(quéq)z(m(x)dxdy, I ::/ / ge PXe= YW (x — y)dxdy.
0 o Jo o Jo

We now computds = l1(a, 3,q) andl, = I2(et, B,q) explicitly. Let us first consider the integréd; using @) and @), we
obtain

li(e, B,0) = qm/owe—ﬁxz@(x)dx— “m <;+/O°°/y°°qw<q>(y)e—ﬁxdxdy> _ ”m; (an(/g—q)'
Likewise,

PICN )_/‘00 g (a+py 1 dv — q 1

AP = f, 9 ®B)-q” atrpoPB) -q

Let us perform a few checks; it is readily verified that

e plugging ina=0inli(a,B,q) —l2(a,B,q) indeed yields 18;
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e plugging inf = By into the expression fof;’ Be PXE e~ *Qr dx indeed yields the steady-state transfggyi(Bo + a):
when starting in the queue’s equilibrium distribution at time 0, the workload is still in stationarity after an exponentially
distributed time (irrespectively o).

Now observe that, recalling that has an exponential distribution with megn?,

a

® —Bxm oaQr
e P Eyge dx
dB Jo X

| ae 5ot = [ pore B, Qrax=lim £ [B -
0 0

alo do

] : (4)
B=Po

Upon combining the explicit expression far(«, 8,q) — l2(a, B,9) with (4), and recalling thav = 1/8Z (in the spectrally-
negative case), we eventually find, after considerable calculus, the following result.

Theorem 1 For the spectrally-negative case,
o 7 1 B 1 1
= rit)e %t ==+ (_>
pla)= [ (v at e (g &

The following corollary follows from applying ‘L'Hpital’ twice. It implies that in the spectrally-negative case the
workload process is necessarily short-range dependent. Us#/4ttath’ (o) = 1 and®”(Bo) + (P'(Bo))3¥”(0) = 0, which
follow from repeated differentiation of the relatish(¥(q)) = q.

Corollary 2 For the spectrally-negative case,

__ 1 By
Po®'(Bo) ~ 2(P'(Bo))

We can now use the transforpi(q) to establish a number of key structural properties (of.

p(0):= /Omr(t)dt

3<0°.

Theorem 3  r(-) is positive, decreasing, and convex.
Proof: We mimic the proof in Es-Saghouani and Mandjes 20@8r the spectrally-positive case. Using integration by parts,
we find that

Oy — [ e g — B8 g 11
P = [ rve =B (oo ).

Analogously,

p?(q) = /w

0

" Ot 24/ 1_1>
ek = —1'(0)+ B3 Bo) s — 5 ) ©
In the proof of Prop5 we will show that¥(0)/W(q) € ¥, where% is the class of completely monotone functioBg(nstein
1929 Feller 197); completely monotone functions are functions that can, up to some positive multiplicative constant, be
considered as Laplace transforms of nonnegative random variables. We conclud&)fritiat p(? (q) is in %, and hence
r’(-) is positive, i.e.r(-) is convex.
We know thatf(q) € ¢ implies that, withg(q) := (f(0) — f(q))/q, alsog(q) € €. Taking f(q) = p(?(q), we obtain
that —p(¥(q) is in €, and hence’(-) is negative, i.e.r(-) is decreasing. Applying the same procedure again, we find that
p(q) is in €, and hence(-) is positive. O

In (Es-Saghouani and Mandjes 2Q@Be asymptotics of (t) (for t large) in the spectrally-positive case were addressed.
It turned out that the heavy-tailed regime (leadingrtb) decaying essentially polynomially) and the light-tailed regime
(leading tor(t) decaying essentially exponentially) had to be treated separately. In the light-tailed regime (where we assume
that the equatiom (o) = 0 has a negative root) we showed that the exact asymptotics were, up to a multiplicative constant,
of the formt=%/2e?"t, where 9* < 0 is the branching point ofy(-). This means that, witf < 0 being the minimizer of
o), o(§) =v"

Let us now consider the counterpart of these findings for the spectrally-negative case. We will arg(t¢ teatessarily
decays exponentially, relying on the Heaviside operational principle. {Let0 denote the minimizer ofp(-), so that
®({) =g* < 0; henceg < 0 is the branching point d¥(-). Around g* we have that’(q) looks like { + +/2/ve - /4 — g*,
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with v := @”({) > 0. After some calculus we obtain that this entails that, for some (irrelevant) constant

— L. PBEY(Bo) [2
p(d) ~ k+Boy/q—0r; B¢._—((:q*)2&\/;<o’

so that application of Heaviside heuristidsb@te and Whitt 199)yields, with f(t) ~ g(t) denotingf(t)/g(t) — 1 ast — o,

By ot
D WA

3 AN INTERMEZZO: EFFICIENT ESTIMATION OF THE BUSY PERIOD TAIL DISTRIBUTION

rt) ~

In this section we address the estimation of the tail distribution of the busy period &vydriven queue by applying

an importance-sampling based simulation procedure. In the next section it will turn out that the insights developed here
are useful when setting up an efficient simulation scheme for estimating the workload corre(a}iolVe let ¢ denote

the busy period duration, starting from steady-state at time :: inf{t > 0:Q; = 0}, whereQp is distributed according

to the stationary distribution. Throughout this section we will deng(tg :=P(7 >t). In this section we first derive the
Laplace transform of(-), then we consider the corresponding asymptotics, and finally we set up a logarithmically efficient
simulation scheme.

3.1 Transforms

Let us start by considering the spectrally-positive case. We have,nfidh= inf{t > 0:X = —x}

/Ome—f"t p(t)ct = /Ow (/Ow e MP(r(x) > t)dt) dP(Qo < X) = %/Ow (1 &) dr(Qo < X).

Application of ‘Pollaczek-Khinchine’ now leads to the following result.

Proposition 4 In the spectrally-positive case, the Laplace transform @f [s given by

| empd =5 - 905

The spectrally-negative case can be dealt with similarly. First recall fiat ®P(z > t)dt = q~1(1—-Ee ). Then,
using part (ii) of Exercise 6.7 inkyprianou 2008, we have

qr _ [* g o Poxge a0 gy — g . K(%Po) —K(q,0),
Ee _/o Boe P Ee dx = fo Bok(a.Bo)

here k(q, B) relates to the transform of the so-callddscending ladder procgsand is given, in this spectrally-negative
case, byk(qg,8) = (q—®(8))/(W(g) — B). Using thatd(By) = 0, we find thatEe 9 = W(0)/¥(q), and in addition the
following result is obtained.

Proposition 5 In the spectrally-negative case, the Laplace transform @ s given by

femeoa—g(-3g)

3.2 Asymptotics

We again use the Heaviside operational princiglégte and Whitt 199)to (heuristically) estimate the decay pft) for
t large. We focus on the situation that théuy process is (in the upward directioight-tailed; precise definitions follow
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below. The most important conclusion is that in this light-tailed cp&¢ decays to O essentially exponentially; up to a
multiplicative constant, the exact asymptotics coincide with those of the workload correlation fungtjion

We again start by considering the spectrally-positive case. As before, we assume that the egeatier0 has a
negative root. Observe that then Prdpholds for any positive, but we can consider the analytic continuation up to the
branching pointd* < 0 of w(-). More precisely: the idea is to write (with < O denoting the minimizer od(-), so that
¢(£) = ¥* <0; notice thatv, := ¢"({) > 0), for ¥ | 9* we have thaty () —{ ~ /2/Vy - V& — .

Hence, around$*, we have that, for some (irrelevant) constant

. 1 y(v) 9'(0) |2
vt _ = ~ — 9k- — “
/O e P = 5 (05 ~ K AT 0% Agi=— (5[5 <0
and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period by
A‘P e19*t
t) ~ . 6
Pt ~ - Ch A (6)

We now turn to the spectrally-negative case. PEpolds for any positivey, but we can consider the analytic continuation
up to the branching poird* < 0 of W(-). Let { > 0 denote the minimizer ob(-), so that®({) = g* < 0. Similarly to the
spectrally-negative case, we obtain, with:= ®”({) > 0 andx being some (irrelevant) number,

© 1 Y(0) — YO 2
/0 e Qtp(t)dt:q<l_q1(q)> ~K+ApV O — 0 Agp = q*CZ\/;<O’

and hence ‘Heaviside’ estimates the tail of the busy-period distribution by

Ap et
p(t) ~ ) N (7)

2

3.3 Importance-Sampling Based Simulation

As p(t) vanishes exponentially fast in the light-tailed case considered above, estiffatingt) from naive Monte Carlo
simulation would be extremely time consuming. It is known that the number of replications needed (to obtain an estimate
of a certain predefined precision) is roughly of the or@igit)) . This motivates the search for more efficient simulation
algorithms. We conclude this section by an algorithm for estimating this probability in an logarithmically efficient way; this
algorithm is based on importance sampling, see e.g. pp. 127-128pfussen and Glynn 20 Avith an exponential twist

of the Lévy processk.

We first explain what ‘exponentially twisting’ means in oug\ly setting; we focus here on the spectrally-positive case,
but the spectrally-negative case works analogously. Evidently, the queue is stable under the probability Fheeswe
assumedEX; < 0. Below we will propose a change of measure, with which we asso@atender which{z >t} with
relatively high probability, by application of an exponential twist > 0. We have that the Laplace exponer(te) of X;
is well defined and characterized through, witho® > 0 and a measurB,(-) such thatf(g ) min{1, X2} M (dX) < oo,

1
o) = —a.d+§a262+/( (€ T o My (@)

It is now a matter of straightforward calculations to show thét) := ¢(a+ §) — () is a Laplace exponent as well.
Under Q, the Lévy process has Laplace exponerir); from the convexity ofg(-) it is concluded that (in self-evident
notation)EgX; = —¢'(0) = —¢’({) =0, so that the system under the new measure has drift 0. (One can check tha@under
the driftd has increased td — {62, the Brownian term remains unchanged, whereas the meBkg(dx) is given through

its exponentially twisted counterpart (with ‘twist {).

In importance sampling one simulates under a different measure than the original one, where unbiasedness is recovere
by weighing the simulation output by appropriate likelihood ratios. We first propose an alternative measure, as follows.
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e Let, in the interval(O,t], the Levy process be twisted with{ = —y(9*) > 0, as described abové* is as defined
before.

e We also twistQp; we do so by a factok > 0, for which we identify a suitable value later on. This effectively
means that we sampl@y from a distribution with Laplace transforfiie(¢—*)Qo JEe<,

We call the new measure, consisting of twistiQg as well as a twistingXs)sc(og, from now onQx.

We simulate the process undgy till time t. Then the estimator, based nindependent runs, reads? s Lil{g >t},
wherel; is the likelihood of runi. Let us write down this likelihood ratio. First there is the contribution due to the twisted
gueue at time 0; using ‘Pollaczek-Khinchine’ we obtain

Ly:=e X0 . Fe® —g*0. _—T 2 k¢'(0)
¢(—x)
Then there is the contribution due to the twisteglil, process between 0 ahd
Ly = eV(O)X pe V()X _ gv(¥)X, gb"t,
The ‘total likelihood’ isL ;= L1 x Lo.

As VarL1{t >t} > 0, we see thaEL?1{t >t} > (EL1{t >t})?. In this sense, we could call a change of measure
logarithmically efficient if

.1 1
Jim = logEL21{7 >1} < lim *log(EL1{z > t})? = —o*.

Logarithmic efficiency essentially means that the number of replications needed to obtain an estimate with a certain fixed
precision grows subexponentially in the ‘rarity parametetf. (Asmussen and Glynn 200Th. VI).

A first important observation is that not twistir@y at all (i.e., choosingc = 0) doesnot necessarily yield logarithmic
efficiency: recalling that a necessary condition {ar>t} is {Qo+ X > 0}, we find

¢(—K)

For logarithmic efficiency we should have that lim ggpt‘llogE@KLzl{r >t} <29*. In other words, when picking =0
we need to hav&q,e2¥(*") < o for logarithmic efficiency, and this is nat priori clear.

But let us now check whether with another choice fotogarithmic efficiencycan be guaranteed. To this end, note
that ¢(y(9*)) is finite (to see this, use thdt is larger than the pole op(-)). Hence, pickingk := —y(¥*) = —¢ does
yield logarithmic efficiency! In other words: we have to exponentially t@stas well to obtain a provably logarithmically
efficient procedure, ang = —{ > 0 is a suitable choice.

The next question is: it is clear that for thi¥s)s- oy -part, a twist by—¢ is optimal, but for theQo-part, can we do
better than twisting with-{? Interestingly, using

/ 2
Eq,L?1{r >t} < (— <¢/(0) ) Mg, e 2 e V()% (8)

the right-hand side of8) can be rewritten to

00" (59 stz ) * ©

Observe that it contains of two factors i) the first of which increases ir, the second decreases#n so that there is a
trade-off. It is a straightforward exercise to show that the minimum is achieves for-{ (this can be seen by equating

the derivative to O, but it also follows using an elementary symmetry-argument). We conclude that the proposed change of
measure is the best possible within the class of exponential twisy,ah the sense that it minimize8)(




Glynn and Mandjes

4  SIMULATION-BASED COMPUTATION OF THE CORRELATION FUNCTION

As recalled in the previous section, if a probability tends to 0 as some ‘rarity parametenvs large, then the number of

runs needed to estimate the probability by naive simulation, for a given relative precision, is roughly inversely proportional
to the probability. At the end of Sectidhwe observed that the correlatioft) also tends to 0 as— o, which raises the
question how many runs would be roughly needed to estinjatéy naive simulation. We first answer this question, and then
propose a coupling-based alternative that performs substantially better. This section concludes with a logarithmically efficient
algorithm, that combines the coupling idea with importance sampling. In this section we concentrate on the spectrally-positive
case; in the spectrally-negative case, the decay mtemust be replaced bg* (while the proofs are very similar).

4.1 Naive Simulation

In the remainder of this section, we concentrate on estimatftjg:= Cov(Qp,Q:), asv = VarQ is known. The naive
estimator ofr(t) is, in self-evident notation, and recalling tHa® is known,

NS) o\ . L (i) A
W0 =15 Q' - (EQP,
i=
based om independent runs. The variance of this estimator réads) - Var(QyQ;). Now note that, a$ — oo,

VarQoQ) = E(Q§QF) — (EQuQ)? — (EQ?)% - (EQ)*,

which is positive due to the fact th&Q? > (EQ)?. Suppose our goal is to simulate until our estimate has a certain given
relative precisiore (defined as the ratio between the width of the confidence interval and the estimate) and confidence
The number of runs needed, sa{'S (t), is roughly equal to the smallestsatisfying

vari™¥ (1)

26 <€,

N0
for an appropriately chosen percentile of the standard Normal distribdtionVe obtain the following remarkable result
for the naive estimator: it says that the number of runs required blows up exponentially, bujugdsatically inversely
proportional tor(t), rather than just inversely proportional.

Proposition 6 lim_t~1-lognNS (t) = —29* > 0.
4.2 A Coupling-based Algorithm

In this subsection we develop a coupling-based simulation procedure that reduces the number of runs neqdadratioally
inversely proportional t@ (t), to just inversely proportional.
We write

rt) =E(Qo- (Q —Q)),

where bothQ andQ* are stationary versions of the workload, a@tlis independendf Qq. We construct such a coupling as
follows: generate)y and Q independently, sampled from the stationary distribution of the workload. Now use exactly the
same incoming vy processX over (0,t] to drive both(Qs)sc(oy and (Q5)sc(oy from their two independently generated
initial conditions. This make&; andQq correlated bu) andQg independent. The new estimator becomes, in self-evident
notation,

1 i) A0)
W=y @l -a),

based onn independent runs. The key observation is tf@t— Qf| < |Qo— Qpl: the distance between both processes
decreases in time. In particular, after the first epoch liwdh queues have been empty, the queueing processes coincide.
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We split E(Qo- (Qt — QF)) into four terms, as follows. Recall that we definbll := infg<s<t Xs. We write 7 >t iff
Qo+M; >0 (i.e., busy period has not endedtpaindz* >t iff Q5+M; > 0. Thenr(t) =r . (t)+r —(t)+r_ (t)+r__(t),
where

) = EQo(Q-Q) - Ur>te>t)), () = EQo(Q-Q)-Ur>te <t}),
() = E(Qo-(Q-Q)-r<t,r>t}), r_(t) = EQo (Q-Q) Hr<t,rr<t}).

It is evident thatr__(t) = 0, as both queues have been empty and are identical from some {snwaller thart) on. We
estimate the other three terms separately. Du@te- Qf| < |Qo — Qg we thus have that

Var(Qo- (- Q7)) < EQ§-(Q—Q)*<E(Q§-(Q—Qp)* Lt >t, 7" >t}
+ E(Q- (Qo—Q)2 - 1{t>t,7" <t}) +E(QE- (Qo— Q)% - 1{r <t,7* > t}).

With my(t) := E(Q§1{7 > t}), both the first and third term can be bounded from abovéE@3)P(r > t) +E(Q3)my(t),
whereas the second is majorized toy(t) + E(QZ)mp(t). The claim of Prop8 now follows directly from the following
lemma (which is proven in the appendix). The number of runs need€8|t), is defined analogously to(NS) (t).

Lemma 7  For any k> 0, we have thatimsup_,t~tlogmy(t) < 9*.
Proposition 8 limsup_,,t~*-logn(©9(t) < —*.
4.3 Importance-Sampling Based Algorithm

We now apply importance sampling on top of the coupling idea presented in the previous subsection. As we are dealing
with the light-tailed case, an importance sampling meaguis logarithmically efficient if

1 " *
Jim +10gEq(L*Q5(Q — Q)*) < 29",

We again consider four scenarios by comparirend t* with t; the idea is to estimate, .. (t), r_(t), andr__(t) separately
(recall thatr__(t) = 0).

e First focus onr(t). We define
(1) gy L | 20 (Al _ ) .
Tarh (1) .:H_ZLi Q@ - ")1n >t 7 >,
i=

as an (unbiased) estimator iof . (t). Notice that in this cas& — Qf = Qo — Q. Let, as before, the &vy process
be twisted with—{ = —y(9*) > 0, with 9* as defined before. Als@p is twisted by a factornc and Q; by a
factor x*, for which we identify suitable values below. We simulate the process till timeet us write down the
likelihood ratio at timet; we call the new measur@z, with k¥ denoting the vectofx, k*). We again find that the
likelihood equals

We conclude that the second moment of the estimator reads

Eg, (L?Q§(Qo—Qp)? Lz >t, 7% >1}).
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It is clear that Iz >t,7* >t} <1{7 >t}, and on{7 >t} we have that-X; < Qo. We thus find the upper bound

EQ((Q (())> <_K*Q6'myx(e_m‘)'em)z%(@oQ6)2>
< (529) G ) e

(E@ﬂ (Q4 K+C)Qo) Eg, ( ZK*QO) +Eq, <Q2 2(k+¢) Qo) Eq, ((Q e —2K*QO))

It is now readily seen that the choige= —{ andx* = 0 yields logarithmic efficiency, as the above display reduces
to a finite number multiplied witle??"t. We here use, in the same way as in Sec8gimat( is larger than the pole of
¢(-), so that twisting with- keeps all means finite, that Bg_Qf < «, Eg_Qf < », andEq, ((Q})?) =EQ§ < «

e Now consider_(t). The estimatoﬂ'n(_'f), (t) is defined analogously t'ljf_'f)+ (t). ApparentlyQp > Q. and therefore
alsoQ; > Qf for all't > 0. We also have); —QF<Q—Qgforallt> 0. With 1{z >t,7* >t} <1{t >t}, we can
use the bounds above. We again obtain that —{ and k* = 0 yields logarithmic efficiency.

e Finally, the case_ (t) is essentially identical, but now we should pigk = - and x = 0.

As we can now estimate, . (t), r._(t), andr_,(t) logarithmically efficiently, we arrive at the following result. Here
n(S)(t) denotes the number of runs needed to estimétewith a predefined precision, for a given confidence. The result
states that the number of runs needed increases only subexponentially fast in the ‘rarity pataraatbtience we have
achieved a huge improvement over the naive scheme, and a still quite substantial improvement over the coupling-basec
algorithm (without importance sampling).

Theorem 9 lim¢ ot -logn('S)(t) = 0.
5 PRACTICAL ASPECTS AND DISCUSSION

Application of the simulation algorithms proposed in the previous sections, requires the ability to s@wplprbcesses.
Guidelines on this issue are presentedAsrussen and Glynn 200Th. XilI).

In addition, one should be able to draw variates from exponentially twisted versions of the stationary workloads. In
the spectrally-negative case this is straightforwardQasas an exponential distribution. In the spectrally-positive case, the
Laplace transform o€)g is known (by ‘Pollaczek-Khinchine’), and one could use methods as those describiedviroye
1986 to generate samples. An alternative, only useful in the case of compound Poisson input, is to recognize that then
the steady state workload is distributed as a geometric sum of residual job sizes, and hence so is its exponentially twistec
version; in this situation one could also use the exact sampling technique propogstsan &nd Glynn 2000

Observe, however, that spectrally-positive light-taile@vy inputs are always just the sum of (i) Brownian motions,

(i) compound Poisson processes with light-tailed jobs, (iii) a negative drift. Restricting ourselpbside-typgobs, it is

readily seen from the generalized Pollaczek-Khinchine formula that also the steady-state workload is phase-type as well,
and hence easy to generate variates from. In addition, the phase-type property is closed under exponential twisting, so it i
straightforward to sample from this exponentially twisted workload.

In this paper we presented efficient algorithms for estimating the tail of the busy pEtioand the workload correlation
functionr(t). In the spectrally one-sided cases Laplace transforms are known in closed-form, so the obvious alternative to
simulation is to perform numerical inversion of these transforms. It should be noted, however, that the importance-sampling
based simulation method can also be applied (and has good variance properties) if the éwjimgdcess has both positive
and negative jumps.

Potential subjects for future research are the following. (i) One could try to apply the coupling idea in settings in which
the queue’s input process domst have stationary independent increments. Can we for instance develop an algorithm of
this kind for a queue fed by on-off sources with generally distributed on- and off times, or for queues with Gaussian input
(Mandjes 200Y? (ii) Is it possible to develop a simulation scheme with bounded relative ekeoni{ssen and Glynn 2007
p. 159). Is it, perhaps for special cases such as reflected Brownian motion, possible to compute a zero-variance change c
measure?
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A APPENDIX

We here present the proof of Lemria Takee > 0 arbitrary. Letm denote—EX; > 0, andm, := |[m/¢g|. By splitting the
interval [0, ) into intervals]iet, (i + 1)et), for i =0,1,..., we obtain, using thaP(z(x) > t) increases monaotonically ir,

my(t) = /OmkuP’(r(x) >1)dP(Qo < X) < _i((i +1)et)P(z((i +1)et) > t)P(Qo > iet)

oo

< i((iJrl)st)kP(r((iJrl)st)>t)]P’(Q0>ist)+ > ((i+2)et)*P(Qo > iet).
i= i=mg+1

With | (a) := sup, (8a—logEexp(6X1)), the Chernoff bound immediately giv&§t(x) >t) < P(X(t) > —x) < e (=X for
all x < mt. In addition, Remark 5.3 of¥gbicki, Es-Saghouani, and Mandjes 2pgelds thatP(Qo > x) < exp(—&X), where
& :=infy=0l(X)/x. Hence,my(t) is bounded from above by

ihi (t)+g(t), wherehi(t) := ((i +1)et)ke DD Clet gt = ((i+1)et)ke ot

3M 8

+1

It is readily checked that lim...t tloghj(t) = —1(—(i +1)e) — Eie. Also [ xke™Xdx ~ s(t)e~®, for some subexponential
functions(-) (ast — o), which leads to lim_.t tlogg(t) < £ — (me +1)Ee. Lemma 1.2.15 ofPembo and Zeitouni 1998
stating that the decay rate of a finite sum equals the maximum of the decay rates, now yields that

Iimsupllogmk(t) < max{imax {=1(=(i+1e)—E&ie},Ee— (mg+1)§e}.

t—oo t =Y.

Note thatk; := —1(—(i+1)e) — Eie is concave in, and henceg > k; would imply that Mak(o,1,...) ki = ko. It is seen that
ko > kq is equivalent tae 1. (I(—¢) — I(—2¢)) < &. Observing that the convexity of-) implies that
!
goming 5 i OO )
x>0 X x>0 X
we have that for sufficiently small it indeed holds thé&b > ki, and hence limsyp,.,t 1 -logmy(t) < kg = —I(—€). Now
letting € — 0, and realizing that(0) = —9*, we have shown the stated. a.
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