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ABSTRACT

In this paper we consider a single-server queue with Lévy input, and in particular its workload process(Qt)t≥0, focusing
on its correlation structure. With the correlation function defined asr(t) := Cov(Q0,Qt)/VarQ0 (assuming the workload
process is in stationarity at time 0), we first study its transform

∫ ∞
0 r(t)e−ϑ tdt, both for the case that the Lévy process has

positive jumps, and that it has negative jumps. These expressions allow us to prove thatr(·) is positive, decreasing, and
convex, relying on the machinery of completely monotone functions. For the light-tailed case, we estimate the behavior of
r(t) for t large. We then focus on techniques to estimater(t) by simulation. Naive simulation techniques require roughly
(r(t))−2 runs to obtain an estimate of a given precision, but we develop a coupling technique that leads to substantial variance
reduction (required number of runs being roughly(r(t))−1). If this is augmented with importance sampling, it even leads
to a logarithmically efficient algorithm.

1 INTRODUCTION

Consider a queueing system, and, more particularly, its workload process(Qt)t≥0. Where one usually focuses on the
characterization of the (transient or steady-state) workload, another interesting problem relates to the identification of the
workload correlation function r(t) := Cov(Q0,Qt)/VarQ0, assuming that the workload process is in stationarity at time 0.
For several queueing systems this correlation function has been explicitly computed; (Morse 1955), for instance, analyzes
the number of customers in the M/M/1 queue. Often explicit formulae are hard to obtain, but the analysis simplified greatly
when looking at the transform

ρ(ϑ) :=
∫ ∞

0
r(t)e−ϑ tdt.

(Beněs 1957) managed to computeρ(·) for the workload in the M/G/1 queue; relying on the concept of complete monotonicity,
(Ott 1977) elegantly proved that, in this case,r(·) is positive, decreasing and convex. We further mention the survey by
(Reynolds 1975), and interesting results by (Abate and Whitt 1994).

The primary aim of this paper is to explore the workload correlation function for the class of single-server queues fed
by Lévy processes. Notice that the M/G/1 queue is contained in this class; then the Lévy process under consideration is a
compound Poisson process with drift. We focus onspectrally one-sided Ĺevy input processes, distinguishing between those
with only positive jumps (also referred to asspectrally positive), and those with only negative jumps (spectrally negative).
For the spectrally positive case it was already shown in (Es-Saghouani and Mandjes 2008) that r(·) is positive, decreasing,
and convex; our first contribution is that we use results by (Pistorius 2004, Doney 2005) to show that these properties carry
over to the spectrally-negative case. We also estimate the asymptotics ofr(t) for t large. These results can be found in
Section 2.

A second contribution of the paper (Section 3) considers an intimately related problem: the analysis of the distribution of
the residual busy periodτ, where the queue starts in stationarity at time 0. For spectrally one-sided input we first derive the
Laplace transform ofp(t) := P(τ > t). Then we use this transform to estimate the tail ofp(t) for the case of light-tailed Ĺevy
input, which exhibits (essentially) exponential decay. The fact thatp(t)→ 0 for t →∞ implies that estimation through ‘naive’
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simulation may take prohibitively long for larget. We develop a logarithmically efficient importance sampling algorithm; in
this scheme the Ĺevy input (in the interval(0, t]) is given a constant exponential twist, but, remarkably, also the workload
present at time 0 needs to be sampled from an alternative distribution as well.

The third contribution, presented in Section 4, concerns efficient simulation schemes for estimatingr(t); these intensively
rely on results that we found for the busy-period distributionp(t). Again, the factr(t) → 0 (as t → ∞) entails that naive
simulation will be extremely time-consuming; we show it takes roughly(r(t))−2 runs to obtain an estimate of a given
precision. Then we propose a coupling-based approach yielding substantial variance reduction (so that the number of runs
required is just of the order(r(t))−1. For the light-tailed case (in whichr(t) vanishes essentially exponentially) we propose
an importance-sampling based algorithm, of which we prove it is asymptotically efficient (i.e., the number of replications
needed grows subexponentially int).

2 MODEL AND STRUCTURAL RESULTS

In this section we find an expression for the transformρ(·) of the correlation function, which is used to derive a number
of structural properties ofr(·), as well as asymptotics. We start this section, however, with a formal introduction of our
queueing system.

2.1 Lévy Processes

Let (Xt)t≥0 be a Ĺevy process, with driftEX1 < 0. We consider two cases.

(A) (Xt)t≥0 has no negative jumps. Then the Laplace exponent is given by the functionϕ(·) : [0,∞) 7→ [0,∞), i.e.,
ϕ(α) := logEe−αX1. It is known thatϕ(·) is increasing and convex on[0,∞), with slopeϕ ′(0) = −EX1 in the
origin. Therefore the inverseψ(·) of ϕ(·) is well-defined on[0,∞). In the sequel we also require thatXt is not a
subordinator, i.e., a monotone process; thusX1 has probability mass on the positive half-line, which implies that
limα→−∞ ϕ(α) = ∞.

(B) (Xt)t≥0 has no positive jumps. Now we defineΦ(β ) := logEeβX1, which is well-defined for anyβ ≥ 0. Again ruling
out thatXt is a subordinator (and recalling thatΦ′(0) = EX1 < 0), we see thatΦ(β ) is no bijection on[0,∞); we
define theright inverse throughΨ(q) := sup{β ≥ 0 : Φ(β ) = q). Realize thatΨ(0) > 0.

Important examples of such Lévy processes are the following. (1)Brownian motion with drift, being actually both
spectrally positive and negative. We writeX ∈ Bm(µ,σ2) whenϕ(α) =−αµ + 1

2α2σ2. (2) Compound Poisson with drift,
which is spectrally positive. Non-negative jobs arrive according to a Poisson process of rateλ ; the jobsB1,B2, . . . are
i.i.d. samples from a distribution with Laplace transformb(α) := Ee−αB; the storage system is continuously depleted at a
rate 1. We writeX ∈CP(λ ,b(·)); it can be verified thatϕ(α) = α −λ +λb(α). Clearly, if the drift would be positive, and
the jobs would be i.i.d. samples from a non-positive distribution (that is, the jumps are downward), the process is spectrally
negative.

2.2 Reflected Ĺevy Processes; Queues

We consider the reflection of(Xt)t≥0 at 0, which we denote by(Qt)t≥0. It is formally introduced as follows, see for instance
(Asmussen 2003, Ch. IX). Define the decreasing process(Mt)t≥0 and the resulting reflected process (or: workload process,
queueing process)(Qt)t≥0 through

Mt = inf
0≤s≤t

Xs; Qt := Xt +max{−Mt ,Q0};

observe thatQt ≥ 0 for all t ≥ 0. Then the steady-state distributionQ := limt→∞ Qt , which exists due toEX1 < 0, is known
(in terms of its Laplace transform) for both the spectrally positive and spectrally negative case. For spectrally positive input,
we have thegeneralized Pollaczek-Khinchine formula, usually attributed to (Zolotarev 1964):

κ(α) := Ee−αQ =
αϕ ′(0)
ϕ(α)

. (1)
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This result evidently enable the computation of all moments of the steady-state queueQ (by repeated differentiation and
inserting 0). From now one we assumeEQ2 to be finite, so thatv := VarQ is well-defined.

For spectrally negative input, realize thatEeβ0Xt is a martingale, withβ0 := Ψ(0) > 0. ‘Optional sampling’ (Williams
1991, Ch. A14) thus gives, for any positivex, P(∃t ≥ 0 : Xt > x)eβ0x = 1, and asQ is distributed as the supremum overt ≥ 0
of Xt (‘Reich’s identity’), we obtainQ is exponentially distributed with mean 1/β0. It follows that v = 1/β 2

0 .

2.3 Correlation Structure of the Queue

In this paper we are interested in the correlation structure of the queue process(Qt)t≥0. For the spectrally-positive case,
structural results were already found in (Es-Saghouani and Mandjes 2008). Relying on the transform ofQT (whereT is
exponentially distributed with meanϑ−1) given thatQ0 = x, see e.g. (Asmussen 2003, Section IX.3) and (Kella, Boxma,
and Mandjes 2006), they found that

ρ(ϑ) :=
∫ ∞

0
r(t)e−ϑ tdt =

1
ϑ
− ϕ ′′(0)

2vϑ 2 +
ϕ ′(0)
vϑ 2

[
1

ϑψ ′(ϑ)
− 1

ψ(ϑ)

]
.

Then the machinery of completely monotone functions (Bernstein 1929, Ott 1977) was used to prove thatr(·) is a positive,
decreasing, and convex function. We now do the same for the spectrally-negative case.

Following the setup of Chapter 8 of (Kyprianou 2006), we first introduce, for spectrally negative Lévy processes, families
of functionsW(q)(·) and Z(q)(·) as follows. LetW(q)(x) be a strictly increasing and continuous function whose Laplace
transform satisfies ∫ ∞

0
e−βxW(q)(x)dx =

1
Φ(β )−q

, β > Ψ(q). (2)

In addition,

Z(q)(x) := 1+q
∫ x

0
W(q)(y)dy. (3)

W(q)(·) andZ(q)(·) are usually referred to as theq-scale functions. Then the results of (Pistorius 2004), in conjunction with
Exercise 8.5 (both parts (i) and (ii)) of (Kyprianou 2006) lead, with some abuse of notation, to the following transform (with
respect tot) of the density ofQt , given thatQ0 = x:

∫ ∞

0
e−qtPx(Qt = y)dt = e−Ψ(q)y Ψ(q)

q
Z(q)(x)−W(q)(x−y).

It is now a matter of straightforward calculus to show that the previous display leads to, withT denoting an exponential
random variable with meanq−1,

∫ ∞

0
e−βxExe

−αQT dx = I1− I2; I1 :=
∫ ∞

0

∫ ∞

0
qe−βxe−αye−Ψ(q)y Ψ(q)

q
Z(q)(x)dxdy, I2 :=

∫ ∞

0

∫ ∞

0
qe−βxe−αyW(q)(x−y)dxdy.

We now computeI1 ≡ I1(α,β ,q) and I2 ≡ I2(α,β ,q) explicitly. Let us first consider the integralI1; using (2) and (3), we
obtain

I1(α,β ,q) =
Ψ(q)

Ψ(q)+α

∫ ∞

0
e−βxZ(q)(x)dx =

Ψ(q)
Ψ(q)+α

(
1
β

+
∫ ∞

0

∫ ∞

y
qW(q)(y)e−βxdxdy

)
=

Ψ(q)
Ψ(q)+α

1
β

(
1+

q
Φ(β )−q

)
.

Likewise,

I2(α,β ,q) =
∫ ∞

0
qe−(α+β )y 1

Φ(β )−q
dy =

q
α +β

1
Φ(β )−q

.

Let us perform a few checks; it is readily verified that

• plugging inα = 0 in I1(α,β ,q)− I2(α,β ,q) indeed yields 1/β ;
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• plugging inβ = β0 into the expression for
∫ ∞

0 βe−βxExe−αQT dx indeed yields the steady-state transformβ0/(β0+α):
when starting in the queue’s equilibrium distribution at time 0, the workload is still in stationarity after an exponentially
distributed time (irrespectively ofq).

Now observe that, recalling thatT has an exponential distribution with meanq−1,

∫ ∞

0
qe−qtE(Q0Qt)dt =

∫ ∞

0
β0xe−β0xExQT dx = lim

α↓0

d
dα

[
β · d

dβ

∫ ∞

0
e−βxExe

−αQT dx

∣∣∣∣
β=β0

]
. (4)

Upon combining the explicit expression forI1(α,β ,q)− I2(α,β ,q) with (4), and recalling thatv = 1/β 2
0 (in the spectrally-

negative case), we eventually find, after considerable calculus, the following result.

Theorem 1 For the spectrally-negative case,

ρ(q) :=
∫ ∞

0
r(t)e−qtdt =

1
q

+
β 2

0

q2 Φ′(β0)
(

1
Ψ(q)

− 1
β0

)
.

The following corollary follows from applying ‘L’Ĥopital’ twice. It implies that in the spectrally-negative case the
workload process is necessarily short-range dependent. Use thatΨ′(0)Φ′(β0) = 1 andΦ′′(β0)+(Φ′(β0))3Ψ′′(0) = 0, which
follow from repeated differentiation of the relationΦ(Ψ(q)) = q.

Corollary 2 For the spectrally-negative case,

ρ(0) :=
∫ ∞

0
r(t)dt =

1
β0Φ′(β0)

+
Φ′′(β0)

2(Φ′(β0))3 < ∞.

We can now use the transformρ(q) to establish a number of key structural properties ofr(·).

Theorem 3 r(·) is positive, decreasing, and convex.
Proof: We mimic the proof in (Es-Saghouani and Mandjes 2008) for the spectrally-positive case. Using integration by parts,
we find that

ρ
(1)(q) :=

∫ ∞

0
r ′(t)e−qtdt =

β 2
0

q
Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
.

Analogously,

ρ
(2)(q) :=

∫ ∞

0
r ′′(t)e−qtdt =−r ′(0)+β

2
0 Φ′(β0)

(
1

Ψ(q)
− 1

β0

)
. (5)

In the proof of Prop.5 we will show thatΨ(0)/Ψ(q) ∈ C , whereC is the class of completely monotone functions (Bernstein
1929, Feller 1971); completely monotone functions are functions that can, up to some positive multiplicative constant, be
considered as Laplace transforms of nonnegative random variables. We conclude from (5) that ρ(2)(q) is in C , and hence
r ′′(·) is positive, i.e.,r(·) is convex.

We know that f (q) ∈ C implies that, withg(q) := ( f (0)− f (q))/q, alsog(q) ∈ C . Taking f (q) = ρ(2)(q), we obtain
that−ρ(1)(q) is in C , and hencer ′(·) is negative, i.e.,r(·) is decreasing. Applying the same procedure again, we find that
ρ(q) is in C , and hencer(·) is positive. 2

In (Es-Saghouani and Mandjes 2008) the asymptotics ofr(t) (for t large) in the spectrally-positive case were addressed.
It turned out that the heavy-tailed regime (leading tor(t) decaying essentially polynomially) and the light-tailed regime
(leading tor(t) decaying essentially exponentially) had to be treated separately. In the light-tailed regime (where we assume
that the equationϕ(α) = 0 has a negative root) we showed that the exact asymptotics were, up to a multiplicative constant,
of the form t−3/2eϑ?t , whereϑ ? < 0 is the branching point ofψ(·). This means that, withζ < 0 being the minimizer of
ϕ(·), ϕ(ζ ) = ϑ ?.

Let us now consider the counterpart of these findings for the spectrally-negative case. We will argue thatr(t) necessarily
decays exponentially, relying on the Heaviside operational principle. Letζ > 0 denote the minimizer ofΦ(·), so that
Φ(ζ ) = q? < 0; henceq? < 0 is the branching point ofΨ(·). Around q? we have thatΨ(q) looks like ζ +

√
2/vΦ ·

√
q−q?,
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with vΦ := Φ′′(ζ ) > 0. After some calculus we obtain that this entails that, for some (irrelevant) constantκ,

ρ(q)∼ κ +BΦ
√

q−q?; BΦ :=−
β 2

0 Φ′(β0)
(q?)2ζ 2

√
2

vΦ
< 0,

so that application of Heaviside heuristics (Abate and Whitt 1997) yields, with f (t)∼ g(t) denoting f (t)/g(t)→ 1 ast →∞,

r(t)∼ BΦ

Γ(−1
2)
· eq?t

t
√

t
.

3 AN INTERMEZZO: EFFICIENT ESTIMATION OF THE BUSY PERIOD TAIL DISTRIBUTION

In this section we address the estimation of the tail distribution of the busy period in a Lévy-driven queue by applying
an importance-sampling based simulation procedure. In the next section it will turn out that the insights developed here
are useful when setting up an efficient simulation scheme for estimating the workload correlationr(t). We let τ denote
the busy period duration, starting from steady-state at time 0:τ := inf{t ≥ 0 : Qt = 0}, whereQ0 is distributed according
to the stationary distribution. Throughout this section we will denotep(t) := P(τ > t). In this section we first derive the
Laplace transform ofp(·), then we consider the corresponding asymptotics, and finally we set up a logarithmically efficient
simulation scheme.

3.1 Transforms

Let us start by considering the spectrally-positive case. We have, withτ(x) := inf{t ≥ 0 : Xt =−x}

∫ ∞

0
e−ϑ t p(t)dt =

∫ ∞

0

(∫ ∞

0
e−ϑ tP(τ(x) > t)dt

)
dP(Q0 < x) =

1
ϑ

∫ ∞

0

(
1−e−ψ(ϑ)x

)
dP(Q0 < x).

Application of ‘Pollaczek-Khinchine’ now leads to the following result.

Proposition 4 In the spectrally-positive case, the Laplace transform of p(t) is given by

∫ ∞

0
e−ϑ t p(t)dt =

1
ϑ
−ϕ

′(0)
ψ(ϑ)

ϑ 2 .

The spectrally-negative case can be dealt with similarly. First recall that
∫ ∞

0 e−qtP(τ > t)dt = q−1 (1−Ee−qτ) . Then,
using part (ii) of Exercise 6.7 in (Kyprianou 2006), we have

Ee−qτ =
∫ ∞

0
β0e−β0xEe−qτ(x)dx = β0 ·

κ̂(q,β0)− κ̂(q,0)
β0κ̂(q,β0)

;

here κ̂(q,β ) relates to the transform of the so-calleddescending ladder process, and is given, in this spectrally-negative
case, byκ̂(q,β ) = (q−Φ(β ))/(Ψ(q)−β ). Using thatΦ(β0) = 0, we find thatEe−qτ = Ψ(0)/Ψ(q), and in addition the
following result is obtained.

Proposition 5 In the spectrally-negative case, the Laplace transform of p(t) is given by

∫ ∞

0
e−qt p(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
.

3.2 Asymptotics

We again use the Heaviside operational principle (Abate and Whitt 1997) to (heuristically) estimate the decay ofp(t) for
t large. We focus on the situation that the Lévy process is (in the upward direction)light-tailed; precise definitions follow
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below. The most important conclusion is that in this light-tailed casep(t) decays to 0 essentially exponentially; up to a
multiplicative constant, the exact asymptotics coincide with those of the workload correlation functionr(t).

We again start by considering the spectrally-positive case. As before, we assume that the equationϕ(α) = 0 has a
negative root. Observe that then Prop.4 holds for any positiveϑ , but we can consider the analytic continuation up to the
branching pointϑ ? < 0 of ψ(·). More precisely: the idea is to write (withζ < 0 denoting the minimizer ofϕ(·), so that
ϕ(ζ ) = ϑ ? < 0; notice thatvϕ := ϕ ′′(ζ ) > 0), for ϑ ↓ ϑ ? we have thatψ(ϑ)−ζ ∼

√
2/vϕ ·

√
ϑ −ϑ ?.

Hence, aroundϑ ?, we have that, for some (irrelevant) constantκ,

∫ ∞

0
e−ϑ t p(t)dt =

1
ϑ
−ϕ

′(0)
ψ(ϑ)

ϑ 2 ∼ κ +Aϕ

√
ϑ −ϑ ?; Aϕ :=− ϕ ′(0)

(ϑ ?)2

√
2
vϕ

< 0,

and hence, applying ‘Heaviside’, we estimate the tail distribution of the busy period by

p(t)∼
Aϕ

Γ(−1
2)
· eϑ?t

t
√

t
. (6)

We now turn to the spectrally-negative case. Prop.5 holds for any positiveq, but we can consider the analytic continuation
up to the branching pointq? < 0 of Ψ(·). Let ζ > 0 denote the minimizer ofΦ(·), so thatΦ(ζ ) = q? < 0. Similarly to the
spectrally-negative case, we obtain, withvΦ := Φ′′(ζ ) > 0 andκ being some (irrelevant) number,

∫ ∞

0
e−qt p(t)dt =

1
q

(
1− Ψ(0)

Ψ(q)

)
∼ κ +AΦ

√
ϑ −ϑ ?; AΦ :=

Ψ(0)
q?ζ 2

√
2
vϕ

< 0,

and hence ‘Heaviside’ estimates the tail of the busy-period distribution by

p(t)∼ AΦ

Γ(−1
2)
· eq?t

t
√

t
. (7)

3.3 Importance-Sampling Based Simulation

As p(t) vanishes exponentially fast in the light-tailed case considered above, estimatingP(τ > t) from naive Monte Carlo
simulation would be extremely time consuming. It is known that the number of replications needed (to obtain an estimate
of a certain predefined precision) is roughly of the order(p(t))−1. This motivates the search for more efficient simulation
algorithms. We conclude this section by an algorithm for estimating this probability in an logarithmically efficient way; this
algorithm is based on importance sampling, see e.g. pp. 127-128 of (Asmussen and Glynn 2007), with an exponential twist
of the Lévy processXt .

We first explain what ‘exponentially twisting’ means in our Lévy setting; we focus here on the spectrally-positive case,
but the spectrally-negative case works analogously. Evidently, the queue is stable under the probability measureP, as we
assumedEX1 < 0. Below we will propose a change of measure, with which we associateQ, under which{τ > t} with
relatively high probability, by application of an exponential twist−ζ > 0. We have that the Laplace exponentϕ(α) of Xt

is well defined and characterized through, withd, σ2 > 0 and a measureΠϕ(·) such that
∫
(0,∞) min{1,x2}Πϕ(dx) < ∞,

ϕ(α) =−α ·d+
1
2

α
2
σ

2 +
∫

(0,∞)
(e−αx−1+αx1(0,1))Πϕ(dx).

It is now a matter of straightforward calculations to show thatϕ̄(α) := ϕ(α + ζ )−ϕ(ζ ) is a Laplace exponent as well.
Under Q, the Ĺevy process has Laplace exponentϕ̄(α); from the convexity ofϕ(·) it is concluded that (in self-evident
notation)EQX1 =−ϕ̄ ′(0) =−ϕ ′(ζ ) = 0, so that the system under the new measure has drift 0. (One can check that underQ
the drift d has increased tod−ζ σ2, the Brownian term remains unchanged, whereas the measureΠϕ̄(dx) is given through
its exponentially twisted counterpart (with ‘twist’−ζ ).

In importance sampling one simulates under a different measure than the original one, where unbiasedness is recovered
by weighing the simulation output by appropriate likelihood ratios. We first propose an alternative measure, as follows.
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• Let, in the interval(0, t], the Ĺevy process be twisted with−ζ =−ψ(ϑ ?) > 0, as described above;ϑ ? is as defined
before.

• We also twistQ0; we do so by a factorκ ≥ 0, for which we identify a suitable value later on. This effectively
means that we sampleQ0 from a distribution with Laplace transformEe−(α−κ)Q0/EeκQ0.

We call the new measure, consisting of twistingQ0 as well as a twisting(Xs)s∈(0,t], from now onQκ .
We simulate the process underQκ till time t. Then the estimator, based onn independent runs, readsn−1 ∑n

i=1Li1{τi > t},
whereLi is the likelihood of runi. Let us write down this likelihood ratio. First there is the contribution due to the twisted
queue at time 0; using ‘Pollaczek-Khinchine’ we obtain

L1 := e−κQ0 ·EeκQ0 = e−κQ0 · −κϕ ′(0)
ϕ(−κ)

.

Then there is the contribution due to the twisted Lévy process between 0 andt:

L2 := eψ(ϑ?)Xt ·Ee−ψ(ϑ?)Xt = eψ(ϑ?)Xt ·eϑ?t .

The ‘total likelihood’ isL := L1×L2.
As VarL1{τ > t} ≥ 0, we see thatEL21{τ > t} ≥ (EL1{τ > t})2. In this sense, we could call a change of measure

logarithmically efficient if

lim
t→∞

1
t

logEL21{τ > t} ≤ lim
t→∞

1
t

log(EL1{τ > t})2 =−ϑ
?.

Logarithmic efficiency essentially means that the number of replications needed to obtain an estimate with a certain fixed
precision grows subexponentially in the ‘rarity parameter’t, cf. (Asmussen and Glynn 2007, Ch. VI).

A first important observation is that not twistingQ0 at all (i.e., choosingκ = 0) doesnot necessarily yield logarithmic
efficiency: recalling that a necessary condition for{τ > t} is {Q0 +Xt > 0}, we find

EQκ
L21{τ > t} ≤

(
−κϕ ′(0)

ϕ(−κ)

)2

e2ϑ?tEQκ
e−2κQ0e−2ψ(ϑ?)Q0. (8)

For logarithmic efficiency we should have that limsupt→∞ t−1 logEQκ
L21{τ > t} ≤ 2ϑ ?. In other words, when pickingκ = 0

we need to haveEQ0e−2ψ(ϑ?)Q0 < ∞ for logarithmic efficiency, and this is nota priori clear.
But let us now check whether with another choice forκ logarithmic efficiencycan be guaranteed. To this end, note

that ϕ(ψ(ϑ ?)) is finite (to see this, use thatζ is larger than the pole ofϕ(·)). Hence, pickingκ := −ψ(ϑ ?) = −ζ does
yield logarithmic efficiency! In other words: we have to exponentially twistQ0 as well to obtain a provably logarithmically
efficient procedure, andκ =−ζ > 0 is a suitable choice.

The next question is: it is clear that for the(Xs)s∈(0,t]-part, a twist by−ζ is optimal, but for theQ0-part, can we do
better than twisting with−ζ? Interestingly, using

EQκ
e−αQ0 =

α −κ

ϕ(α −κ)
· ϕ(−κ)

−κ
,

the right-hand side of (8) can be rewritten to

(ϕ ′(0))2
(

−κ

ϕ(−κ)

)(
2ζ +κ

ϕ(2ζ +κ)

)
e2ϑ?t . (9)

Observe that it contains of two factors inκ, the first of which increases inκ, the second decreases inκ, so that there is a
trade-off. It is a straightforward exercise to show that the minimum is achieved forκ =−ζ (this can be seen by equating
the derivative to 0, but it also follows using an elementary symmetry-argument). We conclude that the proposed change of
measure is the best possible within the class of exponential twists ofQ0, in the sense that it minimizes (9).
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4 SIMULATION-BASED COMPUTATION OF THE CORRELATION FUNCTION

As recalled in the previous section, if a probability tends to 0 as some ‘rarity parameter’t grows large, then the number of
runs needed to estimate the probability by naive simulation, for a given relative precision, is roughly inversely proportional
to the probability. At the end of Section2 we observed that the correlationr(t) also tends to 0 ast → ∞, which raises the
question how many runs would be roughly needed to estimater(t) by naive simulation. We first answer this question, and then
propose a coupling-based alternative that performs substantially better. This section concludes with a logarithmically efficient
algorithm, that combines the coupling idea with importance sampling. In this section we concentrate on the spectrally-positive
case; in the spectrally-negative case, the decay ratesϑ ? must be replaced byq? (while the proofs are very similar).

4.1 Naive Simulation

In the remainder of this section, we concentrate on estimating ¯r(t) := Cov(Q0,Qt), as v = VarQ is known. The naive
estimator of ¯r(t) is, in self-evident notation, and recalling thatEQ is known,

T(NS)
n (t) :=

1
n

n

∑
i=1

Q(i)
0 Q(i)

t − (EQ)2,

based onn independent runs. The variance of this estimator reads(n−1) ·Var(Q0Qt). Now note that, ast → ∞,

Var(Q0Qt) = E(Q2
0Q2

t )− (EQ0Qt)2 → (EQ2)2− (EQ)4,

which is positive due to the fact thatEQ2 > (EQ)2. Suppose our goal is to simulate until our estimate has a certain given
relative precisionε (defined as the ratio between the width of the confidence interval and the estimate) and confidenceα.
The number of runs needed, sayn(NS)(t), is roughly equal to the smallestn satisfying

2δα

√
VarT(NS)

n (t)
r(t)

< ε,

for an appropriately chosen percentile of the standard Normal distributionδα . We obtain the following remarkable result
for the naive estimator: it says that the number of runs required blows up exponentially, but it isquadratically inversely
proportional tor(t), rather than just inversely proportional.

Proposition 6 limt→∞ t−1 · logn(NS)(t) =−2ϑ ? > 0.

4.2 A Coupling-based Algorithm

In this subsection we develop a coupling-based simulation procedure that reduces the number of runs needed fromquadratically
inversely proportional to ¯r(t), to just inversely proportional.

We write

r̄(t) = E(Q0 · (Qt −Q?
t )),

where bothQ andQ? are stationary versions of the workload, andQ?
t is independentof Q0. We construct such a coupling as

follows: generateQ0 andQ?
0 independently, sampled from the stationary distribution of the workload. Now use exactly the

same incoming Ĺevy processXt over (0, t] to drive both(Qs)s∈(0,t] and (Q?
s)s∈(0,t] from their two independently generated

initial conditions. This makesQt andQ0 correlated butQ?
t andQ0 independent. The new estimator becomes, in self-evident

notation,

T(CS)
n (t) :=

1
n

n

∑
i=1

Q(i)
0 (Q(i)

t −Q?(i)
t ),

based onn independent runs. The key observation is that|Qt −Q?
t | ≤ |Q0−Q?

0|: the distance between both processes
decreases in time. In particular, after the first epoch thatboth queues have been empty, the queueing processes coincide.
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We split E(Q0 · (Qt −Q?
t )) into four terms, as follows. Recall that we definedMt := inf0≤s≤t Xs. We write τ > t iff

Q0+Mt > 0 (i.e., busy period has not ended att) andτ? > t iff Q?
0+Mt > 0. Then ¯r(t) = r++(t)+ r+−(t)+ r−+(t)+ r−−(t),

where

r++(t) := E(Q0 · (Qt −Q?
t ) ·1{τ > t,τ? > t}), r+−(t) := E(Q0 · (Qt −Q?

t ) ·1{τ > t,τ? ≤ t}),
r−+(t) := E(Q0 · (Qt −Q?

t ) ·1{τ ≤ t,τ? > t}), r−−(t) := E(Q0 · (Qt −Q?
t ) ·1{τ ≤ t,τ? ≤ t}).

It is evident thatr−−(t) = 0, as both queues have been empty and are identical from some times (smaller thant) on. We
estimate the other three terms separately. Due to|Qt −Q?

t | ≤ |Q0−Q?
0| we thus have that

Var(Q0 · (Qt −Q?
t )) ≤ EQ2

0 · (Qt −Q?
t )

2 ≤ E(Q2
0 · (Q0−Q?

0)
2 ·1{τ > t,τ? > t})

+ E(Q2
0 · (Q0−Q?

0)
2 ·1{τ > t,τ? ≤ t})+E(Q2

0 · (Q0−Q?
0)

2 ·1{τ ≤ t,τ? > t}).

With mk(t) := E(Qk
01{τ > t}), both the first and third term can be bounded from above byE(Q4

0)P(τ > t)+E(Q2
0)m2(t),

whereas the second is majorized bym4(t)+E(Q2
0)m2(t). The claim of Prop.8 now follows directly from the following

lemma (which is proven in the appendix). The number of runs needed,n(CS)(t), is defined analogously ton(NS)(t).

Lemma 7 For any k≥ 0, we have thatlimsupt→∞ t−1 logmk(t)≤ ϑ ?.

Proposition 8 limsupt→∞ t−1 · logn(CS)(t)≤−ϑ ?.

4.3 Importance-Sampling Based Algorithm

We now apply importance sampling on top of the coupling idea presented in the previous subsection. As we are dealing
with the light-tailed case, an importance sampling measureQ is logarithmically efficient if

lim
t→∞

1
t

logEQ(L2Q2
0(Qt −Q?

t )
2)≤ 2ϑ

?.

We again consider four scenarios by comparingτ andτ? with t; the idea is to estimater++(t), r+−(t), andr−+(t) separately
(recall thatr−−(t) = 0).

• First focus onr++(t). We define

T(IS)
n,++(t) :=

1
n

n

∑
i=1

L2
i Q(i)

0 (Q(i)
t −Q?(i)

t )1{τi > t,τ?
i > t},

as an (unbiased) estimator ofr++(t). Notice that in this caseQt −Q?
t = Q0−Q?

0. Let, as before, the Ĺevy process
be twisted with−ζ = −ψ(ϑ ?) > 0, with ϑ ? as defined before. AlsoQ0 is twisted by a factorκ and Q?

0 by a
factor κ?, for which we identify suitable values below. We simulate the process till timet. Let us write down the
likelihood ratio at timet; we call the new measureQ~κ , with ~κ denoting the vector(κ,κ?). We again find that the
likelihood equals

L =
(

e−κQ0 · −κϕ ′(0)
ϕ(−κ)

)
×
(

e−κ?Q?
0 · −κ?ϕ ′(0)

ϕ(−κ?)

)
×
(

eζXt ·eϑ?t
)

.

We conclude that the second moment of the estimator reads

EQ~κ

(
L2Q2

0(Q0−Q?
0)

2 ·1{τ > t,τ? > t}
)
.
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It is clear that 1{τ > t,τ? > t} ≤ 1{τ > t}, and on{τ > t} we have that−Xt < Q0. We thus find the upper bound

EQ~κ

((
e−κQ0 · −κϕ ′(0)

ϕ(−κ)

)2

×
(

e−κ?Q?
0 · −κ?ϕ ′(0)

ϕ(−κ?)

)2

×
(

e−ζQ0 ·eϑ?t
)2

Q2
0(Q0−Q?

0)
2

)

≤
(
−κϕ ′(0)
ϕ(−κ)

)2(−κ?ϕ ′(0)
ϕ(−κ?)

)2

e2ϑ?t ×(
EQ~κ

(
Q4

0e−2(κ+ζ )Q0

)
EQ~κ

(
e−2κ?Q0

)
+EQ~κ

(
Q2

0e−2(κ+ζ )Q0

)
EQ~κ

(
(Q?

0)
2e−2κ?Q?

0

))
.

It is now readily seen that the choiceκ =−ζ andκ? = 0 yields logarithmic efficiency, as the above display reduces
to a finite number multiplied withe2ϑ?t . We here use, in the same way as in Section3, thatζ is larger than the pole of
ϕ(·), so that twisting with−ζ keeps all means finite, that is,EQ~κ

Q4
0 < ∞, EQ~κ

Q2
0 < ∞, andEQ~κ

((Q?
0)

2) = EQ2
0 < ∞

• Now considerr+−(t). The estimatorT(IS)
n,+−(t) is defined analogously toT(IS)

n,++(t). ApparentlyQ0 > Q?
0, and therefore

alsoQt ≥Q?
t for all t ≥ 0. We also haveQt −Q?

t ≤Q0−Q?
0 for all t ≥ 0. With 1{τ > t,τ? > t} ≤ 1{τ > t}, we can

use the bounds above. We again obtain thatκ =−ζ andκ? = 0 yields logarithmic efficiency.
• Finally, the caser−+(t) is essentially identical, but now we should pickκ? =−ζ andκ = 0.

As we can now estimater++(t), r+−(t), and r−+(t) logarithmically efficiently, we arrive at the following result. Here
n(IS)(t) denotes the number of runs needed to estimater(t) with a predefined precision, for a given confidence. The result
states that the number of runs needed increases only subexponentially fast in the ‘rarity parameter’t, and hence we have
achieved a huge improvement over the naive scheme, and a still quite substantial improvement over the coupling-based
algorithm (without importance sampling).

Theorem 9 limt→∞ t−1 · logn(IS)(t) = 0.

5 PRACTICAL ASPECTS AND DISCUSSION

Application of the simulation algorithms proposed in the previous sections, requires the ability to sample Lévy processes.
Guidelines on this issue are presented in (Asmussen and Glynn 2007, Ch. XII).

In addition, one should be able to draw variates from exponentially twisted versions of the stationary workloads. In
the spectrally-negative case this is straightforward, asQ0 has an exponential distribution. In the spectrally-positive case, the
Laplace transform ofQ0 is known (by ‘Pollaczek-Khinchine’), and one could use methods as those described in (Devroye
1986) to generate samples. An alternative, only useful in the case of compound Poisson input, is to recognize that then
the steady state workload is distributed as a geometric sum of residual job sizes, and hence so is its exponentially twisted
version; in this situation one could also use the exact sampling technique proposed in (Ensor and Glynn 2000).

Observe, however, that spectrally-positive light-tailed Lévy inputs are always just the sum of (i) Brownian motions,
(ii) compound Poisson processes with light-tailed jobs, (iii) a negative drift. Restricting ourselves tophase-typejobs, it is
readily seen from the generalized Pollaczek-Khinchine formula that also the steady-state workload is phase-type as well,
and hence easy to generate variates from. In addition, the phase-type property is closed under exponential twisting, so it is
straightforward to sample from this exponentially twisted workload.

In this paper we presented efficient algorithms for estimating the tail of the busy periodp(t) and the workload correlation
function r(t). In the spectrally one-sided cases Laplace transforms are known in closed-form, so the obvious alternative to
simulation is to perform numerical inversion of these transforms. It should be noted, however, that the importance-sampling
based simulation method can also be applied (and has good variance properties) if the driving Lévy process has both positive
and negative jumps.

Potential subjects for future research are the following. (i) One could try to apply the coupling idea in settings in which
the queue’s input process doesnot have stationary independent increments. Can we for instance develop an algorithm of
this kind for a queue fed by on-off sources with generally distributed on- and off times, or for queues with Gaussian input
(Mandjes 2007)? (ii) Is it possible to develop a simulation scheme with bounded relative error (Asmussen and Glynn 2007,
p. 159). Is it, perhaps for special cases such as reflected Brownian motion, possible to compute a zero-variance change of
measure?
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A APPENDIX

We here present the proof of Lemma7. Takeε > 0 arbitrary. Letm denote−EX1 > 0, andmε := bm/εc. By splitting the
interval [0,∞) into intervals[iεt,(i +1)εt), for i = 0,1, . . ., we obtain, using thatP(τ(x) > t) increases monotonically inx,

mk(t) =
∫ ∞

0
xkP(τ(x) > t)dP(Q0 ≤ x)≤

∞

∑
i=0

((i +1)εt)kP(τ((i +1)εt) > t)P(Q0 > iεt)

≤
mε

∑
i=0

((i +1)εt)kP(τ((i +1)εt) > t)P(Q0 > iεt)+
∞

∑
i=mε +1

((i +1)εt)kP(Q0 > iεt).

With I(a) := supθ (θa− logEexp(θX1)), the Chernoff bound immediately givesP(τ(x) > t)≤ P(X(t) >−x)≤ e−tI(−x/t) for
all x< mt. In addition, Remark 5.3 of (Dȩbicki, Es-Saghouani, and Mandjes 2009) yields thatP(Q0 > x)≤ exp(−ξx), where
ξ := infx>0 I(x)/x. Hence,mk(t) is bounded from above by

mε

∑
i=0

hi(t)+g(t), wherehi(t) := ((i +1)εt)ke−tI(−(i+1)ε)e−ξ iεt , g(t) :=
∞

∑
i=mε +1

((i +1)εt)ke−ξ iεt .

It is readily checked that limt→∞ t−1 loghi(t) =−I(−(i +1)ε)−ξ iε. Also
∫ ∞

a xke−xtdx∼ s(t)e−at, for some subexponential
functions(·) (ast →∞), which leads to limt→∞ t−1 logg(t)≤ ξ ε−(mε +1)ξ ε. Lemma 1.2.15 of (Dembo and Zeitouni 1998),
stating that the decay rate of a finite sum equals the maximum of the decay rates, now yields that

limsup
t→∞

1
t

logmk(t)≤ max

{
max

i=0,...,mε

{−I(−(i +1)ε)−ξ iε},ξ ε − (mε +1)ξ ε

}
.

Note thatki :=−I(−(i +1)ε)−ξ iε is concave ini, and hencek0 > k1 would imply that maxi∈{0,1,...} ki = k0. It is seen that
k0 > k1 is equivalent toε−1 · (I(−ε)− I(−2ε)) < ξ . Observing that the convexity ofI(·) implies that

ξ := inf
x>0

I(x)
x

≥ inf
x>0

I(0)+xI′(0)
x

> I ′(0),

we have that forε sufficiently small it indeed holds thatk0 > k1, and hence limsupt→∞ t−1 · logmk(t)≤ k0 =−I(−ε). Now
letting ε → 0, and realizing thatI(0) =−ϑ ?, we have shown the stated. 2.
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