A Characterization of Box $\frac{1}{d}$-Integral Binary Clutters*

A. M. H. Gerards

CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

AND
M. Laurent
LIENS, Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris Cedex 05, France

Received April 29, 1993

Let Q_{6} denote the port of the dual Fano matroid F_{7}^{*} and let Q_{7} denote the clutter consisting of the circuits of the Fano matroid F_{7} that contain a given element. Let \mathscr{L} be a binary clutter on E and let $d \geqslant 2$ be an integer. We prove that all the vertices of the polytope $\left\{x \in \mathbb{R}_{+}^{E} \mid x(C) \geqslant 1\right.$ for $\left.C \in \mathscr{L}\right\} \cap\{x \mid a \leqslant x \leqslant b\}$ are $\frac{1}{d}$-integral, for any $\frac{1}{d}$-integral a, b, if and only if \mathscr{L} does not have Q_{6} or Q_{7} as a minor. This includes the class of ports of regular matroids. Applications to graphs are presented, extending a result from Laurent and Poljak [7]. ©c) 1995 Academic Press, Inc.

1. The Main Result

Let \mathscr{L} be a collection of subsets of a set $E . \mathscr{L}$ is called a clutter if, for all $A, B \in \mathscr{L}, A=B$ whenever $A \subseteq B$. Given an integer $d \geqslant 1$, a vector is $\frac{1}{d}$-integral if all its components belong to $\frac{1}{d} \mathbb{Z}:=\left\{\left.\frac{i}{d} \right\rvert\, i \in \mathbb{Z}\right\}$.

Definition 1.1. Let \mathscr{L} be a clutter on E. We say that \mathscr{L} is box $\frac{1}{d}$-integral if $\mathscr{L}=\{\varnothing\}$ or, for all $a, b \in\left(\frac{1}{d} \mathbb{Z}\right)^{E}$, each vertex of the polyhedron

$$
Q(\mathscr{L}, a, b):=\left\{x \in \mathbb{R}_{+}^{E} \mid x(C) \geqslant 1 \text { for } C \in \mathscr{L}, a_{e} \leqslant x_{e} \leqslant b_{e} \text { for } e \in E\right\}
$$

is $\frac{1}{d}$-integral. Equivalently, \mathscr{L} is box $\frac{1}{d}$-integral if, for all subsets $I \subseteq E$ and all $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$, each vertex of the polyhedron

$$
Q(\mathscr{L}, a):=\left\{x \in \mathbb{R}_{+}^{E} \mid x(C) \geqslant 1 \text { for } C \in \mathscr{L}, x_{e}=a_{e} \text { for } e \in I\right\}
$$

is $\frac{1}{d}$-integral.

* This work was partially done while the authors visited DIMACS, New Brunswick, NJ.

We shall mostly use the second definition for box $\frac{1}{d}$-integral clutters.
Given a clutter \mathscr{L} on E and a subset Z of E, set $\mathscr{L} \backslash Z=\{A \in \mathscr{L} \mid A \cap Z$ $=\varnothing\}$ and let \mathscr{L} / Z consist of the minimal members of $\{A-Z \mid A \in \mathscr{L}\}$; both \mathscr{L} / Z and $\mathscr{L} \backslash Z$ are clutters. The operations are called, respectively, deletion and contraction of Z. A minor of \mathscr{L} is obtained from \mathscr{L} by a sequence of deletions and contractions.
Let \mathscr{M} be a matroid on a groundset $E \cup\{l\}$, where l is a distinguished element of the groundset, and let \mathscr{C} denote the family of circuits of \mathscr{M}. The l-port of \mathscr{M} is the clutter $\{C \mid C \cup\{l\} \in \mathscr{C}\}$. A clutter is binary if it is the port of some binary matroid.

The binary clutters Q_{6} and Q_{7} are defined, respectively, on six and seven elements. Q_{6} is the clutter on the set $\{1,2,3,4,5,6\}$ consisting of the sets $\{1,3,5\},\{1,2,6\},\{2,3,4\}$, and $\{4,5,6\} . Q_{7}$ is the clutter on the set $\{1,2,3,4,5,6,7\}$ consisting of the sets $\{1,4,7\},\{2,5,7\},\{3,6,7\}$, $\{1,2,6,7\},\{1,3,5,7\},\{2,3,4,7\}$, and $\{4,5,6,7\}$.
The following result is the main result of the paper. Applications to graphs are given in Section 5.

Theorem 1.2. Let \mathscr{L} be a binary clutter on a set $E, \mathscr{L} \neq\{\varnothing\}$. The following assertions are equivalent:
(i) \mathscr{L} does not contain Q_{6} or Q_{7} as a minor,
(ii) \mathscr{L} is box $\frac{1}{d}$-integral for each integer $d \geqslant 1$,
(iii) \mathscr{L} is box $\frac{1}{d}$-integral for some integer $d \geqslant 2$.

Observe that, for $d=1, \mathscr{L}$ is box $\frac{1}{d}$-integral if and only if \mathscr{L} has the following weak max-flow-min-cut property (since the weak max-flow-mincut property is closed under minors [10]): $\mathscr{L}=\{\varnothing\}$ or, for each $w \in \mathbb{Z}_{+}^{E}$, the program

$$
\begin{array}{llll}
\min & w^{T} x & & \\
\text { subject to } & x(C) \geqslant 1 & \text { for all } & C \in \mathscr{L} \\
& x_{e} \geqslant 0 & \text { for all } e \in E
\end{array}
$$

has an integer optimizing vector.
A nonempty clutter \mathscr{L} is said to be Mengerian if $\mathscr{L}=\{\varnothing\}$, or both the above program and its dual

$$
\begin{array}{lll}
\max & 1^{T} y & \\
\text { subject to } & \sum_{e \in C} y_{C} \leqslant w_{e} & \text { for } \quad e \in E \\
& y_{C} \geqslant 0 & \text { for } \quad C \in \mathscr{L}
\end{array}
$$

have integer optimizing vectors for all $w \in \mathbb{Z}_{+}^{E}$. Seymour [10] showed that a clutter $\mathscr{L} \neq\{\varnothing\}$, which is a matroid port, is Mengerian if and only if \mathscr{L} is binary and does not have any Q_{6} minor. Therefore, from Theorem 1.2, the class of the binary clutters which are box $\frac{1}{d}$-integral for some integer $d \geqslant 2$ is strictly contained in the class of Mengerian binary clutters.

The characterization of the clutters with the weak max-flow-min-cut property is a hard and unsolved problem, even within the class of matroid ports (see [10], [4]).

Theorem 1.2 does not hold for ports of arbitrary matroids. For this, consider the matroid U_{4}^{2} on four elements whose circuits are the sets $\{1,2,3\},\{1,2,4\},\{1,3,4\}$ and $\{2,3,4\}$. (Recall that a matroid is binary if and only if it does not contain U_{4}^{2} as a minor (Tutte [15]).) The 4-port of U_{4}^{2} is the clutter C_{3} consisting of the sets $\{1,2\},\{1,3\}$ and $\{2,3\}$. It is easy to check that C_{3} is box $\frac{1}{d}$-integral if and only if d is even. Hence, the assertions (ii) and (iii) of Theorem 1.2 are not equivalent for the clutter C_{3}.

Proposition 1.3. Let d be an odd integer and let \mathscr{L} be a matroid port. If \mathscr{L} is box $\frac{1}{d}$-inteqral, then \mathscr{L} is a binary clutter.

Proof. Let \mathscr{L} be the l-port of a matroid \mathscr{M}. We can suppose that \mathscr{M} is connected. Assume that \mathscr{L} is box $\frac{1}{d}$-integral. Then \mathscr{L} does not have C_{3} as a minor, see Proposition 3.2. Therefore, \mathscr{M} does not have a minor U_{4}^{2} using the element l. This implies that \mathscr{I} does not have any minor U_{4}^{2} (Bixby [3]). Therefore, \mathscr{M} is a binary matroid. Hence, \mathscr{L} is a binary clutter.

In order to prove Theorem 1.2, it suffices to show the implications (iii) \Rightarrow (i) and (i) \Rightarrow (ii). The implication (iii) \Rightarrow (i) is implied by the following facts:

- box $\frac{1}{d}$-integrality is preserved under minors, see Proposition 3.2.
- Q_{6} is not box $\frac{1}{d}$-integral, for each integer $d \geqslant 2$, see Proposition 3.3.
- Q_{7} is not box $\frac{1}{d}$-integral, for each integer $d \geqslant 2$, see Proposition 3.4.

The most difficult part is to show the implication (i) \Rightarrow (ii). For this, we use as a main tool a decomposition result for matroids without minor F_{7}^{*} using a given element l, stated in Theorem 2.3 (Tseng and Truemper [14], Truemper [12]).

The proof of Theorem 1.2 is presented in Sections 3 and 4. In Section 2, we recall some results about matroids and the decomposition result that we need here. We present in Section 5 some applications of our main result.

We conclude with another, equivalent, definition for box $\frac{1}{d}$-integral clutters, which is related to the "身-property" considered by Nobili
and Sassano [8]. Given a clutter \mathscr{L} on $E, \mathscr{L} \neq\{\varnothing\}$, consider the polyhedron

$$
Q(\mathscr{L}):=\left\{x \in \mathbb{R}_{+}^{E} \mid x(C) \geqslant 1 \text { for all } C \in \mathscr{L}\right\} .
$$

Given a k-dimensional face $F(k \geqslant 0)$ of $Q(\mathscr{L})$, a subset $J \subseteq E$ is said to be basic for F if there exist $|E|-k$ equations $x\left(C_{i}\right)=1\left(C_{i} \in \mathscr{L}\right.$, for $\mathbf{1} \leqslant i \leqslant|E|-k)$ defining F whose projections on \mathbb{R}^{J} are linearly independent. Then, one can check that \mathscr{L} is box $\frac{1}{d}$-integral if and only if the following property holds: For each k-dimensional face F of $Q(\mathscr{L})(k \geqslant 0)$ for each basic set $J \subseteq E$ for F and for each $x \in F, x_{e} \in \frac{1}{d} \mathbb{Z}$ for all $e \in J$ whenever $x_{e} \in \frac{1}{d} \mathbb{Z}$ for all $e \in E-J$. This property corresponds to the "身-property" considered (in blocking terms and in a slightly more general setting) by Nobili and Sassano [8].

2. Preliminaries on Matroids

We recall here several well known results on matroids that we need for the paper. We refer to [17], [13] for details on the material covered in this section.

We use the following notation. Given a set A and elements $a \in A, b \notin A$, $A-a, A+b$ denote, respectively, $A-\{a\}$ and $A \cup\{b\}$. If x, y are two binary vectors, then $x \oplus y$ denotes the binary vector obtained by taking the componentwise sum of x and y modulo 2 .

Representation Matrix

Let \mathscr{M} be a binary matroid on a set E, i.e., there exists a binary matrix M whose columns are indexed by E such that a subset of E is independent in \mathscr{M} if and only if the corresponding subset of columns of M is linearly independent over the field $G F(2)$. Such a matrix M is called a representation matrix of \mathscr{I}.

Let X be a base of \mathscr{I} and set $Y=E-X$. For $y \in Y$, let C_{y} denote the fundamental circuit of y in the base X, i.e., C_{y} is the unique circuit of \mathscr{M} such that $y \in C_{y}$ and $C_{y} \subseteq X+y$. Let B denote the $|X| \times|Y|$ matrix whose columns are the incidence of the sets $C_{y}-y$ for $y \in Y$. Then, the matrix $[I \mid B]$ is a representation matrix of \mathscr{U} and B is called a partial representation matrix of \mathscr{I}.

For $x \in X$, let Σ_{x} denote the fundamental cocircuit of x with respect to the base X, i.e., Σ_{x} is the unique cocircuit of \mathscr{M} such that $x \in \Sigma_{x}$ and $\Sigma_{x} \subseteq Y+x$. The row of B indexed by x is the incidence vector of the set $\Sigma_{x}-x$.

For $y \in Y$ and $x \in C_{y}$, the set $X^{\prime}=X-x+y$ is also a base of \mathscr{M}. The partial representation matrix B^{\prime} of \mathscr{M} in the base X^{\prime} is easily obtained from
B by pivoting with respect to the (x, y)-entry of B. Let $R_{x^{\prime}}, x^{\prime} \in X$, denote the rows of B; they are vectors in $\{0,1\}^{Y}$. Pivoting with respect to the (x, y)-entry of B amounts to replacing $R_{x^{\prime}}$ by $R_{x^{\prime}} \oplus R_{x} \oplus(1,0, \ldots, 0)$ (where 1 is in the y-position) for each $x^{\prime} \in C_{y}, x^{\prime} \neq x, y$.

Let \mathscr{C} denote the family of circuits of \mathscr{M}. A set $C \subseteq E$ is called a cycle of \mathscr{U} if $C=\varnothing$ or C is a disjoint union of circuits of \mathscr{M}. Equivalently, if M is a representation matrix of \mathscr{M}, then the cycles are the subsets whose incidence vectors u satisfy $M u \equiv 0(\bmod 2)$.

Minors

Let Z be a subset of E. The matroid $\mathscr{M} \backslash Z$, obtained by deletion of Z, is the matroid on $E-Z$ whose family of circuits is $\mathscr{C} \backslash Z$. The matroid \mathscr{M} / Z, obtained by contraction of Z, is the matroid on $E-Z$ whose circuits are the nonempty sets of \mathscr{C} / Z. Note that contracting a loop or coloop is the same as deleting it. A minor of \mathscr{I} is obtained by a sequence of deletions and contractions. Every minor of \mathscr{M} is of the form $\mathscr{M} \backslash Z / Z^{\prime}$ for some disjoint subsets Z, Z^{\prime} of E. Given $e \in E$, the minor $\mathscr{M} \backslash Z / Z^{\prime}$ uses the element e if $e \notin Z \cup Z^{\prime}$; in other words, e belongs to the groundset of $\mathscr{M} \backslash Z / Z^{\prime}$.

Minors can be easily visualized in the partial representation matrix. Let B be the partial representation matrix of \mathscr{M} corresponding to the base X. If $Z \subseteq X$, then the matrix obtained from B by deleting its rows indexed by Z is a partial representation matrix of \mathscr{M} / Z. If $Z \subseteq Y$, then the matrix obtained from B by deleting its columns indexed by Z is a partial representation matrix of $\mathscr{M} \backslash Z$.
k-Sum
Let \mathscr{M}_{i} be a binary matroid on E_{i}, for $i=1,2$. Let \mathscr{I} be the binary matroid on $E=E_{1} \triangle E_{2}$ whose cycles are the subsets of E of the form $C_{1} \triangle C_{2}$, where C_{i} is a cycle of \mathscr{M}_{i} for $i=1,2$. We consider the cases:

- $E_{1} \cap E_{2}=\varnothing$, then \mathscr{M} is called the 1 -sum of \mathscr{M}_{1} and \mathscr{M}_{2}
- $\left|E_{1}\right|,\left|E_{2}\right| \geqslant 3, E_{1} \cap E_{2}=\left\{e_{0}\right\}$ and e_{0} is not a loop or a coloop of \mathscr{M}_{1} or \mathscr{U}_{2}, then \mathscr{I} is the 2 -sum of \mathscr{M}_{1} and \mathscr{U}_{2}.

k-Separation

Let $r(\cdot)$ denote the rank function of the matroid. \mathscr{M} on E. Let $k \geqslant 1$ be an integer. A k-separation of \mathscr{M} is a partition $\left(E_{1}, E_{2}\right)$ of the groundset E satisfying

$$
\left\{\begin{array}{l}
\left|E_{1}\right|,\left|E_{2}\right| \geqslant k, \\
r\left(E_{1}\right)+r\left(E_{2}\right) \leqslant r(E)+k-1 .
\end{array}\right.
$$

When $r\left(E_{1}\right)+r\left(E_{2}\right)=r(E)+k-1$, the separation is called strict. The matroid \mathscr{M} is said to be k-connected if it has no j-separation for $j \leqslant k-1$. Throughout the paper, 2-connected will be abbreviated as connected.

If \mathscr{M} has a strict k-separation $\left(E_{1}, E_{2}\right)$, then it admits a partial representation matrix of a special form. Indeed, let X_{2} be a maximal independent subset of E_{2} and let $X_{1} \subseteq E_{1}$ such that $X=X_{1} \cup X_{2}$ is a base of \mathscr{M}, so $\left|X_{1}\right|=r\left(E_{1}\right)-k+1$ and $\left|X_{2}\right|=r\left(E_{2}\right)$. Set $Y_{i}:=E_{i}-X_{i}$, for $i=1$, 2. The partial representation matrix B of \mathscr{U} in the base X has the form shown in Fig. 1. The rank of the matrix D is equal to $k-1$.

In the case of a strict 1 -separation, the matrix D is identically zero. Then, \mathscr{M} is the 1 -sum of \mathscr{M}_{1} and \mathscr{M}_{2}.

In the case of a strict 2 -separation, the matrix D has rank 1 and, thus, has the form shown in Fig. 2.
The set \tilde{Y}_{1} consists of the elements $y \in Y_{1}$ for which $X_{1}+y$ is an independent set of \mathscr{I}. So, if $y \in \tilde{Y}_{1}$, then the fundamental circuit of y in the base X is of the form $\widetilde{X}_{2} \cup A_{y} \cup\{y\}$ with $A_{y} \subseteq X_{1}$.

Given two elements $e_{1} \in \widetilde{X}_{2}$ and $e_{2} \in \widetilde{Y}_{1}$, we consider the matroids $\mathscr{M}_{1}=\mathscr{M} /\left(X_{2}-e_{1}\right) \backslash Y_{2}$ and $\mathscr{H}_{2}=\mathscr{M} / X_{1} \backslash\left(Y_{1}-e_{2}\right)$ defined, respectively, on $E_{1} \cup\left\{e_{1}\right\}$ and $E_{2} \cup\left\{e_{2}\right\}$. It follows from the next Proposition 2.1 that \mathscr{M} is the 2-sum of Π_{1} and \mathscr{U}_{2} (after renaming e_{1} as e_{0} in $\mathscr{\Lambda}_{1}$ and e_{2} as e_{0} in $\left.M_{2}\right)$. A set $C \subseteq E$ is said to be crossing if $C \cap E_{1} \neq \varnothing$ and $C \cap E_{2} \neq \varnothing$.

Proposition 2.1. (i) Let C be a circuit of \mathscr{M}. Then,

- either $C \subseteq E_{i}$ and C is a circuit of μ_{i}, for some $i \in\{1,2\}$,
- or C is crossing and $\left(C \cap E_{i}\right)+e_{i}$ is a circuit of \mathscr{M}_{i}, for $i=1$ and 2. Moreover, $\left(C \cap E_{1}\right) \cup \tilde{X}_{2}$ and $\left(C \cap E_{2}\right) \triangle \tilde{X}_{2}$ are circuits of \mathscr{M}.

Every circuit of \mathscr{H}_{i} arises in one of the two ways indicated above.
(ii) Let C, C^{\prime} be two crossing circuits of \mathscr{M}. Then, $\left(C \cap E_{i}\right) \triangle$ $\left(C^{\prime} \cap E_{j}\right)$ is a cycle of.$l l$ for any $i, j \in\{1,2\}$.

Proof. (ii) follows directly from (i) and (i) is easy to check after observing that, for a circuit C of \mathscr{M}, C is crossing if and only if $\left|C \cap \widetilde{Y}_{1}\right|$ is odd.

Figure 1

Figure 2

In the case of a strict 3 -separation, the matrix D has rank 2 . Moreover, if $\left|E_{1}\right|,\left|E_{2}\right| \geqslant 4$ and \mathscr{M} is 3 -connected, it can be shown that \mathscr{M} has a partial representation matrix B of the form shown in Fig. 3, with $D_{12}=D_{2} D_{1}$ (see [12]).

Proposition 2.2. Suppose \mathscr{M} has a strict 3-separation $\left(E_{1}, E_{2}\right)$ with $\left|E_{1}\right|,\left|E_{2}\right| \geqslant 4$ and consider the partial representation matrix of \mathscr{M} from Fig. 3. If $\{y, z, l\}$ is a circuit of the matroid $\mathscr{M} /\left(X_{1}-x\right) \backslash\left(Y_{1}-\{y, z\}\right)$, then the partition $\left(E_{1}, E_{2}-l\right)$ of $E-l$ is a strict 2 -separation of the matroid \mathscr{M} / l.

Proof. Let a, b denote the rows of D_{1} indexed, respectively, by e, f and let u, v denote the columns of D_{2} indexed, respectively, by y, z. So, a, b are vectors indexed by the elements $y^{\prime} \in Y_{1}-\{y, z\}$ and u, v are indexed by the

Figure 3
elements $x^{\prime} \in X_{2}-\{e, f\}$. Let w denote the vector whose components are the (x^{\prime}, l)-entries, for $x^{\prime} \in X_{2}-\{e, f\}$, of the first column of B_{2}. Since the set $\{y, z, l)$ is a circuit of the matroid $\mathscr{M} /\left(X_{1}-x\right) \backslash\left(Y_{1}-\{y, z\}\right)$, we deduce that $w=u \oplus v$.

The (e, l)-entry of B is equal to 1 , hence the set $X^{\prime}=X-e+l$ is again a base of \mathscr{M}. Let B^{\prime} denote the partial representation matrix of \mathscr{M} in the base X^{\prime}. So B^{\prime} can be obtained from B by pivoting with respect to its (e, l) entry. Pivoting will affect only the rows of B indexed by $X_{2}-e$. Let D^{\prime} denote the submatrix of B^{\prime} with row index set $X_{2}-e+l$ and with column index set Y_{1}. It is not difficult to check that the row of D^{\prime} indexed by f is the vector $(a \oplus b, 1,1)$ and that each other row of D^{\prime} indexed by some element of $X_{2}-\{e, f\}$ is one of the two vectors $(a \oplus b, 1,1)$ or $(0, \ldots, 0,0,0)$. Therefore, the submatrix of D^{\prime} with row index set $X_{2}-e$ has rank 1. This shows that the partition ($E_{1}, E_{2}-l$) of $E-l$ is a strict 2-separation of the matroid \mathscr{I} / l.

Fano Matroid

The Fano matroid F_{7} is the matroid on $\{1,2,3,4,5,6,7\}$ whose circuits are the seven sets $\{1,2,3\},\{1,4,7\},\{1,5,6\},\{2,4,6\},\{2,5,7\},\{3,4,5\}$ and $\{3,6,7\}$ (the lines of the Fano plane) together with their complements. The dual Fano matroid F_{7}^{*} is the dual of F_{7}, its circuits are $\{4,5,6,7\}$, $\{2,3,5,6\},\{2,3,4,7\},\{1,3,5,7\},\{1,3,4,6\},\{1,2,6,7\}$ and $\{1,2,4,5\}$ (the complements of the lines of the Fano plane).

By symmetry, there is only one port for F_{7}^{*}. The 7-port of F_{7}^{*} is the clutter Q_{6}, already defined earlier, consisting of the sets $\{4,5,6\},\{2,3,4\}$, $\{1,3,5\}$ and $\{1,2,6\}$.

Observe that every one-element contraction of F_{7} has a 2 -separation. For example, the sets $\{1,4\}$ and $\{2,3,5,6\}$ form a strict 2 -separation of $F_{7} / 7$.

We also consider the series-extension F_{7}^{+}of the Fano matroid F_{7}, obtained by adding a new element " 8 " in series with, say, the element " 7 " i.e., $\{7,8\}$ is a cocircuit of F_{7}^{+}. Hence, F_{7}^{+}is the matroid defined on $\{1,2,3,4,5,6,7,8\}$ whose circuits are the sets C for which C is a circuit of F_{7} with $7 \notin C$, and the sets $C \cup\{8\}$ for which C is a circuit of F_{7} with $7 \in C$. Up to symmetry, there are two distinct l-ports of F_{7}^{+}, depending whether l is one of the two series elements 7,8 , or not. We denote by Q_{7} the l-port of F_{7}^{+}when l is a series element of F_{7}^{+}. Then, for $l=8, Q_{7}$ consists of the sets $\{1,4,7\},\{2,5,7\},\{3,6,7\},\{1,2,6,7\},\{1,3,5,7\}$, $\{2,3,4,7\}$ and $\{4,5,6,7\}$, i.e., Q_{7} consists of the circuits of F_{7} containing the point 7 .

We use the following facts about regular matroids ([13], [15], [17]). A matroid is regular if it does not have any F_{7}, F_{7}^{*}, or U_{4}^{2} minor. Let.$/ I$ be a regular matroid and let $M=[I \mid B]$ be a binary matrix representing \mathscr{M} over $G F(2)$. Then the l's of B can be replaced by \pm l's so that the resulting
matrix \tilde{B} is totally unimodular, i.e., each square submatrix of \tilde{B} has determinant $0, \pm 1$. Moreover, $\tilde{M}=[I \mid \widetilde{B}]$ represents \mathscr{M} over \mathbb{R} and every binary vector x such that $M x \equiv 0(\bmod 2)$ corresponds to some $0, \pm 1$ vector y such that $\tilde{M} y=0$, where y is obtained from x by replacing its l's by \pm l's.

Decomposition Result

The following decomposition result was proved by Tseng and Truemper ([14], Theorem 4.3); see also ([12], Theorem 1.3) and ([13], Chap. 13) for a detailed exposition.

Theorem 2.3. Let \mathscr{M} be a matroid on the set $E \cup\{l\}$. Assume that Il does not have any minor F_{7}^{*} using the element l. Then, one of the following holds:
(i) II has a 1-separation.
(ii) \mathscr{M} is 2-connected and has a 2 -separation.
(iii) \mathscr{M} is a regular matroid.
(iv) \mathscr{M} is the Fano matroid F_{7}.
(v) \mathscr{M} is 3-connected and has a 3-separation $\left(E_{1}, E_{2} \cup\{l\}\right)$ such that $\left(E_{1}, E_{2}\right)$ is a strict 2 -separation of \mathscr{M} / l.
Remark 2.4. Theorem 2.3 differs from Theorem 1.3 of [12] in the statement (v). However, the above formulation of (v) follows from Theorems 1.3 and 2.1 from [12] (the latter theorem states that the triple $\{y, z, l\}$ forms a circuit of $\left.\mathscr{M} /\left(X_{1}-x\right) \backslash\left(Y_{1}-\{y, z\}\right)\right)$ and from the above Proposition 2.2.

We will use this decomposition result in the following form.
Theorem 2.5. Let \mathscr{M} be a binary matroid on the set $E \cup\{l\}$. Assume that.$/ I$ does not have any minor F_{7}^{*} using the element l and that \mathscr{I} does not have any minor F_{7}^{+}using the element l as a series element. Assume also that l is neither a loop nor a coloop of \mathscr{M}. Then, one of the following holds:
(a) Mll has a 1-separation.
(b) MIl has a strict 2 -separation.
(c) $\mathscr{I I}$ is regular.

Proof. We apply Theorem 2.3. The statement (iii) coincides with (c). Moreover, (b) applies in cases (iv) and (v). In case (i), if ($E_{1}, E_{2} \cup\{l\}$) is a 1 -separation of \mathscr{M}, then $\left(E_{1}, E_{2}\right)$ is a 1 -separation of \mathscr{M} / l since l is not a (co)loop of \mathscr{M}; hence, (a) applies. We suppose finally that we are in the
case (ii), i.e., $\left(E_{1}, E_{2} \cup\{l\}\right)$ is a strict 2-separation of \mathscr{M}. If $r_{. \mu}\left(E_{1}\right)=$ $r_{\mu / l}\left(E_{1}\right)+1$, then $\left(E_{1}, E_{2}\right)$ is a 1 -separation of \mathscr{M} / l and, thus, (a) applies. Otherwise, $r_{. / /}\left(E_{1}\right)=r_{. / / / l}\left(E_{1}\right)$, implying that $r_{. / / l}\left(E_{1}\right)+r_{. / / l}\left(E_{2}\right)=$ $r_{\text {./l/ }}(E)+1$. Hence, in order to show that (b) applies, we need only to check that $\left|E_{2}\right| \geqslant 2$. Suppose, for contradiction, that $\left|E_{2}\right|=1$, i.e., $E_{2}=\left\{l^{\prime}\right\}$. We deduce that $\left\{l, l^{\prime}\right\}$ is a cocircuit of \mathscr{M}. Therefore, \mathscr{M} can be seen as the series-extension of \mathscr{M} / l obtained by adding l in series with l^{\prime}. If \mathscr{M} / l is regular, then \mathscr{M} is regular too and, thus, (c) applies. Hence, we can suppose that \mathscr{M} / l is 2 -connected and not regular. It follows from [9] that \mathscr{M} / l has a minor F_{7} or F_{7}^{*} using l^{\prime}. It is easy to see that, if \mathscr{M} / l has a minor F_{7}^{*} using l^{\prime}, then \mathscr{M} has a minor F_{7}^{*} using l and, if \mathscr{M} / l has a minor F_{7} using l^{\prime}, then \mathscr{M} has a minor F_{7}^{+}using l as a series element. We obtain a contradiction in both cases.

Remark 2.6. One can check that under the conditions of Theorem 2.5 (i.e., \mathscr{M} is a binary matroid having no minor F_{7}^{*} using l, no minor F_{7}^{+} using l as a series element, and l is not a (co)loop of \mathscr{M}) \mathscr{M} / l is regular or .$/ l$ has a 1 -separation.

Signed Circuits

Let \mathscr{M} be a binary matroid on $E \cup\{l\}$ and let \mathscr{L} denote the l-port of \mathscr{M}. A convenient way to refer to the members of \mathscr{L} is in terms of odd circuits of \mathscr{M} / l with respect to some signing. Given a set $\Sigma \subseteq E+l$, a subset $A \subseteq E$ is called Σ-even (resp. Σ-odd) if $|A \cap \Sigma|$ is even (reps. odd). The following is easy to check.

Proposition 2.7. Let Σ be a cocircuit of \mathscr{M} such that $l \in \Sigma$ and let C be a subset of E. Then, $C \in \mathscr{L}$ if and only if C is a Σ-odd circuit of \mathscr{M} / l.

3. Q_{6}, Q_{7}, and Regular Case

In this section we show the following results:

- It is sufficient to work with fully fractional vertices, see Proposition 3.1.
- Box $\frac{1}{d}$-integrality is preserved under minors, see Proposition 3.2.
- Q_{6}, the port of F_{7}^{*}, is not box $\frac{1}{d}$-integral for any integer $d \geqslant 2$, see Proposition 3.3.
- Q_{7}, the port of the series-extension of F_{7} with respect to a series element, is not box $\frac{1}{d}$-integral for any integer $d \geqslant 2$, see Proposition 3.4.
- Any port of a regular matroid is box $\frac{1}{d}$-integral for each integer $d \geqslant 1$, see Theorem 3.5.

The following result is easy to check.
Proposition 3.1. Let $f \in E, I \subseteq E-f, a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$ and $x \in \mathbb{R}^{E-f}$. Then,
(i) x belongs to (resp. is a vertex of) $Q(\mathscr{L} \mid f, a)$ if and only if $(x, 0)$ belongs to (resp. is a vertex of) $Q(\mathscr{L},(a, 0))$.
(ii) x belongs to (resp. is a vertex of) $Q(\mathscr{L} \backslash f, a)$ if and only if $(x, 1)$ belongs to (resp. is a vertex of) $Q(\mathscr{L},(a, 1))$.

As an immediate consequence, we have that
Proposition 3.2. Every minor of a box $\frac{1}{d}$-integral clutter is box $\frac{1}{d}$-integral.

Proposition 3.3. The clutter Q_{6} is not box $\frac{1}{d}$-integral, for any integer $d \geqslant 2$.

Proof. Consider the vector $u \in \mathbb{R}^{6}$ defined by $u_{1}=1-\frac{1}{d}, u_{2}=u_{6}=\frac{1}{d}$, $u_{3}=u_{5}=\frac{1}{2 d}, u_{4}=1-\frac{3}{2 d}$. Set $a_{1}=1-\frac{1}{d}, a_{2}=a_{6}=\frac{1}{d}$. Then, u belongs to the polyhedron $Q\left(Q_{6}, a\right)$. In fact, it is a vertex of that polyhedron, since it satisfies the following six linearly independent equalities: $u_{1}+u_{3}+u_{5}=1$, $u_{2}+u_{3}+u_{4}=1, u_{4}+u_{5}+u_{6}=1, u_{1}=a_{1}, u_{2}=a_{2}$, and $u_{6}=a_{6}$.

Proposition 3.4. The clutter Q_{7} is not box $\frac{1}{d}$-integral, for any integer $d \geqslant 2$.

Proof. Consider the vector $u \in \mathbb{R}^{7}$ defined by $u_{1}=u_{3}=u_{5}=\frac{1}{2 d}, u_{2}=$ $u_{4}=u_{6}=\frac{1}{d}$, and $u_{7}=1-\frac{3}{2 d}$. Set $a_{2}=a_{4}=a_{6}=\frac{1}{d}$. Then, u belongs to the polyhedron $Q\left(Q_{7}, a\right)$. In fact, it is a vertex of that polyhedron, since it satisfies the following seven linearly independent equalities: $u_{1}+u_{4}+$ $u_{7}=1, \quad u_{2}+u_{5}+u_{7}=1, \quad u_{3}+u_{6}+u_{7}=1, \quad u_{1}+u_{3}+u_{5}+u_{7}=1, \quad u_{2}=a_{2}$, $u_{4}=a_{4}$, and $u_{6}=a_{6}$.

Theorem 3.5. Let \mathscr{M} be the port of a regular matroid. Then, \mathscr{M} is box $\frac{1}{d}$-integral for each integer $d \geqslant 1$.

Proof. Let \mathscr{M} be a regular matroid on $E \cup\{l\}$ and let \mathscr{L} be its l-port. If l is a loop then $\mathscr{L}=\{\varnothing\}$, so \mathscr{L} is box $\frac{1}{d}$-integral. We suppose now that l is not a loop. Since \mathscr{M} is regular, we can find a totally unimodular matrix M which represents \mathscr{M} over \mathbb{R} and is of the form shown in Fig. 4. We can suppose that the matrix A has full row rank.
Moreover, each set $C \in \mathscr{L}$ corresponds to a vector $y_{C} \in\{0,1,-1\}^{E}$ such that

$$
\left\{\begin{array}{l}
r^{T} y_{C}=1 \\
A y_{C}=0 .
\end{array}\right.
$$

Figure 4

Each such y_{C} can be written as $y_{C}=y_{C}^{1}-y_{C}^{2}$, where $y_{C}^{1}, y_{C}^{2} \in\{0,1\}^{E}$ and their supports $\left\{e \in E \mid\left(y_{C}^{1}\right)_{e}=1\right\}$, $\left\{e \in E \mid\left(y_{C}^{2}\right)_{e}=1\right\}$ partition the set C.

We define the polyhedron \mathscr{K} consisting of the vectors $\left(y_{1}, y_{2}\right) \in \mathbb{R}^{E} \times \mathbb{R}^{E}$ satisfying

$$
\left\{\begin{array}{l}
r^{T} y_{1}-r^{T} y_{2}=1 \\
A y_{1}-A y_{2}=0 \\
y_{1}, y_{2} \geqslant 0
\end{array}\right.
$$

Clearly, $\left(y_{C}^{1}, y_{C}^{2}\right) \in \mathscr{K}$ for each $C \in \mathscr{L}$. We state a preliminary result.
Claim 3.6. Let $u \in \mathbb{R}_{+}^{E}$. Then,
(i) $\min (u(C) \mid C \in \mathscr{L})=\min \left(u^{T} y_{1}+u^{T} y_{2} \mid\left(y_{1}, y_{2}\right) \in \mathscr{K}\right)$.
(ii) $u(C) \geqslant 1$ for all $C \in \mathscr{L}$ if and only if the system

$$
\left\{\begin{array}{l}
r^{T}+\pi^{T} A \leqslant u^{T} \\
-r^{T}-\pi^{T} A \leqslant u^{T}
\end{array}\right.
$$

(in the variable π) is feasible.
Proof. (i) The first minimum is greater or equal to the second one, since each $C \in \mathscr{L}$ corresponds to a pair $\left(y_{C}^{1}, y_{C}^{2}\right) \in \mathscr{K}$ such that $u(C)=u^{T} y_{C}^{1}+u^{T} y_{C}^{2}$. Let $\left(y_{1}, y_{2}\right)$ be a vertex of \mathscr{K} at which the second minimum is attained. Clearly, the supports of y_{1}, y_{2} are disjoint. Since the matrix M is totally unimodular, we deduce that $y_{1}, y_{2} \in\{0,1\}^{E}$. Set $C=\left\{e \in E \mid\left(y_{1}\right)_{e}=1\right.$ or $\left.\left(y_{2}\right)_{c}=1\right\}$. Then, $C \in \mathscr{L}$ and C corresponds to the vector $y_{C}=y_{1}-y_{2}$ with $u^{T} y_{1}+u^{T} y_{2}=u(C)$. This shows that the second minimum is greater or equal to the first one.
(ii) Observe that the system $\left\{\begin{array}{c}r^{T}+\pi^{T} A \leqslant u^{T} \\ -r^{T}-\pi^{T} A \leqslant u^{T}\end{array}\right.$ is feasible if and only if

$$
\max \left(\rho \mid \rho r^{T}+\pi^{T} A \leqslant u^{T},-\rho r^{T}-\pi^{T} A \leqslant u^{T}\right) \geqslant 1 .
$$

Moreover, by linear programming duality and Claim 3.6(i), we obtain:

$$
\begin{aligned}
\max & \left(\rho \mid \rho r^{T}+\pi^{T} A \leqslant u^{T},-\rho r^{T}-\pi^{T} A \leqslant u^{T}\right) \\
& =\min \left(u^{T} y_{1}+u^{T} y_{2} \mid\left(y_{1}, y_{2}\right) \in \mathscr{K}\right) \\
& =\min (u(C) \mid C \in \mathscr{L}) .
\end{aligned}
$$

Let I be a subset of E and let $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$. Let $\widetilde{Q}(\mathscr{L}, a)$ denote the polyhedron consisting of the vectors $(\pi, u) \in \mathbb{R}^{m} \times \mathbb{R}^{E}$ (m denoting the number of rows of the matrix A) satisfying

$$
\left\{\begin{array}{l}
\pi^{T} A-u^{T} \leqslant-r^{T}, \\
-\pi^{T} A-u^{T} \leqslant r^{T}, \\
u_{e}=a_{e} \quad \text { for } \quad e \in I .
\end{array}\right.
$$

Note that $\widetilde{Q}(\mathscr{L}, a)$ has vertices as the matrix A has full row rank. By Claim $3.6(\mathrm{ii}), Q(\mathscr{L}, a)$ is the projection of $\widetilde{Q}(\mathscr{L}, a)$ on the subspace \mathbb{R}^{E}.

Let u_{0} be a vertex of $Q(\mathscr{L}, a)$. By Proposition 3.1, we can suppose that all components of u_{0} are positive. Moreover, u_{0} is the projection of a vertex $\left(\pi_{0}, u_{0}\right)$ of $\widetilde{Q}(\mathscr{L}, a)$. Since $\widetilde{Q}(\mathscr{L}, a)$ is invariant under the multiplication of some columns of the matrix

$$
\left[\frac{r^{T}}{A}\right]
$$

by -1 , we may assume that $\pi_{0}^{T} A+r^{T} \geqslant 0$ and, thus, that $-\pi_{0}^{T} A-u_{0}^{T}<r^{T}$. Therefore, $\left(\pi_{0}, u_{0}\right)$ is a vertex of the polyhedron

$$
\left\{(\pi, u) \mid \pi^{T} A-u^{T} \leqslant-r^{T}, u_{e}=a_{e} \text { for } e \in I\right\} .
$$

As the matrix defining this polyhedron is totally unimodular, we deduce that (π_{0}, u_{0}) is $\frac{1}{d}$-integral. This shows that u_{0} is $\frac{1}{d}$-integral. (Note that the constraint matrix for $\widetilde{Q}(\mathscr{L}, a)$ is not totally unimodular.)

4. Proof of the Main Result

Let \mathscr{M} be a binary matroid on $E \cup\{l\}$ and let \mathscr{L} be the l-port of \mathscr{M}, i.e., $\mathscr{L}=\{C \subseteq E \mid C+l$ is a circuit of $\mathscr{M}\}$. Let $d \geqslant 1$ be an integer. We assume that \mathscr{L} does not have Q_{6} or Q_{7} as a minor. Hence, \mathscr{U} does not have F_{7}^{*} as a minor using l and \mathscr{M} does not have F_{7}^{+}as a minor using l as a series element.

Our goal is to show that \mathscr{L} is box $\frac{1}{d}$-integral. The proof is by induction on $|E| \geqslant 0$ and the main tool we use is Theorem 2.5 .
The result holds for $|E|=0$. Indeed, then l is either a loop, yielding $\mathscr{L}=\{\varnothing\}$, or a coloop, yielding $\mathscr{L}=\varnothing$. In both cases, \mathscr{L} is box $\frac{1}{d}$-integral.
We assume that the result holds for every groundset with less than $|E|$ elements, i.e., that every binary clutter without Q_{6} or Q_{7} minor on a set with less than $|E|$ elements is box $\frac{1}{d}$-integral.

We can suppose that l is neither a loop nor a coloop of \mathscr{M}. We know from Theorem 3.5 that \mathscr{L} is box $\frac{1}{d}$-integral if \mathscr{L} is regular. From Theorem 2.5 , we can assume that \mathscr{M} / l has a 1 -separation or a strict 2 -separation.

Proposition 4.1. If \mathscr{M} / l has a 1 -separation, then \mathscr{L} is box $\frac{1}{d}$-integral.
Proof. Let $\left(E_{1}, E_{2}\right)$ be a 1 -separation of \mathscr{I} / l. Let \mathscr{L}_{1} (resp. \mathscr{L}_{2}) denote the l-port of the matroid $\mathscr{M} \backslash E_{2}$ (resp. $\mathscr{U} \backslash E_{1}$). Clearly, $\mathscr{L}_{1} \cup \mathscr{L}_{2} \subseteq \mathscr{L}$; in fact, \mathscr{L}_{1} and \mathscr{L}_{2} partition \mathscr{L}. By the induction assumption, \mathscr{L}_{1} and \mathscr{L}_{2} are box $\frac{1}{d}$-integral.

Given $I \subseteq E$ and $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$, set $a_{i}=\left(a_{e}\right)_{e \in I \cap E_{i}}$, for $i=1$, 2. Then, $Q(\mathscr{L}, a)$ is the cartesian product of $Q\left(\mathscr{L}_{1}, a_{1}\right)$ and $Q\left(\mathscr{L}_{2}, a_{2}\right)$, which implies that all its vertices are $\frac{1}{d}$-integral.

From now on we assume that \mathscr{I} / l is 2 -connected and admits a 2 -separation $\left(E_{1}, E_{2}\right)$. Let I be a subset of E, let $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$, and let u be a vertex of $Q(\mathscr{L}, a)$. Our goal is to show that u is $\frac{1}{d}$-integral. From Proposition 3.1 and the induction hypothesis, we can suppose that $u_{e} \neq 0,1$, for all $e \in E$. Call an inequality tight for u if it is satisfied at equality by u.

The inequalities defining $Q(\mathscr{L}, a)$ are of three types:
Type I: $\quad x_{e}=a_{e}$ for $e \in I$.
Type II: $x(C) \geqslant 1$ for each noncrossing $C \in \mathscr{L}$ (i.e., $C \subseteq E_{i}$ for $i \in\{1,2\}$).

Type III: $\quad x(C) \geqslant 1$ for each crossing $C \in \mathscr{L}$.
The case when no inequality of type III is tight for u is easy:
Proposition 4.2. If $u(C)>1$ for each crossing $C \in \mathscr{L}$, then u is $\frac{1}{d}$-integral.

Proof. The proof is analogous to that of Proposition 4.1.
We now suppose that there exists some crossing $C \in \mathscr{L}$ with $u(C)=1$.

Definition 4.3. We call path every set of the form $C \cap E_{i}$ where $i \in\{1,2\}$ and $C \in \mathscr{L}$ is crossing.

Let Σ be a cocircuit of \mathscr{M} which contains l. Set

$$
\begin{aligned}
& u_{o}=\min (u(P) \mid P \text { is a path with }|P \cap \Sigma| \text { odd }), \\
& u_{e}=\min (u(P) \mid P \text { is a path with }|P \cap \Sigma| \text { even }) .
\end{aligned}
$$

Both u_{o}, u_{e} are well defined.
Proposition 4.4. We have that $u_{o}+u_{e}=1$. Moreover, for each tight crossing $C \in \mathscr{L}$ with, say, $C \cap E_{1} \Sigma$-odd and $C \cap E_{2} \Sigma$-even, $u\left(C \cap E_{1}\right)=u_{o}$ and $u\left(C \cap E_{2}\right)=u_{e}$.

Proof. Take $C \in \mathscr{L}$ crossing and tight. Then, $1=u(C)=u\left(C \cap E_{1}\right)+$ $u\left(C \cap E_{2}\right) \geqslant u_{o}+u_{e}$. Conversely, suppose that $u_{o}=u\left(C \cap E_{i}\right)$ and $u_{e}=u\left(C^{\prime} \cap E_{j}\right)$, where $C, C^{\prime} \in \mathscr{L}$ are crossing with $C \cap E_{i} \Sigma$-odd, $C^{\prime} \cap E_{j}$ Σ-even and $i, j \in\{1,2\}$. From Proposition 2.1(ii), $C^{\prime \prime}=\left(C \cap E_{i}\right) \Delta\left(C^{\prime} \cap E_{j}\right)$ is a cycle of \mathscr{M} / l. Hence, $C^{\prime \prime}=\bigcup_{h} C_{h}$, where C_{h} are pairwise disjoint circuits of \mathscr{M} / l. Since $C^{\prime \prime}$ is Σ-odd, at least one of the C_{h} 's is Σ-odd, i.e., belongs to \mathscr{L}. This implies that $u\left(C^{\prime \prime}\right)=\sum_{h} u\left(C_{h}\right) \geqslant 1$. Therefore, $u_{o}+u_{e} \geqslant 1$. Hence, we have the equality $u_{o}+u_{e}=1$. The last part of the proposition follows immediately.

Let \mathscr{B} be a base of equalities for u, i.e., \mathscr{B} is a maximal set of linearly independent inequalities chosen among the inequalities defining $Q(\mathscr{L}, a)$ that are satisfied at equality by u. Let \mathscr{B}_{i} denote the subset of \mathscr{B} consisting of the inequalities which are supported by E_{i}, for $i=1,2$. Hence, $\mathscr{B}_{1} \cup \mathscr{B}_{2}$ consists of inequalities of Type I or II and $\mathscr{B}-\mathscr{B}_{1} \cup \mathscr{B}_{2}$ of inequalities of Type III. We can partition $\mathscr{B}-\mathscr{B}_{1} \cup \mathscr{B}_{2}$ as $\mathscr{B}_{3} \cup \mathscr{B}_{4}$, where \mathscr{B}_{3} consists of inequalities $x(C) \geqslant 1$ for $C \in \mathscr{L}$ crossing with $C \cap E_{1} \Sigma$-odd, $C \cap E_{2} \Sigma$-even, and \mathscr{B}_{4} of such inequalities with $C \in \mathscr{L}$ crossing, $C \cap E_{1} \Sigma$-even and $C \cap E_{2}$ Σ-odd.

Proposition 4.5. There exists a base \mathscr{B} of equalities for u for which $\mathscr{B}_{3}=\varnothing$ or $\mathscr{B}_{4}=\varnothing$.

Proof. Let \mathscr{B} be a base of equalities for u for which $\left|\mathscr{B}_{1} \cup \mathscr{B}_{2}\right|$ is maximum. Suppose, for contradiction, that $\mathscr{B}_{3} \neq \varnothing$ and $\mathscr{B}_{4} \neq \varnothing$. Let $C, C^{\prime} \in \mathscr{L}$ be crossing and yielding equalities of \mathscr{B} with $C \cap E_{1}, C^{\prime} \cap E_{2} \Sigma$-even and $C \cap E_{2}, C^{\prime} \cap E_{1} \Sigma$-odd. By Proposition 2.1(ii), $D_{i}:=\left(C \cap E_{i}\right) \Delta\left(C^{\prime} \cap E_{i}\right)$ is a cycle of \mathscr{M} / l. Moreover, D_{i} is Σ-odd by construction. Hence, $D_{i}=\bigcup_{h} C_{h}$ where the C_{h} 's are pairwise disjoint circuits of \mathscr{M} / l and at least one of them is Σ-odd. Using Proposition 4.4, we obtain that $1=u_{e}+u_{o} \geqslant u\left(D_{i}\right) \geqslant 1$ which implies that $C \cap C^{\prime}=\varnothing$ and that D_{1} and D_{2} are (noncrossing) circuits of \mathscr{M} / l, each yielding a tight equality for u. The
base \mathscr{B} cannot contain both equations $x\left(D_{1}\right)=1$ and $x\left(D_{2}\right)=1$ since $C \cup C^{\prime}=D_{1} \cup D_{2}$. If \mathscr{B} contains $x\left(D_{1}\right)=1$ but not $x\left(D_{2}\right)=1$, then, by replacing the equation $x\left(C^{\prime}\right)=1$ by the equation $x\left(D_{2}\right)=1$, we obtain a new base \mathscr{B}^{\prime} (this follows from the fact that \mathscr{B} is a base and the relation $\left.x(C)+x\left(C^{\prime}\right)=x\left(D_{1}\right)+x\left(D_{2}\right)\right)$. As \mathscr{B}^{\prime} satisfies: $\left|\mathscr{B}_{1}^{\prime} \cup \mathscr{B}_{2}^{\prime}\right|>\left|\mathscr{B}_{1} \cup \mathscr{B}_{2}\right|$, we have a contradiction with the choice of \mathscr{B}. Therefore, \mathscr{B} contains none of the equations $x\left(D_{1}\right)=1, x\left(D_{2}\right)=1$. At least one of them can be added to \mathscr{B} after deleting the equation $x\left(C^{\prime}\right)=1$, still preserving linear independence. Again we obtain a contradiction with the maximality of $\left|\mathscr{B}_{1} \cup \mathscr{B}_{2}\right|$.

By symmetry, we can suppose that we have a base \mathscr{B} of equalities for u with $\mathscr{B}_{4}=\varnothing, \mathscr{B}_{3} \neq \varnothing$. (If both \mathscr{B}_{3} and \mathscr{B}_{4} are empty, we can conclude in the same way as in Proposition 4.2.) In matrix form, the system \mathscr{B} can be written as $P x=\beta$, where β is the vector consisting of the right hand sides of the inequalities and P is the nonsingular matrix shown in Fig. 5.

Hence, there exists a tight equality $u\left(C^{*}\right)=1$ where $C^{*} \in \mathscr{L}$ is crossing, $C^{*} \cap E_{1}$ is Σ-odd and $C^{*} \cap E_{2}$ is Σ-even. We can find two elements $e_{1} \in C^{*} \cap E_{2}, e_{2} \in C^{*} \cap E_{1}$ with $e_{1} \notin \Sigma$ and $e_{2} \in \Sigma$ (after eventually changing the cocircuit Σ). (Indeed, let $e_{2} \in C^{*} \cap E_{1}, e_{1} \in C^{*} \cap E_{2}$ and let X be a base of \mathscr{M} containing $\left(C^{*}-e_{2}\right) \cup\{l\}$. Let Σ^{\prime} denote the fundamental cocircuit of l in the base X; then, $e_{2} \in \Sigma^{\prime}$ since $C^{*}+l$ is the fundamental circuit of e_{2} in the base X, and $e_{1} \notin \Sigma^{\prime}$ since $e_{1} \in X$. Hence, it suffices to replace Σ by Σ^{\prime}).

Set $\mathscr{M}_{1}=\mathscr{M} /\left(\left(C^{*} \cap E_{2}\right)-e_{1}\right) \backslash\left(E_{2}-C^{*}\right)$ and $\mathscr{M}_{2}=\mathscr{M} /\left(\left(C^{*} \cap E_{1}\right)-e_{2}\right) \backslash$ $\left(E_{1}-C^{*}\right)$, defined, respectively, on the sets $E_{1} \cup\left\{e_{1}, l\right\}$ and $E_{2} \cup\left\{e_{2}, l\right\}$. (Note that \mathscr{M}_{1} coincides with $\mathscr{M} /\left(X_{2}-e_{1}\right) \backslash Y_{2}$ and \mathscr{M}_{2} coincides with $\mathscr{M} / X_{1} \backslash\left(Y_{1}-e_{2}\right)$, where $X_{i}=X \cap E_{i}, Y_{i}=E_{i}-X_{i}$ for $i=1$, 2. Also, \mathscr{M} / l is the 2 -sum of \mathscr{M}_{1} / l and \mathscr{M}_{2} / l. Recall Section 2.)

Let \mathscr{L}_{i} denote the l-port of \mathscr{M}_{i}. By the induction assumption, \mathscr{L}_{i} is box $\frac{1}{d}$-integral, for $i=1,2$.

Figure 5

Let u_{i} denote the projection of u on $\mathbb{R}^{E_{i}}$ and set $a_{i}=\left(a_{e}\right)_{e \in I \cap E_{i}}$, for $i=1,2$. We define $u_{i}^{*} \in \mathbb{R}^{E_{i}+e_{i}}$ by

$$
\left\{\begin{array}{l}
u_{i}^{*}(e)=u_{i}(e) \quad \text { for } \quad e \in E_{i}, \quad i=1,2, \\
u_{1}^{*}\left(e_{1}\right)=u_{e}, \\
u_{2}^{*}\left(e_{2}\right)=u_{o} .
\end{array}\right.
$$

Proposition 4.6. $u_{i}^{*} \in Q\left(\mathscr{L}_{i}, a_{i}\right)$, for $i=1,2$.
Proof. We give the proof for $i=1$, the case $i=2$ is identical. Take $C \in \mathscr{L}_{1}$. By Proposition 2.1(i), either $C \in \mathscr{L}$ and, thus, $u_{1}^{*}(C)=u(C) \geqslant 1$, or $C=C^{\prime} \cap E_{1}+e_{1}$ for some crossing circuit C^{\prime} of \mathscr{M} / l. Then, $C^{\prime} \cap E_{1}$ is Σ-odd, since C is Σ-odd and $e_{1} \notin \Sigma$. By Proposition 2.1(ii), $\left(C^{\prime} \cap E_{1}\right) \triangle\left(C^{*} \cap E_{2}\right)$ is a cycle of \mathscr{M} / l and it is Σ-odd since $C^{*} \cap E_{2}$ is Σ-even. Hence, $u\left(C^{\prime} \cap E_{1}\right)+u\left(C^{*} \cap E_{2}\right) \geqslant 1$ which, together with $u\left(C^{*} \cap E_{2}\right)=u_{e}$, implies that $u\left(C^{\prime} \cap E_{1}\right) \geqslant 1-u_{e}=u_{o}$. Therefore, $u_{1}^{*}(C)=$ $u\left(C^{\prime} \cap E_{i}\right)+u_{e} \geqslant u_{o}+u_{e}=1$.

We construct the set $\mathscr{B}^{(i)}$ of equalities for u_{i}^{*} consisting of

- the equalities of \mathscr{B}_{i},
- the equalities $x\left(\left(C \cap E_{i}\right)+e_{i}\right)=1$, one for each equality $x(C)=1$ of \mathscr{B}_{3}.

All equalities of $\mathscr{B}^{(i)}$ arise from those defining $Q\left(\mathscr{L}_{i}, a_{i}\right)$. Indeed, by Proposition 2.1, if $C \in \mathscr{L}$ with $C \subseteq E_{i}$, then $C \in \mathscr{L}_{i}$ and, if $C \in \mathscr{L}$ is crossing, then $\left(C \cap E_{i}\right)+e_{i} \in \mathscr{L}_{i}$, for $i=1,2$.

Proposition 4.7. The set $\mathscr{B}^{(i)}$ has rank $\left|E_{i}\right|+1$ for at least one index $i \in\{1,2\}$.

Proof. We show that one of the two matrices in Figs. 6 and 7 has full rank $\left|E_{i}\right|+1$.

As the matrix P of Fig. 5 has full rank $\left|E_{1}\right|+\left|E_{2}\right|$, it follows easily that the matrix displayed in Fig. 9 has full rank $\left|E_{1}\right|+\left|E_{2}\right|+2$. This implies that

Figure 6

Figure 7

M_{1}	0	0	0
MO	1	0	0
0	0	0	M_{2}
0	0	1	ME
0	1	1	0

Figure 8

M_{1}	0	0	0
0	0	0	M_{2}
$M O$	0	0	$M E$
$-M O$	0	1	0
0	1	0	$-M E$

Figure 9
the matrix shown in Fig. 8 has also full rank $\left|E_{1}\right|+\left|E_{2}\right|+2$, as it can be obtained by row and column operations from the matrix in Fig. 9.
By symmetry, we can suppose that $\mathscr{B}^{(1)}$ has full rank. This implies that u_{1}^{*} is a vertex of $Q\left(\mathscr{L}_{1}, a_{1}\right)$ and, thus, u_{1}^{*} is $\frac{1}{d}$-integral, since \mathscr{L}_{1} is box $\frac{1}{d}$-integral. In particular, u_{e} is $\frac{1}{d}$-integral, implying that $u_{o}=1-u_{e}$ is $\frac{1}{d}$-integral. If we introduce the constraint $x\left(e_{2}\right)=u_{0}$, then u_{2}^{*} becomes a vertex of the polytope $Q\left(\mathscr{L}_{2}, a_{2}\right) \cap\left\{x \mid x\left(e_{2}\right)=u_{o}\right\}$ and, thus, u_{2}^{*} is $\frac{1}{d}$-integral.

This shows that u is $\frac{1}{d}$-integral and concludes the proof.

5. Applications for Graphs

A signed graph is a pair (G, Σ), where $G=(V, E)$ is a graph and Σ is a subset of the edge set E of G. The edges in Σ are called odd and the other edges even. An odd circuit C in (G, Σ) is a circuit C of G such that $|C \cap \Sigma|$ is odd. If $\delta(U)$ is a cut in G, then the two signed graphs (G, Σ) and ($G, \Sigma \Delta \delta(U)$) have the same collection of odd circuits. The operation $\Sigma \rightarrow \Sigma \Delta \delta(U)$ is called resigning (by the cut $\delta(U)$). We say that (G, Σ) reduces to ($G^{\prime}, \Sigma^{\prime}$) if ($G^{\prime}, \Sigma^{\prime}$) can be obtained from (G, Σ) by a sequence of the following operations:

- deleting an edge of G (and Σ),
- contradicting an even edge of G,
- resigning.

The collection of odd circuits of a signed graph is a binary clutter. Indeed, given a signed graph (G, Σ), let $\mathscr{S}(G, \Sigma)$ denote the binary matroid on $\{l\} \cup E$ represented over $G F(2)$ by the matrix

$$
\left[\begin{array}{c|c}
1 & \sigma \\
\hline 0 & M_{G}
\end{array}\right]
$$

where M_{G} is the node-edge incidence matrix of G and σ is the incidence vector of the set Σ. Clearly, the l-port of $\mathscr{S}(G, \Sigma)$ coincides with the family of odd circuits of (G, Σ). In particular, the collection of odd circuits of the signed graph ($K_{4}, E\left(K_{4}\right)$), i.e., K_{4} with all edges odd, is the clutter Q_{6}, i.e. $\mathscr{S}\left(K_{4}, E\left(K_{4}\right)\right)$ is F_{7}^{*}. One can check that (G, Σ) does not reduce to $\left(K_{4}, E\left(K_{4}\right)\right)$ if and only if $\mathscr{P}(G, \Sigma)$ does not have an F_{7}^{*} minor using the element l. Moreover, $\mathscr{S}(G, \Sigma)$ does not have any minor F_{7}^{+}using l as a series element, otherwise F_{7} would be a minor of the graphic matroid $\mathscr{M}(G)=\mathscr{S}(G, \Sigma) / l$. (See [5] for details.)

The following result is an immediate application of Theorem 1.2.

Theorem 5.1. Let (G, Σ) be a signed graph and let \mathscr{L} denote its collection of odd circuits. The following assertions are equivalent.
(i) (G, Σ) does not reduce to $\left(K_{4}, E\left(K_{4}\right)\right)$.
(ii) \mathscr{L} is box $\frac{1}{d}$-integral for any integer $d \geqslant 1$.
(iii) \mathscr{L} is box $\frac{1}{d}$-integral for some integer $d \geqslant 2$.

Given a graph $G=(V, E)$, we consider the polytope

$$
\begin{aligned}
R(G)= & \left\{x \in \mathbb{R}^{E}|x(F)-x(C-F) \leqslant|F|-1(C \text { circuit of } G, F \subseteq C,|F| \text { odd }),\right. \\
& \left.0 \leqslant x_{e} \leqslant 1(e \in E)\right\} .
\end{aligned}
$$

The polytope $R(G)$ is a relaxation of the cut polytope $P(G)$ (defined as the convex hull of the incidence vectors of the cuts of G). In general, $R(G)$ has fractional vertices. In fact, the 0,1 -vertices of $R(G)$ are the incidence vectors of the cuts of G, and $R(G)$ has only integral vertices, i.e. $R(G)=P(G)$, if and only if G does not have K_{5} as a minor [2]. The fractional vertices of $R(G)$ have been studied in [6], [7].

The case $d=3$ of the following Theorem 5.2. was proved in [7]. We will show how Theorem 5.2. follows from Theorem 5.1.

Theorem 5.2. Let $G=(V, E)$ be a graph. The following assertions are equivalent.
(i) G is series parallel, i.e., G does not have K_{4} as a minor.
(ii) For each $I \subseteq E$ and $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$, all the vertices of the polytope $R(G) \cap\left\{x \mid x_{e}=a_{e}\right.$ for $\left.e \in I\right\}$ are $\frac{1}{d}$-integral, for any integer $d \geqslant 1$.
(iii) For each $I \subseteq E$ and $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$, all the vertices of the polytope $R(G) \cap\left\{x \mid x_{e}=a_{e}\right.$ for $\left.e \in I\right\}$ are $\frac{1}{d}$-integral, for some integer $d \geqslant 2$.

Proof. Let $G^{\prime}=\left(V, E \cup E^{\prime}\right)$ denote the graph obtained from G by adding an edge e^{\prime} in parallel with each edge e of G. We consider the signed graph (G^{\prime}, E^{\prime}), so the edges of E are even and those of E^{\prime} are odd. It is easy to see that G is series parallel if and only if (G^{\prime}, E^{\prime}) does not reduce to $\left(K_{4}, E\left(K_{4}\right)\right.$). Let \mathscr{L}^{\prime} denote the collection of odd circuits of (G^{\prime}, E^{\prime}). From Theorem 5.1, \mathscr{L}^{\prime} is box $\frac{1}{d}$-integral if G is series parallel. For $x \in \mathbb{R}^{E}$, define $x^{\prime} \in \mathbb{R}^{E^{\prime}}$ by $x_{e^{\prime}}^{\prime}=1-x_{e}$ for $e \in E$ and, for $a \in\left(\frac{1}{d} \mathbb{Z}\right)^{I}$ with $I \subseteq E$, set $a_{e^{\prime}}^{\prime}=1-a_{e}$ for $e \in I$.

Observe that $R(G) \cap\left\{x \mid x_{e}=a_{e}\right.$ for $\left.e \in I\right\}=\left\{x \mid\left(x, x^{\prime}\right) \in Q\left(\mathscr{L}^{\prime},\left(a, a^{\prime}\right)\right)\right\}$. As $\left\{e, e^{\prime}\right\} \in \mathscr{L}^{\prime}$ for each $e \in E, Q\left(\mathscr{L}^{\prime},\left(a, a^{\prime}\right)\right) \cap\left\{(x, y) \in \mathbb{R}^{E} \times \mathbb{R}^{E^{\prime}} \mid y_{c^{\prime}}=1-x_{c}\right.$ for $e \in E\}$ is a face of $Q\left(\mathscr{L}^{\prime},\left(a, a^{\prime}\right)\right)$. Therefore, $R(G) \cap\left\{x \mid x_{e}=a_{e}\right.$ for $e \in I\}$ is the projection of a face of $Q\left(\mathscr{L}^{\prime},\left(a, a^{\prime}\right)\right)$. Hence, all its vertices are $\frac{1}{d}$-integral if G is series parallel. This proves (i) \Rightarrow (ii).

It is easy to check that (iii) is closed under graph minors. Moreover, K_{4} does not have the property (iii). Indeed, consider K_{4} with its edges labeled $1,2,3,4,5,6$ in such a way that the triangles of K_{4} are $\{1,2,6\},\{1,3,5\}$, $\{2,3,4\},\{4,5,6\}$ (i.e., the members of Q_{6}). Set $x_{2}=x_{4}=x_{6}=\frac{1}{d}$ and $x_{1}=x_{3}=x_{5}=\frac{1}{2 d}$. Then, x is a non $\frac{1}{d}$-integral vertex of the polytope $R\left(K_{4}\right) \cap\left\{x \left\lvert\, x_{i}=\frac{1}{d}\right.\right.$ for $\left.i=2,4,6\right\}$. This shows (iii) \Rightarrow (i).
More generally, given a binary matroid \mathscr{I} on a set E, consider the polytope $R(\mathscr{M})$ in \mathbb{R}^{E} defined by the inequalities $0 \leqslant x_{e} \leqslant 1$ for $e \in E$, and $x(F)-x(C-F) \leqslant|F|-1$ for $F \subseteq C$ with $|F|$ odd and C circuit of \mathscr{M}. Hence, $R(\mathscr{M})$ coincides with $R(G)$ when \mathscr{M} is the graphic matroid $\mathscr{M}(G)$ of G. The 0,1 -vertices of $R(\mathscr{M})$ are the incidence vectors of the cocycles of \mathscr{M}. The matroids \mathscr{M} for which all vertices of $R(, \mathscr{I})$ are integral have been characterized in [1] using a result of [11]. A natural question to ask is what are the matroids \mathscr{M} for which $R(\mathscr{M})$ is box $\frac{1}{d}$-integral. Actually, this class is not larger than in the graphic case. To see this, observe that $F_{7}^{*} / l=$ $\mathscr{M}\left(K_{4}\right)$ and that $F_{7}^{+} / l=F_{7}$ has an $\mathscr{M}\left(K_{4}\right)$ minor. On the other hand, a binary matroid \mathscr{M} has no $\mathscr{M}\left(K_{4}\right)$ minor if and only if \mathscr{M} is the graphic matroid of a series parallel graph. The latter follows easily from Tutte's forbidden minor characterization of graphic matroids ([16]).

References

1. F. Barahona and M. Grötschel, On the cycle polytope of a binary matroid, J. Combin. Theory B 40 (1986), 40-62.
2. F. Barahona and A. R. Mahfoub, On the cut polytope, Math. Programming 36 (1986), 157-173.
3. R. E. Bixby, l-matrices and a characterization of binary matroids, Discrete Math. 8 (1974), 139-145.
4. G. Cornuejols and B. Novick, Ideal 0, 1 matrices, J. Combin. Theory B 60 (1994), 145-157.
5. A. M. H. Gerards, Graphs and polyhedra, binary spaces and cutting planes, Vol. 73 of CWI Tract, CWI, Amsterdam, 1989.
6. M. Laurent, Graphic vertices of the metric polytope, Discrete Math. 145 (1995).
7. M. Laurent and S. Poljak, One-third-integrality in the max-cut problem, Math. Programming, to appear.
8. P. Noblli and A. Sassano, The anti-join composition and polyhedra, Discrete Math. 119 (1993), 141-166.
9. P. D. Seymour, A note on the production of matroid minors, J. Combin. Theory B 22 (1977), 289-295.
10. P. D. Seymour, The matroids with the max-flow min-cut property, J. Combin. Theory B 23 (1977), 189-222.
11. P. D. Seymour, Matroids and multicommodity flows, European J. Combin. 2 (1981), 257-290.
12. K. Truemper, Max-flow min-cut matroids: polynomial testing and polynomial algorithms for maximum flow and shortest routes, Math. Oper. Res. 12(1) (1987), 72-96.
13. K. Trueper, Matroids decomposition, Academic Press, 1992.
14. F. T. Tseng and K. Truemper, A decomposition of the matroids with the max-flow mincut property, Discrete Appl. Math. 15 (1986), 329-364.
15. W. T. Tutte, A homotopy theorem for matroids I, II, Trans. Amer. Math. Soc. 88 (1958), 144-160 and 161-174.
16. W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552.
17. D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.
