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Chapter 1

Introduction

In many sectors of today’s society there is an increasing demand for resources
that are scarce in, for instance, an economical sense. Such scarcity of resources
often gives rise to congestion phenomena. The study of congestion and the
optimization of resource performance form the realm of queueing theory and
performance analysis. A prominent example is the tremendous growth of the
Internet where huge capacity improvements are required to keep up with the
rapidly growing demand.

In the study of queueing systems, the service rate is generally assumed to
be constant. There are however various application areas where this assump-
tion may not be valid, e.g., water dams, communication networks and produc-
tion systems. In addition to the service rate, the arrival rate of new demands
may also be affected by the level of congestion. Queueing models with such
congestion-dependent rates form the main subject of this monograph.

The organization of this introductory chapter is as follows: In Section 1.1,
we describe the classical single-server queue. Various examples of queues with
congestion-dependent rates are highlighted in Section 1.2. We discuss three
examples providing the main motivation for this thesis in more detail in Sec-
tions 1.3-1.5; production systems are considered in Section 1.3, we address the
mathematical study of water dams in Section 1.4, and applications to communi-
cation networks can be found in Section 1.5. Moreover, a considerable amount of
literature on queueing models with congestion-dependent rates, including dams,
fluid queues, and fluid networks, is presented in Section 1.3. In Section 1.6, we
give a flavor of the techniques used in this monograph by applying them to
the single-server M/G/1 queue. In addition, we rederive several known results
which may serve as reference framework for results obtained later in this thesis.
We conclude with an outline of the thesis in Section 1.7.

1.1 Classical queueing models

The discipline of queueing (or congestion) theory originates from the study of
teletraffic issues in the beginning of the 20th century. At that time, A.K. Er-
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lang initiated a systematic study of the dimensioning of telephone switches using
principles of queues and waiting lines. Ever since, communication engineering
and queueing theory have heavily influenced each others development. Moti-
vated by the development of computer systems, the area of queueing networks
flourished during the 1960’s and 1970’s, see for instance the famous papers of
Baskett et al. [18] and Kelly [103]. In telecommunications, the huge expan-
sion of the Internet and the introduction of the Transmission Control Protocol
(TCP) to regulate the transmission of traffic flows gave rise to a broad range of
new queueing models.

Besides the applications in computer and telecommunication systems, the
theory of queues may also be applied in many other situations, like in production
systems and road traffic. For the evolution of queueing theory until the 1980’s,
we refer to [57]. An extensive introduction on queueing theory may be found
in, e.g., Asmussen [10], Cohen [56], Kleinrock [107], and Tijms [163].

In general, congestion occurs when there is a demand for a scarce resource.
The demands are typically generated by customers arriving at the service sta-
tion, where the capacity of the server represents the limited resource. A classical
and intuitively appealing example is the waiting line at the post office or su-
permarket, where customers arrive and (possibly) wait in line until they receive
their service. Other examples are jobs in a production system, or data packets
in communication networks (in which case the server represents the communi-
cation link). Usually, a system is designed such that all arriving customers can
eventually be served. Congestion typically arises due to “temporary overload”
caused by the randomness in the arrival process and in the service requests of
customers.

1.1.1 The single-server queue

The classical and most elementary queueing model is the single-server queue
where the server works at constant speed. In such a model, customers arrive at
the service station according to a stochastic process: A renewal process. This
means that customers arrive one at a time and the times between two consecu-
tive arrivals, referred to as interarrival times, are i.i.d. (independent identically
distributed). The service requirements (or requested service times if customers
are served at unit speed) also form a sequence of i.i.d. random variables, which
are also independent of the sequence of interarrival times. Customers that have
received their full service request leave the system.

The above model is often denoted as the G/G/1 queue, sometimes followed
by the service discipline (default is FCFS, see below). This notational conven-
tion is due to Kendall [104]. The first G reflects that the interarrival times are
generally distributed, while the second G refers to the general distribution of
the service requirements. The notation GI is sometimes used if the indepen-
dence assumption needs to be stressed. Commonly used distributions are the
exponential (denoted with M, the acronym for memoryless) and deterministic
(denoted with D). The 1 in Kendall’s notation indicates that there is a single
server.
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There are many variations of this basic queueing model. One main stream of
variations includes queues with finite capacity, or restricted accessibility. The
finite capacity may be due to the fact that there is only a finite number N
of waiting places (the G/G/1/N + 1 queue in Kendall’s notation, where the
latter 1 stems from the position at the server). When all places are occupied
arriving customers are blocked and typically assumed to be lost. The workload-
equivalent of this system is the finite dam: The total amount of work is bounded
by a finite number K and excess work is lost. The finite capacity may also be
interpreted as a bounded waiting time. Customers that are waiting too long
may get impatient and decide to leave. This phenomenon is usually called
customer impatience or reneging. For details and other systems with restricted
accessibility, we refer to Chapter 3.

To describe the number of customers in the queue and the waiting times, we
also need to specify the service discipline. At a post office, the First-Come First-
Served (FCFS) discipline where customers are served in the order of arrival, is
the most natural one. However, in other systems different service disciplines
may be more appropriate, such as Last-Come First-Served (with or without pre-
emption) and the Processor Sharing (PS) discipline. PS is an idealized version of
round-robin; the service capacity is equally divided among all customers present,
who all simultaneously receive service.

1.1.2 Performance measures

The performance of queueing systems may be expressed in terms of one or more
performance measures. The performance measures of interest strongly depend
on system-specific objectives and model-specific assumptions. The most com-
monly used are queue lengths, waiting times, sojourn times, and workloads. The
waiting time is the time spent by customers in the queue, while the sojourn
time represents the total time in the system (including the service time). Other
possible performance measures are the duration of a busy period or the max-
imum workload during such a period. In case of finite buffers, the fraction of
customers lost or lost amount of work are further natural performance measures.

The main performance measure considered in this thesis is the workload or
virtual waiting time, which is defined as the sum of the remaining service re-
quirements or the unfinished amount of work present. The term virtual waiting
time stems from the observation that the workload at time t equals the wait-
ing time under the FCFS discipline of a fictitious customer arriving at time t
assuming that the server works at unit speed. A useful property is that the
workload process is independent of the service discipline provided that the dis-
cipline is work-conserving. The service discipline is work-conserving when the
total service capacity is used as long as there is any work present and work is
neither created nor destroyed during the service process.

A typical sample path of the workload process in the ordinary single-server
queue is depicted in Figure 1.1. The jumps correspond to customer arrivals,
where the size of the jump represents the service requirement. The relation
between the waiting time in the FCFS single-server queue and the workload is
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Figure 1.1: A typical sample path of the workload process {Vt, t ≥ 0} in the single-
server queue.

now immediate: The customer arriving at time t0 is taken into service at time
t1 and leaves the system at time t2. Since the server works at unit speed, it
holds that W = t1−t0 and W +B = t2−t0. Hence, the waiting time just equals
the workload embedded at epochs just before arrival instants and the sojourn
time is given by the workload right after arrival epochs.

1.2 Queues with workload-dependent rates

In the queueing model of Section 1.1 the server is usually assumed to work at
constant speed as long as there is any work present. However, this assumption
may not always be appropriate as the state of the system may affect the server
productivity in some practical situations. Below, we give several examples where
such behavior may occur. We specifically focus on queueing situations where
the service speed depends on the workload.

In addition, the arrival rate of new customers may also be influenced by the
amount of work present. In traditional queueing theory, finite buffers partly
capture this issue. However, in queueing systems with finite buffers, the arrival
rate immediately reduces to zero when the workload exceeds a certain threshold,
which does not allow for a smoother change of arrival rates. This limitation is es-
pecially pertinent in the field of communication systems where the transmission
rate is gradually adapted based on the buffer content.

Below, we sketch some practical scenarios leading to models with state-
dependent arrival or service rates. Examples 1.2.1-1.2.3 constitute the main
motivation for this thesis and are addressed in more detail in Sections 1.3-1.5,
respectively.

Example 1.2.1 In systems where the server represents a human being, the
perception of the workload may directly influence the human’s productivity. For
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instance, in the post office example, it is plausible that the server gets lazy when
there is hardly any work, but gets stressed when the office is crowded. A more
detailed discussion of this effect is given in Section 1.3, where we particularly
focus on production systems in which the shop floor personnel is being affected
by the level of work-in-process.

Example 1.2.2 Dams form a historically important area of systems with state-
dependent rates. In dams, inflowing water, caused by large rainfalls, is tem-
porarily stored and released according to a content-dependent release rule. Since
the 1950’s a rich body of literature has emerged on the mathematical analysis
of dams and storage systems, see Section 1.4 for an overview. In that respect,
this monograph builds on the mathematical foundation of dam studies.

Example 1.2.3 Due to the immense growth of the Internet, a considerable
amount of queueing literature has focused on congestion control mechanisms to
regulate transmission rates in packet-switched communication networks. These
studies are very diverse, focusing on different applications and various time
scales. An important characteristic of best-effort applications in packet-switched
systems is that the transmission rates are dynamically adapted based on implicit
information about the buffer content. A particular example is TCP which is
the dominant protocol used to regulate the transmission rate of Internet flows.
We refer to Section 1.5 for a more elaborate discussion.

Example 1.2.4 The study of road traffic has also been very much inspired by
queueing theory. Queueing at traffic lights is probably the most famous example,
but also the study of traffic flows on the highway has received some attention.
On the highway, each driver has its own preferred speed when the driver would
be alone, which may be characterized by the free-speed distribution. However,
the driving speed may be influenced by interactions with other cars. Let a flow
(“server”) be measured as the passed numbers of cars per hour and the concen-
tration (“workload”) as the number of cars per mile (or kilometer). Typically, a
flow will first increase as the concentration of cars increases up to some optimal
level. After this optimum, traffic jams arise and the flow will gradually (but
usually quite fast) slow down. For details, we refer to [171].

Example 1.2.5 A phenomenon often arising in physics is a shot noise process.
A typical example is the analysis of the shot effect in vacuum tubes, see for
instance [144] and [76], p. 178. Suppose that shocks occur according to a Poisson
process. The value of the ith shock is being represented by a random variable
Xi. The values of the shocks are assumed to be additive and to decrease with
an exponential rate α over time. Then, the total shock value at time t is given
by, see [149, Subsection 8.7],

X(t) =

N(t)
∑

i=1

Xie
−α(t−Ti),

where N(t) is the number of shocks during [0, t] and Ti is the time of occurrence
of the ith shock. In fact, the shock-value process is identical to the workload
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process in a queue with service speed αx when the workload equals x. See for
instance [76, 95, 144, 149] for further details of shot noise models.

In Subsection 1.1.2, we observed that the workload just before an arrival
epoch constitutes the waiting time in the corresponding FCFS queue. As illus-
trated in Figure 1.1, the argument crucially relies on the independence between
workload and service speed. In queues with workload-dependent service rates,
the waiting time also depends on customers arriving at later instants as they
influence the current service speed. Hence, the nice relation between waiting
times and workloads in ordinary single-server queues is lost.

Remark 1.2.1 Above we have focused on queueing situations in which the
arrival and service rate depend on the workload. Another important class of
queueing models with state-dependent rates is the class of general birth-and-
death processes. In a birth-and-death process the state-space is assumed to
be discrete (or denumerable), typically consisting of the set of non-negative
integers. In addition, the only transitions possible are the transitions to neigh-
bouring states. In queueing theory, birth-and-death processes are frequently
used to model the number of customers in various M/M/1-type models. Then,
the arrival (birth) rate is λn and the service (death) rate is µn when the number
of customers in the system equals n. Theory on birth-and-death processes can
be found in many textbooks on applied probability, see for instance [10, 56, 107].
�

Remark 1.2.2 A different class of models with workload-dependent rates is
formed by diffusion processes on [0,∞) with drift parameter µ(x) and variance
parameter σ2(x) when the state equals x. Such diffusions are studied in the
literature on risk processes; see e.g. [9], p. 205 and 303, for expressions of ruin
probabilities. However, due to the equivalence between ruin probabilities and
workload distributions, this also yields the steady-state workload distribution
in a queue driven by a diffusion with infinitesimal drift and variance parameters
−µ(x) and σ2(x), respectively. We refer to [9] and [92], p. 191–195, for details.
Note that the case of constant parameters just reduces to a reflected Brownian
motion. �

1.3 Production systems

In classical queueing systems, the server is assumed to work at a constant speed
whenever there is any work in the system. As we briefly discussed in Exam-
ple 1.2.1, this supposition may not be valid when the server is a human being.
The perception of the unfinished amount of work has a strong impact on the
information processing functions of the human brain and hence on the human-
server performance.

In [172, Chapter 12], the authors describe the psychological effects of arousal
on human performance. Arousal is caused by stressors, such as sleep loss, anxi-
ety, or incentives, but may also involve phenomena as time pressure. On the one
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hand, an increased level of arousal is typically associated with the psychological
effect of “trying harder” (see [172]) or “increase the efforts”. On the other hand,
stress effects also have major drawbacks in the area of information processing.
One of the most important aspects is attentional narrowing, or tunneling ; under
high stress a human provides all attention to tasks of (its subjective) highest
priority. This may have some undesirable side-effects, especially when the task
is complex and involves many channels of information. A second consequence
of stress is the loss in working-memory, which directly affects the human per-
formance.

The pattern of arousal and its impact on human performance is characterized
in psychology by the Yerkes Dodson law, see Figure 1.2. The figure suggests that
at low levels of stress an increased level of arousal mediates productivity, while
at high levels problems arise with attentional narrowing and working-memory
loss.

PSfrag replacements

Low High

Poor

Good

Performance

Level of arousal

Optimal level of arousal

Simple task

Complex task

Figure 1.2: Yerkes Dodson law (taken from [172]); the relation between the level of
arousal and human performance.

In production environments there is also evidence that productivity and
the amount of work-in-process are related. In job shops, work-in-process is
measured as the number of work orders on the shop floor. The studies [30, 154]
and references therein indicate that decreasing the production lead time raises
the output (performance) per employee. Here, production lead times correspond
to the differences between order arrival times and their release. Because high
lead times are common in job shops and go along with high levels of work-
in-process (or workloads), these studies support the psychological arguments
described above: At the right side of the curve the performance increases as the
workload and level of arousal decrease. We refer to [30] for details.

The manager of a job shop can usually not directly influence the productivity
of the shop floor personnel. However, a manager naturally strives for a high
utilization of resources, or in other words, an efficient use of personnel. The
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arrival of jobs typically occurs on a much faster time scale than changes in
the service capacity, i.e., the number of employees that can be utilized. As a
consequence, over short to intermediate time periods, a shop manager can only
influence the workload by controlling the arrival rate of new jobs. A way to
accomplish this is, for instance, by rejecting new orders or by a different price
setting or changing the terms of customer contracts. The effect of arrival control
on job shops has been investigated in [169]. We refer to Chapter 5 for arrival
rate control in queueing systems with such workload-dependent service rates.

1.4 Dams and storage processes

In this section, we consider the evolution of the mathematical theory of dams
and its relation to queueing. Our aim is threefold; we first give a brief historical
overview on the development in the study of dams. Second, in Subsection 1.4.2
we provide a formal mathematical description of a dam with a state-dependent
release rule. This is of particular interest since the basic model in our thesis
shows strong resemblance with such a dam. Third, we give several references
on storage models with content-dependent release rates; literature on dams can
be found in Subsection 1.4.2, while literature on the related field of fluid queues
and fluid networks is reviewed in Subsection 1.4.3.

From a practical perspective the dam is designed for a temporary storage
of water, which may have several purposes. In [128], Moran mentions three
of them: (i) to provide a head of water for hydroelectric power, (ii) to prevent
floods in times of exceptional rainfall, and (iii) to create a buffer of water during
the wet season that can be used for irrigation during the dry season. The input
of the dam consists of water flowing in from rivers and creeks caused by (large)
rainfalls, and typically is of a random nature. The output is simply generated
by the release of water from the reservoir.

1.4.1 Dams with constant release

The mathematical study of the operation of dams became popular in the 1950’s.
In 1954, Moran [126] was the first to formulate a stochastic model for this type
of storage. He described a discrete-time model and considered a dam with finite
buffer capacity and constant release. More precisely, the model was formulated
as follows (see also [10] and [139, Chapter 6]): Let Zn be the content of the dam
at the beginning of year n and denote by Xn the amount of water that flows
into the dam during year n. The dam has capacity k and at the end of the year
an amount m of water is released (or the amount available if the content is less
than m). These dynamics give rise to the following recursion:

Zn+1 = max(min(Zn +Xn, k)−m, 0).

We refer to [139, Chapter 6] for a further discussion.
A natural extension of Moran’s model is the dam in continuous time. In

a first attempt, Moran [127] considered the discrete-time model with Xn, n =
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1, 2, . . ., geometrically distributed and then applied an appropriate limiting pro-
cedure. The resulting system is a dam with continuous inflow at unit rate and a
Poisson process of (deterministic) release. In fact, the residual capacity k−Z(t)
may be identified with the workload in an M/D/1 queue with finite capacity k.
At the same time, Gani [78] considered a dam with constant release at unit rate
and Poisson input (which is equivalent to a finite-buffer M/D/1 queueing sys-
tem). Both authors were however not aware of those similarities. It was Smith
[157] who already pointed out the mathematical equivalence between waiting
times in queues and content levels in storage systems in 1953 (he didn’t specif-
ically focus on dams though, and considered a storage system with unlimited
capacity and with random instead of deterministic release). We also refer to
the discussion in [79, 105] of Lindley for a clear comparison between the two
systems at embedded epochs.

More generally, the discrete-time model of Moran can be extended to a
continuous-time system by considering an input process {X(t), t ≥ 0} with
stationary and independent increments. Additionally, we require that X(t) is
non-decreasing. In case the jump rate is finite, the input of the dam simply
reduces to a compound Poisson process and the dam is identical to an M/G/1
queueing system (see the discussion above). Other studies considered the case
of an infinite jump rate. In that case, infinitely many jumps occur in any finite
interval with probability one. In the 1950’s, the main focus was on the so-called
gamma input, see [79, 105] for details. We refer to [139, Chapter 7] for an
overview of dams in continuous time.

1.4.2 Dams with state-dependent release

Before we present a brief historical overview on dams with a state-dependent
release rule, we first describe such a storage system in more detail. The water
content Z(t) increases with jumps that have a generally distributed size. The
time intervals between jumps are exponentially distributed, so that Z(t) consti-
tutes a Markov process. In between jumps the content of the dam drains at a
deterministic rate r(x) when the content equals x. Thus, if the content at time
0 is w and no jumps occur in (0, t), the content process during the interval (0, t)
behaves as a deterministic process: Z(s) = w −

∫ s

0 r(Z(u))du. An important
quantity is

R(x) :=

∫ x

0

1

r(y)
dy,

representing the time required to drain the dam in the absence of any jumps.
In particular, a necessary and sufficient condition for a return to zero to be
possible is R(x) < ∞, see e.g. [10, 45, 80, 83] and later chapters of this thesis.
Note that r(x) = 1 yields the classical M/G/1 queue or dam. We also refer to
[10, Chapter 14] for an overview of dams with state-dependent release rates.

Dams where the release of water depends on the content in the reservoir
started to appear in the literature in the 1960’s. For convenience, we continue
to refer to these models as dams, although the focus increasingly shifted to
storage systems in general. It seems that Gaver and Miller [80] were the first
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to study storage problems with content-dependent release rates. Using similar
arguments as Takács [159], they constructed the Kolmogorov forward equations
for several models. One of their models concerns a two-stage release rule; if
the content of the dam exceeds a fixed value R > 0, then water is released at
rate r2, while water is released at rate r1 in case 0 < Z(t) < R. Using a clever
idea for the inversion of the product of two Laplace transforms, they described
a procedure for computing the content distribution in steady state for generally
distributed inputs at Poisson instants. Later, a similar model was considered
by Cohen [53]; see [56], p. 557, for an extension to an m-step release rule.

Gaver and Miller [80] were not yet able to solve the Kolmogorov equations
for the system with a general release rule. As a special case, they did determine
the Laplace-Stieltjes Transform (LST) of the steady-state buffer content in the
case r(x) = x. This model is also well-known as shot noise and had already been
studied by, e.g., Keilson and Mermin [95]. Observe that r(x) = x corresponds
to systems with proportional release.

In 1969, Moran [129] obtained the dam as a limit of a discrete-time Markov
chain under some conditions on the release-rate function. He also showed that
sample paths of Z(t) satisfy

Z(t) = Z(0) +A(0, t)−

∫ t

0

r(Z(s))ds, (1.1)

where A(0, t) denotes the amount of input during (0, t). This equation is well-
known as the storage equation. In 1958, Reich [141] obtained a similar equation
in case of constant release (in that case r(x) = 1 for x > 0 and r(x) = 0
otherwise).

In 1971, Çinlar and Pinsky [47] studied the storage equation (1.1) and showed
that, under some conditions, the sample paths of Z are uniquely defined by
Equation (1.1). The conditions involved a finite jump rate and a continuous
and non-decreasing release rate function. Moreover, they showed the intuitively
appealing result that a limiting distribution of Z(t) exists if sup r(x) > EA(0, 1),
where EA(0, 1) is the mean input rate. Motivated by some studies in the 1950’s
with gamma input (see e.g. [105]), the same authors extended their results to
the case of an infinite jump rate [48], where r(·) is assumed to be non-decreasing.

Harrison and Resnick [83] continued the study of the storage equation (1.1),
and succeeded in removing some undesirable assumptions on the release rate.
They did, however, assume that the jump rate is finite and that the content
process has an atom at state zero (see the discussion above for implications
on r(·)). In [83] the authors gave necessary and sufficient conditions for the
existence of a stationary distribution of the dam content (which also is unique).
The steady-state density of the buffer content is in terms of an infinite sum
of iterates, which reduces to nice analytical expressions in some special cases.
The paper of Brockwell et al. [45] is much in the same spirit. They extended
the results of [47, 48, 83] by considering both finite and infinite jump rates and
imposing only very mild conditions on the release rate function, including the
case in which the content process does not have an atom at zero.
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During the last two decades, storage systems with state-dependent release re-
ceived some renewed attention. In 1992, Doshi [68] wrote a survey on level cross-
ings including systems with workload-dependent release. We refer to Miyazawa
[125] for a description, based on so-called rate conservation laws, of the time-
dependent behavior of storage problems with state-dependent release rates (and
a stationary marked point process as input). Furthermore, a whole body of lit-
erature appeared on various model extensions and dualities between storage
processes. Without aiming for completion, we just mention [93, 94, 138]. Other
interesting related papers are [11, 46]. In [46], Boxma et al. derive sufficient
conditions for stability in case the input rate also depends on the buffer content.
Asmussen and Kella [11] consider a release rate that depends both on the con-
tent and some underlying modulating process. They exploit the duality relation
between risk and storage processes and specifically focus on an extension of the
shot noise model.

1.4.3 Related results: Fluid queues and fluid networks

Closely related to traditional queueing systems are the so-called fluid queues.
In such models, water (or fluid) gradually enters the system over time rather
than in jumps. In this subsection, we first give a brief overview of the literature
on fluid models, mainly with content-dependent rates. Second, we give some
references on extensions to networks.

Fluid queues
The study of fluid models has mainly been triggered by the applications in
packet-switched communication systems. In such systems, traffic is divided into
small entities (packets) which are sent over the network, see also Section 1.5.
Focusing on somewhat larger time scales, traffic is usually modeled as a contin-
uous flow, thereby neglecting the discrete nature of the relatively small packets.
More generally, fluid models may be valuable when a separation of time scales
applies. In particular, the fluctuations around a certain drift on a shorter time
scale may sometimes be neglected (i.e., approximated as a fluid) on a longer
time scale.

Queues with gradual input were already introduced in the paper of Gaver
and Miller [80]. However, the study of fluid queues mainly started in the 1970’s
and 1980’s, see for instance [6, 109, 110]. We refer to [112] for a survey and to
[43] for a detailed discussion of the history of fluid queues.

In communication systems, sources are generally assumed to transmit pack-
ets according to an On-Off process. An On-Off source sends at a constant rate
when the source is On and at rate zero when the source is Off. Of particu-
lar interest is the case when several On-Off sources are multiplexed. A related
branch of fluid models assumes that the buffer content varies linearly over time
depending on some underlying semi-Markov process. In fact, the case where
there is only one state of the background process in which the buffer content
decreases has a strong relationship with the ordinary G/G/1 queue: Deleting
all parts of the content process with an upward slope and glueing together the
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remaining parts (i.e., the parts with upward slope correspond to jumps in the
workload process) directly provides the workload process in the corresponding
G/G/1 queue. For a rigorous proof of this relationship in a general setting we
refer to [51, 100].

Elwalid and Mitra [72] seem to be the first to study fluid models with content-
dependent drifts. They considered the so-called Markov-modulated case mean-
ing that the drifts are governed by some underlying continuous time Markov
process. Moreover, they studied a fluid queue with finite buffer and a (piece-
wise linear) drift that is constant between certain threshold values of the buffer
content, see also Subsection 1.5.2. Note that the drift corresponds to input
(output) when the drift is positive (negative). Kella and Stadje [98] also consid-
ered the Markov-modulated fluid model with finite capacity, but they allowed a
continuous content-dependent drift function. In [41], the authors analyze a fluid
queue in which during Off times the buffer increases at piecewise linear rates,
depending on some semi-Markov process, and during exponentially distributed
On times the buffer decreases with a content-dependent rate. They find a de-
composition result and give the complete steady-state content distribution for
the case of constant and linear output rates.

In addition, the generator of the background process may depend on the
buffer content. Models incorporating such dependencies are often called feedback
fluid queues, reflecting the fact that feedback information of the buffer state
governs the background process, see for instance [2] and [151, 167]. In [120],
feedback fluid queues are used to model the access regulation in communication
networks, see also Subsection 1.5.2. A feedback fluid queue with N background
states, finite buffer, and content-dependent rates is considered in [152]. In [40],
the authors study a similar model, however with N = 2 and infinite buffer.
In addition to an explicit expression for the stationary distribution, which can
also be found in [152] for the finite-buffer case, they obtain conditions for the
existence of a stationary distribution.

Fluid networks
A natural extension of the single dam, with either pure jump or gradual input,
is a system with several reservoirs in tandem. In contrast to Jackson networks
where customers traverse the network as discrete entities, in tandem fluid queues
the output from station i is directly fed into station i+1 (as a fluid). Nearly all
studies on fluid networks focus on the case that the server at station i works at
a fixed rate ri as long as buffer i is not empty. Using martingale arguments, the
authors of [101] find the LST of the joint workload distribution if there is only
compound Poisson input into the first station. In [96], Kella considers several
stations in parallel with dependent non-decreasing Lévy input and shows that
such a parallel system may be considered as a generalization of the tandem
model. The authors of [63] obtain the distribution of the second queue in a
two-station tandem network where the first station is fed by (general) Lévy
input.

More recently, fluid networks with gradual input have been analyzed as well.
Kroese and Scheinhardt [111] analyzed several systems of fluid queues where the
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underlying Markov process has two states, see also [151]. Kella [97] extended the
transform version of their result to Markov-modulated feedforward networks.
Other extensions of [111] are [1, 153]. In [1], a tandem fluid network fed by
multiple On-Off sources with generally distributed On times is considered. In
[153], the LST of the joint buffer contents distribution is found in a two-station
tandem queue driven by an On-Off source with a general input process during
On times. Moreover, in case of finite buffers, the authors of [153] obtained a
proportionality relation similar to the proportionality between single finite and
infinite-buffer queues.

Exact results for fluid networks with content-dependent service rates are
hardly known. Exceptions are [99, 102], where an extension of the shot noise
model is studied. More specifically, in both papers a network of stations is
considered where each station has a service rate proportional to the workload
in that station (i.e., ri(x) = rix). In fact, the authors of [102] first consider the
general case in which the proportion of input served in a given time interval is
governed by a distribution function. The internal flows are routed according to a
substochastic transition matrix. In [102], structural results are given for the case
where the external input to each station is completely general, which provides
explicit expressions in case the external input is a multivariate non-decreasing
Lévy process. These so-called linear stochastic fluid networks are motivated
as the limit of a network of infinite-server queues with batch arrivals. In [99],
both the external multivariate non-decreasing Lévy input and the transition
matrix are modulated by a background process. The authors identify conditions
for stability and present a functional equation for the LST of the joint buffer
contents distribution.

1.5 Communication networks

As mentioned in Section 1.1, communication systems and queueing theory have
evolved in close connection since the beginning of the 20th century. Origi-
nally, the study of queues was mainly motivated by applications in telephony.
However, due to the immense growth of the Internet, the main research in-
terests in communications have gradually shifted to the analysis of voice (also
video-conferencing) and data (e.g., files, stored video) traffic in packet-switched
networks. In such networks traffic is digitized and divided into small entities
(packets), which are treated as independent entities as they traverse the network.
At their destination, packets are reassembled to recover the original information
flow.

The remainder of this section is organized as follows. In Subsection 1.5.1 we
describe the mechanics of TCP, which is the dominant protocol for the transfer of
packets on the Internet. Traffic models of packet-switched communication sys-
tems at various time scales are treated in Subsection 1.5.2. In Subsection 1.5.3
we discuss the integration of different traffic types (streaming and elastic) on a
common infrastructure.
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1.5.1 TCP

The introduction of the Transmission Control Protocol (TCP) has played a
critical role in the huge expansion of the Internet since the 1980’s. TCP turned
out to be a highly effective protocol for the transfer of packets and continues
to be the dominant transport protocol used in the current Internet. In this
subsection we give a brief description of TCP, referring to, e.g., [87, 113] for
further details.

As stated in [113], the two main functions of TCP are congestion control
and error control. In order to guarantee error-free communication, the receiver
(destination) sends an acknowledgment (ack) to the source after each (group of)
correctly received packet(s). The sender maintains a timer to limit the period
of time during which no ack is returned. If the sender (source) receives no ack
before a time-out occurs, or the sender receives a duplicate ack indicating that
a packet in the sequence is missing, the packet is considered to be lost and the
source retransmits the lost packet. Retransmission also occurs when a negative
ack is received, indicating that the packet contains errors.

The implementation of TCP’s congestion control is accomplished using a
congestion window. The window specifies the maximum number of outstanding
packets, i.e., the number of packets sent by the source without having received
an ack. TCP does not directly observe the level of congestion in the network
itself, but infers the information from returned ack’s. If packets are lost, TCP
concludes that the level of congestion is high and reduces the window size (typ-
ically by a factor 2). Transmissions without packet losses are interpreted as
an indication of a lightly loaded network, and the window size is consequently
increased until some maximum window size is reached (the receiver window).
In the Slow Start phase the window size increases at an exponential rate over
time, but this phase is often neglected because it only occurs at the beginning of
a transfer or after a time-out. In the Congestion Avoidance phase the window
size increases linearly at rate 1/RTT (where RTT stands for roundtrip time)
for every correctly received ack. This is effectively done by increasing the win-
dow size W by 1/W for every ack’ed packet. In fact, TCP in the Congestion
Avoidance phase may be viewed as a special case of the family of Additive-
Increase-Multiplicative-Decrease (AIMD) congestion control mechanisms. In
AIMD the congestion window increases linearly when no losses are detected
and the window size is reduced by a multiplicative factor when a loss event
occurs, see e.g. [124] for details.

1.5.2 Packet-, burst-, and flow-level models

In packet-switched networks, it is common to distinguish between three different
time scales. At the lowest level, the packet level, the primary interest is in
individual packets traveling across the network. At the highest level, the flow or
connection level, we abstract from packet-level details and consider all packets
from the beginning of the transfer until the end as a single flow. The chief
interest on the latter time scale concerns issues of fairness, bandwidth utilization,
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and performance as perceived by the end-user. During a connection, inactive
periods, in which no packets are sent, usually alternate with intervals in which
bursts of packets are transmitted. This gives rise to an intermediate time scale,
the burst level.

Packet-level models
The connection between queueing theory and packet-level dynamics of trans-
mission protocols (such as TCP and AIMD) becomes especially apparent in a
series of studies starting with [124]. In those studies the increase in the window
size is supposed to be continuous rather than in discrete increments. Thus, if
W (t) denotes the window size at time t, then dW (t)/dt = 1/RTT . Moreover,
the authors in [124] use a network-centric loss model meaning that loss events
are generated by the network. More specifically, they assume that losses oc-
cur according to a Poisson process. Let M denote the maximum window size,
which may be due to either a capacity limitation or a peak rate limitation, see
[4]. Then, V (t) := M −W (t) corresponds to the workload in an M/D/1 queue
with state-dependent service requirements. (To see this, flip the window process
along a horizontal axis and interpret the loss events as customer arrivals and
the sliding window size as the server working at speed 1/RTT ). We note that
a slightly different transformation was proposed in [5] to remove the window
dependency of the service requirements: The process V̂ (t) := lnM − lnW (t)
corresponds to an M/D/1 queue with workload-dependent service and arrival
rates.

Queueing systems with workload-dependent rates may also be applied to
model general Adaptive Window Protocols (AWPs) and loss rates that depend
on the window size. A characteristic feature of AWP is that both the increase
and decrease profiles of the congestion window are general. Results of Chapter 2
are used in [5] to obtain relationships between the steady-state window sizes of
two AWPs with related loss rates and increase and decrease profiles.

Burst- and flow-level models
The study of communication systems at the burst and flow levels leaves out
all packet-level details concerning the transmission mechanism, and focuses on
somewhat larger time scales. Below, we first address traffic models on the burst
level and then briefly discuss some properties of traffic at the flow level.

As mentioned in Subsection 1.4.3, fluid queues have proven to be appropri-
ate to model traffic flows at the burst level. For instance, Markov-modulated
queueing systems or fluid queues fed by (multiple) On-Off sources are often
used to model bursty traffic that alternates between periods of activity and pe-
riods of inactivity. Some examples of fluid queues applied to packet-switched
communications networks at the burst level, where the transmission rate is
also dynamically adapted based on feedback information, are [71, 73, 120]. In
[71, 73], bursty sources with loss priorities are multiplexed. Packets of the low-
est priority are marked in the access regulator and are the first to be dropped if
certain levels (typically thresholds in terms of the buffer contents) of congestion
occur. In [120], feedback information on the buffer content also determines the
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transmission rate. Each source has a guaranteed minimum transmission rate,
raising the need for admission control in case the system is heavily loaded. In
case the system is relatively lightly loaded, the active sources send at their peak
rate, while the sources share the link capacity in the intermediate region.

When identical TCP-controlled flows compete for bandwidth, each flow re-
ceives about an equal share of the bandwidth at the flow level. A common (and
idealized) way to model this bandwidth sharing is by means of the PS disci-
pline (see also Subsection 1.1.1) which equally divides the link capacity among
all users present. There exists a rich body of literature on PS models, see e.g.
[29, 108, 130] and [173, 174] for an overview. A limitation of the PS model is
the assumption that TCP always efficiently uses the link capacity and that it
reacts instantaneously to changes in the number of flows present.

Quite often, the distributions of On periods and service requirements in the
above-described burst- and flow-level models are assumed to be heavy-tailed.
This is motivated by extensive measurement studies which showed that file sizes
and activity periods in the Internet commonly exhibit extreme variability, see
for instance [60]. Because traditional Markovian models with phase-type distri-
butions are unable to capture such features, these findings triggered a renewed
interest in queueing models with heavy-tailed characteristics. Since an exact
analysis is often intractable, most literature on queueing systems with heavy
tails analyzes the asymptotic behavior as the buffer content or the delay gets
large. Further asymptotic approximations are in regimes where the number of
multiplexed sources grows large or the traffic load converges to the link capacity
(heavy traffic).

An advantage of asymptotic approximations is that the results often pro-
vide useful qualitative insights. Typically, rare events in queueing systems with
heavy tails occur as the consequence of a fairly simple most likely scenario. For
instance, the most probable way for the workload in a queue fed by a single
On-Off source to build up is due to one exceedingly long On-period (see [89]).
In case several On-Off sources are multiplexed, the most likely scenario con-
sists of a minimum dominant set of sources having extremely long On-periods
while the other sources show average behavior (see, e.g., [37, 69, 89, 146, 179]).
Similar observations apply to the G/G/1 queue, see Subsection 1.6.4. We refer
to, e.g., [82, 90, 132, 180] for PS models with heavy-tailed traffic characteris-
tics. Moreover, the fairly simple heuristic arguments usually give guidance for
complicated proofs. See for instance [34, 170, 177] for a general framework to
convert heuristics into rigorous proofs and more references on queueing systems
with heavy tails.

1.5.3 Traffic integration

Based on their traffic characteristics and Quality-of-Service (QoS) requirements,
we may roughly divide the traffic flows in packet-switched communication sys-
tems into two categories: Elastic and streaming traffic. The Internet was origi-
nally designed to support best-effort elastic applications, such as file transfers.
Characteristic of these best-effort applications is the absence of any stringent
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bandwidth requirements. Instead, the performance of elastic traffic depends
on “acceptable” total transmission times and error-free communication. This
directly explains the success of TCP, which is especially suitable for best-effort
traffic. In contrast, streaming traffic typically involves real-time applications,
such as telephony, real-time video, or video conferencing. Streaming applica-
tions are extremely sensitive to packet transmission delays and rate variations.

TCP and its various extensions (including AIMD) are typically highly re-
active transmission protocols. To avoid the wild oscillations in transmission
rates, the User Data Protocol (UDP) could be used as an alternative. Because
UDP does not respond to congestion however, this gives rise to unfairness in
the competition for bandwidth with TCP-controlled flows. As an intermediate
option, TCP-friendly rate control protocols were proposed [77, 134, 142]. These
protocols estimate the throughput that a long-lived TCP flow would receive to
determine the transmission rate for a subsequent period of time. Since TCP-
friendly protocols are “fair” to TCP-controlled flows, the latter is especially
suitable for integrated systems as considered in, e.g., Chapter 7.

In particular, in Chapter 7 we consider asymptotics in a model with inte-
grated elastic and streaming traffic flows. The elastic flows are TCP-controlled,
while the transmission rates of the streaming applications are governed by a
TCP-friendly rate control protocol. Under the assumption that the file sizes
(i.e., elastic flows) are heavy-tailed we obtain asymptotic results for the work-
load of the streaming traffic.

In fact, the model of Chapter 7 may also be interpreted as a dam where
the service speed is determined by the state of a random environment. More
specifically, the service rate is equal to the bandwidth share of a permanent
customer in the G/G/1 queue under the PS discipline. In the first part of
Chapter 7 we assume that the input of the dam is a fluid flow with fixed rate.
In Section 7.8 we allow more general input processes with renewal processes and
On-Off sources as special cases.

1.6 Methods and results for the M/G/1 queue

The aim of this section is to give a flavor of the methods used in this thesis by
applying (some of) them to the standard M/G/1 queue. In addition, the results
may serve as a reference source for results presented in later chapters.

In Subsection 1.6.1, we study the steady-state workload (and waiting-time)
distribution using the classical Kolmogorov forward equations and the method of
successive substitution. Stochastic recursions are introduced in Subsection 1.6.2
and are used as a starting point for the derivation of the famous Pollaczek-
Khinchine (PK) formula. In Subsection 1.6.3 sample-path constructions are
applied to find the workload distribution in the ordinary finite dam. Sample-
path arguments are also applied in Subsection 1.6.4, however, in a different
fashion; we obtain asymptotic results for the workload and cycle maximum in
case the service requirements exhibit heavy-tailed characteristics. We also state
two results of Asmussen [8] providing asymptotics for the M/G/1 queue with
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workload-dependent service speed (similar models are studied in Chapters 2–5).

1.6.1 Level crossings and successive substitutions

In this subsection, we apply level crossing arguments and the method of succes-
sive substitutions to obtain the well-known steady-state workload distribution
in the M/G/1 queue. Similar techniques are at the core of (parts of) Chapters 2
and 3. However, we first introduce some notation that will be used throughout
this monograph.

Let λ be the arrival rate of customers. Denote by B a generic service re-
quirement with distribution function B(·), LST β(·) and mean β. We assume
that the traffic load ρ := λβ < 1. Define Vt as the workload at time t, V as
the steady-state amount of work, and let V (·) be the distribution of V , with
corresponding density v(·), assuming that it exists.

A classical starting point for Markov-type models (in particular fluid models)
is the construction of the Kolmogorov forward equations. The derivation below
is similar to [159] and [56], p. 263. First, note that in the interval (t, t+ ∆t) a
new customer may arrive with probability λ∆t+ o(∆t). Then, for x, t > 0, and
some finite constant θ ∈ (0, 1],

Vt+∆t(x) = (1− λ∆t)Vt(x+ ∆t) + λ∆t

∫ x

0−

B(x − y)dyVt(y + θ∆t) + o(∆t).

Now, write for ∆t→ 0,

Vt+∆t(x) = Vt(x) + ∆t
∂

∂t
Vt(x) + o(∆t),

Vt(x+ ∆t) = Vt(x) + ∆t
∂

∂x
Vt(x) + o(∆t).

Using similar arguments as in, e.g., [56, 159] we find that the Kolmogorov for-
ward equation of the process is

∂

∂t
Vt(x) =

∂

∂x
Vt(x)− λ

∫ x

0−

(1−B(x − y))dyVt(y).

This relation is commonly known as the integro-differential equation of Takács.
Letting t→∞ and using the fact that v(·) denotes a density, we have for x > 0,

v(x) = λV (0)(1−B(x)) + λ

∫ x

0

v(y)(1−B(x− y))dy. (1.2)

The above equation is also well-known as the level crossing equation, see for
instance [68]. It reflects the fact that the rate of crossing level x from above
should equal, in steady-state, the rate of crossing level x from below. Note that
(1.2) is a Volterra integral equation of the second kind, see, e.g., [165] for details.
In fact, (1.2) is also a renewal equation.

Define

H(x) := β−1

∫ x

0

(1−B(y))dy
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as the distribution of the residual service requirement with density h(·). Note
that the level crossing equation (1.2) may be rewritten as

v(x) = ρV (0)h(x) + ρ

∫ x

0

v(y)h(x − y)dy. (1.3)

There are different ways to obtain v(·) from (1.3), for instance, by observing
that it is a renewal equation. However, in view of Chapters 2 and 3, we apply
the method of successive substitutions: The v(y) term on the right-hand side
(rhs) of Equation (1.3) is substituted by the same expression given by Equa-
tion (1.3). Defining hn(·), Hn(·), as the n-fold convolutions of h(·), H(·), with
itself, respectively, we have for x > 0,

v(x) = ρV (0)h(x) + ρ

∫ x

0

[

ρV (0)h(y) + ρ

∫ y

0

v(z)h(y − z)dz

]

h(x− y)dy

= ρV (0)h(x) + ρ2V (0)h2(x) + ρ2

∫ x

0

v(z)h2(x− z)dz,

where the second equality follows from changing the order of integration in the
third term. Iterating this argument leads to

v(x) =
∞
∑

n=1

ρnV (0)hn(x).

Observe that the infinite sum is well-defined if and only if ρ < 1. Using normal-
ization, it is easily checked that the well-known relation V (0) = 1 − ρ indeed
holds. The steady-state workload distribution V (x) is now directly obtained
from the atom at 0 and integrating the density v(·) (and rearranging integral
and sum), which results in the following theorem:

Theorem 1.6.1 For the ordinary M/G/1 queue, with ρ < 1, we have

V (x) = (1− ρ)

∞
∑

n=0

ρnHn(x). (1.4)

Although the result (1.4) is surprisingly simple no direct interpretation from
the FCFS perspective exists. However, the authors of [59] exploited the fact that
the workload process is identical under any work-conserving discipline and con-
sidered the LCFS-PR (Last-Come First-Served Preemptive-Resume) discipline
to explain the elegant form of (1.4). Under LCFS-PR, the customer in service is
interrupted (preempted) when a new customer arrives and its service is resumed
once this newly arrived customer and all subsequently arriving customers have
completed service.

The LCFS-PR discipline has several useful properties. One of them concerns
the geometric distribution of the steady-state number of customers in the system
(denoted asN): P(N = n) = (1−ρ)ρn. Also, the remaining service requirements
of the customers present are independent and identically distributed as a residual
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service requirement with distribution H(·). Observe that the workload just
consists of the sum of residual service requests of customers present. Thus,

P(V ≤ x|N = n) = Hn(x).

Now, conditioning on N ,

V (x) =

∞
∑

n=0

P(N = n)P(V ≤ x|N = n),

and combining the above relations yields (1.4).
The structure of the (tail of the) steady-state waiting time in the G/G/1

queue is roughly the same as (1.4). The number of customers present is still ge-
ometrically distributed but with a different parameter that can not be explicitly
computed in general (see [131] for an intuitively appealing proof). Furthermore,
the excess distribution of the waiting time involves a sum of “ascending ladder
heights” instead of residual service requirements. We refer to [10] and [38, The-
orem 3.2] for details.

1.6.2 Stochastic recursions

Stochastic recursions serve to describe the evolution of stochastic processes in
discrete time. A well-known example in queueing theory is Lindley’s equation
giving the relationship between the waiting times of two successive customers.
In this subsection, we first present Lindley’s recursion and mention some mono-
tonicity properties of this recursion. These properties form a key element in
Chapter 4, where we exploit a machinery of monotone stochastic recursions de-
veloped in [15] to obtain a relationship with a dual system. Then, starting with
Lindley’s equation, we derive the LST of the steady-state waiting time in the
ordinary M/G/1 queue. A similar derivation forms the first step of Chapter 6,
where we determine the sojourn time in queues with feedback information on
the workload only available at embedded epochs.

Denote by An, n = 0, 1, . . ., the interarrival time between customer n and
n + 1 and by Bn the service requirement of customer n. Also, let Wn be the
waiting time of customer n and let W be a generic waiting time. The famous
recursion equation of Lindley reads

Wn+1 = (Wn +Bn −An)
+, (1.5)

where x+ = max(x, 0). In the context of random walks, a more familiar notation
is Xn := Bn − An such that Wn is an ordinary random walk with reflection at
zero.

Because Wn+1 is monotone in Wn, Bn, and An, the recursion (1.5) is also
called a monotone stochastic recursion. Asmussen and Sigman [15] developed
a theory for the equivalence between such recursions and their dual processes.
The easiest application, and also the most common one, concerns the duality
between the workload distribution in the G/G/1 queue and the ruin probability
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in a corresponding risk process. In Chapter 4 we apply this duality theory to
obtain an equivalence between the loss probability in the finite dam and the
cycle maximum in its infinite-buffer counterpart.

In Chapter 6, where the service speed is only adapted at embedded epochs,
we assume that arrivals occur according to a Poisson process and we use a
stochastic recursion to derive an equation for the steady-state sojourn time
distribution. A similar analysis may be applied to recover the PK formula for
the steady-state waiting time in M/G/1 queues, i.e., the LST of (1.4).

As in [56], p. 253, we first obtain after some calculations, for s 6= λ

E[e−s(Wn+Bn−An)+ |Wn +Bn = x] =
s

s− λ
e−λx −

λ

s− λ
e−sx. (1.6)

Then, applying (1.5), conditioning on Wn +Bn, and using (1.6) yields

E[e−sWn+1 ] =

∫ ∞

0

E[e−s(Wn+Bn−An)+ |Wn +Bn = x]dP(Wn +Bn < x)

=
s

s− λ
P(Wn+1 = 0)−

λ

s− λ
E[e−s(Wn+Bn)].

Letting n→∞ and using the fact that P(W = 0) = 1− ρ, we get

(s− λ)E[e−sW ] = s(1− ρ)− λE[e−sW ]β(s).

Some rewriting then directly yields the famous PK formula:

Theorem 1.6.2 For the ordinary M/G/1 queue, with ρ < 1, we have

E[e−sW ] =
s(1− ρ)

s− λ(1− β(s))
.

1.6.3 Sample paths

Sample-path arguments are commonly used in queueing theory. In general,
sample paths describe the evolution of the system under a particular realization
of the underlying stochastic processes. This may be especially convenient in
comparing different model variants with a common generator, such as the finite
and infinite-buffer M/G/1 queue. A sample-path comparison may also provide
certain bounds on the performance measure(s) of interest.

In this subsection, we first apply a sample-path construction for the workload
in the M/G/1 queue to obtain a proportionality relation between the steady-
state workload distribution in the finite-buffer queue and its infinite-buffer coun-
terpart, see also [85]. Similar constructions are used in Chapters 3 and 5. Sec-
ondly, we briefly introduce some notions related to cycle maxima and provide an
elegant proof of Takács’ formula for the cycle maximum in the M/G/1 queue.
The result serves as reference for Chapters 3 and 4 where cycle maxima are
considered. Finally, sample-path techniques for queueing systems with heavy
tails are discussed in Subsection 1.6.4.
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Let V Kt be the workload at time t in the M/G/1 queue with finite buffer K.
In the present context, the finite buffer gives an upper bound for the amount
of work in the system while the excess work is lost (see also the finite dam in
Section 1.4). Denote by V K(·) the steady-state distribution of V Kt . Below,
we show that V (x) and V K(x) are proportional by applying the sample-path
approach of [85].

Consider a realization of the workload process {Vt, t ≥ 0} in the infinite-
buffer M/G/1 queue. Now, delete the parts from each upcrossing of level K
until the first subsequent downcrossing of level K and paste together the re-
maining parts, see Figure 1.3 for an illustration. Observe that, at a downcross-
ing of K, the time until the next customer arrival is still exponential. Hence,
the constructed sample path may be considered as a typical realization of the
workload process in the M/G/1 queue with finite buffer K.

To formalize the proportionality relation between V (·) and V K(·), we con-
sider an arbitrary busy cycle of the infinite-buffer queue. Assume that at time 0
a customer arrives in an empty system and let τ0 := inf{t > 0 : Vt = 0} denote
the length of the cycle. Then, applying the theory of regenerative processes, see
e.g. [52], we have for x ∈ [0,K],

V (x) =
1

Eτ0
E

[
∫ τ0

0

I(Vt ≤ x)dt

]

.

By the “cut and paste” construction described above, the expected value of the
integral is the same for both the original and the constructed process. Thus,
V (x)/V K(x) = EτK0 /Eτ0, x ∈ [0,K], with τK0 the length of the busy cycle in
the finite dam. The results are summarized in the following theorem:

Theorem 1.6.3 (Proportionality). For the M/G/1 queue with a finite buffer
of size K, we have, for ρ < 1 and x ∈ [0,K],

V K(x) =
V (x)

V (K)
. (1.7)

Remark 1.6.1 A similar relation holds when ρ ≥ 1. In that case, the steady-
state distribution of V does not exist, but (1.7) holds when ρH(x) in (1.4)
is replaced by L(x) =

∫ x

0
e−δudρH(u), with δ the unique positive zero of

∫∞

0
e−xudρH(u)− 1. We refer to [53] for further details. �

Similar “cut and paste” constructions are applied in Chapters 3 and 5. In
fact, the proportionality is generalized along the same lines to queues with
workload-dependent arrival and service rates in Chapter 3.

In Chapters 3 and 4, we also consider the notion of cycle maxima. The
cycle maximum Cmax is the maximum workload during a busy period, i.e.,
Cmax := max{0 ≤ t ≤ τ0 : Vt}. A well-known formula for the cycle maximum
in the M/G/1 queue, commonly referred to as Takács’ formula, is given in the
following theorem:
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Figure 1.3: A sample-path construction of the workload process in an M/G/1 queue
(based on [85]).
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Theorem 1.6.4 The distribution of the cycle maximum in the ordinary M/G/1
queue with ρ < 1, satisfies

P(Cmax ≤ x) =
P(V +B ≤ x)

P(V ≤ x)
.

Next, we provide an elegant proof of Theorem 1.6.4, taken from [12], which
is based on sample-path arguments. Crucial for the proof is the well-known
workload representation in queues with unit service rate and time-reversible
input processes (and work-conserving service disciplines), introduced by Reich
[141],

V = sup
t≥0
{A(0, t)− t}, (1.8)

with A(0, t) =
∑N(t)

n=1 Bn the amount of input during (0, t) and N(t) the number
of arrivals in an interval of length t. This workload representation is used in
many cases. However, the representation is no longer valid when the service
speed depends on the amount of work present. Therefore, the proof is not only
an interesting exposition of sample-path arguments, but also indicates difficul-
ties arising in proof techniques for queues with workload-dependent rates.

Proof of Theorem 1.6.4 Let S(t) = A(0, t) − t denote the generator of the
workload process, where S(0) = 0. Because a busy period starts with a jump in
an empty system, Cmax is also given by sup0≤t≤τ0{S(t) + B}. (For notational
convenience we suppress the dependence between τ0 and B). Then, using (1.8)
and splitting the overall maximum into the maximum during the first busy cycle
and the maximum in the remainder of the process, we obtain

P(V +B ≤ x) = P(sup
t≥0
{S(t) +B} ≤ x)

= P(Cmax ≤ x)P(sup
t≥τ0

{S(t) +B} ≤ x)

= P(Cmax ≤ x)P(V ≤ x),

where the final step follows from the fact that S(τ0) + B = 0, the stationarity
of S(t) and the representation (1.8). 2

1.6.4 Sample paths: Heavy tails and asymptotics

Queueing systems with heavy tails have received much attention in the area
of communication systems, see Subsection 1.5.2. In this subsection, we first
consider the asymptotic behavior of the steady-state workload distribution and
the cycle maximum in the standard M/G/1 queue. In particular, we sketch a
heuristic derivation of the workload asymptotics using sample-path arguments.
Similar arguments are applied in Chapter 7 to obtain the asymptotic behavior
for a queue in a random environment (with applications to communication sys-
tems). Second, we present results of Asmussen [8] for the asymptotics in queues
where the service rate depends on the amount of work present.
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A general outline of methods for obtaining tail asymptotics in queueing
systems with heavy-tailed characteristics is presented in, e.g., [34, 177]. We
specifically focus on derivations based on sample-path techniques. A sample-
path approach is especially suitable if the model is relatively complex and no
LST of the performance measure of interest is available. Furthermore, sample-
path arguments commonly provide qualitative insight into the occurrence of
rare events. More specifically, in queueing models with heavy tails a rare event
tends to occur as the consequence of a fairly simple most likely scenario. Below,
we sketch this scenario for the asymptotic tail probability of the workload in
the ordinary M/G/1 queue.

Here and in Chapter 7, we assume that the service requirement distribution
function is regularly varying. Regularly varying functions are defined as follows.

Definition 1.6.1 The function f(·) is regularly varying of index α ∈ R, denoted
as f ∈ Rα, if for all y > 0,

lim
x→∞

f(yx)

f(x)
= yα.

Now, consider the workload at time 0 in the standard M/G/1 queue with
a regularly varying service requirement distribution of index −ν < −1. The
premise is that the most likely scenario for a large workload at time 0 to occur
is the arrival of a “tagged” customer with a large service requirement Btag

at some time −y, while the system shows average behavior otherwise. In the
time interval (−y, 0] the amount of work thus roughly decreases at linear rate
1 − ρ. The rare event V0 > x then implies that the service requirement Btag

must exceed x + (1− ρ)y. So, integrating with respect to y and neglecting the
asymptotically small probability of two or more customer arrivals in (−y, 0] with
large service requirements, we obtain

P(V > x) =

∫ ∞

0

λP(Btag > x+ (1− ρ)y)dy

=
ρ

1− ρ
P(Br > x),

where Br represents a generic residual service requirement (which has distribu-
tion function H(·), see Subsection 1.6.1).

The above result also holds for the G/G/1 queue, see [50], and is presented
in the following well-known theorem (with the convention that f(x) ∼ g(x)
indicates f(x)/g(x)→ 1 as x→∞).

Theorem 1.6.5 Assume that ρ < 1. Then, B(·) ∈ R−ν iff V (·) ∈ R1−ν , and
then

P(V > x) ∼
ρ

1− ρ
P(Br > x). (1.9)

A general outline of converting the heuristic arguments into a rigorous proof
for the regularly varying case can be found in [34, 177]. The heuristics and
structure of the proof in Chapter 7 are along similar lines as the discussion of
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the M/G/1 queue given above. In case the arrival process is compound Poisson,
a direct and short derivation of (1.9) using Theorem 1.6.1 is provided in [34, 177].

In fact, Pakes [135] extended the asymptotic tail equivalence to subexponen-
tial residual service requirements. Subexponential distribution functions include
regularly varying distributions and are defined as

Definition 1.6.2 The distribution function F (x) := P(Xi ≤ x), i = 1, 2, . . ., is
subexponential if, for any n ≥ 2,

P(X1 + . . .+Xn > x) ∼ nP(X1 > x).

Similar intuitive arguments as presented for Theorem 1.6.5 hold for the ex-
cess probability of the cycle maximum in the G/G/1 queue, see [8, 64], leading
to the following result: Let N denote the number of customers in a cycle.

Theorem 1.6.6 For the cycle maximum in the G/G/1 queue with ρ < 1,

P(Cmax > x) ∼ ENP(B > x).

Finally, we consider the M/G/1 queue with service speed function r(x) when
the workload equals x as described in Subsection 1.4.2. Related models are con-
sidered in Chapters 2–5. For the case of subexponential service requirements,
Asmussen [8] obtained asymptotics for both the steady-state workload den-
sity and the cycle maximum. To complete the study of queues with workload-
dependent rates, we here present Theorems 3.1 and 3.2 of [8].

Theorem 1.6.7 (i) Assume that r(x) → r∞ as x→∞, where λβ < r∞ <∞.
Then,

v(x) ∼
λ

r∞ − λβ
P(B > x).

(ii) Assume that r(x) →∞ as x→∞. Then,

v(x) ∼
λP(B > x)

r(x)
.

Theorem 1.6.8 For the M/G/1 queue with service speed function r(·),

P(Cmax > x) ∼ λEτ0P(B > x).

Note that, for the standard M/G/1 queue, it holds that EN = λEτ0. In that
case, Theorem 1.6.8 reduces to the M/G/1 case of Theorem 1.6.6.

1.7 Overview of the thesis

In this first chapter we discussed various practical scenarios where queues with
state-dependent rates may occur. In the remainder of the thesis we focus on the
analysis of such queueing systems, where the methods and results of Section 1.6
may serve as a reference framework.
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In Chapter 2 we consider two types of queues with workload-dependent
service and arrival rates and an infinite buffer. First, in the M/G/1 case, we
compare the steady-state distributions of the workload (both at arbitrary epochs
and arrival instants) in two models, in which the ratios of arrival and service
rates are equal, and show that the steady-state distributions are proportional.
Second, for a G/G/1 queue with workload-dependent interarrival times and
service rates, we generalize several well-known relations for the workload in the
ordinary G/G/1 queue at various epochs. The results of this chapter appeared
in [22] and are used in [5].

In Chapter 3, we extend the M/G/1 model of Chapter 2 to queues with
restricted accessibility. The proportionality relation of the steady-state work-
load distributions between two queues with identical ratios of arrival and service
rates is generalized to queues with general workload-dependent rejection rules.
In addition, we obtain a formal solution for the steady-state workload density
and extend the proportionality relation between finite and infinite-buffer queues.
We also give an explicit expression for the cycle maximum in the M/G/1 queue
with workload-dependent service and arrival rates. The content in this chapter
is a combination of [19] and [20].

In Chapter 4 we analyze the G/G/1 queue with finite buffer and workload-
dependent service speed. We first show that in the ordinary G/G/1 queue,
with the server working at unit speed, the loss probability of a customer may
be identified with the tail distribution of the cycle maximum in the associated
infinite-buffer queue. A slight modification of this equivalence is required in
case the service rate depends on the amount of work present. The results of this
chapter are published in [28].

In Chapter 5 we also study an M/G/1 queue with workload-dependent ser-
vice rate. We specifically assume that the service rate is first increasing and
then decreasing as a function of the amount of work. The admission of work
into the system is controlled by a policy for accepting or rejecting jobs. We seek
an admission control policy that maximizes the long-run throughput. Under
certain conditions, we show that a threshold policy is optimal, and derive a
criterion for the optimal threshold value. This chapter is based on [21].

In the models of Chapters 2–5 the service rate may be continuously adapted
based on the amount of work present. In Chapter 6 the service speed is only
determined at epochs right after an arrival depending on the workload and
is constant in intervals between customer arrivals. For the two-step service
rule we present a procedure to obtain the steady-state workload distribution
at various epochs, which provides quite explicit results in case of exponential
service requirements. We also consider the generalization to the N -step service-
rate function. This chapter is based on [26], while a short version focusing on
the exponential case has appeared in [27].

In Chapter 7 we consider a queue where the service rate is determined by
the state of a random environment. In particular, the service rate is equal
to the bandwidth share of a permanent customer in the G/G/1 queue under
the PS discipline. We focus on the case that the traffic process of the G/G/1
queue has heavy-tailed features. In the first part of Chapter 7, we assume that
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the input is a fluid with constant rate. In the second part we allow a fairly
general non-decreasing input process, with renewal input and On-Off sources as
special cases. The main result of this chapter is the exact asymptotic behavior
of the workload in case the queue is critically loaded. We note that Chapter 7
is presented in the specific context of the integration of streaming and elastic
traffic. In that case, the random environment consists of elastic users and the
workload as performance measure for the streaming applications is especially
relevant as it may be interpreted as the deficit in service compared to a nominal
service target. This chapter is based on [24]. A shortened version has appeared
in [25] and an extended abstract may be found in [23].



Chapter 2

Queues with workload-dependent

service and arrival rates

2.1 Introduction

In practical queueing scenarios, the speed of the server often depends on the
amount of work present. Several situations where this phenomenon may occur
are extensively described in Chapter 1. One example is a production system
where the server is not a machine but a human being. For instance, Bertrand
and Van Ooijen [30, 169] describe a production system where the productivity
of the shop personnel, that is, the speed of the server, is relatively low when
there is much work (stress) or when there is very little work (laziness), see also
Section 1.3. In addition, the rate at which jobs arrive at the service system may
also depend on the amount of work present. In the human-server example, we
may try to control the arrival of jobs to optimize server performance. Another
application area of queues with workload-dependent rates are packet-switched
communication systems where the transmission rate of data flows may be dy-
namically adapted based on the buffer content, see for instance [71, 73, 119, 140]
or Section 1.5. In particular, implicit feedback information on the buffer state
provides the basis for TCP to regulate the transmission rate of Internet flows.
We refer to Subsection 1.5.2 for literature on the application of queueing models
with workload-dependent rates in communication systems.

The above considerations lead us to study single-server queues with state-
dependent interarrival times and general (state-dependent) service speed, which
forms the basic model of the thesis. In the first part of this chapter, we analyze
an extension of the dam discussed in Subsection 1.4.2. Customers arrive at the
queueing system according to a Poisson process, where the arrival rate depends
on the workload. The service requirement of a customer is generally distributed,
and work is served according to a general release-rate function that also depends
on the workload. In the second part, the Markovian case is extended to the
regenerative case: We consider a similar model, however with general interarrival
times, which may depend on the amount of work present.

In ordinary queueing systems, the speed of the server and the arrival rate of
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customers are usually assumed to be constant over time. In such systems, the
Markovian case amounts to an ordinary M/G/1 queue, whereas the regenerative
case represents the classical G/G/1 queue. As noted in Section 1.4, the workload
process in a queueing model with general release rule constitutes a dam process
with state-dependent release. For references on dams with compound Poisson
input, we refer to Subsection 1.4.2. Literature on dams with more general input
processes can be found in Cohen and Rubinovitch [58], Kaspi et al. [93], and
references therein.

The two main goals of this chapter are the following. (i) To establish rela-
tionships between two queueing models with arrival rates λi(x) and release rates

ri(x), i = 1, 2, for which λ1(x)
r1(x)

= λ2(x)
r2(x)

, ∀x > 0. Such relationships will allow us

to obtain results for a whole class of models from the analysis of one particu-
lar model. (ii) To extend relations between the steady-state workload and the
workload at arrival times (waiting times) for the G/G/1 queue to queues with
workload-dependent arrival rates and service speeds. We now discuss these two
aspects in slightly greater detail.

Ad (i). We consider two related dams, or M/G/1 queues, with general
(state-dependent) arrival rate and service speed. We show that the workload
distributions are proportional and observe that the difference between the two
models is just a rescaling of time. A similar result holds for the workload
just before arrival instants — a quantity that does not necessarily equal the
waiting time when the service speed is workload-dependent. The derivation of
the proportionality relations is partly based on level crossing arguments that
lead to a Volterra integral equation of the second kind, see the methodology
described in Subsection 1.6.1. These insights also provide an important tool in
determining the steady-state workload distribution in an individual model. It
turns out to make a crucial difference whether or not the release-rate function
r(·) allows the possibility of an empty system.

Ad (ii). The G/G/1 queue with state-dependent release rate requires a
different method. Using a Palm-theoretic approach, we establish some general
relations between the workload just before arrival instants and the workload at
arbitrary time epochs. In the case of Poisson arrivals, we generalize the PASTA
property for a continuous-state Markov process. Moreover, various well-known
relations for ordinary G/G/1-type queues are extended to queues with general
release rates.

This chapter is organized as follows. In Section 2.2, we introduce the M/G/1-
type model with state-dependent arrival rate and service speed and consider the
level crossing equations. In Section 2.3, we present the proportionality relations
with respect to the workload process when we consider two related M/G/1-
type queues. The steady-state densities in some special cases are determined
explicitly in Section 2.4. In Section 2.5, we present several relations between
the steady-state workload and the workload just before arrival instants for the
G/G/1 queue with state-dependent release. Finally, Section 2.6 contains con-
clusions and suggestions for further research.
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2.2 Model description and preliminaries

In this section, we introduce some notation for the M/G/1-type queue with gen-
eral state-dependent arrival rate and service speed. The level crossing equation
is stated for this particular model and some special attention is paid to the case
that the workload process has no atom at state 0.

Model description
Consider a Markovian workload process with the following dynamics. Between
arrivals, the server serves according to some workload-dependent service rate
function r(x). Arrivals are governed by a workload-dependent rate function
λ(x). More precisely, let Vt be the workload at time t and Wn the workload
immediately before the n-th arrival epoch. Given that the workload at time t0
is w and the next arrival is at time t1 > t0, the workload process during the
interval (t0, t1) behaves as Vt0+t = w−

∫ t0+t

t0
r(Vs)ds (a deterministic process). If

A is distributed as the time until the next arrival (starting from initial workload

w), then Pw(A > t) = e−
∫ t
0
λ(Vs)ds, meaning that the hazard rate function of

A (its density divided by the tail) at t is given by λ(Vt). We assume that
λ(·) is nonnegative, left-continuous, and has a right limit on [0,∞). Also, we
assume that r(0) = 0 and that r(·) is strictly positive, left-continuous, and has
a strictly positive right limit on (0,∞). Each arrival increases the workload by
some positive amount (job size), where these amounts form a sequence of i.i.d.
random variables B1, B2, . . . , which are also independent of the interarrival
intervals. The random variables Bi have distribution function B(·), with mean
β, and LST β(·). See Figure 2.1 for a typical realization of the workload process.

PSfrag replacements

t

Vt

Figure 2.1: A typical sample path of the workload process {Vt, t ≥ 0} in a queue with
strictly increasing service-rate function.

Throughout, we assume that the workload process is ergodic and has a
stationary distribution. In order to prevent a general drift to infinity, the rate
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functions must satisfy lim supx→∞ β λ(x)
r(x) < 1 (see also Cohen [54] and Gaver and

Miller [80]). We refer to Browne and Sigman [46] for a more detailed discussion
on stability issues in case λ(·) is non-increasing. Next, let the steady-state
random variables corresponding to Vt and Wn be denoted by V and W , and let
v(·), w(·) denote their densities.

Define

R(x, z) :=

∫ x

z

1

r(y)
dy, 0 ≤ z < x <∞, (2.1)

representing the time required to move from state x down to state z in the
absence of any arrivals. Of particular interest is R(x) := R(x, 0) representing
the time required for a workload x to drain, again in the absence of arrivals. A
related quantity is

Λ(x, z) :=

∫ x

z

λ(y)

r(y)
dy, 0 ≤ z < x <∞.

In particular, Λ(x) := Λ(x, 0) determines whether or not the workload process
has an atom at 0 (see also Asmussen [10], p. 381, in case λ(·) is fixed). The case
Λ(x) <∞, for all 0 < x <∞, represents the situation that the workload process
has an atom at state 0, whereas Λ(x) = ∞, for some 0 < x < ∞ (and then
for all) corresponds to the case that state 0 cannot be reached by the workload
process. We assume that

∫ x

0 λ(y)dy and
∫ x

0 r(y)
−1dy cannot be both infinite.

Level crossings
Taking r(x) ≡ 1 and λ(x) ≡ λ results in the ordinary M/G/1 queue. The level
crossing identity for the workload is well-known in this case, see e.g. Cohen [52,
56]. In M/G/1-type queues with time-varying arrival rate, the workload level
crossing identity has been obtained by Takács [159], while Hasofer [84] shows
some additional properties. The proof proposed by Takács may be extended
in a rather straightforward way to queues with workload-dependent service and
arrival rates, see for instance Section 3.2. This results in the following theorem:

Theorem 2.2.1 The workload density v(x) exists and satisfies the equation

r(x)v(x) = λ(0)V (0)(1−B(x)) +

∫ x

y=0+

(1−B(x− y))λ(y)v(y)dy, x > 0.

(2.2)

This integro-differential equation has the following interpretation. The left-
hand side of the equation corresponds to the downcrossing rate through level
x, while the right-hand side represents the long-run average number of upcross-
ings through x from the workload level 0 and workload levels between 0 and x
respectively. If the workload process has an atom at state 0, it is obvious that
{Vt, t ≥ 0} is a regenerative process, with arrivals of customers in an empty
system as regeneration points. Under the assumption of an ergodic process, the
expected cycle length is finite and it follows from level crossing theory that the
workload density is well-defined. With some minor modifications, the result can
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be extended to workload processes that do not reach state 0 (see e.g. [54] for
details). We also refer to [45, 83] for formal proofs of a stationary density in
case λ(·) is constant. Note that if Λ(x) =∞, then V (0) = 0. However, the level
crossing equation still holds, and just the first term on the right-hand side of
(2.2) disappears, see [45] for details.

2.3 Relations between two M/G/1 queues

In this section we consider two isolated M/G/1 queues with arrival rates λi(·),
release rates ri(·) and service requirements Bin for the n-th customers (i = 1, 2).
Let Bi1, B

i
2, . . . be i.i.d. random variables with distribution function B(·), and let

ri(·), λi(·) have the same analytical properties as r(·), λ(·) specified in Section
2.2. Furthermore, define Λi(·, ·),Λi(·), Vi(·), vi(·), and wi(·) in a similar way
as we defined Λ(·, ·),Λ(·), V (·), v(·), and w(·) in Section 2.2. We assume that
the two queueing models, to be denoted as Models 1 and 2, are related in the
following way:

λ1(x)

r1(x)
=
λ2(x)

r2(x)
, ∀x > 0. (2.3)

Note that Λ1(x) thus equals Λ2(x). As a consequence, the workload process in
both models either has an atom at state 0, or does not hit state 0 at all.

We now state the three theorems of this section.

Theorem 2.3.1 For all x > 0,

v1(x)

v2(x)
= C

r2(x)

r1(x)
,

with C = λ1(0)V1(0)
λ2(0)V2(0)

if Λi(x) < ∞ for all 0 < x < ∞, and C = 1 if Λi(x) = ∞

for some 0 < x <∞.

We now turn to the density w(·). Without proof, we claim that it exists just
like v(·) (see Theorem 2.2.1 and the end of this section).

Theorem 2.3.2 Wi(0) = λi(0)Vi(0)/λ̄i, i = 1, 2, with λ̄i :=
∫∞

0+ λi(x)vi(x)dx+
λi(0)Vi(0), and for all x > 0,

wi(x) =
1

λ̄i
λi(x)vi(x), i = 1, 2.

Theorem 2.3.3 W1(0) = W2(0), and for all x > 0,

w1(x) = w2(x).

Remark 2.3.1 In principle Theorem 2.3.3 (Theorem 2.3.1) can be derived from
Theorems 2.3.1 and 2.3.2 (2.3.3 and 2.3.2). To give more insight into the under-
lying similarities between the two models, we prove each of the three theorems
separately. �
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Remark 2.3.2 Note that λi(x) ≡ λ would yield the PASTA property that the
workload at an arbitrary time and the workload at an arrival epoch have the
same distribution. Theorem 2.3.2 may thus be viewed as a generalization of
the PASTA property yet under the assumption of a continuous-state stationary
workload process. �

Proof of Theorem 2.3.1 We apply the level crossing identity to Model i and
define zi(x) := ri(x)vi(x), i = 1, 2. Then (2.2) reduces to

zi(x) = λi(0)Vi(0)(1−B(x))+

∫ x

y=0+

(1−B(x−y))
λi(y)

ri(y)
zi(y)dy, x > 0.

(2.4)
If Λi(x) =∞ for some 0 < x <∞, then Vi(0) = 0 and the result follows easily.
So assume that Λi(x) <∞ for all 0 < x <∞.

Observe that (2.4) is a Volterra integral equation of the second kind. Let its

kernel be K(i)(x, y) := (1−B(x− y))λi(y)
ri(y)

for 0 < y < x <∞ and K
(i)
∗ (x, 0) :=

1−B(x) for 0 < x <∞. Notice that due to (2.3) the kernels of both models are
the same and we may drop the index i from our notation. Now define recursively

Kn(x, y) :=

∫ x

y

K(x, z)Kn−1(z, y)dz, 0 < y < x <∞, n = 2, 3, . . . ,

and

Kn∗(x, 0) :=

∫ x

0+

Kn(x, y)K∗(y, 0)dy, 0 < x <∞, n = 1, 2, . . . ,

whereK1(x, y) := K(x, y) andK0∗(x, 0) := K∗(x, 0). So the classical successive-
substitution method for Volterra integral equations gives:

zi(x) = λi(0)Vi(0)K∗(x, 0) +

∫ x

0+

K(x, y)K∗(y, 0)λi(0)Vi(0)dy + . . .

= K0∗(x, 0)λi(0)Vi(0) +K1∗(x, 0)λi(0)Vi(0) + . . .

= λi(0)Vi(0)

∞
∑

n=0

Kn∗(x, 0). (2.5)

Dividing z1(x) by z2(x) and substituting zi(x) = ri(x)vi(x), i = 1, 2, yields

v1(x)

v2(x)
=
r2(x)

r1(x)

λ1(0)V1(0)

λ2(0)V2(0)
,

and we have shown the result. 2

The Volterra approach provides a useful tool for determining the workload
densities. For instance, Harrison and Resnick [83] solved the densities in case
λ(·) is fixed and Λi(x) < ∞ for all 0 < x < ∞. Perry and Asmussen [137]
used the same approach to find workload densities for models with workload-
dependent arrival rates, but fixed r(·). We adopt the analysis carried out in
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[83] and use the bound K(x, y) ≤ λ(y)
r(y) to show inductively that K(n+1)∗(x, y) ≤

(Λ(x,y))n

n!
λ(y)
r(y) . Note that the sum in (2.5) is well-defined (in case Λi(x) <∞ for

all 0 < x <∞) and we thus have a closed-form expression for zi(x) and, hence,
for vi(x). An explicit formula is presented in Chapter 3, Section 3.3.

If Λi(x) =∞ for some 0 < x <∞, then the workload process approaches the
state 0, but never reaches it. In this case the integrated kernel,

∫ x

0 K(y, 0)dy,
is unbounded and equation (2.4) is often referred to as a singular integral equa-
tion. Brockwell et al. [45, Theorem 5] obtained an explicit expression for the
stationary workload distribution in case λ(·) is fixed. For references on the so-
lution of singular integral equations in general, we refer to Linz [116], Ch. 1
and 3.5, Mikhlin [123] Ch. 1 and 3, and Zabreyko et al. [175], Ch. 1, 6, and 9.
In Section 2.4 we give the steady-state workload distribution for some special
cases.

Let us now give an intuitive explanation of Theorem 2.3.2, based on a
Bayesian argument. In Section 2.5 we derive a more general result, from which
the theorem follows as a special case.

Consider either of the two models and drop the index i from the notation.
The probability of having two or more arrivals in a small time interval (t, t+∆)
is of order o(∆). Then, by simple conditioning arguments we have P(arrival in
(t, t + ∆)) =

∫∞

y=0+ λ(y)∆v(y)dy + λ(0)∆V (0) + o(∆) and P(arrival in (t, t +

∆)|Vt > x)P(Vt > x) =
∫∞

y=x λ(y)∆v(y)dy + o(∆). Let us consider the tail
probability of the workload at jump epochs,

P(W > x) = lim
∆→0

P(Vt > x|arrival in (t, t+ ∆))

= lim
∆→0

P(arrival in (t, t+ ∆)|Vt > x)P(Vt > x)

P(arrival in (t, t+ ∆))

=
1

λ̄

∫ ∞

y=x

λ(y)v(y)dy, x ≥ 0,

where λ̄ =
∫∞

y=0+ λ(y)v(y)dy + λ(0)V (0). The intuitive explanation of the the-
orem is completed by differentiation:

w(x) =
d

dx
(1− P(W > x)) =

1

λ̄
v(x)λ(x).

We now turn to Theorem 2.3.3. Let us consider either of the two models
and define

Awn,x = workload decrement between arrivals n and n+ 1, when
workload immediately after n-th arrival epoch is x, n ∈ N, x > 0.

Observe that Awn,x may be interpreted as some kind of interarrival time between
the n-th and (n+1)-th customer. While the interarrival time is usually expressed
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in terms of time, Awn,x represents the workload decrement between two successive
arrivals. Remember that a similar argument holds for the service requirement,
which in general does not equal the service time, and the workload at jump
epochs, which in general differs from the waiting time. This demonstrates that
the following well-known recursion, usually interpreted in terms of time, holds
again in terms of workload:

Wn+1 = (Wn +Bn −A
w
n,Wn+Bn

)+, n = 1, 2, . . . . (2.6)

If we omitted the times between successive arrivals, we would have a sys-
tem of only upward (arrival of a customer) and downward jumps (workload
decrement during an interarrival interval). The distribution of the workload at
arrival epochs only depends on the sizes of these jumps, as can be concluded
from (2.6). Hence, the workload at jump epochs only depends indirectly on
the time between two successive arrivals. The distribution of the service re-
quirements (upward jumps) is by assumption identical for Models 1 and 2. In
order to prove Theorem 2.3.3, it suffices to show that the sizes of the down-
ward jumps, i.e., the workload decrements during an interarrival interval, are
identically distributed for Models 1 and 2.

Thus let us consider the interarrival time and the workload decrement dur-
ing an interarrival interval of either of the two models. Assume that at time
0 a customer arrives and the workload just after the arrival is W + B, with
realization W + B = y. Denote by Aty the conditional interarrival time and by
Awy the conditional workload decrement during the interarrival time, i.e., the
event {Awy > v} represents the situation that when the next customer arrives
the workload is smaller than y− v. If we let tv be the conditional time required
for a workload decrease of v, then the events {Awy > v} and {Aty > tv} are
identical.

Next, use an alternative characterization of a Poisson arrival process with
rate λ(x) when the workload equals x, to determine the excess distribution of
the conditional interarrival time,

P(Aty > tv) = e−
∫ tv

t=0
λ(Vt)dt, y > v. (2.7)

Recall that r(x) is the depletion rate at time t if the workload Vt equals x.
Hence, between successive arrivals the workload process satisfies (see, e.g., [10,
54, 80, 83])

dVt
dt

= −r(Vt). (2.8)

Since the amount of work at t = 0 equals y, and tv is defined such that
∫ y

y−v
1

r(x)dx = tv , the next proposition follows easily from (2.7) and (2.8).

Proposition 2.3.1 Assume that the workload just after an arrival is y (W +
B = y), then, for y > v:

P(Awy > v) = e−
∫ y

u=y−v
λ(u)
r(u)

du. (2.9)
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Differentiation of (2.9) yields the conditional density:

d

dx
P(AwW+B ≤ x|W +B = y) =

λ(x)

r(x)
e−

∫ y
z=x

λ(z)
r(z)

dz, 0 < x < y. (2.10)

Proof of Theorem 2.3.3 Since Awn,x depends on Wn +Bn, n = 1, 2, . . ., (2.6)
leads to:

P(Wn+1 > z) =

∫ ∞

u=z

P(Awn,u < u− z |Wn +Bn = u)dP(Wn +Bn ≤ u).

Notice that the distribution of Awn,x (cf. (2.9)) depends only on the ratio λ(·)
r(·) and

hence is the same in both models. Since the distribution of the service require-
ments is the same by assumption, we can use a stochastic coupling argument to
complete the proof. 2

From Theorem 2.3.1 and the discussion of Theorem 2.3.3 we can conclude
that changing between Model 1 and Model 2 is just a rescaling of time. If
we consider the workload process of Model i, with the speed of time equal
to 1/ri(x) when the workload is x, then Models 1 and 2 are equivalent. The
special case with r1(x) ≡ r1 and r2(x) ≡ r2 can thus be interpreted as observing
the workload at two different (but constant) time scales, which clearly does not
affect the workload distribution. See also [137] for the same time-transformation
argument in the extreme case of r1(x) = 1/λ2(x) and r2(x) = λ1(x) ≡ 1.
It immediately follows from the rescaling arguments and the existence of a
workload density at arrival instants in the ordinary M/G/1 queue, that the
density w(·) in the more general model is also well-defined.

2.4 Special cases

The main results of Section 2.3 provide us with a tool to translate known results
for a particular model to a whole class of related models. In this section we
consider several examples. Throughout the section we use the notation f(x) ∝
g(x) if f(x) = cg(x) for all x > 0 and some constant c.

Case (i): Arrival control follows service rate.
We start with an M/G/1 queue with λ(x) = Cr(x). Note that this special case
might be applicable to queues where the arrival control must follow the service
rate, see for instance [30]:

• high workload: panicking server, reduce the arrival rate

• medium workload: fast server, send more work

• small workload: lazy server, send less work
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Note that the third case does not seem desirable. However, in practical situ-
ations the main focus will be on a server with a relatively high workload, and
regimes with a small workload are usually of limited interest.

It is obvious that λ(x)
r(x) = C

1 . Apply Theorems 2.3.1 and 2.3.3 to see that

r(x)v(x) ∝ vM/G/1(x) and w(x) = wM/G/1(x), where vM/G/1(·) and wM/G/1(·)
are the workload densities of the ordinary M/G/1 queue with arrival rate C
and service speed 1, at arbitrary and arrival epochs, respectively. Hence the
workload process in the M/G/1 queue with general service speed r(x) and arrival
rate λ(x) = Cr(x) can be analyzed in detail.

Case (ii): Exponential service times.
Consider the M/M/1 queue with general λ(·) and r(·) functions. Substituting
B(x) = 1− e−µx in (2.2) gives

r(x)v(x) = λ(0)V (0)e−µx +

∫ x

y=0+

λ(y)v(y)e−µ(x−y)dy, x > 0. (2.11)

Multiply by eµx, define f(x) := eµxr(x)v(x) and differentiate to obtain

d

dx
f(x) = f(x)

λ(x)

r(x)
.

The solution of this differential equation is unique up to a constant and may be
written in the form

f(x) = C exp {Λ(x, 1)} , x > 0. (2.12)

Using a straightforward extension of Asmussen [10], p. 388, it follows that we
have positive recurrence (and hence, C can be determined by normalization) if
and only if

α :=

∫ ∞

0

1

r(x)
exp {Λ(x, 1)− µx} dx <∞.

If V (0) = 0, then C = α−1. However, if V (0) > 0, observe from (2.11) that
limx↓0 r(x)v(x) = λ(0)V (0) and use the straightforward extension Λ(x, y) =
−Λ(y, x) for 0 < x < y < ∞ to see that C = λ(0)V (0) exp{Λ(1, 0)}. Hence, if
V (0) > 0, then

v(x) =
λ(0)V (0)

r(x)
exp

{
∫ x

0

(

λ(y)

r(y)
− µ

)

dy

}

.

From this solution it becomes immediately clear that for two models with
λi(·) and ri(·) (i = 1, 2) satisfying (2.3), Theorem 2.3.1 holds in the M/M/1
case.

Case (iii): Shot noise.
Another well-known example is the shot noise model, i.e., λ(x) ≡ λ and r(x) =
rx, cf. [95], [149], p. 393, [56], p. 558, or Example 1.2.5. First notice that for the
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shot noise model Λ(x) = ∞ for x > 0 and the Volterra successive-substitution
approach cannot (at least not directly) be applied. However, it is still possible
to analyze this model due to the special form of λ(·) and r(·). First consider
the level crossing identity (2.2) for this case,

rxv(x) = λ

∫ x

y=0+

(1−B(x− y))v(y)dy, x > 0.

Let φ(s) :=
∫∞

0
e−sxv(x)dx be the Laplace Transform (LT) of the workload

density, then − d
dsφ(s) =

∫∞

0
e−sxxv(x)dx and we have

−
d

ds
φ(s) =

λ

r

1− β(s)

s
φ(s).

Solving this differential equation yields (cf. [95], [149], p. 393, or [56], p. 558)

φ(s) = exp

{

−
λ

r

∫ s

0

1− β(u)

u
du

}

. (2.13)

Because of the PASTA property, the LT of the workload density at arrival epochs
also equals φ(·).

Since the shot noise model is thus solved, we immediately obtain the LT of
the workload density at arbitrary and at arrival epochs of models with λ(x) =
f(x)xa and r(x) = f(x)xa+1, where

∫ x

0 f(y)yady and
∫ x

0 f(y)−1y−(a+1)dy are
not both infinite (use Theorems 2.3.1-2.3.3).

Furthermore, let us consider some special properties of the shot noise model.
Take λ ≡ r, and use (2.9) to observe that, given Wn + Bn, Wn+1 is uniformly
distributed on the stochastic interval (0,Wn+Bn). This means that the steady-
state distribution of W must satisfy

W =d U(0,W +B), (2.14)

with U(x, y) denoting the uniform distribution on the interval (x, y) and =d

indicating equality in distribution. But if W is U(0,W + B) distributed, then
B must be U(0,W + B) distributed as well. Hence, in a model with expo-
nentially distributed service requirements, W must have the same exponential
distribution as the service requirement B.

Remark 2.4.1 Using LT’s it can also be readily shown that Equation (2.14),
with B being exp(µ) distributed, implies that W is exp(µ) distributed. Indeed,
(2.14) implies that the LT ψ(s) of W satisfies

ψ(s) =
1

s

∫ s

σ=0

ψ(σ)
µ

µ+ σ
dσ,

with boundary condition ψ(0) = 1, which after differentiation yields ψ(s) = µ
µ+s .

�
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Another special case arises when the service requirements are exponential
random variables with rate µ, while λ, r are not necessarily identical. Substi-
tuting β(s) = µ

µ+s in (2.13) yields

φ(s) =

(

µ

µ+ s

)λ/r

.

This is the LT of the Gamma distribution, i.e., v(·) ∝ Gamma(λr , µ) and due

to the PASTA property also w(·) ∝ Gamma(λr , µ). Furthermore, if we consider

the model with λ(x) = λ
x and r(x) ≡ r, it follows that w(·) ∝ Gamma(λr , µ)

and v(x) is proportional to xw(x), hence, v(·) ∝ Gamma(λr + 1, µ). Note that
taking λ ≡ r indeed gives that w(·) is exponentially distributed with parameter
µ.

Remark 2.4.2 Related to shot noise is the model with λ(x) ≡ λ and r(x) =
p+rx. Note that the workload process has an atom at 0 and the workload density
can thus be formally written as an infinite sum of Volterra kernels. Paulsen and
Gjessing [136] obtained some more explicit formulas for this case in the setting
of a risk process. In particular, the workload excess probability may be written
in terms of Bessel functions for Erlang(2, µ) service requirements, and in terms
of confluent hypergeometric functions for hyperexponential service requirements
consisting of two exponentials. �

Case (iv): Some other models.
Consider the M/G/1 queue with λ(x) ≡ λ and r(x) = x2. Using the level
crossing identity (2.2) and noting that

∫∞

0
x2v(x)e−sxdx = φ

′′

(s) yields

φ
′′

(s) = λ
1− β(s)

s
φ(s). (2.15)

Denoting g(s) := λ 1−β(s)
s and using the transformations φ(s) = ef(s) and h(s) =

f
′

(s) gives

h
′

(s) +
[

h(s)
]2

= g(s).

This non-linear first-order differential equation is in general very difficult to
solve. Note that Λ(x) = ∞, for all x > 0, and the workload process can thus
not reach state 0. However, for some specific choices of the service requirement
distribution we obtain an expression for the LT. For instance, the LT of v(x) in
the M/M/1 case is given by (use (2.12))

φ(s) = G

∫ ∞

0

e−(s+µ)x

x2
e−

λ
x dx,

with G some normalizing constant. Integrating φ
′′

(s) by parts shows that (2.15)
is satisfied for the case of exponential service requirements.



2.5 Palm-theoretic approach 41

If the service requirements are Erlang(2, µ) distributed, then the LT may
be written as a weighted sum of Bessel functions. Alternatively, substituting
λ(x) ≡ λ, r(x) = x2 into (2.2), defining z(x) := eµxv(x), and differentiating
twice, yields

x2z
′′

(x) + (4x− λ)z
′

(x) + (2− λµ)z(x) = 0. (2.16)

Applying Maple to solve this second-order differential equation, it is seen that
the steady-state density v(·) itself is also a weighted sum of Bessel functions
(just like the LT).

We conclude with the observation that if we can calculate v(·) and/or w(·)
this immediately gives results for M/G/1 models with λ(x) = f(x)xa and
r(x) = f(x)xa+2, where

∫ x

0 f(y)yady and
∫ x

0 f(y)−1y−(a+2)dy are not both
infinite (again use Theorems 2.3.1-2.3.3).

Remark 2.4.3 If λ(x) ≡ λ and r(x) = eax, then R(x) =
∫ x

0
e−aydy < ∞

for 0 < x < ∞, |a| < ∞. In this case, we can follow [83], using the bound
K(x, y) ≤ λ

r(y) and show inductively that, for 0 < y < x <∞,

Kn+1(x, y) ≤
λn+1(R(x)−R(y))n

r(y)n!
=
λn+1e−ay(e−ay − e−ax)n

ann!
.

Thus the sum
∑∞
n=1 Kn(x, y) is well-defined, and hence,

∑∞
n=0 Kn∗(x, y) is well-

defined as well. So the steady-state workload density is given by (2.5):

v(x) = λV (0)e−ax
∞
∑

n=0

Kn∗(x, 0), x > 0,

with V (0) determined via normalization:

V (0) =

[

1 +

∫ ∞

0+

λe−ax
∞
∑

n=0

Kn∗(x, 0)dx

]−1

.

Of course, this can be extended to models with λ(x) = f(x)ebx and r(x) =
f(x)eax, where

∫ x

0
f(y)ebydy and

∫ x

0
f(y)−1e−aydy are not both infinite. �

2.5 Palm-theoretic approach

So far, we considered M/G/1-type queues with general arrival and service rate,
λ(·), r(·), depending on the amount of work in the system. Recall that Bn
denotes the service requirement of the n-th customer and An denotes the inter-
arrival time between the n-th and (n+1)-th customer, n = 0, 1, . . ., where B and
A are their steady-state random variables. Furthermore, let Vt again denote the
workload at time t and let Wn again be the workload immediately before the
n-th jump epoch, with steady-state random variables V and W , respectively.

In this section, we first continue the study of this Markovian case. Using
Palm-theoretic principles, we establish a general relation between V and W ,
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or rather f(V ) and f(W ). Some specific well-chosen f(·)-functions yield con-
venient relations for, e.g., the tail probability, the expectation, or the LST of
the considered random variables. In addition, Theorem 2.3.2 follows easily as a
corollary. We proceed by allowing general renewal arrival processes and again
establish a general relation between V and W . Some examples show that the
relations may be viewed as extensions of some well-known relations for ordinary
G/G/1 queues. Furthermore, in case of Poisson arrivals, the level crossing equa-
tions are derived in an alternative way. We conclude with an extension of the
dynamics driving the workload process in the ordinary G/G/1 queue to similar
dynamics in G/G/1-type queues with general release rate.

In Sections 2.3 and 2.4 the arrivals followed a Poisson process. We applied the
level crossing equations (2.2) to determine the limiting distribution and to show
some equivalence properties. In order to handle the general renewal nature of
the input process, we adopt a totally different approach based on Palm-theoretic
principles, see for instance [16, Section 1.3]. Specifically, we express E[f(V )] as
a stochastic mean value over one arbitrary interarrival interval. Let W +B and
WA denote the workload at the beginning and end of the (arbitrary) interarrival
interval A, respectively. If we assume that the function f(·) is such that the
considered expectations exist and are finite, then

E[f(V )] =
1

EA
E

[
∫ A

t=0

f(Vt)dt

]

. (2.17)

Remark 2.5.1 In fact, this stochastic mean-value formula is an application
of Campbell’s theorem, see e.g. [16, Section 1.2] or [156, Section 5.4]. Camp-
bell’s theorem establishes a link between functions of time-stationary and event-
stationary marked point processes. A special case is the so-called (first) inversion
formula, which relates stationary probabilities to Palm probabilities. Combined
with the definition of Palm probabilities this directly provides Equation (2.17).
�

First, let us consider the Markovian case.

Theorem 2.5.1 Let f(·) be such that E[f(V )] exists and is finite, then

E[f(V )] = E

[

f(W )

λ(W )

]

1

E

[

1
λ(W )

] . (2.18)

Proof Starting with the stochastic mean-value result (2.17) and introducing
the indicator function I(·), we have

E[f(V )] =
1

EA
E

[
∫ A

t=0

f(Vt)dt

]

=
1

EA
E

[
∫ ∞

t=0

f(Vt)I(A > t)dt

]

.



2.5 Palm-theoretic approach 43

Note that E[I(A > t)|W + B] = P(A > t|W + B) = P(WA < Vt|W + B), and
use (2.8) to see that

E[f(V )] =
1

EA
E

[
∫ 0

x=W+B

f(x)P(WA < x|W0 = W +B)
dx

−r(x)

]

=
1

EA
E

[
∫ W+B

x=0

f(x)

λ(x)
dP(WA ≤ x|W0 = W +B)

]

=
1

EA
E

[

f(WA)

λ(WA)

]

. (2.19)

The second equality sign follows by combining (2.9) and (2.10). Notice that WA

and W have the same distribution. Furthermore, taking f(x) ≡ 1 yields

EA = E

[

1

λ(W )

]

,

which completes the proof. 2

Let us briefly consider some special cases of f(·). Taking f(x) = x, respec-
tively f(x) = e−sx, gives a relation between EV and EW , respectively a relation
between the LST’s of V and W . Furthermore, taking f(x) = I(x > v) expresses
the steady-state excess distribution of the workload in terms of λ(·) and the
steady-state workload density at arrival epochs. Taking f(x) = λ(x)g(x) yields

E[λ(V )g(V )] =
E[g(W )]

E

[

1
λ(W )

] = E[λ(V )]E[g(W )], (2.20)

or equivalently

E[g(W )] =
E[λ(V )g(V )]

E[λ(V )]
,

where the second equality sign in (2.20) follows from taking f(x) = λ(x) in
(2.18). Now taking g(x) = e−sx yields

E
[

e−sW
]

=
E
[

λ(V )e−sV
]

E[λ(V )]
. (2.21)

Because of the one-to-one correspondence between an LST and its inverse, (2.21)
implies that the steady-state workload density at arrival epochs w(x) is propor-
tional to the product of λ(x) and the steady-state workload density v(x). Note
that we have just proven Theorem 2.3.2.

Now let us consider a generalization of the above-described M/G/1-type
model, by allowing generally distributed interarrival times, which may depend
on the workload W found upon arrival according to some distribution P(A <
x|W = w). We again derive a relation between V and W by starting from
the stochastic mean-value result (2.17). Let Br denote the residual service

requirement with density h(·) = 1−B(·)
EB .
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Theorem 2.5.2 Let f(·) be such that E[f(V )] exists and is finite, then

E[f(V )|V > 0] = E[r(V )|V > 0]E

[

f(W +Br)

r(W +Br)

]

. (2.22)

Proof First define g(w, z) :=
∫ z

0 f(w + u)du and consider

E

[

∫ B

0

f(w + x)dx

]

= E[g(w,B)]

=

∫ ∞

0

g′(w, x)P(B > x)dx+ g(w, 0)

=

∫ ∞

0

f(w + x)P(B > x)dx

= EBE[f(w +Br)]. (2.23)

Starting with the stochastic mean-value result (2.17), making the substitution
u = Vt and using (2.8) yields

E[f(V )] =
1

EA

(

E

[
∫ W

u=W+B

f(u)
du

−r(u)

]

+ f(0)E(A− τ)+

)

, (2.24)

where x+ = max(0, x) and τ := inf{t > 0 : Vt = 0}. As V = 0 might be a
special workload level, we focus on V > 0, resulting in:

E[f(V )|V > 0]P(V > 0) =
1

EA
E

[

∫ W+B

u=W

f(u)

r(u)
du

]

. (2.25)

Since Wn+1 depends on Wn+Bn, the boundaries in
∫W+B

W
really are dependent,

as they represent the workloads at two successive arrival epochs. But we can

rewrite E[
∫W+B

W
] = E

[∫W+B

0
−
∫W

0

]

and observe that both Wn and Wn+1 have
the same steady-state distribution as W . Thus we can rewrite (2.25) into

E[f(V )|V > 0]P(V > 0) =
1

EA
EB

[

∫ ∞

w=0

dP(W ≤ w)

∫ w+B

u=w

f(u)

r(u)
du

]

=
1

EA

∫ ∞

w=0

dP(W ≤ w)EBE

[

f(w +Br)

r(w +Br)

]

=
EB

EA
E

[

f(W +Br)

r(W +Br)

]

, (2.26)

where we have used (2.23) in the second equality. The theorem follows by taking
f(x) = r(x), leading to E[r(V )|V > 0]P(V > 0) = EB

EA . 2

Again, taking respectively f(x) = x, f(x) = e−sx, and f(x) = I(x > v)
gives a relation between the workload at arbitrary epochs V and the workload
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at arrival epochs W , for respectively the expectation, the LST, and the tail
probabilities.

Taking f(x) = r(x)g(x) yields

E[r(V )g(V )|V > 0] = E[r(V )|V > 0]E[g(W +Br)],

and in particular

E
[

r(V )e−sV |V > 0
]

= E [r(V )|V > 0]E
[

e−s(W+Br)
]

. (2.27)

The latter relation implies that the steady-state density of W + Br is propor-
tional to the product of r(·) and the conditional steady-state density of V .

Using (2.27) we obtain an alternative proof of the level crossing identity
(2.2). To show this, we let the arrival process be Poisson with intensity λ(x)
when the workload equals x. Note that the interarrival time and workload at
arrival epochs are dependent; however, we can still apply Theorem 2.5.2 and
(2.24). Furthermore, observe that for the choice of f(x) = r(x)e−sx, we have
that f(0) = 0, since we assumed that r(0) = 0. Then, by conditioning, it follows
directly from (2.26) that E[r(V )] = EB

EA , and similarly, we can rewrite (2.27) into

E
[

r(V )e−sV
]

=
EB

EA
E

[

e−s(W+Br)
]

.

Using the one-to-one correspondence between an LST and its inverse again,
yields

r(x)v(x) =
EB

EA

∫ x

y=0−

1−B(x− y)

EB
w(y)dy,

where the 0− in the integral denotes the inclusion of the (possibly excep-
tional) point 0. Furthermore, we had proven that w(y) = λ(y)v(y)/λ̄, with
λ̄ =

∫∞

0−
λ(y)v(y)dy (see for instance Theorem 2.3.2). Take f(x) = λ(x) in

(2.19) to see that 1/λ̄ = EA and the constants cancel,

r(x)v(x) =

∫ x

y=0−

(1−B(x− y))λ(y)v(y)dy, x > 0.

Hence, we have shown the level crossing identity (2.2) in an alternative way.

Remark 2.5.2 Formula (2.25) is also valid when the n-th service requirement
Bn is dependent on the workload Wn at its arrival. �

Remark 2.5.3 It is worth noting that taking r(x) ≡ 1 in (2.27) results in a
well-known result for the GI/G/1 queue:

V |V > 0 =d W +Br,

see also [56], p. 296, or [10], p. 274. �
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Another interesting relation between V andW in the ordinary GI/G/1 queue
is presented in Asmussen [10], p. 274:

V =d (W +B −Ar)+, (2.28)

where Ar denotes a residual interarrival time. We now generalize (2.28) to a
G/G/1 queue with general service rate r(x) when the workload equals x. By
the stochastic mean-value result (2.17) and some similar manipulations as we
did proving Theorems 2.5.1 and 2.5.2, one can find the following relation:

E[f(V )] =
1

EA
EA,Vt

[
∫ ∞

t=0

f(Vt)I(A > t)dt

]

= EVt

[
∫ ∞

t=0

f(Vt)
P(A > t)

EA
dt

]

= E[f(VAr )].

Take f(x) = I(x > v), where I(·) is the indicator function, then it follows that
P(V > v) = P(VAr > v). The latter probability equals the probability that Ar

is less than the time required for a process, which decreases according to the
function r(·), to go from W + B (workload at t = 0) to v. Recall that R(x)
(see (2.1)) represents the time required for a workload x to drain in the absence
of any arrivals. Moreover, the time required to go from W + B to v according
to the described process equals R(W + B) − R(v) = R(W + B, v). Hence, we
obtain

P(V > v) = P(R(W +B)−R(v) > Ar), v ≥ 0.

When r(x) ≡ 1, this indeed yields (2.28).

In the remainder of this section we assume that the workload process {Vt, t ≥
0} has an atom at zero, or equivalently, that R(x) <∞. Our goal is to study the
process {R(Vt), t ≥ 0}. Note that R(x) (like R(w + x,w)) is strictly increasing
in x so we can speak unambiguously of R−1(t). We are interested in the service
(release) process, and assume for the moment that the arrival process is shut
off. Besides the time required for a workload u to go down to x, 0 ≤ x ≤ u, in
the absence of any arrivals (which equals R(u) − R(x)), we are also interested
in, for instance, the workload level at time t > 0 when V0 = u. It is well-
known that the latter expression equals R−1(R(u)− t) [83]. So, in principle it is
possible to switch from the workload interpretation to the time interpretation
and vice versa. However, there does not seem to be much hope for convenient
expressions.

Using the definition of R(·) and the transformation property (2.8) between
workload and time, it is easy to see that R(V ) transforms the workload V into
the time required to finish the work in the system when no arrivals occur. This
means that as long as there are no jumps, the process R(Vt) decreases linearly
with slope −1 until R(Vt) = 0 and then remains 0 until the next arrival. To get
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some feeling for the R(Vt) process, it is easiest to think of its graphical repre-
sentation: we have rescaled the workload axis such that in each time interval of
length ∆x where no arrival occurs, the decrement of the function R(·) is ∆x.
This means that every very small workload interval (x, x + r(x)∆x) of the Vt
process is compressed (or expanded) to an interval (x, x + ∆x). Since r(·) is
left-continuous and has right-hand limits, it is bounded on closed intervals and
hence the time required to move down from level x+r(x)∆x to level x is indeed
r(x) ∆x

r(x) = ∆x for ∆x small enough.

The jump sizes of the R(Vt) process consist of the differences of the time
required to empty the system just before, and just after, the arrival epoch.
Hence, in steady state this service requirement equals R(W + B) − R(W ), or
alternatively R(W + B,W ). Thus the R(Vt) process behaves like an ordinary
G/G/1 queue with workload-dependent service requirements, and follows the
same sample path as Vt if we transform the jump size distribution according
to the above integral. From the arguments above we can observe that for the
G/G/1 queue with service rate r(x) when the workload equals x, we have the
following relations between V and W :

Theorem 2.5.3 If R(x) <∞ for all 0 < x <∞, then

R(V ) =d
(

R(W +B)−Ar
)+
, (2.29)

R(W ) =d
(

R(W +B)−A
)+
. (2.30)

Furthermore, if we were able to solve the stationary distribution (density) of
the R(Vt) process, denoted by V R(·) (vR(·)), we would have the stationary

distribution (density) of Vt, since v(x) = vR(x)
r(x) .

Remark 2.5.4 Taking r(x) ≡ 1 in (2.29) and (2.30) results respectively in
(2.28) and the well-known relation for the G/G/1 queue (see for instance [56],
p. 167). �

Remark 2.5.5 In a similar way like (2.22) we can derive that the expected

jump size of the R(Vt) process equals EBE

[

1
r(W+Br)

]

, where Br denotes a

residual service time. �

Hence, the transformation from a G/G/1 queue with general service rate
function r(·) to an ordinary G/G/1 queue (with a server working at unit speed)
can be interpreted as a rescaling of the service requirement. In the transformed
R(Vt) model, the amount of work a customer brings upon arrival includes the
time required to finish this additional workload. If, for instance, r(x) ≡ r, we
rescale the service requirement by the factor r−1 to take into account that the
server would have been working at speed r in the Vt process. Note that, in the
absence of any arrivals, the time required to finish a workload B at speed r
indeed equals the time required to finish a workload r−1B at unit speed.
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2.6 Conclusions and topics for further research

We studied single-server queues with state-dependent interarrival times and
service speed. The two main contributions of this chapter may be summarized
as follows.

Firstly, in the case of Poisson arrivals, we derived proportionality relations
between the workload distributions of two queues that have the same ratio of
arrival rate and service speed. Such relationships allow us to obtain results for
a whole class of models from the analysis of one particular model. Secondly,
we analyzed G/G/1-type queues with workload-dependent service speed and in-
terarrival times. Using a Palm-theoretic approach, several well-known relations
for the workload at various epochs in the ordinary G/G/1 queue were gener-
alized. Moreover, an extension of the PASTA result to M/G/1 queues with
state-dependent arrival rate followed as a by-product.

Finally, we like to mention a topic for further research. In production sys-
tems, for example, workload management may be realized by controlling the
arrival rate of new jobs, or by regulating the speed of the server. Arrival control
to optimize throughput is discussed, under some assumptions on the service
speed function, in Chapter 5. Another important issue is the design of the sys-
tem such that a target steady-state behavior of the workload is achieved. This
so-called reverse engineering (cf. [70]) is left for a further investigation.



Chapter 3

Finite-buffer queues

3.1 Introduction

In the previous chapter we analyzed the single-server queue with workload-
dependent service and arrival rates and an infinite buffer. In particular, we
distinguished between general and exponential interarrival times. In this chap-
ter, we extend the latter (Markovian) model to a model with finite buffer. The
renewal case is further addressed in Chapter 4, where we consider the relation
between the loss probability and the distribution of the cycle maximum in its
infinite-buffer counterpart. We refer to Chapter 1 for an exposition on the ap-
plicability of queueing systems with state-dependent service and arrival rates.

Various queueing models with restricted accessibility have been considered
in the literature. In this chapter, the admission of customers typically depends
on the amount of work upon arrival in addition to their own service require-
ments. In such systems, we may distinguish three main admission rules: (i)
the finite dam, governed by the partial-rejection rule (scenario f), (ii) systems
with impatience of customers depending on the amount of work found upon ar-
rival (scenario i), and (iii) queues regulated by the complete-rejection discipline
(scenario c).

The three main goals of the present chapter are the following. First, we es-
tablish relationships between two queueing models with arrival rates λi(x) and

service speeds ri(x), i = 1, 2, for which λ1(x)
r1(x)

= λ2(x)
r2(x) , ∀x > 0, thus extending

results from Chapter 2 to queues with restricted accessibility. These relation-
ships will allow us to obtain results for a whole class of models from the analysis
of one particular model. This is particularly useful in considering performance
measures such as steady-state workload densities and loss probabilities.

Our second goal is to obtain an explicit (formal) expression for the cycle
maximum in an M/G/1 queue with workload-dependent service and arrival
rate. This may be useful to determine the maximum buffer size. Exact results
for such systems are hardly known; we refer to Asmussen [7] for an overview on
cycle maxima.

Third, we derive a formal solution for the steady-state workload density in
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finite-buffer M/G/1 systems. The density may be expressed as the solution of a
Volterra integral equation. In some special cases, this reduces to an analytically
tractable expression. Otherwise, numerical methods are widely available, see
e.g. [88, 116]. Another tool to solve the workload density is the proportionality
of the workload distribution of systems with finite and infinite buffer capacities.
This relation is well-known for some traditional queueing models (where work is
depleted at unit rate), see [33, 52, 56, 85] and specifically Theorem 1.6.3. Using a
similar sample-path approach as in Subsection 1.6.3, the proportionality relation
is extended to similar systems with workload-dependent arrival and service rate.

In ordinary queueing systems, the workload just before a customer arrival
represents a waiting time, and the workload right after an arrival instant may
be identified with a sojourn time. For such models, the rejection rules have a
direct interpretation. Our first discipline, the finite dam (scenario f), represents
a system where every customer has a bounded sojourn time; a rejected customer
may enter the system but its sojourn time is restricted such that it exactly
equals the buffer size (i.e., partial rejection). This model is also commonly used
in the context of inventory and storage processes. Due to the above-mentioned
proportionality, the finite dam is closely related to the infinite-buffer version of
the model and a detailed analysis can be found in, e.g., [52, 56].

Under the second rejection discipline, scenario i, customers are only willing
to wait a limited amount of time. Results are also well-known for ordinary
queueing models, see e.g. [33, 49, 61, 62]. In queues with general service speeds,
the workload found upon arrival does in general not equal the waiting time.
However, these two quantities are closely related and the admission may depend
on the workload upon arrival.

Finally, the third discipline, scenario c, also considers the case in which cus-
tomers have a limited sojourn time. In contrast to scenario f , rejected customers
are completely discarded and do not join the queue. Results are only known for
the M/M/1 and M/D/1 case (see e.g. [49, 81]), and the Ph/Ph/1 case [117].
Asymptotics for more general models are obtained in [178].

This chapter is organized as follows. In Section 3.2 we introduce the gen-
eral model. The results for the Markovian case of Chapter 2 are summarized
and extended to finite-buffer queues in Section 3.3. In Section 3.4, the finite
dam (scenario f) is studied and the proportionality relation between finite and
infinite-buffer systems is presented. We also briefly consider scenarios i and c.
First-exit probabilities and cycle maxima are considered in Section 3.5, and we
conclude with some examples in Section 3.6.

3.2 Model description and preliminaries

In this section we introduce the general model and obtain some preliminary
results. Some examples of canonical finite-buffer models are given at the end of
the section.

We first describe the general system. Customers arrive at a queueing system
according to a Poisson process with arrival rate λ(x) when the workload equals
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x, x ≥ 0; in other words, the probability of an arrival in some interval (t, t +
h) equals λ(x)h + o(h) for h ↓ 0 when the work present at time t equals x.
We assume that λ(·) is nonnegative, left-continuous and has a right limit on
[0,∞). The service requirement of customer n is denoted by Bn, n = 1, 2, . . .,
where B1, B2, . . . are assumed to be independent, identically distributed with
distribution B(·), independent of the sequence of interarrival times.

Depending on the service requirement and the amount of work found upon
arrival, customers may or may not be (fully) accepted. In particular, if the
workload just before an arrival equals w, and the service requirement is b, then
the amount of work right after the arrival instant is g(w, b,K). We assume that
w ≤ g(w, b,K) ≤ w + b, where K represents the size of a possibly finite buffer
(see the end of this section for some examples).

We allow the server to operate according to a general service-rate (speed)
function, a function of the amount of work present. We denote the service-rate
function by r : [0,∞) → [0,∞), assume that r(0) = 0 and that r(·) is strictly
positive, left-continuous, and has a right limit on (0,∞).

In the general model, we define V gt as the workload at time t (with distribu-
tion function V gt (·)) and let W g

n be the workload immediately before the n-th
arrival epoch. We denote the steady-state random variables corresponding to
V gt and W g

n by V g and W g , respectively, and let V g(·) and W g(·) denote their
distributions, and vg(·) and wg(·) their densities. In the present chapter, it is
assumed that λ(·), r(·), B(·) are chosen such that the steady-state distribution
of the infinite-buffer version, that is, for g(w, b,K) = w+ b, exists (and then for
all g(·, ·, ·)). For details on stability and existence of steady-state distributions,
we refer to [45, 46].

Define

R(x) :=

∫ x

0

1

r(y)
dy, 0 < x <∞,

representing the time required for the system to become empty in the absence
of any arrivals, starting with workload x. Note that R(x) < ∞, for all x > 0,
means that state zero can be reached in a finite amount of time from any state
x > 0. A related quantity is

Λ(x) :=

∫ x

0

λ(y)

r(y)
dy, 0 < x <∞,

which determines whether the workload process of the infinite-buffer version of
the queue has an atom at state zero. In case of finite buffers, some modification
is required to regulate the workload behavior for states that can not be attained.
Specifically, set r(x) ≡ 1 and λ(x) ≡ λ for all x > 0 for which P(g(y,B,K) >
x) = 0, for all 0 ≤ y < x. Then the workload process has indeed an atom at
state zero if and only if Λ(x) < ∞ for all 0 < x < ∞, as in the infinite-buffer
queue, see Section 2.2. If we take λ(·) fixed (λ(x) ≡ λ), then Λ(x) = λR(x) and
we refer to Asmussen [10, Ch. XIV] and Brockwell et al. [45] for more details.

Furthermore, consider the interarrival time and its corresponding workload
decrement, i.e., the amount of work served during the interarrival time. De-
note by Ay the conditional workload decrement during the interarrival interval
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starting with workload y, i.e., the event {Ay > v} means that the workload
is smaller than y − v upon the arrival of the next customer. For convenience,
we remove the superscript w of Chapter 2 that was intended to stress the fact
that we consider a workload decrement instead of an interarrival interval. Note
that the time required to move from y down to v in the absence of any arrivals
equals R(y)−R(v). Since r(x) > 0 for all x > 0, it follows that R(·) is strictly
increasing, which implies a one-to-one correspondence between the interarrival
time and its corresponding workload decrement.

The conditional distribution of the workload decrement during an interar-
rival interval was obtained in Chapter 2. For completeness, we recall Proposi-
tion 2.3.1:

Proposition 3.2.1 Let the workload just after an arrival be y (g(w, b,K) = y);
then, for y > v,

P(Ay > v) = e−
∫ y

u=y−v
λ(u)
r(u)

du.

Returning to the workload process {V gt , t ≥ 0}, we may define the process
right before jump epochs recursively, by

W g
n+1 = max(g(W g

n , Bn,K)−An,g(W g
n ,Bn,K), 0), (3.1)

where An,g(·,·,·) is the workload decrement between the arrival of the n-th and
(n+1)-th customer, depending on the workload right after the n-th jump epoch.
In between jumps, the workload process is governed by the service rate function,
and satisfies

dV gt
dt

= −r(V gt ).

We refer to Harrison and Resnick [83] for a further discussion of the system
dynamics.

Kolmogorov equations
The Kolmogorov forward equations of the workload process can now be con-
structed using a similar approach as sketched in Subsection 1.6.1, see also [159],
[56], p. 263. First, note that in the interval (t, t + ∆t) a new customer may
arrive with probability λ(V gt )∆t + o(∆t) as ∆t ↓ 0. Then, conditioning on the
amount of work at time t, we deduce for x, t > 0 and some finite constant θ ≥ 0,

V gt+∆t(x) =

∫ x

0−

(1− λ(y + r(y)∆t)∆t)dyV
g
t (y + r(y)∆t)

+

∫ x

0−

λ(y + θ∆t)∆tP(g(y,B,K) ≤ x)dyV
g
t (y + θ∆t) + o(∆t).

Now, write for ∆t→ 0 (see also [56, 159]),

Vt+∆t(x) = Vt(x) + ∆t
∂

∂t
Vt(x) + o(∆t),

Vt(x+ r(x)∆t) = Vt(x) + r(x)∆t
∂

∂x
Vt(x) + o(∆t).
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Using similar arguments as in Subsection 1.6.1, we find the Kolmogorov forward
equation of the process:

∂

∂t
V gt (x) = r(x)

∂

∂x
V gt (x) −

∫ x

0−

λ(y)P(g(y,B,K) > x)dyV
g
t (y).

Letting t → ∞ and using the fact that vg(·) denotes a density (see [45, 46]
for details on existence and uniqueness of a steady-state solution in case of an
infinite buffer), we have for x > 0,

r(x)vg(x) = λ(0)V g(0)P(g(0, B,K) > x) +

∫ x

0+

λ(y)vg(y)P(g(y,B,K) > x)dy.

(3.2)
This equation is also well-known as the level crossing equation, see [68] and
Section 2.5 for alternative proofs. It reflects the fact that the rate of crossing
level x from above should equal, in steady-state, the rate of crossing level x from
below.

Special cases
As mentioned in Section 3.1, three important special cases of the general model
are finite-buffer dams (scenario f), systems with customer impatience (scenario
i), and queues regulated by the complete-rejection discipline (scenario c). The
finite-buffer dam, regulated by the partial-rejection discipline, originates from
the study of water dams. The content of a dam is finite and additional water
just overflows. In the context of queueing, this implies that the n-th arriving
customer is admitted to the system if and only if Wn + Bn ≤ K. However, a
partially rejected (not fully accepted) customer may enter the system, but with
restricted service requirement K −Wn.

Models with customer impatience stem from ordinary queueing systems,
with a server working at unit speed. In that case, the workload upon arrival
identifies a waiting time and the impatience is represented by the fact that
customers are only willing to wait a limited amount of time K. In case of
general service speeds, the n-th arriving customer is accepted if Wn ≤ K and
fully rejected otherwise (see [33] for some potential applications). Finally, in the
system with complete rejections, the n-th customer is admitted if Wn+Bn ≤ K,
and totally rejected otherwise.

A further special case is the queue with infinite buffer. This model is dis-
cussed in Chapter 2 and is simply the model where every customer is completely
accepted.

Summarizing, these four scenarios may be represented as follows:

g(w, b,K) =















w + b, infinite-buffer queue,
min(w + b,K), scenario f ; finite dam,
w + bI(w ≤ K), scenario i; customer impatience,
w + bI(w + b ≤ K), scenario c; complete rejection discipline.

Here I(·) denotes the indicator function. Finally, we indicate the notational
conventions arising from the models. If we consider an arbitrary g(·, ·, ·), we add
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an index g. The infinite-buffer system is denoted by just omitting the g from
the definitions of the general model (as in Chapter 2). The finite-buffer dam
may be obtained by substituting K for g. The models with customer impatience
and complete rejection are given by writing K, i and K, c for g, respectively.

3.3 Relations between two finite-buffer queues

In this section, we analyze the workload relations between two (general) finite-
buffer queues that have the same ratio between arrival and service rate. The
present section also provides some results for infinite-buffer queues that we ear-
lier found in Chapter 2. Specifically, we extend the relations of Theorems 2.3.1–
2.3.3 to queues with finite buffer. As described above, the infinite-buffer queue
of Chapter 2 is just a special case of the general setting studied here: Choose
g(w, b,K) = w + b, for all w, b ≥ 0. In addition, the formal solution of the
steady-state workload density is considered. However, we start by studying the
relation between workloads at arrival instants and arbitrary epochs.

In view of loss probabilities, the relation between the workload at jump
epochs and arbitrary epochs is significant. The following theorem extends The-
orem 2.3.2 to the general setting.

Theorem 3.3.1 Define the average arrival rate as λ̄g :=
∫∞

0+ λ(x)v
g(x)dx +

λ(0)V g(0). Then, W g(0) = λ(0)V g(0)/λ̄g and, for all x > 0,

wg(x) =
1

λ̄g
λ(x)vg(x).

Proof Observe that g(w, b,K) ≤ w+b ensures that the expected cycle length is
finite and the workload process is thus ergodic. By level crossing theory, it then
follows that the workload density is well-defined. Moreover, g(w, b,K) ≥ w rules
out scenarios of work removal. Now, substitute g(W g, B,K) for every W + B
in Theorem 2.5.1 and the results easily follow. 2

Note that λ(x) ≡ λ would yield the PASTA property, which states that the
workload at an arbitrary time and the workload at an arrival epoch have the
same distribution. With respect to workload as the key performance measure,
Theorem 3.3.1 may be viewed as a generalization of the PASTA property.

Theorems 2.3.1 and 2.3.3 indicate that two infinite-buffer models, with iden-
tical ratios between arrival and release rate, can be related. This relationship
between two different M/G/1 queues can be extended to the general model, as
presented in the next theorem.

Theorem 3.3.2 Consider two queueing models as defined in Section 3.2, to be
denoted as Models 1 and 2, such that λ1(x)/r1(x) = λ2(x)/r2(x), for all x > 0.
Then, W g

1 (0) = W g
2 (0), and for all x > 0,

wg1(x) = wg2(x). (3.3)
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Also,
vg1(x)

vg2(x)
= C

r2(x)

r1(x)
, (3.4)

with C =
λ1(0)V

g
1 (0)

λ2(0)V
g
2 (0)

if Λi(x) < ∞ for all 0 < x < ∞, and C = 1 if Λi(x) = ∞

for some 0 < x <∞.

Before we prove the above theorem, we first derive the steady-state workload
density. Besides the formal solution of this density being a slight extension of
infinite-buffer results, it turns out to be a useful tool to express the workload
density in a more elegant form in some special cases. Moreover, Equation (3.4)
follows then directly by division.

Now, consider either of the two models and assume for the moment that the
workload process has an atom at state 0. The Kolmogorov forward equations (in
the thesis also referred to as level crossing equations) of the workload process are
given by (3.2). Note that in many finite-buffer systems, the workload is bounded
by the capacity K, as in scenarios f and c. In that case, P(g(y,B,K) > K) = 0,
and we only have to consider 0 < x ≤ K. In scenario i, for example, cases with
workloads above K may exist. However, jumps occur only from workloads
smaller than K, and the range of integration can be modified to (0,min(x,K)].

Define z(y) := λ(y)vg(y) and multiply both sides of (3.2) by λ(x)/r(x). We
then obtain

z(x) =
λ(x)

r(x)
λ(0)V g(0)P(g(0, B,K) > x) +

∫ x

0+

λ(x)

r(x)
z(y)P(g(y,B,K) > x)dy.

(3.5)
We now proceed as in Subsection 1.6.1 (see also [83]): Define the kernel

Kg(x, y) := Kg
1 (x, y) := P(g(y,B,K) > x)λ(x)/r(x), 0 ≤ y < x < ∞, and let

its iterates be defined by

Kg
n+1(x, y) :=

∫ x

y

Kg(x, z)Kg
n(z, y)dz.

Note that in, for instance, the infinite-buffer system, P(g(y,B,K) > x) =
1−B(x−y), and thus K(x, y) = (1−B(x−y))λ(x)/r(x) similar to Section 2.3.
Moreover, observe that (3.5) is a Volterra integral equation of the second kind,
and rewrite it as

z(x) = λ(0)V g(0)Kg(x, 0) +

∫ x

0+

z(y)Kg(x, y)dy. (3.6)

Iterate this relation N − 1 times, for some N ∈ N, (see [83]):

z(x) = λ(0)V g(0)

N
∑

n=1

Kg
n(x, 0) +

∫ x

0+

z(y)Kg
N(x, y)dy.

Finally, define

Kg,∗(x, y) :=

∞
∑

n=1

Kg
n(x, y). (3.7)
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If this sum is well-defined, we have z(x) = λ(0)V g(0)Kg,∗(x, 0). However, we
may use the obvious bound Kg(x, y) ≤ λ(x)/r(x) to show inductively that
Kg
n+1(x, y) ≤ (Λ(x) − Λ(y))nλ(x)/(r(x)n!). Hence, the infinite sum is indeed

well-defined and
∫ x

0+ z(y)K
g
N(x, y)dy → 0 as N →∞. Now use the definition of

z(·) to obtain

vg(x) =
λ(0)V g(0)Kg,∗(x, 0)

λ(x)
, (3.8)

where V g(0) follows from normalization. The steady-state workload density in
our general setting is presented in the following lemma.

Lemma 3.3.1 If Λ(x) <∞ for all 0 < x <∞, then

vg(x) =
λ(0)V g(0)Kg,∗(x, 0)

λ(x)
, (3.9)

where V g(0) =
[

1 + λ(0)
∫∞

0
Kg,∗(x,0)
λ(x) dx

]−1

.

As indicated earlier, the workload density in the infinite-buffer case may be
obtained by defining K(x, y) = (1 − B(x − y))λ(x)/r(x), see also Section 2.3.
In the remainder, we refer to this kernel as the basic kernel as it appears in
many queueing systems. The iterates Kn(x, y) and the infinite sum K∗(x, y)
are defined accordingly.

In Section 3.4, we indicate how this general approach may be applied to
some finite-buffer queues. In Section 3.6, the infinite sum of Volterra kernels
is explicitly calculated for some special cases. But, first we use this lemma to
derive Equation (3.4).

Proof of Theorem 3.3.2 Observe that, by Proposition 3.2.1 and (3.1), the

dynamics of both systems are equivalent when λ1(x)
r1(x)

= λ2(x)
r2(x) . Hence, using a

stochastic coupling argument, the first part of the theorem, that is (3.3), easily
follows.

We now turn to (3.4). Note that Λ1(x) = Λ2(x), implying that either the
workload processes in both systems have an atom at state zero, or in neither
system. If Λi(x) =∞ (i = 1, 2) for some x > 0, then V gi (0) = 0 and (3.4) follows
directly from (3.5) and the definition of z(·). So, assume that V g

i (0) > 0. We use
the derivation of the steady-state workload density as described above. First,
observe that the kernels Kg(x, y) = P(g(y,B,K) > x)λ(x)/r(x) are the same in
both models, and hence, the iterated kernels and their infinite sums are equal.
Now, use (3.9) and divide vg1(x) by vg2(x) to obtain

vg1(x)

vg2(x)
=
λ1(0)V g1 (0)

λ2(0)V g2 (0)

λ2(x)

λ1(x)
, x > 0.

Substituting λ2(x)/λ1(x) = r2(x)/r1(x) completes the proof. 2

Remark 3.3.1 There are alternative ways to solve (3.2). We may also divide by
r(x) on both sides of Equation (3.2), or define z(x) := r(x)vg(x). The technique
to solve the integral equation remains the same, however, with slightly different
kernels. �
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3.4 Finite-buffer queues

In this section, we study the steady-state workload distribution in some finite-
buffer M/G/1 systems with general arrival rate and service speed. In the first
part, we consider the M/G/1 dam (scenario f) and show that the workload
distribution is proportional to the workload distribution in its infinite-buffer
counterpart. In the second part, we note that the same proportionality also
holds for scenario i, and we conclude with some remarks about scenario c.

3.4.1 Finite-buffer dam

Consider the M/G/1 queue under the partial rejection discipline (scenario f),
that is, take g(w, b,K) = min(w + b,K). For convenience, we also refer to
scenario f as the finite-buffer queue or dam.

First, we show that the steady-state workload distributions in the finite and
infinite-buffer dam are proportional. For instance, Hooghiemstra [85] based
his proof for the ordinary M/G/1 queue on the insight that the finite and
infinite-buffer queue follow similar sample paths below workload level K, see
also Subsection 1.6.3 for an explanation. He observed that at a downcrossing
of level K in the infinite-buffer queue, the time until the next arrival epoch is
independent of the previous arrival, and hence, the residual interarrival time
behaves like an ordinary one. As required in the sample path comparison, we
show that this lack of memory also holds for general M/G/1-type queues with
state-dependent arrival and service rates. After making some comments about
regenerative properties, we extend the result of Hooghiemstra to our system,
using similar arguments. Moreover, the steady-state workload distribution at
arrival epochs is considered. This is no longer necessarily equal to the workload
distribution at arbitrary epochs, since the classical PASTA property no longer
holds.

Second, we give the steady-state workload density for the finite dam. Third,
we consider the long-run fraction of not fully accepted customers, denoting this
performance measure by PK .

The next preparatory lemma presents the lack-of-memory property of the
workload decrement during an interarrival interval.

Lemma 3.4.1 (Memoryless property). The residual workload decrement
at a downcrossing of level x in an M/G/1 queue with arrival rate λ(·) and
service rate r(·) is independent of the finished amount of work during the elapsed
interarrival time, i.e.,

P(Ax+y > y + v|Ax+y > y) = P(Ax > v), x, y, v > 0, x > v.

Proof Using a simple conditioning argument and Proposition 3.2.1, it follows
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that

P(Ax+y > y + v|Ax+y > y) = e−
∫

x+y
x−v

λ(u)
r(u)

due
∫

x+y
x

λ(u)
r(u)

du

= e−
∫ x

x−v
λ(u)
r(u) du

= P(Ax > v).

Notice that P(Ax+y > y + v|Ax+y > y) is independent of y, representing the
lack of memory. 2

Next, we state our main proportionality result.

Theorem 3.4.1 For 0 ≤ x ≤ K,

P(V K ≤ x) =
P(V ≤ x)

P(V ≤ K)
, (3.10)

while at arrival epochs,

P(WK ≤ x) =
P(W ≤ x)

P(W ≤ K)
.

We like to emphasize that P(V ≤ x) and P(W ≤ x) refer to the unbounded
case, cf. Chapter 2.

Before proving the theorem, we first make some general remarks about re-
generative processes. Instead of applying level crossing arguments and using
Lemma 3.3.1, it is also possible to make a direct comparison between the fi-
nite and infinite-buffer queues as depicted in Subsection 1.6.3. We apply the
latter approach. Following Asmussen [10], we exploit the regenerative nature
of the workload process and let the downcrossings of workload level K be its
regeneration points. Note that this is possible due to the memoryless property
(Lemma 3.4.1). Furthermore, this choice allows queueing systems where empty
queues cannot occur. Denote the length of a regeneration cycle in the finite and
infinite-buffer queues and the number of arrivals during this cycle, by τK , τ ,
NK , and N , respectively. Then, the distributions of V and V K are given by,
cf. [52],

P(V ≤ x) =
1

Eτ
E

[
∫ τ

0

I(Vt ≤ x)dt

]

, (3.11)

P(V K ≤ x) =
1

EτK
E

[

∫ τK

0

I(V Kt ≤ x)dt

]

. (3.12)

The distributions of W and WK can be obtained in a similar fashion, cf. [52],

P(W ≤ x) =
1

EN
E

[

N
∑

i=1

I(Wi ≤ x)

]

,

P(WK ≤ x) =
1

ENK
E





NK
∑

i=1

I(Wi ≤ x)



 .
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We are now ready to prove our main theorem.

Proof of Theorem 3.4.1 Consider the stochastic process {Vt, t ≥ 0}. We
construct a stochastic process V̂ Kt directly from Vt and show that V̂ Kt and V Kt
are governed by the same probabilistic laws. First, take an arbitrary sample
path of Vt. We leave the parts below level K unchanged and delete the parts
of the sample path between each upcrossing and a subsequent downcrossing
of level K. Connecting the remaining parts, we obtain the process V̂ Kt . By
the lack-of-memory property, the workload decrement of V̂ Kt after hitting K
behaves like an ordinary workload decrement. Thus V̂ Kt and V Kt have the same
statistical properties and we may simplify notation by identifying the process
{V Kt , t ≥ 0} with V Kt := V̂ Kt , t ≥ 0.

Clearly, E
[∫ τ

0
I(Vt ≤ x)dt

]

and E

[

∫ τK

0
I(V Kt ≤ x)dt

]

are equal. Observe

that EτK

Eτ represents the long-run fraction of time that the workload process of
the infinite-buffer queue is below level K and, by (3.11) and (3.12), we have
shown the first part of the theorem. The second part follows directly from the

same sample path construction and the observation that ENK

EN equals the long-
run fraction of arrivals of the infinite-buffer queue finding the workload below
level K. This completes the proof. 2

Remark 3.4.1 Theorem 3.4.1 remains valid for any other model where the
virtual waiting time process remains unchanged below level K (Hooghiemstra
[85] noted this already for the ordinary M/G/1 queue). Specifically, the theorem
applies for any function g(w, b,K), if for all w, b,K ≥ 0 the function satisfies

g(w, b,K) = w + b, if w + b ≤ K,
g(w, b,K) ≥ K, if w + b > K.

(3.13)

�

In the remainder of the chapter, we assume that the workload process has an
atom at state 0, i.e., Λ(x) <∞, for all 0 < x <∞. Under this assumption, using
Theorem 3.4.1, the workload density for the finite dam may be obtained from the
workload density in the infinite-buffer version. Hence, applying Theorem 3.4.1
and the result for the infinite-buffer queue (see, e.g., Sections 3.3 or 2.3), we
have

vK(x) =
λ(0)V K(0)K∗(x, 0)

λ(x)
, 0 < x ≤ K, (3.14)

where V K(0) follows from normalization.
Note that (3.10) may also be derived from the formal solution of the density

(Lemma 3.3.1). However, we believe that the derivation of Theorem 3.4.1 is
especially insightful as it brings out the typical sample-path relation between
the infinite-buffer queue and the finite dam (scenario f).

We conclude by analyzing the probability that a customer cannot be com-
pletely accepted, also referred to as loss probability. It follows directly from a
regenerative argument, see also [176], that

PK = P(WK +B > K).
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Condition on WK and apply Theorem 3.3.1 to obtain the following corollary:

Corollary 3.4.1 The loss probability in scenario f is given by

PK =
1

λ̄K

[

λ(0)V K(0)(1−B(K)) +

∫ K

0+

λ(y)vK(y)(1−B(K − y))dy

]

,

with vK(·) given in (3.14) and V K(0) equal to 1−
∫K

0 vK(x)dx.

Other performance measures may be directly obtained from the workload den-
sity and Theorem 3.3.1.

3.4.2 Other finite-buffer systems

Two other finite-buffer systems of importance are models with customer im-
patience (scenario i) and queues governed by the complete-rejection discipline
(scenario c). In this subsection, we first examine scenario i and observe that for
workloads less than K the proportionality relation (Theorem 3.4.1) holds. To
determine the density for workloads larger than K, in addition to the normal-
izing constant, we apply level crossings and the successive-substitution method
for Volterra integral equations. We conclude the study of scenario i by consid-
ering the loss probability. Turning to the second model, scenario c, we derive a
formal solution for the steady-state workload density using similar techniques
as for scenario i. Finally the loss probability in scenario c is considered.

For scenario i, let g(w, b,K) = w+ bI(w < K) in the general set-up. Hence,
customers join the queue only when the workload just before arrival is smaller
than K. This resembles the impatience of arriving customers: They are only
willing to wait a maximum (stochastic) amount of time. As noted in [33, 85], the
virtual waiting time process below level K remains unchanged for this model.
This intuitive statement can be made rigorous by observing that for all 0 ≤ w ≤
K, g(w, b,K) = w + b and thus (3.13) is satisfied. We consequently have the
following (see also Remark 3.4.1):

Corollary 3.4.2 For 0 ≤ x ≤ K, we have,

P(V K,i ≤ x) = cK,iP(V ≤ x), (3.15)

with cK,i some normalizing constant, P(V ≤ K) ≤ (cK,i)−1 ≤ 1, while at arrival
epochs of accepted customers (thus given WK,i ≤ K),

P(WK,i ≤ x|WK,i ≤ K) =
P(W ≤ x)

P(W ≤ K)
.

Remark 3.4.2 By a simple division and using (3.15) and (3.10) twice, we may
alternatively write, for 0 ≤ x, y ≤ K,

P(V ≤ x)

P(V ≤ y)
=

P(V K,i ≤ x)

P(V K,i ≤ y)
=

P(V K ≤ x)

P(V K ≤ y)
. (3.16)

�
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However, the workload distribution in the infinite-buffer case does not com-
pletely determine the workload distribution in scenario i. The normalizing con-
stant can only be obtained by knowledge of the workload behavior on all possible
levels of the process. For x > K, we apply level crossings (3.2) and the result
for x ∈ [0,K) to express the workload density in terms of the basic kernel.

Next, we derive the steady-state workload distribution for all x ≥ 0 in
scenario i, using the general approach described in Section 3.3. If the work-
load upon arrival is below level K, thus 0 ≤ w ≤ K, then we just have
P(g(w,B,K) > x) = 1 − B(x − w), while P(g(w,B,K) > w) = 0 otherwise.
The general level crossing equations can now be rewritten into a more appealing
expression: For 0 < x ≤ K, we have

r(x)vK,i(x) = λ(0)V K,i(0)(1−B(x)) +

∫ x

0+

λ(y)vK,i(y)(1−B(x− y))dy,

and for x > K,

r(x)vK,i(x) = λ(0)V K,i(0)(1−B(x))+

∫ K

0+

λ(y)vK,i(y)(1−B(x−y))dy. (3.17)

These equations can be solved using Lemma 3.3.1, by defining the kernel
Ki(x, y) := I(y < K)(1−B(x − y))λ(x)/r(x), for 0 ≤ y < x <∞. In case 0 <
y ≤ K, we just obtain the basic kernel K(x, y) of Section 3.4. By Lemma 3.3.1,
it is thus evident that, for 0 ≤ x ≤ K,

zK,i(x) = λ(0)V K,i(0)K∗(x, 0), (3.18)

where zK,i(x) := λ(x)vK,i(x). The same result can be deduced from Theo-
rem 3.4.1 and (3.14).

The case x > K may be derived in a slightly more elegant fashion; rewrite
(3.17) into

zK,i(x) = λ(0)V K,i(0)K(x, 0) +

∫ K

0+

zK,i(y)K(x, y)dy. (3.19)

Substituting the result of zK,i(y) for y ≤ K in (3.19), we obtain

zK,i(x) = λ(0)V K,i(0)

[

K(x, 0) +

∫ K

0

K(x, y)K∗(y, 0)dy

]

,

after which vK,i(x) = zK,i(x)/λ(x) and V K,i(0) can be determined by normal-
ization.

For completeness, we give the resulting normalizing constant cK,i in general
terms (take y = 0 in (3.16)):

1 +
∫∞

0
λ(0)
λ(x)K

∗(x, 0)dx

1 +
∫K

0
λ(0)
λ(x)K

∗(x, 0)dx+
∫∞

K

[

λ(0)
r(x)B(x) +

∫K

0
λ(0)
r(x)B(x − y)K∗(y, 0)dy

]

dx
,

with B(x) := 1−B(x).



62 Chapter 3 Finite-buffer queues

Remark 3.4.3 The cases 0 < x ≤ K and x > K may be combined by writing

vK,i(x) =
λ(0)V K,i(0)

λ(x)

[

K(x, 0) +

∫ x∧K

0

K(x, y)K∗(y, 0)dy

]

. (3.20)

Equation (3.18) can then be recovered by using K∗(y, 0) =
∑∞

n=1Kn(y, 0) and
interchanging integral and sum. �

Finally, it is an easy exercise to determine the long-run fraction of rejected
customers P iK . After all, the customers that are rejected are just those that
arrive while the workload is above level K, or more formally P iK = P(WK,i >
K). Apply Theorem 3.3.1 to see that

P iK =

∫ ∞

K

wK,i(x)dx (3.21)

=
1

λ̄K,i

∫ ∞

K

λ(x)vK,i(x)dx.

We now turn to scenario c. This system is also a special case of the general
set-up and is obtained by taking g(w, b,K) = w + bI(w + b ≤ K). Note that
there is no w ∈ [0,K] and b,K ≥ 0 such that g(w, b,K) > K. This implies that,
starting from initial workload below K, the workload process is bounded by the
buffer size and we only have to analyze workloads below K.

The proportionality result, as presented in Theorem 3.4.1, does not hold for
this scenario. Combined with Remark 3.4.1, this is obvious from the fact that
g(w, b,K) = w < K for w ∈ [0,K) with w + b > K. Intuitively, the workload
process below level K is indeed affected if a customer arrives that would cause
a workload above the buffer size (in which case that customer is completely
rejected). However, we can still solve the level crossing equations to determine
the steady-state workload density.

Denote the steady-state workload density by vK,c(·). Observe that an up-
crossing of level x occurs, if at levels y < x a customer arrives that has a
service requirement larger than x − y, but smaller than K − y. Specifically,
P(g(y,B,K) > x) = 1 − B(x − y) − (1 − B(K − y)) = B(K − y) − B(x − y).
The level crossing equation may then be rewritten as follows. For 0 < x < K,

r(x)vK,c(x) = λ(0)V K,c(0)(B(K)−B(x))

+

∫ x

0+

λ(y)vK,c(y)(B(K − y)−B(x − y))dy. (3.22)

In view of (3.6), we define the Volterra kernel as Kc(x, y) := (B(K−y)−B(x−

y))λ(x)
r(x) , 0 ≤ y < x < K. Using Lemma 3.3.1 (with respective iterates and

infinite sum), we can directly write

vK,c(x) =
λ(0)V K,c(0)Kc,∗(x, 0)

λ(x)
, 0 < x < K.
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Determining V K,c(0) by normalization completes the derivation of the steady-
state workload distribution.

Finally, we focus on the long-run fraction of rejected customers, P cK . By def-
inition, a customer is rejected if, upon arrival, the workload present in addition
to the service requirement exceeds the buffer capacity K. Then, conditioning
on the workload just before a customer arrival and using Theorem 3.3.1 in the
second equation, we have

P cK = WK,c(0)(1−B(K)) +

∫ K

0+

wK,c(x)(1−B(K − x))dx (3.23)

=
1

λ̄K,c

[

λ(0)V K,c(0)(1−B(K)) +

∫ K

0+

λ(x)vK,c(x)(1 −B(K − x))dx

]

.

Remark 3.4.4 Note that the loss probabilities PK , P iK , and P cK only depend
on the ratio between λ(·) and r(·). This is a direct consequence of Theorem 3.3.2.
At an intuitive level, this is evident from the fact that changing between Models
1 and 2 (in which λ1(x)/r1(x) = λ2(x)/r2(x), for all x > 0) is just a rescaling
of time. So, without loss of generality we may assume that the arrival rate is
fixed. �

3.5 First-exit probabilities and cycle maxima

In this section, we focus on queues with infinite buffer capacity and determine
first exit probabilities and the distribution of the cycle maximum. To do so,
we use to a large extent the finite-buffer dam, analyzed in Subsection 3.4.1.
Moreover, we show that first-exit probabilities are related to the dual of a finite
dam. Also observe that, for well-chosen K, first-exit probabilities are the same
for a range of finite-buffer models, such as the scenario f (use Remark 3.4.1).

Consider the model with arrival rate 1, and release rate r̂(x) := r(x)
λ(x) when

the workload equals x. Theorem 3.3.1 shows that both models have the same
workload density at arrival epochs, w(·). As a consequence, the amounts of work
just after an arrival instant follow the same distribution as well. Also, observe
that the workload process {Vt, t ≥ 0} attains local minima just before a jump
and local maxima right after a jump. Considering first-exit probabilities, it then
easily follows that we may consider (without loss of generality) a model with
arrival rate 1, and release rate r̂(x). In fact, the same argument holds for cycle
maxima, as it may be considered to be a special case of a first-exit probability.
So, in this section we often assume, without loss of generality, that the arrival
rate equals 1.

Starting with first-exit probabilities, we assume that 0 ≤ a < b <∞, and let
τ(a) := inf{t > 0|Vt ≤ a} and τ(b) := inf{t > 0|Vt ≥ b} correspond to the first-
exit times. Note that we use b here in a different fashion than in Sections 3.2-3.4.
An alternative notation for b could be K, but we decided to follow the literature
on first-exit probabilities and use b in the context of hitting times. Starting from
x, we denote the probability that the workload process hits state b before state
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a by U(x), i.e., U(x) := Px(τ(b) < τ(a)). Now, the first-exit probabilities can
be obtained from those in models with constant arrival rate (in particular [83])
and the observation above. Define

α(a, b) :=

[

1 +
r(b)

λ(b)

∫ b

a

λ(x)

r(x)
K∗(b, x)dx

]−1

. (3.24)

We obtain the following lemma:

Lemma 3.5.1 We have,

U(x) =







0, if 0 ≤ x ≤ a,
∫ x

a u(y)dy, if a < x ≤ b,
1, if x > b,

where u(x) = α(a, b)r(b)λ(x)K∗(b, x)/(λ(b)r(x)) for x ∈ (a, b).

Proof Apply [83, Theorem 3] to the dam with release rate r̂(·). 2

Remark 3.5.1 In fact, first-exit probabilities with a > 0 may be reduced to a
similar first-exit probability with a = 0. Modify the system to a finite-buffer
dam of capacity b− a and with release rate r̆(x) := r(x+ a) when the workload
equals x. Denote the modified first hitting times by τ̆ (0) and τ̆ (b − a), and
let, for x ∈ (0, b − a], Ŭ(x) := Px(τ̆ (b − a) < τ̆ (0)) be the probability that the
modified system hits state b − a before state 0, starting from x. Then, apply
Lemma 3.5.1 to the modified system (thus with release rate r̆(·)). Note that
K̆(x, y) = (1−B(x−y))/r̆(x) = K(x+a, y+a), and it can be easily shown (by
induction) that K̆n(x, y) = Kn(x + a, y + a). Now, it is just a straightforward
calculation to show that Ŭ(x − a) = U(x). �

Concerning cycle maxima, we assume that at time 0 a customer enters an
empty system and define Cmax := sup{Vt, 0 ≤ t ≤ τ(0)}. Denote r̃(x) :=

r̂(b−x) = r(b−x) and let P
r̃(·)
b be the loss probability in a finite dam (scenario

f) with release rate r̃(·). The following relationship between cycle maxima and
loss probabilities is obtained in Chapter 4, Theorem 4.3.1:

Lemma 3.5.2 We have,

P(Cmax ≥ b) = P
r̃(·)
b .

Motivated by this relation, we first analyze scenario f with arrival rate 1 and
release rate r̃(·) in more detail. This turns out to be a useful tool to determine
the distribution of the cycle maximum in general terms.

Let ṽ(·) denote the steady-state workload density of the model with arrival
rate 1 and release rate r̃(·). Using level crossing arguments, we have, for 0 <
x < b,

r̃(x)ṽ(x) = Ṽ (0)(1−B(x)) +

∫ x

0+

ṽ(y)(1−B(x− y))dy.
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Define z(x) := r̃(x)ṽ(x), and Volterra kernel K̃(x, y) := (1−B(x−y))/r̃(y),
for 0 < y < x < b, and K̃(x, 0) := 1−B(x) for 0 < x < b. Observe that we can
relate K̃(x, y) to the basic kernel in Section 3.4. Specifically, for 0 < y < x < b,

K̃(x, y) = (1−B(b− y − (b− x)))/r(b − y) = K(b− y, b− x),

and for 0 < x < b,

K̃(x, 0) = 1−B(b− (b− x)) = K(b, b− x)r(b).

Now, using the successive-substitution method for Volterra kernels as in Sec-
tion 3.3, yields (for 0 < x < b),

z(x) = Ṽ (0)K̃(x, 0) +

∫ x

0+

z(y)K̃(x, y)dy

= Ṽ (0)K(b, b− x)r(b) +

∫ x

0+

z(y)K(b− y, b− x)dy

= Ṽ (0)K(b, b− x)r(b) +

∫ x

0+

[K(b, b− y)K(b− y, b− x)r(b)Ṽ (0)

+

∫ y

0

K(b− u, b− y)K(b− y, b− x)z(u)du]dy

= K1(b, b− x)r(b)Ṽ (0) +K2(b, b− x)r(b)Ṽ (0)

+

∫ x

0

z(u)K2(b− u, b− x)du,

where the last equality follows from Fubini’s theorem and

∫ x

u

K(b− u, b− z)Kn(b− z, b− x)dz =

∫ b−u

b−x

K(b− u, z)Kn(z, b− x)dz

= Kn+1(b− u, b− x).

Iterating this argument gives

z(x) = r(b)Ṽ (0)K∗(b, b− x).

Finally, use the definition of z(·) to express the steady-state density of the model
with release rate r̃(·) into the original model (with release rate r(·)):

ṽ(x) =
Ṽ (0)r(b)K∗(b, b− x)

r(b− x)
, (3.25)

where Ṽ (0) follows from normalization.
Returning to the cycle maximum of our original model, we now have the

following theorem:
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Theorem 3.5.1 For the cycle maximum in an M/G/1-type dam, with arrival
rate λ(·) and release rate r(·), we have

P(Cmax ≥ b) = Ṽ (0)(1−B(b)) +

∫ b

0

ṽ(x)(1 −B(b− x))dx, (3.26)

where

ṽ(x) =
Ṽ (0)r(b)K∗(b, b− x)λ(b− x)

λ(b)r(b− x)
, (3.27)

and Ṽ (0) = [1 +
∫ b

0 r(b)K
∗(b, b− x)λ(b− x)(λ(b)r(b − x))−1dx]−1.

We give two different proofs of the above theorem; the first one uses the
equivalence between cycle maxima and loss probabilities, and the second exploits
knowledge of first-exit probabilities.

Proof I (via P
r̃(·)
b ). To prove Theorem 3.5.1, we use the relation between

loss probabilities and cycle maxima, Lemma 3.5.2 (we refer to Chapter 4 for

a discussion of this relationship). We already analyzed P
r(·)
b in Section 3.4

(Corollary 3.4.1). Use the fact that the cycle maximum only depends on λ(·)
and r(·) via their ratio and note that the steady-state density for the model with

release rate r̃(x) = r(b−x)
λ(b−x) is then given by (3.25). Applying Corollary 3.4.1 to

the model with λ = 1 and release rate r̃(·) gives the result. 2

Proof II (via U(x)). First note that α(0, b) = Ṽ (0), by substituting u =
b− x in (3.24). Then, given the service requirement of a customer entering an
empty system, the cycle maximum may be rewritten as a first-exit probability.
Specifically, condition on the service requirement of the “first customer”, and
use Lemma 3.5.1 in the third equality:

P(Cmax ≥ b) =

∫ ∞

x=0

U(x)dB(x)

=

∫ b

x=0

∫ x

y=0

u(y)dydB(x) + (1−B(b))

=

∫ b

y=0

α(0, b)
r(b)λ(y)K∗(b, y)

r(y)λ(b)

∫ b

x=y

dB(x)dy + (1−B(b))

=

∫ b

y=0

α(0, b)
r(b)λ(y)K∗(b, y)

r(y)λ(b)
(1−B(y))dy + α(0, b)(1−B(b)),

where the final step follows from (cf. (3.24))

1 = α(0, b) +

∫ b

0

α(0, b)
r(b)λ(y)K∗(b, y)

r(y)λ(b)
dy.

The theorem now follows by straightforward substitution. 2
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Alternatively, the first-exit probabilities, given by Harrison and Resnick [83],
may also be related to a finite dam with release rate r̃(x) = r̂(b− x) when the
workload equals x. For a = 0 and 0 ≤ x ≤ b, we use the steady-state workload
density (3.27) directly:

1− Ṽ (x) =

∫ b

y=x

ṽ(y)dy

=

∫ b

y=x

α(0, b)
r(b)K∗(b, b− y)λ(b− y)

λ(b)r(b − y)
dy

=

∫ b−x

u=0

α(0, b)
r(b)K∗(b, u)λ(u)

λ(b)r(u)
du = U(b− x), (3.28)

where V (0) = α(0, b) follows from Lemma 3.5.1 and Theorem 3.5.1. Using
Remark 3.5.1, we may generalize this equivalence relation to cases with a > 0.

Lemma 3.5.3 Let Ṽ (·) be the workload distribution of the finite-buffer system
(scenario f) of capacity b− a and release rate r̃(·). Then, for x ∈ [0, b− a],

1− Ṽ (x) = U(b− x).

Proof Consider the system with finite buffer b − a and release rate r̃(x) =
r(b − x) when the workload equals x. Note that a modification of r̃(·) to the
case a = 0 (as in Remark 3.5.1) is not required, since r̃(x) = r̂((b− a− x) + a).

Although the workload is bounded from above by b−a, we can use exactly the
same analysis as if it was bounded by b, and express the steady-state workload
density as follows:

ṽ(x) =
Ṽ (0)r̂(b)K∗(b, b− x)

r̂(b− x)
,

where

Ṽ (0) =

[

1 +

∫ b−a

x=0

r̂(b)K∗(b, b− x)

r̂(b− x)
dx

]−1

, (3.29)

follows from normalization. Substitute y = b− x and r̂(x) = r(x)
λ(x) in (3.29), to

see that

Ṽ (0) =

[

1 +

∫ b

y=a

r(b)K∗(b, y)λ(y)

λ(b)r(y)
dy

]−1

= α(a, b).

Now, using the same argument as in (3.28), with substitution r̂(y) = r(y)/λ(y)
and u = b− y, completes the proof. 2

Remark 3.5.2 We conjecture that (a modified version of) Lemma 3.5.3 also
holds in case of general i.i.d. interarrival times and a general service rate function
r(·) if we start with a regular interarrival interval. Denote by W̃ (·) the workload
distribution right before an arrival instant in the finite-buffer system of capacity
b− a and service rate r̃(·). It is then possible to show that

1− W̃ (x) = U(b− x),
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using the machinery of monotone stochastic recursions [15] and a similar con-
struction as in Chapter 4. �

3.6 Some examples and extensions

In Sections 3.3-3.5 we expressed the steady-state workload densities, first-exit
probabilities, and cycle maxima in terms of an infinite sum of Volterra ker-
nels. Numerical methods to compute these sums are widely available, see for
example [88, 116]. Since we obtained closed-form expressions for the perfor-
mance measures of interest, this concludes our analysis from a practical point
of view. However, for some special cases, the Volterra integral equations reduce
to analytically tractable expressions.

In this section, we discuss some special cases and show that several known
results can be recovered from the Volterra kernels. In addition, we derive some
results that appear to be new. We first discuss the case of constant arrival and
service rates and then continue with the case of exponential service require-
ments. We conclude with a remark on the extension to rejection rules based on
a stochastic barricade.

3.6.1 Constant arrival and service rates

Suppose that r(x) ≡ r > 0 and λ(x) ≡ λr > 0. Observe that, using Theo-
rems 3.3.1 and 3.3.2, we may assume that r(x) ≡ 1 and the model thus reduces
to an ordinary M/G/1 queue. Denote the arrival rate by λ, the mean service
requirement by β, and let ρ := λβ be the load of the system. Further, let

H(x) := β−1

∫ x

0

(1−B(y))dy,

denote the stationary residual service requirement distribution with density h(·).
In the M/G/1 case, the basic kernel K(x, y) reduces to λ(1−B(x− y)) and

it is well-known, see for instance [83], that

K∗(x, y) =

∞
∑

n=1

ρnhn(x− y). (3.30)

Here, hn(·) is the density of the n-fold convolution Hn(·). Now, combine
Lemma 3.3.1 with (3.30) to obtain the famous Pollaczek-Khinchine formula
Theorem 1.6.1. The finite-dam is just the truncated version, see Theorems 3.4.1
and 1.6.3.

Turning to the model with customer impatience (scenario i), the normalizing
constant in (3.15) may be determined using (3.16) and an application of Little’s
law. First apply (3.16) with y = 0:

P(V K,i ≤ x) = P(V ≤ x)
V K,i(0)

V (0)
.
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Then, use ‘Little’ in the first and P iK = P(WK,i > K) and the PASTA property
in the second equation (see also [62]), to obtain

V K,i(0) = 1− ρ(1− P iK) = 1− ρV K,i(K).

Apply (3.16) again to V K,i(K) (and use V (0) = 1− ρ), then, after some rewrit-
ing, we may express the steady-state workload density for scenario i in terms of
the ordinary M/G/1 queue (see also [33, 62]):

V K,i(x) =
V (x)

1− ρ+ ρV (K)
.

Finally, the first-exit probabilities follow from a direct computation, see [83].
Also, Takács’ formula for cycle maxima [160], that is Theorem 1.6.4, may be
easily recovered from Theorem 3.5.1 and the truncation property for finite dams
(Theorem 3.4.1).

3.6.2 Exponential service requirements

Suppose that 1 − B(x) = e−µx, meaning that the service requirements are
exponentially distributed with mean 1/µ. For the basic kernel, we then may
write K(x, y) = e−µ(x−y)λ(x)/r(x), and we can explicitly compute (similar to
[83])

K∗(x, y) =
λ(x)

r(x)
exp{−µ(x− y) + Λ(x)− Λ(y)}. (3.31)

Using Lemma 3.3.1, the familiar steady-state workload density in the infinite-
buffer queue directly appears (see e.g. [45, 83], [10], p. 388, or Section 2.4):

v(x) =
λ(0)V (0)

r(x)
exp{−µx+ Λ(x)}. (3.32)

The explicit form in (3.31) also allows us to evaluate vK,i(·). After lengthy
calculations, we deduce the following:

Corollary 3.6.1 For the M/M/1 queue with customer impatience (scenario i),
arrival rate λ(·), and service rate r(·), we have

vK,i(x) =
λ(0)V K,i(0)

r(x)
exp{−µx+ Λ(x ∧K)},

where V K,i(0) follows by normalization.

Turning to scenario c (complete rejection), we obtain the following corollary:

Corollary 3.6.2 For the M/M/1 queue with complete rejection (scenario c),
arrival rate λ(·), and service rate r(·), we have

vK,c(x) =
V K,c(0)λ(0)(1− e−µ(K−x))

r(x)
exp{−µx+ Λc(x)},

where Λc(x) =
∫ x

0
λ(y)(1−e−µ(K−y))

r(y) dy and V K,c(0) follows by normalization.
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Proof Note that, by conditioning on B > x − y, P(g(y,B,K) > x) may be
rewritten as e−µ(x−y)(1− e−µ(K−x)). Thus, by substitution in (3.2), we have

r(x)vg(x) = λ(0)V g(0)e−µx(1− e−µ(K−x))

+

∫ x

0+

λ(y)vg(y)e−µ(x−y)(1− e−µ(K−x))dy.

Divide both sides by 1−e−µ(K−x). Then, comparing with (3.2) in the finite-dam
case (scenario f), it follows that scenario c is equivalent to scenario f , but with
r(x) replaced by rc(x) := r(x)(1 − e−µ(K−x))−1. Appropriately adjusting Λ(·),
resulting in Λc(·), and applying (3.32) gives the result. 2

The result for the standard M/M/1-queue with complete rejection [81] can
now easily be recovered from Corollary 3.6.2.

The first-exit probabilities may be deduced from Lemma 3.5.1. Alternatively,
the first-exit probabilities may also be obtained from the steady-state workload
density in the finite dam with arrival and release rate λ(b−x) and r(b−x) when
the workload equals x. The cycle maximum can be derived in the same way.

Corollary 3.6.3 For the cycle maximum in an M/M/1 queue, with arrival rate
λ(·) and service rate r(·), we have

P(Cmax > b) = Ṽ (0) exp{Λ(b)− µb},

where Ṽ (0) =
[

1 +
∫ b

0
λ(x)
r(x) exp{−µ(b− x) + Λ(b)− Λ(x)}dx

]−1

.

Proof Combining (3.27) with (3.31) and some rewriting yields

ṽ(x) = Ṽ (0)
λ(x)

r(x)
exp{−µx+ Λ(b)− Λ(b− x)}.

Ṽ (0) now follows directly by normalization. Moreover, using (3.26),

P(Cmax > b) = Ṽ (0)e−µb +

∫ b

0

Ṽ (0)e−µb
λ(b− x)

r(b− x)
eΛ(b)−Λ(b−x)dx

= Ṽ (0)e−µb

[

1 + eΛ(b)

∫ b

0

λ(x)

r(x)
e−Λ(x)dx

]

= Ṽ (0)e−µb
[

1 + eΛ(b)
(

1− e−Λ(b)
)]

= Ṽ (0)e−µb+Λ(b),

which completes the proof. 2
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3.6.3 Stochastic barricade

In this chapter we considered an M/G/1-type model with finite buffer, in which
the rejection rule is based on a deterministic barricade. This may be extended
by replacing K by a random variable, see for instance [61, 137]. One now
speaks of a stochastic barricade. This extension can easily be included into our
framework. Replace at the n-th arrival epoch K by the random variable Un,
with distribution FU (·) (independent of the service and arrival processes). The
acceptance of the n-th customer in the scenarios of Section 3.2 is now determined
as follows, see also [137]:

g(Wn, Bn, Un) =







Wn + min(Wn +Bn, (Un −Wn)
+), scenario f,

Wn +BnI(Wn < Un), scenario i,
Wn +BnI(Wn +Bn ≤ Un), scenario c.

Note that in case λ(·) and r(·) are fixed, Un represents the maximum waiting
time (scenario i), or sojourn time (scenarios f and c). This model with stochastic
impatience is well-known and studied in, e.g., [61, 137].

In case of a stochastic barricade, we again obtain a Volterra integral equation
of the second kind. For the given examples, we have the following Volterra
kernels, where 0 ≤ y < x <∞ (see [137]):

Kg(x, y) =







(1−B(x − y))(1− FU (x))λ(x)/r(x), scenario f,
(1−B(x − y))(1− FU (y))λ(x)/r(x), scenario i,
λ(x)
r(x)

∫∞

x (B(z − y)−B(x − y))dFU (z), scenario c.

Even though these kernels might be difficult to determine in general, we may
apply Lemma 3.3.1 to express the steady-state workload density in terms of
these kernels. Some examples can be found in [137] in case of exponential
service requirements and either exponential or deterministic barricades.

Finally, consider two (general) finite-buffer queues governed by the same
distributions B(·) and FU (·), but with arrival and service rates λi(·) and ri(·),

i = 1, 2, such that λ1(x)
r1(x)

= λ2(x)
r2(x) , for all x > 0. The queues are then related

in the same way as the queues in Section 3.3. From the discussion of Volterra
kernels above, it is evident that (3.4) still holds in this broader context. Note
that the probabilistic laws in both systems are still identical, resulting in the
generalization of (3.3). More generally, Theorems 3.3.1 and 3.3.2 also hold in
this framework.
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Chapter 4

On an equivalence between loss rates

and cycle maxima

4.1 Introduction

In Chapter 2 we analyzed an infinite-buffer G/G/1 queue with workload-depen-
dent service rate and interarrival times. We specifically addressed the relation
between workloads at arbitrary instants and at embedded epochs. In the present
chapter we consider the G/G/1 queue under the partial-rejection discipline with
both fixed and workload-dependent service rates. The focus in this chapter is,
however, on the relation between the loss probability and the excess distribution
of the cycle maximum in the infinite-buffer scenario. Finite-buffer queues and
cycle maxima were also subject of study in the previous chapter under the
assumption of a compound Poisson arrival process with workload-dependent
arrival rate.

Queueing models with finite buffers are useful to model systems where losses
are of crucial importance, as in inventory theory and telecommunications. Un-
fortunately, finite-buffer queues are often more difficult to analyze than their
infinite-buffer counterparts. An important exception is the G/G/1 queue where
the total amount of work is bounded from above by K and customers are re-
jected under the partial-rejection discipline. This rejection discipline operates
such that if a customer’s sojourn time would exceed K, then the customer only
receives a fraction of its service requirement to make its sojourn time equal to
K. This model is also known as the finite dam; see Section 4.2 for a precise
description of the dynamics of this queue.

We consider the probability PK that a customer gets partially rejected when
entering the system in steady state. It is readily seen that

PK = P(WK + S ≥ K), (4.1)

with WK being the steady-state waiting time, and S a generic service require-
ment. Thus, information about PK can be recovered from the distribution of
WK .
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Cohen [56], Chapter III.6, analyzed the distribution of WK in the case that
both the interarrival times and service requirements have a rational LT. For the
M/G/1 queue with traffic intensity ρ < 1 the distribution of WK can be written
in an elegant form, i.e., in terms of the steady-state waiting-time distribution of
the M/G/1 queue with infinite buffer size. This result is already known since
Takács [161]. Using this result, Zwart [176] showed that PK can be identified
with Takács’ formula [161] for the tail distribution of the cycle maximum in the
M/G/1 queue, i.e.,

PK = P(Cmax ≥ K). (4.2)

For the G/G/1 queue with light-tailed service times, Van Ommeren and De
Kok [168] derived exact asymptotics for PK as K →∞. From their main result,
it immediately follows that

PK ∼ P(Cmax ≥ K),

as K → ∞. This naturally leads to the conjecture that (4.2) can be extended
to the G/G/1 queue. Unfortunately, the proof in [176] can not be extended
to renewal arrivals, as it relies on exact computations for both PK and the
distribution of Cmax.

This brings us to the main goal of the chapter: Our aim is to show that (an
appropriate modification of) (4.2) is valid for a large class of queueing models.
In particular, we establish this equivalence for any positive ρ without the need to
compute both sides of (4.2) separately. Instead, the proof method in the present
chapter relates the distribution of WK +S to a first-passage probability, which
is in turn related to the distribution of Cmax. We will also give another proof
based on a regenerative argument.

Both proof techniques strongly rely on a powerful duality theory for stochas-
tic recursions, which has been developed by Asmussen and Sigman [15], and
dates back to Lindley [115], Loynes [118], and Siegmund [155]. For a recent
textbook treatment, see Asmussen [10], Section IX.4. This type of duality, also
known as Siegmund duality, relates the stationary distribution of a given model
to the first-passage time of a dual model. Thus, Siegmund duality provides
the right framework for proving (4.2). In its most simple form, Siegmund du-
ality yields the well-known relationship between waiting-time probabilities for
infinite-buffer queues and ruin probabilities.

This chapter is organized as follows. We treat the G/G/1 queue in Sec-
tion 4.2. Section 4.3 extends the results of Section 4.2 to queues with state-
dependent service rates. The final result for this class of models is somewhat
more complicated than (4.2). In both sections, we give two proofs. These two
proofs lead to different identities in Section 4.3. In Section 4.4 we show that
(4.2) is not only useful to derive new results for the loss probability PK , but also
for the distribution of Cmax. Our main results in this section are: (i) a substan-
tially shorter proof of the light-tailed asymptotics for PK derived in [168], (ii)
asymptotics of PK for heavy-tailed service requirements, and (iii) an extension
of Takács’ formula for P(Cmax ≥ K) to M/G/1 queues with state-dependent
release rates. Concluding remarks can be found in Section 4.5.
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Notation. Contrary to other chapters of this thesis, in the present chapter
a generic service requirement is denoted by S and a generic interarrival time
is denoted by T . (Consequently, the n-th service requirement and interarrival
time are given by Sn and Tn, respectively). Thus, we stay close to notation
that is common in much of the literature on random walks, in particular [15].
Moreover, in this chapter we adapted the notation in the paper [28] for the
workload process and its dual to be consistent with the notation for the main
performance measure in this thesis.

4.2 The G/G/1 queue

In this section we consider the G/G/1 queue with partial rejection, which is also
known as the finite G/G/1 dam. Before we present our main result, we first
introduce some notation and give a detailed model description.

Let T1, T2, . . . be the interarrival times of customers and denote the n-th
arrival epoch after time 0 by T̄n, i.e., T̄n =

∑n
k=1 Tk. We assume that the

interarrival times form an i.i.d. sequence and that E[T1] < ∞. The service
requirement of the n-th customer is denoted by Sn, n = 1, 2, . . ., where S1, S2, . . .
are also assumed to be independent, identically distributed. We assume that
the sequences of interarrival intervals and service requirements are independent.
Define ρ := E[S1]/E[T1] as the load of the system. We like to emphasize that
ρ may take any (positive) value. To obtain a non-trivial model though, we
additionally assume that P(T1 > S1) > 0.

The workload process {Vt, t ∈ R} is now defined recursively by, cf. [56],

Vt = max(min(VT̄−

k
+ Sk,K)− (t− T̄k), 0), t ∈ [T̄k, T̄k+1).

Since the workload in the system is uniformly bounded, the process {Vt, t ∈ R}
is regenerative with customer arrivals into an empty system being regeneration
points, independent of the load of the system. Let a regeneration cycle start at
time 0, and define the first return time to state 0 by

τ0 := inf{t > 0 : Vt = 0}.

Furthermore, let Cmax be the cycle maximum of a busy cycle, or, more formally,

Cmax := sup{Vt, 0 ≤ t ≤ τ0}.

Observe that, for x ≤ K, P(Cmax ≥ x) is the same for the finite dam and its
infinite-buffer counterpart. So, without affecting the results, we will henceforth
adopt the above definition of Cmax when we consider the cycle maximum in
the G/G/1 queue with infinite buffer capacity. Note that P(Cmax = ∞) > 0 if
K =∞ and ρ > 1.

From the workload process in the finite G/G/1 dam we construct a “dual”
process {Dt, t ∈ R}, as in [138], by defining

Dt := K − Vt.
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Away from the boundaries, this process increases linearly at rate 1 and negative
jumps occur at times T̄n of size Sn, n = 1, 2, . . .. By definition, jumps below
0 are truncated and if the process hits state K, it remains in K until the next
(downward) jump (see Figure 4.1 for an illustration). In fact, we are only
interested in the behavior of Dt until it hits one of the boundaries and in this
region the process {Dt, t ∈ R} shows strong resemblence with a risk process
(where 0 is supposed to be an absorbing state).

Due to the finite capacity, the process {Dt, t ∈ R} is also regenerative and
regeneration points in the process correspond to downward jump epochs from
level K. Hence, τ0 can be alternatively defined by τ0 := inf{t > 0 : Dt ≥ K}.
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Figure 4.1: Two sample paths of Vt until it hits one of the boundaries, with corre-
sponding Dt.

Recall that PK is the steady-state probability that an arriving customer is
(partially) rejected. The main result in this section is the following theorem.
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Theorem 4.2.1 For the G/G/1 queue we have

PK = P(Cmax ≥ K).

In the remaining part of this section we present two proofs of Theorem
4.2.1. In the first proof, to be presented in Subsection 4.2.1, we take a direct
approach, using the representation PK = P(WK + S ≥ K) and the above-
mentioned definition of the cycle maximum. Equivalence is then shown using
the machinery developed in [15].

The second proof, given in Subsection 4.2.2, establishes a link between the
loss rate and the cycle maximum using an insightful regenerative argument. In
particular, we utilize the fact that the number of losses in a cycle, given that
at least one loss occurs, is geometrically distributed. The main step in this
approach is the computation of the success parameter of that distribution. This
is again established by results in [15].

4.2.1 Direct approach

To determine the tail distribution of the cycle maximum in an infinite-capacity
model, we may also assume that the workload is uniformly bounded as described
above. So, consider one regeneration cycle of the process {Vt, t ∈ R} (or equiv-
alently {Dt, t ∈ R}) and let a customer enter the system at time 0. Let NK be
the number of arrivals in [0, τ0]. Since the workload process has peaks at time
epochs just after an arrival instant, we may write

P(Cmax ≥ K) = P(∃n ≤ NK : Wn + Sn ≥ K)

= P(∃n ≤ NK : DT̄−

n
− Sn ≤ 0). (4.3)

Observe that the right-hand side of (4.3) corresponds to a hitting probability;
starting in state K, (4.3) may be interpreted as the probability that state 0
is reached before Dt hits state K again. Note that the process {Dt, t ∈ R}
embedded at points T̄n is also recursively defined by the interarrival times and
the service requirements. Since we are both studying the process in continuous
time, i.e., Dt, and at embedded epochs, we add a hat for the latter quantity,
denoting it by D̂n. The above two observations allow us to rewrite this embed-
ded process as a monotone stochastic recursion with two absorbing states (0
and K): We define D̂0 = K, D̂n+1 = g(D̂n, Un), where Un := (Sn+1, Tn) and

g(x, s, t) =







0, if x = 0 or if x ∈ (0,K] and s ≥ x,
x− (s− t), if x ∈ (0,K] and s < x,
∞, if x > K.

Thus, we start our recursion with initial reserve K, after which it evolves
as an unrestricted random walk, until it leaves (0,K]. Moreover, it is always
checked ahead whether a downward jump will cause a negative value of the
process, leading to absorption in state 0.
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Now, Example 4 of Asmussen and Sigman [15] gives the corresponding dual
stochastic recursion {V̂n} which is defined as V̂n+1 = f(V̂n, Sn+1, Tn), where

f(y, s, t) = min(((y − t)+ + s),K).

This recursion corresponds to the workload right after a jump, or the sojourn
time, in a finite G/G/1 dam. Under i.i.d. assumptions, V̂n weakly converges to
a random variable V̂ as n → ∞, see for example Chapter III.6 in Cohen [56].
Let

γ(x,K) := min{n ≥ 1 : D̂0 = x, D̂n 6∈ (0,K]},

denote the first-exit time of (0,K] starting in x. Then, Corollary 3.1 of [15]
yields the following fundamental result:

P(V̂ ≥ x) = lim
n→∞

P(D̂n ≤ 0 | D̂0 = x) = P(D̂γ(x,K) ≤ 0). (4.4)

Thus, the distribution of V̂ can be written as a first-passage probability. Using
(4.3) and taking x = K in (4.4), we have

P(Cmax ≥ K) = P(D̂γ(K,K) ≤ 0)

= P(V̂ ≥ K).

Hence,
PK = P(WK + S ≥ K) ≡ P(V̂ ≥ K) = P(Cmax ≥ K),

which completes the proof.

4.2.2 Regenerative approach

Let LK be the number of not fully accepted customers, and recall that NK

is the total number of customer arrivals during a regeneration cycle. A basic
regenerative argument yields

PK =
ELK
ENK

. (4.5)

The denominator follows easily by

P(WK = 0) =
1

ENK
E

[

NK
∑

i=1

I(WK
i = 0)

]

=
1

ENK
, (4.6)

where I(·) is the indicator function.
The numerator may be rewritten as follows

ELK = E[LKI(LK ≥ 1)]

= E[LK | LK ≥ 1]P(LK ≥ 1)

= E[LK | LK ≥ 1]P(Cmax ≥ K). (4.7)
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Moreover, observe that whenever the workload reaches level K and a customer
is (partially) rejected, the process continues from level K starting with a new
interarrival time, which clearly is independent of the past. Then, the probability
of an additional customer loss in the regeneration cycle is equal to the probability
that the workload process reaches levelK again before the end of the busy cycle.
Denoting τK := inf{t > 0 : Vt ≥ K | V0 = K}, this leads to

P(LK ≥ n+ 1 | LK ≥ n) = P(τK < τ0 | V0 = K) (4.8)

=: 1− qK .

Iterating this argument, we conclude that LK | LK ≥ 1 is geometrically dis-
tributed with success parameter 1 − qK . Since the expectation of such a geo-
metric distribution equals 1/(1− qK), we have to show that qK = P(WK > 0)
to complete the proof.

To do so, we use a similar construction of the “dual risk-type” process
{Dt, t ∈ R} as in the first proof. Note that (4.8) corresponds to the proba-
bility that from initial level 0, Dt reaches level 0 again before it hits level K.
Again, this can be transformed into a monotone stochastic recursion with two
absorbing barriers, 0 and K: Define D̂n+1 = g(D̂n, Sn+1, Tn), with

g(x, s, t) =







0, if x = 0 or if 0 < x < s− t,
x− (s− t), if 0 < s− t ≤ x ≤ K − t,
∞, if x+ t > K.

Thus, starting from level 0, D̂n evolves as an unrestricted random walk until
it leaves (0,K]. Note that it is indeed checked ahead whether the workload
increases above level K before the next downward jump.

Now, another example of Asmussen and Sigman [15] provides the dual
stochastic recursion {V̂n}. In particular, Example 3 of [15] gives the dual func-
tion

f(y, s, t) = (min(y + s,K)− t)+,

defining the dual recursion V̂n+1 = f(V̂n, Sn+1, Tn). This recursion corresponds
to the workload right before a jump (or the waiting time) in a finite G/G/1
dam. Use Corollary 3.1 of [15] and take x = ε > 0 in (4.4) to show that

qK = lim
ε↓0

P(D̂γ(ε,K) ≤ 0)

= lim
ε↓0

P(V̂ ≥ ε) = P(V̂ > 0). (4.9)

Recall that the V̂n corresponds to the waiting time of the n-th customer, and
V̂ thus represents the waiting time in steady-state. Combining (4.5)-(4.9) com-
pletes the proof.

Remark 4.2.1 Both proofs rely on computing the dual of a recursion driven
by a specific function f(x, z), which is monotone in x for every z. In general,
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the driving function f and its dual g are related by

g(x, z) = inf{y : f(y, z) ≥ x},

f(y, z) = inf{x : g(x, z) ≥ y}.

We refer to [15] (in particular Equation (2.4) of [15]) for details. �

4.3 Dams with state-dependent release rates

In this section we consider the G/G/1 dam with general release rate. We start
with introducing some definitions and a description of the driving sequence of
the queueing process. Next, we state the main result and give two proofs,
analogous to the proofs in Section 4.2.

Consider the model of Section 4.2, but let the release rate be r(x) when the
workload equals x. We assume that r(0) = 0 and that r(·) is strictly positive,
left-continuous, and has a strictly positive right limit on (0,∞). Also, define

R(x) :=

∫ x

0

1

r(y)
dy, 0 < x <∞,

representing the time required for a workload x to drain in the absence of any
arrivals. We assume that R(x) < ∞, 0 < x < ∞, indicating that state 0 can
be reached in a finite amount of time. This ensures that Cmax is well-defined.
Note that R(·) is strictly increasing and we can thus unambiguously speak of
R−1(·). Similar to [83, 138], we define

q(u, t) := R−1(R(u)− t).

Then q(u, t) represents the workload level at time t if we start from level u at
time 0 and no arrivals have taken place in between, see also Section 2.5.

Denote the workload process of the G/G/1 queue with finite buffer K and

general release-rate function r(·) by {V
r(·)
t , t ∈ R}. Let T0 = 0 and V

r(·)
0 = x.

Between jump epochs, the workload process is defined recursively by, cf. [138],

V
r(·)
t = q(V

r(·)

T̄−

k

, t), T̄k ≤ t < T̄k+1,

and at the (k + 1)-th jump epoch after time 0,

V
r(·)

T̄k+1
= min

(

q(V
r(·)

T̄k
, Tk+1) + Sk+1,K

)

.

To exclude trivial cases where the workload is bounded from below, we assume
that P(q(x + S1, T1) < x) > 0, for all x > 0. Combined with the finite ca-
pacity and R(x) < ∞ for all finite x, this ensures that the workload process

{V
r(·)
t , t ∈ R} is still regenerative with customer arrivals into an empty system

as regeneration points.
Define r̃(x) := r(K − x), for 0 ≤ x ≤ K < ∞, and let all random variables

Xr(·), X r̃(·) correspond to the model with release rate r(x), r̃(x), respectively,
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if the process is at level x. Similar to Section 4.2, we construct a “dual risk-

type” process {D
r̃(·)
t , t ∈ R}, by taking D

r̃(·)
t = K − V

r(·)
t . In between the

(downward) jumps, the newly defined process is governed by the input rate
function r̃(x) = r(K − x), and satisfies

dD
r̃(·)
t

dt
= r̃(D

r̃(·)
t ).

Also, the process starts at D
r̃(·)
0 = K − V

r(·)
0 . In addition, if {D

r̃(·)
t , t ∈ R}

starts at y and no jumps occur for t time units, its value increases, similar to
the decrease in the workload process, to

q̃(y, t) := R̃−1(R̃(y) + t).

Here, R̃(x) :=
∫ x

0
(r̃(y))−1dy represents the time required to move from 0 to x in

the absence of any negative jumps, with inverse R̃−1(·). Note that, for finite K,
∫ x

0
(r̃(y))−1dy <∞, meaning that any state x can be reached from state zero in

a finite amount of time and the cycle maximum is also well-defined in this case.

Theorem 4.3.1 For the G/G/1 queue with general release rate we have

P
r(·)
K = P(C r̃(·)max ≥ K), (4.10)

or alternatively,

P
r(·)
K =

P(WK,r(·) = 0)

P(WK,r̃(·) = 0)
P(Cr(·)max ≥ K). (4.11)

We use a direct approach to show (4.10), thereby extending the proof in
Subsection 4.2.1. To show (4.11), we follow the lines of Subsection 4.2.2, using
an insightful regenerative argument and noting that the number of losses in a
cycle, given that at least one loss occurs, has a geometric distribution. Let us
start with (4.10).

Proof of (4.10) As noted earlier, the workload process {V
r(·)
t , t ∈ R} is still

regenerative with customer arrivals into an empty system as regeneration points.
The observation that the workload process has local peaks at epochs right after
an arrival instant, together with (4.3) and the construction of the “dual” process

{D
r̃(·)
t , t ∈ R}, leads to

P(Cr(·)max ≥ K) = P(∃n ≤ NK : D
r̃(·)

T−

n
− Sn ≤ 0). (4.12)

The probability in (4.12) can be interpreted as the probability that state 0 is

reached before D
r̃(·)
t hits state K again, starting from level K. Define D̂

r̃(·)
0 = K

and D̂
r̃(·)
n+1 = g(D̂

r̃(·)
n , Sn+1, Tn), with

g(x, s, t) =







0, if x = 0 or if x ∈ (0,K] and s ≥ x,

R̃−1(R̃(x− s) + t), if x ∈ (0,K] and s < x,
∞, if x > K.
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Following [15], we construct the dual function corresponding to the described

process {D
r̃(·)
t , t ∈ R}, yielding

f(y, s, t) = min
(

R̃−1(R̃(y)− t) + s,K
)

,

and define {V̂
r̃(·)
n } recursively by V̂

r̃(·)
n+1 = f(V̂

r̃(·)
n , Sn+1, Tn). This process cor-

responds to a G/G/1 queue with release rate r̃(x) = r(K − x) if the workload
equals x, embedded at epochs right after a jump. We now complete the proof
of (4.10) by combining the duality (4.4) between storage and risk processes with
the expression (4.1) for PK :

P(Cr(·)max ≥ K) = P(D̂
r̃(·)
γ(K,K) ≤ 0)

= P(V̂ r̃(·) ≥ K)

= P(WK,r̃(·) + S ≥ K)

= P
r̃(·)
K ,

which completes the proof. 2

Next we turn to (4.11), which we show following the lines of Subsection 4.2.2.

Proof of (4.11) As mentioned above, the workload process is still regenerative,
and we consider the total number of (partially) rejected customers during a
regeneration cycle. We apply the same regenerative argument as in Subsection
4.2.2 and note that customers are rejected if and only if the process reaches

level K before the end of the cycle (which happens with probability P(C
r(·)
max ≥

K)). Moreover, after a customer rejection, the process continues from level K,
starting with a new interarrival time. This implies that the probability of an
additional customer loss is independent of the past, or equivalently, that K is
also a regeneration point. Therefore, we may conclude that, given that at least
one loss occurs and the process starts from level K, the additional number of
customer rejections is geometrically distributed with success parameter 1−qK =

P(τK < τ0 | V
r(·)
0 = K). Thus, we have to show that qK = P(WK,r̃(·) > 0) and

combine (4.5)–(4.8) to complete the proof.

We start with the construction of the “dual risk-type” process {D
r̃(·)
t , t ∈ R}

defined at the beginning of the section. We rewrite 1 − qK as the probability

that, starting from level 0, D
r̃(·)
t hits level 0 again before it reaches level K.

Interpreting our process as a monotone stochastic recursion with two absorbing

barriers, we define D̂
r̃(·)
n+1 = g(D̂

r̃(·)
n , Sn+1, Tn), where

g(x, s, t) =







0, if x = 0 or if R̃(x) < R̃(s)− t,

R̃−1(R̃(x) + t)− s, if R̃(s)− t < R̃(x) < R̃(K)− t,

∞, if R̃(x) + t > R̃(K).
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Again, using [15] it can be seen that the dual recursion is defined as V̂
r̃(·)
n+1 =

f(V̂
r̃(·)
n , Sn+1, Tn), with

f(y, s, t) = R̃−1(R̃(min(y + s,K))− t).

The latter recursion corresponds to the workload at time epochs right before a
jump. As the speed of the server is determined by the general release function,
this does not equal the waiting time.

Finally, using Corollary 3.1 of [15] once more, we obtain

qK = lim
ε↓0

P(D̂
r̃(·)
γ(ε,K) ≤ 0)

= lim
ε↓0

P(V̂ r̃(·) ≥ ε) = P(W
r̃(·)
k > 0). (4.13)

Hence, by combining (4.5)-(4.8), and (4.13) we also have shown the second part
of the result. 2

Remark 4.3.1 The constant P(WK,r(·) = 0)/P(WK,r̃(·) = 0) in (4.10) can
easily be interpreted. As the interarrival times in both systems follow the same
distribution, using (4.6), the constant equals the ratio of the respective mean
cycle lengths. �

Remark 4.3.2 A sample-path argument can also provide some intuition into

the equivalence between (4.10) and (4.11). First, the process {D
r̃(·)
t | t ≥ 0}

can easily be interpreted as the available buffer capacity of a dam with release
rate r(x) when the content equals x. Second, to convert the risk-type process
into a queueing process again, we use a reversibility argument, as in [11, 13].
The sample path of this queueing process can essentially be obtained by time-

reversing the sample path of {D
r̃(·)
t | t ≥ 0}, resulting in a queueing process

with service speed r̃(x) when the workload equals x. �

4.4 Applications

In this section we state some exact and asymptotic results for PK , by applying
results for Cmax which are available in the literature. Given the results derived
before, this leads to more transparent proofs of existing results, and also yields
some results that are new.

4.4.1 Exact expressions for PK

In the literature, there are several studies devoted to the distribution of Cmax

for a variety of queueing models. We refer to Asmussen [7] for a survey of these
results. The M/G/1 case has already been treated in Zwart [176]. Here, we give
an analogous result for the G/M/1 queue.
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Corollary 4.4.1 Consider the finite G/M/1 dam with ρ < 1 and service rate
µ. Then

PK =
1

G(K)
,

where G(x), x ≥ 0, is a function with LST

1

s− µ(1− α(s))
,

with α(s) the LST of the interarrival time distribution.

Proof The result follows immediately from Theorem 4.2.1 and formula (7.76)
of Cohen [56] stating that, for the G/M/1 queue,

P(Cmax ≥ K) =
1

G(K)

with G(x), x ≥ 0, defined as above. 2

4.4.2 Asymptotics

Van Ommeren and De Kok [168] derive asymptotics for PK in the G/G/1 queue
under light-tailed assumptions. After a lengthy argument they find the asymp-
totics of PK , from which it immediately follows that (under their assumptions)
PK ∼ P(Cmax > K).

Asymptotics for the latter are due to Iglehart [86]: Under certain regularity
conditions (see [86]), it holds that

P(Cmax ≥ K) ∼ De−γK , (4.14)

for certain positive constants γ and D. Using Theorem 4.2.1, the proof of the
main result of [168] is now trivial: Just combine Theorem 4.2.1 with (4.14) to
(re-)obtain

PK ∼ De
−γK .

For more details concerning specific assumptions and expressions for γ and D
we refer to [86] and [168].

We conclude by giving results for the heavy-tailed case: Consider again the
G/G/1 queue, but assume now that service requirements belong to the subclass
S∗ of the class of subexponential distributions (see, e.g., Embrechts et al. [74] for
a definition). This class contains all heavy-tailed distributions of main interest,
such as the Pareto, lognormal, and certain Weibull distributions.

Asymptotics for the cycle maximum are presented in Theorem 1.6.6 (see also
[8]). If we combine these asymptotics with Theorem 4.2.1 we obtain (with N
being the number of customers served in one busy cycle in the infinite-buffer
version of the G/G/1 queue):

Corollary 4.4.2 If ρ < 1 and the service requirement S ∈ S∗, then

PK ∼ ENP(S ≥ K).
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Also, in case of Poisson arrivals, Theorem 1.6.8 extends the result to queues
with general service speeds, see [8] for details. Note that (4.10) and (4.11),
combined with Remark 4.3.1, indeed result in the same asymptotics.

4.4.3 Poisson arrivals and Takács’ formula

The equivalence in Theorem 4.2.1 can also be used the other way around: Given
information on PK , we derive a new identity for the distribution of Cmax for
queues with general release rate. For the special M/G/1 case, the distribution of
Cmax is known through Takács’ formula. We combine the results of Section 4.3
with an identity for PK which is valid under the additional assumptions of
Poisson arrivals and a stationary (embedded) workload distribution in case of
infinite buffer capacity (see e.g. [10, 46] for details). Under these assumptions,
Theorem 3.4.1 shows that the steady-state distribution of the amount of work
in the system found by a customer WK,r(·) satisfies the following proportionality
property:

P(WK,r(·) ≤ x) =
P(W r(·) ≤ x)

P(W r(·) ≤ K)
. (4.15)

Here, W r(·) is the steady-state amount of work in the system with K = ∞
(assuming it exists). For similar proportionality relations in the ordinary M/G/1
queue, see for example Takács [161], Cohen [56] and Hooghiemstra [85]; see
Asmussen [10], Chapter XIV, Proposition 3.1, in case of a general release rate.

Writing 1− PK = P(WK,r(·) + S < K), conditioning on S, applying (4.15),
and deconditioning on S then results in

P
r(·)
K = 1− P(WK,r(·) + S < K)

=
P(W r(·) + S ≥ K)− P(W r(·) > K)

P(W r(·) ≤ K)
.

Combining this result with (4.11) then results in the following corollary.

Corollary 4.4.3 Assume that the M/G/1 queue with infinite buffer size and
general release rate has a stationary (embedded) workload distribution. Then,

P(Cr(·)max ≥ x) =
P(W x,r̃(·) = 0)

P(W x,r(·) = 0)

P(W r(·) + S ≥ x)− P(W r(·) > x)

P(W r(·) ≤ x)
.

This is an extension of Theorem 1.6.4, the classical formula for the distribu-
tion of Cmax in the M/G/1 queue, which is due to Takács [161] (see also Cohen
[52], and Asmussen and Perry [12] for alternative proofs). That result can be
easily recovered from Corollary 4.4.3, since, for the M/G/1 queue, we have
r(x) ≡ r̃(x) ≡ 1. This yields the well-known formula (see also Theorem 1.6.4)

P(Cmax < x) =
P(W + S < x)

P(W ≤ x)
.
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Explicit results for C
r(·)
max in terms of Volterra functions were presented in

Chapter 3. Chapter 3 also contained related results for first-exit probabilities,
as well as expressions for the distribution of W r(·) in terms of Volterra functions,
which can also be found in Harrison and Resnick [83]. Although Corollary 4.4.3
does not give a very explicit formula for the distribution of Cmax, in contrast
to Theorem 3.5.1, we expect that this representation may be useful to obtain
asymptotics and/or bounds. Asymptotic results in the light-tailed case are
hardly known; see Asmussen [7, 8].

4.5 Conclusion

We have considered several queueing models which operate under the partial-
rejection mechanism. For these models, we have shown that the loss probability
of a customer can be identified with the tail distribution of the cycle maximum.

This chapter raises several questions that could be interesting for further
research. First of all, we believe that an appropriate modification of Theo-
rem 4.2.1 still holds for other queueing models, such as queueing models with
Markov-modulated input. This is potentially useful, since the distribution of
the cycle maximum is known for a large class of such models; see Asmussen and
Perry [12].

Furthermore, we expect that Siegmund duality and related results can also
be fruitful in other queueing problems. In the context of the present chapter, we
believe that an analogue of (4.2) can be shown for queues which can be modeled
as birth-and-death processes: Siegmund-type duality results for birth-and-death
processes have been derived by Dette et al. [65].



Chapter 5

Optimal admission control in queues

with workload-dependent service rates

5.1 Introduction

In the previous chapters we studied various queueing systems with workload-
dependent service rates. In the present chapter we specifically consider the case
in which the service rate is first increasing and then decreasing as a function
of the amount of work present. In addition, the amount of work is controlled
by an admission policy for accepting or rejecting arriving jobs, depending on
the state of the system. We seek an admission policy that maximizes the long-
run throughput, and show that, under certain conditions, a threshold policy is
optimal. Because the workload process under the threshold policy is identical
to the workload process of a queueing system with customer impatience, we can
apply results from Chapter 3 to determine the optimal threshold value.

The study of queues with state-dependent rates is motivated in Chapter 1.
A typical application for the model in this chapter concerns production sys-
tems where the productivity of the shop floor personnel depends on the level
of work-in-process (workload). In particular, the productivity, i.e., the speed
of the server, first increases when the workload is low until a certain optimum
is attained and then decreases when the system reaches overload (caused by,
e.g., stress factors), see Section 1.3. The latter qualitative behavior is quite
characteristic of efficiency patterns observed in many practical scenarios.

The above-described M/G/1 queue with admission control may be mod-
eled as a semi-Markov Decision Process (MDP). Most of the theory on MDP’s
concerns models with finite or countable state spaces. Because in the present
queueing model both the admission policy and the service speed depend on the
workload, we are dealing with an MDP with uncountable state space [0,∞). See
for instance [145, 147, 150] for some general MDP’s with infinite state spaces.
To derive structural properties of the optimal policy, a commonly used approach
in MDP’s is the construction of value functions that possess certain concavity
properties. Because the value functions in our model typically do not exhibit
such behavior, we apply sample-path techniques to compare different policies.
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An interesting related study is [67], where the author considers an M/G/1
queueing system with continuous-time arrival control and a fixed reward rate R
when the server is busy and holding cost rate cx when the workload is x. Hence,
such an M/G/1 queue can also be modeled as an MDP with the admission
control depending on the system state, while the state space is infinite [0,∞).
Using sample-path arguments and general theory on continuous-time MDP’s
developed in [66], the author proves the average-cost optimality of threshold
policies.

Another branch of single-server queues with uncountable state spaces con-
cerns M/G/1 queues with service control. Specifically, the service speed may be
continuously adapted over time based on the residual amount of work. In [53],
the service speed equals r1 when the workload is less than some fixed level K
and r2 when the workload exceeds K. For some fairly general cost functions,
the author determines the optimal switching level K. In [75, 162], the server
works at constant speed, but can be switched on and off. The cost function
includes holding cost and switching cost for turning the server on. The average-
cost optimality of D-policies is shown in [75, 162]. In D-policies, the server is
turned off only when the system becomes empty (while the server was on) and
the server is turned on only when the workload exceeds level D (and the server
was off).

This chapter is organized as follows. We give a detailed model description
and several representations of the throughput in Section 5.2. In Section 5.3,
the optimality of threshold policies under Assumption 5.2.1 (see Section 5.2)
is shown. A criterion for the optimal threshold value is derived in Section 5.4.
In Section 5.5 we present several examples of (combinations of) service speed
functions and service requirement distributions satisfying Assumption 5.2.1. We
explicitly determine the optimal threshold value and corresponding throughput
in Section 5.6 for some special cases. Some concluding remarks and suggestions
for further research are given in Section 5.7.

5.2 Model description

We consider an M/G/1 queue with a workload-dependent service rate. The
customers (or jobs) arrive according to a Poisson process of rate λ. The service
requirement of the n-th customer is Bn, n = 1, 2, . . ., where the Bn are assumed
to be independent, identically distributed copies of a random variable B with
distribution B(·) and mean β. We also assume that the sequences of interarrival
intervals and service requirements are independent.

The server works at a rate that depends on the amount of work in the system
as described by some function r(·), i.e., the service rate is r(x) when the amount
of work is x. As in previous chapters and [83], we assume that r(0) = 0 and
that r(·) is strictly positive, left-continuous, and has a right limit on (0,∞). In
addition, we specifically focus on the case that r(·) is increasing on (0, rmax] and
decreasing on (rmax,∞) for some rmax ≥ 0.

The admission of work into the system is governed by a control policy which
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prescribes whether arriving customers are accepted or rejected, depending on
the state of the system. We assume that the service requirement of a customer
only becomes known after the acceptance decision, see Section 5.7 for a further
discussion. Thus, the admission control policy may equivalently be interpreted
as a rule for closing or opening access to the system.

We seek an admission control policy that maximizes the long-run through-
put. The long-run throughput under policy π is defined as

THπ := lim
t→∞

Bπ(0, t)

t
,

assuming the limit to exist. Here Bπ(0, t) denotes the amount of work completed
during [0, t] under policy π. A policy π∗ is said to be (strictly) optimal if
THπ∗

≥ THπ (THπ∗

> THπ) for all policies π 6= π∗.
For now, we restrict the attention to the class of stationary and deterministic

policies that base their actions on the current amount of work in the system only.
For a given policy π, we use π(x) = 1 to denote that it accepts a customer that
arrives when the workload equals x and write π(x) = 0 otherwise. Later we
will show that the found optimal policy is in fact optimal within a broader class
that includes non-stationary and randomized policies as well.

Let V πt be the workload at time t and let W π
n be the workload just before

the n-th arrival epoch. Denote by V π and W π the random variables with
the corresponding steady-state distributions, if they exist, and let vπ(·) be the
density of V π.

We first consider the case λβ < r∞, with r∞ := limx→∞ r(x). In that
case, the system remains stable under the greedy policy that always accepts
customers. Thus, the throughput achieved under the latter policy equals λβ,
which is optimal, since the maximum achievable long-run throughput is bounded
by the offered traffic load.

In the remainder of the chapter we focus on the case λβ > r∞. (The bound-
ary case λβ = r∞ is rather delicate, and a full analysis is beyond the scope
of the present chapter.) In that case, the system is unstable under the greedy
policy that always accepts customers. Henceforth, we restrict the attention to
policies π such that π(x) = 0 for all x > M for some large M , which ensures the
existence of the steady-state workload distribution. Even though the policy that
always accepts customers may continue to be optimal, the maximum achievable
throughput can be approached arbitrarily close for sufficiently large M .

Since the steady-state workload distribution exists, the throughput THπ

under policy π as defined above may in fact be expressed in several alternative
ways. Observing that Bπ(0, t) =

∫ t

0 r(V
π
u )du, the throughput may be equiva-

lently written as

THπ = lim
t→∞

1

t

∫ t

0

r(V πu )du = E[r(V π)] =

∫ ∞

0

r(x)vπ(x)dx.

Invoking the further identity relation (with Aπ(0, t) denoting the amount of
work accepted during [0, t] under policy π)

Bπ(0, t) = V π0 +Aπ(0, t)− V πt ,
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and noting that V πt /t→ 0 as t→∞, we observe that the throughput may also
be expressed as

THπ = β lim
t→∞

Nπ(0, t)

t
,

where Nπ(0, t) denotes the number of accepted customers during [0, t] under
policy π. Using the PASTA property, the above expression may be further
rewritten as

THπ = λβP(π(V π) = 1) = λβ

(

π(0)P(V π = 0) +

∫ ∞

0

π(x)vπ(x)dx

)

. (5.1)

Finally, we introduce some additional notation. Define

R(x) :=

∫ x

0

1

r(y)
dy, 0 < x <∞,

representing the time required for the system to empty in the absence of any
arrivals, starting from workload x. In order to avoid technicalities, we assume
that R(x) <∞ for all x > 0, as in [83] and parts of Chapters 2–4. Moreover, we
assume that E[R(x+B+δ)−R(x+B)]→ 0, as δ → 0. The latter condition only
rules out cases where the workload process is being absorbed in some positive
workload level and is satisfied if, for instance, r∞ > 0 or if B has finite support.
Further define

Z(x) :=

∫ ∞

0

∫ x+y

x

1

r(z)
dzdB(y) =

∫ ∞

x

1

r(z)
(1−B(z))dz, (5.2)

representing the expected time required for the system to return to workload x
after a customer has been accepted, in the absence of any further arrivals. In
the remainder of the chapter, we make the following assumption with regard
to Z(x).

Assumption 5.2.1 There exists some zmin ≥ 0 such that Z(x) is decreasing
on [0, zmin] and increasing on [zmin,∞).

The above assumption is satisfied for a wide class of M/G/1-type models
with workload-dependent service rates. We give several illustrative examples in
Section 5.5.

To provide some intuition, suppose that the system operates according to
the Last-Come First-Served Preemptive-Resume (LCFS-PR) discipline, which
does not affect the workload process in any way. With that view in mind, Z(x)
may be thought of as the expected service time of a customer that arrives when
the workload equals x, and zmin represents the workload level at which arriving
customers have the minimum expected service time. Thus, from the LCFS-
PR perspective, the direct reward of accepting customers is first increasing
(on (0, zmin]) and then decreasing (on (zmin,∞)). However, the decision to
either accept or reject also affects future rewards (service times). In Section 5.3,
insights from the LCFS-PR discipline are applied to show that the optimal
policy has a threshold structure when Assumption 5.2.1 is satisfied.
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5.3 Optimality of threshold policies

In the first part of this section, we only consider stationary deterministic poli-
cies. Since the actions of the admission control policy then only depend on the
workload level x, we will also for brevity refer to the value of x as the state of
the system. An excursion from state x is then a period that starts with the
acceptance of a customer in state x and ends with the first subsequent return to
state x. For conciseness, we will frequently write that a policy accepts/rejects in
an interval [v, w] when it accepts/rejects customers that arrive when the work-
load is in the interval [v, w]. In the second part of this section, we show that the
found optimal policy is in fact optimal within a broader class that also includes
non-stationary and randomized policies.

Define Nπ(x) and T π(x) as follows:
Nπ(x) ≡ expected number of accepted customers during an excursion from state
x under policy π.
T π(x) ≡ expected duration of an excursion from state x under policy π.
It may be verified that Nπ(x) and T π(x) are continuous, see also the proof of
Lemma 5.3.2.

Consider an arbitrary policy π that rejects in [x, x+δ]. Let π′ be a modified
policy, which does the same as π except that it accepts in [x, x+ δ]. Let Gπ(y)
be the expected number of excursions during a busy cycle that start from a
workload level below y under policy π, which are not part of an excursion
starting from a level z ∈ [x, y], y ≥ x.

Lemma 5.3.1 For some γ ∈ (0, 1), we have

THπ′

= (1− γ)THπ + γ

∫ x+δ

x βNπ′

(y)dGπ
′

(y)
∫ x+δ

x
T π′(y)dGπ′(y)

.

Proof By [148, Theorem 1], the throughput under policy π may be equiva-
lently expressed as THπ = ERπ/ET π, where Rπ is the reward (i.e., amount
of work served) during a busy cycle and T π is the cycle length under policy
π. Consider a busy cycle and take an arbitrary sample path of the workload
process {V π

′

t , t ≥ 0} under policy π′. We construct a stochastic process V̂t by
deleting the excursions from level y ∈ [x, x+δ] and pasting together the remain-
ing parts. First note that the residual interarrival time at a downcrossing of y is
still exponential (see, e.g., Lemma 3.4.1). Now, it may be readily checked that
V̂t and V πt have the same statistical properties. Thus, for the expected number
of accepted customers during a busy cycle under policy π′, ENπ′

, we have

ENπ′

= ENπ +

∫ x+δ

x

Nπ′

(y)dGπ
′

(y),

and, equivalently, for the expected duration of a busy cycle

ET π
′

= ET π +

∫ x+δ

x

T π
′

(y)dGπ
′

(y).



92 Chapter 5 Optimal admission control

Using Wald’s theorem, we derive

ERπ
′

ET π′
=

βENπ′

ET π′
=
β(ENπ +

∫ x+δ

x
Nπ′

(y)dGπ
′

(y))

ET π +
∫ x+δ

x T π′(y)dGπ′(y)

= (1− γ)
ERπ

ET π
+ γ

∫ x+δ

x
βNπ′

(y)dGπ
′

(y)
∫ x+δ

x T π′(y)dGπ′(y)
,

where γ =
∫ x+δ

x
Tπ′

(y)dGπ′

(y)

ETπ+
∫ x+δ

x
Tπ′ (y)dGπ′ (y)

represents the fraction of time spent on ex-

cursions starting between x and x+ δ. This completes the proof. 2

Let π∗ denote an optimal policy, with corresponding throughput TH∗ =
E[r(V π

∗

)].

Lemma 5.3.2 (Optimality properties)

(i) it is strictly optimal to reject in [v, w] =⇒ βNπ∗

(x)
Tπ∗ (x)

< TH∗, for almost

every x ∈ [v, w].

(ii) it is optimal to accept in [v, w] =⇒ βNπ∗

(x)

Tπ∗ (x)
≥ TH∗, ∀x ∈ [v, w].

Note that the inequality in (i) may hold with equality for some x ∈ [v, w].

Proof We first prove that

∫ x+δ

x
Nπ′

(y)dGπ
′

(y)
∫ x+δ

x T π′(y)dGπ′ (y)
→

Nπ(x)

T π(x)
, as δ ↓ 0. (5.3)

For some small δ > 0 and y ∈ [x, x+ δ], we have

T π
′

(y)−T π(x+δ) ≤ (R(x+δ)−R(y))(1+λ max
y≤u≤x+δ

T π
′

(u))→ 0, as δ ↓ 0,

where R(x+ δ)−R(y) is the time required to go from x+ δ to y in the absence
of any arrivals. Similarly, as δ ↓ 0, T π

′

(y) − T π(x + δ) can be bounded from
below by

−E[R(x+B + δ)−R(y +B)](1 + λ max
y+B≤u≤x+B+δ

π′(u)T π
′

(u))→ 0.

Applying similar arguments to Nπ′

(y) then yields (5.3). (Another way to see
that (5.3) holds, is to observe that the density dGπ(·) is well-defined.)

The remainder of the proof is by contradiction. For part (i), assume that the
strictly optimal policy π∗ rejects in [v, w], but there is some interval (u, u+δ) ⊆
[v, w], with δ > 0, such that βNπ∗

(x)/T π
∗

(x) ≥ TH∗ for x ∈ (u, u+δ). Consider
a modified policy π which accepts in [u, u+ δ] and follows π∗ otherwise. First
using Lemma 5.3.1 and then letting δ ↓ 0 (and using (5.3)), it follows that
E[r(V π)] ≥ TH∗, contradicting the strict optimality of π∗.
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For part (ii), assume that the optimal policy π∗ accepts in [v, w] but, for some
x ∈ [v, w], βNπ∗

(x)/T π
∗

(x) < TH∗. Using (5.3), it follows that there is some
interval U := (u− δ, u+ δ) ⊆ [v, w] such that βNπ∗

(x)/T π
∗

(x) < TH∗ for every
x ∈ U . Consider the modified policy π that rejects in U and follows π∗ otherwise.
Using Lemma 5.3.1 (with π′ ≡ π∗), it is easily seen that E[r(V π)] > TH∗,
contradicting the optimality of π∗. 2
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Figure 5.1: The sample paths of two excursions of V π

t ; one excursion from state u∗

and one excursion from state u∗ + y. In this example N = 2 and M = 3.

Lemma 5.3.3 It is optimal to accept in [0, zmin].

Proof It is obvious that it is optimal to accept in an empty system. Now,
assume that it is not optimal to accept in [0, zmin]. Then there is some policy
π, such that π(x) = 1 for x ∈ [0, u∗], but π(x) = 0 for x ∈ (u∗, u∗ + δ], with
u∗ + δ ≤ zmin and δ > 0, that is strictly optimal.

Take some arbitrary 0 < y < δ. In the proof, we compare Nπ(u∗) and
T π(u∗) with Nπ(u∗+y) and T π(u∗+y). Using stochastic coupling, we show that
βNπ(u∗ + y)/T π(u∗ + y) may be written as a combination of βNπ(u∗)/T π(u∗)
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and possibly contributions from some additional excursions. Since π is as-
sumed to be optimal, both terms provide an average reward of at least TH∗ by
Lemma 5.3.2(ii). By Lemma 5.3.2(i), this contradicts the strict optimality of
rejecting in (u∗, u∗ + δ], because the coupling holds for any y ∈ (0, δ).

For the first part in the stochastic coupling, i.e., the part of the excursion
from u∗ + y related to βNπ(u∗)/T π(u∗), observe that it follows from Assump-
tion 5.2.1 that Z(u∗) ≥ Z(u∗ + y), implying that the direct reward of accepting
customers at level u∗ + y is at least as high as the direct reward of accepting
at level u∗. For the second part, we use the fact that we only make additional
excursions if they are advantageous.

First consider the expected duration of an excursion from level u∗ under
policy π, and the expected number of accepted customers during such an ex-
cursion (i.e., Nπ(u∗) and T π(u∗)). Let the first jump, initiating an excur-
sion, occur at time 0 and observe that the workload level right after the first
jump equals u∗ + B, i.e., V π0+ = u∗ + B. Note that the workload process
attains local minima just before arrival instants at which customers are go-
ing to be accepted. Using terminology of random walks, define a stopping
time τπs := inf{t ≥ 0 : V πt ≤ u∗}, an equivalent notion measured in the
number of arrivals τπ := inf{k ≥ 0 : W π

k ≤ u∗}, and a sequence of de-
scending ladder epochs τπ(1) < · · · < τπ(N) < τπ with corresponding de-
scending ladder heights u∗ + B > W π

τπ(1) > · · · > W π
τπ(N) > u∗, as follows:

τπ(1) := inf{0 ≤ k ≤ τπ : π(W π
k ) = 1}, and for n = 2, . . . , N (if τπ(1) < τπ)

τπ(n+ 1) := inf{τπ(n) < k < τπ : W π
k < W π

τπ(n), π(W π
k ) = 1}.

Note that W π
τπ(N) > u∗+δ, since π(x) = 0 for x ∈ [u∗, u∗+δ]. A typical sample

path in case N = 2 is depicted in the first part of Figure 5.1. Using the above,
we may write

Nπ(u∗) = 1 +

N
∑

n=1

Nπ(W π
τπ(n)), (5.4)

T π(u∗) = Z(u∗) +

N
∑

n=1

T π(W π
τπ(n)). (5.5)

Now considerNπ(u∗+y) and T π(u∗+y). In this case, at time 0 the workload
jumps to u∗+y+B, i.e., V π0+ = u∗+y+B. As defined above, we have a stopping
time τ̃πs , a discrete-time equivalent τ̃π , and a sequence of descending ladder
epochs 0 < τ̃π(1) < · · · < τ̃π(M) < τ̃π with corresponding descending ladder
heights u∗ + y + B > W π

τ̃π(1) > · · · > W π
τ̃π(M) > u∗ + y (see the second part

of Figure 5.1 for a typical realization). Observe that the residual interarrival
time at a downcrossing of u∗ + B is still exponential. Hence, using stochastic
coupling and the fact that W π

τπ(N) > u∗ + δ, the descending ladder epochs

may be divided into two sets: (i) τ̃π(1), . . . , τ̃π(M − N) with u∗ + y + B >
W π
τ̃π(1) > · · · > W π

τ̃π(M−N) > u∗ +B; and (ii) τ̃π(M −N + 1), . . . , τ̃π(M) such

that W π
τ̃π(n+M−N) =d W π

τπ(n) for n = 1, . . . , N . This coupling is illustrated
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in Figure 5.1 (with N = 2 and M = 3). In this figure, the sample paths in
the range of the solid arrow (that is between [0, s] and [s′, τ̃πs ] respectively) are
identical. Using the arguments above, we have

Nπ(u∗ + y) = 1 +

M−N
∑

n=1

Nπ(W π
τ̃π(n)) +

N
∑

n=1

Nπ(W π
τπ(n)), (5.6)

T π(u∗ + y) = Z(u∗ + y) +

M−N
∑

n=1

T π(W π
τ̃π(n)) +

N
∑

n=1

T π(W π
τπ(n)). (5.7)

Since W π
τ̃π(n), n = 1, . . . ,M −N , are the workloads just before an arriving

customer is accepted and π is the supposed optimal policy, Lemma 5.3.2 yields

β
∑M−N

n=1 Nπ(W π
τ̃π(n))

∑M−N
n=1 T π(W π

τ̃π(n))
≥ β min

n=1,...,M−N

Nπ(W π
τ̃π(n))

T π(W π
τ̃π(n))

≥ TH∗. (5.8)

Moreover, using (5.4) and (5.5) in addition to Assumption 5.2.1, we obtain

β(1 +
∑N

n=1N
π(W π

τπ(n)))

Z(u∗ + y) +
∑N

n=1 T
π(W π

τπ(n))
≥
βNπ(u∗)

T π(u∗)
≥ TH∗, (5.9)

where the second inequality relies on the fact that it is optimal to accept at
level u∗. Combining (5.6)-(5.9) yields

βNπ′

(u∗ + y)

T π′(u∗ + y)

≥ min

{

β
∑M−N
n=1 Nπ(W π

τ̃π(n))
∑M−N

n=1 T π(W π
τ̃π(n))

,
β(1 +

∑N
n=1N

π(W π
τπ(n)))

Z(u∗ + y) +
∑N

n=1 T
π(W π

τπ(n))

}

≥ TH∗.

By Lemma 5.3.2 it can thus not be strictly optimal to reject at level u∗ + y,
0 < y < δ. 2

Theorem 5.3.1 There exists a threshold policy that is optimal among the class
of stationary deterministic policies.

Proof It follows from Lemma 5.3.3 that it is optimal to accept when the
workload is in [0, zmin]. Suppose that a threshold policy is not optimal, i.e.,
there exists some policy π that is strictly better than any threshold policy. Let
nπ :=

∫∞

0
max(π(x+)−π(x), 0)dx be the number of “gaps” of policy π, i.e., the

number of times π(·) switches from 0 to 1. Let π be an optimal policy, which
is strictly better than any threshold policy, with the least number of gaps, that
is, π = arg minπ∈Π∗ nπ, with Π∗ the class of optimal policies. This implies that
there is some u∗ > zmin and δ2 > δ1 > 0 such that π(x) = 0 on (u∗, u∗ + δ1) and
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π(x) = 1 on (u∗ + δ1, u
∗ + δ2). We note that gaps consisting of singular points

can be removed.
Take some arbitrary 0 < y < δ1. In the proof, we consider Nπ(u∗ + y) and

T π(u∗ + y). Using the fact that it is optimal to accept in (u∗ + δ1, u
∗ + δ2),

we show that βNπ(u∗ + y)/T π(u∗ + y) ≥ TH∗ (contradicting the fact that π
contains the least number of gaps among policies in Π∗). This follows from the
fact that the direct reward of accepting at level u∗ + y exceeds the reward of
accepting at any level x > u∗ + y. Moreover, additional excursions are only
made when they are advantageous.

Suppose that at time 0 an arriving customer with service requirement B
is accepted when the workload equals u∗ + y, i.e., V π0+ = u∗ + y + B. As in
the proof of Lemma 5.3.3 (see also the first part of Figure 5.1, with δ1 ≡ δ),
we may define “stopping times” τπs and τπ and a sequence of descending ladder
epochs τπ(1) < · · · < τπ(N) < τπ with corresponding descending ladder heights
u∗ + y +B > W π

τπ(1) > · · · > W π
τπ(N) > u∗ + y. Note that W π

τπ(N) > u∗ + δ1 (if

N > 0), since π(x) = 0 for x ∈ [u∗, u∗ + δ1]. Applying this construction yields

Nπ(u∗ + y) = 1 +

N
∑

n=1

Nπ(W π
τπ(n)),

T π(u∗ + y) = Z(u∗ + y) +

N
∑

n=1

T π(W π
τπ(n)).

By Lemma 5.3.2, β
∑N

n=1N
π(W π

τπ(n))/
∑N
n=1 T

π(W π
τπ(n)) ≥ TH∗ since π is

assumed to be an optimal policy. Moreover, using a similar ladder height con-
struction, it may be easily checked (in general) that

Nπ(x)

T π(x)
≤ max

v≥x

1

Z(v)
. (5.10)

Hence, invoking Assumption 5.2.1 yields

β

Z(u∗ + y)
≥

β

Z(u∗ + δ1)
≥ TH∗.

Combining the above, we obtain βNπ(u∗ + y)/T π(u∗ + y) ≥ TH∗ for any
y ∈ (0, δ1). By Lemma 5.3.2, this contradicts the fact that policy π has the
minimum number of gaps among the class of optimal policies Π∗. 2

The ladder height construction in the proof of Theorem 5.3.1 allows us to
generalize Relation (5.10):

Proposition 5.3.1 For the throughput during an excursion from level x, we
have the following bounds,

min
v≥x:π(v)=1

1

Z(v)
≤
Nπ(x)

T π(x)
≤ max

v≥x:π(v)=1

1

Z(v)
.
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These bounds are especially natural from the perspective of the LCFS-PR dis-
cipline. In that view, the proposition simply states that the throughput during
an excursion from level x is at least the minimum (and at most the maximum)
of one over the mean service time of accepting at any level above x if policy π
is applied.

Remark 5.3.1 The proof of Theorem 5.3.1 crucially depends on the fact that
Z(·) has only one local minimum, i.e., Assumption 5.2.1. Suppose for the mo-
ment that Z(·) has L local minima. Thus, Z(·) is decreasing on [zkmax, z

k
min)

and increasing on [zkmin, z
k+1
max), k = 1, . . . , L, where z1

max = 0 and zL+1
max = ∞.

Similar to the proof of Lemma 5.3.3, we deduce that if π(x) = 1 for some
x ∈ [zkmax, z

k
min), then π(y) = 1 for all y ∈ [x, zkmin) (note that π(0) = 1 and

accepting is thus optimal in [0, z1
min)). Also, it follows from the proof of The-

orem 5.3.1 that if π(x) = 1 for some x ∈ [zLmax,∞), then π(y) = 1 for all
y ∈ [zLmax, x). However, the intervals [zkmin, z

k+1
max), k = 1, . . . , L− 1, are not cov-

ered by the proof. In particular, the trade-off between direct and future rewards
remains undecided there. �

Theorem 5.3.1 shows that the threshold policy is optimal among the class
of stationary and deterministic policies. To prove that a (stationary and de-
terministic) threshold policy is also optimal within the broader class of policies
considered in [148], we use insights from this section to construct an appro-
priate (value) function satisfying [148, Theorem 2]. The class of policies in
[148] consists of all measurable decision rules, and includes non-stationary and
non-deterministic policies.

Theorem 5.3.2 There exists a threshold policy that is optimal within the class
of policies considered in [148].

Proof Let π be a threshold policy with threshold value x∗ that is optimal
within the class of stationary and deterministic policies. Now, define nπ(x) and
tπ(x) as follows:
nπ(x) ≡ expected amount of work served in a period starting with workload
level x until the end of the busy cycle under policy π.
tπ(x) ≡ expected length of a period starting with workload level x until the end
of the busy cycle under policy π.
Similar to [67], let

f̃(x) := nπ(x)− THπtπ(x).

Consider E[f̃(x + B)] and divide the busy cycle in two parts; first we have an
excursion from state x followed by the remaining part of the cycle starting with
a downcrossing of level x. Hence (see also [67, Lemma 6.3]),

E[f̃(x+B)] = β (Nπ(x)− 1)− THπT π(x) + f̃(x), (5.11)

where the Nπ(x)−1 stems from the fact that the arrival in state x is not counted
in E[f̃(x +B)].
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Define, for x ≥ 0,

f(x) :=

{

β + E[f̃(x +B)], for 0 ≤ x ≤ x∗,

f̃(x), for x > x∗,
(5.12)

where x is the state of the system just before a decision epoch. By conditioning
on the first arrival, we also obtain the following relationship between f̃(·) and
f(·):

f̃(x) =

∫ ∞

0

f(R−1((R(x)− y)+))λe−λydy −
THπ

λ
, (5.13)

with R−1(·) the inverse function of R(·), see e.g. Chapters 2 and 3 for de-
tails. Because π is assumed to be an optimal stationary deterministic policy,
Lemma 5.3.2 yields that βNπ(x) − THπT π(x) is positive for x ∈ [0, x∗), and
non-positive for x ∈ [x∗,∞). Using the above in addition to (5.11) and (5.12),
we obtain

f(x) = max{βNπ(x)− THπT π(x), 0}+ f̃(x). (5.14)

Combining (5.11) with (5.13), we may rewrite (5.14) into

f(x) = max

{

β +

∫ ∞

0

∫ ∞

0

f(R−1((R(x + z)− y)+))λe−λydydB(z),

∫ ∞

0

f(R−1((R(x)− y)+))λe−λydy

}

−
THπ

λ
.

Thus the function f(·) satisfies the optimality equation for the average-cost
criterion, i.e. Equation (3) in [148]. The theorem now follows directly from
[148, Theorem 2]. 2

5.4 Criterion for the optimal threshold

In Section 5.3 we showed that, if Assumption 5.2.1 is satisfied, a threshold policy
is optimal. The derivation of that result also suggested the following criterion
for the optimal threshold:

THπx̄ =
β

Z(x̄)
, (5.15)

where πx̄ denotes a threshold policy with parameter x̄. The above criterion is in-
tuitively appealing when we consider marginal arguments. Informally speaking,
the optimal threshold will be chosen such that the throughput just equals the
expected reward of customers accepted in state x̄ (which has reward β/Z(x̄)).

Moreover, the above criterion allows us to deduce some properties of the op-
timal threshold value. Using a similar construction as in (some of) the proofs of
Section 5.3, it may be shown that THπx̄ is increasing as a function of λ. (To see
this, we note that a higher λ yields additional arrivals which are only accepted
if the resulting excursions are advantageous.) Because β/Z(x̄) is independent
of λ we can directly conclude from (5.15) that the optimal threshold value is
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decreasing in λ. It may also easily be checked that the optimal threshold ap-
proaches zmin as λ → ∞. This behavior of the optimal threshold reveals the
typical trade-off between direct and future rewards; the upper bound for the
throughput is attained by accepting customers in state zmin, but the optimal
policy anticipates decreasing arrival rates by starting to accept customers at in-
creasing workload levels to compensate for the increased probability of reaching
an empty system (where the server is idle).

In the remainder of this section, we use another method to derive a criterion
for the optimal threshold value and give some properties of THπx̄ as a function
of x̄. Moreover, when Z(·) does not satisfy Assumption 5.2.1, we show that a
similar criterion as (5.15) holds for the optimal threshold value, which provides
the optimal policy within the class of threshold policies. (Note that a threshold
strategy may then not be optimal among the class of stationary and determin-
istic policies). However, we start with the general form of the throughput under
a threshold strategy with some fixed threshold x̄.

Observe that, for fixed x̄, the workload under policy πx̄ has the same dynam-
ics as an M/G/1 queue with a general service rate and impatience of customers
depending on the amount of work found upon arrival. Under policy πx̄ the
model is in fact a special case of the finite-buffer queue in Chapter 3, with

vπx̄(x) =

{

P(V πx̄ = 0)K∗(x, 0), 0 < x ≤ x̄,

P(V πx̄ = 0)
[

K(x, 0) +
∫ x̄

0 K(x, y)K∗(y, 0)dy
]

, x > x̄,

where P(V πx̄ = 0) follows from normalization:

P(V πx̄ = 0) =

[

1 +

∫ x̄

0

K∗(x, 0)dx +

∫ ∞

x̄

K(x, 0)dx

+

∫ ∞

x̄

∫ x̄

0

K(x, y)K∗(y, 0)dydx

]−1

. (5.16)

Here, the (iterated) kernels are defined as in Section 3.3 and [83]. That is, for
0 ≤ y < x <∞, K(x, y) := λ(1−B(x− y))/r(x),

Kn+1(x, y) :=

∫ x

y

K(x, z)Kn(z, y)dz, (5.17)

and K∗(x, 0) :=
∑∞

n=1Kn(x, 0). Using the representation in (5.1) for the
throughput, we obtain

THπx̄ = λβP(V πx̄ = 0)

(

1 +

∫ x̄

0

K∗(x, 0)dx

)

. (5.18)

Note that Z(x̄) and THπx̄ are continuous and differentiable functions of x̄.
In order to determine the optimal threshold, it is useful to consider the derivative
of THπx̄ with respect to x̄.



100 Chapter 5 Optimal admission control

Lemma 5.4.1 For the derivative of THπx̄, we have

d

dx̄
THπx̄ = λβP(V πx̄ = 0)K∗(x̄, 0) [1− THπx̄Z(x̄)/β] .

Proof The proof is deferred to Appendix 5.A. 2

Before we further discuss the optimal threshold criterion, we first derive some
properties of THπx̄ as a function of x̄. As in Lemma 5.3.1, consider a policy π
that does not accept in [a, b] and a modified policy π′, which does the same as π
except that π′(x) = 1 for x ∈ [a, b]. Then, the throughput under policy π′ may
be written as a convex combination of the throughput under policy π and the
throughput due to excursions starting from levels in [a, b] (see Lemma 5.3.1).
This relation is particularly useful in studying the relationship between THπx̄

and Z(·).

Lemma 5.4.2 Suppose that (i) dZ(x)/dx ≤ 0, for x ∈ [a, b], and (ii) THπa ≤
β/Z(a). Then,

THπx ≤
β

Z(x)
, for all x ∈ [a, b]. (5.19)

If either (i) (for some x ∈ [a, b]) or (ii) holds with strict inequality, then (5.19)
holds with strict inequality. Moreover, if the (strict) inequalities in (i) and (ii)
are reversed, then the (strict) inequality in (5.19) is reversed.

Proof Fix an arbitrary x ∈ (a, b]. Lemma 5.3.1 yields that, for γ ∈ (0, 1),

THπx = (1− γ)THπa + γ

∫ x

a βN
πx(y)dGπx(y)

∫ x

a
T πx(y)dGπx(y)

.

From (i) and Proposition 5.3.1, we obtain βNπx(y)/T πx(y) ≤ β/Z(x) for every
y ∈ [a, x]. Invoking (ii), it trivially follows that

THπx ≤ (1− γ)
β

Z(a)
+ γ

β

Z(x)
≤

β

Z(x)
, (5.20)

where the last step is due to (i) again. Now, if (i) holds with strict inequality
for some x ∈ [a, b] then the second inequality of (5.20) is strict, while the first
one is strict if (ii) holds with strict inequality. The proof for the reversed signs
is similar (use the lower bound in Proposition 5.3.1). 2

We now derive a criterion for the optimal threshold. Let π∗
th denote the

optimal threshold strategy. Define the setA := {x ≥ 0 : THπx = β/Z(x)}. Note
that, in general, A is a collection of N disjoint closed intervals Ai, i = 1, . . . , N ,
where each interval may be a singleton. However, if Ai is not a singleton, then
it follows directly from Lemma 5.4.2 that Z(·) is constant on Ai.



5.4 Criterion for the optimal threshold 101

Proposition 5.4.1 If A is the empty set, then the greedy policy is optimal and
THπ∗

th = r∞. If A is non-empty,

THπ∗

th = max

{

r∞,max
x∈A

β/Z(x)

}

,

where the greedy policy is optimal when THπ∗

th = r∞ and the optimal (finite)
threshold is given by any x̄ ∈ arg maxx∈A β/Z(x) otherwise.

Proof For the threshold at 0 we have

THπ0 =
β

Z(0) + λ
<

β

Z(0)
. (5.21)

If A is the empty set, then we have from the continuity of Z(·) and THπx̄ that
THπx < β/Z(x) for all x. Applying Lemma 5.4.1, we obtain that dTHπx/dx >
0 for all x and the greedy policy is thus optimal.

If N > 0, then it follows from Lemma 5.4.1 that A contains all points
that satisfy dTHπx/dx = 0. Hence, A contains at least all extreme points.
From (5.21) and Lemma 5.4.1 it follows that 0 is a local minimum. Moreover,
THπx → r∞ as x → ∞. Because THπx̄ is continuous, finding the global
maximum of THπx̄ reduces to finding the maximum of β/Z(x), x ∈ A, and
comparing it with r∞. 2

Using Lemma 5.4.2 , some additional properties of THπx̄ as a function of
x̄ may be derived. For instance, it may be shown that if Z(·) has m local
maxima, then N ≤ 2m− 1. In particular, if Assumption 5.2.1 is satisfied, then
N ≤ 1. This case is of special interest because a threshold policy is then optimal.
Moreover, if in that case N = 1, then A ∩ [0, zmin) is empty and each value in
A (possibly a singleton) is a global maximum of THπx̄ . These arguments are
summarized in the following corollary.

Corollary 5.4.1 Suppose that Assumption 5.2.1 is satisfied. If A is the empty
set, then the greedy policy is optimal. Otherwise, N = 1 and x ∈ A is an optimal
threshold with corresponding throughput

TH∗ = β/Z(x).

Finally, if r(x) is constant for x ≥ L (and Assumption 5.2.1 holds), there is
an easy way to determine directly whether the greedy policy is optimal or not.
From Lemma 5.4.2 we then deduce the following:

Corollary 5.4.2 Suppose Assumption 5.2.1 is satisfied and r(x) = r∞ for all
x ≥ L for some L > 0. Then, the greedy policy is optimal if and only if

THπL ≤
β

Z(L)
= r∞.
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5.5 Assumption on Z(x)

Although Assumption 5.2.1 is quite natural, it involves the service-rate function
as well as the distribution of the service requirement. Below, we give some ex-
amples satisfying this assumption, assuming that r(·) is increasing on (0, rmax]
and decreasing on (rmax,∞) for some rmax ≥ 0 (as described in Section 5.2).
We consider both cases with general service requirement distributions and cases
with a wide class of service-rate functions. In addition, we provide a natural
example that does not have the desired properties. This case reveals the strong
dependence on both the service-rate function and the service requirement dis-
tribution.

To show that Assumption 5.2.1 is satisfied, we frequently use the derivative
of Z(·). Interchanging derivative and sum in addition to some rewriting, yields

d

dx
Z(x) =

∫ ∞

0

d

dx
(R(x+ b)−R(x))dB(b)

=

∫ ∞

0

1

r(x + b)
dB(b)−

1

r(x)
=

∫ ∞

0

r(x) − r(x + b)

r(x + b)r(x)
dB(b).

For Assumption 5.2.1 to be satisfied, it remains to be shown that

r(x) − EB [r(x +B)] ≤ 0, x ∈ [0, zmin],

r(x) − EB [r(x +B)] ≥ 0, x ∈ [zmin,∞).

Example 5.5.1 Suppose that rmax = 0, that is, r(·) is decreasing on the pos-
itive halfline. By definition, r(y) ≥ r(x), for y > x, and it is readily seen that
Assumption 5.2.1 is satisfied. Also, zmin = 0 in this case.

Example 5.5.2 Suppose that B(x) = I(x ≥ β), i.e., the service requirement
is deterministic β. Observe that EB [r(x + B)] is just the shifted r(·) function.
Thus, r(x) ≤ EB [r(x + B)] if x ∈ [0, (rmax − β)+] and r(x) ≥ EB [r(x + B)]
if x ∈ [rmax,∞). Moreover, r(x) is increasing on [(rmax − β)+, rmax], while
EB [r(x+B)] is decreasing on the same interval. This directly yields the required
property.

Example 5.5.3 Suppose that B(x) = 1 − e−µx, meaning that the service re-
quirement is exponentially distributed. Observe that r(x) − EB [r(x + B)] ≥ 0
for x ≥ rmax. Now take some arbitrary x and y, with 0 < x < y ≤ rmax.
Conditioning on the service requirement in case a customer arrives at level x
and using the memoryless property of the exponential distribution, we have

EB [r(x +B)] =

∫ y

x

r(z)µe−µ(z−x)dz + e−µ(y−x)
EB [r(y +B)]

≥

∫ y

x

r(x)µe−µ(z−x)dz + e−µ(y−x)
EB [r(y +B)],

and thus,

r(x) − EB [r(x +B)] ≤ e−µ(y−x)r(x) − e−µ(y−x)
EB [r(y +B)].
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Note that if r(y) − EB [r(y + B)] ≤ 0, then r(x) − EB [r(x + B)] ≤ 0 (since
r(y) ≥ r(x)). Similarly, if r(x)−EB [r(x+B)] ≥ 0, then r(y)−EB [r(y +B)] ≥
0. This directly gives the desired property, where zmin = arg inf{h : r(h) ≥
EB [r(h+B)]}.

Example 5.5.4 Suppose that r(·) is defined as follows:

r(x) =







r1, 0 < x ≤ a,
increasing and concave, a < x ≤ rmax,
decreasing, x > rmax.

In addition, assume that r∞ ≥ r1. From the properties of r(·), it is obvious that
r(x)−EB [r(x+B)] ≤ 0 as x ∈ (0, a] and r(x)−EB [r(x+B)] ≥ 0 as x ≥ rmax.
Hence, a ≤ zmin ≤ rmax. Now take arbitrary x, y, with a ≤ x < y ≤ rmax. First,
consider the following:

EB [r(y +B)− r(x +B)]

=

∫ rmax−x

0

(r(y + b)− r(x + b))dB(b) +

∫ ∞

rmax−x

(r(y + b)− r(x + b))dB(b)

≤

∫ rmax−x

0

(r(y) − r(x))dB(b) + 0 = (r(y) − r(x))B(rmax − x),

where we used that r(·) is concave on [a, rmax] and decreasing on [rmax,∞) in
the second step. Using the above, we obtain

r(x) − EB [r(x +B)]

= r(y)− EB [r(y +B)] + r(x) − r(y) + EB [r(y +B)]− EB [r(x +B)]

≤ r(y)− EB [r(y +B)] + (r(x) − r(y))(1 −B(rmax − x)).

As in Example 5.5.3, note that if r(y)−EB [r(y+B)] ≤ 0, then r(x)−EB [r(x+
B)] ≤ 0 (since r(y) ≥ r(x)). Similarly, if r(x) − EB [r(x + B)] ≥ 0, then
r(y) − EB [r(y + B)] ≥ 0. Hence, Assumption 5.2.1 is satisfied, with zmin =
arg inf{h : r(h) ≥ EB [r(h+B)]}.

Finally, note that Example 5.5.1 is just a special case (take a = rmax = 0).
However, we believe that Example 5.5.1 is a natural special case, which admits
an easy verification of Assumption 5.2.1.

Example 5.5.5 Here we provide an example for which Assumption 5.2.1 is not
satisfied. For simplicity, we choose specific values for some model parameters.
A slightly more general model could be constructed by leaving some parameters
unspecified, while leaving the structure unaltered.

Consider the following service rate function:

r(x) =















r1, 0 < x ≤ a,
(x− a)c+ r1, a < x ≤ rmax,

(ĥ− x)c+ r1, rmax < x ≤ b,
r2 < r1, x > b,



104 Chapter 5 Optimal admission control

with ĥ = 2rmax − a, implying that r(ĥ) = r1. Also, suppose that B = a/3

with probability 1/2 and B = ĥ − a/3 with probability 1/2, and take c >
3(r1−r2)/a. After some calculations, we derive that dZ(x)/dx is strictly positive
on (0, a3 ) and ( 2a

3 + r1−r2
c , 4a

3 −
r1−r2
c ) and strictly negative on ( a3 ,

2a
3 + r1−r2

c )
and ( 4a

3 −
r1−r2
c ,∞). Clearly, Z(·) has two local minima and Assumption 5.2.1

is not satisfied in this case.

5.6 Some examples

In general, Expression (5.18) is suitable for a numerical calculation of the op-
timal threshold. Also, the characteristics of THπx̄ described in Section 5.4
suggest another numerical calculation of this optimal value, for instance, using
a bisection method. In this section, we give some examples in which we obtain
an analytically more tractable expression for the optimal throughput with cor-
responding optimal threshold value. In Subsection 5.6.1, we consider a two-level
service rate: The service rate at time t is r1 when V πt ≤ a and r2 < r1 when
V πt ≥ a (see for instance [53]). In Subsection 5.6.2, we generalize the service rate
to an arbitrary step function, but we restrict ourselves to exponential service
requirements there.

In any case, if the greedy policy is not optimal, the optimal threshold value
must satisfy Relation (5.15), see Proposition 5.4.1. Define

z(x̄) :=
[

P(V πx̄ = 0)−1 −W (x̄)λZ(x̄)
]

, (5.22)

where W (x) := 1 +
∫ x

0
K∗(y, 0)dy represents a non-normalized workload distri-

bution. Using (5.18) and some straightforward manipulations, we may rewrite
(5.15) into

P(V πx̄ = 0)

Z(x̄)
z(x̄) = 0.

Note that both P(V πx̄ = 0) > 0 and Z(x̄) > 0 and finite. Finding the extremes
of THπx̄ thus reduces to solving z(x̄) = 0.

5.6.1 Two-level service rate

Suppose that the service rate is specified as

r(x) =

{

r1, for 0 < x ≤ a,
r2, for x > a,

where 0 < r2 < r1. Define ρi := λβ/ri, i = 1, 2. Because the service-rate
function is decreasing, we obtain from Example 5.5.1 that Assumption 5.2.1
is satisfied and a threshold policy is thus optimal. To determine the optimal
threshold x̄, we derive from Corollary 5.4.2 that we only need to consider x̄ ≤ a.

Fix some x̄ ∈ [0, a]. Using results of Chapter 3 or [83], the stationary
workload distribution may be easily reduced to a more tractable expression.
Let

H(x) := β−1

∫ x

0

(1−B(y))dy (5.23)



5.6 Some examples 105

be the stationary residual service requirement distribution with density h(·). For
x ≤ a,K(x, y) = ρ1h(x−y) and it is well-known thatK∗(x, y) =

∑∞
n=1 ρ

n
1hn(x−

y), where hn(·) is the density of the n-fold convolution Hn(·) (see, e.g., [83] or
Subsection 3.6.1).

Now we determine the three elements on the right-hand side of (5.22) sepa-
rately, after which we combine them to determine z(x̄). First consider λZ(x̄).
Using the definitions of Z(·) and H(·), respectively (5.2) and (5.23), yields

λZ(x̄) = λ

∫ a

x̄

1

r1
(1−B(x− x̄))dx+ λ

∫ ∞

a

1

r2
(1−B(x− x̄))dx

= ρ2 + (ρ1 − ρ2)H(a− x̄). (5.24)

Second, consider the non-normalized workload distribution W (·). Inter-
changing integral and sum in addition to the results above, we immediately
obtain for each x ∈ [0, x̄],

W (x) = 1 +

∫ x

0+

∞
∑

n=1

ρn1hn(y)dy =

∞
∑

n=0

ρn1Hn(x). (5.25)

Remark 5.6.1 Note that W (·)/W (a) is the steady-state workload distribution
in a finite dam with speed r1 and buffer size a. In case ρ1 < 1, it is an easy
exercise to see that the Laplace-Stieltjes transform of W (·) provides the well-
known Pollaczek-Khinchine formula. If ρ1 ≥ 1,

∫ a

0
W (x)dx is still finite and a

steady-state workload distribution exists (see e.g. [83]). However, Cohen [52, 53]
describes a more elegant way to determine W (·) in that case. �

Finally, the first term of (5.22), that is the inverse of the normalizing constant
P(V πx̄ = 0), is the most complicated one. Using the expression for the steady-
state workload density in addition to the results above, we derive for x̄ < x ≤ a,

V πx̄(x) = V πx̄(x̄) + P(V πx̄ = 0)

[
∫ x

x̄

ρ1h(y)dy

+

∫ x

x̄

∫ x̄

0+

ρ1h(y − u)

∞
∑

n=1

ρn1hn(u)dudy

]

= P(V πx̄ = 0)

[

W (x̄) + ρ1(H(x) −H(x̄))

+ρ1

∫ x̄

0+

(H(x− u)−H(x̄− u))dW (u)

]

= P(V πx̄ = 0)

[

W (x̄) + ρ1

∫ x̄

0−

(H(x − u)−H(x̄− u))dW (u)

]

,

where we used W (0) = 1 in the final step. Note that, for x > a, K(x, y) =
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ρ2h(x− y). Using similar arguments, we obtain for x > a,

V πx̄(x) = V πx̄(a) + P(V πx̄ = 0)

[
∫ x

a

ρ2h(y)dy

+

∫ x

a

∫ x̄

0+

ρ2h(y − u)

∞
∑

n=1

ρn1hn(u)dudy

]

= P(V πx̄ = 0)

[

W (x̄) + ρ1

∫ x̄

0−

(H(a− u)−H(x̄− u))dW (u)

+ρ2

∫ x̄

0−

(H(x− u)−H(a− u))dW (u)

]

.

By (5.25), we have ρ1

∫ x̄

0
H(x̄−u)dW (u) = W (x̄)−1. Letting x→∞ and some

rewriting then yields

P(V πx̄ = 0)−1 = ρ2W (x̄) + (ρ1 − ρ2)

∫ x̄

0−

H(a− u)dW (u) + 1. (5.26)

It is now easy to get z(x̄). Substituting (5.24)–(5.26) into (5.22) gives

z(x̄) = 1 + (ρ2 − ρ1)

[

W (x̄)H(a− x̄)−

∫ x̄

0−

H(a− u)dW (u)

]

. (5.27)

Summarizing, Corollary 5.4.2 implies that the greedy policy is optimal if and
only if

ρ2 − (ρ2 − ρ1)W (a) > 0.

Otherwise, TH∗ = ρ/(ρ2+(ρ1−ρ2)H(a−x∗)), with ρ := λβ and x∗ is a solution
to z(x∗) = 0.

In general, the convolution in (5.27) can only be determined numerically.
However, if the service requirement follows a phase-type distribution, explicit
expressions can be obtained. For instance, if B(x) = 1− e−µx (see also Subsec-
tion 5.6.2), then after quite lengthy but standard calculations, it follows that,
for ρ1 6= 1,

z(x̄) = 1 +
ρ2 − ρ1

ρ1 − 1
e−µa

(

eµx̄ − eµρ1x̄
)

. (5.28)

In case ρ1 = 1, we obtain

z(x̄) = 1− (ρ2 − 1)µx̄e−µ(a−x̄).

5.6.2 Exponential service requirements

Suppose that the service requirements are exponentially distributed with mean
1/µ, i.e., 1−B(x) = e−µx. Then, for fixed x̄, the steady-state workload density
is given in Corollary 3.6.1:

vπx̄(x) =
λP(V πx̄ = 0)

r(x)
exp{−µx+ λR(x ∧ x̄)}, (5.29)
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where P(V πx̄ = 0) follows from normalization. In this subsection, we also assume
that the service rate is a step function. More specifically, let r(x) = ri for
x ∈ [ai−1, ai), i = 1, . . . , N (where a0 = 0), and let r(x) = rN+1 < rN for
x ≥ aN . Denote ρi = λ/(µri), i = 1, . . . , N + 1 and assume for simplicity that
ρi 6= 1.

Example 5.5.3 shows that Assumption 5.2.1 is satisfied and a threshold policy
is thus optimal. By Corollary 5.4.2, either the greedy policy is optimal, or the
optimal threshold x∗ is less than aN . Let x̄ ∈ [an, an+1) for some n ≤ N − 1.
Next, we consider each of the three elements of z(x̄) separately, after which we
combine them into an expression for x∗ satisfying (5.15). However, for later
use, we first define the following three constants. (In the sequel we follow the
convention that empty sums are equal to 0.)

γn = exp

{

n
∑

k=1

(

λ

rk
−

λ

rk+1

)

ak

}

,

Cn =
1

1− ρ1
+

n
∑

k=1

(

ρk
ρk − 1

−
ρk+1

ρk+1 − 1

)

γk−1e
−µ(1−ρk)ak ,

Dn =

N
∑

k=n+1

(ρk+1 − ρk)e
−µak .

First, consider λZ(x̄). Using (5.2) and rewriting the integral, we obtain

λZ(x̄) =

∫ an+1

x̄

λ

rn+1
e−µ(x−x̄)dx+

N−1
∑

k=n+1

∫ ak+1

ak

λ

rk+1
e−µ(x−x̄)dx

+

∫ ∞

aN

λ

rN+1
e−µ(x−x̄)dx

= ρn+1(1− e
−µ(an+1−x̄)) +

N−1
∑

k=n+1

ρk+1(e
−µ(ak−x̄) − e−µ(ak+1−x̄))

+ρN+1e
−µ(aN−x̄)

= ρn+1 +Dne
µx̄. (5.30)

Second, consider W (·), i.e., the workload distribution ‘without normaliza-
tion’. It is easily checked that the time to empty the system starting from
ai, i = 1, . . . , n, in the absence of any arrivals (i.e., R(ai)) equals ai/ri +
∑i−1
k=1(1/rk − 1/rk+1)ak. Hence, for x ∈ [ai, ai+1), we may deduce that

exp {λR(x)} = exp

{

λ(x − ai)

ri+1
+ λR(ai)

}

= γiexp

{

λx

ri+1

}

. (5.31)

Now, for i = 1, . . . , n, using (5.29) and (5.31), we obtain after some standard
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algebra, that

V πx̄(ai)/P(V πx̄ = 0)

= 1 +

i−1
∑

k=0

∫ ak+1

ak

λ

rk+1
e−µx+λR(x)dx

= 1 +

i−1
∑

k=0

ρk+1

ρk+1 − 1
γk

(

e−µ(1−ρk+1)ak+1 − e−µ(1−ρk+1)ak

)

=
1

1− ρ1
+

i−1
∑

k=0

ρk+1

ρk+1 − 1
γke

−µ(1−ρk+1)ak+1 −

i−1
∑

k=1

ρk+1

ρk+1 − 1
γke

−µ(1−ρk+1)ak

=
1

1− ρ1
+

i
∑

k=1

ρk
ρk − 1

γk−1e
−µ(1−ρk)ak −

i−1
∑

k=1

ρk+1

ρk+1 − 1
γk−1e

−µ(1−ρk)ak

= Ci−1 +
ρi

ρi − 1
γi−1e

−µ(1−ρi)ai ,

where we used γke
µρk+1ak = γk−1e

µρkak in the fourth equality. Thus, combining
(5.29) and (5.31) with the above, we obtain, after similar manipulations,

V πx̄(x̄) = V πx̄(an) + P(V πx̄ = 0)

∫ x̄

an

λ

rn+1
e−µx+λR(x)dx (5.32)

= V πx̄(an) + P(V πx̄ = 0)
ρn+1

ρn+1 − 1
γn

(

e−µ(1−ρn+1)x̄ − e−µ(1−ρn+1)an

)

= P(V πx̄ = 0)

[

Cn +
ρn+1

ρn+1 − 1
γne

−µ(1−ρn+1)x̄

]

, (5.33)

which completes the calculation of W (·) (since W (x̄)P(V πx̄ = 0) = V πx̄(x̄)).
For the first term on the right-hand side of (5.22), i.e., P(V πx̄ = 0)−1, we

use similar arguments as for the previous one. We first consider V πx̄(x) with
x > an+1 and let i = arg max{ai : ai ≤ x} be the largest ai smaller than x.
Using (5.29) and applying (5.31) to determine λR(x̄), we obtain after similar
algebra as above, that

V πx̄(x) = V πx̄(x̄) + γne
µρn+1x̄P(V πx̄ = 0)

[
∫ an+1

x̄

λ

rn+1
e−µydy

+
i−1
∑

k=n+1

∫ ak+1

ak

λ

rk+1
e−µydy +

∫ x

ai

λ

ri+1
e−µydy

]

= P(V πx̄ = 0)

[

Cn +
ρ2
n+1

ρn+1 − 1
γne

−µ(1−ρn+1)x̄

+γne
µρn+1x̄

i
∑

k=n+1

(ρk+1 − ρk)e
−µak − γnρi+1e

−µx+µρn+1x̄

]

.
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Thus, letting x→∞, we obtain the normalizing constant:

P(V πx̄ = 0)−1 = Cn +
ρ2
n+1

ρn+1 − 1
γne

−µ(1−ρn+1)x̄ + γnDne
µρn+1x̄. (5.34)

The function z(x̄) can now easily be rewritten into a more appealing expres-
sion. In particular, substituting (5.30), (5.34), and W (x̄) resulting from (5.33)
into (5.22) and some reordering of terms, yields

z(x̄) = (1− ρn+1)Cn +Dnγne
µρn+1x̄

−Dne
µx̄

(

Cn +
ρn+1

ρn+1 − 1
γne

−µ(1−ρn+1)x̄

)

= (1− ρn+1)Cn − CnDne
µx̄ −

Dnγn
ρn+1 − 1

eµρn+1x̄.

Solving z(x̄) = 0 is thus remarkably simple in this case, since the variable x̄ only
appears in two of the exponents. Summarizing, we conclude that the optimal
policy is of the threshold type where the optimal threshold value is given by the
solution of z(x̄) = 0. Moreover TH∗ = β/Z(x̄), where λZ(x̄) is given in (5.30).

Remark 5.6.2 It is easily checked that, in case N = 1, the formula for z(x̄)
indeed reduces to (5.28). �

5.7 Concluding remarks and further research

In the present chapter, we considered the problem of optimal admission control
in a system with a workload-dependent service rate. We assumed that the
service requirement only becomes known right after the decision of accepting
or rejecting jobs. Our objective was to find a policy that maximizes the long-
run throughput. Under some assumptions (in particular Assumption 5.2.1),
we showed that a threshold policy for accepting jobs is optimal and derived a
criterion for the optimal threshold value.

We note that our main assumption, i.e. Assumption 5.2.1, involves sufficient
conditions for optimality of threshold policies. An interesting subject for further
research is to examine the structure of the optimal policy when Assumption 5.2.1
is not satisfied.

Moreover, there are various interesting model variations. For instance, the
analysis is significantly changed if information about the service requirement
is available. In that case, the decision will not only depend on the workload
level, but also on the size of the job, yielding a two-dimensional state space.
A characterization of the optimal policy in that model might be a subject of
further study. We note that a threshold policy will not be optimal in general.
However, in some special cases, as for, e.g., deterministic service requirements
or decreasing service rate functions, the optimal policy continues to be of the
threshold type.

Other model variations are scenarios where jobs can be partly accepted (or
rejected). The simplest version concerns a model where an infinite amount of
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work becomes available at Poisson instants and the policy prescribes the amount
of work to accept. In some sense, this model is related to the case λ→∞ in the
model of the present chapter, which may be interpreted as an infinite supply of
jobs and the policy prescribes the time to accept a new job. More interesting are
scenarios where the supply of work is bounded by the service requirements of
arriving jobs and the decision is the amount of work to accept. In that case, the
state space is two-dimensional and the action space is continuous. The structure
of the optimal policy in the latter model is also left for future investigation.

Appendix

5.A Proof of Lemma 5.4.1

Lemma 5.4.1 For the derivative of THπx̄, we have

d

dx̄
THπx̄ = λβP(V πx̄ = 0)K∗(x̄, 0) [1− THπx̄Z(x̄)/β] .

Proof We first consider P(V πx̄ = 0). Observe that the double integration in

(5.16) may be equivalently expressed as:
∫∞

x=x̄

∫ x̄

y=0 =
∫ x̄

y=0

∫∞

x=y −
∫ x̄

x=0

∫ x

y=0.
Using the definition of K∗, interchanging integral and sum and finally applying
(5.17), we may write

∫ x̄

0

K(x̄, y)K∗(y, 0)dy =

∞
∑

n=1

∫ x̄

0

K(x̄, y)Kn(y, 0)dy

=

∞
∑

n=0

Kn+1(x̄, 0)−K1(x̄, 0)

= K∗(x̄, 0)−K(x̄, 0). (5.35)

Taking the derivative of P(V πx̄ = 0) with respect to x̄, we obtain from (5.16)
and the reordering of integration that

d

dx̄
P(V πx̄ = 0)

= −P(V πx̄ = 0)2
(

K∗(x̄, 0)−K(x̄, 0)

+

∫ ∞

x̄

K(x, x̄)K∗(x̄, 0)dx−

∫ x̄

0

K(x̄, y)K∗(y, 0)dy

)

= −P(V πx̄ = 0)2K∗(x̄, 0)

∫ ∞

x̄

K(x, x̄)dx,

where we used (5.35) in the second step. Now, invoking (5.18) and taking the
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derivative of THπx̄ with respect to x̄ yields

d

dx̄
THπx̄ = λβP(V πx̄ = 0)K∗(x̄, 0) + λβ

d

dx̄
P(V πx̄ = 0)

(

1 +

∫ x̄

0

K∗(x, 0)dx

)

= λβP(V πx̄ = 0)K∗(x̄, 0)

×

[

1− P(V πx̄ = 0)

∫ ∞

x̄

K(x, x̄)dx

(

1 +

∫ x̄

0

K∗(x, 0)dx

)]

= λβP(V πx̄ = 0)K∗(x̄, 0) [1− THπx̄Z(x̄)/β] ,

where the final step follows from (5.18) and the fact that λZ(x̄) =
∫∞

x̄ K(x, x̄)dx.
This completes the proof. 2
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Chapter 6

Queues with adaptable service speed

6.1 Introduction

In the previous chapters we considered various queueing systems with workload-
dependent service speeds. In those chapters, as in most of the literature on
queues with state-dependent rates, it is assumed that the speed of the server is
continuously adapted over time based on the buffer content. In many practical
situations, though, service speed adaptations are only made at particular points
in time, like arrival epochs. For example, feedback information about the buffer
state may only be available at such epochs. Furthermore, continuously changing
the service speed may come with certain costs.

In this chapter, we consider a single-server queue with adaptable service
speed based on the amount of work right after customer arrivals. In between
arrivals, the service speed is held fixed and may not be changed until the next
customer arrival. The main aim of this chapter is to find the (LST of the)
distribution of the steady-state workload embedded at epochs immediately after
arrivals, and the steady-state workload distribution at arbitrary epochs.

Related literature
Models with continuously adaptable service speed originate from the study of
dams and storage processes. For an overview of the literature on dams, storage
systems, and queueing models with workload-dependent service speeds, we refer
to Section 1.4. Furthermore, in [53, 80] and [56], p. 555-556, the authors consider
a queueing system with a two-stage service rule: If the workload is less than
K, then the service speed equals r1, whereas the service speed equals r2 when
the workload exceeds K. Using an elegant technique for the convolution of two
LSTs, they determine the steady-state workload distribution. In this chapter,
we apply a similar method to obtain the LST of the workload at embedded
epochs for the M/G/1 queue with service speeds only being changed at customer
arrivals.

A related branch of literature considers queueing systems where the service
speed depends not only on the buffer content, but also on the stage of the system.
In particular, an (m,M) control rule prescribes to switch from stage 1 to stage 2
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at an upcrossing of the workload of level M (and the stage is 1) and to switch
back from stage 2 to stage 1 at a downcrossing of m (and the stage is 2), see also
e.g. [17, 114, 164]. The control of the service speed may be realized by letting
ri be the service speed in stage i, i = 1, 2. In such control systems, usually costs
are imposed including, e.g., holding costs and switchover costs. In [164], the
long-run average costs per unit time for the (m,M)-policy are determined. Of
special interest is the case when m = 0 which is commonly referred to as a D-
policy (that is (m,M) = (0, D)). In [162], the author shows that the D-policy
is average-cost optimal under the assumption that the workload can only be
controlled at arrival epochs. In [75], the average-cost optimality of D-policies is
rigorously proved in a more general setting.

Model description
We consider an M/G/1 queueing system where feedback information about the
level of congestion is available right after arrival instants. The customers arrive
to the system according to a Poisson process with rate λ. Let An, n = 1, 2, . . .,
denote the time between the arrival instants of customers n and n + 1. Also,
denote by Bn, n = 1, 2, . . ., the service requirement of customer n. We assume
that B1, B2, . . . are i.i.d. copies of the generic random variable B with distri-
bution B(·), mean β, and LST β(·). We also assume that the sequences of
interarrival intervals and service requirements are independent.

When the amount of work right after an arrival instant equals x, the server
works at constant speed r(x) until the next customer arrival. Note that the
service speed is thus only changed at discrete points in time. In this chapter, we
specifically consider the case of a two-step service speed function: If the amount
of work right after an arrival is smaller than (or equal to) a finite number K,
then the server starts to work at speed r1, whereas the service speed equals r2
if the workload is larger than K. Later, we also consider the generalization to
an N -step service-speed function (see Subsection 6.5.3).

Define ρi := λβ/ri, i = 1, 2. Throughout, we assume that the system is
stable, i.e., ρ2 < 1. Let Wn and Sn be the workload just before, respectively
right after, the arrival instant of customer n. We denote by W and S the steady-
state random variables corresponding to Wn and Sn. We have the following
recursion relation:

Sn+1 = (Sn − r(Sn)An)
+ +Bn+1, (6.1)

where x+ = max(x, 0). Because of the trivial relation Sn = Wn +Bn, one also
has Wn+1 = (Sn − r(Sn)An)+.

In queueing systems where the server always works at unit speed when there
is any work in the system, W corresponds to a waiting time and S represents
a customer’s sojourn time. This equivalence no longer holds when the service
speed varies with the amount of work present. For convenience, however, we
often refer to W and S as the waiting and sojourn time, respectively.

Goal and organization
The main aim of this chapter is to find the distribution (and LST) of S, and
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then also of W . It should be observed that, due to PASTA, the distribution of
W also equals the steady-state workload distribution.

The chapter is organized as follows. In Section 6.2 we derive two distinct
equations for the LST of S and sketch a four-step procedure to determine its
distribution. The first step of this procedure does not depend on the distribution
of the service requirement and is analyzed in detail in Section 6.2. We give steps
two to four in Section 6.3 in case the service requirements follow an exponential
distribution. It turns out that the density of S is then a weighted combination of
two exponentials for x ≤ K, and is purely exponential for x > K. The M/M/1
case gives much insight into the structure of the solution for more general cases,
like the M/G/1 case, which is addressed in Section 6.4. For expository reasons,
we have chosen to treat these cases separately instead of all in one. Special cases
and the extension to the N -step service rule are discussed in Section 6.5.

6.2 Sojourn times: Equations and general procedure

In this section, we first derive equations to determine the LST of S in case of the
two-step service speed function. Secondly, we outline a four-step procedure to
find the LST and distribution of S from the constructed equations, and describe
the first step in detail.

For convenience, we recall the definition of the two-step service rule:

r(x) =

{

r1, for 0 < x ≤ K,
r2, for x > K.

Denote the LST of S by

φ(ω) :=

∫ ∞

0

e−ωxdP(S < x). (6.2)

Also, define, for i = 1, 2 and ρi 6= 1,

Fi(ω) := (1− ρi)
riωβ(ω)

ωri − λ+ λβ(ω)
. (6.3)

Observe that Fi(ω) corresponds to the LST of the sojourn time in an M/G/1
queue with service speed ri, i = 1, 2.

The equations for φ(ω) are summarized in the following lemma:

Lemma 6.2.1 φ(ω) satisfies the following two equations, for Re ω ≥ 0,

φ(ω) = F2(ω)
W (0)

1− ρ2
(6.4)

+ F2(ω)
λ( r1r2 − 1)

(ωr1 − λ)(1− ρ2)

[

∫ K

0

e−ωxdP(S < x)−

∫ K

0

e
− λ

r1
x
dP(S < x)

]

,
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with W (0) := P(W = 0). Also,

φ(ω) = F1(ω)
W (0)

1− ρ1
(6.5)

+ F1(ω)
λ(1− r2

r1
)

(ωr2 − λ)(1− ρ1)

[
∫ ∞

K

e−
λ
r2
xdP(S < x) −

∫ ∞

K

e−ωxdP(S < x)

]

.

Proof It follows after some straightforward calculations that, for ω 6= λ/r1
and ω 6= λ/r2,

E

[

e−ω(Sn−r(Sn)An)+ |Sn = x
]

= e−ωxλ

∫ x/r(x)

0

e(ωr(x)−λ)ydy + e−λx/r(x)

=
ωr(x)

ωr(x) − λ
e−

λ
r(x)

x −
λ

ωr(x) − λ
e−ωx. (6.6)

Using the recursion (6.1), conditioning on Sn, and applying the above, yields

E
[

e−ωSn+1
]

=

∫ ∞

0

E
[

e−ωSn+1 |Sn = x
]

dP(Sn < x)

= β(ω)

[

ωr1
ωr1 − λ

∫ K

0

e−
λ
r1
xdP(Sn < x)−

λ

ωr1 − λ

∫ K

0

e−ωxdP(Sn < x)

+
ωr2

ωr2 − λ

∫ ∞

K

e
− λ

r2
x
dP(Sn < x) −

λ

ωr2 − λ

∫ ∞

K

e−ωxdP(Sn < x)

]

. (6.7)

To analyze the steady-state behavior of Sn, we let n → ∞. Furthermore,
combining (6.2) and (6.7), in addition to some basic manipulations, we may
obtain two alternative equations for φ(ω): First,

φ(ω) =
F2(ω)

(1− ρ2)(ωr1 − λ)

[

r1
r2

(ωr2 − λ)

∫ K

0

e−
λ
r1
xdP(S < x) (6.8)

+λ(
r1
r2
− 1)

∫ K

0

e−ωxdP(S < x) + (ωr1 − λ)

∫ ∞

K

e
− λ

r2
x
dP(S < x)

]

,

and second,

φ(ω) =
F1(ω)

(1− ρ1)(ωr2 − λ)

[

(ωr2 − λ)

∫ K

0

e
− λ

r1
x
dP(S < x) (6.9)

−λ(1−
r2
r1

)

∫ ∞

K

e−ωxdP(S < x) +
r2
r1

(ωr1 − λ)

∫ ∞

K

e−
λ
r2
xdP(S < x)

]

.

Now, Equations (6.4) and (6.5) follow from (6.8) and (6.9), respectively, and
from the observation that

W (0) =

∫ K

0

e−
λ
r1
xdP(S < x) +

∫ ∞

K

e−
λ
r2
xdP(S < x). (6.10)

This completes the proof. 2
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Determining φ(ω) from Equations (6.4) and (6.5) involves the more compli-
cated part. We introduce a four-step procedure to determine the distribution
of S. Below, we sketch each of the four steps. Because Step 1 is the only step
that does not depend on the service requirement distribution, we analyze it in
detail at the end of this section. Steps 2–4 are carried out in Section 6.3 in
case the distribution of the service requirements is exponential. The general
M/G/1 case is considered in Section 6.4. The procedure builds upon techniques
applied in [53, 80] and [56], p. 556. It starts from the observation that a serious
complication in determining φ(ω) from (6.4) and (6.5) is that both equations
involve the incomplete LST of S.

The basic algorithm to obtain P(S < x) is as follows:

Step 1 Rewrite Equation (6.5) such that the second term of (6.5) can be
interpreted as the sum of (i) the LST of the convolution of F1(·) with an
exponential term, and (ii) a transform that only has points of increase on
(K,∞).

Step 2 Apply Laplace inversion to the reformulated Equation (6.5) resulting
from Step 1, to determine P(S < x) for x ∈ (0,K].

Step 3 By Step 2, we may now calculate
∫K

0
e−ωxdP(S < x). Substitution in

(6.4) then directly provides φ(ω). Applying Laplace inversion again, we
determine P(S < x) for x > K.

Step 4 The remaining constants may be found by normalization.

The remainder of this section is devoted to the description of Step 1.

Step 1: Rewriting (6.5)
In this part, when considering the sojourn time of customer n+1, we distinguish
between two cases: (i) Sn ≤ K, and (ii) Sn > K. If Sn+1 ≤ K, this imposes for
case (ii) that a downcrossing of level K occurs between the arrival instants of
customers n and n+1. However, the residual interarrival time at a downcrossing
of K is still exponential. Consequently, given a downcrossing of level K between
the arrival epochs of customers n and n + 1, the precise distribution of Sn on
(K,∞) does not affect the distribution of Sn+1 ≤ K, because Wn+1 is simply
distributed as (K − r2An)+. The aim of this first step is to show that the
second part of Equation (6.5) corresponds to case (ii) and to apply the intuitive
arguments above in reformulating (6.5).

Denote by I(·) the indicator function. Using (6.6), we get

E

[

e−ω(Sn−r(Sn)An)+I(Sn > K)
]

−

∫ ∞

K

e
− λ

r2
x
dP(Sn < x)

=
λ

ωr2 − λ

[
∫ ∞

K

e
− λ

r2
x
dP(Sn < x)−

∫ ∞

K

e−ωxdP(Sn < x)

]

.

Observe that the right-hand side (rhs) corresponds to the final part of the sec-
ond term in (6.5). However, by conditioning on Sn, we may also rewrite this
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expression as

E

[

e−ω(Sn−r(Sn)An)+I(Sn > K)
]

−

∫ ∞

K

e−
λ
r2
xdP(Sn < x)

=

∫ ∞

K

e−ω(x−r2An)+dP(Sn < x) −

∫ ∞

K

e
− λ

r2
x
dP(Sn < x)

=

∫ ∞

K

e−ω(x−r2An)I(An ≤ (x−K)/r2)dP(Sn < x)

+

∫ ∞

K

∫ x/r2

(x−K)/r2

λe−λye−ω(x−r2y)dydP(Sn < x)

= E

[

e−ω(Sn−r2An)I(Sn − r2An > K)
]

+
λ

ωr2 − λ

(

1− e
−ωK+ λ

r2
K
)

∫ ∞

K

e
− λ

r2
x
dP(Sn < x).

Letting n→∞ and combining the above, Equation (6.5) reads,

φ(ω) = F1(ω)
W (0)

1− ρ1
+ F1(ω)

(1− r2
r1

)

1− ρ1

{

E

[

e−ω(S−r2A)I(S − r2A > K)
]

+
λ

ωr2 − λ

(

1− e−ωK+ λ
r2
K
)

∫ ∞

K

e−
λ
r2
xdP(S < x)

}

. (6.11)

The second and third term on the rhs of (6.11) directly correspond to the in-
tuitive observations made above. The second one provides the LST of W when
W > K. The third one involves the LST of K − r2A (with A a generic interar-
rival time) multiplied by a constant (see Section 6.4 for an interpretation).

6.3 Exponential service requirements

In this section, we assume that B(x) = 1−e−µx, i.e., the service requirements are
exponentially distributed with mean 1/µ. Applying the procedure described in
Section 6.2, we explicitly determine the steady-state “sojourn time” distribution.
We have chosen to treat the M/M/1 case first, because the structure of the
density of S is here readily exposed, yielding insight into the solution for the
M/G/1 case. Moreover, the solutions reduce to nice analytical expressions in
the M/M/1 case.

Because the interpretation of Step 1 is valid independently of B(·), the start-
ing point of the algorithm is Equation (6.11).

Step 2: Sojourn time density on (0,K]
Using the construction of Step 1, we apply Laplace inversion to determine the
density fS(x) of S for 0 < x ≤ K. In the exponential case, we easily obtain for
the first transform in (6.11),

F1(ω) = (1− ρ1)
r1µ

r1(ω + µ)− λ
.
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Laplace inversion provides the familiar M/M/1 term for queues with constant
service speed r1,

s1(x) = µ(1− ρ1)e
( λ

r1
−µ)x, for x > 0,

where s1(·) denotes the density of a random variable with LST F1(·).
The inversion of the second transform in (6.11) is based on an observation

made in [53, 56, 80]. First, consider

F1(ω)E
[

e−ω(S−r2A)I(S − r2A > K)
]

.

This term involves a product of two LST, corresponding to the sum of a random
variable with mass on [0,∞), and one with mass on [K,∞). Hence, that sum
has no mass on [0,K].

Second, consider

F1(ω)
λ

ωr2 − λ

(

1− e−ωK+ λ
r2
K
)

. (6.12)

It is readily checked that the latter part, λ
ωr2−λ

(

1− e
−ωK+ λ

r2
K
)

, is the Laplace

Transform of the function

f(x) =

{

λ
r2
e

λ
r2
x
, for 0 < x ≤ K,

0, for x > K.
(6.13)

Thus, (6.12) represents the convolution of s1(·) with f(·). By applying (6.11)
and combining the above, we obtain after lengthy calculations the following
“sojourn time” density fS(x), for 0 < x ≤ K,

fS(x) = s1(x)
W (0)

1− ρ1
+

1− r2
r1

1− ρ1

∫ ∞

K

e−
λ
r2
ydP(S < y)

∫ x

0

s1(y)
λ

r2
e

λ
r2

(x−y)dy

= Q1e
( λ

r1
−µ)x +Q2e

λ
r2
x, (6.14)

with

Q1 = µ

∫ K

0

e−
λ
r1
ydP(S < y)

+
r1r2µ

2

λ(r1 − r2) + r1r2µ

∫ ∞

K

e
− λ

r2
y
dP(S < y), (6.15)

Q2 =
λµ(r1 − r2)

λ(r1 − r2) + r1r2µ

∫ ∞

K

e−
λ
r2
ydP(S < y). (6.16)

Because we have determined the density of S on (0,K] up to some constants,
this concludes Step 2.

Step 3: Sojourn time density on (K,∞)
In this step, we first determine φ(ω) using (6.4) and then apply Laplace inversion
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once more to obtain the density of S on (K,∞). From the final result of Step
2, we deduce,

∫ K

0

e−ωxdP(S < x) =
Q1

ω + µ− λ/r1
(1−e(

λ
r1

−µ−ω)K)+
Q2

ω − λ/r2
(1−e(

λ
r2

−ω)K).

(6.17)
Substitution in (6.4) then immediately yields φ(ω).

Next, to obtain fS(x) for x > K, we invert φ(ω) on the corresponding
interval. Similar to F1(ω) in Step 2, we have

F2(ω) = (1− ρ2)
r2µ

r2(ω + µ)− λ
.

Laplace inversion provides the expression of an M/M/1 queue with service speed
r2:

s2(x) = µ(1− ρ2)e
( λ

r2
−µ)x

, for x > 0, (6.18)

where s2(·) represents the density of a random variable with LST F2(·).
By (6.17), it follows that the second term of Equation (6.4) constitutes a

Laplace transform having four poles. We observe that the zero in the denomi-
nator of λ/(ωr1 − λ) is a removable zero. The expression in (6.17) is the LST
of a density on (0,K]. Hence, the only pole contributing on (K,∞) is the zero
in the denominator of F2(ω), that is, η = λ/r2 − µ. Since the first term of (6.4)
provides the same pole, we immediately deduce that

fS(x) = Q3e
( λ

r2
−µ)x, for x > K. (6.19)

We note that the terms with removable singularities in λ/(ωr1 − λ) and (6.17)
do affect the constant Q3. However, Q3 is determined in Step 4 using the
expressions for Q1, Q2, and the normalizing condition, and there is thus no
need to specify Q3 any further.

Step 4: Determination of the constants
In this final step, we use the normalizing condition

∫∞

0
dP(S < x) = 1 to

determine the constantsQ1, Q2, andQ3. In particular, combining normalization
with (6.15) and (6.16) we obtain a set of three equations with the above three
unknowns (hence, there is indeed no need to give Q3 explicitly in Step 3).

Substituting (6.19) in (6.16) and calculating the integral yields

Q2 = Q3
λ(r1 − r2)

λ(r1 − r2) + r1r2µ
e−µK . (6.20)

Also, substitution of both (6.14) and (6.19) in (6.15) and performing the inte-
grations, yield, for r1 6= r2,

Q1 = Q1(1−e
−µK)+Q2

r1r2µ

λ(r1 − r2)
(e(

λ
r2

− λ
r1

)K−1)+Q3
r1r2µ

λ(r1 − r2) + r1r2µ
e−µK .



6.4 General service requirements 121

Consequently, using the expression forQ2 in (6.20) in addition to some rewriting,
we express Q1 in terms of Q3 as

Q1 = Q3
r1r2µ

λ(r1 − r2) + r1r2µ
e
( λ

r2
− λ

r1
)K
. (6.21)

From the normalizing condition
∫∞

0
fS(x)dx = 1, we obtain an additional

equation. Using the densities of (6.14) and (6.19) and determining the integrals
yields (for λ 6= r1µ, with an obvious modification when λ = r1µ):

Q1r1
λ− r1µ

(e(
λ
r1

−µ)K − 1) +
Q2r2
λ

(e
λ
r2
K − 1) +

Q3r2
λ− r2µ

e(
λ
r2

−µ)K = 1.

Now, substituting (6.21) and (6.20) in the above in addition to some manipula-
tions, gives

Q3 =

[(

r2
λ− r1µ

−
r2

λ− r2µ

)

e
( λ

r2
−µ)K

−
r2(r1 − r2)

λ(r1 − r2) + r1r2µ
e−µK

−
r21r2µ

(λ(r1 − r2) + r1r2µ)(λ− r1µ)
e(

λ
r2

− λ
r1

)K

]−1

. (6.22)

The expressions for Q1 and Q2 follow directly from (6.21) and (6.20).
Summarizing, we have found that, in the M/M/1 queue with a two-step

service speed function, the density of the “sojourn time” is given by (6.14) and
(6.19), the constants Q1, Q2, Q3 being specified by (6.20), (6.21) and (6.22).
Observing that Sn = Wn +Bn, where Wn and Bn are independent, now yields
the distribution of W , and hence, using PASTA, the steady-state workload
distribution. We give P(W = 0) and the density fW (x), x > 0:

P(W = 0) =
Q1 +Q2

µ
, (6.23)

fW (x) =

{

Q1ρ1e
( λ

r1
−µ)x +Q2(1 + ρ2)e

λ
r2
x, for 0 < x ≤ K,

Q3ρ2e
( λ

r2
−µ)x

, for x > K.
(6.24)

Remark 6.3.1 Note that the above equations reduce to familiar results for
the M/M/1 queue with service speed r2 in case either K = 0, or r1 = r2. In
particular, we then have

fS(x) = µ(1− ρ2)e
−µ(1−ρ2)x, for x > 0,

corresponding to s2(x) in (6.18). �

6.4 General service requirements

In this section we apply the procedure described in Section 6.2 to the general
M/G/1 queue. The basic ideas are similar as in the M/M/1 case of Section 6.3.
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Again, we start the algorithm with Equation (6.11), which is the result of Step 1
in Section 6.2.

Step 2: Sojourn time distribution on (0,K]
The transforms in this step can be treated in a similar manner as the transforms
in the exponential case of Section 6.3. First, to describe the inverse of F1(ω),
we recall that

H(x) = β−1

∫ x

0

(1−B(y))dy

represents the stationary residual service requirement distribution. Similar to
[52, 53], let δ1 = 0 for ρ1 ≤ 1 and for ρ1 > 1 let δ1 be the unique positive zero
of the function

∫ ∞

0

e−xyρ1dH(y)− 1.

Then, for x > 0, define

L(x) :=

∫ x

0

e−δ1yρ1dH(y),

and

W1(x) :=

∫ x

0−

eδ1yd

{

∞
∑

n=0

Ln
∗

(y)

}

,

where Ln
∗

(·) denotes the n-fold convolution of L(·) with itself (which notation,
in this chapter, is more convenient than Ln). Finally, let

S1(x) := (1− ρ1)

∫ x

0

B(x − y)dW1(y),

be the convolution of (1 − ρ1)W1(·) with B(·). It may be checked that, as in
[52, 53], the LST of S1(·) equals F1(ω), that is, Equation (6.3) with i = 1.

For ρ1 < 1, we note that (1−ρ1)W1(·) and S1(·) are the steady-state waiting-
time and sojourn-time distributions in an M/G/1 queue with service speed r1.
In case ρ1 ≥ 1, W1(·) may be interpreted in terms of a dam with release rate r1
and capacity K. Specifically, the stationary waiting-time distribution for such
a dam equals W1(·)/W1(K), see for instance [52], or [56], p. 536.

To obtain the sojourn time distribution on (0,K], we apply Laplace inversion
to each of the transforms in (6.11) as in Section 6.3. The inverse of the first
LST F1(ω) is described above. For the second transform

F1(ω)E
[

e−ω(S−r2A)I(S − r2A > K)
]

,

we recall that this involves a product of two LSTs, corresponding to the sum
of a random variable with mass on [0,∞), and one with mass on [K,∞). Thus
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the sum has no mass on (0,K]. Using (6.13) for the third transform in (6.11)
as in Section 6.3, we obtain, for ρ1 6= 1,

P(S < x) =
W (0)

1− ρ1
S1(x) +

(1− r2
r1

)

1− ρ1

∫ ∞

K

e
− λ

r2
y
dP(S < y)

∫ x

0

S1(x− y)f(y)dy.

(6.25)
The above equation may be rewritten into an intuitively more appealing ex-
pression by using the interpretation of f(·). As discussed in Step 1, the event
Sn ≤ K implies that either the previous sojourn time was also at or below K,
or a downcrossing has occurred between the two consecutive arrivals. Denote
the probability of a downcrossing of K between two successive arrivals by P↓K .
Then, obviously,

P↓K =

∫ ∞

K

e
− λ

r2
(y−K)

dP(S < y).

Let Aλ be a generic exponential random variable with mean 1/λ. It is then
easily seen that

E

[

e−ω(K−Aλ/r2
)+
]

=
λ

r2ω − λ

(

e
− λ

r2
K
− e−ωK

)

+ e
− λ

r2
K
.

In case ρ1 < 1 , let Ŝ1 denote a generic sojourn time in an M/G/1 queue with
service rate r1. Combining the above directly gives, for x ∈ (0,K] and ρ1 < 1,

P(S < x) =
Q

1− ρ1
P(Ŝ1 < x) +

1− r2
r1

1− ρ1
P↓KP(Ŝ1 + (K −Aλ/r2)

+ < x), (6.26)

where

Q :=

∫ K

0

e
− λ

r1
y
dP(S < y) +

r2
r1

∫ ∞

K

e
− λ

r2
y
dP(S < y).

To provide some insight, let a cycle be the sample path in (0,K] starting when
the workload process enters (0,K] and ending when it leaves (0,K]. Then,
the two probabilities in (6.26) have a direct interpretation: The first probability
stems from sojourn times of customers arriving in cycles starting from the empty
system, while the second term is due to cycles starting with a downcrossing of
K. The sum with (K − Aλ/r2)

+ in the second probability corresponds to the
first “waiting time” after such a downcrossing.

Finally, in case ρ1 ≥ 1 the intuitive form may be expressed in a similar way
as (6.26). In that case, let Ŵ1 be a generic waiting time in an M/G/1 dam with
service speed r1 and finite buffer K and let B be a generic service requirement.
Expression (6.26) then holds upon replacing Ŝ1 by Ŵ1 + B and 1/(1− ρ1) by
W1(K).

Step 3: Sojourn time distribution on (K,∞)
Taking the LST of (6.25) on (0,K] and substituting the result in (6.4) yields
φ(ω). Below, we apply Equation (6.4) directly though to derive the sojourn
time distribution on (K,∞).
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First, define

W2(x) := (1− ρ2)

∞
∑

n=0

ρn2H
n∗

(x).

Because ρ2 < 1, W2(·) corresponds to the steady-state waiting-time distribution
in an M/G/1 queue with service speed r2, see for instance Theorem 1.6.1. Let
S2(x) = W2(x) ∗ B(x) be the stationary sojourn time distribution in such a
queue, with generic random variable Ŝ2. As is well-known, F2(ω) in (6.3) is the
LST of S2(·).

For convenience, denote γ(ω) :=
∫K

0
e−ωxdP(S < x). Using standard alge-

bra, we deduce

λ
γ(λ) − γ(ω)

ω − λ
= E

[

e−ω(S−Aλ)+I(S ≤ K)
]

− γ(λ). (6.27)

Define, for 0 ≤ x ≤ K,

S̃(x) := P((S −Aλ/r1)
+I(S ≤ K) ≤ x)

=

∫ x

0

s̃(y)dy + S̃(0),

where S̃(0) =
∫ K

0 e
− λ

r1
y
dP(S < y), which is also equal to γ(λ/r1), and

s̃(x) :=

∫ K

x

λ

r1
e−

λ
r1

(y−x)dP(S < y).

Combining the above with (6.4) rewritten as

φ(ω) = F2(ω)
W (0)

1− ρ2
+ F2(ω)

1− r1
r2

1− ρ2

λ/r1
ω − λ/r1

(γ (λ/r1)− γ(ω)) ,

we obtain, for x > K,

P(S < x) =
W (0)

1− ρ2
S2(x) +

1− r1
r2

1− ρ2

∫ K

0

S2(x− y)s̃(y)dy. (6.28)

Alternatively, using that

W (0) =
r1
r2
Q+ (1−

r1
r2

)γ(λ/r1),

the sojourn time distribution may be expressed as

P(S < x) =

r1
r2
Q

1− ρ2
P(Ŝ2 < x) +

1− r1
r2

1− ρ2
P(Ŝ2 + (S −Aλ/r1)

+I(S ≤ K) < x).

(6.29)
Here, the first probability relates to busy cycles in which all “sojourn times”
are larger than K. In that case, the system is identical to an M/G/1 queue
with service speed r2. In case Sn ≤ K before the end of the busy cycle, the
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sample path above level K in the subsequent part of the busy cycle is initiated
by S−Aλ/r1 with S ≤ K, as is reflected in the second term. Note that Equation
(2.15) in [53] has a similar structure.

Step 4: Determination of the constants
Using the fact that limx→∞ P(S < x) = 1 and limx→∞ S2(x) = 1, we deduce
from (6.28) that

W (0) = 1− ρ2 − (1−
r1
r2

)

(

P(S < K)−

∫ K

0

e
− λ

r1
y
dP(S < y)

)

. (6.30)

Moreover, substituting x = K in (6.25) yields

P(S < K) =
W (0)

1− ρ1
S1(K)+

(1− r2
r1

)

1− ρ1

∫ ∞

K

e−
λ
r2
ydP(S < y)

∫ K

0

S1(K−y)f(y)dy.

(6.31)

The constants
∫K

0 e
− λ

r1
y
dP(S < y) and

∫∞

K e
− λ

r2
y
dP(S < y) can be determined

in terms of W (0) and P(S < K) using Equations (6.10) and (6.25). Hence,
using (6.30) and (6.31), we find after lengthy calculations that

W (0) =
(1− ρ1)(1− ρ2)(D1 + e

− λ
r1
K
f2)

(1− r1
r2

)S1(K)D2 +D3 + (1− ρ1)
r1
r2
e−

λ
r1
Kf2

, (6.32)

∫ ∞

K

e−
λ
r2
ydP(S < y) = W (0)

D1 − e
− λ

r1
KS1(K)

D1 + e
− λ

r1
K
f2

, (6.33)

where

fi :=

∫ K

0

λ

ri
e

λ
ri

(K−y)
S1(y)dy, i = 1, 2,

D1 := 1− ρ1 − e
− λ

r1
Kf1,

D2 := D1 + e−
λ
r1
K

(

r2
r1
f2 − (1− ρ1)

)

,

D3 := D1

(

1− ρ1 + (1−
r1
r2

)(1−
r2
r1

)f2

)

.

Summarizing, the density of the “sojourn time” is given by (6.25) and (6.28)
(see (6.26) and (6.29) for another representation), where the main constants
are given by (6.32) and (6.33). Because Sn = Wn + Bn, where Wn and Bn
are independent, we also directly obtain the “waiting-time” distribution and,
applying PASTA, the steady-state workload distribution. In particular, for x ∈
(0,K], we have

P(W < x) = W (0)W1(x) + (1−
r2
r1

)

∫ ∞

K

e−
λ
r2
ydP(S < y)

∫ x

0

W1(x− y)f(y)dy,

(6.34)
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and for x > K,

P(W < x) =
W (0)

1− ρ2
W2(x) +

1− r1
r2

1− ρ2

∫ K

0

W2(x− y)s̃(y)dy.

Note that we may determine the density s̃(y), 0 < y ≤ K, up to some constants,
once we have found the workload distribution on (0,K].

6.5 Special cases and extensions

In this section we first consider some special cases of the model with a two-
step service rule and conclude with the extension to the N -step service speed
function. The case of exponentially distributed service requirements and the
two-step service rule has already been treated in Section 6.3. In Subsection 6.5.1
we focus on service requirements with a rational LST to provide some structural
properties. Furthermore, by allowing general service requirements, but letting
r2 →∞ we obtain an M/G/1 queue with disasters (clearings) at level crossings
in Subsection 6.5.2. Finally, in Subsection 6.5.3 we analyze the M/G/1 queue
with an N -step service speed function.

6.5.1 Service requirements with rational LST

In this subsection we assume that the LST β(ω) is a rational function of ω. This
allows us to obtain some structural properties of the steady-state sojourn time
distribution. In particular, let

β(ω) =
β1(ω)

β2(ω)
,

where β1(ω) and β2(ω) are polynomials in ω with β2(ω) of degree n and β1(ω)
of degree strictly less than n (in other words, we assume B(0+) = 0). This class
includes, for instance, phase-type distributions. We use the notation M/Kn/1
to denote single-server queues where the service requirements have such rational
LSTs.

The inverse of Fi(ω), i = 1, 2, can now be given more explicitly. Rewrite
(6.3) as

Fi(ω) = (1− ρi)
riβ1(ω)

riβ2(ω)− λ(β2(ω)− β1(ω))/ω
.

Let δ2 := 0 and ε > 0 be arbitrary small. It then follows from Rouché’s theorem
applied to the function riβ2(ω)−λ(β2(ω)−β1(ω))/ω for Re ω ≤ δi+ ε, i = 1, 2,
that the function has exactly n zeros in the plane with Re ω < δi + ε (see for
instance [56], p. 323, in case ρi < 1).

For ease of presentation, we assume that the function riβ2(ω) − λ(β2(ω) −
β1(ω))/ω, i = 1, 2, has one zero of multiplicity mi, mi = 2, 3, . . . , n, while the
other n − mi zeros are simple, i.e., have multiplicity one. Let ωi(1) be the
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non-simple zero and ωi(mi + 1), . . . , ωi(n) be the distinct simple zeros. By a
partial-fraction expansion and Laplace inversion of Fi(ω), we have

si(x) =

mi
∑

k=1

Q̃i(k)x
keωi(1)x +

n
∑

k=mi+1

Q̃i(k)e
ωi(k)x,

for some constants Q̃i(k), i = 1, 2 and k = 1, . . . , n. In other words, the density
of the sojourn time in the M/Kn/1 queue with service speed ri may be written
as the mixture of mi Erlang densities with scale parameter ωi(1) and n −mi

exponential terms.
It now follows from the general expressions in Section 6.4 that the “sojourn

time” density has a similar structure. First consider 0 < x ≤ K. Note that
the convolution of an Erlang(k, µ) distribution with an exponential term is a
mixture of Erlang(i, µ), i = 1, . . . , k, distributions and the same exponential.
Using (6.25), we obtain, for 0 < x ≤ K,

fS(x) =

m1
∑

k=1

Q1(k)x
keω1(1)x +

n
∑

k=m1+1

Q1(k)e
ω1(k)x +Q0e

λ
r2
x.

Observe that fS(x) has the same Erlang and exponential terms as the sojourn
time density in an ordinary M/Kn/1 queue with service speed r1 (for ρ1 <
1) plus one additional exponential exp(xλ/r2) (but with different constants).
Further observe that ωi(k), i = 1, 2, k = mi + 1, . . . , n, might be complex, in
which case its complex conjugate will also appear, leading to an exponential
times a cosine, respectively, sine function.

Second, for x > K, we use the fact that the conditional sojourn time density
of Ŝ2 has the same structure as the density of Ŝ2 itself, i.e.,

s2(x+ y|Ŝ2 > y) =

m2
∑

k=1

Q̂2(k)x
keω2(1)x +

n
∑

k=m2+1

Q̂2(k)e
ω2(k)x,

for some constants Q̂2(k), k = 1, . . . , n (which depend on y). Combining the
above with (6.28), we deduce that

fS(x) =

m2
∑

k=1

Q2(k)x
keω2(1)x +

n
∑

k=m2+1

Q2(k)e
ω2(k)x.

Finally, using the normalization condition
∫∞

0
fS(x)dx = 1 together with the

definitions of Qi(k), i = 1, 2 and k = 1, . . . , n, provides 2n + 1 equations for
determining the 2n+ 1 constants Q0, Qi(k), for i = 1, 2 and k = 1, . . . , n.

6.5.2 Disasters at level crossings

A special case of the model discussed in Section 6.4 is an M/G/1 queue with
disasters at level crossings, see e.g. [42]. In such a model, the system is imme-
diately cleared when the workload exceeds some level K, that is, the residual
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amount of work is removed from the system when the workload becomes larger
than K. In case r2 → ∞ in our model, the available amount of work is not
removed but served instantaneously when the workload upcrosses K. How-
ever, both interpretations of the work present after such an upcrossing result in
identical mathematical models.

First, we note that the workload embedded at epochs right after arrival
instants may be larger than K in our model (with r2 → ∞). In terms of
clearing processes, this embedded workload may be considered as the overshoot
(and thus the amount of work lost) rather than the actual amount of work
present. Letting r2 →∞ in (6.28) yields, for x > K,

P(S < x) = W (0)B(x) +

∫ K

0

B(x− y)s̃(y)dy,

where s̃(·) may, for instance, be determined by letting r2 →∞ in (6.25).
For clearing models, the workload might be a more natural performance

measure than the “sojourn time”. In particular, we have P(W ≤ K) = 1 and,
for x ∈ (0,K), Equation (6.34) reduces to

P(W < x) = W (0)W1(x) − P(S > K)
λ

r1

∫ x

0

W1(y)dy.

By letting r2 →∞ in (6.32) and (6.33), we obtain the two main constants

W (0) =
(1− ρ1)D1

S1(K)
(

D1 − e
− λ

r1
K
D4

)

+D1D4

,

P(S > K) = W (0)
D1 − e

− λ
r1
K
S1(K)

D1
,

where

D4 = 1− ρ1 −
λ

r1

∫ K

0

S1(y)dy.

Observe that Equations (6.10) and (6.30) are identical when r2 →∞. Because

P(S > K) equals
∫∞

K
e−

λ
r2
ydP(S < y) in that case, the three constants can also

be found from the three independent equations as discussed in Section 6.4.

Remark 6.5.1 In the M/M/1 case with r1 = 1, it may be checked that (6.23)
and (6.24) for r2 → ∞, or the expressions given above, indeed reduce to the
workload density and the probability of an empty system of [42, Theorem 3]. �

6.5.3 N-step service rule

In this subsection we extend the analysis to an N -step service rule. Specifically,
let r(x) = ri for x ∈ (Ki−1,Ki], i = 1, . . . , N (where K0 = 0 and KN = ∞).
Also, define ρi := λβ/ri. For stability, we require that ρN < 1. The basic ideas
are now similar to the case N = 2 discussed in Section 6.4.
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Below, we give the derivation of the “sojourn time” distribution for the
N -step service rule along similar lines as the four-step procedure described in
Section 6.2. That is, we first present N different equations for φ(ω). Second,
we use a similar interpretation as in Step 1 to rewrite the N equations. Third,
similar to Step 2 in Section 6.4 we analyze P(S < x) for x ∈ (0,K1]. Then, we
recursively determine P(S < x) for x ∈ (Ki−1,Ki], i = 2, . . . , N (comparable
with Step 3). We conclude with some remarks about the determination of the
constants.

Concerning the equations for φ(ω), it follows from (6.1), (6.6), and condi-
tioning on Sn that

E
[

e−ωSn+1
]

=

∫ ∞

0

E
[

e−ωSn+1 |Sn = x
]

dP(Sn < x)

= β(ω)
N
∑

j=1

[

ωrj
ωrj − λ

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x)

−
λ

ωrj − λ

∫ Kj

Kj−1

e−ωxdP(Sn < x)

]

,

with obvious modification for ω = λ/rj , j = 1, . . . , N . Using similar manipu-
lations as in the proof of Lemma 6.2.1, we obtain N alternative equations for
φ(ω); for i = 1, . . . , N , we have

φ(ω) = Fi(ω)
W (0)

1− ρi
(6.35)

+
Fi(ω)

1− ρi

N
∑

j=i+1

[

λ(1−
rj

ri
)

ωrj − λ

(
∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x)

−

∫ Kj

Kj−1

e−ωxdP(S < x)

)]

+
Fi(ω)

1− ρi

i−1
∑

j=1

[

λ(1−
rj

ri
)

ωrj − λ

(
∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x)

−

∫ Kj

Kj−1

e−ωxdP(S < x)

)]

,

with obvious notation for Fi(ω) and

W (0) =

N
∑

j=1

∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x). (6.36)

In the remainder, we follow the convention that empty sums are equal to zero.
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Step 1: Rewriting (6.35)
Fix some i = 1, . . . , N and consider the second term on the rhs of (6.35). As
in Step 1 of Section 6.2, Sn > Ki and Sn+1 ≤ Ki means that a downcrossing
of level Ki occurs between the arrival epochs of customers n and n+ 1. Again,
the residual interarrival time at a downcrossing of Ki is still exponential, but
the service speed now depends on the value of Sn. In particular, the precise
distribution of Sn on (Ki,∞) does not directly affect the distribution of Sn+1 ≤
Ki but determines the service speed until the next arrival epoch. Using similar
calculations as in Step 1 of Section 6.2, we obtain

N
∑

j=i+1

[

λ

ωrj − λ

(

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x)−

∫ Kj

Kj−1

e−ωxdP(Sn < x)

)]

= E

[

e−ω(Sn−r(Sn)An)+I(Sn > Ki)
]

−

N
∑

j=i+1

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x)

= E

[

e−ω(Sn−r(Sn)An)I(Sn − r(Sn)An > Ki)
]

+

N
∑

j=i+1

λ

ωrj − λ

(

1− e
−ωKi+

λ
rj
Ki
)

∫ Kj

Kj−1

e
− λ

rj
x
dP(Sn < x).

For convenience, we define the quantity

Cj :=

∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x),

which is clearly independent of ω. Then, by letting n → ∞, we may rewrite
(6.35) as

φ(ω) = Fi(ω)
W (0)

1− ρi
(6.37)

+
Fi(ω)

1− ρi
E

[

e−ω(S−r(S)A)I(S − r(S)A > Ki)
]

+
Fi(ω)

1− ρi

N
∑

j=i+1

(1−
rj
ri

)Cj
λ

ωrj − λ

(

1− e
−ωKi+

λ
rj
Ki
)

,

+
Fi(ω)

1− ρi

i−1
∑

j=1

[

λ(1−
rj

ri
)

ωrj − λ

(
∫ Kj

Kj−1

e
− λ

rj
x
dP(S < x)

−

∫ Kj

Kj−1

e−ωxdP(S < x)

)]

=: I + II + III + IV.

Note that the intuitive observations made above are reflected in Terms II and
III .
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Step 2: Sojourn time distribution on (0,K1]
First we consider i = 1, i.e., the interval (0,K1]. Note that this implies that
IV = 0.

As in Step 2 of Section 6.4 we now apply Laplace inversion to each of the
Terms I, II , and III separately. Again, S1(·)W (0)/(1 − ρ1) is the inverse of
Term I , see also Section 6.4. Term II involves the convolution of two random
variables, one with mass on [0,∞) and one with mass on (K1,∞). Hence, the
sum clearly has no mass on (0,K1].

For Term III , we note that λ
ωrj−λ

(

1− e
−ωKi+

λ
rj
Ki
)

is the Laplace Trans-

form of the function

fi,j(x) =

{

λ
rj
e

λ
rj
x
, for 0 < x ≤ Ki,

0, for x > Ki.

To provide some intuition, suppose that Sn ∈ (Kj−1,Kj ] and a downcrossing of
levelKi ≤ Kj−1 occurs in the subsequent interarrival time, which has stationary
probability

P j↓Ki
=

∫ Kj

Kj−1

e
− λ

rj
(y−Ki)

dP(S < y).

Then P j↓Ki
fi,j may be interpreted as Cj times the “density” of (Ki − Aλ/rj

)+

(in fact, (Ki −Aλ/rj
)+ has a defective distribution with an atom in 0).

Combining the above and applying Laplace inversion provides an extension
of Equation (6.25) to the case of an N -step service rule, with 0 < x ≤ K1,

P(S < x) =
W (0)

1− ρ1
S1(x)+

1

1− ρ1

N
∑

j=2

(1−
rj
r1

)Cj

∫ x

0+

S1(x−y)f1,j(y)dy. (6.38)

Note that the difference with N = 2 is the fact that the service speed now
depends on the previous “sojourn time” in case of a downcrossing of K1. This
naturally leads to a mixture of convolutions of S1(·) with various exponential
functions depending on the service speed in the second part of (6.38).

Step 3: Sojourn time distribution on (Ki−1,Ki]
In Step 2 we obtained the “sojourn time” distribution on the first interval
(0,K1]. We may now recursively determine the “sojourn time” distribution
on the remaining intervals. That is, suppose that P(S < x) is known for
x ∈ (Kj−1,Kj ], j = 1, . . . , i− 1, with i = 2, . . . , N (the case i = 1 corresponds
to Step 2). Using (6.37), we then find P(S < x) for x ∈ (Ki−1,Ki].

To do so, we apply Laplace inversion again to each of the four terms in
(6.37). Terms I, II , and III can be treated as in Step 2, with obvious notation
for Wi(·), i = 2, . . . , N . For the fourth term, we apply similar arguments as in
Step 3 of Section 6.4, in particular Equation (6.27). Thus,

IV =
Fi(ω)

1− ρi

i−1
∑

j=1

(1−
rj
ri

)
(

E

[

e−ω(S−Aλ/rj
)+I(Kj−1 < S ≤ Kj)

]

− Cj

)

.
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Note again that (S − Aλ/rj
)+I(Kj−1 < S ≤ Kj) has a defective distribution

function with an atom at zero, S̃j(0) := Cj . Moreover, the density reads, for
0 < x < Kj ,

s̃j(x) :=

∫ Kj

max(x,Kj−1)

λ

rj
e
− λ

rj
(y−x)

dP(S < y).

Because we assumed that P(S < x) is known on (0,Ki−1], s̃j(x) is computable
for every j = 1, . . . , i− 1.

Now, combining the above and applying Laplace inversion to (6.37) yields,
for Ki−1 < x ≤ Ki, i = 1, . . . , N ,

P(S < x) =
W (0)

1− ρi
Si(x) +

1

1− ρi

N
∑

j=i+1

(1−
rj
ri

)Cj

∫ x

0+

Si(x− y)fi,j(y)dy

+
1

1− ρi

i−1
∑

j=1

(1−
rj
ri

)

∫ Kj

0+

Si(x − y)s̃j(y)dy. (6.39)

The Si(·) term and the convolution of Si(·) with s̃j(·) are similar to the caseN =
2, see (6.28). For i = 1, . . . , N−1, we just have an additional convolution of Si(·)
with fi,j(·), which is the consequence of “sojourn times” after a downcrossing
of Ki, as discussed in Step 2.

Step 4: Determination of the constants
Taking i = N and letting x→∞ in (6.39), yields

W (0) = 1− ρN −

N−1
∑

j=1

(1−
rj
rN

) (P(Kj−1 ≤ S < Kj)− Cj) . (6.40)

Moreover, (6.39) can be used to give expressions for P(S < Ki) and Ci, i =
1, . . . , N − 1. To obtain the latter N − 1 constants, differentiate (6.39) with re-
spect to x, multiply by exp(−λx/ri), and integrate over the interval (Ki−1,Ki].
Together with (6.36) and (6.40), this provides 2N independent equations to
determine the 2N unknowns: W (0), P(S < Ki) for i = 1, . . . , N − 1, and Ci,
i = 1, . . . , N .



Chapter 7

Adaptive protocols for the integration of

streaming and heavy-tailed elastic traffic

7.1 Introduction

In Chapters 2–5 we analyzed various queueing systems with workload-dependent
service (and arrival) rates. Moreover, in Chapter 6 the service speed is adjusted
only at embedded epochs based on the amount of work present. In those studies,
workload typically was one of the main subjects of consideration. In this chapter,
we analyze the workload distribution in a queueing model with a general (non-
decreasing) input process and a varying service speed that is determined by
the state of a random environment. More specifically, the random environment
consists of a second class of (elastic) customers with heavy-tailed characteristics
sharing the service capacity with the first (streaming) class according to the PS
discipline. In contrast to previous chapters, in this chapter we mainly focus on
asymptotic results as the workload gets large.

The analysis of the present chapter has been motivated by applications in
communication networks. Where the queueing systems of previous chapters
may, for instance, be applied to model the packet-level dynamics, we now focus
on the flow level (of the elastic flows), see Section 1.5 for details. In particu-
lar, we consider a fixed number of streaming users and a dynamic population
of elastic flows sharing the bandwidth in a bottleneck link. Under some as-
sumptions we derive various performance measures for the elastic flows and the
workload asymptotics for the streaming class (the main result of the chapter).
The latter is especially relevant because the workload can be interpreted as the
shortfall in received amount of service compared to a nominal service target.
This interpretation, in addition to an elaborate model description, is discussed
in Section 7.3.

The remainder of the chapter is organized as follows. We give some back-
ground information on the integration of streaming and elastic traffic on a com-
mon infrastructure in Section 7.2. In Section 7.3 we present a detailed model
description. In Section 7.4 we analyze the delay and workload performance of
the elastic flows by exploiting a useful relationship with an M/G/1 PS model
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with permanent customers. The main result is presented in Section 7.5, where
we consider the workload asymptotics of the streaming users for the case of
constant-rate traffic. Besides a heuristic interpretation of the result, we also
give some preliminaries and an outline of the proof, which involves lower and
upper bounds that asymptotically coincide. The proofs of the lower and upper
bounds may be found in Sections 7.6 and 7.7, respectively. We extend the re-
sults to the case of variable-rate streaming traffic in Section 7.8. In addition,
we consider the tail asymptotics of the joint workload distribution of the K
individual streaming users. In Section 7.9 we make some concluding remarks.

7.2 Integration of elastic and streaming traffic

Over the past decade, TCP has become the most prominent congestion control
mechanism in the Internet. While TCP is adequate for best-effort elastic traffic,
such as file transfers and Web browsing sessions, it is less suitable for supporting
delay-sensitive streaming applications. In particular, real-time streaming appli-
cations are extremely vulnerable to the fluctuations in the window size that are
characteristic for TCP. As a potential alternative, UDP could be used to avoid
the wild oscillations in the transmission rate. Since UDP does not respond to
congestion, it may cause severe packet losses however, and give rise to unfairness
in the competition for bandwidth with TCP-controlled flows.

Discriminatory packet scheduling mechanisms provide a further alternative
to achieve some form of prioritization of streaming applications. However, the
implementation of scheduling mechanisms involves major complexity and scal-
ability issues. In addition, prioritization of streaming applications may cause
performance degradation and even starvation of TCP-controlled flows that back
off in response to congestion. Evidently, the latter issue gains importance as
the amount of streaming traffic in the Internet grows.

The above considerations have motivated an interest in TCP-friendly or
equation-based rate control protocols for streaming applications [77, 134, 142].
The key goal is to eliminate severe fluctuations in the window size and adjust
the transmission rate in a smoother manner. In order to ensure fairness with
competing TCP-controlled flows, the specific aim is to set the transmission rate
to the ‘fair’ bandwidth share, i.e., the throughput that a long-lived TCP flow
would receive under similar conditions.

Various methods have been proposed for determining the fair bandwidth
share in an accurate and robust manner. Typical methods involve measuring
the packet loss rate and round-trip delay (e.g. by running a low-rate connection
to identify the network conditions). The corresponding throughput may then be
estimated from equations that express the throughput of a TCP-controlled flow
in terms of the packet loss rate and round-trip delay, see for instance [122, 133].
Obviously, the adaptation mechanism faces the usual trade-off between respon-
siveness and smoothness, which is worsened by the fact that the estimation
procedure relies on measurements of noisy traffic.

In the present chapter we explore the performance of streaming applications
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under such TCP-friendly rate control protocols. As mentioned, we consider a
fixed number of streaming sessions which share a bottleneck link with a dynamic
population of elastic flows. The assumption of persistent streaming users is moti-
vated by the separation of time scales between the typical duration of streaming
sessions (minutes to hours) and that of the majority of elastic flows (seconds
to minutes). We assume that the sizes of the elastic flows exhibit heavy-tailed
characteristics. The latter assumption is based on extensive measurement stud-
ies which show that file sizes in the Internet, and hence the volumes of elastic
transfers, commonly have heavy-tailed features, see for instance [60].

As mentioned above, the design and implementation of TCP-friendly mecha-
nisms is a significant challenge. In the present chapter we leave implementation
issues aside though, and investigate the performance under idealizing assump-
tions. Specifically, we assume that the rate control mechanism reacts instantly
and perfectly accurately to changes in the population of elastic flows, and main-
tains a constant rate otherwise. This results – at the flow level – in a fair sharing
of the link rate in a PS manner. The PS discipline has emerged as a useful
paradigm for modeling the bandwidth sharing among dynamically competing
TCP flows, see for instance [29, 121, 130]. Although the PS paradigm may not
be entirely justified for short flows, inspection of the proofs suggests that this
assumption is actually not that crucial for the asymptotic results to hold. The
effect of oscillations, inaccuracies and delays in the estimation procedure on the
performance remains as a subject for future research.

We consider the probability that a possible deficit in service received by
the streaming sessions compared to a nominal service target exceeds a certain
threshold. The latter probability provides a measure for the quality of the
connection experienced by the streaming users. We determine the asymptotic
behavior of the service deficit (or workload) probability for a large value of the
threshold. The results yield useful qualitative insight into the occurrence of
persistent quality disruption for the streaming users. We furthermore examine
the delay performance of the elastic flows.

In [106], the authors consider a mixture of elastic transfers and streaming
users sharing the network bandwidth according to weighted α-fair rate algo-
rithms. Weighted α-fair allocations include various common fairness notions,
such as max-min fairness and proportional fairness, as special cases. They also
provide a tractable theoretical abstraction of the throughput allocations under
decentralized feedback-based congestion control mechanisms such as TCP, and
in particular cover TCP-friendly rate control protocols. In a recent paper [32],
the authors derive various performance bounds for a related model with a com-
bination of elastic flows and streaming traffic sharing the link bandwidth in a
fair manner. The latter papers however focus on other performance metrics
than in the present chapter.
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7.3 Model description

We consider two traffic classes sharing a link of unit rate. Class 1 consists of a
static population of K ≥ 1 statistically identical streaming sessions. These ses-
sions stay in the system indefinitely. Class 2 consists of a dynamic configuration
of elastic flows. These users arrive according to a renewal process with mean
interarrival time 1/λ, and have service requirements with distribution B(·) and
mean β <∞.

The elastic flows are TCP-controlled, while the transmission rates of the
streaming sessions are adapted in a TCP-friendly fashion. Abstracting from
packet-level details, we assume that this results in a fair sharing of the link
rate according to the PS discipline. Thus, when there are N(u) elastic flows in
the system at time u, the available service rate for each of the users – either
elastic or streaming – is 1/(K+N(u)). Denote by C1(u) := K/(K +N(u)) the
total available service rate for the streaming traffic at time u. Define C1(s, t) :=
∫ t

u=s C1(u)du as the total amount of service available for the streaming sessions
during the time interval [s, t].

In the present chapter, we will mainly be interested in the quantity V1(t) :=
sup
s≤t
{A1(s, t)−C1(s, t)}, where A1(s, t) denotes the amount of service which ide-

ally should be available for the streaming traffic during the interval [s, t]. For
example, A1(s, t) may be taken as the amount of streaming traffic that would
nominally be generated during the interval [s, t] if there were ample bandwidth.
Thus, V1(t) may be interpreted as the shortfall in service for the streaming traffic
at time t compared to what should have been available in ideal circumstances.
For conciseness, we will henceforth refer to V1(t) as the workload of the stream-
ing traffic at time t (see (1.8) for a representation of the steady-state workload).
Throughout the chapter, we also often refer to A1(s, t) as the amount of stream-
ing traffic generated. It is worth emphasizing though that A1(s, t) represents
just the amount of traffic which ideally should have been served, and not the
amount of traffic that is actually generated, which is primarily governed by the
fair service rates as described above. Thus, V1(t) provides just a virtual mea-
sure of a service deficit compared to an ideal environment, and by no means
corresponds to the backlog or buffer content in an actual system.

In Sections 7.4–7.7 we will focus on the ‘constant-rate’ case A1(s, t) ≡ Kr(t−
s), which amounts to a fixed target service rate r per streaming session. We
will extend the analysis in Section 7.8 to the ‘variable-rate’ case where A1(s, t)
is a general stochastic process with stationary increments.

We will also consider the quantity V2(t) := sup
s≤t
{A2(s, t) − C2(s, t)}, where

A2(s, t) denotes the amount of elastic traffic generated during the time interval
[s, t], and C2(s, t) represents the amount of service available for the elastic flows

during [s, t]. By definition, C2(s, t) :=
∫ t

u=s C2(u)du, with C2(u) denoting the
total available service rate for the elastic traffic at time u. Evidently, C2(u) ≥
1 − C1(u), with equality in case the streaming sessions always claim the full
service rate available. For the elastic traffic, the latter case is equivalent to a
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G/G/1 PS queue with K permanent customers, accounting for the presence of
the competing streaming sessions.

However, we allow for possible strict inequality in case the streaming sessions
do not always consume the full service rate available, and the unused surplus
is granted to the elastic class, i.e., C2(s, t) = t − s − B1(s, t), with Bi(s, t) ≤
Ci(s, t) denoting the actual amount of service received by class i, i = 1, 2,
during the interval [s, t]. For example, when the ‘workload’ of the streaming
sessions is zero, the actual service rate may be set to the minimum of the
aggregate input rate and the total service rate available. In particular, in the
‘constant-rate’ case the actual service rate per streaming session at time u is
then only min{r, 1/(K + N(u))} when V1(u) = 0. Note that the total service
rate is thus used at time u as long as V1(u) + V2(u) > 0, which implies that
V1(t) + V2(t) = sup

s≤t
{A1(s, t) + A2(s, t) − (t − s)}. Hence, the case C2(s, t) =

t − s − B1(s, t) will be termed the work-conserving scenario, whereas the case
C2(u) = 1 − C1(u) = N(u)/(K + N(u)) will be referred to as the permanent-
customer scenario. It may be checked that the work-conserving and permanent-
customer scenarios provide lower and upper bounds for the general case with
t− s− C1(s, t) ≤ C2(s, t) ≤ t− s−B1(s, t).

Define ρ := λβ as the traffic intensity of class 2. Without proof, we claim
that ρ < 1 is a necessary and sufficient condition for class 2 to be stable. While
the former is obvious, the latter may be concluded from the comparison with
the G/G/1 PS queue with K permanent customers mentioned above (see [166]
for the case of Poisson arrivals). For class 1 to be stable as well, we need to
assume that ρ+Kr < 1, with E{A(0, 1)} = Kr. Here class 1 is said to be stable
if the ‘workload’ V1(t) converges to a finite random variable as t→∞. Denote
by Vi a random variable with the steady-state distribution of Vi(t), i = 1, 2. In
Sections 7.5–7.8, we additionally assume that (K + 1)r > 1− ρ, which implies
that the system is critically loaded in the sense that one extra streaming session
– or a ‘persistent’ elastic flow – would cause instability. Combined, the above
two assumptions give Kr < 1− ρ < (K + 1)r.

We finally introduce some additional notation. Let B be a random variable
distributed as the generic service requirement of an elastic user, and let Br

be a random variable distributed as the residual lifetime of B, i.e., Br(x) =
P {Br < x} = 1

β

∫ x

0 (1 − B(y))dy. We assume that the service requirement

distribution is regularly varying of index −ν (denoted as B(·) ∈ R−ν), i.e.,
1 − B(x) ∼ L(x)x−ν , ν > 1, with L(x) some slowly varying function, see also
Definition 1.6.1. As in Subsection 1.6.4, we use the notation f(x) ∼ g(x) to
indicate that f(x)/g(x) → 1 as x → ∞. (A function L(·) is called slowly vary-
ing if L(ηx) ∼ L(x) for all η > 1.) It follows from Karamata’s Theorem [31,
Theorem. 5.1.11] that xP {B > x} ∼ (ν−1)β P {Br > x}, so that Br(·) ∈ R1−ν .

Remark 7.3.1 The analysis may be generalized to the case of Discriminatory
Processor Sharing (DPS), that is, when the rate share per streaming session is
w/(wK +N(u)) rather than 1/(K +N(u)), for some positive weight factor w.
In the ‘constant-rate’ case, it is in fact easily verified that the workload for
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K streaming sessions each with weight w and target rate r is equivalent to that
in a model with K ′ = wK streaming sessions each with unit weight and target
rate r′ = r/w (with some abuse of terminology when wK is not integer). For
notational transparency, we henceforth focus on the case w = 1. �

7.4 Delay performance of the elastic flows

As mentioned earlier, our model shows strong resemblance with a G/G/1 PS
queue with K permanent customers [166]. The permanent customers play the
role of the persistent streaming users in our model, while the regular (non-
permanent) customers correspond to the elastic flows, inheriting the same arrival
process and service requirement distribution B(·). It may be checked that the
service rate available for the elastic class in our model is always at least that
in the model with K permanent customers. Hence, the number of elastic flows,
their individual residual service requirements, their respective delays (sojourn
times), and the workload of the elastic class are stochastically dominated by the
corresponding quantities in the model with permanent customers. This may
be formally shown using similar arguments as in the proof of Lemma 4 in [35].
The stochastic ordering between the two models is particularly useful, since it
provides upper bounds for several performance measures of interest in our model
in terms of the model with permanent customers. In order for the bounds to
be analytically tractable, we assume in the remainder of the section that the
elastic flows arrive according to a Poisson process of rate λ.

Remark 7.4.1 As noted earlier, in the special case where the service rate of the

elastic class is alwaysC2(t) ≡
N(t)

K+N(t) (which we named the permanent-customer

scenario), the two models are actually equivalent in terms of the number of
elastic users and their respective residual service requirements. In that case,
the inequalities in Equations (7.2)-(7.6) below hold with equality. �

The M/G/1 PS queue with permanent customers is a special case of the
model studied in [55], where each customer receives service at rate f(n), 0 ≤
f(n) <∞, when there are n customers. To obtain the model with K permanent
customers, we take f(n) = 1

K+n . Let N(K) be the number of regular customers

in the model with K permanent customers and, given N(K) = n, let B̂1, . . . , B̂n
be their residual service requirements. Then, according to [55],

P

{

N(K) = n; B̂1 > x1; . . . ; B̂n > xn

}

= (1− ρ)K+1ρn
(

n+K

n

) n
∏

m=1

P {Br > xm} . (7.1)

(When w 6= 1 and wK is not integer, the above formula remains valid upon
substituting wK for K and replacing the factorial function in the binomial
coefficients by the Gamma function.) We thus obtain an upper bound for the
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probability that the service rate of the streaming users is below a given desired
rate s:

P

{

1

K +N
< s

}

≤ P
{

N(K) > b1/s−Kc
}

=
K
∑

j=0

(

b1/sc+ 1

j

)

(1− ρ)jρb1/sc+1−j . (7.2)

As mentioned above, the delay (sojourn time) of elastic users in our model
(denoted by S2) is stochastically dominated by the corresponding quantity in the
model with permanent customers. In the M/G/1 PS queue with m permanent
customers, let S(m) be the delay and S(m)(x) be the conditional sojourn time
given that the service requirement of the customer is x. It is known that this
random variable is the (m + 1)-fold convolution of the distribution of SPS(x),
the conditional sojourn time in the standard M/G/1 PS queue [166]:

P
{

S(m)(x) ≤ t
}

= P







m+1
∑

j=1

SPS,j(x) ≤ t







,

where SPS,j , j = 1, . . . ,m+1, represent i.i.d. copies of SPS. (It is worth empha-
sizing that the unconditional sojourn time does not allow for a similar decom-
position.) In particular, using that ESPS(x) = x

1−ρ , we obtain an upper bound

for the conditional mean delay of elastic users in our model (denoted as S2(x)):

ES2(x) ≤ ES(K)(x) = (K + 1)
x

1− ρ
, (7.3)

and, hence, the (unconditional) mean delay satisfies

ES2 ≤ (K + 1)
β

1− ρ
. (7.4)

We now turn to the tail asymptotics for the unconditional sojourn time.
The next proposition shows that the exact asymptotics of S2 depend on the
assumptions on C2(s, t) in case B1(s, t) < C1(s, t). As observed in Remark 7.4.1,

in case C2(t) ≡
N(t)

K+N(t) , the model is equivalent to the M/G/1 PS queue with

K permanent customers. Asymptotically, the equivalence also continues to hold
when the system is critically loaded, i.e., (K + 1)r > 1− ρ, which implies that
class-1 users will be rarely non-backlogged over the course of a long sojourn
time. However, the sojourn time asymptotics change when the system is below
critical load, i.e., (K + 1)r < 1 − ρ, and the elastic flows receive (part of) the

capacity left over by the streaming users, i.e., C2(t) >
N(t)

K+N(t) .

Proposition 7.4.1 If B(·) ∈ R−ν and (K + 1)r > 1 − ρ or C2(t) ≡
N(t)

K+N(t) ,

or both, then

P {S2 > x} ∼ P
{

S(K) > x
}

∼ P

{

B >
(1− ρ)x

K + 1

}

.
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In contrast, if (K + 1)r < 1− ρ and C2(s, t) ≡ t− s−B1(s, t), then

P {S2 > x} ∼ P {B > (1− ρ−Kr)x} .

Proof The asymptotics for S(K) (and, thus, for S2 in the permanent-customer
scenario) follow from [82]. As noted above, the service rate of a customer is
f(n) = 1

K+n when there are n non-permanent customers in the system. We

can therefore apply [82, Theorem 3] to obtain γf = 1−ρ
K+1 and the desired result

follows.
For the remainder of the proof we only provide an intuitive sketch; we refer to

Appendix 7.C for a detailed proof. In both cases, a large delay of an elastic flow
is due to a large service requirement of the flow itself, and the ratio between the
two quantities is simply the average service rate received by the large flow. Over
the duration of the large flow, the other elastic flows continue to produce traffic
at an average rate ρ, and also receive service at an average rate ρ. The remaining
service capacity is shared among the large elastic flow and the streaming users,
each entitled to a fair share (1 − ρ)/(K + 1). In case (K + 1)r > 1 − ρ, the
fair share of the streaming users is below their average input rate r. Thus, the
streaming users will be almost constantly backlogged, and the average service
rate for the large elastic flow is just (1− ρ)/(K + 1). In case (K + 1)r < 1− ρ,
the fair share of the streaming users exceeds their average ‘input rate’ r. Hence,
the streaming users will only claim an average service rate Kr, and the average
service rate left for the large elastic flow is 1− ρ−Kr now. 2

In case the system is not critically loaded and t − s − C1(s, t) < C2(s, t) <
t− s−B1(s, t) for at least some s and t, we obtain the immediate bound

P {S2 > x} ≤ (1 + o(1))P

{

B >
(1− ρ)x

K + 1

}

, as x→∞. (7.5)

Remark 7.4.2 The result for the permanent customer scenario is formulated
for regularly varying service requirements, but it may readily be extended (fol-
lowing the proof of [132, Theorem 4.1]) to the slightly larger class of intermedi-
ately regularly varying distributions. �

Finally, we turn to the workload of the elastic class which is also stochas-
tically dominated by the corresponding quantity in the model with permanent
customers. Again, we first state a result for the M/G/1 PS queue with perma-
nent customers.

Proposition 7.4.2 If B(·) ∈ R−ν , then V(m), the workload in the M/G/1 PS
queue with m permanent customers, satisfies

P
{

V(m) > x
}

∼ EN(m) P {Br > x} =
(m+ 1)ρ

1− ρ
P {Br > x} .

Proof From (7.1) we observe that, given N(m) = n, B̂1, . . . , B̂n are i.i.d. copies

of Br. Using [158] together with V(m) =
∑N(m)

i=1 B̂i, and the fact that P {N > n}
decays geometrically fast when n→∞, we obtain the desired equivalence. 2
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As an immediate corollary, we derive

P {V2 > x} ≤ (1 + o(1))
(K + 1)ρ

1− ρ
P {Br > x} , as x→∞. (7.6)

7.5 Workload asymptotics of the streaming traffic

In this section we turn the attention to the workload distribution of class 1. For
convenience, we assume that each class-1 source generates traffic at a constant
rate r. The latter assumption is however not essential for the asymptotic results
to hold, and in Section 7.8 we extend the results to the case of variable-rate class-
1 traffic. In the remainder of the chapter, we assume that ρ+Kr < 1 to ensure
stability. In addition, we impose the condition that (K + 1)r > 1− ρ, i.e., the
system is critically loaded. Thus, Kr < 1− ρ < (K + 1)r.

The next theorem provides the main result of the present chapter.

Theorem 7.5.1 If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r, then

P {V1 > x} ∼
ρ

1− ρ−Kr
P

{

Br >
x 1−ρ
K+1

K(r − 1−ρ
K+1)

}

. (7.7)

The proof of the above theorem involves asymptotic lower and upper bounds
which will be provided in Sections 7.6 and 7.7, respectively. In this section, we
sketch a heuristic derivation of the result, which will also serve as an outline
for the construction of the lower bound in Subsection 7.6.1. The heuristic ar-
guments are in essence similar to the arguments given in Subsection 1.6.4 for
the classical M/G/1 queue. In addition, we give an intuitive interpretation,
which provides the basis for the lower bound in Subsection 7.6.2 and the up-
per bound in Section 7.7. First, however, we give some basic relations between
traffic processes, amounts of service and workloads, and state a few preliminary
results.

Preliminary results
The amounts of service satisfy the following simple inequality

B1(s, t) +B2(s, t) ≤ t− s. (7.8)

For the workloads, the following obvious identity relation holds for i = 1, 2
and s < t,

Vi(t) = Vi(s) +Ai(s, t)−Bi(s, t). (7.9)

As mentioned in Section 7.3, in the work-conserving scenario, i.e., C2(s, t) ≡
t−s−B1(s, t), the system is equivalent in terms of the total workload to a single
queue of unit rate fed by the aggregate class-1 and class-2 traffic processes,

V1(t) + V2(t) = sup
s≤t
{A1(s, t) + A2(s, t)− (t− s)}. (7.10)
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In particular, in the constant-rate case,

V1(t) + V2(t) = sup
s≤t
{Kr(t− s) +A2(s, t)− (t− s)}

= sup
s≤t
{A2(s, t)− (1−Kr)(t− s)}

= V 1−Kr
2 (t), (7.11)

with V c2 (t) the workload at time t in an isolated queue with service rate c
fed by class 2 only. For any ρ < c, let V c2 be its steady-state version. The
asymptotic tail distribution of the latter quantity is given by the next theorem
(see Theorem 1.6.5 in case c = 1), which is originally due to Cohen [50], and
has been extended to subexponential distributions by Pakes [135].

Theorem 7.5.2 Assume that ρ < c. Then, B(·) ∈ R−ν iff P {V c2 < ·} ∈ R1−ν ,
and then

P {V c2 > x} ∼
ρ

c− ρ
P {Br > x} .

The same relation holds when V c2 represents the workload distribution at arrival
epochs of class 2.

Relation (7.11) plays a central role in the proof of Theorem 7.5.1. Through-
out we will consider several extensions of the basic model, allowing the system
to be non-work-conserving (e.g., the permanent-customer scenario) and having
variable-rate streaming traffic (with mean Kr). In those cases, (7.11) does not
hold as a sample path identity, but (under some assumptions) V1+V2 and V 1−Kr

2

are asymptotically equivalent in the following sense (similar reduced-load type
of equivalences may be found in, e.g., [3, 91, 179]):

P {V1 + V2 > x} ∼ P
{

V 1−Kr
2 > x

}

. (7.12)

The main intuitive idea is that a large total workload is most likely due to
the arrival of a large class-2 user. Since the system is critically loaded, the class-
1 workload builds up in the presence of the large class-2 user, so that the full
service capacity is used and the system behaves as if it were work-conserving.
The detailed proof of (7.12) is deferred to Appendix 7.A (Proposition 7.A.1).

Heuristic arguments
In queueing systems with heavy-tailed characteristics, rare events tend to occur
as a consequence of a single most-probable cause. We will specifically show that
in the present context the most likely way for a large class-1 workload V1 to occur
arises from the arrival of a class-2 user with a large service requirement Btag,
while the system shows average behavior otherwise. We will refer to the class-2
user as the “tagged” user.

Define Btag(s, t) as the amount of service received by the tagged user in
(s, t]. In addition, denote by B−

2 (s, t) the amount of service received by class-2
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users in the time interval (s, t], except for the tagged user. Then (7.8) may be
rewritten as follows

B1(s, t) +Btag(s, t) +B−
2 (s, t) ≤ t− s. (7.13)

Suppose that the tagged user arrives at time −y − z0, with z0 = x
K(r− 1−ρ

K+1 )
,

Btag ≥ x+(1−ρ−Kr)(y+z0), and y ≥ 0. The amount of class-2 traffic generated
during the time interval [−y − z0, 0] is close to average, i.e., A2(−y − z0, 0) ≈
ρ(y+z0). Since class 2 is stable, regardless of the presence of the tagged user, the
amount of service received roughly equals the amount of class-2 traffic generated
during the time interval [−y − z0, 0], i.e., B−

2 (−y − z0, 0) ≈ ρ(y + z0). The
cumulative amount of service received by the tagged user up to time 0 is either
B1(−y − z0, 0)/K or Btag, depending on whether the user is still present at
time 0 or not.

Using the inequality (7.13), the amount of service received by class 1 is
approximately

B1(−y − z0, 0) ≤ y + z0 −Btag(−y − z0, 0)−B−
2 (−y − z0, 0)

≈ (1− ρ)(y + z0)−min{Btag, B1(−y − z0, 0)/K}.

Thus,

B1(−y − z0, 0) ≤ max{(1− ρ)(y + z0)−Btag,
K

K + 1
(1− ρ)(y + z0)}

≤ max{Kr(y + z0)− x,
K

K + 1
(1− ρ)(y + z0)}.

Using the above inequality and the identity relation (7.9), the class-1 work-
load at time 0 is

V1(0) ≥ A1(−y − z0, 0)−B1(−y − z0, 0)

≥ Kr(y + z0)−max{Kr(y + z0)− x,
K

K + 1
(1− ρ)(y + z0)}

= min{x,K(r −
1− ρ

K + 1
)(y + z0)} ≥ min{x,K(r −

1− ρ

K + 1
)z0} = x.

In the case of Poisson arrivals of class 2 we obtain (by integrating with respect
to y and neglecting the probability of two or more “large” users)

P {V1 > x} ≥

∫ ∞

y=0

λP

{

Btag >
1− ρ

K + 1
z0 + (1− ρ−Kr)y

}

dy,

which agrees with the right-hand side of (7.7).
Of course, there are alternative scenarios that could potentially lead to a

large class-1 workload. Theorem 7.5.1 thus indirectly indicates that these are
extremely unlikely compared to the one described above, as will be rigorously
shown in Section 7.7.
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A formal proof based on the above heuristics (in case of renewal arrivals
of class 2) may be found in Subsection 7.6.1. The arrival of a class-2 user
with a large service requirement in fact also results in a large total amount of
work in the system after its arrival. We will use this alternative interpretation
of the dominant scenario in Subsection 7.6.2 to derive a lower bound in case
of renewal class-2 arrivals and in Section 7.7 to obtain an upper bound. In
particular, we will show that the event V1(−t1) +V2(−t1) ≥ x+(1− ρ−Kr)t1,
with t1 := x

K(r− 1−ρ
K+1 )

, corresponds to the dominant scenario described above.

Using Proposition 7.A.1 and Theorem 7.5.2, we then obtain that the probability
of the latter event coincides with the right-hand side of (7.7).

Finally, note that the dominant scenario crucially depends on the critical
load, i.e., 1 − ρ < (K + 1)r. Section 7.9 briefly discusses the case of a non-
critically loaded system.

7.6 Lower bound

In this section we derive asymptotic lower bounds for P {V1 > x} using two
different approaches. In Subsection 7.6.1, we explicitly use the arrival of a
class-2 user with a large service requirement (as described in the heuristics in
Section 7.5) as the most likely way for a large class-1 workload to occur. We
believe that this approach is especially insightful, as it brings out the typical
cause of a large class-1 workload. In Subsection 7.6.2, we provide a proof based
on the alternative characterization of the dominant scenario in Section 7.5. This
approach is consistent with the derivation of the upper bound in Section 7.7.
Moreover, it allows for modifications to include variable-rate class-2 traffic.

7.6.1 Approach 1

To obtain a lower bound for P {V1 > x}, we start by deriving a sufficient sample-
path condition for the event V1(0) > x to occur (Lemma 7.6.1). Next, we convert
the sample-path statement into a probabilistic lower bound which can be used
to determine the asymptotic tail behavior of P {V1 > x} (Proposition 7.6.1).

Consider the following three events.

1. ∃y ≥ 0 such that at time −t0, with t0 := x(1+Kε+Kγ)

K(r− 1−ρ+δ
K+1 )

+y, a tagged class-2

user arrives with service requirement

Btag ≥
x(1 +Kε+Kγ)

K(r − 1−ρ+δ
K+1 )

1− ρ+ δ

K + 1
+ y(1− ρ+ δ −Kr) + (ε+ γ)x (7.14)

2. For the amount of class-2 traffic arriving in the interval (−t0, 0] it holds
that

A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx (7.15)
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3. The amount of class-2 work at time 0, except from the tagged user, satisfies

V −
2 (0) ≤ (K + 1)εx (7.16)

We first prove the next sample-path relation.

Lemma 7.6.1 If the events (7.14)-(7.16) occur simultaneously with δ ≤ (K +
1)r − (1− ρ), then V1(0) > x.

Proof We distinguish between two cases: (i) the large tagged user is still
present in the system at time 0; and (ii) the tagged user already left before
time 0.

First consider case (i) and denote by B+
1 (s, t) the amount of service received

by the class-1 users and the large tagged class-2 user together in the interval
(s, t]. Then, using (7.8) and (7.9),

B+
1 (−t0, 0) ≤ t0 − V2(−t0)−A2(−t0, 0) + V −

2 (0)

≤ t0 −A2(−t0, 0) + V −
2 (0)

≤ (1− ρ+ δ)t0 + (K + 1)(ε+ γ)x, (7.17)

where we used (7.15) and (7.16) in the third inequality. Because of the PS
discipline, we have B1(−t0, 0) ≤ K

K+1B
+
1 (−t0, 0). Combining this with (7.17)

and using (7.9) yields

V1(0) ≥ A1(−t0, 0)−B1(−t0, 0)

≥ Krt0 −
K

K + 1
[(1− ρ+ δ)t0 + (K + 1)(ε+ γ)x]

= K

(

r −
1− ρ+ δ

K + 1

)

t0 −K(ε+ γ)x

≥ K

(

r −
1− ρ+ δ

K + 1

)

x(1 +Kε+Kγ)

K(r − 1−ρ+δ
K+1 )

−K(ε+ γ)x

= x,

where we used δ ≤ (K + 1)r − (1− ρ) in the fourth step.
Next, consider case (ii). From (7.8) and (7.9), we obtain

B1(−t0, 0) ≤ t0 − V2(−t0)−A2(−t0, 0) + V −
2 (0)−Btag

≤ t0 −A2(−t0, 0) + V −
2 (0)−Btag

≤ (1− ρ+ δ)t0 + (K + 1)(ε+ γ)x−Btag,

where we used (7.15) and (7.16) in the final inequality. Applying similar argu-
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ments as in case (i) yields

V1(0) ≥ A1(−t0, 0)−B1(−t0, 0)

≥ (Kr − 1 + ρ− δ)t0 − (K + 1)(ε+ γ)x+Btag

≥ (Kr − 1 + ρ− δ)

[

x(1 +Kε+Kγ)

K(r − 1−ρ+δ
K+1 )

+ y

]

− (K + 1)(ε+ γ)x

+
x(1 +Kε+Kγ)

K(r − 1−ρ+δ
K+1 )

1− ρ+ δ

K + 1
+ y(1− ρ+ δ −Kr) + (ε+ γ)x

= x,

where we used (7.14) in the third inequality. This completes the proof. 2

We now use the sample-path relation of Lemma 7.6.1 to prove the next
asymptotic lower bound for the class-1 workload distribution.

Proposition 7.6.1 (lower bound) Assume the class-2 arrivals follow a renewal
process with mean interarrival time α = 1/λ = β/ρ. If B(·) ∈ R−ν and Kr <
1− ρ < (K + 1)r, then

lim inf
x→∞

P {V1 > x}

ρ
1−ρ−KrP

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≥ 1.

Proof Let −t0− τ−m be the arrival epoch of the (m+1)-th class-2 user before
time −t0 (counting backwards). In particular, τ0 is the backward recurrence
time of the class-2 arrival process at time −t0. The corresponding service re-
quirements are denoted by B−m, m ≥ 0.

In the following γ, δ, ε, κ and ζ are all small, but positive real numbers.
Denote

g(γ, δ, ε, κ) :=
(1 +Kε+Kγ)

K(r − 1−ρ+δ
K+1 )

1− ρ+ δ

K + 1
+ (ε+ γ) + (1− ρ+ δ −Kr)κ,

and rewrite (7.14) into B−m > g(γ, δ, ε, 0)x+(1−ρ+δ−Kr)τ−m for somem ≥ 0.
To bound the probability of (7.16), we apply the model with K + 1 permanent
customers, giving V −

2 (0) ≤ V(K+1)(0). Now, using Lemma 7.6.1 yields

P {V1(0) > x}

≥ P{A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx;V −
2 (0) ≤ (K + 1)εx;

∃m ≥ 0 : B−m > g(γ, δ, ε, 0)x+ (1− ρ+ δ −Kr)τ−m;

∀k ≥ 0 : τ−k ≤ k(α+ ζ) + κx}

≥ P{∃m ≥ 0 : B−m > g(γ, δ, ε, κ)x+ (1− ρ+ δ −Kr)m(α + ζ)}

×P{A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx;V(K+1)(0) ≤ (K + 1)εx;

∀k ≥ 0 : τ−k ≤ k(α+ ζ) + κx}. (7.18)
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We study each of the two probabilities separately. First note that

P{∃m ≥ 0 : B−m > g(γ, δ, ε, κ)x+ (1− ρ+ δ −Kr)m(α + ζ)}

≥

∞
∑

m=0

P{B−m > g(γ, δ, ε, κ)x+ (1− ρ+ δ −Kr)m(α+ ζ)}

−

∞
∑

m=0

∞
∑

n=m+1

P{B−m > g(γ, δ, ε, κ)x+ (1− ρ+ δ −Kr)m(α+ ζ),

B−n > g(γ, δ, ε, κ)x+ (1− ρ+ δ −Kr)n(α+ ζ)}

∼ (1 + o(1))
β/(α+ ζ)

1− ρ−Kr + δ
P{Br > g(γ, δ, ε, κ)x}, (7.19)

where we used similar arguments as in [39] in the final step. As for the second
probability in (7.18), observe that the τ−k, A2(−t0, 0), and V(K+1)(0) are not
independent. However, we may write

P
{

A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx;V(K+1)(0) ≤ (K + 1)εx;

∀k ≥ 0 : τ−k ≤ k(α+ ζ) + κx}

≥ P {A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx} − P
{

V(K+1)(0) > (K + 1)εx
}

−P {∃k ≥ 0 : τ−k > k(α+ ζ) + κx} .

Now, P {A2(−t0, 0) ≥ (ρ− δ)t0 − (K + 1)γx} → 1 as x → ∞ (and thus
t0 →∞). Moreover, since V(K+1)(0) has a proper distribution, we have

lim
x→∞

P
{

V(K+1)(0) > (K + 1)εx
}

= 0,

and by the Strong Law of Large Numbers (the backward recurrence time at time
−t0 has a proper distribution because the renewal process has finite mean),

lim
x→∞

P {∃k ≥ 0 : τ−k > k(α+ ζ) + κx} = 0.

Observing that the system is in steady state and using (7.19), we have

lim inf
x→∞

P {V1 > x}
β/(α+ζ)

1−ρ−Kr+δP {Br > g(γ, δ, ε, κ)x}
≥ 1.

Finally, use the fact that Br(·) ∈ R1−ν to obtain

lim inf
x→∞

P {V1 > x}

ρ
1−ρ−KrP

{

Br > x
K(r− 1−ρ

K+1 )

1−ρ
K+1

} (7.20)

≥ lim inf
x→∞

P {V1 > x}
β/(α+ζ)

1−ρ−Kr+δP {Br > g(γ, δ, ε, κ)x}

β/(α+ζ)
1−ρ−Kr+δP {Br > g(γ, δ, ε, κ)x}

ρ
1−ρ−KrP {Br > g(0, 0, 0, 0)x}

≥ lim inf
x→∞

β/(α+ζ)
1−ρ−Kr+δP {Br > g(γ, δ, ε, κ)x}

ρ
1−ρ−KrP {Br > g(0, 0, 0, 0)x}

↑ 1, γ, δ, ε, κ, ζ ↓ 0.

2
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7.6.2 Approach 2

As in Subsection 7.6.1, we start by deriving a sufficient sample-path condition for
the event V1(0) > x to occur, but now based on the alternative characterization
of the dominant scenario in Section 7.5 (Lemma 7.6.2). Then, we translate the
sample-path statement into a probabilistic lower bound which can be used to
determine the asymptotic tail behavior of P {V1 > x} (Proposition 7.6.2).

We first introduce some additional notation and terminology. In the proof
we frequently use the notion of “small” users. A user is called “small” if its
(initial) service requirement does not exceed κx, for some κ > 0 independent
of x. Denote by N (u,v](t) the number of class-2 users in the system at time
t that arrived during (u, v], and add the subscript ≤ κx when only “small”

class-2 users are considered. Define t0 := x(1+γ+M0κ)

K(r− 1−ρ+δ
K+1 )

, and fix L0 ≥
1+Kρ
1−ρ

and M0 ≥ max{L0,
ρ(K+L0)

1−ρ }. In the proof, users arriving before time −t0 are
referred to as “old” users, while users arriving after time −t0 are called “new”.
Let −u0, u0 := sup{0 ≤ t ≤ t0 : N (−∞,−t0](−t) ≤ L0}, be the first epoch after
time −t0 that there are less than L0 “old” class-2 users. Similarly, let −s0,

s0 := inf{0 ≤ t ≤ t0 : N
(−t0,−t]
≤κx (−t) < M0}, be the last epoch before time 0

that there are less than M0 “new small” class-2 users in the system.
Now, for fixed δ, ε, κ, L0,M0 > 0, consider the following two events.

1. At time −t0, the total amount of work in the system satisfies

V1(−t0) + V2(−t0) ≥ x(1 + γ +M0κ)− (Kr + ρ− 1− δ)t0 (7.21)

2. For the amount of “small” class-2 traffic arriving in (−t0,−s0] it holds
that

A2,≤κx(−t0,−s0) ≥ (ρ− δ)(t0 − s0)− γx (7.22)

We first prove the next sample-path relation.

Lemma 7.6.2 If the above events (7.21) and (7.22) occur simultaneously, then
V1(0) > x.

Proof We distinguish between two cases, depending on whether u0 ≤ s0 or
u0 > s0. First, we consider the ‘easy’ case u0 ≤ s0 (or alternatively −u0 ≥ −s0).
Observe that during the entire interval (−t0, 0] there are at least L0 class-2 users
in the system (either “old” or “new”). Thus, B2(−t0, 0) ≥ L0

K B1(−t0, 0), so that

B1(−t0, 0) ≤ K
K+L0

t0. Using the above in addition to (7.9), we obtain

V1(0) ≥ A1(−t0, 0)−B1(−t0, 0) ≥ Krt0 −
K

K + L0
t0

≥ K(r −
1

K + 1+Kρ
1−ρ

)
x(1 + γ +M0κ)

K(r − 1−ρ+δ
K+1 )

> x,

where we used the definition of t0 and the fact that L0 ≥
1+Kρ
1−ρ in the third

step.
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Now consider the ‘hard’ case u0 > s0 (or −u0 < −s0). Denote by B
(u,v]
2 (s, t)

the amount of service received during (s, t] by class-2 users arriving in the in-
terval (u, v] (again, add the subscript ≤ κx when only “small” class-2 users are
considered). Using (7.9), the amount of service received during (−t0,−s0] by
the “new” class-2 users is bounded from below by

B
(−t0,0]
2 (−t0,−s0) ≥ B

(−t0,−s0]
2,≤κx (−t0,−s0)

≥ A2,≤κx(−t0,−s0)− V
(−t0,−s0]
2,≤κx (−s0)

≥ (ρ− δ)(t0 − s0)− γx−M0κx,

where V
(u,v]
2,≤κx(t) denotes the workload at time t associated with “small” class-2

users arriving in (u, v]. Note that the final step follows from (7.22) and the

definition of s0. Since M0 ≥
ρ(K+L0)

1−ρ , we also have

B
(−t0,0]
2 (−s0, 0) ≥

M0

M0 +K + L0
s0 ≥ (ρ− δ)s0.

Hence,

B
(−t0,0]
2 (−t0, 0) ≥ (ρ− δ)t0 − γx−M0κx. (7.23)

Next, denote by n ≥ 0 the number of “old” class-2 users present at time 0.
We distinguish between two cases: (i) n = 0; and (ii) n ≥ 1.

First, consider case (i). Note that B
(−∞,−t0]
2 (−t0, 0) = V2(−t0) and rewrite

(7.8) into

B1(−t0, 0) ≤ t0 −B
(−∞,−t0]
2 (−t0, 0)−B

(−t0,0]
2 (−t0, 0). (7.24)

Using (7.9), (7.21), (7.23), and (7.24), we deduce

V1(0) = V1(−t0) +A1(−t0, 0)−B1(−t0, 0)

≥ V1(−t0) + V2(−t0) +Krt0 − t0 + (ρ− δ)t0 − (γ +M0κ)x

≥ x(1 + γ +M0κ)− (Kr + ρ− 1− δ)t0

+Krt0 − (1− ρ+ δ)t0 − (γ +M0κ)x

= x.

Second, consider case (ii). Because of the PS discipline, it follows from (7.8)

B1(−t0, 0) ≤
K

K + 1
[t0 −B

(−t0,0]
2 (−t0, 0)]. (7.25)

Now, combining (7.9), (7.23), and (7.25) yields

V1(0) ≥ A1(−t0, 0)− B1(−t0, 0)

≥ Krt0 −
K

K + 1
[(1− ρ+ δ)t0 + (γ +M0κ)x]

= [Kr −
K

K + 1
(1− ρ+ δ)]

x(1 + γ +M0κ)

K(r − 1−ρ+δ
K+1 )

−
K

K + 1
(γ +M0κ)x

> x,

where we used that γ, κ,M0 > 0. This completes the proof. 2
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We now exploit the sample-path relation in Lemma 7.6.2 to establish the
next asymptotic lower bound for the class-1 workload distribution.

Proposition 7.6.2 (lower bound) If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r,
then

lim inf
x→∞

P {V1 > x}

ρ
1−ρ−KrP

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≥ 1.

Proof First observe that the events (7.21) and (7.22) are not independent.
However, V1(−T0) + V2(−T0) and A2,≤κx(−t0,−s0) are independent, with −T0

representing the last arrival epoch of class 2 before time −t0. Note that

V1(−t0) + V2(−t0) ≥ V1(−T0) + V2(−T0)− τ0,

where τ0 represents the backward recurrence time of the class-2 arrival process at
time −t0 (see also Subsection 7.6.1), which is independent of V1(−T0)+V2(−T0)
as well. Using Lemma 7.6.2 and the above, we obtain

P {V1(0) > x}

≥ P{V1(−T0) + V2(−T0) > x(1 + γ +M0κ)− (Kr + ρ− 1− δ)t0 + τ0;

A2,≤κx(−t0,−s0) ≥ (ρ− δ)(t0 − s0)− γx}

≥ P {V1(−T0) + V2(−T0) > x(1 + γ +M0κ+ ε)− (Kr + ρ− 1− δ)t0}

×

[

P

{

sup
0≤t≤t0

{(ρ− δ)(t0 − t)−A2,≤κx(−t0,−t)} ≤ γx

}

− P {τ0 > εx}

]

.

Now, first invoking Proposition 7.A.1 in Appendix 7.A and then Theo-
rem 7.5.2 yields

P {V1(−T0) + V2(−T0) > x(1 + γ +M0κ+ ε)− (Kr + ρ− 1− δ)t0}

∼
ρ

1− ρ−Kr
P

{

Br >
x(1 + γ +M0κ)

1−ρ+δ
K+1

K(r − 1−ρ+δ
K+1 )

+ εx

}

. (7.26)

Because τ0 has a proper distribution, we have limx→∞ P {τ0 > εx} = 0.
Moreover, for u > 0 sufficiently large so that sup0≤t{(ρ− δ)t−A2,≤u(0, t)} has
a proper distribution, we have

lim
x→∞

P

{

sup
0≤t≤t0

{(ρ− δ)(t0 − t)−A2,≤κx(−t0,−t)} ≤ γx

}

≥ lim
x→∞

P

{

sup
0≤t≤t0

{(ρ− δ)(t0 − t)−A2,≤u(−t0,−t)} ≤ γx

}

≥ lim
x→∞

P

{

sup
t≥0
{(ρ− δ)t−A2,≤u(0, t)} ≤ γx

}

= 1.

Combining the above arguments and applying (7.26), we obtain

lim inf
x→∞

P {V1 > x}

ρ
1−Kr−ρP

{

Br >
x(1+γ+M0κ) 1−ρ+δ

K+1

K(r− 1−ρ+δ
K+1 )

+ εx

} ≥ 1.
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The proof may then be readily completed along the lines of (7.20). 2

7.7 Upper bound

In this section we derive an asymptotic upper bound for P {V1 > x}. In the
proof we frequently use the notion of a “large” user. A user is called “large”
if its (initial) service requirement exceeds the value κx, for some fixed κ > 0
independent of x. Also, let N>b(s, t) be the number of class-2 users arriving
during the time interval (s, t] whose service requirement exceeds the value b. In
particular, let N(s, t) := N>0(s, t) be the total number of class-2 users arriving
in the interval (s, t].

To handle scenarios in which the system is not work-conserving, we introduce
the epoch s∗ := inf{t ≥ 0 : V1(−t) = 0}, which represents the last epoch before
time 0 that the class-1 workload was zero. Note that V1(t) > 0 for t ∈ (−s∗, 0],
and the system thus uses the full service capacity during the given interval. For
epochs at which V1(t) = 0, we make the following observation.

Observation 7.7.1 If V1(t) = 0, then the available service rate for class 1 at
time t is at least Kr, hence K

K+N(t) ≥ Kr. Rewriting the inequality gives that

N(t) ≤M , with M := b 1r c −K. �

We are now ready to prove the upper bound for P {V1 > x}.

Proposition 7.7.1 (upper bound) If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r,
then

lim sup
x→∞

P {V1 > x}

ρ
1−ρ−KrP

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≤ 1.

Proof Let t1 := x(1−ε)

K(r− 1−ρ−δ
K+1 )

. Then, for δ > 0, 0 < ε < 1,

P {V1(0) > x}

≤ P {V1(−t1) + V2(−t1) > x(1− ε)− (Kr + ρ+ δ − 1)t1} (7.27)

+P {V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;V1(0) > x} .

First, we determine the asymptotic behavior of the first probability on the
rhs of (7.27). Then we show that the second probability on the rhs of (7.27) is
negligible compared to the first one as x → ∞. This way, we prove that the
scenario described in Section 7.5 is indeed the dominant one.

Let us start with the former and note that the system at time −t1 is in
steady state. First, use Proposition 7.A.1 and then Theorem 7.5.2 to obtain
that the first probability on the rhs of (7.27) behaves as

P {V1(−t1) + V2(−t1) > x(1− ε)− (Kr + ρ+ δ − 1)t1}

∼
ρ

1− ρ−Kr
P

{

Br >
x(1− ε) 1−ρ−δ

K+1

K(r − 1−ρ−δ
K+1 )

}

.
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Using the fact that Br(·) ∈ R1−ν (and letting δ, ε ↓ 0), it easily follows that

lim sup
x→∞

P {V1(−t1) + V2(−t1) > x(1− ε)− (Kr + ρ+ δ − 1)t1}

P

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≤ 1.

To prove that any alternative scenario is highly unlikely compared to the
dominant one, we show that, for 0 < δ < 1− ρ−Kr and 0 < ε < 1,

lim sup
x→∞

P {V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;V1(0) > x}

P

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} = 0.

To do so, we split the second probability on the rhs of (7.27) by distinguishing
between 0, 1, and 2 or more large user arrivals during (−t1, 0], respectively. More
specifically, write

P {V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;V1(0) > x}

= P{V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;

N>κx(−t1, 0) = 0;V1(0) > x}

+P{V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;

N>κx(−t1, 0) = 1;V1(0) > x}

+P{V1(−t1) + V2(−t1) ≤ x(1− ε)− (Kr + ρ+ δ − 1)t1;

N>κx(−t1, 0) ≥ 2;V1(0) > x}

=: I + II + III. (7.28)

In the remainder of the proof we show that each of the three terms is negligible
compared to the dominant scenario.

Term I
To bound term I, we consider the total workload at time 0. Recall that s∗

represents the last epoch before time 0 that the class-1 workload was zero, and
define s′ := min{s∗, t1}, so that V1(t) > 0 for t ∈ (−s′, 0]. Then, using (7.9) and
the fact that the system is work-conserving during (−s′, 0], we have

V1(0) + V2(0)

= V1(−s
′) + V2(−s

′) +Krs′ +A2(−s
′, 0)− s′

= V1(−s
′) + V2(−s

′)− (1−Kr − ρ− δ)s′ +A2(−s
′, 0)− (ρ+ δ)s′

≤ max{V1(−t1) + V2(−t1)− (1−Kr − ρ− δ)t1, V2(−s
∗)}

+ sup
0≤s≤t1

{A2(−s, 0)− (ρ+ δ)s},

where we choose 0 < δ < 1−Kr − ρ. Moreover, take κ > 0 such that Mκ < 1.
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Then, combining the above and using Observation 7.7.1 yields

I ≤ P{max{V1(−t1) + V2(−t1)− (1−Kr − ρ− δ)t1, V2(−s
∗)}

+ sup
0≤s≤t1

{A2(−s, 0)− (ρ+ δ)s} > x;

V1(−t1) + V2(−t1) < x(1− ε)− (Kr + ρ+ δ − 1)t1;N>κx(−t1, 0) = 0}

≤ P

{

max{(1− ε)x,Mκx}+ sup
0≤s≤t1

{A2(−s, 0)− (ρ+ δ)s} > x

∣

∣

∣

∣

N>κx(−t1, 0) = 0

}

≤ P

{

sup
0≤s≤t1

{A2(−s, 0)− (ρ+ δ)s} > ξx

∣

∣

∣

∣

N>κx(−t1, 0) = 0

}

,

where ξ := min{ε, 1 −Mκ}. Lemma 7.B.4 in Appendix 7.B implies that I =
o(P {Br > x}), as x→∞.

Term II
By conditioning on V1(−t1) + V2(−t1), we obtain

II = P {V1(−t1) + V2(−t1) < ηx;N>κx(−t1, 0) = 1;V1(0) > x} (7.29)

+P{ηx < V1(−t1) + V2(−t1) < x(1− ε)− (Kr + ρ+ δ − 1)t1;

N>κx(−t1, 0) = 1;V1(0) > x}.

Again by Theorem 7.5.2 and Proposition 7.A.1, in addition to Lemma 7.B.3
with t1 = γx, we can control the second probability on the rhs of (7.29) as a
“combination of two unlikely events”. Specifically, the probability is bounded
by

P {V1(−t1) + V2(−t1) > ηx}P

{

I(B > κx) + Ñ>κx(−t1, 0) ≥ 1
}

,

which is bounded by o(P {Br > x}), as x → ∞. Here I(·) is the indicator
function, and Ñ>κx(−t1, 0) has the same distribution as N>κx(−t1, 0), but is
independent of V1(−t1) + V2(−t1).

For the first probability on the rhs of (7.29), we use s′ = min{s∗, t1} (as in
term I), so that V1(t) > 0 for t ∈ (−s′, 0]. Also, we tag the user with service
requirement larger than κx, and let V −

2 (t) be the class-2 workload at time t,
excluding the tagged class-2 user. As in Section 7.5, denote by B−

2 (s, t) the
amount of service received by class 2 in the interval (s, t], except for the tagged
user. Then, using (7.9) in the first step and Observation 7.7.1 in the second, we
find

B−
2 (−s′, 0) = V −

2 (−s′) +A−
2 (−s′, 0)− V2(0) ≤ ζx+ A−

2 (−s′, 0),

where A−
2 (−s′, 0) denotes the amount of class-2 traffic generated during (−s′, 0]

excluding the tagged user, and ζ := max{η,Mκ}. The large user together
with the class-1 users receive the remaining amount of service: B+

1 (−s′, 0) ≥
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s′−A−
2 (−s′, 0)−ζx. Because of the PS discipline, B1(−s

′, 0) ≥ K
K+1B

+
1 (−s′, 0).

Thus, using the above and applying (7.9),

V1(0) = V1(−s
′) +A1(−s

′, 0)−B1(−s
′, 0)

≤ max{V1(−t1), V1(−s
∗)}+Krs′ −

K(s′ −A−
2 (−s′, 0)− ζx)

K + 1

≤ ζx + sup
0≤s≤t1

{

Krs−
K(s−A−

2 (−s, 0)− ζx)

K + 1

}

.

Thus,

II ≤ P

{

ζx+ sup
0≤s≤t1

{

Krs−
K(s−A−

2 (−s, 0)− ζx)

K + 1

}

> x

∣

∣

∣

∣

N>κx(−t1, 0) = 1

}

+ o(P {Br > x}),

as x → ∞. Choose η, κ such that max{η,Mκ} ≤ K+1
K+3ε. Then, using r > 1−ρ

K+1

in the second inequality and substituting x =
t1K(r− 1−ρ−δ

K+1 )

1−ε yields

P

{

ζx + sup
0≤s≤t1

{

Krs−
K(s−A−

2 (−s, 0)− ζx)

K + 1

}

> x

∣

∣

∣

∣

N>κx(−t1, 0) = 1

}

= P

{

sup
0≤s≤t1

{

Krs−
K(s−A−

2 (−s, 0))

K + 1

}

> x(1−
3K + 1

K + 1
ζ) +

K

K + 1
ζx

∣

∣

∣

∣

N>κx(−t1, 0) = 1

}

≤ P

{

sup
0≤s≤t1

{

Krs−
K(s−A−

2 (−s, 0))

K + 1

}

− t1K(r −
1− ρ− δ

K + 1
) >

K

K + 1
ζx

∣

∣

∣

∣

N>κx(−t1, 0) = 1

}

≤ P

{

sup
0≤s≤t1

{

A−
2 (−s, 0)− (ρ+ δ)s

}

> ζx

∣

∣

∣

∣

N>κx(−t1, 0) = 1

}

≤ P

{

sup
0≤s≤t1

{A2(−s, 0)− (ρ+ δ)s} > ζx

∣

∣

∣

∣

N>κx(−t1, 0) = 0

}

,

which can be controlled using Lemma 7.B.4. This completes the estimation of
term II.

Term III
It follows directly from Lemma 7.B.3 that III = o(P {Br > x}), as x→∞.

The proof is now completed by first letting x→∞, then η, κ ↓ 0, and finally
δ, ε ↓ 0. 2
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7.8 Generalization to variable-rate streaming traffic

As mentioned earlier, the assumption that class 1 generates traffic at a constant
rate Kr is actually not crucial. In this section, we show that our results remain
valid in case class 1 generates traffic according to a general stationary process,
provided that deviations from the mean are sufficiently unlikely. In such a
scenario, the variations in class-1 traffic do not matter asymptotically, because
they average out.

First, in Subsection 7.8.1 we consider the total workload of class 1 and ex-
tend Theorem 7.5.1 to the case of variable-rate streaming sources. Second, in
Subsection 7.8.2 we consider the tail asymptotics of the joint workload distribu-
tion of individual class-1 users. Note that the individual class-1 workloads are
not necessarily equal, since the traffic rates of the individual streaming sources
also vary.

7.8.1 Total workload

In this subsection, we show that our results remain valid in case class 1 generates
traffic according to a general stationary process with mean rate E[A1(t, t+1)] =
Kr, provided that significant deviations from the mean are sufficiently unlikely.
More specifically, we assume that the class-1 traffic satisfies the following as-
sumption:

Assumption 7.8.1 For all φ > 0 and ψ > 0,

P

{

sup
t≥0
{A1(−t, 0)−K(r + ψ)t} > φx

}

= o(P {Br > x}), as x→∞.

Note that Assumption 7.8.1 holds for all φ > 0 whenever it holds for one such
value. Assumption 7.8.1 serves to ensure that the likelihood that rate variations
in class-1 traffic cause a large workload is asymptotically negligible compared to
scenarios with a large class-2 user described earlier. Also, observe that it may
be equivalently expressed as

P

{

V
K(r+ψ)
1 > φx

}

= o(P {Br > x}), as x→∞, (7.30)

where V c1 denotes the steady-state workload in a system with service capacity c
fed by class 1 only. Assumption 7.8.1 is satisfied by a wide range of traffic
processes, as illustrated by the next two examples.

Example 7.8.1 (Instantaneous bursts) Let each class-1 user generate instan-
taneous bursts according to a renewal process, and let the burst sizes have
distribution F1(·), with mean σ1. Let the interarrival times between bursts also
be generally distributed with mean σ1/r. Assume that 1−F1(x) = o(P {B > x})
as x → ∞. Then, it follows from [14, Theorem 4.1] that Assumption 7.8.1 is
satisfied.
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Example 7.8.2 (On-Off source) Let each class-1 user generate traffic according
to an On-Off process, alternating between On- and Off-periods. The On-periods
have general distribution F1(·) with mean σ1, and the Off-periods also follow
a general distribution with mean 1/λ1. A class-1 user produces traffic at a
constant rate ron while On, and generates traffic at rate roff while Off, roff < r <
ron (including the important special case in which roff = 0), with r(1 +λ1σ1) =
roff + ronλ1σ1.

Moreover, assume that 1− F1(x) = o(P {B > x}) as x → ∞. Now, asymp-
totic results for a fluid queue fed by multiple homogeneous On-Off sources (in
particular [69], [179, Corollary 3.1] with N ∗ = 1), imply that Assumption 7.8.1
is satisfied.

In the remainder of the section, we show that our results remain valid under
Assumption 7.8.1. In particular, we prove that Theorem 7.5.1 still holds. We
add the superscript ‘var’ to indicate quantities corresponding to the scenario
with variable-rate streaming sources.

Theorem 7.8.1 Suppose that the process {A1(−t, 0), t ≥ 0} satisfies Assump-
tion 7.8.1. If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r, then

P {V var
1 > x} ∼

ρ

1− ρ−Kr
P

{

Br >
x 1−ρ
K+1

K(r − 1−ρ
K+1 )

}

.

As before, the proof of Theorem 7.8.1 involves lower and upper bounds. In
fact, the lower bound largely follows the lines of the proof of Proposition 7.6.2
(in Section 7.6), and is hardly affected by the variable rate of class 1. Informally
speaking, the idea is to replace A1(s, t) by K(r − ψ)(t− s)− φx, and then use
E[A1(t, t+1)] = Kr to show that the correction terms Kψ(t− s) and φx can be
asymptotically neglected. More specifically, because the process {K(r − ψ)t −
A1(−t, 0), t ≥ 0} has negative drift, for all φ, ψ > 0,

P

{

sup
t≥0
{K(r − ψ)t−A1(−t, 0)} > φx

}

→ 0, as x→∞. (7.31)

Note that the above expression relates to long periods with less than average
class-1 input, as opposed to Assumption 7.8.1 where periods with more than
average class-1 traffic are considered.

Before describing the modifications of Subsection 7.6.2 required to handle
variable-rate class-1 traffic, we note that a slightly more substantial modification
is needed, to obtain an equivalence between V var

1 +V var
2 and V 1−Kr

2 . Moreover,
in the lower bound we encounter the difficulty that V var

1 (−t0) + V var
2 (−t0) and

A1(−t0, 0) may no longer be independent. These issues are addressed in the
proof of Proposition 7.D.1 in Appendix 7.D, where we extend relation (7.12)
to the case of variable-rate class-1 traffic. Proposition 7.D.1 may also be of
independent interest. In addition, we show in the proposition that relation (7.12)
remains valid for a non-critically loaded work-conserving system.
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For the upper bound, we provide a proof based on a comparison with a leaky-
bucket system and use results of Section 7.5 (in particular Theorem 7.5.1).

We now give the proofs of the lower and upper bounds, together yielding
Theorem 7.8.1.

Proposition 7.8.1 (lower bound) If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r,
then

lim inf
x→∞

P {V var
1 > x}

ρ
1−ρ−KrP

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≥ 1.

Proof In view of the similarities with Subsection 7.6.2, we only give an outline
of the proof. As in Subsection 7.6.2, consider the following three events:

• At time −t0, with t0 := x(1+γ+M0κ+φ)

K(r−ψ− 1−ρ+δ
K+1 )

, the total amount of work in the

system satisfies

V var
1 (−t0)+V

var
2 (−t0) ≥ x(1+γ+M0κ+φ)−(K(r−ψ)+ρ−1−δ)t0 (7.32)

• The event (7.22), which we repeat for convenience,

A2,≤κx(−t0,−s0) ≥ (ρ− δ)(t0 − s0)− γx

• For the amount of class-1 traffic arriving in the interval (−t0, 0] it holds
that

A1(−t0, 0) ≥ K(r − ψ)t0 − φx (7.33)

Some calculations similar to the proof of Lemma 7.6.2 show that, if the
events (7.32), (7.22), and (7.33) occur simultaneously, then V var

1 (0) > x. As
in Subsection 7.6.2, let −T0 be the last class-2 arrival epoch before time −t0.
Denoting ř = r − ψ and γ̌ = γ + φ, we may write

P {V var
1 (0) > x}

≥ P{V var
1 (−T0) + V var

2 (−T0) > x(1 + γ̌ +M0κ+ ε)− (Kř + ρ− 1− δ)T0;

A1(−T0, 0) ≥ K(r − ψ)T0 − φx;

A2,≤κx(−T0,−s0) ≥ (ρ− δ)(T0 − s0)− γx; τ0 ≤ εx}

≥ P{V var
1 (−T0) + V var

2 (−T0) > x(1 + γ̌ +M0κ+ ε)− (Kř + ρ− 1− δ)T0;
−→
U
K(r−ψ)
1 (−T0) ≤ φx}

×

[

P

{

sup
0≤t≤T0

{(ρ− δ)(T0 − t)− A2,≤κx(−T0,−t)} ≤ γx

}

− P {τ0 > εx}

]

,

where
−→
U c

1(−T0) := sup0≤t≤T0
{c(T0 − t)−A1(−T0,−t)}. The second and third

probabilities can be treated as in Subsection 7.6.2. For the first probability,
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apply (7.44) (see the proof of Proposition 7.D.1 in the Appendix) and then
Theorem 7.5.2, to obtain

lim inf
x→∞

P {V var
1 > x}

ρ
1−ρ−KrP

{

Br >
x(1+γ+M0κ+φ) 1−ρ+δ

K+1

K(r−ψ− 1−ρ+δ
K+1 )

+ εx

} ≥ 1.

Proposition 7.8.1 follows from the fact that Br(·) ∈ R1−ν (let γ, δ, ε, κ, φ, ψ ↓ 0).
2

For the proof of the upper bound we compare the class-1 workload in the
scenario with variable-rate streaming traffic to that in a scenario with constant-
rate streaming traffic. Suppose we feed the variable-rate streaming traffic into
a system (the leaky bucket) that drains at constant rate K(r + ψ) into a
second resource that is shared with the elastic class according to C2(t) =
N(K)(t)/(N(K)(t) + K) (see Section 7.4). Because the drain rate of the first
resource never exceeds K(r + ψ), the second resource is closely related to the
class-1 workload in the case of constant-rate traffic (in fact, the permanent-
customer scenario provides an upper bound). The total class-1 workload at the
first and second resources at time t is an upper bound for V var

1 (t) (see Equa-
tion (7.34) below). The proof is then established by using Theorem 7.5.1.

Proposition 7.8.2 (upper bound) Suppose that the process {A1(−t, 0), t ≥ 0}
satisfies Assumption 7.8.1. If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r, then

lim sup
x→∞

P {V var
1 > x}

ρ
1−ρ−KrP

{

Br >
x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≤ 1.

Proof Let ψ > 0. Using the definition of V1(t) in Section 7.3, we obtain the
following representation

V var
1 (t) = sup

s≤t
{A1(s, t)− C1(s, t)} = sup

s≤t
{A1(s, t)−

∫ t

s

K

K +Nvar(u)
du},

where the integral represents the amount of service available for class 1. Then,

V var
1 (t) = sup

s≤t

{

A1(s, t)−K(r + ψ)(t− s)

+K(r + ψ)(t− s)−

∫ t

s

K

K +Nvar(u)
du

}

≤ sup
s≤t
{A1(s, t)−K(r + ψ)(t− s)}

+ sup
s≤t

{

K(r + ψ)(t− s)−

∫ t

s

K

K +Nvar(u)
du

}

.

Let V cst,ψ
1 (t) = sups≤t{K(r+ψ)(t− s)−

∫ t

s
K

K+N(K)(u)du} be the class-1 work-

load in a scenario with constant rate r + ψ per streaming user and C2(t) ≡
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N(K)(t)/(N(K)(t) +K) (independent of the class-1 workload; this corresponds
to the permanent-customer scenario discussed in Section 7.4). Similar to the
constant-rate model, Nvar(t) ≤ N(K)(t). Thus,

∫ t

s

K

K +Nvar(u)
du ≥

∫ t

s

K

K +N(K)(u)
du,

so that
V var

1 (t) ≤ V
K(r+ψ)
1 (t) + V cst,ψ

1 (t). (7.34)

For any ξ > 0, this sample-path relation implies

P {V var
1 > x} ≤ P

{

V
K(r+ψ)
1 > ξx

}

+ P

{

V cst,ψ
1 > (1− ξ)x

}

,

where V
K(r+ψ)
1 and V cst,ψ

1 have the limiting distributions of V
K(r+ψ)
1 (t) and

V cst,ψ
1 (t) for t→∞. The first term can be controlled by (7.30). For the second

term, apply Theorem 7.5.1, use the fact that Br(·) ∈ R1−ν , and let ξ, ψ ↓ 0.
This gives the desired result. 2

7.8.2 Individual workloads

In this subsection we consider the asymptotics of the simultaneous workload
distribution of the individual streaming users. In Subsection 7.8.1, we showed
that a large service deficit for the K class-1 users together is most likely due to
the arrival of a large class-2 user. Using similar arguments, we now also argue
that the service deficits of the individual class-1 users are approximately equal
after the arrival of a large class-2 user.

Denote by A1,k(s, t), k = 1, . . . ,K, the total traffic of streaming user k
during the interval [s, t] with mean rate E[A1,k(t, t+1)] = r. We make a similar
assumption for the individual class-1 traffic processes as for the total traffic
process in Subsection 7.8.1 (Assumption 7.8.1):

Assumption 7.8.2 For all φ > 0 and ψ > 0, k = 1, . . .K,

P

{

sup
t≥0
{A1,k(−t, 0)− (r + ψ)t} > φx

}

= o(P {Br > x}), as x→∞.

Assumption 7.8.2 serves to ensure that the likelihood that rate variations
in traffic of individual class-1 users cause a large workload is asymptotically
negligible compared to scenarios with a large class-2 user as described earlier.

Similar to V1(t), define V var
1,k (t) := sups≤t{A1,k(s, t) − C1,k(s, t)}, where

C1,k(s, t) denotes the total available service rate for streaming user k during
the time interval [s, t]. Again, we added the superscript ‘var’ to indicate that
the quantity corresponds to the scenario with variable-rate streaming sources.
Note that C1,k(s, t) ≥

∫ t

s
1/(K +N(u))du and also

∑K
k=1 C1,k(s, t) = C1(s, t).

The first relation holds with equality in case the streaming users always claim
the full service rate available. However, we may allow for strict inequality in case
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several class-1 users do not always consume the service rate available and the un-
used surplus is redistributed among the other class-1 and class-2 users. Observe
that the exact definition of C1,k(s, t) is not crucial in caseKr < 1−ρ < (K+1)r,
because the workload of each class-1 user builds up in the presence of the large
class-2 user, and each class-1 user will thus use its full service capacity.

Finally, denote the vectors V
var
1

= (V var
1,1 , · · · , V

var
1,K), with V var

1,k the steady-
state version of V var

1,k (t), and α = (α1, · · · , αK). Moreover, let α∗ := maxαk.
Then, we may derive a similar upper bound as in Propositions 7.7.1 and 7.8.2.

Proposition 7.8.3 (upper bound) Suppose that the processes {A1,k(−t, 0), t ≥
0}, k = 1, . . . ,K, satisfy Assumption 7.8.2. If B(·) ∈ R−ν and Kr < 1 − ρ <
(K + 1)r, then

lim sup
x→∞

P {V var
1

> αx}

P {V var
1 > Kα∗x}

= lim sup
x→∞

P {V var
1

> αx}

ρ
1−ρ−KrP

{

Br >
Kα∗x 1−ρ

K+1

K(r− 1−ρ
K+1 )

} ≤ 1.

Proof Let k∗ := argmaxαk, and note that

P {V var
1

> αx} ≤ P
{

V var
1,k∗ > α∗x

}

.

Using a similar construction for streaming user k∗ as in the proof of Proposi-
tion 7.8.2 (i.e., the leaky bucket), we obtain the following sample path relation

V var
1,k∗(t) ≤ sup

s≤t

{

A1,k∗(s, t)−

∫ t

s

1

K +Nvar(u)
du

}

≤ sup
s≤t
{A1,k∗(s, t)− (r + ψ)(t− s)}

+ sup
s≤t

{

(r + ψ)(t− s)−

∫ t

s

1

K +Nvar(u)
du

}

≤ sup
s≤t
{A1,k∗(s, t)− (r + ψ)(t− s)}+ V cst,ψ

1 /K,

where we used the permanent-customer scenario as an upper bound in the final
step. Combining the arguments above, the proof may be finished along similar
lines as the proof of Proposition 7.8.2. 2

For the lower bound, modifications to one of the proofs in Section 7.6 would
imply that we have to keep track of all individual workloads and received
amounts of services. In view of the exceedingly large amount of details and
notational complexity, we present the next result as a conjecture:

Conjecture 7.8.1 Suppose that the processes {A1,k(−t, 0), t ≥ 0}, with k =
1, . . . ,K, satisfy Assumption 7.8.2. If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r,
then

P {V var
1

> αx} ∼ P {V var
1 > Kα∗x}

∼
ρ

1− ρ−Kr
P

{

Br >
x 1−ρ
K+1

K(r − 1−ρ
K+1)

}

.
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Conjecture 7.8.1 implies that the asymptotic tail probability of the K-
dimensional random vector V

var
1

can be reduced to the tail probability of a
1-dimensional random variable Br. In other words, we conclude that the work-
loads of the K individual class-1 users can only simultaneously grow large,
requiring the presence of a large class-2 user.

7.9 Concluding remarks

We considered a bottleneck link shared by heavy-tailed TCP-controlled elastic
flows and streaming sessions regulated by a TCP-friendly rate control protocol.
We determined the asymptotic tail distribution of a possible shortfall in service
received by the streaming users compared to a nominal service target. We
showed that the distribution inherits the heavy-tailed behavior of the residual
service requirement of an elastic flow.

In the case that the elastic flows arrive according to a Poisson process, we
further derived bounds for performance measures for both classes of traffic by ex-
ploiting a relationship with the M/G/1 PS queue with permanent customers. In
particular, we obtained bounds for the probability that the rate of the streaming
applications falls below a given target rate, as well as for the delay and workload
distributions of the elastic flows.

Besides the bounds provided by the M/G/1 PS queue with permanent cus-
tomers, we also determined the exact delay asymptotics of the elastic flows,
suggesting a certain dichotomy in the tail asymptotics, depending on whether
the system is critically loaded or not.

The service deficit distribution of the streaming users was derived for critical
load, i.e., an additional ‘persistent’ elastic flow would cause instability of the
streaming class. In general, the most likely scenario for the class-1 workload
to grow large involves the simultaneous presence of l ≥ 1 large class-2 users,

where l := min
{

a ∈ N : 1−ρ
K+a < r

}

is the number of ‘persistent’ elastic flows

required to cause instability of the streaming class (class 1). This gives rise to
the following conjecture:

Conjecture 7.9.1 If B(·) ∈ R−ν and ρ+Kr < 1, then

P {V1 > x} = O(P {Br > x}
l
), as x→∞.

Guillemin et al. [82] obtained similar asymptotics for the distribution of the
available amount of service during an interval of length x in PS queues. However,
obtaining exact asymptotics is a difficult task in this case as witnessed by [179].

Several other interesting issues remain for further research, e.g., transient
performance measures, scenarios with finite buffers and/or dynamic populations
of streaming sessions, and the performance impact of oscillations, inaccuracies,
and delays in the estimation of the fair bandwidth share.
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Appendix

7.A Proof of (7.12) for constant-rate streaming traffic

As mentioned previously, the asymptotic relation (7.12) plays a key role in our
proofs, and is valid for several model extensions. To keep the presentation
transparent, we first prove this relation in the next proposition for the case of
constant-rate streaming traffic (assuming critical load). Appendix 7.D extends
this result to variable-rate streaming traffic (as well as work-conserving, but
possibly non-critically loaded, scenarios).

Proposition 7.A.1 If B(·) ∈ R−ν and Kr < 1− ρ < (K + 1)r, then,

P {V1 + V2 > x} ∼ P
{

V 1−Kr
2 > x

}

.

This asymptotic relation also holds when V1+V2 and V 1−Kr
2 represent the work-

loads embedded at class-2 arrival epochs rather than at arbitrary instants.

Proof First observe that

P {V1(0) + V2(0) > x} ≥ P

{

sup
t≥0
{A1(−t, 0) + A2(−t, 0)− t} > x

}

= P
{

V 1−Kr
2 > x

}

.

It remains to be shown that

lim sup
x→∞

P {V1 + V2 > x}

P
{

V 1−Kr
2 > x

} ≤ 1. (7.35)

As defined in Section 7.7, s∗ := inf{t > 0 : V1(−t) = 0} is the last epoch
before time 0 that the class-1 workload was zero. Hence, V1(t) > 0 for t ∈
(−s∗, 0], implying that the system operates at the full service rate during that
interval. Now, as described in Section 7.5, the idea of the proof is that a large
total workload is most likely caused by the arrival of a large class-2 user. In
particular, the class-1 workload starts to build in the presence of a persistent
class-2 user, and it may be shown that time s∗ is close to the arrival epoch of
the large user.

More formally, we split the class-2 workload at time t into workloads con-
tributed by users with initial service requirements smaller than (or equal to) εx
(V2,≤εx(t)), and those with initial service requirements larger than εx (V2,>εx(t)).
Moreover, let V c2,≤εx(t), V

c
2,>εx(t) be the workloads in an isolated queue fed by

class-2 traffic of users with service requirements smaller than and larger than
εx, respectively. Then, use (7.9), apply Observation 7.7.1 to bound V2,≤εx(−s

∗)
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and Lemma 7.B.1 (stated below) to bound V2,>εx(−s
∗):

V1(0) + V2(0) = V1(−s
∗) + V2,≤εx(−s

∗) + V2,>εx(−s
∗)

+A1(−s
∗, 0) +A2,≤εx(−s

∗, 0) +A2,>εx(−s
∗, 0)− s∗

≤ 0 +Mεx+A2,≤εx(−s
∗, 0)− (ρ+ δ)s∗

+V 1−Kr−ρ−δ
2,>εx (−s∗) +A2,>εx(−s

∗, 0)− (1−Kr − ρ− δ)s∗

≤ Mεx+ V ρ+δ2,≤εx(0) + V 1−Kr−ρ−δ
2,>εx (0).

Converting this sample-path relation into a probabilistic upper bound gives
(take ε < 1/M)

P {V1 + V2 > x} ≤ P

{

V ρ+δ2,≤εx(0) + V 1−Kr−ρ−δ
2,>εx (0) > (1−Mε)x

}

≤ P

{

V ρ+δ2,≤εx(0) > ξ(1−Mε)x
}

+P

{

V 1−Kr−ρ−δ
2,>εx (0) > (1− ξ)(1−Mε)x

}

.

The first term can be made sufficiently small for any fixed δ, ε, ξ, using similar
arguments as in [36]. For the second term, we first apply Lemma 7.B.2 (given
below) and Theorem 7.5.2, and then use the fact that Br(·) ∈ R1−ν , and let δ,
ξ, ε ↓ 0.

Note that the above proof applies regardless of whether 0 is an arbitrary
instant or a class-2 arrival epoch. 2

7.B Technical lemmas

Lemma 7.B.1 For 1− ρ < (K + 1)r, ε > 0, and δ > 0,

V2,>εx(−s
∗) ≤ V r2,>εx(−s

∗) ≤ V 1−Kr−ρ−δ
2,>εx (−s∗).

Proof Denote by u∗ := inf{u ≥ s∗ : V2,>εx(−u) = 0} the last epoch before
time −s∗ that no large class-2 user was present. Hence, N>εx(t) ≥ 1 for t ∈
(−u∗,−s∗]. Observe that the amount of service received by the large users
during (−u∗,−s∗] then satisfies

B2,>εx(−u
∗,−s∗) ≥

∫ −s∗

−u∗

N>εx(t)c1(t)dt ≥

∫ −s∗

−u∗

c1(t)dt ≥ r(u
∗ − s∗),

where c1(t) is the service rate of an individual streaming user at time t. Here,
the final step follows from the fact that V1(−s

∗) = 0 and the service received
during (−u∗,−s∗] exceeds the amount of traffic generated. Using the above in
the second step and (7.9) in the first and final one, gives

V2,>εx(−s
∗) = V2,>εx(−u

∗) +A2,>εx(−u
∗,−s∗)−B2,>εx(−u

∗,−s∗)

≤ A2,>εx(−u
∗,−s∗)− r(u∗ − s∗)

≤ V r2,>εx(−u
∗) +A2,>εx(−u

∗,−s∗)− r(u∗ − s∗)

≤ V r2,>εx(−s
∗).
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Finally, V r2,>εx(−s
∗) ≤ V 1−Kr−ρ−δ

2,>εx (−s∗) follows from δ ≥ 0 and 1−ρ < (K+1)r.
2

Lemma 7.B.2 For all c, ε > 0,

P
{

V c2,>εx > x
}

≤ (1 + o(1))
ρ

c
P {Br > x} ∼ P

{

V c+ρ2 > x
}

, as x→∞.

Proof Fix L, 0 < L < ∞, and consider an isolated system of capacity c,
where only class-2 users with service requirements larger than L are admitted.
The system load then equals ρL := λP {B > L}E[B|B > L]. Moreover, using
Theorem 7.5.2 (take L large enough, such that ρL < c), yields

P
{

V c2,>L > x
}

∼
ρL

c− ρL
P {Br>L > x} .

For x > L, the probability on the right-hand side may be rewritten as follows

P {Br>L > x} =
1

E[B|B > L]

∫ ∞

x

P {B > y|B > L}dy

=
1

E[B|B > L]

∫ ∞

x

P {B > y}

P {B > L}
dy

=
P {Br > x}EB

P {B > L}E[B|B > L]
=

ρ

ρL
P {Br > x} .

Combining the above gives

P
{

V c2,>L > x
}

∼
ρ

c− ρL
P {Br > x} . (7.36)

Now, observe that for x ≥ L/ε, we have V c2,>εx(t) ≤ V
c
2,>L(t), so that the first

part of the result may be obtained from (7.36), letting L → ∞, and observing
that ρL → 0 as L→∞. The second part follows from Theorem 7.5.2. 2

Lemma 7.B.3 For all k ∈ N, κ > 0 (fixed), and γ > 0,

P {N>κx(−γx, 0) ≥ k} = O(P {Br > x}
k
), as x→∞.

Proof Consider the time interval (−t, 0) and denote by T>κx(n) the interar-
rival time between the (n−1)-th and n-th user arrival after time −t with service
requirement larger than κx (with the natural amendment that the 0-th arrival
represents the last arrival before time −t with service requirement larger than
κx). Also, let T r>κx(n) denote its residual interarrival time and let τ be an
arbitrary class-2 arrival epoch. We first prove the lemma for k = 1. Note that

P {N>κx(−t, 0) ≥ 1} ≤ E[N>κx(−t, 0)]

= E[N(−t, 0)]P {B > κx} = λtP {B > κx} .

In the final step we use that −t is an arbitrary time instant, so that N(−t, 0) is
a stationary renewal process [10]. The statement of the lemma now follows for
k = 1 by taking t = γx and using the fact that B(·) is regularly varying.
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To extend this result to k ≥ 2, note that, for all n,

P {T>κx(n) ≤ t} = P {N>κx(τ, τ + t) ≥ 1}

≤ E[N>κx(τ, τ + t)] = E[N(τ, τ + t)]P {B > κx} .

By the Elementary Renewal Theorem [10], 1
tE[N(τ, τ + t)] → λ as t → ∞, so

that for any δ > 0 there exists a t̄ such that E[N(τ, τ + t)] ≤ (λ + δ)t for all
t ≥ t̄.

Note that the following two events are equivalent for k ≥ 1 (where we define
the empty sum equal to 0 in case k = 1).

{N>κx(−t, 0) ≥ k} = {T r>κx(1) +

k
∑

n=2

T>κx(n) ≤ t}.

Thus, for k ≥ 2 and t ≥ t̄,

P {N>κx(−t, 0) ≥ k} ≤ P

{

T r>κx(1) +
k−1
∑

n=2

T>κx(n) ≤ t

}

P {T>κx(k) ≤ t}

≤ P {N>κx(−t, 0) ≥ k − 1} (λ + δ)tP {B > κx} .

By induction on k we obtain, for k ≥ 2 and t ≥ t̄,

P {N>κx(−t, 0) ≥ k} ≤ ((λ+ δ)tP {B > κx})k.

Again, by taking t = γx (for large enough x) and using the fact that B(·) is
regularly varying, the lemma follows. 2

In case the class-2 users arrive according to a Poisson process, Lemma 7.B.3
can also be shown more directly. The crucial observation is that the number of
class-2 arrivals with a service requirement larger than κx also follows a Poisson
process, however with parameter λP {B > κx}. Using the Poisson distribution
function and taking the sum of a geometric series then completes the proof.

Lemma 7.B.4 There exists a κ∗ > 0 such that for all κ ∈ (0, κ∗],

P

{

sup
0≤s≤γx

{A2(−s, 0)− (ρ+ δ)s} > εx | N>κx(−γx, 0) = 0

}

= o(P {Br > x}).

Proof Denote the interarrival time between the (n−1)-th and n-th user by Tn,
and the service requirement of the n-th user by Bn. Let Sn := X1 + . . . +Xn

be a random walk with step sizes Xm := Bm − (ρ + δ)Tm, with δ > 0. Since
ρ = EBm/ETm, we have EXm < 0, i.e., the random walk has negative drift.
Observe that by the saw-tooth nature of the process {A2(−s, 0)− (ρ+ δ)s}, the
process attains a local maximum at epochs right after a jump, thus,

sup
0≤s≤γx

{A2(−s, 0)− (ρ+ δ)s} ≤ B1 + sup
1≤n≤N(−γx,0)

Sn.
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Then, conditioning on the total number of class-2 arrivals in (−γx, 0) yields

P

{

sup
0≤s≤γx

{A2(−s, 0)− (ρ+ δ)s} > εx

∣

∣

∣

∣

N>κx(−γx, 0) = 0

}

=
∞
∑

n=0

P

{

sup
0≤s≤γx

{A2(−s, 0)− (ρ+ δ)s} > εx

∣

∣

∣

∣

N>κx(−γx, 0) = 0;N(−γx, 0) = n

}

× P {N(−γx, 0) = n}

≤
M̄x
∑

n=0

P

{

B1 + sup
0≤m≤n

{

m
∑

i=1

Xi

}

> εx

∣

∣

∣

∣

Xi < κx, i = 1, . . . , n

}

×P {N(−γx, 0) = n}+

∞
∑

n=M̄x+1

P {N(−γx, 0) = n}

≤ max
0≤n≤M̄x

P

{

sup
0≤m≤n

Sm > (ε− κ)x

∣

∣

∣

∣

Xi < κx, i = 1, . . . , n

}

+P
{

N(−γx, 0) > M̄x
}

≤ P

{

sup
0≤m≤M̄x

Sm > (ε− κ)x

∣

∣

∣

∣

Xi < κx, i = 1, . . . , n

}

+P
{

N(−γx, 0) > M̄x
}

, (7.37)

where the third inequality follows from the fact that B1 ≤ εx. The second term
of (7.37) decays exponentially fast in x when M̄ > λγ. The first term may be
rewritten as follows:

P

{

sup
0≤m≤M̄x

Sm > (ε− κ)x | Xi < κx, i = 1, . . . , n

}

≤

M̄x
∑

m=0

P {Sm > (ε− κ)x | Xi < κx, i = 1, . . . , n} .

This can be made sufficiently small by employing a powerful lemma of Resnick
& Samorodnitsky [143]. According to this lemma, there exists a κ∗ > 0 and a
function φ(·) ∈ R−α, with α > ν, such that for all κ ∈ (0, κ∗] the first term
of (7.37) can be bounded by M̄xφ(x). Take φ(x) = x−1−ζ

P {Br > x}, with
ζ = α− ν, and note that M̄xφ(x) = o(P {Br > x}) to complete the proof. 2

7.C Proof of Proposition 7.4.1

Proposition 7.4.1 If B(·) ∈ R−ν and either (K+1)r > 1−ρ or C2(t) ≡
N(t)

K+N(t)

or both, then

P {S2 > x} ∼ P

{

B >
(1− ρ)x

K + 1

}

. (7.38)
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In contrast, if (K + 1)r < 1− ρ and C2(s, t) ≡ t− s−B1(s, t), then

P {S2 > x} ∼ P {B > (1− ρ−Kr)x} . (7.39)

Proof First, the case C2(t) ≡
N(t)

K+N(t) follows directly from [82]. This result

also directly provides the desired upper bound in case the system is critically
loaded, i.e., (K + 1)r > 1 − ρ. The lower bound for (7.38) and the proof of
(7.39) are somewhat similar to proofs of delay asymptotics in [35, 44, 82].

Let B0 be the service requirement of a class-2 user arriving at time 0 and
denote by S0 its sojourn time. Also, let B0(0, t) be the amount of service
received during (0, t] if it had an infinite service requirement. Now, observe
that an actual user arriving at time 0 would receive the same amount of service
B0(0, t) if it is still present at time t. Thus, assume that at time 0 a persistent
class-2 user arrives. Then,

P {S0 > t} = P {B0 > B0(0, t)} . (7.40)

For conciseness, we now first give the proof of (7.39) and then provide the
lower bound for (7.38).

Proof of (7.39). We apply the framework developed in [44, 82]. In particular,
we show that Assumptions (A-2) and (A-3) in [82] are satisfied. For Assumption
(A-2), use (7.8) and (7.9):

B0(0, t) = t+ V1(t) + V2(t)−Krt−A2(0, t)− V1(0)− V2(0).

Because the system is stable, both (V1(t)+V2(t))/t→ 0 and (V1(0)+V2(0))/t→
0 when t→∞. Moreover, since A2(0, t)/t→ ρ for t→∞, we have

lim
t→∞

B0(0, t)

t
= 1− ρ−Kr,

giving Assumption (A-2). For Assumption (A-3), note that B0(0, t) ≥
∫ t

0 1/(K+
1 + N(K+1)(u))du. Thus, from the proof of [82, Theorem 3] (take f(n) =

1
K+1+n), it follows that there exists a finite constant D > 0, such that

P {B0(0, t) ≤ Dt} ≤ P

{
∫ t

0

1

K + 1 +N(K+1)(u)
du ≤ Dt

}

= o(P {B > x}).

Since Assumptions (A-1)-(A-3) are satisfied, we may apply [82, Theorem 1] to
obtain (7.39).

Lower bound for (7.38). Let B−
2,≤κt(s, t) (B−

2,>κt(s, t)) be the amount of service
received by class-2 users with initial service requirements smaller than (larger
than) κt, excluding the persistent class-2 user. Also, let st := sup{0 ≤ u ≤
t : V1(u) = 0} be the last epoch before time t that the class-1 workload was
zero. Recall that V c2 (t) = sup0≤s≤t{A2(s, t) − c(t − s)}. Using (7.8) and (7.9)
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in addition to Observation 7.7.1, we deduce

B0(st, t) +B1(st, t) +B−
2,>κt(st, t)

= t− st −B
−
2,≤κt(st, t)

≥ t− st −A2,≤κt(st, t)− V
−
2,≤κt(st)

≥ (1− ρ− ε)(t− st) + (ρ+ ε)(t− st)−A2(st, t)− V
−
2,≤κt(st)

≥ (1− ρ− ε)(t− st)− V
ρ+ε
2 (t)−Mκt,

where A2,≤κt(s, t) is the amount of “small” class-2 traffic generated during (s, t]
(see also Subsection 7.6.2), and V −

2,≤κt(s) is the workload at time s associated
with “small” class-2 users, excluding the persistent user. Because class 1 uses
the total available capacity during (st, t], we have B1(st, t) = KB0(st, t). Also,
V1(st) = 0 implies B1(0, st) ≥ Krst. Combining the above, and taking ε > 0
sufficiently small, yields

B1(0, t) +B−
2,>κt(0, t) ≥ Krst +

K

K + 1
[(1− ρ− ε)(t− st)− V

ρ+ε
2 (t)−Mκt]

≥
K

K + 1
[(1− ρ− ε)t− V ρ+ε2 (t)−Mκt]. (7.41)

Now, applying (7.8) and (7.9), we obtain

B0(0, t) ≤ t−B1(0, t)−B
−
2,>κt(0, t)−B

−
2,≤κt(0, t)

≤ (1− ρ+ ε)t−
K

K + 1
[(1− ρ− ε)t− V ρ+ε2 (t)−Mκt]

+V −
2,≤κt(t) + (ρ− ε)t−A2,≤κt(0, t).

Moreover, observe that V −
2,≤κt(t) ≤ V(K+1)(t). Using these sample-path

arguments and (7.40) yields

P {S0 > t}

≥ P

{

B0 >
1− ρ+ (2K + 1)ε

K + 1
t+

K

K + 1
[V ρ+ε2 (t) +Mκt]

+V −
2,≤κt(t) + (ρ− ε)t−A2,≤κt(0, t) ≤ εt

}

≥ P

{

B0 >
1− ρ+ (4K + 2)ε+KMκ

K + 1
t

}

(7.42)

×P

{

K

K + 1
V ρ+ε2 (t) + V(K+1)(t) + (ρ− ε)t−A2,≤κt(0, t) ≤

2K + 1

K + 1
εt

}

.

Note that V ρ+ε2 (t), V(K+1)(t), and A2,≤κt(0, t) are not independent. How-
ever, the second probability in (7.42) can be bounded from below by

P {A2,≤κt(0, t) ≥ (ρ− ε)t} − P
{

V ρ+ε2 ≥ εt
}

− P
{

V(K+1)(t) ≥ εt
}

. (7.43)
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The first term of (7.43) may be treated as in Subsection 7.6.2, which gives
P {A2,≤κt(0, t) ≥ (ρ− ε)t} → 1 as t → ∞. For the second term, we note that
V ρ+ε2 has a non-defective distribution. Moreover, we use the fact that a system
with K + 1 permanent customers also has a proper limiting distribution to
handle the third probability in (7.43) (see also Subsection 7.6.1).

Now, use the fact that B(·) ∈ R−ν and let ε, κ ↓ 0 to obtain the lower bound
for (7.39), which completes the proof. 2

7.D Proof of (7.12) for variable-rate streaming traffic

We now extend Proposition 7.A.1 (relation (7.12)) to variable-rate streaming
traffic. In fact, a slightly stronger result is needed in the proof of the lower bound
of Theorem 7.8.1. However, P {V var

1 + V var
2 > x} ≥ (1 + o(1))P

{

V 1−Kr
2 > x

}

is a direct consequence of the proof, and the following proposition may be of
independent interest. It also shows that the asymptotic equivalence holds under
non-critical load if the system is work-conserving.

Proposition 7.D.1 Suppose that the process {A1(−t, 0), t ≥ 0} satisfies As-
sumption 7.8.1 and ρ + Kr < 1. If B(·) ∈ R−ν and one of the two following
conditions is satisfied

(i) the system is critically loaded, i.e., 1− ρ < (K + 1)r;

(ii) the system is work-conserving, i.e., C2(s, t) ≡ t− s−B1(s, t);

then
P {V var

1 + V var
2 > x} ∼ P

{

V 1−Kr
2 > x

}

.

This asymptotic relation also holds when V1+V2 and V 1−Kr
2 represent the work-

loads embedded at class-2 arrival epochs rather than at arbitrary instants.

Proof The proofs again involve lower and upper bounds which asymptotically
coincide. The lower bound is the same for both cases (i) and (ii).

(Lower bound) In fact, we will prove a slightly stronger result. Define
←−
U c

1(0) :=

supt≥0{ct−A1(−t, 0)} and recall that
−→
U c

1(0) = supt≥0{ct−A1(0, t)}. We show
that

lim inf
x→∞

P

{

V var
1 (0) + V var

2 (0) > x;
−→
U
K(r−ψ)
1 (0) ≤ φx

}

P
{

V 1−Kr
2 > x

} ≥ 1. (7.44)

Using the work-conserving scenario as a lower bound in addition to (7.10),
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we have for any ξ > 0,

P

{

V var
1 (0) + V var

2 (0) > x;
−→
U
K(r−ψ)
1 (0) ≤ φx

}

≥ P

{

sup
t≥0
{A1(−t, 0)−K(r − ψ)t+A2(−t, 0)− (1−K(r − ψ))t} > x;

−→
U
K(r−ψ)
1 (0) ≤ φx

}

≥ P

{

V
1−K(r−ψ)
2 (0)−

←−
U
K(r−ψ)
1 (0) > x;

−→
U
K(r−ψ)
1 (0) ≤ φx

}

≥ P

{

V
1−K(r−ψ)
2 (0) ≥ (1 + ξ)x

}

P

{←−
U
K(r−ψ)
1 (0) ≤ ξx;

−→
U
K(r−ψ)
1 (0) ≤ φx

}

.

Note that

P

{←−
U
K(r−ψ)
1 (0) ≤ ξx;

−→
U
K(r−ψ)
1 (0) ≤ φx

}

≥ P

{←−
U
K(r−ψ)
1 (0) ≤ ξx

}

− P

{−→
U
K(r−ψ)
1 (0) ≥ φx

}

.

Because both
←−
U
K(r−ψ)
1 (0) and

−→
U
K(r−ψ)
1 (0) have a proper distribution, it holds

that P

{←−
U
K(r−ψ)
1 (0) ≤ ξx

}

→ 1 and P

{−→
U
K(r−ψ)
1 (0) ≥ φx

}

→ 0 as x→∞ (see

also (7.31)). Hence, we have

lim inf
x→∞

P

{

V var
1 (0) + V var

2 (0) > x;
−→
U
K(r−ψ)
1 (0) ≤ φx

}

P

{

V
1−K(r−ψ)
2 > (1 + ξ)x

} ≥ 1.

Finally, let ξ, ψ, φ ↓ 0 and use Theorem 7.5.2 and the fact that Br(·) ∈ R1−ν

to obtain (7.44). The lower bound is a direct consequence.

(Upper bound for part (i)) We now show that for a critically loaded system

lim sup
x→∞

P {V var
1 + V var

2 > x}

P
{

V 1−Kr
2 > x

} ≤ 1. (7.45)

To do so, we apply the leaky-bucket idea of Section 7.8. Recall that in the
reference system, class 1 generates traffic at constant rate K(r+ψ), and class 2
receives service at rate N(K)(t)/(K +N(K)(t)), independently of class 1. Note

that V var
2 (t) ≤ V(K)(t) = V cst,ψ

2 (t), with V(K)(t) the workload at time t in an

isolated queue fed by class 2 with K permanent customers, and V cst,ψ
2 (t) the

class-2 workload at time t in the reference system. Thus, combining the above
with (7.34) yields

V var
1 (t) + V var

2 (t) ≤ V
K(r+ψ)
1 (t) + V cst,ψ

1 (t) + V cst,ψ
2 (t).

Converting this sample-path relation into a probabilistic upper bound gives

P {V var
1 + V var

2 > x} ≤ P

{

V
K(r+ψ)
1 > ξx

}

+ P

{

V cst,ψ
1 + V cst,ψ

2 > (1− ξ)x
}

.
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Again, the first term can be controlled by Assumption 7.8.1. For the second
term, apply Proposition 7.A.1 and Theorem 7.5.2, use the fact that Br(·) ∈
R1−ν , and then let ψ, ξ ↓ 0.

(Upper bound for part (ii)) It remains to be shown that (7.45) holds if the sys-
tem is work-conserving. Using sample-path arguments, we have that V var

1 (t) +

V var
2 (t) ≤ V

K(r+ψ)
1 (t) + V

1−K(r+ψ)
2 (t), so that, for any φ ∈ (0, 1),

P {V var
1 + V var

2 > x} ≤ P

{

V
K(r+ψ)
1 > φx

}

+ P

{

V
1−K(r+ψ)
2 > (1− φ)x

}

.

It follows from Assumption 7.8.1, Theorem 7.5.2, and the fact that Br(·) ∈
R1−ν that

P

{

V
K(r+ψ)
1 > φx

}

= o(P
{

V
1−K(r+ψ)
2 > (1− φ)x

}

),

as x→∞. Thus,

lim sup
x→∞

P {V var
1 + V var

2 > x}

P

{

V
1−K(r+ψ)
2 > (1− φ)x

} ≤ 1.

Finally, let ψ, φ ↓ 0 and use Theorem 7.5.2 and the fact that Br(·) ∈ R1−ν

to obtain (7.45).
Note that the above proof applies regardless of whether 0 is an arbitrary

instant or a class-2 arrival epoch. 2
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Samenvatting (Summary)

In klassieke wachtrijmodellen wordt aangenomen dat de bediende op constante
snelheid werkt zolang er werk in het systeem aanwezig is. Er zijn echter tal
van situaties waar deze aanname niet opgaat, zoals in productiesystemen, wa-
terreservoirs of communicatienetwerken. Bovendien kan de aankomstintensiteit
van nieuwe klanten worden bëınvloed door de mate van congestie in het sys-
teem. In dit proefschrift concentreren we ons daarom specifiek op wachtrijen
met toestandsafhankelijke snelheden.

We onderscheiden in dit proefschrift drie belangrijke toepassingsgebieden.
Als eerste noemen we productiesystemen waarbij de productiviteit van het per-
soneel afhangt van de aanwezige hoeveelheid werk. In de psychologie wordt de
relatie tussen werkdruk en productiviteit beschreven door de Yerkes Dodson
wet: In eerste instantie leidt een hogere werkdruk tot een verbeterde produc-
tiviteit, maar bij een aanhoudende stijging van de aanwezige hoeveelheid werk
krijgen stressfactoren de overhand, resulterend in een scherpe productiviteits-
daling. Een tweede toepassingsgebied van modellen met toestandsafhankelijke
snelheden zijn communicatienetwerken waarbij het verzendingsprotocol reageert
op drukte in het netwerk. Een duidelijk voorbeeld hiervan is het veel gebruikte
Transmission Control Protocol (TCP), waarbij informatie over netwerkcongestie
de basis vormt voor de bepaling van de verzendingssnelheid van Internetverkeer.
In hoofdstuk 7 richten we ons specifiek op de integratie van verkeersstromen
van verschillende aard met uiteenlopende kwaliteitseisen. Als derde toepassing
noemen we de studie van waterreservoirs, en opslagmodellen in het algemeen.
Instromend water als gevolg van hevige regenval wordt opgevangen in een reser-
voir, terwijl de uitstroomsnelheid afhangt van de watervoorraad achter de dam.
Deze toepassing is van een meer wiskundige aard en is met name vanuit een
historisch perspectief van groot belang.

In hoofdstuk 1 geven we verdere achtergrondinformatie over de bovenge-
noemde drie toepassingsgebieden en bespreken we de relatie tot wachtrijmodel-
len met toestandsafhankelijke snelheden. Verder demonstreren we verschillende
methoden uit het proefschrift aan de hand van de klassieke M/G/1 rij. De
daaruit voortvloeiende bekende M/G/1 resultaten kunnen tevens worden ge-
bruikt als referentie voor resultaten in latere hoofdstukken. De voornaamste
prestatiemaat in dit proefschrift is de verdeling van de hoeveelheid werk (ook
wel werklast genoemd) in de evenwichtssituatie.

In hoofdstuk 2 bestuderen we allereerst de M/G/1 wachtrij met werklastaf-
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hankelijke aankomst- en bedieningssnelheden. Dit model hangt nauw samen met
het hierboven besproken waterreservoir waarbij de uitstroomsnelheid afhangt
van de inhoud van het reservoir. Het belangrijkste resultaat is de relatie tussen
grootheden, zoals de werklastverdeling, in twee verwante M/G/1 wachtrijen.
Daarnaast werken we enkele speciale gevallen verder uit. Vervolgens beschouwen
we het algemenere G/G/1 model en geven we relaties tussen de werklast op ver-
schillende momenten.

In hoofdstuk 3 breiden we het M/G/1 model van hoofdstuk 2 uit door ver-
schillende begrenzingen (of toelatingseisen) op de werklast toe te staan. We
kijken daarbij opnieuw naar de relatie tussen grootheden in verwante M/G/1
wachtrijen en laten verder zien dat de werklastverdeling voor een aantal M/G/1
rijen met beperkte toelating proportioneel is aan de werklastverdeling van het
model zonder toelatingsrestrictie. Tevens beschouwen we de verdeling van een
andere prestatiemaat, het cycle maximum. Het cycle maximum is de maximale
hoeveelheid werk gedurende een busy cycle (de periode dat de bediende onafge-
broken werkt). We besluiten het hoofdstuk door een aantal speciale gevallen uit
te werken.

Het cycle maximum speelt ook een centrale rol in hoofdstuk 4. We bestude-
ren daar een G/G/1 rij met eindige buffer en analyseren de relatie tussen de kans
dat een klant niet volledig wordt geaccepteerd (de verlieskans) en de staartkans
van het cycle maximum in de daarbij behorende rij met oneindige buffer. Voor
het klassieke G/G/1 model laten we zien dat deze twee kansen identiek zijn. In
het model waarbij de bedieningssnelheid afhangt van de aanwezige hoeveelheid
werk zijn de staartkans van het cycle maximum en de verlieskans op een iets
ingewikkeldere manier gerelateerd. Tenslotte passen we deze relaties toe om
resultaten te verkrijgen voor de verlieskans in modellen waar de verdeling van
het cycle maximum bekend is en vice versa.

Hoofdstuk 5 betreft opnieuw een M/G/1 rij met werklastafhankelijke bedie-
ningssnelheden. Mede gëınspireerd door de hierboven beschreven productivi-
teitspatronen in, bijvoorbeeld, productiesystemen, richten we ons specifiek op
bedieningssnelheden die eerst stijgen en dan dalen als functie van de aanwezige
hoeveelheid werk. Besturing van het systeem vindt plaats door het al dan niet
toelaten van klanten afhankelijk van de werklast bij aankomst, met als doel de
lange-termijn gemiddelde hoeveelheid afgehandeld werk (ofwel de throughput)
te maximaliseren. We laten zien dat, onder bepaalde voorwaarden, een drem-
pelwaarde strategie voor het accepteren van klanten optimaal is. We geven ook
een karakterisering van de optimale drempelwaarde, waarvan de berekening in
bepaalde gevallen reduceert tot de oplossing van een betrekkelijk eenvoudige
vergelijking.

In de bovengenoemde hoofdstukken 2–5 hebben we steeds verondersteld dat
de bedieningssnelheid op elk moment (en continu door de tijd) kan worden
aangepast. In verschillende praktische situaties kan het echter voorkomen dat
niet op elk moment informatie over de toestand van het systeem aanwezig is, of
dat er hoge kosten gepaard gaan met het continu aanpassen van de bedienings-
snelheid. In hoofdstuk 6 nemen we daarom aan dat de snelheid van bediening
alleen op momenten direct na een aankomst kan worden gewijzigd, terwijl deze
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constant wordt gehouden tussen aankomsten van klanten in. Voor het geval van
bedieningsdisciplines met één of meer drempelwaarden vinden we de verdeling
en de getransformeerde van de hoeveelheid werk in het systeem op verschillende
momenten.

Tenslotte richten we ons in hoofdstuk 7 op een toepassing op het gebied
van communicatienetwerken. We beschouwen twee typen verkeer, stromend en
elastisch, die capaciteit delen volgens de Processor Sharing (PS) discipline. De
PS discipline is een natuurlijke manier om het delen van capaciteit tussen TCP
en TCP-friendly gestuurd Internetverkeer te modelleren. Bovendien nemen we
aan dat het verkeer van de elastische klasse zwaarstaartig is en dat de verbind-
ing kritiek belast is. Het belangrijkste resultaat betreft de werklast asymptotiek
van de stromende klasse. Deze prestatiemaat is met name interessant omdat de
werklast kan worden gëınterpreteerd als een bedieningstekort ten opzichte van
een ideaal scenario. Verder geven we ook verschillende resultaten voor de elas-
tische klasse. We merken op dat het model van dit hoofdstuk ook opgevat kan
worden als een waterreservoir of vloeistofmodel in een zwaarstaartige stochasti-
sche omgeving. Die omgeving bestaat dan uit de elastische klanten, terwijl de
bedieningssnelheid, of uitstroomsnelheid, van de dam gelijk is aan die van een
permanent aanwezige klant in een G/G/1 rij bediend volgens de PS discipline.
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