
I
Journal of Computational and Applied Mathematics 60 (1995) 309 329

Parallel iteration across the steps of high-order Runge-Kutta
methods for nonstiff initial value problems*

P.J. van der Houwen*, B.P. Sommeijer, W.A. van der Veen
Ajd. NuMerielce Wislcvnde, CW/, P.O. Box 94079, 1090 GB Amsterdam. Netlierlands

Received 23 August 1993; revised 6 April 1994

For the parallel integration of nonstiff initial value problems (IVPs), three main approaches can be distinguished:
approaches based on .. parallelism across the problem", on "parallelism across the method" and on "parallelism across the
steps". The first type of parallelism does not require special integration methods and can be exploited within any
available IVP solver. The method-parallelism approach received much attention, particularly within the class of explicit
Runge-Kutta methods originating from fixed point iteration of implicit Rungc-Kutta methods of" Gaussian type. The
construction and implementation on a parallel machine of such methods is extremely simple. Since the computational
work per processor is modest with respect to the number of data to be exchanged between the various processors, this
type of parallelism is most suitable for shared memory systems. The required number of" processors is roughly half the
order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about
a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector
iteration and requires the processors to communicate after each full iteration. If the iterations have sufficient computa­
tional volume, then the step-parallel approach may be suitable for implementation on distributed memory systems. Most
step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to
a poor convergence behaviour in the iteration process. Hence. the effective speed-up is rather poor. The dynamic
step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently
robust to achieve speed-up factors up to 15.

Keywords: Numerical analysis; Runge-Kutta methods; Parallelism

1. lntrodoction

The last five years have shown an increased interest in solving the initial value problem (IVP)

y'(t)=/(y(t)), y(to)=yo, y,feR4 (1.1)

*The research reported in this paper was partly supported by STW (Netherlands Foundation for the Technical
Sciences).
• Corresponding author.

0377-0427/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0377-0427(94)00047-5

310 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329

on parallel computers. One of the classes of parallel IVP solvers for nonstiff problems that received
relatively much attention is the class of predictor-corrector {PC) methods based on Runge-Kutta
(RK) correctors (see, e.g., [2-4, 19,20, 10-14, 17]). As was observed in [11], PC iteration (and in
fact, all functional iteration methods), when applied to RK correctors, possess automatically
parallelism across the components of the stage vector iterates, because these components can be
iterated in parallel. Therefore, we shall henceforth refer to these methods as PI RK methods (parallel
iterated Runge-Kutta methods [19]).

Highly accurate correctors are provided by the classical, collocation-based RK methods such as
the Gauss methods (sometimes called the Kuntzmann-Butcher methods [9] or the
Butcher-Kuntzmann methods [20], and in this paper referred to as BK methods). Moreover,
automatic stepsize variation and predictor formulas can be easily obtained by means of the
collocation polynomial. In [19] numerical results obtained by the PIRK method using the 5-point
BK corrector were reported. This PIRK method, equipped with the last-step value (LSV) predictor
and a simple stepsize strategy, already halves the sequential costs when compared with the highly
efficient, sequential DOPRI8 code [9].

However, the number of iterations needed to achieve the corrector accuracy is still high (about
the order of the corrector). In order to reduce the number of iterations, we introduced in [20]
preconditioning in the PIRK method and found that the number of iterations reduces substantially
(cf. [20]). For example, for the often used Arenstorf test problem (cf. [9, p. 127]), preconditioned
PIRK based on the PC pair consisting of the extrapolation (EXP) predictor and the 4-point BK
corrector showed an averaged speed-up factor of 4.4 with respect to DOPRI8 in the accuracy range
of 3 to 8 correct digits. An interesting feature of the iterated RK methods is the highly efficient
performance of the high-order correctors, also in the low accuracy range. As an illustration, we
applied the preconditioned {EXP, 13-point BK} PC pair to the Arenstorf problem, and found an
averaged speed-up factor of 6.7 with respect to DOPRI8, again in the accuracy range of 3 to
8 correct digits.

In this paper, we try to reduce the sequential costs by applying "parallelism across the steps" to
the PIRK methods. In some sense, our approach shows similarities with that of Miranker and
Liniger [15] and of Nievergelt [16], but is most closely related to the approach of the Trieste group
(see [1]). The main difference with the Trieste approach is a more robust iteration process
(Gauss-Seidel type instead of Steffenson), however, at the cost of less massive parallelism. Never­
theless, our numerical experiments show that the particular type of PIRK methods Across the
Steps (PIRKAS methods) developed in this paper often require not more than two sequential
function calls per step for solving the corrector and give rise to speed-up factors up to 15 when
compared with the best sequential codes available (i.e., DOPRI8). We shall confine our consider­
ations to PIRKAS methods without preconditioning. Introducing preconditioning and extension
to stiff initial value problems will be subject of future research.

2. Parallelism across the steps

We consider implicit, s-stage RK methods written in the form of an (s + 1)-stage General Linear
Method (OLM), introduced in [5] (see also [6, p. 340]):

Yn = (E ® I)Yn-1 + h(B ® /d)F(Y.,), n = 1, ... ,N. (2.la)

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 311

Here h denotes the stepsize, the matrix B contains the RK parameters, and F(Yn) contains the
derivative values (/(Yn,;)), where Yn.i denote the d-dimensional components of the (extended) stage
vector Yn (because of the GLM representation (2.la), the RK solution at the step points is lumped
into Yn). It will be assumed that (2.la) possesses s implicit stages and one explicit stage. The
component of Yn corresponding to the explicit stage approximates the exact solution at the step
point tn = tn- i + h. The other stage vector components Yn,i represent numerical approximations at
the intermediate points tn- 1 + c;h, where c = (c;) = Be, e being the vector with unit entries. In the
sequel we assume that the last stage is the explicit one, so that the matrices E and B take the form

0 0 1

E:= , B := (~ ~} (2.lb)

0 0

where A and b present the familiar arrays appearing in the Butcher tableau representation of RK
methods. Furthermore, the matrix I is the d-by-d identity matrix, Q9 denotes the Kronecker
product, and we define Y 0 = e ® y 0 • In the following, the dimension of I and e may change, but will
always be clear from the context.

Eq. (2.1), henceforth referred to as the corrector, can be solved by the conventional PC iteration
method which in a programming·like language reads

FOR n := 1 TON
FOR j:= 1 TO m

y~l = (E®J)Y~"!! 1 + h(BQ9J)F(Y~i- 1 \
(2.2)

where m is the number of iterations, Ybm) = e ® y 0 , and Y!,0l is to be provided by a predictor
formula. Evidently, if (2.2) converges, then it converges to the corrector solution Yn·

As mentioned in Section 1, the PC method (2.2) has been extensively analysed in a number of
papers and was called a parallel iterated RK method (PIRK method) in [19] (see also [9, p. 259]). It
possesses parallelism within the iterations (that is, for each n and j, the components of Y~11 can be
evaluated in parallel), but, apart from parallelism across the problem, it does not have any further
parallelism. Hence, the total computational effort consists of Nm evaluations of a full derivative
vector F(Y~j- l)), but on a computer possessing s processors, the sequential costs of one full
derivative vector evaluation consists of evaluating just one right-hand side function f of dimension
d. We shall measure the sequential costs of an explicit method by the total number of sequential
right-hand side evaluations, where we tacitly assume that sufficiently many processors are available.
Thus, the sequential computational complexity of the PC method (2.2) is given by Nseq =Nm.

In order to increase the degree of parallelism in PIRK methods, we have to modify the recursion
(2.2). The most obvious approach to achieve a high degree of parallelism in IVP methods writes the
corrector (2.1) in the form G(Y) = 0, where Y represents the vector containing all numerical
approximations in the whole integration interval, and solves this system for Yby some iteration type
process. This type of parallelism has been considered by several authors (e.g., see [16, 1]). In the
case of the RK solver (2.1), Y represents the N stage vectors Yn, n = 1, ... , N.

312 P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 60 (1995) 309-329

The most simple iteration process for solving G(Y) = 0 can be obtained from (2.2) by interchang­
ing the loops for n and j in (2.2):

FORj:= 1 TO m
FORn:= 1 TON

y~> = (E@ I) r,/.:-}l + h(B ® J)F(Y~- 1 >).
(2.3)

Here, we have Y~1 = e ® y 0 for j = 0, ... , m - 1. In view of load balancing of the processors, we
want the sequential computational effort involved with the computation of a single iterate Y~1 to
be equal for all iterates. Therefore, here and in the following, the costs of computing the prediction
Y~0 > are assumed to be negligible. Thus, given the initial guesses Y~0>, n = 1, ... , N, first all stage
vectors Y~1 > are computed concurrently, then all Y~2>, and so on. Hence, having sN processors
available, the sequential computational complexity of the method (2.3) is given by Nseq = m.
Method (2.3) resembles Jacobi-type iteration and may be considered as a PIRK method employing
iteration Across the Steps of Jacobi-type (PIRKAS J method). A drawback of this seemingly
"cheap" method is its slow convergence or even divergence, due to a poor first iterate y~ll,
a situation that can easily occur in the case of large integration intervals. This is caused by the fact
that the prediction Y~0> is either based on mere extrapolation of the initial valuey0 or just an initial
guess to be provided by the user (note that predictions based on derivative information on
preceding step points would increase the sequential costs by an amount of O(N)). As a conse­
quence, Jacobi-type iteration is only feasible when applied on subintervals (windows). Of course,
for w windows, the sequential costs will increase to N seq = wm.

An alternative to Jacobi-type iteration is a more powerful iteration process. When applied using
the window-strategy just mentioned, we may hope to reduce the number of iterations m to such an
extent that the sequential costs Nseq = wm are acceptable. In the literature, Steffenson iteration and
Newton-type iteration have been considered. Full details of the Steffenson process applied to
a general class of IVP solvers may be found in the papers of Bellen and his coworkers [1]. For
a discussion of Newton-type iteration, we refer to the thesis of Chartier [7].

In the present paper, we shall study Gauss-Seidel type iteration processes for solving the
corrector Eq. (2.1). Gauss-Seidel iteration possesses a lower degree of intrinsic parallelism than
Jacobi and Steffenson iteration, but it allows us to compute a much more accurate first iterate Y~1 J.

2.1. The PIRKAS GS method

Consider the recursion

y~> = (E ® I)Y~! 1 + h(B ® J)F(Y~- 11), j = 1, 2, ... ,m; n = 1,2,. . ., N. (2.4)

The only difference with the recursion in the PIRKAS J method (2.3) is the superscript in the first
term of the right-hand side. By this modification we introduce a dependency in the time direction
and therefore (2.4) may be considered as a Gauss-Seidel-type iteration process for solving (2.1). The
iterates defined by (2.4) can be computed according to various orderings. Representing the iterates
y~> by points in the (n, j)-plane, we may compute them row-wise (j constant) or column-wise (n
constant) or diagonal-wise (n + j constant). We emphasize that the solutions resulting from these
orderings are algebraically equivalent. However, from an implementational point of view, of all

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 313

j + 3

j + 2

i i

j + 1

j

i i i i

-------1-------1-------1--------1-------
n n+l n+2 n+3

Fig. 1. Grid of Y~1 iterates in the (n, j)-plane.

orderings of computation allowed by (2.4), the diagonal-wise ordering possesses maximal
parallelism, because all iterates Y~1 with n + j constant can be computed concurrently (see Fig. 1).
Thus, in the diagonal-wise ordering we first compute the iterates labeled by i, next the iterates
labeled i + l, etc. Notice that an iterate can be computed as soon as its left and lower neighbours
are available. In comparison with Jacobi iteration, the intrinsic parallelism is reduced consider­
ably, but this is compensated by a much faster convergence.

In the following, we shall analyse and evaluate the performance of the Gauss-Seidel type
PIRKAS method (2.4) (briefly PIRKAS GS method). In accuracy and stability considerations, it
will sometimes be convenient to assume that the iterates are computed by the row-wise ordering.
However, in actual computation, we of course employ the diagonal-wise ordering.

Fig. 1 suggests introducing the step index i = n + j, where n and j are the time index and
iteration index, respectively, and writing the correction formula (2.4) as

y~i-n) = (E ® l)Y~i~i) + h(B ® J)F(Y~-n- l>). (2.5)

The corresponding computational scheme can be implemented according to

FOR i := 1 TO m + 1
FOR n:= OTO i

CALL correction (i,n)

314 P.J. van der Houwen et al. /Journal of Computational and Applied Mathematics 60 (1995) 309-319

FOR i := m + 2 TO N + m
FOR n := i - m TO min {i,N}

CALL correction (i, n)

where the subroutine correction (i, n) is defined by

(2.6a)

IF i = nTHEN
ELSE

Compute y~-n) = Y~0 > by means of the predictor formula (see Section 2.2)
IF n = 0 THEN y~-n> = e ®Yo (2.6b)

ELSE Compute y~-n> by means of the correction formula

The method { (2.5), (2.6)} will be referred to as the PIRKAS GS method. The sequential costs are
Nseq = N + m right-hand side evaluations on sm processors (see Table 1). We remark that the
parallelism within the correction formula is fine grain compared with the parallelism across the
steps. Hence, the correction formula (2.6b) is most suitably implemented on a shared memory unit,
whereas the scheme (2.6a) seems to be more efficient for implementation on distributed memory
systems. For example, the appropriate architecture would be a network of m workstations, each
having s shared memory processors.

2.2. Regions of stability and convergence

In discussing convergence and stability, it is convenient to assume that the iterates are computed
according to the row-wise ordering (cf. the discussion at the beginning of the previous section).
Thus, we assume that first all iterates Y~1 >, n = 1, ... , N are computed, next Y~2>, n = 1, ... , N, etc.
In order to get insight into the (linear) stability region and the convergence region of the PIRKAS
GS method, we consider the test equation y'(t) = A.y(t), where A. is assumed to run through the
spectrum of of/oy. With respect to this test equation, the linear stability properties of the PIRKAS
GS method are determined by the convergence properties of the iteration process, the stability of
the corrector and the stability of the first iterates Y~1 >, n = 1, 2, ... , N. Assuming that the underlying
corrector is A-stable, the stability region of the PIRKAS GS method is the intersection of the
stability region of the formula defining the first iterate Y~1 > and the region of convergence of the
correction formula (2.4).

Table I
Computational scheme for the PIRKAS GS method (2.6)

!1 t2 £3

2 y\ll
3 r\2> y~l)

m+l r\"'i jr~-1) y~-2)

m+2 y~m) y~-1)

N+ 1

N+m

f (l)
m+ 1

'y<m> yVi
N-m+ 1 ,.

P.J. van der Houwen et al. /Journal of Computational and Applied Mathematics 60 (1995) 309-329 315

2. 2. J. Stability region of the first iterate
We restrict our considerations to one-step predictors based on information from the preceding

interval (tn- 2, ln - i], that is, Y~11 is computed by means of information coming from the iterate
Y~12 1 • As already observed, we want all iterations of comparable sequential computational
complexity, so that we are led to the predictor formula Y~01 = (E: ® J) Y~12 i. to obtain

Y~11 = (E (8) J)Y~12 1 + h(B® l)F((E: ® J)Y~12 i), n = 1,2, ... ,N, (2.7)

where E: is a still free, (s + 1)-by-(s + 1) extrapolation matrix. Obviously, this formula should be
a sufficiently stable step-by-step method by itself. Thus, the situation is different from that in
conventional PC methods where only accuracy plays a role, because in that case the corrector is
(numerically) solved before advancing to the next step point.

The most simple choice for the free matrix E: in (2.7) sets E: = E for all n (LSV predictor). The
resulting method (2.7) reduces to the explicit Euler method for the successive components of f~1>,
the stability region of which is well known.

An alternative to the "trivial" choice E: = E is to exploit the fact that the underlying corrector is
based on the collocation principle. This means that the components Yn.i are approximations to the
exact solution at tn- t + c;h of (at least) orders. Hence, extrapolating the collocation polynomial
through the values Y~12 1 ,, yields predictions Y~~l of the same (local) order. The corresponding
predictor will be referred to as the EXP predictor. The order conditions for the EXP predictor are
given by

E:(c - ef = (rnc)k, rn := hh" , hn := tn - tn- i. k = 0, 1, ... ,s,
n-1

which uniquely define the matrix E*. It can explicitly be expressed in the form

E: = vu- 1, U := (e, (c - e), ... ,(c - e)5), V := (e,rnc, ... ,(rnc)').

The stability region of (2. 7) is obtained by applying it to the test equation with constant stepsize
h, to obtain

Y~1 l = EY~12 1 + zBE* Y~12 i. z :=)..h.

Hence, the stability region of (2.7) consists of the points z where the eigenvalues of the matrix
E + zBE* are within the unit circle. In Table 2, we have listed the first two decimal digits of the real
and imaginary stability boundaries of the stability region of (2.7) with E* = vu- 1 for the BK and
Radau IIA correctors.

2.2.2. Region of convergence
We shall derive the region of convergence for the method (2.6) for fixed stepsizes. Let us define

the stage vector iteration error

e\i>

eV>
e<il := .. w ·- y<il - Y. vn .- n n·

316 P.J. van der Houwen et al. /Journal of Computational and Applied Mathematics 60 (1995) 309-329

Table 2
Stability boundaries (/J, •• i,[J,ma.J for { (2.7), E* = Vu- 1}

RK corrector s = 2

Butcher-Kuntzmann (0.61,0.62)
Radau IIA (0.92, 0.00)

s=3

(0.49, 0.00)
(0.59,0.61)

s=4

(0.44, 0.00)
(0.49, 0.00)

s=5

(0.42, 0.00)

Subtracting (2.1) and (2.4), we find that s~il satisfies the linear homogeneous recursion

sc,fl - Es~i~ 1 = zBs~i- 1>, z := J.h.

Hence, given the initial iteration error e<0J and observing that s~> vanishes, we obtain

eU+ 1> = zMs<j), M := L -t K,

where L and K are the N(s + 1)-by-N(s + 1) matrices

L:=

I 0 0

-E I 0

0 0 0

0 0

0 0

- E I

K ·-.-

B 0

0 B

0 0

These formulas suggest defining the region of convergence C

C := {z: lcx(z)I < l}, a(z) := lzlp(L - 1K),

0

0

B

(2.8)

(2.9)

(2.10)

(2.11)

where p(·)denotes the spectral radius function. Furthermore, we observe that for any two matrices
P and Q, the relation

Q 0 0 0
I 0 0 0 0 -- l Q 0 0

PQ Q 0 0
-P I 0 0 0 0 Q 0

= p2Q PQ Q 0

0 0 0 -P I 0 0 Q
p3Q p2Q PQ Q

(2.12)

holds. Applying this relation to the amplification matrix M = L - 1 Kand observing that E; = E, we
obtain

B 0 0 0

H B 0 0

M= H H B 0 '
H := EB = (ebT, 0). (2.13)

H H H B

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 317

Table 3
Spectral radius p(A) for RK correctors

RK corrector s = l s=2 s=3 s=4 s=5

Butcher- Kuntzmann 0.50 0.29 0.22 0.17 0.14
Radau IIA 1.00 0.41 0.28 0.20 0.16

Notice that the matrix M is singular because the (s + l)st, (2s + 2)nd, etc. columns have zero
entries. This singularity can easily be removed if we redefine the error recursion (2.9) by omitting
the (s + l)st, (2s + 2)nd, etc. rows and columns of M, and the (s + l)st, (2s + 2)nd, etc. entries of eUl.

Let us denote this "'reduced" matrix by M. Then, it is easily verified that M can still be represented
by (2.13), provided that the matrices B and H are replaced by A and C := ebT, respectively.
Evidently, the matrices M and A have an equal spectral radius, which leads to the following
theorem.

Theorem 2.l. With respect to the test equation y'(t) = .Ay(t), the region of convergence of the

PIRKAS GS method (2.6) is given by C := {z: p(zA) < l}.

Recalling that Jc is assumed to run through the spectrum of 8f/8y, this theorem leads us to the
convergence condition

1
h~ .

p(of/oy)p(A)
(2.14)

In Table 3, we have listed the values of p(A) for the BK methods and Radau IIA methods with
s = 1 , ... , 5 (we remark that the region of convergence of the PIRKAS GS method, and therefore
the condition of convergence, is the same as those of the PIRK method). Because of the relatively
small values of p(A), the stepsize restriction is not severe. A comparison with Table 2 reveals that
the stability condition imposed by the predictor is considerably more severe than the convergence
condition of the corrector.

The preceding considerations are "asymptotic" considerations, that is, the convergence condi­
tion is only relevant for sufficiently many iterations. In order to get insight into the convergence in
the initial phase of the iteration process, we now consider the convergence factor. This will be the
subject of the next section.

2. 3. The convergence factor

The preceding considerations suggest defining the (averaged) convergence factor by the quantity

a(N, j) := lz\.jilMlif co = llc~T ~ "'" (2.15)

where T denotes the length of the integration interval. First, we derive the convergence factor for
j --> oo and for N -+ oo.

318 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329

Theorem 2.2. For any corrector (2.1), the convergence factor rx.(N, j) satisfies the relations

rx.(N,j) =IA.IT~+ O(j- 1) as j - oo,

rx.(N,j) =IA.IT i l\b~,llo:i + O(N- 1) as N - oo.
1·

(2.16a)

(2.16b)

Proof. Relation (2.16a) is immediate from the asymptotic formula \IMiJl 1'i = p(M) + O(j- 1) =
p(A) + O(j- 1) as j - oo. Relation (2.16b) can be proved by an analysis of the structure of the
matrices Mi. In order to get some idea of this structure, we consider the case j = 2. By observing
that the matrix C in the lower triangle of M is idempotent, we find

Ai

CA +AC

0
A2 0

M2 = CA+ AC+ C CA +AC A2 0

CA+ AC+ 2C CA+ AC+ C CA+ AC A2 0

Evidently, the maximum norm of M2 is determined by its last row of submatrices. Hence, for any
matrix A, the maximum norm of this row is given by II ((N - 2)C, (N - 3)C, ... , 2C, C) II 00 + 0 (N)
as N - oo. From the definition C = eb T it follows that

l\M2 \l 00 = t N 2 1\bTlloo + O(N) as N - ro.

Since the limiting value of the norm does not depend on the matrix A, we conclude that
llM2 \lc:o = \IM~\I 00 + O(N), where M0 is obtained from M by replacing A with 0. More generally, it
can be shown that

llMilloo = llMtlloo + O(Ni- 1) as N - ro

and using the relation

f n" = - 1-N11 + 1 + O(Nq) as N - oo,
n=l q + 1

it can be shown by induction that

llM~l\ 00 = ~ NJl\bT\lro + O(Ni- 1) as N - oo.
}·

The result (2.16b) is now readily proved. D

It turns out that the asymptotic value for N - oo is already reached for relatively small values
of N, whereas the asymptotic value for j - oo takes a considerable number of iterations (see
Table 4 where values of rx.(N,j)/(IA.IT) are listed for the four-stage BK and Radau IIA correctors).

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 319

Table 4
Values of a(N,j)/(l.A.IT) for the BK and Radau IIA correctors with s = 4

RK corrector j N = 1 N= 2 N =4 N =8 N = 16 N-> oo

Butcher-Kuntzrnann l 0.93 0.97 0.98 0.99 l.00 1.00
2 0.66 0.68 0.70 0.70 0.70 0.71
4 0.42 0.44 0.44 0.45 0.45 0.45
8 0.25 0.26 0.26 0.26 0.26 0.26

16 0.21 0.14 0.14 0.15 0.15 0.15
32 0.18 0.12 0.08 0.08 0.08 0.08
j-+ OC; 0.17 0.09 0.05 0.03 0.01 0.00

Radau IIA 1 1.00 l.00 1.00 1.00 1.00 1.00
2 0.71 0.71 0.71 0.71 0.71 0.71
4 0.45 0.45 0.45 0.45 0.45 0.45
8 0.28 0.27 0.27 0.25 0.25 0.25

16 0.24 0.16 0.15 0.15 0.15 0.15
32 0.22 0.13 0.09 0.08 0.08 0.08
j-+ 00 0.20 0.11 0.06 0.04 0.02 0.00

Finally, we consider the condition of the correction formula (2.4). Since these correction formulas
couple the iterates at all step points tno n = 0, 1, ... , N, their condition may play a role in actual
computation. We shall derive the condition of (2.4) in the case of the model equation y' = A.y. For
this equation, (2.4) reduces to

y~i> = EY~~ 1 + zBY~ - I), z := A.h. (2.4')

Following the approach of Section 2.2 for the iteration errors e~>, we drop the last component of
the iterate Y~>, for n = 1, ... , N, and we combine the "reduced" iterates y~i> in one vector Y(j). ln an
analogous way as we derived (2.9), we are led to the recursion yu+ 11 = z.AifyU>, where we assumed
the initial values of the IVP to be zero. Suppose that Mis perturbed by the matrix fJP Mand yui by
the vector bQY<i>, where P and Qare perturbation matrices with Q diagonal, and where fJ is a small
positive parameter. Then, instead of yo+ ll, we obtain the perturbed iterate Y(o) = z(M + oPM)
(I + fJQ)Y(j). Hence, defining the condition number K(M) := llMll llM- 1 11,

l'f(fJ) - yu+ 1)11 = bllAPM + MQ)Ywll + O(zc52) = bi!(P + MQM- 1)ru+ii11 + O(zfJ2)

(2.17)

Thus, the magnitude of K(M) estimates the effect of perturbations of yw on y~i+ ll. With respect to
the maximum norm II · II 00 , the following result can be derived.

Theorem 2.3. For the BK corrector the condition number K«>(M) := llMll:xi llM- 1 lloc is given by

320 P.J. van der Houwen et ai./Journa/ of Computational and Applied Mathematics 60 (1995) 309-329

Table 5
Condition number ""'(M°) for RK correctors

RK corrector s N = 1 N =2 N =4 N =8 N = 16 N-+ oo

Butcher-Kuntzmann 2 7 38 172 728 2991 12 N 2

3 22 99 421 1738 7059 28 N2

4 45 198 827 3377 13647 55 N 1

5 80 343 1416 5753 23192 93 N 2

Radau IIA 2 7 18 36 72 144 29 N
3 18 42 84 169 337 11 N
4 34 76 153 306 611 38 N

If the corrector is L-stable, then

Koo(M) = (\\A\\co + N - 1) \\(A- 1CA- 1, A- 1)\\oo ~ N ll(A- 1CA- 1,A- 1) \lco· (2.18b)

Proof. Since A is nonsingular, it can be verified that]IJ- 1 is of the form

A-1 0

-F A-1 0

Nr 1 = FG -F A-1 0
'

F := A- 1edT, G := edT -I, dT := bTA-1.

-FG2 FG -F A-1 0

Using the relation FGi = yiF, where y := dTe - 1, we conclude from (2.13) and (2.19) that

K 00 (M) = (l\A\\co + N-1) \IQl\co, Q := (yN- 2 F,yN- 3F,yN- 4 F, ... ,yF,F,A-l).

Hence,

- 11(1 - ly\N-1 -1)11
K 00 (M) = (\\A\\<X.l + N - 1) l - \y\ F, A

00
•

From the stability function R(z) at infinity, that is from

R(z) := 1 + zhT(l - zA)- 1e = 1 - bT A- 1e + O(z- 1) as z --+ ro,

(2.19)

we see that y = hT A- 1e - 1 = - R(co). Hence, for BK methods we have y = (- l)s+ 1, and for all
L-stable methods we have y = 0. This leads us straightforwardly to the assertion of the
theorem. D

This theorem shows that for large N, BK correctors possess less well-conditioned amplification
matrices than Radau HA correctors (see also Table 5), which may result in a larger total number of

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 321

function calls as N increases. However, from a practical point of view, it is the number of sequential

function calls Nseq = N + m that is important. Hence, for large N, the conditioning of the
amplification matrix will not influence the sequential costs.

3. Implementation considerations

In an actual implementation, we are faced with aspects as the stability of the predictor
formula, the number of iterations needed to reach the corrector solution, stepsize control, adapting
~he algorithm to a given number of processors, etc. In this section, we shall briefly discuss these
issues.

3.1. The predictor

In Section 2.2, we considered the accuracy and stability of formula (2.7) for the first iterate y~1 >.
For larger stepsizes, this formula may lack both accuracy and stability. To circumvent this
situation, we need some control on its quality. If necessary, we continue the iteration until y~i~ 1 has
the required properties to serve as a starting point to move to the next step point for computing
Y~1 >. This can be achieved by using in (2.7) the predictor formula

f (0) = (£* /Q\ J) yU*>
n n'<Y n-1, (3.1)

to obtain

Y~1 > = (E ®I) y~_::>1 + h(B ® I)F((E: ® /) y:f_::\), n = 1, 2, ... , N, (3.2)

where j* is such that Y~..'.:l 1 is of sufficient quality for increasing the time index n. Thus, j* is
dynamically determined during the integration process, and, in general, j* will depend on tn. For
the extrapolation matrix E: we may choose E: = E (LSV predictor) or E: = vu- 1 (EXP
predictor, see Section 2.2.1).

3.2. Dynamic determination of j* and m on a given number of processors

If j* and mare dynamically determined during the integration process, then these quantities will
become functions of tn. The functions j*(tn) and m(tn) depend on the number of processors
available. In this subsection we will describe the strategy by which these functions will be
determined. For clarity reasons, this description will be given for the "regular" part of the
integration interval and needs slight adaptation at the start and at the end of the interval, since then
fewer points (in time) are involved.

For simplicity, iterates will be indicated by Y~1), in spite of the fact that the iteration index j has
different actual values at different time points, that is, the notation ignores that j depends on n.

Suppose that we have at our disposal a network of P processor- units where each unit contains
s processors (see the discussion of the computational scheme (2.6)). Then, instead of iterating on a_ll
N iterates y~i\ n = 1, ... , N, simultaneously, we shall iterate on the last P iterates Y~1 >,
v = n - P, ... , n - 1, that do not yet have the corrector accuracy. In fact, we only proceed to the
next step point if Y:/2 P has the corrector accuracy and if Y~j2 1 is a safe starting point for computing

322 P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 60 (1995) 309-329

Y~0>. Given a value of P, we need a criterion that signals when the time level can be increased. For
that purpose, we control the correction

A<il = ll(eTE®J)(Y~i:/> __ y~i~ill 1
n-i ll(eTE@J)Y~:/ 1 111

(3.3)

Thus, first, we require that at tn -P the corrector is approximately solved by the iterate y~i~ Pleading
to the condition

(3.4a)

As soon as this condition is fulfilled, we set m(tn-P) = j. Next, we require that the step point value at
tn- l is sufficiently accurate to serve as the basis for a prediction at the next time level, resulting in

(') L1/ ~ TOLpred. (3.4b)

for v = n - 1. Since we observed that the corrections L1 ~i> are not always a monotonically
increasing function of v, we imposed-as an extra safety factor-the condition that the iterates y~i>,
v = n - P + 1 , ... , n - 1 should also satisfy (3.4b). Together, these conditions determine the value
ofj*(tn- 1). Notice that the dynamic PIRKAS GS method will perform like the PIRK method if
TOLpred -o.

Since the computational costs of the predictor formulas (3.1) can be ignored, the sequential costs
Nseq of the dynamic PIRKAS GS method satisfy

N-1

Nseq ~ max m(tn) + L j*(tn)·
lE;nE;N n=t

Thus, the sequential costs are completely determined by the m(tn) and j*(t11) values. Usually,
N will be large with respect to maxn m(tn), so that I.nj*(tn) is the essential quantity determining the
sequential costs.

3.3. Convergence of the dynamic PIRKAS GS method

In the dynamic PIRKAS GS method, the correction formula (2.4) should be adapted according
to

y~> = (E ® l)Y~q~n1- 1 ·m + h(B ® I)F(Y~i- tl),

j = l, .. ., m(tn); n = 1, 2, ... , N, (3.5)

q(n, j) := j + j*(tn) - 1,

where y~l = y~m<rnll for j > m(tn). Notice that by setting j*(tn) = 1 and m(tn) = m for all n, we retain
the recursion (2.4). The iteration error analysis of(3.5) requires the redefinition of the iteration error
vectors eW. We shall illustrate this for the case where the function j*(n) is constant for all n. So,
suppose that the application of the dynamic PIRKAS GS method has led to j* (tn) = j*, j* being
a constant integer greater than 1. Then, in the (n, j) plane, the set of iterates corresponding to the
points

(l,i + (n - l)j* + 1),(2,i + (n- 2)j* + 1), ... ,(n -2,i + 2j* + 1),(n -1,i + j* +l),(n,i +1)

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 323

j = 8

j = 7

j = 6

j = 5

j = 4

j=3

j=2

j = 1

2

2 n-4 n-3

4

3

2

6

5

4

3

2

n-2 n-1

Fig. 2. Iteration index i in the case j* = 2.

can be computed from the set of iterates corresponding to the points

8

7

6

5

4

3

2

n

(1, i + (n - l)j*), (2, i + (n - 2)j*), ... , (n - 2, i + 2j*), (n - 1, i + j*), (n, i).

Here, i is a new iteration index assuming values i = 1, 2, In Fig. 2, these sets of points are
indicated by their index i for the case j* = 2.

Let the iteration errors corresponding to the sets of iterates be denoted by 'l(iJ and qCi+ 1 >,
respectively. Then, it is easily verified that 17<i> satisfies (2.9) with j and N replaced by i and n. Hence,
with a few obvious changes, all results of Section 2 apply to (3.5), so that the convergence behaviour
of the iteration errors e(il can be derived from that of the iteration errors t/<il. We shall refrain from
a more detailed analysis, because, as already observed in Section 3.2, the sequential costs are
essentially determined by L::n j*(tn), rather than by the number of iterations m(tn).

3.4. Stepsize control

In order to compare the PIRKAS GS method with results reported in the literature, we provide
the method with a simple stepsize control strategy (without step rejection). A future paper will be
devoted to more sophisticated stepsize control mechanisms.

An initial guess for the integration step hn := tn - tn - 1 can be computed by means of the
standard formula (see, e.g., [9])

IF n = 1 THEN h1 = 11 J~~ll i ELSE hn = hn-t min{2,max{~,0.9 (~~~ Yf<s+ 1J} }• (3.6a)

where

(3.6b)

324 P.J. van der Houwen et al.(Journal of Computational and Applied Mathematics 60 (1995) 309-329

is used as an estimate for the local truncation error 'tn- l· Since the predictor result is of orders, this
estimate is of orders, as well. In order to achieve a smooth variation of the stepsizes as a function of
n, we compute a second approximation to the new integration step by applying the averaging
formula

Finally, the step hn is rounded to hn such that the remaining integration interval is an integer
multiple of hn.

Notice that this stepsize strategy is rather conservative; this is due to the fact that the local
truncation error is based on the difference between the prediction ¥~01 1 (obtained by extrapolation
from Y~:> 2) and ¥~11 i. the result after just one correction. This conservative error estimation is
a direct consequence of the "across the steps" approach where the algorithm tries to proceed to the
next step without waiting for convergence of the preceding iterate. Usually, conservative error
estimates grossly overestimate the real local truncation error, resulting in rather small steps in
relation to the value of TOL As a result, this strategy tends to yield global errors that are several
orders of magnitude smaller than the value of TOL. However, this is only a matter of scaling and of
less practical importance. TOL still plays the role of a control parameter with the property that
decreasing TOL yields a more accurate result.

4. Numerical experiments

The PIRKAS GS method { (3.1), (3.5)} described above contains as input parameters the number
P ofiterates that are concurrently corrected, the tolerance parameters TOLcorr (for the correction at
t 11 -p) and TOLpred (for the corrections at the remaining P - 1 points), and the tolerance parameter
TOL for the stepsize. With respect to the parameter TOLcorr we remark that it has been
given a small value to ascertain that the corrector was more or less solved. In most experiments,
the value 10- 10 is sufficiently small; in a few situations (i.e., when the corrector is able to
produce a global error less than 10- 10, we change to TOLcorr = 10- 12 in order not to be hampered
by a too crude convergence tolerance). It may happen that the most left iterate of the
block of iterates that are concurrently corrected, already satisfies the condition (3.4a) while (3.4b)
is not yet satisfied. In such a situation, we do not need the corresponding processor anymore.
Thus, the number of processors that is actually needed may change during the integration
process. However, for the performance of the method it is not relevant whether we continue
iterating or not.

In this section, we present a few examples illustrating the effect of the parameters P, TOLprcd and
TOL on the efficiency of the PIRKAS GS method. The calculations are performed using 15-digits
arithmetic. The accuracy is given by the number of correct digits .£\., obtained by writing the
maximum norm of the absolute error at the endpoint in the form 10-A. We recall that the
sequential computational complexity can be measured by Nscq• the total number of sequential
right-hand side evaluations performed in the integration process. Furthermore, we define the
average number of iterations and the average number of sequential iterations per step by
m"' := N- 1I.nm(t11) and m:eq := N- 1 Nscq·

P.J. van der Houwen et a/./Journal of Computational and Applied Mathematics 60 (1995) 309-329 325

4.1. Test problems

Widely used problems for testing nonstiff solvers are the Euler problem JACB from [9, p. 236]

yi(O) = 0,

Y2(0) = 1,

Y3 = - 0.51Y1Y2. y3(0) = 1,

the Fehlberg problem (cf. [9, p. 174])

0::::; t:::;; 60,

y'1 = 2tYi log(max{y2 , 10- 3 }), y 1 (0) = 1,

y2 = - 2ty2log(max{Yi,10- 3 }), y2 (0) =e.

and the Lagrange problem LAGR (cf. [9, p. 237])

Y}=Yj+lO• j= 1,2, ... ,10,

0::::; t::::; 5,

Y}+ 10 = (j - l)Yj- 1 - (2j - l)yj + jyi+ 1 , j = 2, 3, ... , 9;

Y2o = 9y9 - 19Y10.

y1{0) = 0 for j =ft 8, Ys(O) = 1.

4.2. Convergence behaviour

(4.1)

(4.2)

0 ::::; t ::::; 10, (4.3)

Since the major aim of the PIRKAS GS approach is to reduce the number of sequential
iterations needed to solve the corrector, we will first present some results to illustrate the
convergence behaviour. For that purpose we use the Euler problem (4.1) and we will consider the
influence on the convergence when the input parameters are varied. The parameter TOL, which
controls the local truncation error, is the familiar tolerance parameter occurring in any ODE code
by which the accuracy of the numerical solution is controlled (see Section 3.4). Results for several
values of TOL will be given in Table 7. However, choosing suitable values for the tolerance
parameter TOLpred and the number of processor units P is less evident. For the 4-point BK
corrector, their influence is shown in Table 6. From this table we conclude that the role
ofTOLpred is not very critical as long as P:::;; 8. This behaviour can be explained by the fact that for
small P, (3.4a) will usually be a more severe condition than (3.4b). Hence (3.4a) will force the
algorithm to make several corrections to let the left point from the block that is concurrently
iterated satisfy the corrector. As a consequence, the quality of all other points involved (in
particular the right one which will be used to create a prediction) will be improved as well. Hence
(3.4b) is then easily satisfied, even for smaller values of TOLpred· For large P-values however,
an iterate corresponding to a particular time level has been part of many blocks and hence
many corrections have been performed at this time point. Therefore, the test (3.4a) is easily passed.

326 P.J van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329

Table 6
{EXP, 4-point BK} and {EXP, 4-point Radau IIA} PC pair applied to the Euler problem (4.1) with TOL = 10 · 2

{EXP, 4-point BK} PC pair {EXP, 4-point Radau UA} PC pair

p TOLpred .d N Nseq m~q m* .:1 N Nseq m:eq m*

10-1 7.4 152 1080 7.1 7.1 6.0 187 1326 7.1 7.1
10-2 7.4 152 1080 7.1 7.1 6.0 187 1326 7.1 7.1

2 10-1 7.4 152 551 3.6 6.2 6.0 187 672 3.6 6.1
10-2 7.4 152 551 3.6 6.2 6.0 187 672 3.6 6.1

4 10-1 7.4 153 365 2.4 8.2 6.1 189 422 2.2 7.7
10-2 7.4 153 365 2.4 8.2 6.1 189 422 2.2 7.7

8 10-1 7.5 155 302 1.9 13.5 6.1 190 340 1.8 12.5
10-2 7.5 155 302 1.9 13.5 6.1 190 340 1.8 12.5

16 10-1 8.3 233 381 1.6 22.2 6.6 266 414 1.6 21.6
10-2 8.0 179 327 1.8 21.2 6.4 207 356 1.7 20.9
10-3 7.4 152 301 2.0 15.7 6.0 185 367 2.0 9.2
10-4 7.4 152 414 2.7 6.6 6.0 187 537 2.9 6.1

32 10-1 8.2 198 347 1.8 24.6 6.5 223 373 1.7 24.2
10-2 8.0 180 329 1.8 21.4 6.3 203 354 1.7 21.8
io- 3 7.4 152 301 2.0 15.7 6.0 185 367 2.0 9.2
10-4 7.4 152 414 2.7 6.6 6.0 187 537 2.9 6.1

To guarantee that the "front" of the block is also of sufficient quality, we need a more stringent
value for TOLpred· From the table it is clear that crude values for this parameter result in larger
truncation errors and hence an increased number of time steps. In general, we conclude that
increasing P leads to an enhanced performance.

In order to see the effect of the corrector formula (2.1) on the averaged number of iterations m*,
we also listed results for the {EXP, 4-point Radau IIA} PC pair. Evidently, the BK corrector
produces higher accuracies and requires less sequential function calls. Furthermore, the averaged
number of iterations per step point is comparable, except for the case where a larger number of
processor units is combined with a smaller value of TOLpred (in the limit, the averaged number of
iterations m* approaches that of the PIRK method corresponding to P = 1). This difference can be
explained by the particular step advance strategy used causing j*(tn) to change discontinuously.

Confining our considerations to BK correctors, we will now test the influence of the number of
stages s and the parameter TOL. Table 7 shows results for s == 2 and s = 4. In these tests we set
P = 4 and TOLpred = 10- 1. This table gives rise to the conclusion that the number of sequential
calls per step is quite modest (much lower than for the PIRK method), and moreover decreases
when we move to the high accuracy range. This tendency was also observed for the other problems.

4.3. Comparison with DOPR/8

Next, we will make a comparison with the code DOPRI8 (given in [9]); this code is based on the
embedded RK method in [18] of order 8(7). DOPRI8 is nowadays considered as the state of the art

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329 327

Table 7
{EXP, s-point BK} PC pairs with P = 4 applied to the Euler
problem (4.l) with TOLprod = 10- 1

s TOL LI N Nseq m:.q m*

2 10-1 2.4 121 370 3.1 10.8
10-2 3.6 263 539 2.0 7.1
10-3 4.8 566 910 1.6 5.3
10-4 6.0 1234 1633 L3 4.2

4 4.4 58 234 4.0 13.6
10-1 5.9 95 290 3.1 10.7
10-2 7.4 153 365 2.4 8.2
10- 3 9.6 245 462 1.9 6.3

Table 8
Values of N,.q for DOPRI8 and speed-up factors for PIRKAS GS methods (with various numbers of processor units)
for the Euler problem (4.1)

Code Order p LI= 4 Ll=5 LI= 6 A= 7 .LI =8 A=9 A= 10

DOPRl8 8 1083 1361 1864 2366 3038 3600 4526

PIRKAS GS 8 4 5.0 5.3 6.3 6.9 7.8 8.3 9.4
8 5.0 5.9 7.4 8.3 8.9 8.6 8.9

16 4.8 5.7 7.3 8.3 8.4 8.8 10.1

PIRKAS GS 10 4 6.7 8.2 9.3 10.4 10.7 11.4
8 6.3 8.5 10.2 11.9 12.9 14.9

16 8.l 10.0 11.8 12.5 14.2

for integrating nonstiff problems on a sequential computer. For a wide range of TOL-values,
we applied DOPRI8 to the three test problems. In Tables 8-10 we present, for a number
of integer ~-values, the corresponding Nseq-values, obtained by interpolation. For the same
~-values, we caJculate the values of Nseq needed by the PIRKAS GS method and we list
the speed-up factors with respect to DOPRI8 (defined as the quotient of the respective values
of Nseq).

From these tables we see that the speed-up factors increase if we enter the high-accuracy region
(for the PIRKAS GS method of order 10 this is of course also caused by the higher order).
Furthermore, with respect to the number P, we conclude that its optimal value seems to be in the
range [8, 16]. Of course, the optimal value may differ with the problem solved and also depends on
the parameter TOLprcd· If TOLpred is chosen too large for the problem at hand, then the optimal
value of P should be sufficiently small in order to prevent that condition (3.4a) is satisfied prior to
(3.4b).

328 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 60 (1995) 309-329

Table 9
Values of N,.q for DOPRI8 and speed-up factors for PJRKAS GS methods (with various numbers of processor units) for
the Fehlberg problem (4.2)

Code Order p LI= 5 LI= 6 A= 7 LI= 8 LI= 9 A= 10 A= 11

DOPRI8 8 658 824 1025 1291 1650 2033 2570

PIRKASGS 8 4 5.6 5.7 6.0 6.5 7.0 6.9 7.3
8 6.0 6.5 7.3 8.1 9.0 8.7 9.0

16 5.6 6.1 6.8 7.9 7.8 8.1 9.1

PIRKASGS 10 4 5.9 7.0 7.7 8.4 9.4 10.4 11.8
8 6.0 7.2 8.7 10.2 12.2 13.0 14.6

16 5.5 6.8 8.1 9.2 10.6 11.7 13.0

Table 10
Values of N,.q for DOPRl8 and speed-up factors for PIRKAS GS methods (with various numbers of
processor units) for the Lagrange problem (4.3)

Code Order p A= 5 J =6 J = 7 A== 8 J =9 .1=10

DOPRIS 8 668 841 1161 1498 1812 2319

PIRKAS GS 8 4 3.3 3.7 4.7 5.2 5.2 5.4
8 3.3 3.8 4.7 5.4 5.8 6.4

16 4.5 4.9 5.2 4.9 5.0

PIRKAS GS 10 4 5.8 6.7 7.4 8.6
8 5.6 6.9 7.6 9.1

16 6.7 7.3 8.6

Acknowledgements

The authors are grateful to W.M. Lioen for many comments and suggestions during our
discussions of the research reported in this paper. We also acknowledge the efforts of the referee
who apparently made a detailed study of the paper and suggested essential improvements in the
description of our PIRKAS GS method.

References

[1] A. Bellen, R. Venniglio and M. Zennaro, Parallel ODE-solvers with stepsize control, J. Comput. Appl. Math. 31
(1990) 227-293.

[2] K. Burrage, The error behaviour of a general class of predictor-corrector methods, Appl. Numer. Math. 8 (1991)
201-216.

[3] K. Burrage, The search for the Holy Grail, or predictor-corrector methods for solving ODEIVPs, Appl. Numer.
Math. 11 (1993) 125-141.

P.J. van der Houwen et al./Joumal of Computational and Applied Mathemlltics 60 (1995) 309-329 329

[4] K. Burrage, Efficient block predictor-corrector methods with a small number of iterations, J. Comput. Appl. Math.
45 (1993) 139-150.

[5] J.C. Butcher, On the convergence of numerical solutions to ordinary differential equations, Math. Comput. 20 (1966)
1 10.

[6] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods
(Wiley, New York, 1987).

[7] P. Chartier, Parallelism in the numerical solution of initial value problems for OD Es and DAEs, Thesis, Universite
de Rennes I, France, 1993.

[8] G.H. Golub and C.F. Van Loan, Matrix Computations (North Oxford Academic, Oxford, 1983).
[9] E. Hairer, S.P. Narsett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series

in Comput. Math. 8 (Springer, Berlin, 2nd ed., 1993).
[IO] A. Iserles and S.P. N0rsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10 (1990)

463-488.
[11] K.R. Jackson and S.P. N0rsett, Parallel Runge-Kutta methods, 1988, manuscript.
[12] K.R. Jackson. A. Kva:rn0 and S.P. Nersett, Order of Runge·-Kutta methods when using Newton-type iteration,

SIAM J. Numer. Anal., to appear.
[13] K.R. Jackson and S.P. N0rsett, The potential for parallelism in Runge-Kutta methods, Part I: RK formulas in

standard form, Tech. Report No. 239/90, Dept. of Computer Science, Univ. of Toronto, 1990.
[14] I. Lie, Some aspects of parallel Runge-Kutta methods, Report 3/87, Dept. of Mathematics, Univ. of Trondheim,

1987.
[15] W.L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential equations.

Math. Comput. 21 (1967) 303-320.
[16] J. Nievergelt, Parallel methods for integrating ordinary differential equations, Comm. ACM 7 (1964) 731-733.
(17] S.P. N0rsett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in: A. Bellen, C.W. Gear and E. Russo.

Eds., Numerical Methods for Ordinary Differential Equations, Proceedings L'Aquila 1987, Lecture Notes in Math.
1386 (Springer, Berlin, 1989).

[18] P.J. Prince and J.R. Dormand, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math. 7 (1981)
67-75.

[19] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge-Kutta methods with stepsize
control, J. Comput. Appl. Math. 29 (1990) 111-127.

[20] P.J. van der Houwen and B.P. Sommeijer, Butcher,-Kuntzmann methods for nonstiff problems on parallel
computers, Appl. Numer. Math. lS (1994) 357-374.

