
Centrum Wiskunde & Informatica

M/G/infinity transience, and its applications
to overload detection

M.R.H. Mandjes, P. Zuraniewski

PNA-E0910



Centrum Wiskunde & Informatica (CWI) is the national research institute for Mathematics and Computer 
Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2009, Centrum Wiskunde & Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Science Park 123, 1098 XG Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711



M/G/∞ transience,
and its applications to overload detection

Michel Mandjes∗ and Piotr Żuraniewski†
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Abstract

When controlling communication networks, it is of crucial importance to have procedures that are capable of
checking whether there are unanticipated load changes. In this paper we develop techniques for detecting
such load changes, in a setting in which each connection consumes roughly the same amount of bandwidth
(with VoIP as a leading example). For the situation of exponential holding times an explicit analysis can be
performed in a large-deviations regime, leading to approximations of the test statistic of interest (and, in ad-
dition, to results for the transient of the M/M/∞ queue, which are of independent interest). This procedure
being applicable to exponential holding times only, and also being numerically rather involved, we then de-
velop an approximate procedure for general holding times. In this procedure we record the number of trunks
occupied at equidistant points in time ∆, 2∆, . . ., where ∆ is chosen sufficiently large to safely assume that the
samples are independent; this procedure is backed by results on the transient of the M/G/∞ queue, thus com-
plementing earlier results on relaxation times. The validity of the testing procedures is demonstrated through
an extensive set of numerical experiments.
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1 Introduction

When sizing communication networks, probably still the most frequently used tool is the celebrated Erlang
loss formula, dating back to the early 1900s. This formula was originally developed for computing the blocking
probability for circuit-switched (for instance voice) traffic sharing a trunk group of size, say C ∈ N, and could
be used for dimensioning purposes: it enables the selection of a value of C such that it is guaranteed that the
blocking probability is below some tolerable level ε. Despite the fact that the formula has been around for a
rather long time, it is still a cornerstone when resolving dimensioning issues, owing to its general applicability
and its explicit, manageable form. Also, it is important to notice that it can in principle be used in any setting
in which each connection requires (roughly) the same amount of bandwidth (which can then be normalized to
1). As a consequence, it is also applicable for technologies that are currently used, for instance in the context of
voice-over-IP (VoIP).
In more detail, the Erlang loss formula is based on the (realistic) assumption of a Poisson arrival stream of
flows (say, with intensity λ, expressed in Hertz or s−1). The call durations are independent and identically
distributed, with mean 1/µ (in s), and the load % is defined as the unit-less number % := λ/µ. If there are C lines
available, the probability of blocking in this model is

p(C | %) :=
(

%C

C!

)/(
C∑

c=0

%c

c!

)
.

Importantly, this formula shows that for dimensioning the trunk group, no information on λ and µ is needed
apart from their ratio % = λ/µ. Observe that no assumption on the distribution of the call holding times was
imposed; the above formula applies for all holding-time distributions with mean 1/µ.

We denote by %̄ the maximum load % such that p(C | %) is below some predefined tolerance ε. The underlying
queueing model is often referred to as the M/G/C/C queue; a useful (rough) approximation of p(C | %) is
the probability that the number of busy servers in the corresponding infinite-server queue, that is, M/G/∞,
exceeds C.

Above we described a rudimentary dimensioning procedure, but when operating a network one has to con-
stantly check the validity of the input assumptions the dimensioning decision was based upon. More concretely,
one has to check whether the load % has not reached the maximum allowable load %̄. Clearly, if the load has
increased beyond %̄, measures have to be taken to deal with the overload, perhaps by rerouting the excess calls,
or, on a longer timescale, by increasing the available capacity.

This motivates why it is of crucial importance to design procedures to (statistically) assess whether the load
has changed. In statistical terms we would call this a ‘changepoint detection problem’ [13]: from observations
of the number of lines used, we wish to infer whether a load change has taken place. Also, one would like to
know when the change has occurred; then an alarm can be issued that triggers traffic management measures
(overload control, such as rerouting, or temporary adaptations of the amount of bandwidth available to the
calls).
Empirical guidelines for the problem described above have been developed in e.g., [9], but there is a clear need
for more rigorously supported procedures. Without aiming to give an exhaustive overview, we mention here
related work on a fractal model [17], and also [5, 15, 16]. An application of the celebrated cusum technique [13]
in the networking domain can be found in [7], see also [11]. Several valuable contributions to the changepoint
detection problem are due to Tartakovsky and co-authors, cf. [14]. We finally mention that, interestingly, in
other application areas the same type of problems play a crucial role, see e.g. [3].

The main contributions of the present paper are the following.

• We first consider the case in which the call durations have an exponential distribution. We show how
a likelihood-based cusum-type of test can be set up. The crucial complication is that the number of
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trunks occupied does not constitute a sequence of i.i.d. random variables (as there will be dependence
between subsequent observations). Therefore the ‘traditional’ cusum result does not apply here, and a
new approach had to be developed.

Setting up our test requires knowledge of the transient probabilities in the corresponding M/M/∞ sys-
tem. We first show how, in a large-deviations setting, these transient probabilities can be determined.
These have interesting features, such as a so-called bifurcation, as in [12]. The test also requires the com-
putation of the probability that a sum of likelihoods exceeds some threshold. We show how this can be
done, relying on calculus-of-variations techniques.

• The findings above being only applicable to the case of exponentially distributed call durations, and given
the high numerical complexity of the resulting procedure, we then look for an alternative approach that
works for the M/G/∞ in general, and that requires substantially less computational effort.

We explain how classical changepoint-detection techniques can be used here. These classical techniques
rely on the assumption of independent observations (where the observations correspond to samples of
the number of calls in progress, at equidistant points in time, say ∆, 2∆, . . .). This independence assump-
tion is clearly not fulfilled in our model, at least not formally, but evidently for ∆ sufficiently large the
dependence will have a minor impact. We develop new estimates on the relaxation time of the M/G/∞
queue, which tell us how large ∆ should be in order to be able to safely assume independence.

• We then show how accurately the proposed procedures can detect overload. This we do through a series
of simulation experiments. Special attention is paid to the trade-off between the detection ratio and the
false alarm rate. The experiments indicate that our procedure, after some tuning, provides a powerful
technique for changepoint detection.

We have organized the paper as follows. In Section 2 we present our model and some preliminaries, and define
our goal in terms of a changepoint detection problem. Section 3 presents a framework for changepoint detection
for the M/M/∞ model, whereas Section 4 presents the approximate analysis for the M/G/∞ model. The last
section is devoted to numerical experimentation.

2 Model, preliminaries, and goals

In this section we describe the goals of the paper, and the underlying mathematical model. Our analysis will
be based on the M/G/∞ queue, that is, a service system in which calls arrive according to a Poisson process
(with rate, say, λ), where it is assumed that the call durations form an i.i.d. sequence B1, B2, . . ., and infinitely
many servers. With 1/µ denoting the mean value of a generic call duration B, the load of the system is defined
as % := λ/µ. It is well-known that the stationary distribution of the number of calls simultaneously present, say
Y , is Poisson with mean %:

P(Y = k) =
%k

k!
e−%. (1)

Also the transient distribution of this system can be dealt with fairly explicitly. Suppose that Y (t) denotes the
number of trunks occupied at time t, and assuming that the queue is in stationarity at time 0, the following
decomposition applies. Conditioning on Y (0) = k, with ‘=d’ denoting equality in distribution, we have that

Y (t) =d Bin(k, pt) + Pois(λtqt), (2)

where Bin(k, p) denotes a binomial random variable with parameters k and p, and Pois(λ) as Poisson random
variable with mean λ; in addition, the binomial and Poisson random variables in the right-hand side of (2) are
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independent. Here, pt is the probability that an arbitrary call that is present at time 0 is still present at time t,
which can be computed as

pt = P(B? > t) =
1

EB

∫ ∞

t

P(B > s)ds,

where B? denotes the excess life-time distribution of B. Likewise, qt is the probability that an arbitrary call that
arrives in (0, t] is still present at time t; using the fact that the arrival epoch of such an arbitrary call is uniformly
distributed on (0, t], conditioning on the arrival epoch s ∈ (0, t] yields that

qt =
∫ t

0

1
t
P(B > t− s)ds =

∫ t

0

1
t
P(B > s)ds =

EB

t
· P(B? ≤ t).

Observe that the mean of the Poissonian term in the right-hand side of (2), λtqt, equals %P(B? < t).
It is readily verified that the correlation coefficient of Y (0) and Y (t) equals

Corr(Y (0), Y (t)) = P(B? > t);

here it is used that Y (0) has a Poisson distribution with mean %.

As mentioned in the introduction, the goal of the paper is to detect changes in the load imposed on a M/G/∞
queue. More specifically, with % the load imposed on the queueing resource, and %̄ the maximum allowable
load (in order to meet a given performance criterion, for instance in terms of a blocking probability), we want
to test whether all samples correspond to load % (which we associate with hypothesis H0), or whether there has
been a changepoint within the data set, such that before the changepoint the data were in line with load %, and
after the changepoint with %̄ (which is hypothesis H1).

3 Analysis for M/M/∞

In this section we consider the case that the calls are i.i.d. samples from an exponential distribution with mean
1/µ; the model is then known as M/M/∞. We consider the discrete-time Markovian model describing the
dynamics of the number of trunks occupied, by recording the continuous-time process at the embedded epochs
at which this number changes.
Let, for i = 1, 2, . . ., Yi :=

∑i
j=1 Xi, where the probabilities P(Xi = ±1 | Yi−1) are defined through, for given

numbers λm and µm,

(Xi | Yi−1 = m) =

{
1 with probability λm

−1 with probability µm = 1− λm.

As mentioned above, in this section we consider assume that the dynamics of the number of trunks occupied
are described by the M/M/∞ model, i.e.,

λm ≡ λm(%) =
λ

λ + mµ
=

%

% + m
,

with % := λ/µ. We consider the model with an infinite number of trunks available; then the (steady-state)
probability of C calls present can be used as an approximation of the blocking probability in the model with C

lines.
In this section, our analysis relies on applying the so-called many-flows scaling. Under this scaling the load is
renormalized by n (that is, we replace % 7→ n%), and at the same time the number of trunks is inflated by a factor
n, as motivated in [12, Ch. 12]. It effectively means that we can use large-deviations theory to asymptotically (large
n) determine the distribution of the number of calls simultaneously present. Under this scaling the steady-state
number of calls present has a Poisson distribution with mean n%:

P(Y = k) =
(n%)k

k!
e−n%,
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which means that a straightforward application of Stirling’s formula yields the following expression for the
exponential decay rate of P(Y = bnβc):

lim
n→∞

1
n

log P(Y = bnβc) = −% + β + β log
(

%

β

)
=: ξ(β);

here we recognize the large-deviations rate function of the Poisson distribution [12, Example 1.13]. Using
Cramér’s theorem, we also have that the probability P(Y ≥ nβ) has the same exponential decay rate.

Goal: changepoint. We want to test whether there is a ‘changepoint’, that is, during our observation period the
load parameter % (which we let correspond to the probability model P) changes into %̄ 6= % (the model Q). More
formally, we consider the following (multiple) hypotheses. Recall that Xi is the sequence of observed steps
(which have value 1 or −1).

H0: (Xi)n
i=1 is distributed according to the above described birth-death chain with parameter %.

H1: For some δ ∈ {1/n, 2/n, . . . , (n − 1)/n}, it holds that (Xi)
bnδc
i=1 is distributed according to the birth-death

chain with parameter %, whereas (Xi)n
i=bnδc+1 is distributed according to the birth-death chain with pa-

rameter %̄ 6= %.

Inspired by the Neyman-Pearson lemma, see e.g. [2, Ch. V.E and Appendix E], we consider the following
likelihood-ratio test statistic:

max
δ∈[0,1)

 1
n

n∑
i=bnδc+1

Li − ϕ(δ)

 , with Li := log
Q(Xi | Yi−1)
P(Xi | Yi−1)

,

for some function ϕ(·) we will specify later.
To enable statistical tests, we wonder what the probability is, under H0, that the above test statistic is larger than
0. For reasons of tractability, we consider in this section its exponential decay rate (asymptotic in the scaling
parameter n):

η(ϕ) := lim
n→∞

1
n

log P

 max
δ∈[0,1)

 1
n

n∑
i=bnδc+1

Li − ϕ(δ)

 > 0

. (3)

Another option that we will treat in detail, is to explicitly take into account information on the number of calls
present at time 0:

η(ϕ | β0) := lim
n→∞

1
n

log P

 max
δ∈[0,1)

 1
n

n∑
i=bnδc+1

Li − ϕ(δ)

 > 0

∣∣∣∣∣∣Y0 = nβ0

. (4)

We first decompose of the exponential decay rate (4) as follows. We define

η(ϕ, δ | β0) := lim
n→∞

1
n

log P

 1
n

n∑
i=bnδc+1

Li > ϕ(δ)

∣∣∣∣∣∣ Y0 = nβ0

 ;

η̄(ϕ, δ | βδ) := lim
n→∞

1
n

log P

 1
n

n∑
i=bnδc+1

Li > ϕ(δ)

∣∣∣∣∣∣ Ybnδc = nβδ

 ;

ξ(βδ | β0) := lim
n→∞

1
n

log P
(
Ybnδc = nβδ

∣∣ Y0 = nβ0

)
.

Standard large-deviations argumentation (e.g., principle of the largest term) yields that

η(ϕ | β0) = sup
δ∈[0,1)

η(ϕ, δ | β0)

= sup
δ∈[0,1)

sup
βδ>0

(ξ(βδ | β0) + η̄(ϕ, δ | βδ)) ,
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and also

η(ϕ) = sup
δ∈[0,1)

sup
βδ>0

(ξ(βδ) + η̄(ϕ, δ | βδ)) .

The decay rate of the transient probabilities, that is, ξ(βδ | β0), will be analyzed in Section 3.1, whereas the decay
rate of the exceedance probabilities η̄(ϕ, δ | βδ) (which we will sometimes refer to as ‘likelihood probabilities’)
will be addressed in Section 3.2.

3.1 Transient probabilities

To analyze the decay rate of P(Ybnδc = nβδ | Y0 = nβ0), we rely on Slow Markov Walk theory [2, Ch. IV.C]. As
this technique has been described in detail in [2] we restrict ourselves to sketching the main steps. Then we
show how to apply this theory to determine the transient probabilities ξ(βδ | β0).

Slow Markov Walk. A prominent role in Slow Markov Walk theory is played by the so-called ‘local large devia-
tions rate function’, which is given by

Ix(u) = sup
θ

(
θu− log

(
eθλnx(n%) + e−θ(1− λnx(n%))

))
= sup

θ

(
θu− log

(
eθ %

% + x
+ e−θ x

% + x

))
.

Intuitively reasoning, Ix(u) measures the ‘effort the process has to make’ (per time unit), starting in state x, to
move into direction u. It is readily verified that the optimizing θ is given by

θ? ≡ θ?
x(u) =

1
2

log
(

x

%
· 1 + u

1− u

)
; (5)

if θ? is positive (negative) the process has to ‘speed up’ (‘slow down’) to be moving into direction u.
The purpose of Slow Markov Walk theory is to determine the exponential decay rates of the empirical mean
process n−1 · Ybntc to be in a certain set, or close to a given function f . Loosely speaking, it says that

lim
n→∞

1
n

log P
(

1
n
· Ybntc ≈ f(t), t ∈ [0, δ)

)
= −

∫ δ

0

If(t)(f ′(t))dt;

sometimes the right-hand side of the previous display is referred to as the ‘cost’ of the path f in the interval
[0, δ). In this sense, we can determine also the ‘average path’ of Ybntc/n, which is the path with zero cost: it
consists of pairs (f(t), f ′(t)) for which If(t)(f ′(t)) = 0, or, put differently, θ?

f(t)(f
′(t)) = 0. It can be calculated

that this average path is given through the differential equation

f(t)
%

· 1 + f ′(t)
1− f ′(t)

= 1, or f ′(t) =
%− f(t)
% + f(t)

; (6)

This path converges to the ‘mean’ f(∞) = % as t →∞, as was expected.
Inserting θ?, as given in (5), into the objective function Ix(u), we find after tedious computations:

Ix(u) =
1
2
u log

(
1 + u

1− u

)
+

1
2
u log

(
x

%

)
− 1

2
log
(

x%

(% + x)2

)
− log 2 +

1
2

log(1− u) +
1
2

log(1 + u).

Determining the decay rate of ξ(βδ | β0). We can now reduce the search for the decay rate ξ(βδ | β0) to a variational
problem. Slow Markov Walk theory says that

ξ(βδ | β0) = − inf
f∈A

∫ δ

0

If(t)(f ′(t))dt,
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where the set A consists of all paths f such that f(0) = β0 and f(δ) = βδ. This variational problem can be solved
by applying elementary results from calculus of variations; see for instance [12, Appendix C]. The optimizing
path is characterized by the so-called DuBois-Reymond equation [12, Eq. (C.3)]:

If(t)(f ′(t))− f ′(t) · ∂

∂u
Ix(u)

∣∣∣∣
x=f(t),u=f ′(t)

= K,

or, equivalently,

log
(

(1− (f ′(t))2) · (% + f(t))2

4f(t)%

)
= K;

the K is to determined later on (and essentially serves as a ‘degree-of-freedom’, to be chosen such that f(δ) =
βδ). After some elementary algebraic manipulations we find the ordinary differential equation

f ′(t) = ±

√
1− eK · 4f(t)%

(% + f(t))2
; (7)

notice that for K = 0 we retrieve the ‘average path’ (6), as expected.
Unfortunately, the above differential equation allows only for an indirect solution, but, interestingly, we can
explicitly find the inverse of the solution (that is, t in terms of f , rather than f in terms of t), as follows.
Recalling that % + f(t) > 0, by separating variables we obtain

t = ±
∫

(% + f)√
f2 + (2%− 4%eK)f + %2

df.

We are going to solve this differential equation by applying Abel’s theorem: for the natural number ` and
W`(x), V`−1(x) being polynomials of degree ` and `− 1 respectively, we have∫

W`(x)√
ax2 + bx + c

dx = V`−1(x)
√

ax2 + bx + c +
∫

K√
ax2 + bx + c

dx.

Differentiation of the above expression leads to

W`(x)√
ax2 + bx + c

= V ′
`−1(x)

√
ax2 + bx + c + V`−1(x)

2ax + b

2
√

ax2 + bx + c
+

K√
ax2 + bx + c

,

which, after multiplication by 2
√

ax2 + bx + c, results in a polynomial equation that enables the computation
of the coefficients of V`−1(x), as well as the constant K:

2W`(x) = 2V ′
`−1(x)(ax2 + bx + c) + V`−1(x)(2ax + b) + 2K.

For our differential equation we obtain (noticing that ` = 1), with b% := 2%− 4%eK , after solving the polynomial
equation,∫

(% + f)√
f2 + b%f + %2

df =
√

f2 + b%f + %2 +
∫

2%eK√
f2 + b%f + %2

df.

This eventually yields

t = ±
(√

f2 + b%f + %2 + 2%eK log
(

f + %− 2%eK +
√

f2 + b%f + %2

)
+ γ

)
, (8)

where γ is chosen such that the boundary condition, i.e., f(0) = β0, is met.

Numerical evaluation. To obtain path the f(t), for a given value of K, (8) needs to be solved, but obviously
there are alternatives. One could for instance solve the differential equation (7) iteratively starting in f(0) = β0,
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by applying techniques of the Runge-Kutta type. There are numerical difficulties, though, as the path may be
horizontal at some point between 0 and δ (so that the most straightforward numerical procedures do not work).
Below we comment in greater detail on possible ways to solve the differential equation.
A second step the is then to find a value of K such that indeed f?

K(δ) = βδ . Notice that, because we can move
up or down by just 1, we have to require that βδ ∈ [max{0, β0 − δ}, β0 + δ]. Once we have found the optimal
path (having taken into account the condition f?

K(δ) = βδ), say the path f?(·), we can (numerically) evaluate∫ δ

0

If?(t)((f?)′(t))dt,

thus finding the decay rate ξ(βδ | β0).
As indicated, we proceed by making a few observations that enable the numerical evaluation of the decay rate
ξ(βδ | β0).

• If β0 < % and βδ > % or vice versa the above differential equation can, for any given K, be numerically
solved in a straightforward fashion, because the path will be monotone. More precisely, one can rely on
well-known Runge-Kutta techniques, starting in f(0) = β0. By varying the value of K, we can then find
the path that is at βδ at time δ.

Analysis analogous to [12, Ch. 12] reveals the following properties. (i) Suppose β0 < % < βδ . Then the
K that is such that fK(δ) = βδ is negative. The above iterative Runge-Kutta scheme can be used, with for
instance a bisection loop that selects the right K < 0. (ii) If βδ < % < β0, the optimal path is the time-
reversed of the path that starts in βδ and ends in β0. This means that the optimal path can be identified as
under (i), i.e., starting in βδ < %, and ending in β0 > %; note that the decay rate differs, though (but can be
determined by numerically evaluating the integral over the local rate function along the resulting path).

• Problems may arise, however, when the optimal path may have derivative 0 at some point in (0, δ). This
is typically the case when β0 and βδ or both smaller or larger than %, and δ is at the same time relatively
large (as then the optimal path is such that the number of trunks occupied, starting from β0, is first
‘pulled’ towards %, and then ‘pushed back’ into the direction of βδ). Interestingly, for given K > 0, one
can compute the value fK of f(s) at the point s for which f ′(s) = 0. It turns out that

fK = %
(
2eK − 1± 2

√
e2K − eK

)
;

elementary arguments show that we have to take the −-sign (+-sign) when β0 and βδ are both smaller
(larger) than %. Also, it is readily verified that for K = 0 one obtains fK = %, and for K → ∞ in the −-
branch fK → 0 and in the +-branch fK →∞. The solution has, as in [12, Section 12.5], a bifurcation point:
for small δ (say, δ smaller than some critical timescale T ) the path will typically be monotone (K < 0),
whereas for larger δ (i.e., δ > T ) the path will have slope 0 for some point between 0 and δ (K > 0). There
is no explicit expression for the timescale T avalable, but we can identify a timescale T− < T such that
for any smaller δ the path will be monotone, as follows.

First observe that we can explicitly solve (6) to obtain, for a constant γ:

t = ±(−2% log (% + f(t))− f(t) + γ);

unfortunately we cannot invert this relation (thus obtaining f(t) as function of t explicitly). Mimicking the
argumentation in [12, Section 12.5], we find T− by imposing f(T−) = β0, while γ is determined through
f(0) = βδ (here, again, time-reversibility properties are applied). We thus arrive at, for obvious reasons
using the absolute value,

T− =
∣∣∣∣2% log

(
%− β0

%− βδ

)
+ β0 − βδ

∣∣∣∣ .
We arrive at the following conclusion:
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Figure 1: Monotone path.
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Figure 2: Nonmonotone path.

– For δ < T− the path is monotone, we have K < 0, and we can use the method described for the case
β0 < % < βδ . Use the +-branch of the differential equation.

– For δ > T− one should realize that δ > T− is just a necessary but not sufficient condition for a
non-monotone optimal path to occur, as argued in [12, Section 12.5]; for δ ∈ [T−,∞) close to T− still
monotone paths come out. The bifurcation point T can be determined empirically.

Figures 1-2 serve as examples, and show the paths for specific monotone and non-monotone cases. In both
cases β0 as well as βδ are larger than %, so there is a bifurcation point T . In the left graph, δ < T and hence the
path is monotone, whereas in the right graph δ > T and hence the path has a minimum in (0, δ). In both figures
δ = 0.95, % = 1.05, and βδ = 1.6, but in the left panel β0 = 1.48, whereas in the right panel β0 = 1.58. The paths
have been found by applying Runge-Kutta techniques.

3.2 Likelihood probabilities

In this section we analyze the decay rate η̄(ϕ, δ | βδ), using the same methodology as in Section 3.1. As the line
of reasoning is very similar to the one followed in Section 3.1, we just sketch the basic steps.
First observe that we can shift time so that we obtain

η̄(ϕ, δ | βδ) = lim
n→∞

1
n

log P

 1
n

bn(1−δ)c∑
i=1

Li > ϕ(1− δ)

∣∣∣∣∣∣ Y0 = nβδ

 ;

if this is indeed a large deviation probability, then we can replace the inequality ‘> ϕ(1 − δ)’ by an equality
‘= ϕ(1− δ)’. We again want to use Slow Markov Walk theory, in that we wish to evaluate

η̄(ϕ, δ | βδ) = − inf
f∈B

∫ 1−δ

0

If(t)(f ′(t))dt,

where B are the paths (with f(0) = βδ) such that

lim
n→∞

1
n

Ybntc = f(t),

9



for t ∈ [0, δ), implies that

lim
n→∞

1
n

bn(1−δ)c∑
i=1

Li = ϕ(1− δ).

Let us characterize the paths with this property. To this end, first rewrite

gf (δ) := lim
n→∞

1
n

bn(1−δ)c∑
i=1

Li = lim
n→∞

1
n

(1−δ)/ε∑
k=1

nkε∑
i=n(k−1)ε+1

Li.

For i in {n(k − 1)ε + 1, . . . , nkε} we have that

Q(Xi | Yi−1)
P(Xi | Yi−1)

=
%̄

%
· % + f(kε)
%̄ + f(kε)

+ O(ε)

if Xi = 1 and
Q(Xi | Yi−1)
P(Xi | Yi−1)

=
% + f(kε)
%̄ + f(kε)

+ O(ε)

if Xi = −1. Let Uk,n be the number of steps upwards in {n(k − 1)ε + 1, . . . , nkε}, and Dk,n the number of steps
downwards. Then trivially Uk,n +Dk,n = nε, but on the other hand Uk,n−Dk,n = nεf ′(kε)+O(ε2). From these
relations we can solve Uk,n and Dk,n. We end up with

(1−δ)/ε∑
k=1

(
ε

2
f ′(kε) log

(
%̄

%

)
− ε

2
log
(

%̄

%

)
+ ε log

(
% + f(kε)
%̄ + f(kε)

)
+ O(ε2)

)
.

Letting ε ↓ 0, we obtain

gf (δ) =
∫ 1−δ

0

1
2

log
(

%̄

%

)
· f ′(t) dt− 1− δ

2
log
(

%̄

%

)
+
∫ 1−δ

0

log
(

% + f(t)
%̄ + f(t)

)
dt

= hf (δ) +
∫ 1−δ

0

log
(

% + f(t)
%̄ + f(t)

)
dt,

with

hf (δ) :=
1
2

log
(

%̄

%

)
· (f(1− δ)− f(0))− 1− δ

2
log
(

%̄

%

)
.

Hence we are left with the following variational problem, with Lagrange multiplier L:

inf
f∈B

(∫ 1−δ

0

(
If(t)(f ′(t))− L log

(
% + f(t)
%̄ + f(t)

))
dt− Lhf (δ)

)
. (9)

The DuBois-Reymond equation reads

If(t)(f ′(t))− f ′(t) · ∂

∂u
Ix(u)

∣∣∣∣
x=f(t),u=f ′(t)

− L log
(

% + f(t)
%̄ + f(t)

)
= K,

which reduces to

f ′(t) = ±

√
1− eK

(
% + f(t)
%̄ + f(t)

)L 4f(t)%
(% + f(t))2

.

We again need to numerically solve this, under f(0) = βδ . K and L should be chosen such that gf (δ) = ϕ(1−δ)
and (9) is minimal. In more detail, a procedure could be the following. For given K, L, solve the differential
equation, to obtain the path f?

K,L(·). For given L, determine the K ≡ K(L) such that gf?
K,L

(δ) = ϕ(δ). Then
minimize, over L,∫ 1−δ

0

If?
K(L),L

(t)((f?
K(L),L)′(t))dt.

It is clear, however, that such procedures are, from a numerical standpoint, in general quite involved. A sub-
stantial simplification can be achieved by approximating the functions involved by appropriate polynomial
functions (cf. Ritz method).
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3.3 Discussion

Now that we have derived in Sections 3.1 and 3.2 expressions for the decay rate of interest, it remains to select
an appropriate function ϕ(·). We can choose, for a given value of β0, ϕ(·) such that η(ϕ, δ | β0) ≡ α for all
δ ∈ [0, 1). As argued in [2, Ch. V.E], this choice gives the best type-II error rate performance.
The procedure described above is a natural counterpart for the ‘usual’ changepoint detection procedures that
were designed for i.i.d. increments; importantly, we recall the fact that in our model the increments are de-
pendent made it necessary to develop a new method. The most significant drawbacks of the above procedure
are: (i) it only applies to the case of exponentially distributed call durations; (ii) its computational complexity
is high. In the next section we present an approach with is somewhat more crude, but overcomes these two
problems.

4 Analysis for M/G/∞

In this section we present an approach to do changepoint detection in an M/G/∞ queue. Clearly, the obser-
vations Y (0), Y (∆), Y (2∆), . . . are not independent; remember from Section 2 that the correlation coefficient
between Y (0) and Y (∆) is given by P(B? > ∆). It is evident, however, that this dependence is negligible for ∆
sufficiently large. In Section 4.1 we analyze how large ∆ should be to be able to safely assume independence
– as a useful by-product, we derive insight into the so-called relaxation times in the M/G/∞ queue (which
can be interpreted as a measure of the speed of convergence to the stationary distribution). Then Section 4.2
describes a changepoint detection procedure, which again relies on Slow Markov Walk theory [2, Ch. IV.C];
however, where we used this framework for dependent observations in Section 3, we now focus on the case in
which the observations are i.i.d. (and sampled from a Poisson distribution).

4.1 Transient probabilities

We first focus on the question: for a given number of calls present at time 0, how fast does the (transient)
distribution of the number of calls present at time t, converge to stationary distribution (1)? This speed of
convergence is often referred to as relaxation time, cf. Kingman [6] in the setting of an M/G/1 queue, and results
for various queueing systems by Blanc and van Doorn [1]. We also refer to recent results on the relaxation time
for the Erlang-loss system [4].
To this end, we identify a function uk,`(·) such that

lim
t→∞

P(Y (t) = ` | Y (0) = k)− P(Y = `)
uk,`(t)

= 1. (10)

We first observe that that, due to (2),

P(Y (t) = ` | Y (0) = k) =
min{k,`}∑

m=0

P(Bin(k, pt) = m) P(Pois(λtqt) = `−m).

Take the term corresponding to m = 0 in the summation in the right-hand side of the previous display, and
subtract P(Y = `), to obtain, recalling that λtqt = % P(B? < t) = %− % P(B? > t),

%e−%

(
%`−1

(`− 1)!
− %`

`!

)
· P(B? > t) · (1 + o(1))

as t →∞; here we used that

lim
t→∞

f(%)− f(%(1− P(B? > t)))
%P(B? > t)

= f ′(%).
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Now we focus on the term corresponding to m = 1, which obeys

ke−% %`−1

(`− 1)!
· P(B? > t) · (1 + o(1)).

Finally observe that the terms corresponding to m ≥ 2 are o(P(B? > t)). Combining the above findings, we
conclude that (10) indeed applies, with

uk,`(t) = Uk,` · P(B? > t), with Uk,` :=
(

%e−%

(
%`−1

(`− 1)!
− %`

`!

)
+ ke−% %`−1

(`− 1)!

)
.

Suppose is our goal is to enforce ‘approximate independence’ between Y (0) and Y (t) by choosing t sufficiently
large that for all k, ` ∈ {0, . . . , C} we have that | Uk,` | ·P(B? > t) < εmax. Observe that

max
k,`∈{0,...,C}

Uk,` ≤ (% + k)e−% %`−1

(`− 1)!
.

Now we can make use of the fact that the mode of the Poisson distribution lies roughly at %, or, more precisely,

max
i=0,1,...

e−% %i

i!
≤ g(%m) := e−%m

%%m

%m!
,

with %m := b%c if % is non-integer and % else. We conclude that Uk,` ≤ (% + C)g(%) for all k, ` ∈ {0, . . . , C}.
Likewise,

min
k,`∈{0,...,C}

Uk,` ≥ −%e−% %`+1

`!
≥ −%g(%).

Using these bounds it is trivial to choose t such that | Uk,` | ·P(B? > t) < εmax for all k, ` ∈ {0, . . . , C}.

4.2 Changepoint detection procedure

As described above, we can now choose ∆ so large that uk,`(∆) < εmax, for all k, ` ∈ {1, . . . , C} and εmax some
given small positive number. In this way we enforced ‘approximate independence’, thus justifying the use of
procedures for i.i.d. observations, as in [2, Section VI.E].

Goal: changepoint. Again, we wish to detect a changepoint, that is, during our observation period the load
parameter % (which we let again correspond to the probability model P) changes into %̄ 6= % (the model Q). More
formally, we consider the following (multiple) hypotheses. Let Yi := Y (i∆) be the sequence of observations of
the number of calls present at time i∆.

H0: (Yi)n
i=1 are distributed according to a Poisson random variable with parameter %.

H1: For some δ ∈ {1/n, 2/n, . . . , (n− 1)/n}, it holds that (Yi)
bnδc
i=1 is distributed according to a Poisson random

variable with parameter %, whereas (Yi)n
i=bnδc+1 is distributed according to Poisson random variable with

parameter %̄ 6= %.

Again, in view of the Neyman-Pearson lemma, we consider the following likelihood-ratio test statistic:

max
δ∈[0,1)

 1
n

n∑
i=bnδc+1

Li − ϕ(δ)

 , with Li := log
Q(Yi)
P(Yi)

= e%−%̄

(
%̄

%

)Yi

,

for some function ϕ(·) we will provide later. If the test statistic is larger than 0, we reject H0.

We can now use the machinery of [2, Section VI.E] to further specify this test. We first introduce the moment
generating function and its Legendre transform:

M(ϑ) =
∞∑

k=0

(
%̄k

k!
e−%̄

)ϑ(
%k

k!
e−%̄

)1−ϑ

= e−%̄ϑ−%(1−ϑ)
∞∑

k=0

(%̄ϑ%1−ϑ)k

k!
= e−%e(%−%̄)ϑ exp

(
%

(
%̄

%

)ϑ
)

;

I(u) = sup
ϑ

(ϑu− log M(ϑ)) = ϑ?(u) u− log M(ϑ?(u)),
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Figure 3: ϕ(·) for n = 50, % = 200, %̄ = 250, α = 0.05.
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Figure 4: ϕ(·) for n = 50, % = 200, %̄ = 210, α = 0.05.

where the optimizing ϑ(u) equals

ϑ?(u) =
log(u + %̄− %)− log(% log(%̄/%))

log(%̄/%)
.

From [2, Section VI.E, Eqn. (46)–(48)], we can compute the decay rate of issuing an alarm under H0, for a given
threshold function ϕ(·):

lim
n→∞

1
n

log P

 max
δ∈[0,1)

 1
n

n∑
i=bnδc+1

Li − ϕ(δ)

 > 0

 = max
δ∈[0,1)

lim
n→∞

1
n

log P

 1
n

n∑
i=bnδc+1

Li > ϕ(δ)


= max

δ∈[0,1)
δ · lim

n→∞

1
nδ

log P

 1
nδ

bnδc∑
i=1

Li >
ϕ(1− δ)

δ

 = max
δ∈[0,1)

δI

(
ϕ(1− δ)

δ

)
.

In order to get an essentially uniform alarm rate, we can choose ϕ(·) by requiring that

δI

(
ϕ(1− δ)

δ

)
= α?, (11)

where α? = − log α/n; here α is a measure for the likelihood of false alarms (for instance 0.05). Unfortunately,
ϕ(·) cannot be solved in closed form, but it can be obtained numerically in a straightforward way (using a
standard bisection procedure).

5 Numerical evaluation

In this section we present the results of our numerical experimentation. We first focus on testing the proce-
dures proposed for M/G/∞ in Section 4.2 (for which we could rely on a fairly explicit characterization of the
threshold function ϕ(·)), and then shift to the setting of Section 3.

Changepoint detection for nearly independent Poisson samples. As mentioned above, we start by presenting numer-
ical results for the setting of Section 4.2. Figures 3 and 4 show the shape of the threshold function ϕ(·). These
are computed by numerically solving Equation (11). We observe that ϕ(·) is for % = 200 and %̄ = 250 nearly a
straight line.
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• Experiment A1. We then consider the situation that Y1 up to Y100 are sampled from the evolution of
the M/M/∞ queue, at epochs ∆, 2∆, . . . , 100∆; Y0 = Y (0) is sampled according to the equilibrium
distribution (1). For these first 100 observations we chose λ = 200 and µ = 1, leading to % = 200. Then
Y101 up to Y200 are generated in an analogous way, but now with λ = 250, and hence %̄ = 250. Assuming
a maximum allowable blocking probability of 0.1%, the value %̄ = 250 corresponds with C = 291 lines.
It is easily verified that choosing ∆ = 10 makes sure that | Uk,` | ·P(B? > t) < εmax, for an εmax of 0.01,
using the procedures developed in Section 4.1.

We take windows of length 50, that is, we test whether H0 should be rejected based on data points
Yi, . . . , Yi+49, for i = 1 up to 151. The first window in which the influence of %̄ is noticeable is there-
fore window 52. 500 runs are performed. Figure 5 shows the detection ratio as a function of the window
id. It indeed hardly shows false alarms up to id 52, and then the detection ratio grows to 1 quite rapidly,
as desired.

Clearly, from window 101 on all observations have been affected by the load change. For window i

between 52 and 101, one could (within the window that consists of 50 observations) detect a load change
at the earliest at the (101 − i)-th observation — this is what could be called the ‘true changepoint’; in
addition, we call the ratio of 101 − i and the window length 50, which is a number between 0 and 1, the
‘true delta’, in line with the meaning of δ in Section 4.2. Figure 6 provides insight into the spread of the
time of detection. It shows that the detection takes place always somewhat later than the true changepoint
(as could be expected, as it takes a few observations to ‘gather enough statistical evidence’), but the delay
is fairly short. In 50% of the cases the delay is less than 8 observations, in 75% less than 12 observations,
as can be seen from the graph.

• Experiment A2. In Experiment A1 we instantaneously changed % into %̄ (which is the value tested against).
We now study the effect of a load change to a value %̂ < %̄. The main question is: despite the fact that %̂ is
not the value of the load we test against, do we still detect a load change?

The experiment is done in a similar fashion as Experiment A1: there is a load change from % = 200 to
%̂ ∈ {201, . . . , 250} from time 100∆ on, and we test against %̄ = 250. Figure 7 shows that values of %̂ up to
225 are hardly detected. For %̂ larger than 235 in at least 50% of the runs an alarm has been issued. Only
for %̂ larger than 245 the changepoint has been detected with high probability (more than, say 85%).

• Experiment A3. In Experiment A1 we instantaneously changed % into %̄, but a next question is what hap-
pens when % gradually increases to %̄. We performed the same experiment as in Experiment A1, but now
the load first has value 200, then starts to increase from observation 76 on in a linear way, to reach value
250 at observation 125 (and hence only from window id 76 on part of the observations were under %̄).
Figures 8 and 9 are the counterparts of Figures 5 and 6. Compared to Figure 5, the detection ratio in
Figure 8 is considerably less steep; note that this could be expected from Experiment A2, as we saw there
that only if the load is close to %̄ load changes are detected.

Changepoint detection for jump process of M/M/∞. The function ϕ(·) can be determined by executing the com-
putations proposed in Section 3, but due to their intrinsic complexity we chose for the obvious alternative of
determining it empirically (that is, by simulation). For % = 200 and %̄ = 250, we thus obtained the curve shown
in Figure 10.
We performed the following experiments:

• Experiment B1. We consider the following setting, in which we start with Y0 having a Poisson distribution
with mean %, then sample 2500 times according to the measure P, and then 2500 times according to Q.
The window size has length 2000. It means that from window id 501 on the measure Q has impact on the
test statistic. Figure 11 shows that we indeed detect the changepoint after window id 1501, but the plot
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Figure 5: Detection ratio Exp. A1.
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Figure 6: Detection epoch Exp. A1.
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Figure 7: Detection ratio Exp. A2.
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Figure 8: Detection ratio Exp. A3.
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Figure 9: Detection epoch Exp. A3.
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Figure 10: ϕ(·) for % = 200, %̄ = 250, α = 0.05.
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Figure 11: Detection ratio Exps. B1, B2, B3.

also shows that the chance of false alarms (that is, alarms before window id 501) is substantially higher
than the 5% that was aimed for, viz. about 87%. The main reason for this phenomenon is that ϕ(·) was
(empirically) determined by making

P

 n∑
i=bnδc+1

Li > ϕ(δ)

 = α (12)

for all δ ∈ [0, 1). The probability of an alarm under H0, however, is

P

∃δ ∈ [0, 1) :
n∑

i=bnδc+1

Li > ϕ(δ)

 ,

which is evidently larger than probability (12). Apparently this difference can be quite large (although all
probabilities involved have the same exponential decay rate, when n grows large).

• Experiment B2. There are several ways to make reduce the fraction of false positives. We first consider the
effect of changing the criterion

∃δ ∈ [0, 1) :
n∑

i=bnδc+1

Li > ϕ(δ) into ∃δ ∈ [0, δmax) :
n∑

i=bnδc+1

Li > ϕ(δ).

Figure 11 shows what happens when imposing such a ‘cut off’; we consider the case δmax = 0.9. We see
that the fraction of false alarms is indeed reduced to a number close to 5%, but it is clearly at the expense
of detecting load changes after window id 501.

• Experiment B3. We now study an alternative to imposing a ‘cut off’, viz., using an α′ which is smaller α.

In Figure 11 we considered the detection ratio for α′ = 0.15%. Note that this requires redetermination of
the function ϕ(·). The effect is very similar to that of Experiment B2: reduction of the false alarm rate, at
the expense of loss of detection. It seems that it tuning either δmax or α′ is necessary to control the false
alarm rate.

• Experiment B4. In this experiment we start at Y0 = 200 and simulate the first 2500 slots under %, and
the last 2500 under %̄. The window length is 2000. We imposed a δmax of 0.8. In Figure 12 we show
the empirical cumulative distribution function of the first epoch that an alarm is issued. Interestingly, its
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Figure 12: Empirical distribution function of detec-
tion epoch Exp. B4.

mean is 236, that is, considerably less than 250. In other words: the alarm is early detected in that the
‘new equilibrium’, that is, 250, has not been reached yet. This aspect is a significant advantage of this
approach over the approach of Section 4.

6 Concluding remarks and discussion

In this paper we developed procedures that are capable of detecting load changes, in a setting in which each
connection consumes roughly the same amount of bandwidth (think of VoIP). For the situation that the holding
times are exponentially distributed, we designed a testing procedure, relying on large-deviations results. In
passing, we found results for the transient of the M/M/∞ queue, which are of independent interest.
We observed that this testing framework is applicable to exponential holding times only, and in addition it
is numerically rather demanding. We therefore developed an approximative procedure for general holding
times. In this procedure we record the number of trunks occupied at equidistant points in time ∆, 2∆, . . .,
and we then rely on existing results for sequences of i.i.d. random variables. (Approximate) independence is
enforced by choosing ∆ sufficiently large; this was made precise by applying new results on the relaxation time
of the M/G/∞ queue.
The last part of the paper was devoted to numerical experimentation. It was shown that the procedures that
we developed were, after elementary tuning, capable of tracking load changes. Special attention was paid to
managing the trade-off between the detection ratio and the false alarm rate.

Future research. In this paper we considered traffic generated by applications that require per connection
(roughly) the same amount of bandwidth. A next step would be to consider the same problem, but now in a
setting where the aggregate traffic stream is the result of many streaming and elastic users. An approach could
be to model the traffic process under H0 by a Gaussian process [8, 10], and to develop changepoint detection
procedures for Gaussian processes. Observe, however, that we again have to resolve the issue of dependence
between the observations.
A second issue for future research relates to applying the procedures developed in this paper in a real network.
This requires extensive evaluation of the testing machinery with real traces.
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