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Preface

This is a revised version of my thesis at the University of Utrecht which appeared in

May 1998. Let me quote here the preface for the original thesis.

December 1999, in Tokyo Yoichi Nishiyama

Preface for my thesis

Let me begin with stating my personal history; readers who are not interested may
skip to the next paragraph. In the spring of 1992, I was looking for a subject for my
master’s thesis. I took an interest in censoring problems, and learned that O.0O. Aalen’s
paper in 1978 is the origin of the martingale approach to those problems. The approach
has been one of the most active areas in statistics since the early 80’s. (Needless to
say, R.D. Gill’s pioneering monograph in 1980 is also important.) Having read Aalen’s
paper, I made a conjecture, my first as a statistician, concerning the weak convergence
of Nelson-Aalen’s estimator in the multiplicative intensity model of point processes with
general marks, where the estimator is considered as a set-indexed stochastic process.
Unfortunately (or fortunately?), I was not able to solve it in my master’s thesis, which
consequently dealt with another problem. (At that time, I didn’t know the prominent
paper by R.M. Dudley in 1978; this means that I didn’t know anything about the modern
theory of empirical processes.) However, the conjecture brought me the motivation of my
current research subject —how to manage entropy methods, which have been developed
mainly for i.i.d. empirical processes, in the framework of martingales. The result up to
the present is this thesis. An answer to the conjecture is presented in Section 4.1.

I would like to express my greatest gratitude to Prof. R.D. Gill for his advice, com-
ments, kindness, patience and encouragement. He has always been the first reader of my
drafts during the last two years, and gave me useful advice every time. His enthusiasm
really accelerated my study. Also, although my stay in Utrecht was not originally in-

tended to end up in a Doctor’s degree, he has kindly given me this opportunity. It would
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be a great honor for me to succeed in obtaining a degree at the prestigious University of
Utrecht.

I am really grateful to my supervisor in Osaka, Prof. N. Inagaki, for his general
statistical advice and constant encouragement; without him, I might not be a statistician.
I would like to thank Dr. N. Yoshida for stimulating discussion at many stages of my
work since I moved to Tokyo; without him, my statistics might be much weaker. My
thanks also go to: Dr. S. Aki for his lectures on empirical processes in the winter of 1993—
1994, which inspired me to do this project; Prof. A'W. van der Vaart for a discussion
in February 1997 which taught me the importance of maximal inequalities; Prof. S.A.
van de Geer for a discussion in November 1997 which improved my understanding of
M-estimation. I express my gratitude to Profs. N. Ikeda, K. Isii, S. Shirahata, M.
Fukushima, R. Shimizu, K. Hirano, T. Matsunawa, Y. Ogata, S. Eguchi, J. Jacod, Yu.A.
Kutoyants and B.Y. Levit for their advice and encouragement.

My work in Utrecht from June 1996 to May 1998 has been supported by a JSPS
Fellowship for Research Abroad from the Japan Society for the Promotion of Science.
These two years living here have made a strong positive impact on my study, and 1
hope that my scientific fruits may have achieved the Society’s high expectations. I also
owe a great deal to the Institute of Statistical Mathematics for allowing such a long
period of leave, and for support from the Tokyo side; and to the kind hospitality of the
Mathematical Institute at the University of Utrecht, which has made my period of work
here exciting beyond my expectations. My special thanks go to the secretarial staff and
computer managers both in Tokyo and Utrecht, and to the stochastics group in Utrecht,
for their help and kindness; in particular, to Damien White for correcting grammatical
errors and awkward sentenses contained in a draft of the preface, and to Erik van Zwet

for translating the summary ! into Dutch.

April 1998, in Utrecht Yoichi Nishiyama
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Chapter 1

Introduction

1.1 Overview

The purpose of this study is to develop entropy methods, which were first introduced for
empirical processes of 1.i.d. data, in order to handle some martingales with applications
to statistical inference for stochastic processes. Among a lot of directions of statistical
applications of the methods, we are concerned with two main themes in this monograph.
The following brief description of them is intended to illustrate also the motivation of

our work.

Theme 1: Asymptotic normality and efficiency in (> -spaces. Let (E,&) be a mea-
surable space. Let {Z;};cn be a sequence of E-valued i.i.d. random variables with the
common law P, and let ¥ be a subset of £*(P) = L*(E, &, P) with an envelope func-
tion belonging to £L*(P). We are interested in estimating the (*°(¥)-valued unknown
parameter P = (P(i)|t) € W) given by P(¢) = [, ¥(z)P(dz): a natural estimator is
¢ € W) given by P"(¢p) = n=' 30 ¢(Z;). The

Donsker property is then nothing else than the asymptotic normality of P” about P;

the empirical process P" = (P"(¢))

if the class W is P-Donsker then the residual process /n(P" — P) converges weakly in
(>*(¥) to a Brownian bridge indexed by W. A sufficient condition for the class ¥ to be a
Donsker class is that the class satisfies an integrability condition for metric entropy with
L2(P)-bracketing, given by Ossiander (1987), which we will recall later in this chapter.

When we have the asymptotic normality of an estimator, the next interest should
be to show its asymptotic efficiency. For this purpose, a general procedure based on
the Le Cam theory for finite- or infinite-dimensional parameters goes as follows (see e.g.
Chapter 3.11 of van der Vaart and Wellner (1996)):

(i) show the local asymptotic normality of a model;

(i1) show the differentiability of an unknown parameter;

(iii) show that the sequence of proposed estimators converges weakly to the distribu-
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tion of the efficient bound specified in terms of some factors appearing in the steps

(i) and (ii).

Then, the asymptotic efficiency in the sense of the local asymptotic minimax theorem
with certain loss functions follows from the weak convergence shown at the step (iii) and
the continuous mapping theorem. Furthermore if the proposed estimator can be shown
to be regular, then the asymptotic efficiency in the sense of the convolution theorem is
also fulfilled.

Van der Vaart and Wellner (1996) illustrated the usefulness of this approach by a
discussion about the asymptotic efficiency of the estimator P” for the unknown parameter
P (see their Section 3.11.1 for the details); the Donsker theorems for empirical processes
are applied at the step (iii) above. On the other hand, a merit of the Le Cam theory is
that, as seen in the step (i), the i.i.d. setup has been generalized up to local asymptotic
normality. It is thus meaningful to present some new limit theorems, which should be
useful at step (iii), in order to make full use of the general approach. In particular, such
theorems in (*°-spaces were given mostly for row-independent arrays in the 80’s, and
have been recently established also for stationary sequences (see Notes to Chapter 3).

We consider this subject in some martingale contexts. &

Theme 2: Rate of convergence of M -estimators. Let 6 ~ ~(#) be a deterministic
process with parameter 6 in a set ©. Suppose that we are interested in estimating a
maximum point #y of the function 6 ~ ~(0). If § ~ ~(0) is well approximated by a
stochastic process € ~» 1'(0), a natural estimator would be a maximum point 6" of the
latter, that is, an M-estimator with respect to the criterion process 6 ~ I'"(6).

In the case of i.i.d. data, those processes are typically given by v(0) = P(1y) and
() = P™(1by), where {1 : 0 € O} is a given class of elements of £!(P) indexed by .
When the data is a sample from a density py with respect to a measure on (E, &), the
maximum likelihood estimator is an M-estimator for vy = logpy. On the other hand,
when I/ = © = R, if we set 1y = 1g_q 944 for a constant a > 0. then the maximum point
0y of 0 ~ ~v(0) = P([# — a,0 + a]) is something like a mode of the unknown distribution
P.

Such M-estimation procedures allowing (60, d) to be a general metric space have been
studied in recent years. A general approach to derive the rate of convergence requires
the following (see Theorem 3.2.5 of van der Vaart and Wellner (1996) for the details; a
version of the theorem, with some modifications, is given also in this monograph, namely

Theorem 5.1.2):

(1.1.1) Y(0) — () < —d(0,6)* in a neighborhood of y;
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(1.1.2) E* sup |[(T" —~4)(0) — (T —4)(0y)| < ¢"(6) for small 6 > 0.
d(0.00)<8

Here, 6 ~ ¢"(6) is an appropriate non-decreasing function. When we have checked

—2

n

those conditions, by choosing some constants 7, > 0 which satisfy ¢"(r 1) < r 2, we
can conclude that 7“7,,(1(5”,90) = Op«(1) for M-estimators g = argmaxyco 1'"(6). The
crucial point of this approach is how to get a moment inequality for the residual processes
0 ~ (I'" —~)(#) as in (1.1.2). In the case of i.i.d. data mentioned above, the residual
(T —~)(0) equals (P" — P)(1p), and the function ¢"(¢) is typically of the form ¢"(6) =
n~12(8) for a function 6 ~» p(6) not depending on n; the function (&) = 6 leads to the
standard rate 1, = n!'/2, while p(8) = V6 does to the “cube root asymptotics” r, = n'/3.
It should be noted, however, that this method possesses a good potential to be applied in
much broader situations. As a matter of fact, some authors have already taken this kind
of approach in non-i.i.d. settings, for instance regression models, but most of them are
based on some maximal inequalities for 1.i.d. empirical processes. With this aim in mind,
we develop moment inequalities to obtain a bound (1.1.2) when the residual (T — ~)(0)

is the terminal variable of a martingale. <&

To handle martingales, we introduce a quantity called “quadratic modulus” in Chap-
ter 2, which plays a key role in this work. For the sake of intuitive explanation, let us
recall Ossiander’s central limit theorem for i.i.d. sequences under the entropy condition
for L2-bracketing, and next see how to generalize it to a dependent case; the idea of the
quantity naturally appears there.

Let (E, &) be a measurable space. Let {Z;};en be a sequence of E-valued i.i.d. random
variables with the common law P. Let ¥ be a subset of £2(P) with an envelope function
belonging to L2(P). For every ¢ € (0,1] choose N(g) pairs of elements of £2(P), namely,
(5% us*], k = 1,...,N(g), such that for every ¢/ € ¥ the relation I** < v < u®* holds

for some k and that

(1.1.3) /; |'u,57k(z) _ 157]\7(3)

2P(dz) <

o

Ossiander’s theorem says that if this bracketing procedure can be accomplished with

1
(1.1.4) / V0ieg N(e)de < o0,
0

then the sequence of stochastic processes ) ~ X"(1)) defined by
X"($) = VA" — P)p)
1 n
= =Y ez - [ver dz>}
s PR CARY RICLCE
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converges weakly in (*(¥) to a Brownian bridge indexed by .
Now, let {Z; }ien be an arbitrary sequence of E-valued random variables, and denote
by P; the conditional law of Z; given Fy_, = o{Zy,....; Zi 1} (Fop is the null o-field). We

are interested in the sequence of stochastic processes v ~ X" (1) defined by

/ 1 n | /
X1(0) = 2= 30 U1z - /E W(2)P(d2)
i=1

Consider the bracketing procedure as above with (1.1.3) replaced by

/ lusk(z) — 15#(2)
E

where K; is a random variable, not depending on ¢ and k, that is F;_;-measurable; since

2Pi(dz) < Kie almost surely,

the left hand side is random in the present case, we have allowed the random coefficient
I; in the right hand side. Then, a result given in Chapter 3 (Theorem 3.2.2 or 3.3.1) says
that if the entropy condition (1.1.4) is satisfied and if the sequence of random variables

K" defined by

is bounded in probability, then the asymptotic tightness of the processes 1 ~ X" (1))
follows from the finite-dimensional convergence and a Lindeberg condition on an envelope
function of W. Ossiander’s theorem can be thought as the case of P, = P and K; = 1.
Some quantities “quadratic modulus”, which we will define for three kinds of martingales
in Chapter 2, have the same spirit as the random variables I ; a closer explanation might
be that

) . ‘ \/'n*1 Sy [ lusk(z) — 1ok (2) PP(d2)
“quadratic modulus” = sup max .
£€(0,1] LSK<N(e) €

Since this random variable depends awkwardly on the choice of the brackets, and more-
over since we will treat also random weight functions, we will actually define the quan-
tities in a slightly different way based on a series of finite partitions of ¥, avoiding the

[5* u**] in the definition of brackets.

explicit construction of pairs |

The entropy methods were at first recognized to be useful to statisticians chiefly
through efforts to seek for sharper and/or more general versions of uniform laws of
large numbers and central limit theorems for empirical processes especially in multi-
dimensional cases. However, some recent works have shown that a core part of them,

namely, chaining and bracketing techniques controlled in terms of entropies, can be



1.1. Overview 5

applied also to other problems in statistics which are not directly connected to those
limit theorems; a good example is M-estimation (recall Theme 2). From our point of
view, an important advantage of the methods is that some of the techniques work well
also for the dependent case above on the set {Fn < L} for a given constant L > 0.
Hence, some problems of statistical inference for stochastic processes can be solved by
handling some truncations such that the complements like {Fﬂ > L} are asymptotically
negligible for a fixed, large constant L. This is the basic outline of the approach which
we frequently take in this work.

Chapters 2 and 3 are concerned with some abstract martingales, while the remaining
chapters deal with concrete models in statistics. To be more precise, the stochastic
processes treated in the former chapters are some classes (X¥[1> € ¥) of martingales,
indexed by an arbitrary set ¥, in the sense that each coordinate process t ~» Xﬁ/" for
every 1 is an R-valued martingale. We consider the following three situations: (i) each

coordinate process t ~ X, is represented as a stochastic integral, namely,
XD = WY (u—v),
= / WY (w, s, 2)(p(w; ds, dz) — v(w;ds,dz)),
0,¢]xE

where W¥ = W¥(w,t,z) is a predictable function on Q x R, x E, u is an E-valued
multivariate point process, and v is the predictable compensator of y; (ii) each process

t ~» X/ is a partial sum process of a discrete time martingale, namely,

0t
b Z
Xl‘ - fz*
=1

where {fZL}LGN is a discrete time martingale and (o, )ier, is an increasing family of finite
stopping times; (iii) each process t ~» th’b is a continuous local martingale. There
are three reasons why we choose the martingales as the objects of our study. First,
the Bernstein inequality, which is a basic tool in the i.i.d. case, is already provided
also in the framework of martingales with the modification that a truncation based on
the predictable quadratic variation is introduced (Lemma 2.1.1). The second reason is
that we can take advantage of the well-developed martingale central limit theorems to
establish the finite-dimensional convergence in our situation. Last, but not least, the
martingale is a vital concept in analyzing a rich class of statistical models, including
the multiplicative intensity model for survival data, Markov chains, the Gaussian white
noise model, and diffusion processes derived from stochastic differential equations.

The organization of the monograph is as follows. In Chapter 2, we introduce the

quantities “quadratic modulus” and “exponential modulus” for the three kinds of mar-
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tingales above, and establish maximal inequalities, namely, some bounds for

Esup sup | X! — X7|14
t 4p,deT
with the truncation by the set B in terms of the modulus. Those inequalities are not
asymptotic estimates, and are applied not only for the proofs of weak convergence the-
orems in Chapter 3 but also as a crucial tool to derive the rate of convergence of M-
estimators in Chapters 5 and 6. As for the case (iii) of continuous local martingales, we
study also the continuity of the sample paths along the direction of parameter ¢ ~ Xf“".

Chapter 3 is devoted to weak convergence theorems for the three kinds of martin-
gales. An essential part of the proofs is the asymptotic tightness, which is established by
using the maximal inequalities in Chapter 2. As we have mentioned above, the sufficient
condition that we present is that the quadratic modulus is bounded in probability and
that an entropy condition of the type (1.1.4) is satisfied. In particular, natural gener-
alizations of Jain-Marcus’ and Ossiander’s central limit theorems are presented. The
entropy condition for the cases (i) and (ii) above is analogous to that for L2-bracketing,
while the case (iii) is based on the metric entropy condition without bracketing. The
results of this chapter are repeatedly applied to derive the asymptotic distribution of
estimators in the subsequent chapters.

Some results concerning Theme 1 are given in Chapter 4. We consider the multiplica-
tive intensity model for point processes with general marks, and derive the asymptotic
normality and efficiency in (*°-spaces of a generalized Nelson-Aalen estimator. An inter-
esting difference from the i.i.d. case, where the L2-bracketing condition is optimal, is that
an LP-bracketing condition with p € [2, oc| is sometimes preferable; this fact is valid also
for other problems in this monograph, and the multiplicative intensity model provides a
good illustration. We also study two non-linear models, of continuous semimartingales
and of counting processes, both with time-dependent covariates.

Theme 2, the M-estimation procedure, is studied in Chapters 5 and Chapter 6 stress-
ing non-standard rates of convergence. First, in Section 5.1, we present a general criterion
for rate of convergence. A difference from known results in this area is that a kind of
“twice differentiability” of criterion functions is generalized to a “p-times differentiabil-
ity”, that is, “d(6,60y)*" appearing in (1.1.1) is replaced by “d(6,0,)"". Sections 5.2 and
5.3 are concerned with some estimation problems of Euclidean parameters in the Gaus-
sian white noise model and the multiplicative intensity model, respectively. Jump point
estimation, among other things, is considered in those models.

Chapter 6 is devoted to the study of rate of convergence of non-parametric maximum

likelihood estimators. The models considered there are the Gaussian white noise model,
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1.2. General Notations and Remarks

the multiplicative intensity model, a counting process model with non-linear covariates,
and the diffusion type processes. The third model above contains a discussion about the
Lexis diagram, which is important in the context of survival analysis.

The last chapter contains three independent topics. Since the setups of these problems
are simple, this chapter, as well as Section 4.1, perhaps gives a guideline of the usage of
the weak convergence theorems in Chapter 3. Except for Subsection 7.1.2, we do not use
any results presented in Chapters 4, 5 and 6. In Section 7.1, we study the asymptotics
of local random fields of kernel type estimators. The results are applied to the problem
of estimating the mode of a density function; we derive the asymptotic behavior of an
estimator defined as the argmax of kernel density estimator by using also the general
theorem for M-estimators presented in Section 5.1. Section 7.2 is devoted to deriving
the asymptotic behavior of log-likelihood ratio random fields in a general discrete-time
statistical experiment with abstract parameters. An application to Markov chains is also
discussed. In Section 7.3, we study a testing problem for a non-parametric regression

model with dependent noise.

1.2 General Notations and Remarks

(1) R = (—00,00); Ry = [0,00); N = {1,2,...}; Ny = {0} UN; Z = {integers};

@ = {rational numbers}.

(2) We denote by | - | the Euclidean norm, even in the multi-dimensional case. We
denote by Leb(B) the Lebesgue measure of a Borel measurable subset B of a

Euclidean space.

(3) The inequality “a < y” (x,y € [0,0c)) means that there exists a universal constant
C' > 0 such that x < C'y.

(4) () denotes the set of all bounded functions defined on a set U. We denote by

|| - ||sc the supremum-norm on (>°(¥).

(5) For every p € [1,00], we denote by LP(E, &, \) the set of all p-integrable functions
defined on a measure space (E,E,\) (when p = oo, it means the set of all A-
essentially bounded functions), and by LP(E, £, ) the equivalent classes of elements
of LP2(E,E,\). These are often abbreviated to £F and L?, respectively. This kind

of notational abbreviations of spaces are given section-wisely.

(6) Card(W¥) denotes the number of the elements of a set ¥, allowing oc.
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(8)

(11)

1. Introduction

Diam(W, p) denotes the diameter of a set ¥ with respect to a semimetric p.

When a semimetric space (S, p) is given, we denote by Bs ) (2;¢) the closed ball
with center + € § and p-radius ¢ > (0; when there is no danger of confusion, it is
sometimes denoted by B,(x;¢) or even by B(x;¢). This notational abbreviation is

also given section-wisely.

When a semimetric space (S,p) and a subset ¥ of S are given, we denote by
N(W, p; ¢) the minimum number of closed balls with p-radius £ > 0 which cover W,

allowing oo. The centers of the balls need not belong to W.

Let § be a linear space of R-valued functions ¢ defined on a set, and let a seminorm
||| on S be given. For a given pairl,u € S, we denote [l,u] = {1 € S : 1 < ¥ < u}.
Such [l, u] is called a (]| - ||, ¢)-bracket in S if ||u — || < 2. For a given class U C S,
the bracketing number Njj(¥, || - [|;£) is the minimum number of (|| - ||, )-brackets
which cover ¥; that is, the smallest N € NU{oo} such that: there exists I*, u* € S,
k=1,..,N,such that ¥ ¢ {J,_, [I*, u*] and that |[u* — I¥]| < & for all k.

Let oo, H > 0 be given, and denote by a the greatest integer strictly smaller than
«. Let a bounded, convex subset F in R? with nonempty interior E be given.
We denote by C%(E) the set of all continuous functions f : £ — R such that
| flla < H, where

’ Dk",._Dk‘,
| £]la = max sup |D*f(z)| + max sup |0/ () — ff(y”
T F£y
with the notations k. = 2;]:1 k; and
ak“
N datr . &L’Z"

for every vector k = (ky,...,kq) of d non-negative integers. It is well-known that

Dk‘

there exists a constant K > 0 depending only on « and d such that

H d/o
log N(CH(E), || - |lo;e) < K - Leb(EL) (—) Ve >0,

where By = {x : |x — E| < 1} (see, e.g., Theorem 2.7.1 of van der Vaart and
Wellner (1996)).

A random semimetric p on a set T is a collection {o(w;-,-) : w € Q} of semimetric
on T indexed by a probability space (2, F, P), although we do not require any
measurability. We often denote a random semimetric by o and a (non-random)

semimetric by p.



1.2. General Notations and Remarks 9

(13)

The words increasing and decreasing mean “non-decreasing” and “non-increasing’,
respectively (the situation where we should use the words strictly increasing or

strictly decreasing does not appear in the monograph).

We follow the standard definitions and notations of the martingale theory, which

can be found in the book by Jacod and Shiryaev (1987).

We refer to Part 1 of van der Vaart and Wellner (1996) for the weak convergence
theory which does not require the measurability of random sequences. In particular,
see their Chapter 1.2 for the definitions of the notations £*, E., P" and P. that
mean the outer integral, inner integral, outer probability and inner probability,
respectively. Let (X', d) be a metric space, and for every n € N let X" be a
mapping from a probability space (Q7, F", P") to X. We denote by “X” L X
in &7 the weak convergence of X7 to a tight, Borel measurable random element
X taking values in X; by “X7" P the convergence in P"*-probability to a
non-random element ¢ of X’; by “X" L7 & the convergence in P"-probability (in

this case X" is assumed to be Borel measurable).



Chapter 2

Maximal Inequalities

2.1 Preliminaries

This chapter is devoted to getting some bounds for expectation of supremum of mar-
tingales up to a universal constant; throughout we use the notation “<” given in (3) of
Section 1.2. The present section prepares two things, namely, quotation of two known
inequalities which are used in Sections 2.2, 2.3 and 2.4, and introduction of two defini-
tions which are necessary to formulate a quantity “quadratic modulus” in Sections 2.2
and 2.3. Thus, readers who are interested only in continuous local martingales studied
in Section 2.4 may skip the latter.

First, let us state two lemmas which are well-known. The first one is the Bernstein
inequality for martingales with bounded jumps; see e.g. Section 4.13 of Liptser and
Shiryaev (1989) for the proof. The second one, which is used in connection with the

former, is an adaptation of Lemma 2.2.10 of van der Vaart and Wellner (1996).
Lemma 2.1.1 Lett ~ X; be an R-valued, locally square-integrable martingale such that
Xy =0 and that |AX| < a for a constant a > 0, and 7 a bounded stopping time. Then,
1t holds that for every I' > 0

2
Pl sup | Xy >e, (X, X), <TI'| <2exp (_97> Ve > 0.
(HW]' > (XX > 2(as +T)

Lemma 2.1.2 Let N € N and let Xy, ..., Xy be arbitrary R-valued random wvariables.

Assume that for a measurable set B and some constants a > 0 and I' > 0

- c>0, Vi=1,.. N
2(a5+P)> ve>0, V=1,

P(|Xi| > ¢, B) <2exp <—

Then, it holds that

E max [Xi|1p S alog(l+ N) ++/Tlog(1 + N).

I<i<N

10



2.1. Preliminaries 11

Combining these inequalities, we can easily get the following.

Corollary 2.1.3 Let N € N. Let t ~ X, = (X!, .., X}Y) be an R" -valued, locally
square-integrable martingale such that X = 0 and that |AX"| < a for a constant a > 0,

and let 7 be a finite stopping time. Then, for any constant K satisfying

ay/log(l1+ N) < K,

it holds that

E sup max |X/ — X/
tE[DT]]<77]<\’

B S K4/log(l+ N)

where
= X -i—‘/j‘/i—‘/j < ‘ X
B {1%??21\7\/@ i, Xi— XU, < A}
The purpose of this chapter is to study what happens in the case of “N = oc”. We

consider this problem for three kinds of martingales in Sections 2.2, 2.3 and 2.4, respec-
tively.

Next, let us give two definitions for Sections 2.2 and 2.3.
Definition 2.1.4 Let (X, A, \) be a o-finite measure space. For a given mapping 7 -
X — RU {oo}, we denote by [Z] 4\ any A-measurable function U : X — R U {oo} such
that:
(i) U > Z holds identically;
(ii) U > U holds M-almost everywhere, for every A-measurable function U such that
U > Z holds \-almost everywhere.

The existence of such a random variable [Z] 4 and its uniqueness up to a A-negligible

set can be shown by using Lemma 1.2.1 of van der Vaart and Wellner (1996).

Definition 2.1.5 Let U be an arbitrary set such that Card(¥) = oc.
IT = {lI(€)}.ci0,a), where Ay € (0,00) N Q. s called a Decreasing series of Finite
Partitions (DFP) of W if it satisfies the following (1), (ii) and (iii):
(i) each () = {U(e;k) : 1 < k < Np(e)} is a finite partition of ¥, that is, ¥ =
\“ )\IJ(E, k) and W(e;ky) N U(e; ko) = ) whenever ky # ko
(11) Nn(Ap) =1 and lim, g Ny () = oo
(iil) Nu(e) > Nu(<') whenever ¢ < &',
IT = {Il(¢)}eco,an], where Ay € (0,00) N Q, is called a Nested series of Finite
Partitions (NFP) of W if it satisfies the above (1) and (i1) and the following (iil’):
(iii") TI(e) is a refinement of TI(e") whenever ¢ < &,
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The =-entropy Hy (c) and the modified c-entropy ﬁu(g) of a DFP 11 are defined by:

Hu(e) = +/log Nn(¢);

Hu(s) = +/log(1+ Ny(e)).

Notice that any NFP is a DFP. Although the converse is not true, we can sometimes
construct a new NFP from a given DFP, due to Lemma 2.2.2 given later, without loss

of generality for our purpose. Notice also that for any DFP II

é 8
/ Hy(e)dse < 64/1og?2 +/ Hy(e)de V6 € (0, Ay]
0 0

if the integral on the right hand side is finite; in fact, it holds that

(2.1.1) Viog(14+ N) < 4/log2N < 1/log2++/logN VN > 1.

2.2 Multivariate Point Processes

Let (E,&) be a Blackwell space, and let B = (Q,F,F = (F})ier,, ) be a stochastic
basis. We put Q = Q x R, x F and P = P ® &, where P is the predictable o-field on
Q2 x Ry. For a given predictable function W on Q and a given random measure j on
R, x E, we denote by W x p the integral process defined as the path-wise Lebesgue-
Stieltjes integral: for every t € R,

f[O,f]xE Wiw,s,x)pu(w;ds,dr) if f[(},t]xE |W(w, s, z)|w;ds, dz) < oo,

o0 otherwise.

W juulw) = {

(See Section II.1a of Jacod and Shiryaev (1987) for the detail).
Let 1 be an FE-valued multivariate point process. Let v be a “good” version of
the predictable compensator of u (thus v(w; {t} x E) < 1). We introduce the Doléans

measure MF on (Q 75) which is P-o-finite, given by
M (dw, dt,dr) = P(dw)v(w;dt,dz)
(See Section II.1b, Definition I11.1.23 and II1.3.15 of Jacod and Shiryaev (1987)).
Let W = {W?" : ¢ € U} be a family of predictable functions on Q indexed by an

arbitrary set . We give a definition, using the notation of Definition 2.1.4, which plays

the key role in our context.

Definition 2.2.1 The predictable envelope W of W = {W¥ : o) € U} is defined by

W = {sup W |]
pew PP
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For a given DFP 11 of WU, the quadratic Tl-modulus |[W||g of W = {W¥ : ¢ € U} is

defined as the [0, oc]-valued increasing process t ~ |W||m.: given by

W(T(=: k)2 *
IWlns = sup  max VI W)« v Vi € Ry,
© ee(0,Ap)nQ L<k<N(e) €
where
(2.2.1) W(U') = | sup |[WY —W° VU C .
Vel PMP

For a given DFP 11 of U and a given constant a > 0, the exponential (I, a)-modulus

WS of W = {W¥ . b € U} is defined as the [0, oc]-valued increasing process t ~»

WISt given by
EW(W(e: k
W&, = sup max VIEWV (Y 4))) * v vVt e Ry,
’ £€(0,An)nQ 1<k< N (e) g
where _ 7
(2.2.9) E.(x) = 2a2 (exp(ata) —1—ate) Vael0,00),
o S N T = oo,

and W(U') is defined by (2.2.1) for every W' C 0.

It is clear that there exist some increasing versions of t ~ |[W|ly, and t ~ |[|[W]5,

uniquely up to a P-negligible set, respectively. It holds that [|W]u: < ||W ﬁ";f almost
surely, since |2|> < &,(x). Notice also that all of W, |[W||y and |[W||5* depend on F, P

and v, through P and M P One may find that the exponential modulus above is based

on the “Bernstein norm” (see 324 page of van der Vaart and Wellner (1996) for the i.i.d.

case; a discrete martingale version is contained in van de Geer (1997)).

Lemma 2.2.2 For any DFP II of U such that fOA“ Hy(e)dse < oo, there exists a NFP
IT" such that:

Ap = Ap;

Ay An

Hy(e)ds < 4 Hy(e)de;
0 0
Am An

Hu/(€>d5 S 4 Hu(é)d&
0 0

Wl < Wl  VteR,.

Proof. For every ¢ € (0, Ap], let us define

W)=\ m27) if ce227)n(0,An], i>i,

i0<j<i
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where ip = min{i € Z : 27° < Ap}. Then, the constructed II' = {II'(¢)}.c(0,a,, IS &
NFP such that Ay = Ap. Further, since N/(27) < I, << Np(277) we have

Ay 0 ) )
HHI(E)dE S 2271[_[1_[’(27:)
0 1=ig
Sy mie)
=19 J=1o
ey
J=to i=j
= 4) 27 Hy(27)
Jj=to
Aq
S 4 Hu(‘f)df.
0

The same argument is valid also for the modified entropies. The last inequality is trivial

from the construction of II'. O

Supposing that there exists a version of W such that W * v,(w) < oo for all w €

and t € R, , let us define the random variables X, and X" by

(2.2.3) X' =Wls(u—v), VteR. YYeU
and
(2.2.4) XY =Wgpeg * (n—v)  VieR, Ve ¥ Va>0,

respectively. Then, the process t ~ X, and the process t ~ X;"" is a locally square-
integrable martingale on B, both of which have finite variation. (see Lemma 1.3.10 and
Proposition I1.1.28 of Jacod and Shiryaev (1987)). The following theorem gives some

maximal inequalities for these processes in terms of | W]|y.

Theorem 2.2.3 Let i be an E-valued multivariate point process defined on a stochastic
basis B, and v a “good” version of the predictable compensator of ji. Let W = {W¥ :
€ U} be a family of predictable functions on Q. indexed by an arbitrary set U, such
that W vy(w) < oo for allw € Q and t € Ry for a version of predictable envelope W of
W. Let T be a finite stopping time. Then, we have the following (i) and (ii).

(i) It holds for any NFP 11 of W and any constants 6 € (0, Ag] and K > 0 that

6
* a3 a0 - ] N\ T~
E*sup  sup XY = X gL <y S A/ Hp(e)de,
1€]0,7] 1<k<NTE(5) 0

U, W (85k)
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where the random variables X" are defined by (2.2.4) with a = a(6, K) = 6 K/Hy(6/2).
(ii) It holds for any DFP 11 of ¥ and any constants I, L > 0 that

Aq

E” sup sup [X! = X710 <k, pan<sy S K Hy(s)ds + ——.
tel0.7] p.pEW W - <K, W20 <L} 0 ApK’

where the random variables X, are defined by (2.2.3).

Theorem 2.2.4 Consider the same situation as Theorem 2.2.3. It holds for any random

semimetric o on U, any NFPII of ¥ and any constants 6 € (0, Ay] and I > 0 that

s
E"sup sup | X[ = X0 i <xynp S K/ Hy(e)dz,
o sy, :
where
\/<‘X'a,¢v _ JY(L,(]’)‘ )&'a,u‘; _ ‘X'a,d)>_r i
(2.2.5) B = sup : <K
v, eV (S
o(4,6)<5

and the random variables X are defined by (2.2.4) with a = a(6, K) = 6K/ Hy(8/2).
Proof of Theorem 2.2.3 (i). Fix any 6, K > 0; we may assume ¢ € Q without loss of
generality. For every integer p > 0, we set
a, = 2_1)+](5I{/Hll<2_p_](S).
Next, choosing an element ¢, from each partitioning set W(2776; k) such that
/ . . T - / . . T —(p+1
{pr 1 1 <k < Nu(2770)} C{tpprn: 1 <k < Ny(2 D)},
we define for every ¢ € ¥
Y = Upk, e s 1.
, it e W2P6k).
{ Iy = (27768 k), v e k)

For every integer ¢ > 1, we introduce the stopping time

, Hy (277729)?
Ty = inf{t e Ry ([0t x E) > % — 1} AT.

—+

Since v([0,7] x E) < oc almost surely and lim. o Ny(e) = oo, it holds that 7, T 7 as

q — oo almost surely. Hence it is enough to show that

5
(2.2.6) E* sup sup |X§“’ - Xf’“ﬂl{ﬂwun_rg\»} < K/ Hy(e)des Vg > 1.
0

1€[0,7,] EW
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where a = a(¢, ).

Let us now fix any integer ¢ > 1, and denote 7 = 7, [there should be no danger of

confusion]. For every p = 0,1. ..., ¢, we consider the predictable functions W(II,v) on O
defined by (2.2.1). Since II = {II(2)}.c(0,a, is nested, it follows from Definition 2.1.4
that
(2.2.7) 2W > W(Ilgy) > W(Ilyh) > -+ > W(II ),
MP-almost everywhere. Defining the values on the exceptional sets as zero, we can
choose some versions such that the above inequality holds identically. Notice also that
W(IL,w) = W(Il,¢) holds identically, whenever ¢, ¢ € W(279; k) for some k. Next, let
us introduce the following predictable functions on Q:

/

Ap() = Lw(mew)<an, . W(I,_1v)<ap_ 1 W (Mo <ats P =0.1,.,q

Bp(w) = 1{"1’7(H(;’¢))§(l(;,...,"1’7(1_[177] '¢:)§a1,,1 7[’1/7(H1)’¢))>ap}7 p = 11 e Qv

BO([/") - 1{"1’7(H(.'¢))>a(.} .
It is important that A,(¢') and B,(v) depend on ¢ only through the subsets Iy, ..., L,

of . Next observe the identity

(2.2.8) WY — W™y = (WY — W™)By()
q
D SUCIERIAT
p=1

(WY — W) A ()
q
+ (WY — W )AL (1),
p=1

Since ag = 2a(6, ), we have By() < 17 as iy Hence we obtain

sup sup |Xf(é"K)’/¢) - X;L(é’K)’m)w| < () +(L)+(IL)+ (1) + (I11),
te[0,7] el

where

q
(I;) = sup Z W(IL) B, (1)) * pur,

bevw p=1
q
(I) = sup Z W(IL,0)By(t)) * vy,
PYew —1
(11}) = sup W(II,w)A, () * fir,
Pew
(IL) = supW(ILp) A (6) % s,
eV
q }
(III) = sup sup Z ’(VV”W — W=t A () * (i — 1/)t’ :

te[0,7] pev =1
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Further, it holds that (I;) < (I]) + (I2) where

(Iy) —supzm I, By() * (10— v),],

P 6\11
and that (1) < (II) + (I1) where

(I117) = sup [W(IL,¥) Ay (¥) * (1 — v)<| -
bew
Hereafter we will obtain bounds for the terms (I7), (Iy), (I1}),(I1) and (I11).
Estimation of (I,) and (II,). We can easily see that

q
I,) < sup — |W(IL,0)|"B,(¢) * vy
(L) @Za,,' B
W (1L,)]” B 2” P(*IZ
< oax sup oE pép Z

< K ZZ PLSHy(27716) on the set  {||W|ln, < K}.

p=1

On the other hand, it follows from Schwarz’s inequality that

(I1) < sup W) v, - /[0, 7] X B)

Yel
< grgpc. Hn(270)
B 4
Hence we have
qg+1
E|(L) + (IL) gy, <xy < Ky 277 oHn(27771)
p=1

6
< QK/ Hy(e)ds
0

Estimation of (1), (II}) and (I1I). Let us consider the term (I7). We will apply the
Bernstein inequality (Lemma 2.1.1) to the processes
t~ M, = W(IL,)B,(¢) * (1t — v);.
It follows from
0 < W(II,)B,(v) < W(II,_1¢)B,(¢) < a,4

that |[AM| < a,_;; it is also clear that

(M, M), < [W(ILY)]*B,(¥) * v,
< |27P8K)? on the set  {||W||ln., < K}.
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Thus we have
" ( sup [W(IL)B, () * (1= v)i| > = Wil < K)

te[0,7]
2)> Ve > 0.

-2
&

< 2exp |-
= exp( 2ay_ 1 + |2 70K

Hence it follows from Lemma 2.1.2 that
Esup sup |[W(II,0) B, (1) * (1t — v)i| Ly, <k}
PYeW 1€(0,7]
S’ ap_1|ﬁu(2—l76>|2 + 2_1)(31{12’11(2_1)5)
< BK - 278H(2776),

where it should be noted that “sup,.g” appearing on the left hand side is actually
“max << ny(2-r) . We therefore obtain

q

E[(I) g, <xy S 5K Y 27 P6Hy(2775)

p=1
é‘ ~
< 5]/&’7/‘ Hu(‘f)df.
0

Exactly the same calculation as for (I}]) yields some bounds for (II]) and (II1), which
lead to the inequality (2.2.6). |

Proof of Theorem 2.2.3 (ii). Due to Lemma 2.2.2, it suffices to show the assertion
in the case of Il being a NFP. We extend the given NFP II = {II(¢)}.c0,a) to 11 =
{II(2) }ee(o,2an] Where Ny(e) = 1 for all € € [Ay,2A,]. In order to apply the assertion
(i) with 6 = 2Ay, we consider the truncated processes X with a = a(2A, K) =
2A1 K /\/log2; notice that

sup sup |X} — X7 < sup sup [NV — X9

tel0,7] Y,peV tel0,7] Y,peW

+2W1{W>a} * [y + 2W1{W>a} * V.

First we have

— W% * v,

W 1{W>(1} * V- S —(I’

< — on the set {|W|*xv, < L}.
a

Next, let us introduce the predictable time

S=inf{t € Ry : [W|* %1, > L}.
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Take an announcing sequence {9, } for S (see 1.2.16 of Jacod and Shiryaev (1987)). Since
0 < S, < S almost surely on the set {S > 0}, it holds that |[W|?+vgs, < L almost surely.

Thus it follows also from Doob’s stopping theorem that

EW(gpaay * st = EWlgpo e = Vs, a1,
E|W|* % vs, a1, < £‘/

where {T},} is a localizing sequence for the local martingale t ~ Wl{W>a} *(p—v);. By
letting n, m — oc, we obtain EWI{W>H} * (tg < L/a. The predictable time S appearing
in this inequality can be replaced by 7 on the set {|W[** v, < L}.

Hence it follows from the assertion (i) with 6 = 2Ap that

E* sup sup |X;‘/) _ X:)|1{||WYHH,7—§I\,7 H’_V‘Z*UTSL}
te[0,7] ¥,peW '
2An I
S K Hy(s)de +4 ————
; SAnK/VTog2

Ar N L
2¢ K Hy(e)de .

INA

Proof of Theorem 2.2./. We use the notations introduced in the first paragraph of the
proof of Theorem 2.2.3 (p = 0 only). Notice that

/ / y . / . To & ~a ly ~a )
‘YZ?J/«’ _ XLG(D| S |‘X't(1~1// _ Alﬂwow| + ‘Y[Ho’) _ lel-,ro(f)| + Alﬂﬁol/ _ A77W0<P|

and thus

aap ra,¢p ranp a,p a, 7o a, 7o
sup | XY = X7 <2 sup  |X)T = X714+ sup |X] — X%

o(¢,¢)<6 1<k<Np(8) o(1h,9)<é8
P, pEW(85k)

The second term on the right hand side equals

a,7o, k; a,To, k:
max X, — X, L,
L<ki k2 <N () e

where
, Tl = To ke o :
Apjgy =w € Q. Jth, ¢ €V sit. 0v Ok % and o, o) w) < 6.
' TP = T0,ko

cre, 1o 1ce that for cvery ’U/}, 10)
H tice that f v, e
<){a,7r01/; o ‘Yn,vrg(,é7 ‘X'a,rrod; . ‘X'a,rro(,")>7_ S 3<A'a,,7r01/; . AYn’l’b, Y 470 U ){(1,,1/)>T
_|_3<‘Y(737TO(7) _ ‘X'“-KP7 X T _ X“-KP>T
RIS G G O
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on the set {|W|ln, < K} N B, where B is given by (2.2.5). Thus, for every ky, ky =
1,...,Nu(6) and every w € {||W|n- < K} N BN Ak, by choosing some appropriate
= (w, ki, ko) and ¢ = o(w, ky, k), we get

<1Ya,7r0‘k] _ )&'(L.,ﬂ'o’kzﬁ)&'a,ﬂ'o’k] _ XUJO,k2>T S 962[(2.

Thus it follows from Lemma 2.1.1 that

~2
P X(laﬂ.o,k1 _ JYUMFOJCZ 1 > 5, < I, < 2 . _ c /
(EHE]' t o M, > e lelln S K) < 2exp 2(2ac + 9K 26?)

for every £ > (. Hence, we obtain from Lemma 2.1.2 that

E sup  sup |X®™Y _ Xm0, <
t t W, -<K}NB
t€[0,7] o(w,¢)<é ’

< 2alog(l + Ni(6)?) 4 36K +/log(1 + Ny (6)2)

10g(1 i Arﬂ(é” . ¢ og [N
Temr gy YR Vlos(l + An(o))

< 4K6

This, together with (i) of Theorem 2.2.3, yields the assertion. O

So far we have been concerned with the truncated processes X% = Y/T/"wl{Wga}*(u—l/)
(except for (ii) of Theorem 2.2.3). This means that the predictable functions of integrands
should be uniformly bounded, and this assumption is sometimes too strong. However, as
is explained in Chapter 3.4 of van der Vaart and Wellner, it can be replaced by a moment
assumption of exponential order (see, in particular, their Lemmas 3.4.2 and 3.4.3 which
are concerned with the i.i.d. case); the key tool for this purpose is the extended Bernstein
inequality (e.g., their Lemma 2.2.11). In our situation, we can make use of a martingale
version of the inequality given by van de Geer (1995b, Lemma 2.2); we will quote it as

Lemma 2.2.6 below. Let us begin with giving a version of Theorem 2.2.3.

Lemma 2.2.5 Consider the same situation as Theorem 2.2.5. It holds for any NFP 11
of ¥ and any constants 6 € (0, Ay] and K > 0 that

* N ba's b VA B
E* sup  sup (W = W) (10— v )| 1gwpn . <k}
te[0,7] 1<k<NTI(6)
P, dEW(S:k

)
é
< K | Hyle)ds + E* suj ax  [W(W(6;k =)L <k
N X/O n(e)de + t;}éﬁ}lgiﬁiﬁmﬂ (W(o: k) * (1t = V)| Ly <)

(recall the notation W(¥') defined by (2.2.1) for every W' C ¥ ).
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Proof. Recall the proof of (i) of Theorem 2.2.3; it suffices to consider the first term on
the right hand side of (2.2.8). Notice that

(WY — W™ By() % (1t — v); < W(ILgw)Bo(0) * (pt — ) + 2W (Lgth) By (¥0) # 1.

The second term on the right hand side is bounded by

2 ; Hy(6/2 ) ,
=W (IIgy)]? x v, < L,/)((SK)‘ on the set {|W|ln, < K}
Qg 0K ) ’
8/2
< 2K Hu(‘f)df.
0

On the other hand, the first term is bounded by

(W (o)) * (o= v)e| + IW(Ig )L i (imy gy <aoy * (1 = V)il

and it follows from Corollary 2.1.3 that

" Sl[lp} sup W (Tow) L g (yer<any * (10— )il Lgwiin <y S OF H(9).
tel0,7] Pe

The assertion follows from these inequalities. O

Thus the problem is how to manage the second term on the right hand side of Lemma
2.2.5. As we announced above, this can be solved by means of the following lemma that
is an easy consequence of Lemma 2.2 of van de Geer (1995b). From now on, we will

assume that v({t} x E) =0 for every t € R, for simplicity.

Lemma 2.2.6 Let ji be an E-valued multivariate point process which has the predictable
compensator v such that v(w;{t} X E) = 0 for all w € Q and t € Ry. Let W
be a predictable function, and suppose that for a given constant a > 0 it holds that
exp(a™ W) x v (w) < oc for allw € Q andt € Ry. Let T be a finite stopping time.
Then, it holds for every T' > 0

2
Pl sup [Wx(pu—v)| >z (E(|WV])*xr, <T | <2ex (—Ci) Ve > 0.
(te[ng] | (:L >f| ’ ( <| |) > p 2((1/5 + F)

Lemma 2.2.7 Consider the same situation as Theorem 2.2.3. For a given constant
a > 0, suppose also that for every w € Q it holds that v(w;{t} x E) = 0 and that
exp(a W) * v(w) < o for all t € [0,7(w)]. Then, it holds that for any NFP TI of ¥
and any constants 6 € (0, Ay and K > 0 that

E* sup  sup |(W””5 — I/V‘b) * (p— V>t|1{\I>VIIH,TSIX’}ﬁB

te[0,7] 1<k <N (8)
U, W (85k)
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5
< K/ Hu(2)dz 4 alog(1 + Np(6)),
0

where

1<k<Np(6) ) -

B:{ D ¢<8za<wff<\lf<é‘;k>>>>w<[,}.

Proof. Lemmas 2.2.6 and 2.1.2 yield that

E* sup sup |[W(W(6; k) * (u—v) |1 < 6K Hy(8) 4+ alog(l + Ny (6)),
te[0,7] veT

which implies the assertion. O

While the argument 6 in the above lemma is arbitrary, it sometimes suffices to consider
a specific range of 6. In the context of M-estimation studied in Chapter 6, we will use
it in the following form that is reasonably weak and simple. It should be noted that one
may get different versions by going back to Lemmas 2.2.6 and 2.2.7; even removing the

assumption that v(w;{t} x E) =0 is also possible.

Theorem 2.2.8 Consider the same situation as Theorem 2.2.3. For a giwen constant
a > 0, suppose also that for every w € Q it holds that v(w;{t} X E) = 0 and that
exp(a W) * vy(w) < oc for all t € [0,7(w)]. Let I1 be an arbitrary NFP of 0.

(i) For any constants 6 € (0, An] and K > 0 satisfying

s

(2.2.9) a/ Hy(e)ds < K62,
0

it holds that

s
E* sup sup |X] —X] |1{HWH62“<I\"} S K / Hy(e)de.
te[0,7] L<ESN[I(8) = 0
b, bEW(5:k)

(ii) If a given random semimetric o on U satisfies that

V (Ea WY — W) % vy < o(1), ¢) Vi, 0 € W P.-almost surely,

then, for any constants 6 € (0, Ap| and K > 0 satisfying (2.2.9), it holds that

6
. . P 1) [ ] Ve
E” sup - sup X = XLy < g lns i) 5]‘/0 Hu(=)de,

te[0,7] .oEY
" e, 8)<Ks

where
o1, d)

lollm= sup  max sup -
c€(0,Am] 1<k<Nm(e) U,peW(e;k) c
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fué‘ Hy(e)ds . which is
bounded by K f(f ﬁ[n(s)de whenever ad~? f(f ﬁ[n(e)dg < K. Thus we have obtained the

first assertion.

Proof. The second term of Lemma 2.2.7 is bounded by ad~?

For the proof of the second assertion, we use the notations introduced in the first
paragraph of the proof of Theorem 2.2.3 (p = 0 only). The method of the proof is quite
similar to that of Theorem 2.2.4. Notice that
X - X7 X7 - X7+

P ot o Tod
S |‘X[ - ‘X[ | + ‘Y[ - Xl |

and thus

‘ -1 - (G ¢ ‘ ~To 1 To¢
sup  |X) =XV <2 sup X =X7|+ sup  |X[7 = X7
o(1,6) <K s o(1,6) <K

The second term on the right hand side equals

70,k O, k-
max | X, 7" = X1,
1<k ko <N11(6) 12

where

Apy gy = {w €N: o eVst. { W= 0.k } and o(v, ¢)(w) < K(S} .

TP = Tk,

Here notice that for every ¢, € ¥

V (Eaa([Wmov — Wm0d|)) 5 1,

IN

o(mot, o)

IN

o(mv, ¥) + o(m9, &) + 0(¢, &)

< 2K6+ 0(v. o)
on the set {||o||n < K}. Thus, for every ki, ko = 1,..., Nn(6), and every w € {||o|ln <
K} N A, &, by choosing some appropriate ¢ = ¢(ky, ko, w) and ¢ = ¢(ky, ko, w), we can

get

V(Eu([WTk — Whka|)) % v, < 3K6.

Thus Lemma 2.2.6 yields that

~2
* ; To.k 70,k - - 9., . <
P <t21[[1)1:_] | = X [y, > e Hlelln < A) < 2</xp< Q(QGHQK%Q))

for every ¢ > 0. Hence it follows from Corollary 2.1.2 that

x '7"()’4//’ 7F(i¢>
E*sup  sup XY = X Lgppn<ny
1€10,7] e(0)< K5

2alog(1 4+ N (6)?) + 3K 6+/log(1 + Ny (8)2)
4alog(1 + Ny(8)) + 3vV2Kd+/log(1 4+ Np(6)).

S
<

This, together with the first assertion of the theorem, yields the second. O
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2.3 Martingale Difference Arrays

Let a discrete-time stochastic basis B = (Q,F.F, P) be given, where (Q,F,P) is a
probability space and F = {F;},cn, is an increasing sequence of sub-o-fields of F indexed
by Ny = {0} UN. Let ¥ be an arbitrary set.

Definition 2.3.1 {&}ien = {({H(’ € U)}ien is called an (°°(¥)-valued martingale dif-
ference array on B if:
(i) & is a mapping from Q to ((V) for every i € N;

(ii) {5;“/'}{61\; is an R-valued martingale difference array on B for every v € .

It is required in (ii) that ff is F;-measurable and F; lff = 0 almost surely, for every
P € W, where F; 1 denotes the F;_j-conditional expectation; the exceptional sets may
depend on . Notice also that we do not require any measurability of the (°°(W)-valued
random element &;.

Based on the notation of Definition 2.1.4, we make the following definition.

Definition 2.3.2 The adapted envelope {E;}ien of 1&}Vien is defined by

& = [sup |§:|} Vi e N
Fi, P

vel

For a given DFP 11 of U, the quadratic TI-modulus ||&||n of {& }ien is defined as the

R U {oo}-valued increasing process {||€||u, }ien given by

VI ES |@< B
I¢ln; = sup max Vie N,
SE(O,Au]ﬁngkSJVH(

where

(2.3.1) &(0') = { sup &/ — g;f’q Vie N V¥ cC .
Fi.P

), pED!
Fm“ a given DFP I of U and a given constant a > 0, the exponential (11, a)-modulus

© of {& }ien is defined as the [0, oo]-valued increasing process {Hf”énal}fel\; given by

€l

Vi By Eu(E(WE1 1)

sup max Vi e N,
c€(0,An]nQ 1<K NI(e) €

éa_

€11

where E,(x) is defined by (2.2.2) and §(V') is defined by (2.3.1) for every ¥ C W.

Theorem 2.3.3 Let {& }ien be an (°°(W)-valued martingale difference array, and let o
be a finite stopping time, both of which are defined on a discrete-time stochastic basis B.

Then, we have the following (1) and (ii).
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(i) For any NFP 11 of U and any constants 6 € (0, Ay and K >0,

m

D€ =87

=1

E* max  sup
1<m<eo 1<k<np(5)
D6EW(bik)

6
Lyein <k} N ]{/0 Hy(e)de,

where & =1z Ly with a = a(8, K) = 6K/ Hy(6/2).
(ii) For any DFP II of ¥ and any constants K, L > 0,

m

> -¢)

i=1

Ar R L
Lighnosn, 57 b2y S A i Hh@ﬂd€+'AHBg

* - |
E™ max sup
1<m<eo ,peT

The result above is similar to Theorem 2.2.3, although the proof needs a careful discussion
about the choice of versions of conditional expectations. It gives us the analogue of
Theorem 2.2.4.

Theorem 2.3.4 Consider the same situation as Theorem 2.3.3. It holds for any random

semimetric p on U, any NFPII of ¥ and any constants 6 € (0, Ay] and I > 0 that

m
E* max  sup Z(éi(” s
1<m<o 1<k< Ny (5) !

s
Ljeln o< rins < I{/ Hy(e)ds,
0

voew(si) | =1
where
lod a1 a,p
Bl - P
=1 ? 2 1 -~
(2.3.2) B =< sup - <K
b,HEW o
o(,0) <6

and where £V = f}’f”l{g,ga} with a = a(6, K) = 6K/ Hy(6/2).

Proof of Theorem 2.3.53. Fix any 6, K > 0, and define a,, 7, and II, for every integer
p > 0 in the same way as the first paragraph of the proof of Theorem 2.2.3 (i). For every

integer ¢ > 1 we introduce the finite stopping time

Hp(279726) 2
ﬂq:inf{z‘EN:’i>%—l}/\a.

Then, we have o, T 0 as ¢ — oo almost surely. Hence it is enough for getting the

assertion (i) to show that

m

(£ — &™)
i i

=1

(2.3.3) E* max sup

1<m<ay, hew

6
1{|£||n,a<r«}51\"/0 Hu(e)ds  Vg=>1,

where a = a(6, K).
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Let us now fix any integer ¢ > 1, and choose some appropriate versions of &, and
&(ILyw), p=0,1,...,q (recall the argument about (2.2.7)). We define:

141‘,])(1/{)) = 1{5 (o) <ag, i (My_10)<ap_1,&(Mpb)<apys P — 07 1* - 4
Bi,p(’l/’) = 1{5 (Mo 3)<ag,n&i(My_19)<ap_1,E(Mp)>ap}ys P = 1,...,q
Bi,O(Il//j)) = 1{€i(H0'$)>ao}-

Next observe the identity

/

& =& = (& € Bi®)

FE - B )

p=1

<5@ ) Ay o (1)
+Z<£”’° — € A (0).

p=1

Taking the F;_;-conditional expectations of all terms, we obtain

(2.34)  (0=) E& —E & = Ei (&8 — €°")Bio(v)
+ZE:1 & =) Biy(v)
+Eii(&] =€) Ay ()

+ Z; Eia (67" = €7 ) Aipr (),

almost surely. Further, it holds that

(2.3.5) |Eii(& — &) Bio(v)

i—1& (o) By ()
almost surely, and that

(23.6) |Eia(& — &) Biy(v)

< E &G0 B, () < ap-, p=1,...4q,
almost surely, and that
(2.3.7) B (€7 = &) Ayt ()] < e

almost surely. Here we choose versions of conditional expectations as follows: first
choose some versions of the terms F; & (11,(¢))B; ,(¢) of (2.3.5) and (2.3.6), which

are non-negative and fulfill the second inequalities ()i (2.3.6), identically; next, on the



(N]
=~
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exceptional sets of (2.3.4), (2.3.5), (2.3.6) and (2.3.7), we define the values of all other
conditional expectations as zero. Then, the values of E;_&,(I1,1)B; ,(¢) and Ei (67—
f,zrp’w)Ai,p,l(u)) depend on ¢ only through IIye, ..., II,¢ and 7, 11, 7,1, respectively,

while (2.3.4), (2.3.5), (2.3.6) and (2.3.7) hold identically for all ) € W.
Since ay = 20K Hy(6/2) we have Bio(¥)1z o550, = 0. This implies that

L (sup
pET

< F (SUP | Ei —1&i( o) Bio(1))

bew

Eial€! =€) B0 g o |

1{@@(6,[()}) since (2.3.5) holds identically
< 2F (EiBi,qO(’l//')1{5,-9@,,1{)}) = 0,

and thus
sup |Ei_1 (& — &) Bio(v)

1., =0
pew {& <a(8,K)}

almost surely. Hence we obtain

m

(&7 — &™) < (1)) + 2(L) + (I1}) + 2(IL) + (111),

max sup E
1<m<aoy, HET

i=1
where
q Oq
(h) = Sugz Z{‘Si<nz)w)Bi,p(w) — B 1 &I Biy ()}
veY 1 |i=1
q Oq
(1) = smpd D Eia&i(lly)Biy(0).
veY 1 =1
Tq
(I1}) = sup > {G (I Ay (1) — By &(TT) Ay (1)}
veV o)
Ip
L) = SupzEi—lg'i<Hq'¢)‘4i,q(¢’)v
el oy
q m / ’
ITl) = max sup { g;rl’”’ — ngTP*W Ay (W
( ) 1<7n<0‘1¢€\1!; ; ( ) P l( )

3

m
=D B - ffp_lw)Af,p—l(ﬁ’)}
=1

almost surely. To get (2.3.3), we can deal with terms (17), (1), (I1}),(I13) and (I11)

3

exactly in the same way as those of the proof of Theorem 2.2.3 (i).
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The assertion (ii) can be proved in the same way as that of Theorem 2.2.3, paying
attention to the choice of conditional expectations; introduce a continuous-time stochas-
tic basis and repeat the argument with an announcing sequence (see page 14 and 1.2.43
of Jacod and Shiryaev (1987)). O

Proof of Theorem 2.3.4. The result follows from the same argument as Theorem 2.2.4.
O

When a maximal inequality not for the truncated &"*’s but for the original &’ is
needed, one may follow exactly the same discussion as Lemmas 2.2.5, 2.2.7 and Theorem
2.2.8, replacing Lemma 2.2.6 by the following version of the extended Bernstein inequality

due to van de Geer (1995h).

Lemma 2.3.5 Let & = {& }ien, be an R-valued martingale difference array on a discrete
stochastic basis B. Suppose that for a given constant a > 0 it holds that E exp(a1|&]) <
oo for every 1 € N. Let o be a finite stopping time on B. Then, it holds for every I' > 0

m
P | max g &
1<m<o | 4 I
-

We state here the analogue of Theorem 2.2.8 only.

~2

> ¢, ;EH&U&D) < F) < 2exp <—m> Ve > 0.

Theorem 2.3.6 Let {& }ien be an (°°(W)-valued martingale difference array and let o
be a finite stopping time both of which defined on a discrete-time stochastic basis B.
Suppose also that for a given constant a > 0 it holds that E exp(a™'¢;) < oo for every
1 € N. Let II be an arbitrary NFP of .

(i) For any constants 6 € (0,Ay] and K > 0 satisfying

(2.3.8) a// Hn(e)ds < K62,
0

it holds that

m

S -¢)

=1

E* max sup
1<m<o y ¢cw
p(¥,0)<6

8
<K T\
1{Ilélwﬁ%gg1<} ~ [‘/0 Hy(e)de,

(ii) If a given semimetric o on U satisfies that

Z Ei 1Ea(€0 = &7)) < o(v), 0) Vi, 0 € U P.-almost surely,
i=1



2.4. Continuous Local Martingales 29

then, for any constant 6 € (0, Ay] and K > 0 satisfying (2.3.8), it holds that

m

6
- , v ¢o : < K | Hg(z)ds
B max - sup |3 (6 — &) Lyggmsmpnionzsy S B /0 Hu(e)de.

lg’f!lg(f P, pEW A
ol <Ks | i=1

where

llollu = sup  max  sup
£€(0,Ap] 1SESNI(E) o pew (k) 2

2.4 Continuous Local Martingales

Let B = (2, F,F = (F))er,. P) be a stochastic basis and (W, p) a proper metric space.
Let X = (XV

by . We introduce a kind of “quadratic modulus” which fits in this situation.

1 € W) be a family of continuous local martingales defined on B indexed

Definition 2.4.1 A quadratic p-modulus | X||, of a family X = (XV
uous local martingales is defined as a [0, 0o|-valued stochastic process t ~ || X||,, given

by

v € W) of contin-

X7 - X7, X7 — X9
X = sup Y ’ )

VeV /’(l//)* @)
VS

vt e R,.

Since the set W is not necessarily countable, the random element || X||,; may not have
any measurability. Moreover, although the predictable covariation (X%, X¢) is uniquely
determined up to a negligible set for every pair ¢, € V. due to the same reason the
quadratic p-modulus of X may not be unique even in the almost sure sense. However,
we do not require its uniqueness because the assertion of the following theorem is valid

for any choice of quadratic p-modulus of X.

Theorem 2.4.2 Let (U, p) be a totally bounded metric space. Let X = (X¥|¢) € U) be

a family of continuous local martingales indexed by ¥ such that Xg' =0, and 7 a finite

stopping time, both of which are defined on a stochastic basis B.
Then, for any choice of quadratic p-modulus || X||, of X, it holds that for every
O, K >0

5

sup E” sup sup |X, _Xﬂl{IIXHp,TgK} S K/ ol N(, pr 2))de,
mie O S 0

provided the integral on the right hand side is finite (the first supremum is taken over all

countable subsets W* of W ).
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Proof. Fix any countable subset U* of W. Let {U™},,cn be a sequence of finite subsets
of U* such that ™ T U* as m — oc. For every m € N and p € Z, let us denote by
q(m,p) the smallest integer such that ¢(m,p) > p and that each of closed balls with
centers in W™ and p-radius 2-2797P) contains exactly one point in W™, Then it is clear
that Card(W™) < N(W, p; 274m»),

Next let us introduce some mappings 77 : W™ — WP p < < g(m, p), defined by

m m,]
m7p \m P o ;-ﬁ 0-+:0 )\q(}f;p)’

where the sets U"P C U™ and the mappings AP : U™ — WP should be specified in
the following way. For p < r < g(m,p), choose W? and define AP which satisfy the
following two conditions: (1) Card(W™?) < N(W, p;27"); (i) p(v, APP()) < 227" for
rarv 2l m J O, , , m,p _ m . m.p ] Ty
every v € U™, For r = g(m,p), put \Ilq(mp) U™ and denote by )\q(m ) the identity

mapping on ¥,
In term of the mappings 7,"* which have been introduced, we consider the chaining

given as follows: for every t € R, and v, € U™

A' @

< (1) + (1)

where the terms on the right hand side are given by:

g(m,p) (m,p) >
Z |‘)(T7 (1/ )& Tr— I(L | + Z |JYTT (/ X ‘7 l((r)
r=p+1 ot

(II) = |Xt7r;n‘7‘(l/f’) . /'Zrlr‘n’p(qy))y

First let us consider the term (I). It follows from Lemma 2.1.1 that for every ¢, 7 > 0
P X - XY s e X, < ) <2 ( ; )
sup |-« Xy e | Xy SR )L 2exp | =5 |
te[0,7AT] t ' " 2. 272t

and by letting 7" — oo we can replace “7 AT” by “77 on the left hand side. Thus we

obtain from Lemma 2.1.2 that

Iy D ()
E sup sup | X" (‘)—Xt’ !

PeT™ ¢e[0,7]

Loy, <xy S 27 K/ log(1 + N (W, p;277)).
Next let us consider the term (II). Notice that

plmy P (), )P (9))
q(m.p) q(m,p)

<X P + D paH(0).a(6)) + (2. 0)

r=p+1 r=p+1
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and the right hand side is not bigger than 33 - 277 whenever p(v’,¢) < 27P. Hence it

follows from Lemmas 2.1.1 and 2.1.2 that

P (), AP
E sup sup |X,” @)—AYLP (@)|1{I\X\Ip,r§1&’}
v, 0€T™  ¢e]0,7]
pl(.0) <272

< 33-27PK/log(1 + N(F, p;277)2) < 33v2-27PK+/log(1 + N(¥, p; 2-7)).

To show the assertion of the theorem, for a given 6 > 0 choose p € Z such that

2771 < § <277, Then, the estimates for the terms (/) and (II) yield that

X = XL <)

E sup sup
VHEUT 10, 7]

p(,6) <5
q(m.p) 26
< Z 27" K +/log(1 + N(¥, p;2-7)) < 2K Viog(1 4+ N(W, p:e))de.
—p 0
The proof is accomplished by letting m — oc. ]

One may sometimes encounter the question whether the paths ¢» ~ X% and (¢, ) ~
X are continuous and /or bounded. Applyving the result above, we can get two kinds of
i o ; o)

answers to this problem. The first one is concerned with the case where W is countable.

Theorem 2.4.3 Consider the same situation as Theorem 2.4.2. Suppose also that U is

countable and that

1
P(| X, <o0)=1 and / V1og N(U, p;e)de < 0.
0

Then, almost all paths of 1 ~» XV are uniformly p-continuous on V; morcover, they
belong to (>°(W). Furthermore, when 7 > 0 is a constant, almost all paths of (t,v) ~»
X! are uniformly p-continuous on [0,7] x U, where p((t, 1), (s,¢)) = |t — s| V p(1p, ¢);
moreover, they belong to (*([0, 7] x ).

Proof. Tt follows from Theorem 2.4.2 that for every ¢ € N there exists ¢; > 0 such that

E sup  sup |X) — X?H{HXH,J,TSK} <K 47

1€[0,7] .6ET
P(16.0) <8,

Here, we set

X=X/ >27Y  Viel

A;={ sup sup
p(Y.9)<6; t€[0,7]

Then, since Y. P(A; N {||X ||, < K}) < oc, it follows from the Borel-Cantelli lemma
that P (limsup; 4; N {||X||,- < K}) = 0 for every K > 0. Noting |JgentlI X7 <
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K} = {||IX]||,- < oo}, we obtain that P(limsup; 4;) = 0, which implies the uniform

continuity. Since (W, p) is totally bounded, almost all pathes are bounded. O

When ¥ is uncountable, the following gives a sufficient condition for the existence of a

continuous version of ¢ ~ X7V,

Theorem 2.4.4 Consider the same situation as Theorem 2.4.2. Suppose also that it

holds for a choice of quadratic p-modulus || X||, . of X that

1
pr <[H5(H,,T]Jr p < oo) =1 and / V1og N(T, p; 2)de < o0,
" 0

Then, there exists a family {X(b) 21 € U} of Fr-measurable random variables such that
)?(L/J) = XY almost surely for every 1 € ¥ and that almost all paths of 1 ~ X(u) are
uniformly p-continuous; moreover, they belong to (*°(V). (Such a process 1 ~» )2(1/)) i85

called a p-continuous version of 1)~ XV.)

Proof. Consider the F-measurable partition Q = (J, .y, (o0} Q(K) given by

AK) = {IIXl, el LB} €7 VEeEN
o) = {IXllal, p = 0} € 7.

and define the process 1) ~ Y (1)) by Y (¢) = X¥1qg(x) for every I € N. Notice that
(T, p) is separable. For every K € N, since ¢ ~ Y (¢) is continuous in probability by
Theorem 2.4.2, it admits a separable version ¥ ~ ?K(ﬁ/‘); here, we may define Y = 0 on
the set O\ Q(K). In the same way as Theorem 2.4.3, we can show that almost all paths
of 1) ~» ?K(’(,l') are uniformly p-continuous. Thus the process X = ERGN }7[( satisfies the

required properties. O

Notice that the constructed f(’(u) is not the terminal variable of a continuous local
martingale any more. However, it is conjectured that such a construction, including also
the parameter t, would be possible.

In Theorem 2.4.2, the requirement that p should be a proper metric on W is strong for
some applications. The following theorem is concerned with an adaptation to a (random)
semimetric o which is “weaker” than the metric p; the entropy number should be still
computed with respect to the metric p. The proof is similar to (and easier than) that

for (ii) of Theorem 2.2.8, hence is omitted.

Theorem 2.4.5 Let (W, p) be a totally bounded metric space. Let X = (X V| € W) be

a family of continuous local martingales indexed by W such that X =0, and let T be a
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finite stopping time, both of which are defined on a stochastic basis B. If a given random

semimetric o on U satisfies that

V(XY — Xo XV — X%, < o), §) Vi, 0 € W P.-almost surely,

then it holds that for every 6, K > 0

8
sup E* sup  sup |X[ — Xfl)|1{‘|m|p<m < K/O V1og(1 4+ N(W, p: 2))de,

U* tel0,7] ¥.0€T*
countable o(¥,0)<K6
where ’
el o)
oll, = sup ,
Ollp = SUb p(U,d)’
VEP

provided the integral on the right hand side is finite (the first supremum is taken over all

countable subsets U* of ).

2.A Notes

The martingale version of the Bernstein inequality (Lemma 2.1.1) is due to Freedman
(1975) who dealt with the discrete-time case. The inequality requires that the jumps of
a martingale are bounded, but this assumption has been replaced by a kind of higher
order moment condition by van de Geer (1995b), which we quoted as Lemmas 2.2.6 and
2.3.0.

The usefulness of bounds for expectation of supremum was shown by Pollard (1989).
See also Pollard (1990), Kim and Pollard (1990) and, for more details, van der Vaart and
Wellner (1996). The inequalities given in Section 2.2 have the same nature as that of van
de Geer (1995b, 1997) who derived a probability inequality with a different definition of
brackets.

Related to Theorems 2.4.3 and 2.4.4, one can find a general theory of the regularity

of sample paths in Chapter 11 of Ledoux and Talagrand (1991).



Chapter 3

Weak Convergence Theorems

3.1 Preliminaries

Let us quote here a tightness criterion for sequences of random elements taking values in

(><-spaces. The proof can be found in Chapter 1.5 of van der Vaart and Wellner (1996).

Theorem 3.1.1 Let T be an arbitrary set. For every n € N, let (Q", F", P") be a prob-
ability space and X™ a mapping from Q" to (>(T). Consider the following statements:
(i) X™ converges weakly in (°(T') to a tight, Borel law;

(ii) every finite-dimensional marginal of t ~» X"™(t) converges weakly to a (tight,) Borel
law;

(iil) for every e,m > 0 there exists a finite partition {T}, : 1 <k < N} of T such that

lim sup P~ ( max sup |X"(t) — X"(s)| > ;) <n;

1<k<N ¢t seTy

n—oo

(iv) there exist a semimetric p on T such that (T, p) is totally bounded and that for every

g,m > 0 there exists 6 > 0 such that

limsup P™ | sup |X"(t) = X"(s)] > | <.
n—oo t,s€l
pl1,5)<8

Then, there is the equivalence (i) <= (ii) + (iii) <= (ii) + (iv). Furthermore, if
the finite-dimensional marginals of a process t ~» X(t) have the same laws as those of
the limits in (ii), then there exists a version X of X such that X" L X in >>(T) and
that almost all paths t ~» )?(1‘) are uniformly p-continuous, where p is the semimetric
appearing in (iv). Furthermore, if the finite-dimensional marginals of the process t ~»

X(t) are Gaussian, the semimetric py defined by

pat.s) =/ E|X(t)— X(s)? Vt.seT

satisfies the same properties as p.

34
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Remark. No measurability of X" has been assumed. On the other hand, in the latter
part of the conclusion, all finite-dimensional marginals of the processes t ~ X (t) and
t~ )A(d(t) are implicitly assumed to be Borel measurable. Moreover, the assertion means

that it is possible to choose a version X that is Borel measurable in (((T),

3.2 Multivariate Point Processes

Let (E,&) be a Blackwell space and ¥ an arbitrary set. For every n € N, let ;" be an
E-valued multivariate point process defined on a stochastic basis B" = (Q", F",F" =
(Fi )tery, P*), and v* a “good” version of the predictable compensator of p". Let W" =
{W™¥ : ¢ € U} be a family of predictable functions on 0" = Q" x R, x F indexed by
U. Let a DFP IT of ¥ be given. Notice that (E,&), ¥ and IT do not depend on n, while
all other objects are indexed by n € N (we will discuss the case of DFP’s II" varying
with n € N at the end of this section). In the same way as Section 2.2, we introduce the

following notations:
o the predictable envelope W' of W";
e the quadratic [I-modulus ||[W"||; of W™.

Further, let a finite stopping time 7" on B" be given. Throughout this section, we shall
assuime:

(3.2.1) the process o~ W % v takes values in [0, 00).

As in Section 2.2, we define the local martingales ¢t ~» an.;u‘? and the locally square-

integrable martingales t ~» X™%% on B" by
)(;Hw — I”i/v“’w * (,u“ _ I/H)t Vt c R+ VL///‘ c \I]

and
X;l’a7”‘/) = W"’"”/’l{wga} k(" —v"), Vte R, Vi € ¥ Va > 0,

respectively. We will derive the asymptotic behavior of the processes 1) ~ X" and
(t,1h) ~ X[, as n — oo,

Let us now introduce several conditions. The first one is the Partitioning Entropy con-
dition, which is a natural generalization of the metric entropy condition for L?-bracketing
in the LLI.D. case:

[PE] there exists a DFP IT of ¥ such that
Aq

IW"|lnsn = Opn(1) and Hy(e)ds < 0.
0
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Notice that, due to Lemma 2.2.2, under [PE] we can always construct a new NFP
IT which satisfies the displayed conditions. Next, we shall also consider two kinds of
Lindeberg conditions:

[L1] W1

[L2] w" 2I{an} * Ul EiliN 0 for every ¢ > 0.

P’Il
* V1, — 0 for every ¢ > 0

>e}

When we mention [L2], the assumption that
(3.2.2) the process t~» |W' |2 %1} takes values in [0, oc)

is also implicitly imposed in addition to (3.2.1), and in this case the process t ~ XY s
a locally square-integrable martingale on B”. Tt is trivial that [L2] implies [L1].

Next let us introduce some conditions prescribing the asymptotic behavior of the
quadratic covariations. Let S be a subset of Ry, and suppose that the family {C,w"é) :
t e R, (1,¢) € U?} of constants in the following satisfies that

(3.2.3) t~ O is continuous for every (1 ,0) € U2

[C1] [X™¥, X9, 2 e for every t € S and (¢, 0) € %

[C2] (X%, X9, LN C(i’f;’(’ﬁ) for every t € S and (¢, ¢) € U

[C1,] [xXmew, xmed], 25 09 for every t € S and (1. ¢) € U2, for every a > 0

[C2,] (Xt Xmad), RN Ct(l*'o) for every t € S and (v, ¢) € W2, for every a > 0.
Similarly to the remark following [L2], the assumption (3.2.2) is implicitly imposed when

we mention [C2]. Tt is well-known that the quadratic covariations are given by

XX = 3T AXTPAN

s<t

and (under the assumption (3.2.2))

‘/X(TL.,U}7 X’TL,(’/) (Ii/ T, L ‘{'T! Q) I/ '[/ ’/L 1, IITI“(Q
t

s<t

where ﬁ,n = [ W™ (w,t, x)v(w; {t} X dx), respectively.

Using th(} constants {Ct’ @ } appeared in the conditions above, we set (formally)

(3.2.4) P8, 9),(5,6)) =\ O 4 O — o

for every (t,¢),(s,¢) € Ry x . Any of [C1], [C2], [C1,] or [C2,] implies that the
value under the square-root is non-negative for every (¢,¢),(s,¢) € S x ¥, hence the

R -valued function ps is well-defined by the formula (3.2.4) at least on (S x ¥)?. Further,
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by virtue of (3.2.3), this is true also on ([0, 7] x ¥)? if S is a dense subset of the finite
interval [0, 7] with 7 being a constant.

The assertions in the following lemma are clear or rather well-known (see e.g. Theorem
VIIL.3.6 of Jacod and Shiryaev (1987) for the part (ii) below), but we state the proofs

with minor modification to our situation.

Lemma 3.2.1 (i) The condition [L1] implies the following:
(i1) Wﬂ'l{wn> oy K H 20 for every = > 0;
(i2) SUDse(o,rn) SUDy, < |X7 — X 70 for every a>0;
(i3) SUDse(g,rn] AW s ) o (m(l SUD;e(0,77] AW« ) 0:;
(11) SUPelg,rn] SUDpey [AX ‘| 2250 for every a > 0.
(i1) Let " = 7 be a fized constant, and suppose that S is a subset of the finite interval
[0,7]. Then, under [L1] it holds that [C1] < [C1,] & [C2,]. Under [L2], the condition

[C2] is also equivalent to any of them.
Proof. Tt follows from Lenglart’s inequality that

P" (Wnl{ﬁ ey ¥ > 77) <n+P" <Wnl{H ey ¥ Vi 2] > vn >0,

hence the condition [L1] implies (i;). The assertions (is), (i3) and (i4) are immediate
from (iy).
Next we show the part (ii) of the lemma. By polarization it is enough to consider

the case ¢ = 1. Observe that

[JYIL;(D? )&-n,w]f _ [‘X"n‘,ou‘b7 )&'n,a?y’)]t’

Z(A‘Xf:,,l,lv + AX:,,(IJ/B) (A){: R A‘X’:,a,ﬂ‘;)

s<t

< 2 Z ‘AT/I/’”"‘“/’l{WM} s (" —v")g on the set Qf
s<t

< 2{W Ly * )+ W Ly % 07

where QF = {sup, ¢y - IAXTY] < 11U {SUDse0.1] |AX["“¥| < 1}. The assertion that [C1]
< [C1,] under [L1] is now derived from (iy), (i3) and (i4).

To show the equivalence [C1,] & [C2,] under [L1], fix any a > 0, and we set
Y? o= [Xmer, Xmav] — (Xmew ety - We will prove that SUDsejo.q |AY] L0 for
every t € S under either [L1] + [C1,] or [L1] + [C2,]. Since X™%¥ is a locally square-

integrable martingale, we have that Y is a local martingale and that sois [Y"[?=[Y™", V"]
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(see Proposition 1.4.50 of Jacod and Shiryaev (1987)). Hence Lenglart’s inequality yields

that for every e,n > 0
P sup |Y;n|2 2 e
s€[0,t]

because A[an,l/"] — |A}7”|2 < <|A[‘Xn7aw7‘Xn’a?w”Q Vi |A<1Yn7a,y’,~‘/‘X'717(L,'d7>|2> < 16(14. Thus
it suffices to show that
(3.2.5) Y™ y", o Vte S

INA
M| =

(77 + E" sup A[Y",Y"]S> + P ([Y",Y"]; > n)

s€[0.]

2 16a*
S g n ( A(I + 1) Pn(D/n?Y'n]t 2 77)7

under either [L1] 4+ [C1,] or [L1] + [C2,].

Since the local martingale Y has finite variation, we have

I:}rn,1 }777,]1‘ — Z |A1/g77 |2

s<t
S Z |A[){n,a,¢7 )&'n,a,w]s|2 + Z |A<‘X~n,a,1ﬁ>‘/ ‘X—n,a,'zj:>s|2
s<t s<t

noAn an pn
< oA+ 5B

where

ay = sup A[X™Y XV Al = [Xmev ) Xmer]
s€[0,1]

’bltn — Sup A<‘X'n.,a,w1)(n7a,1;‘>37 B;z — <X71,a.,7£;7X7L,a714’)>t'
s€[0,1]

Using (i3), we obtain that o} L% 0 and By L% 0 for every t € S, under [L1]. On the

other hand, Lenglart’s inequality yields that

. 2 2
Prar> ) < 20y prpr sy Ve >0
@)
and that
0+ 4a®

PU(B! > 2) < +PAT >n) Ve, > 0.

Hence [C2,] implies that A7 = Opa(1), and [C1,] does that B} = Opx(1). The claim
(3.2.5) has been established.
The equivalence that [C2] & [C2,] under [L2] follows from the inequality

’ <‘Yn,'d7’ ‘me>t . <X’n‘,a7«¢;’ ‘Yn"a’w)t’
< |U—/,n

2 ) n
1{W”>(I} * I/T

+Z/E2Wn(t,;r)1/({t} X d‘r)/EW"(ta4’5)1{w"(t,r)>a}y({f} X dur)

1<t

IN

|W77’|21{W">a} kUl + QWHI{W"M} * U on the set 7,
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where Q5 = {sup;c( AW x 1) < 1}. O
The first result of this section is concerned with the processes ¥ ~» X%

Theorem 3.2.2 Consider the above situation with (3.2.1). Suppose that every finite-

dimensional marginal of X", = (X%¥|¢) € U) converges weakly to a (tight,) Borel law,

n

and also that the conditions [PE] and [L1] are satisfied. Then X", converges weakly in
(=(W) to a tight, Borel law.

The result above is a direct consequence of the next lemma, applying Theorem 3.1.1

Lemma 3.2.3 The conditions [PE] and [L1] imply that for every ¢,n > 0 there exists
a finite partition {Uy, : 1 <k < N} of ¥ such that

limsup P | sup sup |X =X/ >=] <.
n—oo 756[(],7'"] %gékegq;w
voely
Proof. Take a NFP II which satisfies the requirements of [PE]. Fix any ¢, > 0. First
notice that for any 6 € (0, Ay] and K > 0

(3.2.6) P™ | sup  sup |)(f"“(é"K)’w — Xf"a(é’K)’d)| >ce | <(I)+ (1),

{€[0,7m] 1<K<N(5)
G.6ET(5:k)

where the terms on the right hand side are given by:

(1) = P"(IW"lum > K);

_ nE : ~n,a(6,K), ~n,a(6,K),¢
(II) = -F sup sup )&[ T - )&[ T |1{HVV"”H o <K}s
£ te[0,7m] 1<k<Nyp(8) ’
T plecw(sik)

where a(6, K) = 6K/H,(5/2). It follows from (i) of Theorem 2.2.3 that there exists a

universal constant C' > 0 such that
- K[
(3.2.7) (I)<C-— Hy(€)de.
¢ Jo

Now, the first condition of [PE] yields that there exists a constant K = K, > 0
such that limsup, _(I) < 1/2. Next, since Hy(e) < 1+ Hy(e), the second condition
of [PE] implies that we can choose a sufficiently small constant ¢ = 6., > 0 such that
the right hand side of (3.2.7) is not bigger than 7/2. Consequently, (iz) of Lemma 3.2.1

with a = a(é.,, K)) yields the assertion. O

The next result deals with the processes (¢, 1) ~ X",
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Theorem 3.2.4 Consider the above situation with (3.2.1) where ™ = 7 is a fized posi-
tive constant, and let S be a dense subset of the finite interval [0, 7] containing 7. Sup-
pose that either [PE] + [L1] 4+ [C1] or [PE] + [L2] + [C2] is satisfied. Then, it
holds that X" 2= X in ([0, 7] x W), where each finite-dimensional marginal of the

process (t,0) ~ X;” has the Gaussian distribution N(0,X) with ¥ = {X,;} given by
i ab;) . . .
Yy = Ct(i‘A’t’j 7. Furthermore, the formula (3.2.4) defines a semimetric ps on [0,7] x ¥

such that [0, 7] x U is totally bounded with respect to ps, and that almost all paths of X

are uniformly ps-continuous.
The following lemma, which is rather well-known, is used to show the result above.

Lemma 3.2.5 Under [L1] 4+ [C1], for every ©» € U and every ¢,n > 0 there exists
6 > 0 such that
limsup P" | sup |X7" — X"V >z <.

n—oo 1,5€[0,7]
[t—s|<8

Proof. Fix any N € N for a while, and put @ = N~ By (ii) of Lemma 3.2.1 we
may assume [L1] + [C2,]. It always holds that C(()lb”w) = 0 and that t ~ C/"" is
increasing, because so does t ~» (XY X"a¥)  We may assume % 5 0 without
loss of generality. Since t ~» C;w’/uy) is continuous and S is dense in [0, 7], we can choose
some points 7, € S (i = 1,..., N) such that Cif’y/)) - Cﬁf_f) = 07(."“/”#’)4\7_1_/ where 75 = 0
and 7y = 7. It follows from Lemma 2.1.1 that for every £ > 0

‘C2

n nan)  yn.an ~ n _
P sup | X} X2 > e, Qy | < 2exp

16[7’471,7'1'] 2[5(1 + QCg—’l/‘;,l/ﬁ)—/Nril]

where
N

no__ n,a,y n,a,p . n,a  Yn,a. o () 7—1}
N — ﬂ {<‘X 7X ' >Ti <X ' 7‘X >Ti—1 S ZCT N :
=1

Hence we have

o

P" [ max sup |X""" = X2 >z Q) ) <2Nexp | —
T<i<N 1o o 7 ol : ‘
- = 16[777137—1]

Here notice that lim, .., P"(2%) = 1. Choosing a large number N, and then letting

n — oo, we can easily deduce the assertion from (ip) of Lemma 3.2.1. O

Proof of Theorem 3.2.4. Let us check the conditions of Theorem 3.1.1. First, Theorem
VIIL.3.11 of Jacod and Shiryaev (1987) says that either of [L1] 4+ [C1,] or [L2] +
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[C2,] implies the finite-dimensional convergence of X™“ for any a > 0 (recall also (i) of
Lemma 3.2.1). Thus the finite-dimensional convergence of X" follows from (iz) and (ii)
of Lemma 3.2.1. The condition (iii) of Theorem 3.1.1 can be shown by means of Lemmas
3.2.3 and 3.2.5. a

Let us close this section with discussing the case of DFP’s 1" varying with n € N.
In this case, we shall check the condition (iv) of Theorem 3.1.1 instead of (iii). We thus
introduce the following condition.
[PE"] there exists a semimetric p on ¥ such that (U, p) is totally bounded, and for every
n € N there exists a DFP II" of ¥ such that:

IW"™ || v = Opu(1); hmhm sup/ Hyn(2)ds = 0;
1 n—oo
A n, /f’ _ TA/: .0 |2 —
* \/m = WPy kv
lim limsuplim sup P" sup - > K| =0.
K—eco 410 n—oc &, 6EW 0
p(p,p)<b
We then have an analogue of Lemma 3.2.3.
Lemma 3.2.6 The conditions [PE"] and [L1] imply that for every ,m > 0 there exists
0 > 0 such that
limsup P | sup sup |X/" =X >e]| <.
n—o0 tel0,7n] ¥.oe¥
p(¥,0)<8
Proof. Repeat the same argument as Lemma 3.2.3 using Theorem 2.2.4 instead of (i) of
Theorem 2.2.3. O

Consequently, Theorems 3.2.2 and 3.2.4 hold also with [PE"] instead of [PE]. In par-
ticular, Theorem 3.2.4 under [PE"] + [L2] 4+ [C2] refines Theorem 2.2 of Nishiyama

(1997); the condition (Bj3) there has been removed.

3.3 Martingale Difference Arrays

We give some analogues of Theorems 3.2.2 and 3.2.4; those can be shown using Theorem
2.3.3 (i) instead of Theorem 2.2.3 (i) (or using Theorem 2.3.4 instead of Theorem 2.2.4),
thus the proofs are omitted. Let ¥ be an arbitrary set. For every n € N, let {£"}ien
be an (*°(W)-valued martingale difference array on a discrete-time stochastic basis B" =
(1 F"F" = (] ey, 7).

Let IT a DFP of W, and let II" be a sequence of DPF’s of W. In the same way as

Section 2.3, we introduce the following notations:
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o the adapted envelope {&; }ien of {7 }ien;

e the quadratic [I-modulus {||€™ |11 }ien of {&}ien;

e the quadratic II"-modulus {|[{"||un ;}ien of {€ }ien.
We shall always assume:
(3.3.1) E"E <oo  VieN.

For a given finite stopping time ¢, we make the following conditions:
[PE’] there exists a DFP II of ¥ such that

An
1€ [|11.0n = Opn(1) and Hy(g)de < o0;
0

[PE"™] there exists a semimetric p on W such that (¥, p) is totally bounded, and for every
n € N there exists a DFP II" of W such that

1€ [rin on = Opn(1), hmhm sup/ Hpn(e)de =0,

n—odo

and

VST B g A )

lim limsuplimsup P"* | sup >K| =0
K—oo 510 n—o0 v,6Ew 0
p(p,p)<b

[L1] Z E” 15 1{£ e} RN O for every ¢ > 0;
[L2] Zizl Er &P | BT L0 for every ¢ > 0.

When we mention [L2'], the assumption that
(3.3.2) EME P <o Vi€EN,
which is stronger than (3.3.1), is implicitly imposed. Tt is clear that [L2] implies [L1'].

Theorem 3.3.1 Consider the above situation with (3.3.1). Suppose that every finite-
dimensional marginal of X" = (X™¥|¢ € W) given by X" = 27; ¢! ¥ converges weakly
to a (tight,) Borel law, and also that either of [PE'] + [L1'] or [PE™] + [L1'] is satisfied.
Then X" converges weakly in (°°(¥) to a tight, Borel law.

Next, let us consider the process (¢, 1) ~ X" " given by

(3.3.3) Xpr=Y"g vtel0r] Ve
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where 7 > 0 is a constant, and (07 )ic(o,-] is a family of finite stopping times on B" such
that of = 0 and that each path t ~ o} is increasing, cad, with jumps equal to 1. We
introduce two kinds of conditions, in which the family {wa’m :t € Ry, (v, 0) € U2} of
constants s‘h()uld satisfy (3.2.3):

[C1'] 2 fn ”fno o C(l* @) for every t € S and (¢, ¢) € U

[C2'] Ei Eremvert = o (“ ) for every t € S and (), ¢) € W2

Similarly to the remark followmg [L2'], the assumption (3.3.2) is implicitly imposed

when we mention [C2'].

Theorem 3.3.2 Let S be a dense subset of the finite interval [0, 7] containing 7. Con-
sider the above situation with (3.3.1), and assume [PE'] or [PE™] with 0" = o. Suppose
also that either [L1'] + [C1'] or [L2'] 4+ [C2'] is satisfied. Then, the same conclusion as
Theorem 3.2.4 holds for the sequence of processes X" = (Xf’w|(t./ V) € [0,7] X W) defined
by (3.3.3).

Let us close this section with stating a generalization of Jain-Marcus’ (1975) central
limit theorem to the case of martingale difference arrays. We denote by N(U, p;¢) the

e-covering number of a semimetric space (¥, p).

Proposition 3.3.3 Let (¥, p) be a totally bounded semimetric space. For every n € N,
let {&8 }Vienw be an (°°(W)-valued martingale difference array on a discrete-time stochastic
basis B" such that
n,p -1, N Ty
|€Y =& < K!'p(, 9) Vi, € W,

where {K!"}ien is an Ry -valued adapted process. For given finite stopping time 0", a
sufficient condition for [PE'] is

0_7l ]
Z Ei, ]’” =Opn(1) and / log N(U, p; )de < 0.
i=1 0

3.4 Continuous Local Martingales
Let us begin with giving a definition.

Definition 3.4.1 A family X = (X"

a metric space (¥, p) is said to be p-separable if there exist a countable subset U™ of U

v € W) of continuous local martingales indexed by

and a negligible set N € F such that for every e >0 and w € Q\ N

X(w) e {XP(w): 0 e T, pv,d)<c}y  VteR,, Yipel,

where the closure is taken in R U {—oc, +00}.
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When (W, p) is separable, a sufficient condition for the p-separability is that almost all
paths ¥ ~» Xf are p-continuous, but it is not always easy to check the continuity in
general. On the other hand, it is clear that any family of continuous local martingales
indexed by a countable set W is p-separable (for any metric p on W),

Let us now turn to the context of weak convergence. Let (¥, p) be a totally bounded
proper metric space. For every n € N, let X" = (X”*”“"|’t/} € U) be a (not necessarily
p-separable) family of continuous local martingales X such that Xg’ = 0 indexed by
¥ defined on a stochastic basis B" = (Q". F", F" = (F/)ier,, P"). Let 7 be a finite
stopping time on B". We introduce the Metric Entropy condition.

[ME] Given finite stopping time 7" on B",

1
| X", n = Opns(1) and / V01eg N(U, p;e)de < oc.
0

Theorem 3.4.2 In the above situation, suppose that the family X" = (X"

e W) s
p-separable and that X, = (Xf;;'ﬂu’) € U) takes values in (*°(V) almost surely. Suppose
also that every finite-dimensional marginal of X", converges to a (tight,) Borel law, and
that the condition [ME] is satisfied. Then XI. converges weakly in (*(V) to a tight,

Borel law.

Proof. The assertion is immediate from Theorems 2.4.2 and 3.1.1. |

The result above generalizes Theorem 1 of Bae and Levental (1995b) who assumed the
continuity of (¢,¢) ~ AX?”‘/’. According to Theorem 2.4.3, when W is countable and

[ME] is assumed, a sufficient condition for X7, = (X"[¢) € W) to take values in (W)

rn

almost surely is that P"(||X"||, . < oo) = 1. If one encounters the situation where W
W € W) itself is difficult

to show, the following result concerning a uniformly p-continuous version 1 ~ X" (1))

is uncountable and the p-separability of the family X" = (X"™¥
of 1 ~ X;“” will be helpful. Recall that a sufficient condition for the existence of such
a version is given by Theorem 2.4.4, and that 51:”(1)) is not the terminal variable of a

continuous local martingale.

Corollary 3.4.3 In the above situation, suppose that every finite-dimensitonal marginal
of X converqges to a (tight,) Borel law, and that the condition [ME] is satisfied. Suppose
also that it holds for a choice of the quadratic p-modulus || X", that

P (I1X" ol <) =1 V€N

and choose a uniformly p-continuous version 1 ~» X"(1)) of the process i ~ X757, Then

X" converges weakly in (>°(W) to a tight, Borel law. If the limit of each finite-dimensional
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marginal of ¥ ~ X3V coincides with that of a process 1 ~ X(1), then there exists a
, : - . S PUoT .
uniformly p-continuous version X of X such that X" = X in (V).

T n -

Proof. The finite-dimensional convergence of ¥ ~» )?”( 1) follows from that of ¢ ~ X
Next choose a countable dense subset W™ of W. Then, by Theorem 3.4.2, the statement
(iv) of Theorem 3.1.1 is satisfied for (Xff Y € U*), thus also for ()?77’(’(/’) e w). O

Next we consider the process (t,1) ~ X", Given subset S of R, we make also
the following condition, in which the family {C,w’“f)) t € Ry, (v, 0) € U2} of constants
should satisfy (3.2.3):

[C2] (X%, Xm0y, 25 ¢ for every t € S and (¢, ¢) € U2,

Theorem 3.4.4 Let S be a dense subset of the a finite interval [0, 7] containing 7. In
the above situation, suppose that the family X" = (X™V|) € W) is p-separable and that
(X"t 0) € [0, 7] X U) takes values in ([0, 7] X W) almost surely. Assume [ME] with

™ =71 and [C2]. Then, the same conclusion as Theorem 3.2.4 holds for X".

Proof. Repeat the same assertion as Lemma 3.2.5 to obtain under [C2] that for every

Y € W and every £,1 > 0 there exists 6 > 0 such that

3 n "fl‘,'l,’” ) 7’4’) —~
lim sup P sup |[X]T =X >e ] <.

n—00 t,5€[0,7]
[t—s|<6

This fact, together with Theorem 2.4.2, implies the asymptotic tightness. Thus, the

assertion follows from Theorem 3.1.1 and the martingale central limit theorem. a

The result above refines Theorem 2.3 of Nishiyama (1997); the condition (C3) there has

been removed and the condition (Cj5) has been weakened.

3.A Notes

The study of the Donsker theorems for i.i.d. empirical processes indexed by classes of sets
or functions was initiated by the landmark paper by Dudley (1978), and was developed
in the 80’s. There are two types of sufficient conditions for the Donsker property, namely,
the uniform entropy condition (Pollard (1982)) and the L*-bracketing condition (Ossian-
der (1987)); see van der Vaart and Wellner (1996) and references therein for refinement
and generalizations up to row-independent arrays. In particular, it should be noted that
Andersen et al. (1988) contains a result based on a weaker condition than L%-bracketing

one in a I'()VV—iIld()p(fIld(}Ilt case.
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In the recent years, some authors have considered to remove the assumption of in-
dependence: Arcone and Yu (1994) and Doukhan et al. (1995) for stationary sequences
based on mixing conditions; Levental (1989), Bae (1995) and Bae and Levental (1995a)
for stationary martingale sequences; Bae and Levental (1995b) for continuous martin-
gales; Nishiyama (1997) for some continuous-time semimartingales. One can find the
roots of the quantity “quadratic modulus” in the works by Bae and Levental cited above.
A major part of the results in this chapter was originally presented by Nishiyama (1997),
although some of the conditions have been refined as mentioned in the main text. The
refinement is partly due to the use of the tightness criterion in terms of partitioning (i.e.,
(iii) of Theorem 3.1.1) rather than the well-known stochastic p-equicontinuity criterion.
Van der Vaart and Wellner (1996) is apparently the first to present the partitioning
criterion.

For the weak convergence of (finite-dimensional) semimartingales, one should consult

the excellent book by Jacod and Shiryaev (1987) which we have referred many times.



Chapter 4

Integral Estimators

4.1 Multiplicative Intensity Model

Let (E,€) be a Blackwell space on which a measure \ is defined. For every n € N,
let ¢ be an E-valued multivariate point process defined on a filtered measurable space
(", F", F" = (F/)er.). Notice that p" can be identified with an E-marked point
process {(T, Z"); i € N} through the equality

piwidt dz) =y er)p (dt, dz).
where 0 < T7" < T3 < ---and each Z" is an F-valued random variable. We suppose that
the predictable compensator v™ of p" under the probability measure P" on (Q", F") is
given by

Vi (widt,dz) = at, 2)Y " (w, t, 2)dtA(dz),

where a(t,z) is a [0, 00)-valued measurable function on Ry X E, and Y"(w,t,z) is a
[0, 00)-valued predictable function on Q" x Ry X E.

Let a constant 7 > 0 be given. Throughout this section, we always assume
/ a(t, 2)dtA(dz) < oc;
0,7]xXE

then a(t,z)dt\(dz) defines a finite measure on [0,7] x E. We will use the following

notation
LP(a) = LP([0,7] X E,Blo, 7] @ E, alt, 3)0t\(03)) Vp € [1, 0.

We denote by || - ||zr(a) the LP-seminorm on LP(a).

4.1.1 Asymptotic Normality

Let ¥ be a subset of £2P(«) with an envelop function ¢ belonging to £2P(«), where

p € [1, 00] should be specified in connection with another assumption in Condition 4.1.1

47
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below. Our goal is to estimate the functional (t,v) ~ A(1)); where
AlW): :/ (s, 2)als, 2)dsA(dz) V() €[0,7] x P.
[04]xE

To do it, we introduce the generalized inverse YY"~ of Y" defined by

o Ly (o)1)
V't = e

with the convention 0/0 = 0; we define also
]"(w T, Z) = ]‘{Y"’(WJ,Z)Z]}'
It then holds that Y"~Y" = I". We propose the estimator (¢, ) ~ K’L(L')f defined by

AM()(w) = (DY) * pf(w) V(t, ) € 0,7] x P,

The main step is to derive the weak convergence of the residual /n(A" — A"), where

(t, 1)) ~ .,LT”(L/J), is given by
A" () (w) :/ (s, 2) M (w, s, 2)a(s, 2)dtA(dz) Y(t, ) €0, 7] x U.
[0(]xE

We make the following condition.

Condition 4.1.1 For some p,q € [1,00] such that (1/p)+(1/q) =1, and a measurable

function y = y(t,z) on [0,7] X E, which is bounded away from zero, it holds that:

1
(4.1.1) se L) and / V1o N |- ooy 2)de < o0
0
(412) ”’levnil‘ﬁq(a) = ()Pn(l);
(113) P = () = 0 (1)

This condition generalizes (8.4.1) of Andersen et al. (1993). Although the framework of
this section does not contain empirical processes of i.i.d. data, one may find an interesting
“difference” between the i.i.d. and the present cases. In the i.i.d. case, since the random
elements nY "~ do not appear, the entropy condition for L?-bracketing is always optimal.
In the present case, however, it is sometimes wise to seek for the entropy condition (4.1.1)
with respect to a stronger semimetric when the requirement (4.1.2) can be checked only
for ¢ < oo. For instance, when F = R and ¢ = 1(_ .}, the bracketing entropy condition
is satisfied with the L?P-semimetric for any p < oo, and thus (4.1.2) for an arbitrary
g > 1 1is sufficient. Compare the present Condition 4.1.1 with Conditions 4.1 and 4.2 of

Nishiyama (1997) which were concerned only with the case of p =1 and ¢ = oo,



4.1. Multiplicative Intensity Model 49

Theorem 4.1.2 Suppose that a given class ¥ satisfies Condition 4.1.1. Then, it holds
that /n( A" — A") L G in (>([0,7] x W), where (t,) ~ G} is a zero-mean Gaussian

process such that

EG?"G";’J’ :/ U, 2)o(u, - )al( Z)(]u/\((]/) Y(t, ), (s,0) € [0,7] x ¥
[0,tAs]x E

y(u, z)

and that almost all paths are uniformly py-continuous on [0, 7] X U, where

E|Gy —

o

pa((t, 1)), (s, 0)) = V(t, ), (s,¢) €10, 7] x P.

Further if
(4.1.4) o (1= I 1) = 0pn(n~"72).
then it also holds that /m( A" — A) L G in >*([0, 7] x U).
Proof. We will apply Theorem 3.

VY ", Tt indeed holds that /n(
First notice that

4 to W = {W S = U} given by Wt =

2.
An(), — AM(h)) = W™ s (i — v,

<I/{/vn;¢v % (Iu'n o Z/n)7 M/rmq’) % (un . Vn)>f
= n/ O(s,2)0(s, 2)Y " (s, 2)a(s, z)dsA\(dz).
[0,t]x F

Since

< / (s, )2
[0,7]xE

= ”992 YT — (1/y)|”£1(a)

nY " (s, z) —

y(s,2) als, z)ds\(dz)

the condition [C2] follows from (4.1.3). To show [L2], notice that W" < /npY” and
that, when p € [1, 00),

(4.1.5) (VY " Pl moya-sey) * V2
= ||@® nY" 1 moye-aa] .
(@)
S . Hp . ’nyvn_l{ IL(FY"_>E}"[,QP/(2p—l)(a)

IN

1 _
' W”? Y| 2ser-n ()
1

IN

) Y " oo,

ne
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which converges in P"-probability to zero by ¢ € £*P(a) and (4.1.2). The case of p = oc
and ¢ = 1 is easier.

To check the condition [PE], for every € € (0, 1], choose (|| || z20, £)-brackets [I5F, u®*]
in £% which cover . Introduce a DFP II of ¥ induced from these brackets, that is,
[(s) = {W(e;k) : 1 <k < Ny(e)} is given by (s k) = {vp € U : 28 <o < wF} with

modification to make the partition disjoint. This can be done with Ny(e) = Ny(¥, || -

|| z205 ). Since

|\/ﬁ<u€,k _ le,k>}7717|2 % I/;l — H|u57k' _ Zs,k|2nl/nf}|£1(0)
o P S P
= Ju™ = ooy - 10Y " | 2aca

< Y™ zaws

the quadratic II-modulus |[W"||n - is bounded by +/||nY"~|zs(a). Which is bounded in

P"-probability. This completes the proof. |

4.1.2 Asymptotic Efficiency

Let us discuss the asymptotic efficiency of the estimator A following the general theory
developed in Chapter 3.11 of van der Vaart and Wellner (1996). We set:

(4.1.6) H = L*([0,7] x E,Bo,7] ® &, 20300tA(03));

H = L=([0,7] X E,Blo, 7] @ E,0t\(03)).

Here, the function y is the one appearing in Condition 4.1.1. We equip H with the usual
L*-inner product (-,-)g. Since 1/y is assumed to be bounded, H is a linear subspace of
the Hilbert space H. Let P" = {P} : h € H} be a family of probability measures on
(Q", F") indexed by H.

Suppose that the predictable compensator of N™* under the probability measure PP
is given by

ap(t, 2)Y " (t, z)dt,

where aff = aj(t, z) is defined by

h 2
o= 1+ —— .
( *wﬁy) !

Notice that «of = «.
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STEP I: LocAL ASYMPTOTIC NORMALITY. Assume P/ < P7. It is well-known
R 0

that, under some conditions, a version of the log-likelihood ratio is given by

dPn |an
41.7 log 7@ L = (log ‘ D I
(4.1.7) dpPy|Fr \/_ ny

2
_ -1 n,0
(‘ i Qﬁy ) "

(see, e.g., Theorem I11.5.43 of Jacod and Shiryaev (1987)).

Proposition 4.1.3 Suppose that
/) Y = 3l 1y = 0851

15 satisfied, where y is the function appearing in Condition 4.1.1, and introduce the Hilbert
space H given by (4.1.6). Let C be a given subset of H, and suppose that P} < Py and
(4.1.7) hold for every h € C. Then, it holds that for every h € C

_ary|F
Cdrg|Fy

h
A"(h) = <\/7)_ll/) * (p" — "0,
and €,(h) = opn(1). Furthermore, it also holds that (A™(hy), ..., A"(hqg)) ELN N(0,%)

where X, = (hi. hj)m.

lo

n 1 y
= A"(h) = S I + ealh),

where

Proof. Since |log(14+x)—r+% | %;’1;3 for all & € [—% %] we have that for any € € (0, 1],
dP”|]: - 16
1 — A"(h)+ D"(h)+ D"(h)| < —=D"(h
whenever sup, . 2820 < o where:
OVET SUPy - iy S € where:
Dn(h) h’ ? n
= * 0
2ﬁy /‘T?
En(h) ‘ h ? n 0
= *
2y/ny

Py

Notice that D"(h) —% L|hllE.  Also, using Lenglart’s inequality, we have D"(h) —
D"(h) SN 0. These facts imply the first assertion. The finite-dimensional convergence

of h ~ A"(h) follows easily from the martingale central limit theorem. O
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STEP II: DIFFERENTIABILITY OF UNKNOWN PARAMETER. We consider the func-
tional (¢,v) ~ A(t); as an unknown parameter taking values in the Banach space
(>([0, 7] x ¥), || - |lec)- We denote by ([0, 7] x ¥)* the dual space of (>°([0, 7] x ¥).
Introducing a sequence of operators A" : H — (>°([0, 7] x ¥), which should be regarded
as a local sequence of A, we aim to get a derivative operator A:H - ([0, 7] x W)

with rate r, (= +/n in the present case) which should satisfy

A"(h) = A"(0) = A(h)||l« — 0 VheH,

T’IL

and its adjoint operator A* : (>=([0, 7] x ¥)* — H, where H is the completion of H in H

(thus H = H in the present case), which is determined by
(A0 WYy = 0*A(h)  Vhe H

for every b* € (*([0, 7] x ¥)*.

Now, we define the sequence of operators A" : H — (*<([0, 7] x ¥) by

A"(h)(V), = / (s, z)ag (s, 2)dt\(dz).
0t]xE

Then the sequence A" is differentiable with rate /7 and its derivative A : H — >>([0, 7] x

U) is given by

A(h)(t; Y) = <1[0,[]’t/f)7 h)m.

We denote by 7y : ([0, 7] X ¥) — R the projection on the (¢,?)-coordinate, which
belongs to ([0, 7] x ¥)*. The above formula shows that A*WW = 1yt for every
(t.1)) € [0,7] x ¥, and this means that the process (f,9) ~» G appearing in the limit

of Theorem 4.1.2 satisfies that
EG{G® = (A'mp, Ao du V(). (s,0) €[0,7] x 0.

Since the law of the process (¢,1) ~ Gf’ is characterized by its finite-dimensional distri-
butions, we can conclude that it coincides with the bound of asymptotic efficiency (see
Theorem 3.11.2 of van der Vaart and Wellner (1996)).

STEP III: ASYMPTOTIC EFFICIENCY. In order to discuss the asymptotic effi-
ciency in the sense of the convolution theorem, it remains to show that the estimator
(t,10) ~ A"(), for (t, 1) ~ A™(h)(1)), is regular. The following is an easy consequence

of Theorem 4.1.2 and Proposition 4.1.3 which implies the contiguity.

Proposition 4.1.4 Suppose that a given class VU satisfies Condition 4.1.1 and the as-
sumption (4.1.4) with P" = Py, and introduce the Hilbert space H given by (4.1.6). Let
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C be an arbitrary subset of H, and suppose that all assumptions of Proposition 4.1.3 are
satisfied. Then, it holds that

V(A" — AR = G i ™([0,7] x ¥)  VheC,

where (t,1)) ~ Gf’ is the process appearing in the limit of Theorem 4.1.2.

Proof. The local asymptotic normality established in Proposition 4.1.3 implies that P
and P are two-sided contiguous (see, e.g., Definition 3.10.1 and Example 3.10.6 of van
der Vaart and Wellner (1996)), although Py < Pj suffices for us. Hence we have that
Condition 4.1.1 and the assumption (4.1.4) are satisfied with P" = P for all h € C. We

can obtain the assertion in the same way as Theorem 4.1.2. O

Consequently, the estimator A" has shown to be regular. It also holds for any bounded,

continuous function ¢ : (>([0,7] x ¥) — [0, 00) that

(4.1.8) sup lim supsup Ej}, ( <\/ﬁ(;1\” — A"(h))) = E((G),
IcC n—oo hel
where the supremum with respect to I C C is taken over all finite subsets I of C.

Summarizing the above discussion, we can conclude that:

Corollary 4.1.5 Suppose that all assumptions of Proposition 4.1.4 are satisfied. If C' is
a convex cone in H such that its closed linear span coincides with H, then the estimator An
for A" is asymptotically efficient in the sense of the convolution and the locally asymptotic

minimax theorems with respect to bounded, continuous, subconvex loss functions.

See Theorems 3.11.2 and 3.11.5 of van der Vaart and Wellner (1996) for the convolution
and the locally asymptotic minimax theorems. See also their Example 3.11.8 for the
choice of loss functions in the latter theorem. In particular, when we choose a loss
function ¢ : ([0, 7] x ¥) — [0,00) of the type ((z) = (o
[0,00) is a bounded, continuous, increasing function, their Theorem 3.11.5 says that: for
any T : Q" — (°°([0,7] x ¥) such that T"(¢, %) is F'-measurable for every (t,v) €
[0, 7] x U, it holds that

>
~

~ ), Where (5 @ [0,00) —

sup liminfsup Ep ¢ (vVn(T" — A"(h))) > E((G),

IcCC "7 hel

where the supremum with respect to I C C is taken over all finite subsets I of C.

Recalling (4.1.8), we can see that the estimator A” achieves this bound.
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4.2 Continuous Semimartingales with Non-linear Co-
variates

Let (E. &, M) be a finite measure space; this is the state space of covariate processes in the
5 I ) I I

following model. In the n-th statistical experiment, we consider &, continuous, adapted

processes X" defined on a filtered measurable space (", F"*, F" = (F}")icr, ). Suppose

that X""’s are special semimartingales under the probability measure P" on (Q", F"),

and that their canonical decompositions are given by

AXT = alt, ZPOY A+ Y ABY Vi=1, .k,

ILL

where a(t, z) is an R-valued B(R,) @ &-measurable function, t ~ Z;""’s are E-valued
predictable processes, t ~ Y;""’s are {0,1}-valued predictable processes, and t ~» Bs

are orthogonal Brownian motions. It has implicitly been assumed that
t . .
/ la(s, Z2 (W)Y (w)ds < oo Ywe Q", Vt e Ry
0

for every 7. Notice that we do not assume the independence of Z™'s and Y™"’s (thus
X5, too). We are interested in estimating the functional (¢,v') ~ A(i));, which is

given by
(4.2.1) A(Y), :/ (s, z)als, z)ds\(dz),
[0 xE

where 1 belongs to an appropriate class of measurable functions on R, x F.

4.2.1 Preliminaries

Let E = {J,, E}, be a partition of £-measurable sets, that is at most countable. Set
E" =of{E" :m=1,2,...}. Wedenote P" = P"® & and Q" = P" ® £", where P" is
the predictable o-field on Q" x R;. We introduce a kind of “generalized inverse” Y7~

defined by

15 AE™)
TN— ~ {) m(‘“ [)>0}
YY" (w,t,z) = E v ( 0

Licerny

with the convention 0/0 = 0, where

}/f! l ‘
m( Z'“ w)eEs }

Here notice that
(4.2.2) 0<Y" <supA(E)) < oc.

m
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Define also
I"(w,t, z) = Z 1{721(w,t)>0}1{/7€E%}'

We denote by @" the B(R ) ® £™measurable majorant of a, and by a” the B(R,) @ E™
measurable minorant of a. By using the notation of Definition 2.1.4, they are given
by:

a’ = [”’]%(R@@En,aw\(ag) )

a" = - [_(/}f]%(R+)<;’x)€",Dt)\(03) :

The “generalized inverse” Y~ will be useful through the following lemma.

Lemma 4.2.1 For any R-valued, Q"-measurable function W" on Q" x R, x F, it holds
that

kn {
> / W"(s, Z8Y " (s, ZM)Y [ ds = / W"(s, )I"(s, 2)ds\(dz)  Vt € Ry,
1=1 0

[0(]xE

1dentically, provided the integrals are finite. Furthermore, it holds that

ky i
Z/ T/V"(s?Z‘f”')(/lz(s./Z‘f”')Y”_(s,Z{f’i));”’ids—/ Wh(s, z)als, 2)I"(s, z)dsA(dz)
i—1 J0 [0,4]x 2

< / W™ (s, 2)|(@" — a")(s, 2)I"(s, z)dsA(dz) vVt e R,,
[0(]xE

wdentically, provided the integrals are finite.

Proof. The first equality indeed holds since

ky
Z / W (w, s, Z5 ()Y " (w, s, Z2 (W)Y (w)ds
[0t]x E

=1

= /[MXFZ"’T/W(% S5 2 )Lt (wos0y A ) ds

= [ W s s,
[0 xE

where 2"

2;' is any point of £
O

m:*

The second inequality is an easy consequence of the first.

Let a constant 7 > 0 be given, and denote:

(4.2.3) L= LP([0,7] x E,Blo, 7] ® E,0tA\(03)) Vp € [1,00];
(4.2.4) et = LP([0,7] x E,Blo, 7] @ E",0tA(03))  Vp € [1, ]
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We denote by ||-||z» the LP-seminorm on £?. For every n € N, we introduce the mapping

a" - Ll N Elm by

s Loaen |
(4.2.5) T (W)(t, z) = Z {/A\((LT");O} / U(t, w)A(dw)lepny

m

with the convention 0/0 = 0.

Lemma 4.2.2 (i) For every p € [1,00|, it holds that #"LP C LP", and the mapping
" LP — LP7 s linear.

(ii) If ¥, ¢ € L and ¢ < ¢, then 7" (v) < 7" ().

(iii) For every p € [1,00), it holds for any 1 € L' and any function f : [0, 7]x E — [0, 00)
whach is %[O, T] ®Q E™-measurable that

[P < [ ot s ),
0,7] % &2 [0,7] x £

provided the right hand side is finite.
(iv) It holds for any v € L= that ||[7™ (V)| e < |02

Proof. The assertions (i), (ii) and (iv) are trivial, and (iii) follows from that

1

m m

TiaEn
< ). % »/l;gg [t w)[PA(dw)] zepn,y-

m m

p

|7 ()(t, )| Lzepny

4.2.2 Asymptotic Normality

Let 7 > 0 be a constant, and let ¥ be a countable class of Bfo, 7] ® E-measurable

functions on [0, 7] x E. We will always assume

(4.2.6) sup/
VeV J[0,7]x F

then, the functional (¢,v) ~ A(1), defined by (4.2.1) can be thought as an unknown

Bl IV ") 2)dEA(dz) <

parameter taking values in the space (>°([0, 7] x ¥). The main step in our approach is

to estimate the modified unknown parameter (¢, ) ~» 4”( '): given by

A" () (w) = /[;]t] Eﬂ”(@)(s,z)f’l(w,s,z)ds)\(dz) Y(t,v) € [0,7] x .
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It follows from Lemma 4.2.2 that this also takes values in (*([0,7] x ¥) under the
assumption (4.2.6). We will discuss later under which conditions this A" is indeed

“close” to A. We propose the estimator (¢,1) ~ 4”( ), given by

Ay Z / () (s, Z8Y (s, Z0)dX™ Yt ) € [0,7] x ¥
The stochastic integral appearing above is well-defined if

(4.2.7) sup |7"(V)(t, ZP (W)Y " (w, t. 2 (W) < oo Ywe Q" Yi=1,..k,

t€[0,7]
(see Theorem 1.4.31 of Jacod and Shiryaev (1987)). We will always assume (4.2.7), and
define t ~» E’”’(’(ﬂ’)[ by any version of the stochastic integral, which is unique up to a
Pm-negligible set. It is immediate from the definitions of 7™ and Y~ that a sufficient

condition for (4.2.7) is that

T
tel0, 7] m i

However, it is still unclear even under this condition that (¢, ) ~ .:l”(tb)t takes values
in (>°([0, 7] x ). This requirement will be shown to be fulfilled under (4.2.2) and (4.2.8)

given below, by means of Theorem 2.4.3.

Adz) <

Condition 4.2.3 For some p,q € [1,oc]| such that (1/p)+(1/q) =1, and a Blo, 7| @ & -

measurable function y = y(t,z), which is bounded away from zero, it holds that ¥ C L2,

and that || - ||z2» defines a proper metric on U, and that:
1

(4.2.8) / VI1og N(W, || - || p20; €)de < o0;

0
(4.2.9) |nY " 7| a = Opn(1):
(4.2.10) P YT = (Y]] = ope(1) VO €T
(4.2.11) {7 (0)x"(0) = vo} - (1/y)llp =0 Vi, 0 €¥;
(4.2.12) sup [|[7"(¢) - (@ — a") - I"|| ;1 = opa(n'13).

l/f’E\p

Compare this with Condition 4.1.1; the conditions (4.2.8), (4.2.9) and (4.2.10) correspond

to (4.1.1) (4.1.2), and (4.1.3), respectively, while (4.2.11) and (4.2.12) are needed for the

present situation.
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Theorem 4.2.4 Suppose that a given countable class ¥ satisfies the assumptions (4.2.6)
and (4.2.7) and Condition §.2.3. Then, the random elements (t.1)) ~ A"(¢), and
(t,9) ~ A (1) take values in (> ([0, 7| x ¥), P"-almost surely, and it holds that \/ﬁ(;’l\” —
:I”) L G in (><([0, 7] x W), where (t,) ~ GV is a zero-mean Gaussian process such

that

mﬂcﬁzf ﬂﬂﬁﬂﬂﬁmuma V(t, ), (s,0) € 0,7] x ¥
[0,tAs]x E )
and that almost all paths are uniformly ps-continuous on [0, 7] X U, where

po((t,0), (5,0)) =\ EIG] = GL2 V(). (s,0) € [0,7] x .

Proof. Observe that

V(A" () = AM(@)) = M+ N

where:
kn t
M= Vi / 7 () (s, ZIY T (s, 20V B
=1 J0
‘ kn t
N = S / 7 () (s, 22 als, Z0Y (s, 20 Y . ds.
—Jo

It follows from Lemmas 4.2.1 and 4.2.2 that the term N™Y is well-defined under the

assumption (4.2.6), and that

<vi [ s, )

[0,t]x E

NP — A (), (@" —a")(s,2)I"(s, 2)dsA(dz)

’

which converges in P"-probability to zero uniformly in (£,¢) € [0, 7] X ¥ by (4.2.12).
Oun the other hand, t ~ M,"" is a continuous local martingale under the assumption

| 2

(4.2.7). Since B™"’s are orthogonal Brownian motions, and since [Y™'|* = Y™ we obtain

from Lemma 4.2.1 that

(M™", M™?), = n/ 7 (0)(s, )7 (0)(s, 2)Y " (s, 2)dsA(dz).

[0(]xE
It follows from Lemma 4.2.2 that
(M™Y — M™ M™Y — M™?),

n ” |7T77(L’/)) . 71_77,(@”2},'77,—”/:1

< n H (G @|2Yn_HL',1
< [l = 6Pl - IV Nl 2o
= [t = ollze - Y] zo
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Thus we have that the quadratic || - || zz»-modulus of M™ = (M"™¥|¢) € ¥) is bounded by

n||Y"||ze. Hence, Theorem 2.4.3 implies that almost all paths of (¢,1) ~ M;"" take
values in (*([0, 7] x ¥), and thus so do those of (¢, 1) ~» A"(1)),.
In order to derive the weak convergence of the processes (,¥)) ~ M;"", we will apply
Theorem 3.4.4. The above computation of the quadratic || - || szz-modulus together with
(4.2.9), yields [ME]. Next, notice that

} ds\(dz)

y(s,2)

‘/ T (0)(s, 2)7" (D)(s,2) {”Y“<5=Z> -
[0,¢]x E

< 7 (P)(s, )2 [nY "= (s,2) — dsA(dz
I R o)
X 7 (P)(s, )P |nY (s, 2) — dsA(dz
N e
and that
/ {7 (0)(s, 2)7" (P)(s, 2) — (s, 2)o(s, 2)} dsA(dz)
[0,¢] x E y(s, z)
< {7 ()r" () = vo) - (1Y)l
Thus (4.2.10) and (4.2.11) imply [C2]. This finishes the proof. O

In order to derive the weak convergence of \/ﬁ(:l\” — A) rather than ﬁ(:l” - X’”),
we have to show that \/E(Z” —A) == 0 in (>°([0, 7] x W). For this purpose, it suffices

to check the following:

(42.13) sup [[(5(6) = ) - allex = ofn~2);
pew

(4.2.14) sup Huv . (1 — [”) . aHL‘l — Opn(’nfl/z)_
HEW

Example: Euclidean covariates

Set E = [0,1]¢, and equip it with the Lebesgue measure. Suppose that (¢,z) ~ a(t, z)
is continuous on [0, 7] x [0, 1] with respect to the (d + 1)-dimensional Euclidean metric.
Consider the class of indicator functions W = {1 x.xjouy(2) © w € [0,1]7}. This
problem in the case of d = 1 was studied by McKeague and Utikal (1990), based on a
classical criterion of tightness of sequences of stochastic processes with finite-dimensional
parameters. Among the assumptions appearing above, the entropy condition (4.2.8) is

satisfied for any p < co. If we choose a partition [0,1]7 = U,, £ of d-dimensional

'm
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. . 1 -)
rectangles with side length at most b,,, where b,n? — 0, then the weak convergence of

VI(A" — A) in ([0, 7] x [0,1]%) follows from that:

H,ny'nf|

e = Opn(1) for some ¢ > 1;

|nY™" ™ = (1/y)||cr = opa(1);
(1 =1") - alls = opn(n~1/?2).

The first condition above refines (A3) of McKeague and Utikal (1990), which is corre-

sponding to the case of ¢ = 3.

4.2.3 Asymptotic Efficiency

Let us discuss the asymptotic efficiency of the estimator (t,v) ~ A\"('zj')t along the
general theory exposited in Chapter 3.11 of van der Vaart and Wellner (1996), again.

We set:

(4.2.15) H = L*([0,7] x E,B[0.7] @ &, ;75;0t\(03));
H = L>([0,7] x E,Blo, 7] @ £,0t\(03));

0,
H" = L=([0,7] x E,Bo, 7] ® E",0t\(03)).

Here, the function y is the one which appears in Condition 4.2.3. We equip H with the
usual L2-inner product (-, -)g. Notice that H is a linear subspace of the Hilbert space T
since 1/y is assumed to be bounded. Let P" = {P : h € H} be a family of probability
measures on (Q", F") indexed by H. Define the mapping 7" : H — H" by (4.2.5).
Hereafter, we denote by #"(h) any function of the equivalent elements in H".

Suppose that the canonical decompositions of special semimartingales X" under the

probability measure P’ are given by
(4.2.16) AX]" = ap(t, Z"Y,"'dt + Yt"”dB;“h’Z Vi=1,...k,,
where o}l = a!(t, z) is defined by

(4.2.17) al =a+n Y2 (hy),

n,h,iy

and where t ~ B,"""’s are orthogonal Brownian motions on [0, 7] under P;". We should
first see that the local model (4.2.16) is “well-defined” in the sense that it does not
depend on the choice of a version of 7"(h/y) € H". To see this, notice that, if f,g €
L2([0,7]x E,Blo, T]@E™, 0tA(D3)) such that f(t,z) = g(t, ) for dtA(dz)-almost all (¢, z),
then it holds that for every w € Q"

fl(t, Zt'”(uu)) = ¢(t, Zf"i(w)) dt-almost all t.
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Thus, for every w € Q", the function t ~ aj!(t, Z,'“(w)) is uniquely determined by (4.2.17)
up to a negligible set with respect to the Lebesgue measure on [0, 7], not depending on
the choice of a version of 7"(h/y) € H". Hence the model (4.2.16) is well-defined, and
in particular, it holds that aj(t, Z;"'(w)) = a(t, Z"'(w)) for almost all .

STEP I: LoCAL AsyMPTOTIC NORMALITY. It is well-known that, under some

conditions, a version of the log-likelihood ratio is given by

APy Fr
(4.2.18) log il

s W —_ Z/ 7¢_”<h/y)(t, Zzlﬂi)}r[”’idBZ%O’i
I !

(see, e.g., Theorem II1.5.32 of Jacod and Shlrya‘ev (1987)). Again, this representation

does not depend on the choice of a version of 7"(h/y) € H".

Proposition 4.2.5 Let C' be an arbitrary subset of H. Suppose that the function y
appearing in Condition 4.2.3 satisfies that

In
(4.2.19) ye L' and — —y|| =op(1)
nYyn— e 0
with the convention 0/0 = 0, and that
(4.2.20) |\ 7" (ha Jy)x" (ha/y)y — (hihao/y)|| ;0 — O Vhi, hy € C,

and introduce the Hilbert space H given by (4.2.15). Suppose also that P} < Py and
(4.2.18) hold for every h € C'. Then, it holds that for every h € C

dPp|Fe
dPj|Fr

log

\ Lo
= A"(h) — S|l + ealh).

where .
1 &n, pfr o
A" h) = (bt 7Y A R0
() ﬁ?_l/o”f(l/y)(a )Y, ¢

and €,(h) = opa(1). Furthermore, it also holds that (A"(hy), ..., A"(hg)) AN N(0,Y)

where X = (hi. hj)m.

Proof. Notice that A"(h) is the terminal variable of the continuous local martingale
M™" given by

kn
AJZuh - = Z / Z;l’i)]n(b’a Z’;l’i));n"i(]B:’Uﬂ
\/7 =1

ko In<§' Z‘n,’i)
= \/*Z/ "(h/y)(s, Z”l)ml/"n(57Z;l77r)y;n,’ldB;‘L,D7Z-
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It follows from Lemma 4.2.1 that

1 n,N2 n ' n ' Iﬂ tV g
(MM M2 :/ 7 (hy/y)(t, 2)7" (ha/y)(t, 2 )Yn(i)‘dmdﬁ).
[0,7]x £  Z)
Since I(t.2)
n - >
7" (hy[y)(t, 2)n" (he[y)(t, = {%—yt,z)}dﬂ dz
‘ 0w /)t ) o/ ) nY = (t,z) ( (=)
N ]"IL
< I files e Ghsfles | e =]
L"l

the finite-dimensional convergence of h ~» A"(h) follows from (4.2.19) and (4.2.20) by
means of the martingale central limit theorem.

On the other hand, it follows again from Lemma 4.2.1 that

il iIN[2% 7,0 n [ﬂ ) ©
Z [ ez = [ e s,

0,7]xXE
which converges in P"-probability to ||h||Z by (4.2.19) and (4.2.20). O

STEP II: DIFFERENTIABILITY OF UNKNOWN PARAMETER. The discussion here is
similar to that at STEP IT of Subsection 4.1.2. Recall the first paragraph there (we use
exactly the same notation).

Now, we define the sequence of operators A" : H — (*<([0, 7] x ¥) by

A" (R () :/ O(s,2) (als, 2) + 020 (1) y)(s, 2)) dsA(dz).
0t]xE
Under the assumption that

(4.2.21) sup ’(1[U,t]¢g7r”(h/y)y - h)H‘ — 0 Vh € H,

(t,4)€[0,7]x T '
the sequence A" is differentiable with rate y/n and its derivative A:H— 0><(10, 7] x W)
is given by

A(R)(t, ) = (Ljo.0¢, R)s.

We denote by 7, @ (°°(]0,7] X ¥) — R the projection to the (t, L/r)—coordinate which
belongs to (>°([0,7] x ¥)* (do not confuse this with the mapping 7" given by (4.2.5)).
The above formula shows that A* T = Lyt for every (t,v) € [0, 7] x U. By the same
reason as STEP 11 of Subsection 4.1.2, the law of the limit process (¢, ) ~» G,‘ appearing
in Theorem 4.2.4 coincides with the bound of asymptotic efficiency.

STEP III: ASYMPTOTIC EFFICIENCY. Let us show the regularity of the estimator
(t,9) ~ E’”’(’(ﬂ’)[ for (t,¢) ~ A"(h)(W),.
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Proposition 4.2.6 Let C' be an arbitrary subset of H. Suppose that a given countable
class U satisfies the assumptions (4.2.6), (4.2.7), (4.2.13) and (4.2.14), and Condition
4.2.3 for P" = Py, and introduce the Hilbert space H given by (4.2.15). Suppose also that
all assumptions of Proposition 4.2.5 are satisfied. Then, the random element (t,1)) ~
E’”’(’(ﬂ’)[ takes values in (>°([0, 7] x W), Py -almost surely, for every h € C, and it holds
that

V(A — AR =5 G in([0.7] x &) VheC,

where (t,1)) ~ Gf’ 15 the process appearing in the limit of Theorem 4.2.4.

Proof. In view of the contiguity, a consequence of Proposition 4.2.5. all assumptions
concerning convergence in F-probability hold also in P}’-probability for every h € C.

Thus the assertion can be proved in the same way as Theorem 4.2.4. O

Notice that the assumptions (4.2.20) and (4.2.21) follow from that
|7=" (h/y)y — h|lg — 0 Vh e H.

Summarizing the above discussion, we can get the asymptotic efficiency of the estimator
A" in the same fashion as Corollary 4.1.5, under the assumption that C'is a convex cone

in H such that its closed linear span coincides with H.

4.3 Counting Processes with Non-linear Covariates

Let (E, &) be a Blackwell space on which a o-finite measure A is defined; this is the state
space of covariate processes in the following model. In the n-th statistical experiment, we
consider k, adapted point processes on Ry, namely N™' i = 1, ..., k,,, defined on a filtered
measurable space (Q", F" F" = (F}")icr, ); we then denote Tf"{ =inf{t € R, : N:’i =7}
for every j € N (see page 34 of Jacod and Shiryaev (1987)). Suppose that the predictable

compensator of N™* under the probability measure P™ on (Q", F") is given by

a(t, Z")Y M dt,

n.,i

where a(t,z) is a [0,00)-valued B(R,) ® E-measurable function, ¢t ~ Z;" is an E-
valued predictable process, and ¢ ~ Y™ is a {0,1}-valued predictable process. Let
7 > 0 be a constant, and suppose that we can observe the point processes, the processes
t~ Y™ and the covariate processes t ~ Z;"' on the random sets {t € [0,7] : Y, (w) =
1}. The goal of this section is to estimate the unknown parameter (t,¢) ~ A(¢), =

f[(],t]xE (s, z)als, z)ds\(dz) where ¢’s are appropriate functions.
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We analyze this problem by using the F-valued multivariate point processes

"(dt, dz) ZZ i, (dt, dz)

which has the predictable compensator

)

n

"(dt,dz) Z « uzn,i(d;)dl‘.

=1
Here, we suppose that T;”'i #+ T;Z’i’ whenever ¢ # ¢'; then the basic requirement that
'({t} x E) < 1 is indeed satisfied. The approach which we take here is quite close to
that in the preceding section.
4.3.1 Preliminaries

In the same way as Section 4.2.1, we consider a partition £ = |J E" of £-measurable

m m

sets, which is at most countable, such that sup,, A(E") < oo (recall (4.2.2)). Introduce

m

&, P, Q‘”, Y=, I",a" and a" given there. We then have Lemmas 4.2.1 and 4.2.2. For

a given P"-measurable function W, we denote:

A(T/I/'”)t:/‘ W"(s,z,x)al(s, z)ds\(dz);
[0(]xE

A wmy, = / W"(s,z,x)a"(s,z)dsA(dz).
[0(]xE

It follows from Lemma 4.2.1 that for any Q"-measurable function H” the following two

inequalities hold provided the integrals are finite:
(4.3.1) |H"Y" ™ s v — A(H" "),
< / (5, )[(@ — a™)(s, )" (s, 2)dsA(d>):
0t]xE

(4.3.2) |H"Y"~

< A '(|H’n‘|[n)t'
Let U be an arbitrary set. We will deal with a family {K™¥ : v € ¥} of on-
measurable functions which satisfies that

(4.3.3)  the process t~» ([K'Y"7|V[K Y™ [*) %) is locally integrable

where
—n
K = {sup | |]
or MET

eV
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(cf., Definition 2.2.1). Then, for every ¢ € W, the process t ~ X defined by
(4.3.4) XY = KOV s (u — o),

is an R-valued locally square-integrable martingale with bounded variation. As an easy

consequence of (4.3.2), we have that a sufficient condition for (4.3.3) is

(4.3.5) the process t~s A (|[K'|V|K"|>-I"), islocally integrable

(recall also (4.2.2)). The following lemma gives some tractable conditions to ensure the
wealk convergence of the (>([0, 7] x ¥)-valued random element (t,1) ~ X;"¥ by using
Theorem 3.2.4.

Lemma 4.3.1 Let 7 > 0 be a constant, and let S be a finite or dense subset of [0, 7| such
that 7 € S. Let {K™V : ) € U} be a family of Q"-measurable functions satisfying (4.3.3).
and consider X" = (X]""|(t,10) € [0.7] x ®) defined by (4.3.4). When Card(¥) < oo,
suppose that the following (1), (i) and (iii) and satisfied: when Card(¥) = oo, suppose
that the following (i), (ii), (iii) and (iv) are satisfied:

(1) f[o‘r]xﬁ Kt 2)2Y "= (t, 2)(@" — a™)(t, 2)dtA(dz) 0

(i) A (IR Y" Vgryasy) 0 Ve > 0;

(iii) A(K™Y K™Y ™), Z, wam Vt € SV, ¢) € U2, where {C,w’“"))} is a family of
constants satisfying (3.2.3);
(iv) there exists a DFPIT = {U(s;k) 1 1 <k < Np(€)}eeo,) of ¥ such that

AN K" (W (=5 k)Y 1 ,
sup max (1 (o 5 )| - = Opn(1) and / v/1og Ny(e)de < oo,
0

£€(0,1]nQ 1<k<Nmi(e)

I

where

K™"(¥') = | sup |K”"¢’ — K"”¢|

} YU C 0.
VeV On A" (dt.dz)

Then, it holds that X" 25 X in (>°(S X W), where (t, 1) ~ Xf 15 a zero-mean Gaussian
process such that EX;*/’X;" = C,SX/;@. Furthermore, the formula (3.2.4) defines a semi-
metric po on S X W such that S x U s totally bounded with respect to po, and that almost
all paths of X are uniformly pa-continuous. When S is dense in [0, 7], the space S X W

appearing in the conclusion can be replaced by [0, 7] X W.

Proof. By using the inequality (4.3.1) and the assumption (i), we get the conditions
[L2] and [C2] of Theorem 3.2.4 from (ii) and (iii), respectively. The condition [PE] is

immediate from the inequality (4.3.2) and (iv). O
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4.3.2 Asymptotic Normality

Let a constant 7 > 0 be given, and let us consider the estimation problem of (¢, ) ~
7 3T
A(v),. Recall the notations £P and £P" given bY 4.2.3) and (4.2.4), and the definition
+Jt g ’

of 7 by (4.2.5), respectively. In the following, we will always assume:

(4.3.6) ay = \/ a" ¢ L' for some N € N.

n>N

Thus o (t, 2)dtA(dz) defines a finite measure on [0, 7] X E. We then denote

LP(ay) = LP([0,7] X E,Blo, 7] ® &, an(t, 3)0tA(03)) Vp € [1,q].

Furthermore, we denote by || - [|zs(ax ) the LP-seminorm on £P(a%; ). These should not be

confused with the notations £7 and || - ||z» given by (4.2.3).
Let U be a subset of £2(a% )N L! with an envelope function ¢ € L*(ay )N LY, where
p € [1, o] should be specified in connection with another assumption in Condition 4.3.2,

We propose the estimator (¢,1) ~ An(yf )¢ defined by
g”(’z/))t(w) = (7" (V)Y ) * iyt (w) V(t, ) € [0,7] X U,
where 7" is the mapping defined by (4.2.5). We shall first consider the residual y/n( (A" —
A"), where
A" () y(w) :A) | EW”(L/))(&:)I(%sﬂz)a(sﬁz)dsk(dz) V(t, ) €0, 7] x T,
{]x

Condition 4.3.2 For some p,q € [1,o¢]| such that (1/p)+(1/q) =1, and a Blo, 7| @ E-
measurable function y = y(t,z) on [0,7] X E, which is bounded away from zero, it holds
that:

(4.3.7) o€ LP(ay)N LY and / \/log\ ol [ z2e 0y, €)de < 00,

where the brackets should be constructed in L*(a%) N LY

(4.3.8) 0V " | ooy = Opa(1):
(439) 1 1Y = (Ul o, = 0re(1):
N
(13.10) (=" () (6) = 60} - (afllla =0 VoW
(4.3.11) g - (@ —a™)||e = o(n='/?).

Theorem 4.3.3 Assume (4.3.6). Suppose that a given class U satisfies Conditions
4.3.2. Then, it holds that \/n(A" — A") L Goin ([0, 7] x W), where (t,1) ~ GV is a

zero-mean Gaussian process such that

alu, )
ylu, z)

EGYG? :/ U(u, z)o(u, 2) dt\(dz) V(t, ), (s,0) €[0,7] x U
[0,tAs] X E
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and that almost all paths are uniformly ps-continuous on W, where

po(t,0), (5,0)) =\ EIG] = GL2 V(). (s,0) € [0,7] x .

Proof. Tt follows from (4.3.1) and (4.3.11) that

sup (@ (") w0 — AN = ope(n712).
(th)E]0,7]x T

n,Yp

Thus it suffices to derive the weak convergence of the sequence of processes (t, 1) ~ X
defined by
XY = a0V ")« (1 — "),
We will apply Lemma 4.3.1 with K™* = /n7"(¢)). The condition (4.3.5) for n > N
follows (4.3.6) and the fact ¢ € £*(a’y). To show the condition (i), observe that

n |7 (2)(t, 2)PY " (¢, 2)(@" — a")(t, 2)dtA(d>)
[0,7]xE

< |7 ()

< |7 ()

2oyt = (1)@ = a")|| A+ IO (y) - (@ —a”)
2o ny e — (1/;{/)|Hﬂl(%) + |11/ y| zo - —n

o

P @ —a")

o2

The first term on the right hand side converges in P"-probability to zero by (4.3.9). On
the other hand, since it follows from (4.3.11) that (@" — a™)(t, 2) — 0 for @(t, 2)dt\(dz)-
almost all (¢, 2), the dominated convergence theorem yields that the second term also
vanishes. Thus the condition (i) has been proved. Next, it follows from the same com-
putation as (4.1.5) that

”.4 (|7rn('k;’)|2}'7”71{\/;7‘-11(%0)37717>5})

< H|7‘_”<7D)|2 “nY" 1{ﬁ7r"(<p)Y"*>5}

1 : e —
Ve 17" (O Z2e 0 * 10X escar -

‘maf\,)

<

which converges in P"-probability to zero by (4.3.7) and (4.3.8). Thus the condition (ii)
has been proved. The condition (iii) can be shown by using (4.3.9) and (4.3.10). This

finishes the proof of the case where the set W is finite.

o

On the other hand, it follows from Lemma 4.2.2 that, if [I*, u*]’s are (|| - 200,y €)-
brackets in £%(a)NL! which cover the class ¥, then [7"(I%), 7" (u*)]’s are (|| )-

brackets in £27(a%, )N LY which cover the class 7" W. Hence, by using the Holder inequal-

o

L2P (o)

ity, it is shown that the DFP of ¥ induced from the minimum brackets satisfies the

requirements of (iv) of Lemma 4.3.1. O
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In order to derive the weak convergence of \/ﬁ(:l\” — A) rather than ﬁ(:l” - X’”),
we have to show that \/E(Z” —A) == 0 in (>°([0, 7] x W). For this purpose, it suffices

to check the following:

(43.12) sup |(" () = ) - aller = o(n™"/?);
YW
(4.3.13) lo- (1 =T1")-allg = opn(n~/?).

See the discussion after Theorem 4.2.4 for getting simple sufficient conditions for all

assumptions appearing above in the case where E = [0, 1]d.
4.3.3 Asymptotic Efficiency

In order to discuss the asymptotic efficiency, we set:

(4.3.14) H = L*([0,7] x E, 252Ldi(dz));

H = L>([0.7] x E.Blo, 7] @ £,0tA(03)):
H" = L>=([0,7] x E.Bo, 7] @ E", 0tA(03)).

Here, the function y is the one which appears in Condition 4.3.2. We equip H with the
usual L*-inner product (-, -)g. Since we always assume (4.3.6), and since 1/y is assumed
to be bounded, H is a linear subspace of the Hilbert space H. Let P" = {P" : h € H}
be a family of probability measures on (Q", F") indexed by H. Define the mapping
7" H — H" by (4.2.5). Hereafter, we denote by 7"(h) any function of the equivalent
elements in H".

Suppose that the predictable compensator of N™ under the probability measure P
is given by
(4.3.15) Al (t, ZOY Mt

where o) = aj(t, z) is defined by
(4316) QZ = {1_|_n*1/271_n(]l/2y)}2(1~

To see that the compensator (4.3.15) is well-defined, recall the discussion after (4.2.16)
and (4.2.17). In particular, it holds that o%(t, Z/"'(w)) = a(t, Z]"'(w)) for almost all t.

The predictable compensator v of y" under the probability measure P is then given
by

vNdt,dz) = o (t, 2)7"(dt, dz)
where

kn
7 (dt, dz) = Z }jlvsz,i(dz)dt.

=1
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STEP I: LocAL ASYMPTOTIC NORMALITY. Assume P/ < P7. It is well-known
R 0

that, under some conditions, a version of the log-likelihood ratio is given by

{Pn n
(4.3.17) log 102y (log |1+ n 27" (h/2y)|) * pt

drg|ry
(‘l—l—n r (h/Zy)’ —1)*1/;“0

(see, e.g., Theorem I11.5.13 of Jacod and Shiryaev (1987)). This representation does not
depend on the choice of a version of 7"(h/2y) € H", because it holds that v™%(w; B) = 0
identically and that Pj'(p"(B) = 0) = 1 for any B € B[o, 7] ®E" such that Leb®@ A(B) =
0.

Proposition 4.3.4 Let C be an arbitrary subset of H. Assume (4.3.6). Suppose that
the function y appearing in Condition 4.3.2 satisfies the following:

In
,nY'nf

ye L'(ay) and H -y = opn(1);

L‘l(a}*v)
H{W”(/tl/2;1/)7r”(/z,2/2y) — (hiha)/(4y*)} -y - arHL,1 — 0 Vhi, hy € C;
[y - (@ —a")|z — 0.

Introduce the Hilbert space H given by (4.3.14). Suppose also that P} < P and (4.3.17)
hold for every h € C. Then, it holds that for every h € C

AP Fr
08 dPy|Fr

, 1 .
log = A(h) = SRl + eal),

where
A"(h) = 'n*1/2(27r”(h/2y)) s (p" — 1/””0)T

and €,(h) = opn(1). Furthermore, it also holds that (A™(hy), ..., A"(hqg)) 2 N(0,%)

where X, = (hi. hj)m.

Proof. Since |log(1+x) —;L’+§| < 3ad for all v € [—3, 5], we have that for any ¢ € (0, 1],

| Fe - 16

1 — A"(h) 4+ D"(h) + D"(h)| < —5D” h
whenever sup, , [n~1/27"(h/2y)(t, 2)| < &, where:
D) = | g2y

D"(h) = |n="2x"(h)2y)]* * 0.
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Since

. In 5 In
n . 2 n— 5 n,0 / 1 (h , 2
‘ <|“ (]1/2U>| ,ny'nfy > * VT ‘rl <|“ (h/21/)| nyvﬂ) T‘

n
< n } 2, 2 . —n _n
< \|7"(h/2y)| s (@ a™) .
n
< |7 2P | = =y (@ =) . + [[I7" (h/29)F -y - (@ = a™)|| .
9 n
< A7 29z 3 |5 — ¥ +ly- @ = a)lle g
L',l(u'f\,)
and since

IC ‘ I
— < " l 2 2‘30 . -
nyn— U‘)T = ||7T ( L/ U)”L H nynr— Yy

A <|7r"(h/2y)|2

L(a%)

. ~ Py . , .
it holds that D"(h) — 1||h||%. Also. using Lenglart’s inequality, we have D"(h) —

P"L
D"(h) == 0. These facts imply the first assertion. Applying Lemma 4.3.1 to the family
of @’l—nlea3111“able functions {K™" : h € C} given by

[('n,h —_ 1/2 27" (h/2y) - ’
" 7(h/2y) Sy

we can show the finite-dimensional convergence of h ~ A"(h). a

Discussion about STEP II and STEP III is similar to the preceding sections, hence is

omitted.

4.A Notes

A part of the results in Section 4.1 was presented by Nishiyama (1997). As mentioned in
the main text. a progress from the preceding work is the introduction of L*-bracketing
entropies rather than the L?bracketing one. This would be important also for other
applications in non-i.i.d. settings; see, e.g., Chapter 6. The problems considered in
Sections 4.2 and 4.3 were posed by McKeague and Utikal (1990) who treated the case
where the state space of covariates is [0,1]. Our way of constructing the estimator is

motivated by their work. A moment assumption of theirs has been weakened.



Chapter 5

M-Estimators: General Criterion and
Euclidean Parameters

5.1 General Criterion

The common structure of the models treated in this and next chapters is as follows.

Formulation 5.1.1 For every n € N, let (", F") be a measurable space and P" =
{P!:u e U"} a family of probability measures on (Q", F") indexed by an arbitrary set
U". For everyn € N and v € U™, let the following be given:

(i) a space ©", a random point 0 € O™, and a [0,00)-valued stochastic process

0 ~ d"(0,0") with parameter in O";

(ii) some stochastic processes 6 ~ T(0) and § ~ ~v(0), with parameters in ©".

We then denote R'(6) = {0 € ©" : (6/2) < d2(0,07) < &} for every 6 € (0,00).

The [0, 00)-valued stochastic process 6 ~ d7'(8,6!) above is usually given by a (random)
semimetric d2(#,7) on ©" and a (random) point #" which should be regarded as an
(approximate) true point of unknown parameter. We refer the processes 6 ~ T(0) and
0 ~ 41(0) as the “criterion process” and the “contrast process”, respectively; the latter
is sometimes taken to be deterministic, and in that case 1t is referred as the “contrast
function”. The following result is a version of Theorem 3.4.1 of van der Vaart and Wellner
(1996), into which contributions by some other authors in this area are condensed (see

Notes at the end of this chapter).

Theorem 5.1.2 Consider Formulation 5.1.1 above. Suppose that the following M -
CRITERION is satisfied for some 6y € (0,00], p > 0, a € (0,p), not depending on n
and u, some functions ¢ : (0,60) — (0,00) such that 6 ~ 6=“¢(0) is decreasing, and

some positive constants r,, such that r-1 ¢ (0,0¢) and that @Z(r;i) <P

n,U n,u"

71
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M -CRITERION. For every ¢ > 0 there exists some c.,C., K. > 0 and n. € N such
that: for every n > n. and u € U™ there exists a set Bl'(¢) C Q" such that

Y
ru

and

E; sup (T = 7)(0) = (T = 700 sy e) < Cepi(6)
OER2(6)

whenever 6 € [K.r, L. &), and that P (Q" \ B"(¢)) < =.

7,U°

Then, for any mappings 6/)\3 : Q" — O" such that

(5.1.1) Llim lim sup sup P/” (Fﬁ(aﬁ) < T — L’lﬂ,f_ﬁ) =0
—X npn—ooc ueln :

and that

(5.1.2) lim sup Py (d(8),07) > 60/2) =0,

n—oo “eUn
it holds that
im lim sup sup P, (rn,,dﬁ(agé;‘) > L) = 0.

1
L—oo p—oo weUn

When M -CRITERION is satisfied for &g = oo, the assumption (5.1.2) is unnecessary.

Remark. In the sequel, we refer the first and the second displayed inequalities of M-
CRITERION as the “FIRST INEQUALITY” and the “SECOND INEQUALITY”, respectively.
Keeping a two-term Taylor expansion of the function # ~ 47(#) in their mind, van
der Vaart and Wellner (1996) presented some results of this fashion for the case of p = 2
as their Theorems 3.2.5 and 3.4.1. The adaptation to the case of general p will be useful
in Sections 5.2, 5.3 and 7.1. The truncation introduced in the SECOND INEQUALITY fits
in our maximal inequalities based on the quadratic modulus. The last difference is the
uniformity in the underlying probability measures (this is clear if the conclusion is given
in the form of a probability inequality by using universal constants; see, e.g., Birgé and
Massart (1993) and van de Geer (1995b)). Although the change of the proof is minor,
we state the whole proof following exactly the same line as that of van der Vaart and

Wellner (1996).

Proof of Theorem 5.1.2. Fix any ¢ > 0, and choose some constants c.,C., K. > 0 and

n. € N according to M-CRITERION. In the following we will consider n > n. only.
Now, fix any L > 0 for a while, and choose any J € N such that ¢.—277/=U[L > 0 and

that 27 > K.. Put J" = max{j € N: 2/r; 1 < 65} (we have implicitly assumed &y < oo,

n,u
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but the case of 65 = oo is easier; read the following argument replacing “J < V) < J]

by “Vj > J7). We denote:
sii) = {we B emenr} TSV
e L) = {we @ T@)w) - Tio)w) > ~Lr,2} N ).
Then it holds on the set S(j) N Q7(s, L) that
sup  1(0) = 15(0,) 2 =L, &
OER] (2077 )
and that

inf  47(0) —4(07) < —e 20U e

[ n,u)

bR (2ry L)
thus we have
(5:1.3)  sup (G —9)(0) = (T =)0} > (270 = Lyrk
0eR (2717 %) |

> (c.—277 p(J— 1)L>2P(J 1y.—p

n,u"

Since {d( (6.0

u? U

my) < bo/2) C{di( o, L07) < 27w} it holds that

7711

< Y PESIGINQE L)),

J<G<Ip

P (71 Ll d (6, 07) < 8y)2, QZ(a,L))
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where the summation with respect to j can be read as zero when J > J!'. If J < J,

recalling (5.1.3), we obtain from the Markov inequality and the SECOND INEQUALITY of

M-CRITERION that

n [ Qn ; ny. C. (2 Tn, u)
Z Pu (Su<]) m‘Qu(:L)> c. —9o-p(J-1)], Z W
J<j<Jn nu

J<j<TE

IA

2(1] On( n U)

<

- . —2- P] 1)L Z Ip(j— ])7
e ]< <JIL

< 2C. ola—p)i

= . —2pU-DL

3>J

Here we have also used the fact that ¢! (cd) < ¢*¢?(6) for every ¢ > 1.

Consequently we have

P (v udi(@,07) > 2"1)

u ur’u

2pcfg 2((1—]))J

< PN Que D)+ P (42,00 > 0/2) +

1—20=p) ¢, —2=2U-D[L
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This inequality holds also in the case of 63 = oo by regarding the second term on the
right hand side as zero. Notice that the last term on the right hand side does not depend
onn € N and v € U" and converges to zero as J — oo since a < p. To get the assertion,

first choose large L > 0 according to the assumption (5.1.1), and next let J — oco. O

In the remaining sections of this chapter, we are concerned with some problems of
estimating finite-dimensional parameters. Here, we sketch a procedure for deriving the
asymptotic distribution of M-estimators based on a continuous mapping theorem for
argmax functionals (Theorem 3.2.2 of van der Vaart and Wellner (1996)). In any case,

we shall consider some rescaled criterion processes h ~ M"(h) of the form
M™ (h) = a, {T" (6 +r;'h) — T"(6y)},

where r, and a, are some appropriate constants. Thus the first problem should be to
find the “rate of convergence” r,, and Theorem 5.1.2 is useful at this step. The constant
a, should be determined in connection with r,. Next, according to Theorem 3.2.2 of van
der Vaart and Wellner (1996), we shall show the following.

(i) The uniform tightness of the local sequence = 7",L(§" —0y).

(ii) The weak convergence of the process h ~ M"(h) to a continuous process h ~

M(h) in (>°(K), for every compact subset K of the space of local parameters.

(iii) The existence of a unique maximum point 7 of the path h ~ M(h).
Any Borel random variable on a Polish space is tight, hence so is h. Thus a result of
the form “7“7,,([9\“‘ —6) =L 1" follows from the argmax continuous mapping theorem.

The reason why we are content with the case of finite-dimensional parameters in this
approach is that the uniform tightness of the local sequence % (the step (i) above) is
equivalent to “r, |5” —6y| = Op(1)”, which is actually the consequence of Theorem 5.1.2.
This is not always true when the parameter space is general, but Theorem 5.1.2 is still
useful at least for deriving the rate of convergence as we see in Chapter 6. We will make
use of the results given in Chapter 3 at step (ii). For simplicity, we will not discuss the

uniformity in the underlying probability measures in Sections 5.2 and 5.3.

5.2 (Gaussian White Noise Model

5.2.1 Ciriterion for Rate of Convergence

For every n € N, let X" = (X} );cp0,1] be a continuous stochastic process given by

(5.2.1) AXT = f(t)dt +n~"%dB,, Xy =20 € R,
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where f € £2[0,1], and B = (Bi)iepp,1) is a standard Brownian motion on a stochastic
basis B = (Q, F.F = (Fy)iepo,1), P)- Let (©,d) be a separable metric space; we will take
it to be a Euclidean space later. Let w = {wy : § € O} be a class of elements of £[0,1].

Equip © with the semimetric p,, given by

~
Ot
o
\}
S—’

Puw(0,7) = |Jwy — wyl| £201] Ve, € 0.

We consider the criterion process 6 ~ I'"(0) defined by
1
(5.2.3) INCIES / wp(t)dX ] Vo € O,
0

and the contrast function 6 ~ ~(6) defined by

1
(5.2.4) ~(0) = / we(t) f(t)dt Vo € O.
0

The former is indeed well-defined as the stochastic integral with respect to the semi-
martingale t ~ X' (see, e.g., Theorem 1.4.31 of Jacod and Shiryaev (1987)). When ©
is not countable, the process 6 ~ ['"(#) is not unique even in the almost sure sense.
However, the following argument holds for any version of the process, because we shall
always consider a countable subset O of ©@ when we apply Theorem 2.4.2 to the terminal

variables of the continuous martingales
ol
r(f) —~(0) = 71,_1/2/ wy(t)dB, Ve ©" C 0.
0

We denote by Bg.q)(#;6) the closed ball in © with center § € © and d-radius 6 > 0.

Theorem 5.2.1 Let (©,d) be a separable metric space. For a given class w = {wy : 0 €
O} C £20,1], introduce p,, T™ and ~ given by (5.2.2), (5.2.3) and (5.2.4). Suppose that
there exists a countable, d-dense subset O of © such that p,, defines a proper metric on
©*. For a given point 0y € ©, suppose also that 6 ~ v(0) is d-continuous at 0y and that
the following conditions are satisfied for some &y € (0,00], p >0, a € (0,p), ¢ >0 and a

function ¢ = (0,69) — (0,00) such that & ~ 6 “p(6) is decreasing:

(5.2.5) Y(0) — (b)) < —cd(6,00)" VO € Bio.a)(0o;00);

(526) sup / \/1Og jV(B(("),d) (07 é)* Pw; 5>d5 < 79<6) Vé e (0* (SO)~
9eo+ Jo

(5.2.7) sup Diam(Bg,q)(0;6), pu) < ©(6) Vé € (0,6).

HcO*



76 5. M-Estimators: General Criterion and Euclidean Parameters

Choose any constants r,, > 0 such that v;' € (0,80) and that n=2p(r ;1) < ;7. Then,
for any ©*-valued random sequence 0" such that d(@\”, 0p) = op+(1) and that
F"(Z)\") > sup I'"(0) — ¢,
0O~
for some €, = Op«(r;F), it holds that d(§71700) = Op«(r;1). When 8y = oo, the assump-
tion, “(Z(@”,HO) = op(1)7 is unnecessary. When 0y € OF, the assumption that 6 ~ ()

1§ d-continuous at 6y 15 unnecessary.

Proof. We will apply Theorem 5.1.2. Since 6 ~ ~(0) is d-continuous at 6y, we can choose
a point 6; € O* such that |y(6) ) —v(6)| < (¢/2°%") - r;? and that d(6j .6,) < ;!
(when 6y € ©, the choice 0 = 6 satisfies these requirements, thus the assumption that
f ~ 7(0) is d-continuous is unnecessary). We then denote Ry (6) = {# € ©" : (0/2) <
d(6,05 ) < o} for every ¢ € (0,0c).

For any 6 € [r;', &), it holds that

Y(0) = () = (0) —v(0) +v(0o) — 7(65,)
—ed(0,8) + —— P

IN

opt1 I n
< - p—— 57 YWheRI(S)
= op op+1 0o
< S g
- optl 7

Thus the FIRST INEQUALITY of M-CRITERION is fulfilled. Next, to show the SECOND
INEQUALITY, notice that for every 6 € (0,8)

E sup (I =7)(8) = (T = 7)(0)

0.0ERG (6)
1 1
/uvg(t)dBt—/ wy(t)dB,
0 0

Since the quadratic p,-modulus of the family of continuous martingales

{/ wy(t)dBy : 0 € (—)x}
0

is bounded by 1, and since Diam(Bg.q)(0y :90), pw) < ©(6), it follows from Theorem

_1/9
< n?E sup
9*1968(&),[[)(930;5)09*

2.4.2 and (2.1.1) that the right hand side is bounded by (up to a multiplicative universal

constant)

@(6)
711/2/ \/log(l + N(Bo.a)(05,:0), puw; ))de
0



=~J
=~
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@(0)
< 1/2{ (5) log / . \/logi\ B(@d(ﬁ (5) p“,,p>d }
< {\/1()0 + 1} n~Y2, ©0(0).

Thus the SECOND INEQUALITY is satisfied with ¢p = n='%p. O

The assumptions (5.2.6) and (5.2.7) are analogous to an assumption of Theorem
3.2.10 of van der Vaart and Wellner (1996). Although the supremum with respect to ¢
comes out of the integral, this condition may still look awkward at first sight. Indeed, it
requires a calculation of certain covering numbers of the sets Bg 4)(; 0) for all sufficiently
small ¢ > 0. However, when the parameter space (0, d) is Euclidean, this condition can
be replaced by a simple relationship between the two metrics d and p,,, as is given in the
next theorem.

Theorem 5.2.2 Let O be a subset of a finite-dimensional Euclidean space with the usual
metric d. For a given class w = {wy : 0 € O} C L£2]0,1], introduce p,, ™ and v given
by (5.2.2), (5.2.3) and (5.2.4). Suppose that there exists a countable, d-dense subset ©*
of © such that p,, defines a proper metric on ©. For a given point 8y € O, suppose
also that 6 ~ ~(0) is d-continuous at 0y and that there exist some &y € (0, 00] and some
constants p > q > 0 and ¢,C' > 0 such that:

(5.2.8) Y(O0) —~v(6y) < —cd(B,0,)" V0 € Bo,a)(6o; 60);
o pw(60,9) < Cd(#,0)! Vo9 € 0.

Then, the same conclusion as Theorem 5.2.1 holds for r, = nt/?P=9),

Proof. Tt suffices to show that the conditions (5.2.6) and (5.2.7) of Theorem 5.2.1 are
satisfied with ¢(¢) = const.é?. First notice that for every 6 > 0

(5.2.9) d(6,9) < Y16 = p,(0.0) < Ceo.
Thus we have for every € O~
N(Bo.a)(0;6), pu; C6%) < N(Bo.a)(0; ), d; £'/15).
The right hand side is bounded by {(26)/(sY/46) 4 1}" for every ¢ € (0,1], where r is the

dimension of ©. Hence, noting also N(Bg.q)(0; ), pw; C6%) = 1, we obtain

C’léq/ \/logA’T(B(@,d)(HQ(S)-,Pwéf)dg
0

1
= [ 108 N(Bo.(0:0). pus C00):
0

1
< / \/r log{2e=Y/9 4+ 1}ds (= K say) < oo.
0



78 5. M-Estimators: General Criterion and Euclidean Parameters

On the other hand, by putting ¢ =1 in (5.2.9) we obtain Diam(Bg 4(0;9), py) < 2C 9.
Hence, (5.2.6) and (5.2.7) are satisfied with ¢(6) = C - (Ko V 2) - 64. O

In so-called “regular” parametric models, the condition (5.2.8) is satisfied with p = 2
and ¢ = 1, which leads to the “square root asymptotics”. The “cube root asymptotics”
investigated by Kim and Pollard (1990), whose origin goes back at least to Chernoff
(1964), corresponds to the case of p =2 and ¢ = 1/2.

In both theorems, we have to show the consistency of estimators somehow. Thus let
us state here a sufficient condition based on Corollary 3.2.3 of van der Vaart and Wellner
(1996).

Proposition 5.2.3 Let (0,d) be a separable metric space. For a given class w = {wy :
6 € ©} C L£%0,1], introduce p,,, '™ and ~ given by (5.2.2), (5.2.3) and (5.2.4). Suppose
also that there exists a countable, d-dense subset ©F of © such that p,, defines a proper

metric on ©*. Suppose that it holds for a given point 6y € © that

(5.2.10) (0) > sup 7(6)
e

for every d-open set G C © that contains 6y, and that

/ V1og N(O, py; e)de < oo.
0

Then, for any ©*-valued random sequence 0" such that

T*(6") > sup T"(0) —e,
0eO*U{bo}

for some €, = op«(1), it holds that d(@\", 0y) = op«(1).

Proof. We will apply (i) of Corollary 3.2.3 of van der Vaart and Wellner (1996) to
O* = 0" U {0y} (if p,(6;,00) = 0 for some 6; € O, set O = (O*\ {6;}) U {6y} to make
(©*, pw) a proper metric space). Notice that the inequality (5.2.10) still holds for any

G C ©* containing 6y which is open in the relative topology. Theorem 2.4.2 yields that

D
Esup [T"(0) —~(0)] < C- 71,,_1/2/ V1og(1 4+ N(O, pu;e))de
0

0cO*
D
< C-n Y2 {D log2 + / \/log N(O, pu: 5)({5} ,
0

where D = Diam(0,p,) < oo by our entropy condition, and C' > 0 is a universal

constant. This implies that

sup [T(8) = 4(0)] = op(1),
0cO*
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which completes the proof. O

5.2.2 Examples
Example 1: Peak point of I

Let us consider estimating the value of

by = argmax F'(0),
0€[0,1] '
where ¢ ~ F(t) is the cumulative function of f defined by F(t) = ff f(s)ds. This

problem can be treated in our general framework by setting
wy(t) = lpg(t) VO €[0,1].

The criterion process and the contrast function, defined by (5.2.3) and (5.2.4), turn out
to be I'"(0) = X} and v(0) = F(0), respectively.

We equip © = [0, 1] with the usual metric d(6,9) = |0 — 9| to apply Theorem 5.2.2.
It holds that p,(0,0) = /|0 — ¥

function 6 ~» () is indeed continuous. Hence, if ) is an inner point of [0,1] and if

, and thus p,, is defines a proper metric on [0, 1]. The

there exist some constants 6y, ¢ > 0 and p > 1/2 such that
(5211) F((L)) - F(eo) S —(J|(9 - 90|p Vo € [90 - 50,90 + 370]

then the same conclusion as Theorem 5.2.1 holds for r, = n!/(2—1),
To derive the asymptotic behavior of the rescaled residual nl/(?]”l)(ﬁ” — fy), let us

introduce an assumption on the function t ~ F(t).

Condition 5.2.4 Let p € N be given. For a given point 6y € (0,1), the function

t ~ F(t) is (p — 1)-times continuously differentiable in a neighborhood of 8y with deriva-
tives FU) m = 1,...,p — 1, and has p-th left- and right-derivatives F? and FJ(FP) at 0g,

respectively, which satisfy:
o when p>2: F"™(0y) =0 for everym=1,...,p—1;
o when p is odd: F7(6,) > 0 > FP(@U);
o when p is even: FEP)(HO) \% Fip)(ﬁo) < 0.

The condition (5.2.11) follows from this assumption by a Taylor expansion. Moreover,

we obtain the following result.
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Proposition 5.2.5 Under Condition 5.2.4, for any [0,1] N Q-valued random sequence
o such that o 25 Ay and that

)&-g”ll 2 Sup ‘Xél - 6/”’
0€[0,1]NQ

for some €, = op«(n P/~ D) it holds that n/2»~ (" —f,) == argmax,cp{ A(h)+B(h)}

in R, where h ~ A(h) is the deterministic process given by

p (p) |
Ah) = h F (9 )/l Vh >0,
hPF ( 0)/pl, Vh <0,

and where h ~ B(h) is the two-sided Brownian motion, that is, a zero-mean, continuous
Gaussian process such that E|B(hy) — B(hy)|? = |hy — hs| for every hy, hs € R.

Proof. It has already been shown by Theorem 5.2.2 that the sequence n'/r—1 (0” —0y)

is uniformly tight. Let us set:

H = {heR: 6g4+n"®Vnecl0.1]};
H™ = {heR: 6y+n"2" Ve 0,1]NnQ}.

We consider the stochastic process h ~» M™(h), with parameter in H", defined by

M (h) = n/PPDLT (0 4 n P DRy — T (6,) }
— An (h) + Bn <h>7

where:

1
An(h) = ”P/(?Pl)/ {1Ué’(l+n—1/(2p—1)h - 1000 } f
0
1
B*(h) = 'nl/(ﬂ‘p?)/ {Woy 4017011 () — we, ()} dBy.
0

By Theorem 2.4.4, there exists a continuous version i ~» @”(h) of h ~ B"(h).
Thus we first consider M" = A" + B" instead of M". An easy computation gives that
lim, . A"(h) = A(h) for every h € R. Furthermore, since h ~ A"(h) and h ~ A(h)
are continuous, this convergence is uniform on every compact set K C R. On the other
hand, it follows from Corollary 3.4.3 that B* = B in (>*(K) for every compact set
K C R. Thus we have M" =% M = A + B in (> (K) for every compact set K C R. The
existence and the uniqueness of the maximum point of i ~ M(h) follow from Khinchin’s

law of the iterated logarithm (see, e.g., page 61 of Hida (1980)) and Lemma 2.6 of Kim
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and Pollard (1990), respectively. Hence Theorem 3.2.2 of van der Vaart and Wellner

(1996) yields the following cLAIM: for any uniformly tight sequence B satisfying

M (E") > sup M"’(h,) — €nK
hek
for some €, g = op«(1) for each compact set ' C R, it holds that hr s argmax, g M(h)
in R.
Now, for every n € N such that K C H", using the continuity of / ~» I\A/VJI”‘(h)7 we

have

supM"(h) = sup  M"(h) P-almost surely
hel he KNH"*

= sup  M"(h) P-almost surely
he KNH"

< sup M"(h).

heHn*
Hence, we can apply the above CLAIM to hr = nl/(QP*l)(a”‘ — 0p). which takes values in
H™ identically, in order to obtain that nl/(QP*l)(é\“ —0o) = argmax,.p M(h) in R. O

Since I'"(0) = X, and since § ~ X} is continuous, it is possible to apply Theorem
3.4.4 to B", without introducing the continuous version B" by Theorem 2.4.4. However,
since it is not always easy to show the p-separability of the original family of continu-
ous local martingales { [, wy(t)dB;}, we presented the above approach using B". This

argument is indeed necessary for Example 3 given later.

Example 2: Steepest interval of F

Fix a constant b € (0,1/2). We aim to estimate the value of
o+b
by = argmax/ f(t)dt,
oeo  Jo-p

which is the center of the interval with length 2b where the function t ~ F(t) increases

most rapidly. This problem fits in our general framework by setting
’u/‘o(t) = 1[9_()_/9_;'4)] (t) Vo € [b./ 1-— b]

The criterion process and the contrast function, defined by (5.2.3) and (5.2.4), turn out
to be I''(0) = X, — X§, and (0) = F(0 +b) — F(6 —b), respectively.
Here we make an assumption which is similar to Condition 5.2.4 in the preceding

example.
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Condition 5.2.6 Let an even integer p > 2 be given. For given 6y € (b,1 — b), the
function t ~ f(t) is (p — 1)-times continuously differentiable on an open set containing

8y — b and 0y + b with derivatives f™ . m =1,....p — 1, satisfying:
o fU(0y —b) = f"™(Gy +b) for everym =0,....p— 2;

o Py —b) > FPD(hy + b).

Proposition 5.2.7 Under Condition 5.2.6, for any [b, 1 —b]|NQ-valued random sequence
0" such that o 25 0y and that

n n o n n _
A‘é\n+b - ‘X(;nib Z b111) {Xf)-l—b ‘YF)—()} 671
fe[b,1—b|NQ

for some €, = op«(nP/2=D) it holds that n*/2P=D (g7 —0,) ==> argmax,cp{ A(h)+B(h)}

in R, where h ~ A(h) is the deterministic process given by
Ah) = 272pe{ FP=D(00 +b) — P78y — b)Y /p! Vh ER,

and where h ~ B(h) is the two-sided Brownian motion.

Proof. It follows from Condition 5.2.6 and a Taylor expansion that

, (r=1)(g . Y — fo=1(g
2(0) = (0 = L gy

where (‘L (resp. #_) is a point on the segment connecting 6 4+b and 6y +0b (resp.  — b and
0o —b). Thus, since p is even, it holds that v(0) —v(6y) < —c|f — y|? in a neighborhood
of 6y for a constant ¢ > 0. On the other hand, it is clear that p,(0,9) = \/m
and thus p,, defines a proper metric on [b,1 — b]. Hence Theorem 5.2.2 implies that
'izl/(prl)(é\” — 0y) is uniformly tight. Repeating the same argument as that in the proof

of Proposition 5.2.5 to the stochastic process h ~ M"(h) defined by
M (h) = 27! 2pplp=l) {(Xé;+b+n—1/(zp—1)h - ){go-l—b) - (X;’;)_anu(wh - Xgo—b)} ]

we can obtain the assertion. O

Example 3: Jump point of f

Let us introduce a model for the estimation problem of a jump point of f.
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Condition 5.2.8 For an inner point 6y of [0,1], there exists a constant a € (0,1/2)
such that the function t ~ f(t) is cadlag on the interval [0y — a, 0y + a] and that

D=(R,— L") = (L*—= L)V (R*—=R,) >0

where
L* = supseigy—any [(1), R* = supyeig, 0040 f(1),
L* = illf[e[e()fa,()()) f(t)* R* = iIlfle[e(;,e()+a] f(t)

The constant a > 0 in the above assumption should be known to construct the estimator
given later, but we do not specify any concrete shape of the function t ~ f(t), even the
value of the constant D > 0. Condition 5.2.8 means that the function ¢ ~ f(t) has a
positive jump at 6y, namely f(6y) — f(6p—) > R, — L*, which is the biggest one in the
interval [0y — a8y + a]. This interpretation shows how natural this assumption is in the
present context.

Let the parameter space @ = [a,1 — a] be equipped with the Euclidean metric
d(0,9) = |0 — 9|. Fixing a constant b € (0,a) we define

(5.2.12) we(t) = ky(t — 0) Vo € [a,1 — a],
where
—x — b, r € [—b,0),
ky(z) =< —x+b, x € [0,0],
0, otherwise.

Proposition 5.2.9 Under Condition 5.2.8, consider the criterion process 6 ~» T"(0) =
fol we(t)dX} with wy given by (5.2.12). For any [a,1 — a] N Q-valued random sequence
0" such that 0 2= 0y and that

6"y > sup L"(0) —e,
9€la.1—a)NQ

for some €, = op-(n~Y), it holds that n(0" — 6,) = argmax;, g {A(h) + B(h)} in R,

where h ~ A(h) is the deterministic process given by

A w{(26) G‘ffjbbf(t)dt—f(eu)} Vh > 0,
h) =
| R (26)! Gi‘jf’f(t)dt—f(eo—)}, Vh <0,

and where h ~ B(h) is the two-sided Brownian motion.

Proof. Tt holds that for any 6 € [0y,0y + a — D]

7(0) —v(6y) < —(20—10 — 6y|)R|0 — o] + 0 — O|(R* + L*)D
= =0 =0 {b[(Re = L") = (R" = R,)] — |0 — 60| B}

=10 = 6o[{0D — [0 — 60| R, ]}

IN
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and that, in the same way, for any 6 € [#y — a + b, 6y)
21(6) = +(8y) < —10 — 05| {bD + 6 — 0| L*}.

Thus, choosing sufficiently small constants &g, ¢ > 0 we have y(0) — y(6y) < —c|8 — 6|
for every 0 € [0y — 6o,00 + 6o]. On the other hand, an easy computation implies that
pu(6,0) < C\/m with C' = /402 + 6b. Hence Theorem 5.2.2 yields that the rate of
convergence in this model is r, = n. Repeat the same argument as Proposition 5.2.5 to
the stochastic process h ~ M"(h) defined by M*(h) = (20) n{I"™(0y +n th) — T"™(6,)}

to get the assertion. |

5.2.3 Remarks for Non-Gaussian Cases

Instead of the Gaussian white noise model (5.2.1), let us consider the following:
d)&y? == f(f)dt + dﬂj”7 Y, (7)1 = LEU E R7

where f € £2[0,1] is as before, and M™ = (M] )icpo,1) 1s a continuous local martingale,

defined on a stochastic basis B, with the quadratic covariation given by (M", M™), =
t . : . )

fo g"(s)ds. Then, all results in Subsection 5.2.1 remain true whenever

sup g"(t) = Op(n?).
t€[0,1]

Furthermore, if

sup |ng"(t) — 1] = op(1),
t€[0.1]

then all results in Subsection 5.2.2 also hold without change of limit distributions. More

generally, if there exists g € £°°[0,1] such that

sup |ng"(t) — g(t)| = op(1),
t€[0,1]

then one can get some results similar to those in Subsection 5.2.2, under some smoothness

assumptions on ¢, with modification of limit distributions.

5.3 Multiplicative Intensity Model

Let p" be a 1-dimensional point process defined on a stochastic basis (2", F" F" =

(Fi)tejo, P*) with the predictable compensator v given by

V' (widt) = a(t)Y (w)dt,



5.3. Multiplicative Intensity Model 85

where « is a [0, 00)-valued measurable function on [0, 1], and ¢ ~ Y}" is a [0, oo)-valued
predictable process. Let a class {wy : 6 € ©} of bounded, measurable functions on [0,1]

be given. Assuming fo a(t)dt < oo, we consider the contrast function given by

1
(5.3.1) (0) = / we(ta(t)dt 0 € O,
0
and the criterion process given by
(5.3.2) ["(0) = (weY" ™) % pf Vo € 0,

where the generalized inverse process Y~ of Y" is defined by

1 : n
— if Y"(w) > 1,
Y’nf(w) — Y (w) t ( ) = 4
1 | e
0 otherwise.
In this section, specializing the class w, we consider two kinds of estimation problems.
9 e}

In both problems, we will assume the following.

Condition 5.3.1 There exists a measurable function y on [0, 1], which is bounded away
from zero, such that

sup |n Y — y(t)‘ 0.
t€[0,1]

Now, setting

(5.3.3) QL) = { sup [n Y —y(t)| <

2
L = sup —,
t€[0,1] refo.] Y(t)

| =

we have for all n > L that
[0) —v(0) = (wpY™" ) (1" — ") on the set Q"(L)

and that

sup nY,"” < L on the set Q"(L).
t€[0,1]

Noting also that lim, .. P"(Q* \ Q*(L)) = 0, we will use these facts to establish the
SECOND INEQUALITY of Theorem 5.1.2.

Problem 1: Peak point of «a

Let us consider estimating the location of (approximate) peak of the function t ~ «(t).

This problem can be treated by setting

1
’y((‘)) = / 1[07b70+b] (?,L)()z,(t)(]f Vo € (b,l - b),
0

where b € (0,1/2) is a given constant.
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Proposition 5.3.2 Suppose that Conditions 5.3.1 and 5.2.6 with f replaced by o are
satisfied, and that the function t ~ y(t) appearing in the former is continuous at points
0y — b and 0y + b appearing in the latter. Define T"(8) by (5.3.2) for the class w =
{1[0 boty) 20 € [b,1 =0}, Then, for any [b,1 — bl-valued random sequence 0" such that
g I fy and that
F"(Z)\") > sup I'(0) —e,
9elb,1—b]

for some €, = opn-(n~P/?P=1)) it holds that !/ Cr=1)(gn — 6) SE argmaxy,cp{A(h) +
B(h)} in R, where h ~ A(h) is the deterministic function given by

a? V(0 +b) —a? (0, —b) | (b + ) L alty —b) i/
p! y(bo +b)  y(fo —b) ’

and where h ~ B(h) is the two-sided Brownian motion.

A(h) = h? -

Proof. First, let us apply Theorem 5.1.2 to get |6” — 0y| = Opa-(n=Y2P=) The FIRST
INEQUALITY of M-CRITERION can be shown in the same way as Proposition 5.2.7. To
show the SECOND INEQUALITY, we apply (ii) of Theorem 2.2.3 to the class

Wn = { [0— b()+b]) 10 € (—)(‘)}

where Qg = [fy — 6,00 + 6] N [b,1 — b]. Notice that there exist some constants 6y, M > 0
such that |a(0 +b) 4+ a(0 — )| < M for all @ € ©4,. For every ¢ € (0,8), we construct a
DFP IIs = {Ils(¢)}zc(0,1) of Os as follows: for every £ € (0, 1] we divide the interval Oy,
with length less than 26, into Ny, (£) sub-intervals with length at most 26¢%; this can be

done with Ny, (e) < % + 1. Then 1t holds that

IWilln, 1 < V26 M-n='L on the set Q"(L)

and that

W2 <26-M-n*L  onthe set Q"(L),
where the constant L > 0 and the set Q"(L) is given by (5.3.3). Thus we have for all
n > L that

E™ sup [(T" —4)(0) — ) (60)|Lan(r)
0€0;
< _1/251/2{\/2U / ”l()g —1—9 (]&—I—l}
Since Condition 5.3.1 implies that lim, .., P"(Q" \ Q*(L)) = 0, we can deduce from

Theorem 5.1.2 with ¢"(6) = n~1/261/2 that |9" — 6| = ()Pn*( —1/Cp=1)y,
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Next, let us derive the asymptotic behavior of the sequence of rescaled processes
M () = n?/PP=DC, {T" (6 + n~/#~Dh) — T"(6)}

where
2

|albo+b)  alby —b)|
Yo +b) ~ y(by—b)
Let us decompose M"(h) = A" (h) + B"(h), where

Co

A*(h) = W™tsuf,
Bn<h> — I,V'n,h % (Mn _ 1/71)]7

with
nh o p/(2p—1 ' n—
W =n / )00(1[90_|_n71/(2p71)],,_])‘90_5_7,,—1/(2;0—1)h_l_b] — 1[00,5700+b])Y

An easy calculation implies that A™(h) 2 (h) for every h € R. Furthermore, since

h~ A"(h) and h ~ A(h) are continuous, this convergence is uniform on every compact
set ' C R. On the other hand, Theorem 3.2.4 yields that B" £ B in (*(K) for
every compact set ' C R. Hence, the same argument as Proposition 5.2.5 implies the

conclusion. O

Problem 2: Jump point of «
The second problem is concerned with a jump point of the hazard function t ~ «f(t).

Proposition 5.3.3 Assume Conditions 5.3.1 and 5.2.8 with f replaced by «. Fizing
a constant b € (0,a), define T"(0) = (weY ™) x pl, where wy = ky(t — 0) is given by
(5.2.12). Then, for any [a,1 — a]-valued random sequence o such that 0 25 0y and
that

L(@") > sup I"(0) —e,

Ocla,l1—a]

€n = opus(n—t), it holds that |5” —0y| = Opue(n1).

Proof. The FIRST INEQUALITY of M-CRITERION of Theorem 5.1.2 with p = 1 follows
from the same computation as Proposition 5.2.9. Using Theorem 2.2.3 again, we can
show that the SECOND INEQUALITY holds with the truncation by the set Q"(L) defined
by (5.3.3) and with ¢"(8) = n~1/261/2, O

We do not derive the asymptotic behavior of a sequence of “rescaled processes” as
in the proof of Proposition 5.3.2; the Lindeberg condition is not satisfied in the present
situation, thus no result in Section 3.2 works well. It is conjectured that the limit of

n(6” — y) would be the argmax of a process with jumps.
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5.A Notes

The general criterion Theorem 5.1.2 is an adaptation of Theorem 3.4.1 of van der Vaart
and Wellner (1996) which is a fruit of recent works by some other authors, including
Birgé and Massart (1993), van de Geer (1995a) and Wong and Shen (1995). The two
inequalities of M-CRITERION are from, e.g., (1.2) and (1.3) of van de Geer (1995a),
respectively.

The problem of estimating the mode of a density function, which is the motivation of
Propositions 5.2.7 and 5.3.2, was studied by Chernoff (1964). It is treated also by Kim
and Pollard (1990) in their systematic study of the cube root asymptotics. A progress
of our results is that the smoothness around the mode has come into our scope; this is
possible also in the i.i.d. case although we did not state in the main text. We continue
this study further in Section 7.2.

Related to Propositions 5.2.9 and 5.3.3, let us briefly review some known results of
jump point estimation. The asymptotic distribution of the maximum likelihood estimator
8" of a jump point 6y of t ~ f(t) in the Gaussian white noise model (5.2.1) can be found
in Ibragimov and Has'minskii (1981, Section VII.2). More precisely, they derived the
asymptotic behavior of n(@\” — 6p) when the function f is of the form fy(t) = S(t — )
with S being a known function, along the approach of finite-dimensional parametric
estimation. Korostelev (1987) showed the rate of convergence is still order n in a certain
non-parametric model. Wang (1995) considered a broader model, including not only
jumps but also cusps, and derived that the rate of convergence of a jump point estimator
is n|log n|~" with any constant n > 0, which is quite close to the best rate. Our setting is
more general than that of Korostelev (1987). but does not contain that of Wang (1995).
The point of Proposition 5.2.7 is that we have gotten the asymptotic distribution result
of the rate n. By contrary, Proposition 5.3.3 gives the rate n only. See also Miiller and
Wang (1990) who considered estimating the point where a hazard function changes most

rapidly.



Chapter 6

Non-parametric Maximum Likelihood
Estimators

6.1 Gaussian White Noise Model

Let 7 > 0 be a fixed constant, and © a subset of £2[0, 7]. For every n € N, let t ~ X} be
a continuous, adapted process on a filtered measurable space (27, F", F" = (F}")ic0.7).
and let P" = { P} : § € O} be a family of probability measures on (", F") indexed by ©.

Suppose that X" is a special semimartingale under P}’ with the canonical decomposition
AXT = 0(t)dt +n 2B}’ XP =z €R,

where t ~ B™Y is a standard Brownian motion defined on (Q", F" F" Py). Tt is well-
known that, under some conditions, the log-likelihood ratio is given by

P0n|7:f

6.1.1)1
(6.1-0log 5oz

= {0(t) — o) }d Xy — 5 {H‘g“é?m,u —|lv 22[0,1]} V0,0 € 0O
)

(see e.g. Theorem I11.5.34 of Jacod and Shiryaev (1987)). Thus the maximum likelihood

estimator is the maximizer of the criterion process # ~ I'*(0) defined by
T | ‘
(6.1.2) D(0) = [ 00aX] — Sl VO € £0u7)
0

For every ) € ©, the corresponding contrast function 6 ~» 7y, (#) under P; turns out to
be

7 - ;
(6.3 w®) = [ oo - 2o, e 0.7
0 p
1 1
= —5“9 - 90”%2[0.;] + 5”90’&2[0;]-

We shall not use the fact that (6.1.1) gives the log-likelihood ratio, and thus I'"(6) can be

thought just as a random variable defined by (6.1.2). Moreover, we have defined T ()

89
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and vy, (6) for all elements 6 of £2[0, 7] in order to consider “sieved” maximum likelihood
estimators. In view of (6.1.3) and the FIRST INEQUALITY of AM-CRITERION of Theorem
5.1.2, it is natural to adopt the L?*semimetric as the canonical semimetric d” on the
parameter space O, that is. d7(6,0) = ||0 — ¥ z2(0,7)-

Let U be a subset of © (one may take U = O or {6} for instance). We now introduce
a local entropy condition on a “sieve” ©" C £2[0, 7], which need not be contained in O,
uniformly over U. Throughout this section, we denote by B(#;6) the closed ball in
£2[0, 7] with center § and || - |

£2[0,7-Tadius é.

Condition 6.1.1 Let a set U C © C L2[0,7] and some countable sets O™ C L*[0, 7]

be given. For every n € N and 0y € U, there exist a proper metric f)\g'[) on ©" such
“-~n , o ding AT - N -1, .n PN
that || - || z2p0, < Py,. and a function gy (0,00) — (0,00) such that 6 ~ 67y (6) is

decreasing and that

é
(6.1.4) / VJ108(L+ N(O7 0 B ). 75,:2))d= < 24 (6) Vo € (0.00).
0

~1/2

TS . . . o (. —1 —2
Then, choose some positive constants 1, g, such that n="=py (r, o) <71, 5.

Theorem 6.1.2 Let a set U C © C L%[0,7] and some countable sets ©" C L?[0, 7] be
given. Suppose that Condition 6.1.1 is satisfied, and choose some constantsr, g, described
there. Suppose also that there exists a constant M > 0 such that: for every n € N and
by € U there exists 6y € O" such that

(6.1.5) 160 — 05,1

£2]0,7] S 17\/[7‘7;50.
Then, for any mapping g" - Q" — O" such that

n

feOn OoclU

(6.1.6) T*(0") > sup ["(0) — r.2  with 1, = sup P00+

it holds that

lim lim sup sup Py (7%60 H(j" — 00|l 20,7 > L) =0.

L—oo pooo 0oclU
It is trivial that the assumption (6.1.5) is not a real restriction when ©" = O; it is
satisfied with 6 = 6. On the other hand, it should be noted that the positive constant
M = My appearing there may depend on U; the case of U = O leads to the rate of
convergence uniformly in the true parameter 6y, while the case of U = {6y} implies the
point-wise assertion only. However, from the practical point of view we should choose a

e (A7 catiaforimo (© AT K, —1 - . e e . A * NN P
sieve O" satisfying © C yegn B(0: M™r;') with a positive constant M* not depending
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on U even in the case of U = {6y}, because statisticians do not know which is the true

point 6.

Proof. We will apply Theorem 5.1.2. Formulation 5.1.1 should be read as follows: for
every 6y € U(=U"),
(i) the semimetric space (©", | - || z2[0,7) and the point 05 € O;
(ii) the criterion processes § ~ I'"™(#) and the contrast functions 8 ~ ~,,(6), with
parameters in ©", defined by (6.1.2) and (6.1.3), respectively.
We then denote Ry (8) = {6 € ©": (§/2) < ||6 — 65, || c210.1 < 6} for every 6 € (0,00).
To show the FIRST INEQUALITY of M-CRITERION with p = 2, first observe that

INA
e
R

105, — Ooll 210,71

n.,0g
1
< - whenever § > 8Mr,
4 2 e
1
< 1”0 — Oy | 2210.7] whenever 6 € Ry ().
Thus we have for every 6 > 8M r;bo and every 6 € Ry (0)
n 1
0 (0) = 00(85,) = 5 {10 = 00liZar0. + 165, — O30,
1 n |2 n n
< 5 {10 = O g0y + 206 = O Nestoy - 165, — ol ez |
1 n || n ”0 - 05 HCQ[O,T]
< 5 {18 B+ 200 = e A
1 -
= __||‘9 - 900“22[0,/—]
< —ihz
- 16
This means that the FIRST INEQUALITY holds for ¢, = 11—6 and . = 8M (with 6y = ).

On the other hand, by (6.1.5) we have R} (6) C ©"NB(0y; 26) whenever 6 € [8Mr, 991 0C)-
Thus Theorem 2.4.2 implies that

En\k sup |<Fn _ 7)(9) _ (’Fn _ 7)(9390”
YeRy (8)

6
1/2/ \/h)g(l+N(®"HB(90:%5>?' £))ds

< TR (86) < V2 (0),

N

—1/2, n

which means that the SECOND INEQUALITY holds with ¢ = n~"/“pg . Hence Theorem

5.1.2 yields that

hm lim sup sup Py (rnﬁo 16" — 0y || 221017 > L) = 0.

L—oo p_oo OoelU
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Recalling (6.1.5), we obtain the assertion. O

Example 1: Monotone functions

Let us set © to be the class of monotone functions 6 : [0,7] — [0,1]. Then it follows
from Theorem 2.7.5 of van der Vaart and Wellner (1996) that

/ Jios N (e, |
0

This suggests that, by choosing a sieve ©" appropriately, Condition 6.1.1 should be

220,75 €)de < const.6'/? vé6 > 0.

fulfilled with ¢ (6) = const.(8'/2 v §), which leads to the rate 7, = n'/3, not depending
onfyelU =0.

Proposition 6.1.3 Choosing any grids 0 =t <{{ < ... <ty =7 such that {7 —17_; <

n=23, define O™ as the class of monotone functions 8 : [0, 7] — V™ which are piccewise

constant on each interval [t?_, 1), where V" = {j-n"*3: j € Z}N[0,1]. Then. it holds
e N e P

that © C Upegn B(0: VT + In"1/3).

Proof. Fix any 6 € ©. Let us choose 8%, 8 € ©" given by

0u(t) = U . " " L )
{ o) = 1, for t € [ty 17), i =1, ... ks,

where

w; = min {y eV": sup 0(s) < .U} .

sE[tr 1)

I, = max {y ev": inf 4(s)> y} .

seftn )

1—1%"

and 0"(7) = 0'(7) = 0. If the function * ~ #(t) is increasing, then u; = 1 + n=2/3.
Thus we have ||§ — 6| %Q[OHT] < || — 91||%2[O~T] < ||16* — 6| o 0.7 < (74 1)n=2/3. The case

of t ~ () being decreasing is also shown in the same way. a
Since ©" C O, Condition 6.1.1 is indeed satisfied for pj = || - ||2[0, and ¢j, (6) =

const.(61/2V §). The above proposition says that the assumption (6.1.5) is also fulfilled.
Consequently, it holds for any g satisfying (6.1.6) with ©™ given in Proposition 6.1.3
that

lim lim sup sup Py <711/3H§” — ol 20,7 > L) = 0.

L—oco 4 o 0o€0O

It should be noted that grids of order n=%/3 is sufficient to get this rate, and the discrete

observation of the process t ~ X[ only on the grids is enough to compute the estimator.
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Example 2: Smooth functions

Let some constants o > 1/2 and H > 0 be given. Let us consider the class © = C{([0, 7])
defined in (11) of Section 1.2. Recall that

/ \/IO”N<C%([OaT])-, | - ||oo: €)ds < const.6 (/2.
0

This suggests that Condition 6.1.1 should be fulfilled with ©} (¢) = const.(6'=(1/22) v ¢),
which leads to the rate r, = n®/(Ze+1),
Choosing any grids 0 = t§ < 7 < --- <t} = 7 such that ] — 7, < n=o/CeF1)

define the mapping 7" : © — ([0, 7| by

]s‘ n
n 1 n ’ﬂt [1:
T0(t) = Loz, 1) B(s)ds Ve lo,7].
=ty Jo

=1 t—1

This mapping 7" is a special case of (4.2.5). Using also Lemma 4.2.2, we have:

|76 — 7"

207 SN0 =D ez S 70—V VO,V € O;

16 — 70| 2107 < 710 — 78] < THR /D vh € 0,

Hence, if we choose a sequence of countable subsets ©" of 770 such that 770 C
Uscon B(0; Mn=°/22FD) for a constant M > 0 not depending on n, then Condition
6.1.1 and the assumption (6.1.5) are satisfied for U = O, pj = || - [« and ¢j (0) =
const.(6'=(1/22) v §). Thus, the assertion of Theorem 6.1.2 holds for such a sieve O", with
U=0.

Similarly to the preceding example, this result says that taking some grids of order

n—o/(2atl) ig enough to get the convergence rate r, = no/ 2o+l

6.2 Multiplicative Intensity Model

Let (E, &) be a Blackwell space on which a measure \ is defined, and let 7 > 0 be a fixed

constant. Let us denote:
L ={feL£ro,7] x E,Blo, 7] @ E,0tA\(03)) : (t,3) > o} Vp € [1, .

We also denote by || - ||zr the LP-seminorm on LP([0, 7] X E,Blo, 7] @ £, 0tA(03)).
For every n € N, let p” be an FE-valued multivariate point process on a filtered
measurable space (Q", F" F" = (F] )ic,7). Let P" = {P§ : # € ©} be a family of

probability measures on (Q", F") indexed by a subset O of £ for some p € [1, 0]
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specified later. We suppose that the predictable compensator of " with respect to the

probability measure P is given by
v (wrdt, dz) = 0(t, 2)Y " (w, t, 2)dt\(dz),

where Y™ is a [0, 00)-valued predictable function. It is well-known that, under some

conditions, the log-likelihood ratio is given by

apPy|Fr i ,
log =10"(0)—1"(v Vo, 19 € 0O,
Odplzﬂjjn () ( ) y L € )
where
(6.2.1) ["(0) = (logl) * pur — 0+ 7"
with
(6.2.2) 7w dt,dz) =Y (w, t, z)dt\(dz).

However, as in the preceding section, we shall not use the fact that ["(6) above is a
component of the log-likelihood ratio; it may be regarded just as a [—o0, 00)-valued
random variable defined by the right hand side of (6.2.1). As a matter of fact, in the
following we will define ["(#) for all elements 6 of L% in order to discuss some “sieved”

maximum likelihood estimators, again.

Condition 6.2.1 For some p,q € [1,00] such that (1/p)+ (1/q) = 1, it holds that
O C Lf and Y'w,-,-) € LY Vwe Q"

Furthermore, for a given subset U of O, it holds that

lim limsup sup £, (Q"\ Q7 (L)) =0,

L—=0o nooo GyeU

where

(6.2.3) QZ(L) = {W c O \/n_1||}rn|

(@) < L} YL >0

A typical case, considered by van de Geer (1995b), is p = 1 and ¢ = oo. This choice is
optimal in the context of censoring models, where it indeed holds that Y < n. For our

discussion of rate of convergence, we adopt the random Hellinger semimetric p" defined

o) = o)
— \/ / ’\/em _
n 0,7]xE

by

v

. 51
* UV .

2)dtN(dz) V0.0 € L.
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Due to the first requirement of Condition 6.2.1, the above formula indeed defines a
random semimetric. On the other hand, an entropy condition on the sieve should be

given in terms of the L*’-Hellinger semimetric po, defined by

p2,(0,0) = H[—ﬁﬂm
- (/[(I,T]XE m_m

Then it follows from the Holder inequality that p" < Lpy, on the set QZ’(L) given by

2 1/2p
dt/\(d,z)) 9.0 € L7

(6.2.3). Throughout this section, we denote by B,, (#;¢) the closed ball in £% with
center 6 and po,-radius ¢, and by By (6;¢) the (random) closed ball in £7, with center ¢
and p"-radius . We consider a sequence O™ of subsets of £% which satisfies the following

condition.

Condition 6.2.2 Let U C © C L% be given, where p € [1,oc]. For every n € N and
0y € U, there exist a function ¢p : (0,00) — (0,00) and some sets ©"(6y;0) C O™ C L1
for & € (0,00) such that 6 ~ 6~'pp (8) is decreasing and that

6
(6.2.4) / VIos(1+ Ny (07(60:0), poyi2))de < 23 (6) V8 € (0.00).
0

-1/2, ,n

Then, choose some positive constants r, g, such that n Do ('1‘_1
2 9 0

ny) S 7";::?)/0-

The subsets O"(6p; 6) of @ have to be chosen to satisfy not only (6.2.4) but also (6.2.6)
below. It can be taken to be ©" N B, (6p;6) if the random semimetric p” is “asymptot-
ically equivalent” to the semimetric py, (i.e., the assumption (6.2.8) below). Generally
speaking, a smaller choice of ©"(6y;6)’s makes it easy to check the entropy condition
(6.2.4), but does it difficult to check the condition (6.2.6). If we choose ©"(fy;6) = O",
the condition (6.2.6) is always satisfied; thus this choice is wise when it does not affect
the inequality (6.2.4).

Theorem 6.2.3 Let U C © C L be given, where p € [1,o0]. Suppose that Conditions
6.2.1 and 6.2.2 are satisfied for some ©"(6y;6) C ©" C LY, and choose some constants
Tn.o, described there. Suppose also that there exists a constant M > 0 such that: for

every n € N and y € U there exists 8 € O" such that
(6.2.5) b < M6 and  py(6y.65) < Mr

and that

]1in1 lim sup sup P (Q"\ Qp (K)) =0

N—00 pn—oco el 7
(62.6)  where Qp (K)={Ry(8)U {05} C 06y, K8) Vo e[Kr,} . o0)}

with Ry (6) = {0 € ©" : (5/2) < 0"(6,6}) < 6}.
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Then, for any mapping 0" : Q" — O" such that

6.2.7 (6" > sup I"(0) — nr 2 with Ty = SUP Ty gy
2Y0

n

HeOn 0ocU
it holds that
lim lim sup sup Py, (1‘,1790 0" (5",90) > L) =0.

L—oo 5o OocU
When ©™(0y;6) = O™, the assumption (6.2.6) is unnecessary. When ©"(0y;6) = O™ N
B, (00;0). the assumption (6.2.6) is satisfied if

. . P2 9,19) -
(6.2.8) lim limsup sup Py” sup Lﬁ >K | =0
K—oo pooo 0ycU 0,9con Q”‘(Hﬂ))
n( A1
" (0,0)> Ky
It is trivial that the assumption (6.2.5) is not a real restriction when ©" = ©; it is

satisfied with M =1 and 65 = 6y. Recall also the remark following Theorem 6.1.2.
To prove the above result, we shall apply Theorem 5.1.2 not to the naive criterion

process 0 ~ IT"(0) = n~11"(0) but to the process § ~ I'y () given by

1 0+ 0 0+ 0
(6.2.9) T, (0) = — { (l()g 79) s — <( 297190 - 1) ego) *v’;}
’ G 0o

where 6 is an element of ©" satisfying (6.2.5). Then it is natural to introduce the

process 0 ~» 4 () given by
9 _|_ 971, 9 _|_ 971,
log o ) prfo — % Oy | *7"
20, 20, 0
0 + 030 0 + 070/10 n —n
<<l()g 2930 ) Ay — ( 20}}0 — 1) (900) *x U,

which can be approximated by

1 0 + 0(7;0 0 + Hg’(] n —n
- <<log 20, - 205 + 1) 000) * 7

if 6 1s “close” to #y. We should have noticed in advance that

(6.2.10) 5 (0) =

S| 3|

9 + 9" (9 + (9”0 )1 07 >0
(6.2.11) ——2 should be read as ’ , 9%, 29)
S 20 203,

(where 0/0 = 1).

However, it follows from the assumption (6.2.5) that {#; = 0} C {#; = 0}, and we also
have Py (1" ({6 = 0}) = 0) = 1. These facts allow us to adopt the notational convention

(6.2.11). The merit of these “modified” processes is that

9 977,
(6.2.12) + %%, > L
205, 2

To justify the “modification”, we should first see the following.
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Lemma 6.2.4 Under the first requirement of (6.2.5), for any mapping gn o oen
satisfying (6.2.7), it holds that

~ 1 _.
b, (0") > 15 (0 ) — 57“,;2 Py -almost surely.

Proof. Since the function x ~ log(z) is concave, it holds that

—~ (9\77,_’_977,
Ty @) = <log o
o

1 ~
> i = (0"~ 65,) 7

1 0" 1~
= (log ) * pl — 5(6” — 0y, ) * T on the set {u"({0; =0}) =0}

>\t
1 n /\77, n n
> @) - )
1 .
> —Znr 2
2
Since I'y (05 ) = 0, and since Py (u"({05 = 0}) = 0) > P (u"({fp = 0}) = 0) = 1, we
obtain the assertion. O

For computation of the Hellinger semimetric, we will use the following inequalities:

T+y
V5LV

(6.2.14) Ve +a—Vy+a <|Ve- Yy Y.y, a € [0, 00).

(6.2.13) %{ﬁ— Vil < <VF— | Vrye0.oo)

Proof of Theorem 6.2.3. We will apply Theorem 5.1.2. Formulation 5.1.1 should be read
as follows: for every 6, € U(=U"):
(i) the random semimetric space (O", 0") and the point 6} satisfying (6.2.5) and
(6.2.6);
(i) the stochastic processes § ~ I'y (8) and 6 ~ 4 (6), with parameters in ©",
defined by (6.2.9) and (6.2.10), respectively.
Asin (6.2.6), we denote Ry (0) = {9 € O":(0/2) < 0"(0,05) < 5} for every 6 € (0, 00).
Notice that I'y (65 ) = 4. (05) = 0.
To show the FIRST INEQUALITY of M-CRITERION, let us write 74 (6) = (I) + (1),

1 - 0 + 95L0 0 + 95L0 n —n,
(I) = — ((log 2930 — 2035 + 1) 000) * T

6+ 0y .
((1()g 293090) (B — (930)) *x UL

where:

<
-

(IT) =

I |~
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Since logz —x +1 < —|\/x — 1]* for all x > 0, we have

971
(1) ‘ g 1| O | 7
0+ 0y ’
()
2
1 2
< ~1 Q"((‘).ﬂgo)‘ by (6.2.13)
1,
< _Eé— whenever 0 € Iy (0).

On the other hand, since |logz| < es|/x — 1] for all # > 1/2 where ¢, = (2 + V/2)log 2,
it follows from (6.2.12) that

(32 9‘1‘99
n < —= ¢ —1
n < & (‘ i

Vi VA |y - A ) -7

o1+ v M v+ 0y
o e+ Vi <‘ TS NN —\/%D T
n HIL 0 0
‘ 0 _1_0’71 ‘ ‘ ‘
< o+ Vi) ( h ﬁz;o) 0" (63,.00)
< o1+ VDO (6,05)0" (0,.00) by (6.2.13)
< o(l+VvM)-6-M 7‘,;},0 whenever 6 € Ry ().

Thus, we have

1 .
9,(0) = 5,(05,) < =560 Vb € B (6)

whenever 6 > Kr;’bo with any K > 32 co(1+ VM)M.

To show the SECOND INEQUALITY, observe that
1,0 n n,0 n
(PG() /0(])<9) ( e“ ’)9())(96()) ) - IT/ 7ok (/J — UV 0)7— Va 6 @ 5
where W"’s are defined by

0+ 06y
] /,"IL,H — | 0o P
W log ( 20 > Vo ¢ LY

(we have extended the parameter space ©O" to L4 in the latter). For a given € > 0,
choose some L., K. > 1 and n, € N such that P (Q" \ Q7(L.) N Qf (K)) < ¢ holds
for all n > n, where the sets Qp(L.) and Qf (K,) are given by (6.2.3) and (6.2.6),
respectively. For every n > n, and 8y € U, fix any ¢ € [7';50700)./ and we will apply
Theorem 2.2.8 to the class W = {W"Y : § € ©"(0y; K.0)} of predictable functions with
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a = 1. Indeed, since v"(w;[0,7] x F) < oc for all w € Q", we have that exp(|W]|) =

v (w) < oo by using also (6.2.5). For every £ > 0, choose (pa,, &)-brackets [, u®*],

k=1,..,Nj(©"(0p; K.0), papie), in L5, which cover the class ©"(y; K. 6). Construct a
NFP 1T of ©"(0y; K.6) from this series of brackets. We have that

|L1/n.ﬂ . L{/77,,79| S ‘/‘/777,,11571“ . 1/1;77,,15’1‘7 if lg,k g 6, 9 g ug,k
and that, since 0 < 2(x — 1 —logz) < |z — 1| for all z > 1,

Z (52(”%777,,71, ok — W n, ek |)) " V;l.ﬂo

1 . e,k o ]s,k ]. ek ~ ]5,k
— 9 ex s _ ! 1 _ Z|mneu A",
2 (( Xp <2|U W |> 1 2|U W

n,90

<
<
2
< M (’\/u,&k + 05, — 1=+ 6 ) "
= A/f'n,|g"(u€‘k + 0y, o0 4+ 9};’0)|2
< ﬂ/f'n,|g"’(’u,5’k,15’k)|2 by (6.2.14)
< Lfﬂ/[n|/)2p('11,5’k./ 1552 on the set Q7 (L)
< L*Mne?,

where the set Q7(L,) is given by (6.2.3). Thus we obtain HWH%T < V4MnL, on the set
Qu(Lc). Likewise, it holds that

\/52(|W7”79 — Wn?|) % o < V4AMno"(0,9) Vo, 9 € O";

this can be shown by computing on the sets {(t,z) : 0(t,z) < 9(t,2)} and {(t,2) :
O(t,z) > J(t,z)} separately. This suggests that we should apply Theorem 2.2.8 to the
random metric o = v/4Mng". Notice that ||[v4Mng"||n < V4MnL, on the set Q(L,).

[

Hence, applying the theorem to K = V4MnL K, and 6 > 0 we obtain

(6.2.15) Ey sup |(W7”’0 — T/V”’“) « (p" — 7/7“’9‘))T|1Qn([,6)
9,9€0M(8y: Keb) 1
o (0,0)<5
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5
S WV 4_Mn,L(K(/ \/log(l + NJ(©™(0y; K.6), pyc))de
< VAMnL.K.pp (K8) < VAMnLKZpp (0)

whenever é satisfies the restriction that g (K.60) < VAMnL K. - 62; assuming M > 1 /4
without loss of generality, this restriction is weaker than n‘”zgpgb(é) < 2. Thus the
above inequality holds for any ¢ € [r, !, c0). Now, recall that R} (6)U{6; } C ©"(6y; K.0)

for all & € [Ir; y .o0) on the set Qf (K) given by (6.2.6). Multiplying the both sides

of (6.2.15) by n~!, we have that

iy sup (0, = 26)(0) = (T = )08, o v om0 S VIMLEn™ 2530
Ry (5)

for any é € [K.r, ', oc). The SECOND INEQUALITY has been established. a

6.3 Counting Processes with Non-linear Covariates

Let (E,&) be a Blackwell space on which a o-finite measure A is defined; this is the state
space of covariate processes in the following model. Let 7 > 0 be a constant. We define
the notations £4 and || - ||z» in the same way as the first paragraph of Section 6.2.

In the n-th statistical experiment, we consider &, adapted point processes on [0, 7],
namely N (i = 1,....k,), defined on a filtered measurable space (Q", F",F" =
(F{ )tejo,7); Wwe then denote T;“i = inf{t € [0,7] : N/ = j} for every j € N (see
page 34 of Jacod and Shiryaev (1987)). Let P" = {P} : § € O} be a family of proba-
bility measures on (2", F") indexed by a subset @ of £f for some p € [1, 00] specified
later. Suppose that the predictable compensator of N™ with respect to the probability
measure P is given by

o(t. 2" )Y, dt,

where t ~ Z,n’i 1s an E-valued predictable process and ¢t ~» Y[m is a [0, 00)-valued
predictable process. It is implicitly assumed that [ 0(t, ZM W)Y (w)dt < oo for
every w € ", Suppose that we can observe the processes N™' Y™ and Z"™* on the
random sets {t € [0,7] : Y;"(w) > 0}. The goal of this section is to derive the rate of
convergence of sieved maximum likelihood estimators for 6.

We analyze this problem by using the E-valued multivariate point processes

"(dt, dz) ZZ [ (dt, dz).
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Here, we suppose that T;”'i %+ TJ;II whenever ¢ # ¢'; then all requirement for p” to be an
E-valued multivariate point process, including that p"({t} x E') < 1, are indeed satisfied
(see Definition II1.1.23 of Jacod and Shiryaev (1987)). The predictable compensator of

1" with respect to the probability measure P is given by
v O(dt,dz) = 0(t, 2)7" (dt, d>)

where

(6.3.1) "(dt,dz) ZY”’ wi(dz)dt.

Under some conditions, the log—hkehhood ratio is given by

dPn n
log 0 |‘FT

LT — () — 1(Y 6,0 €0,
sopig =0 -IN0) veoee

where
1"(6) = (logf) * pt — 0 %0,

although we shall not require any property of the log-likelihood ratio.
For our discussion of rate of convergence, we adopt the random Hellinger “semimetric”

o™ which is “formally” defined by

(6.3.2) (0.9) = \/%

| do pr
_ E;/o

for every 0,9 € L£%. The meaning of the quotation marks is that ¢"(0.7) < oo may

2
(1,27 e, 2| Vi

not hold, although it has been implicitly assumed at least for 8,7 € ©. On the other
hand, an entropy condition on the sieve should be given in terms of the L?’-Hellinger

semimetric po, defined by

p2p(0,0) = H\/g_\/g‘

a (»/[;),T]Xl:

A main difficulty in this model is that the random measure 7"(dt,dz) on [0,7] x E
defined by (6.3.1) is not dominated by the measure dt\(dz); compare (6.2.2) and (6.3.1).

Hence, in the present situation, an entropy condition in terms of ps, is not directly

£

1/2p )
dt/\(d/, ) Vo, 9 € L7

translated into that in terms of p" as in the multiplicative intensity model where the
relation " < Lps, holds on the set QZ(L) given by (6.2.3). To solve this problem, we
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will take the same approach as Sections 4.2 and 4.3. Let E =] _E”

m ™m

) e (Ov OC) Set ((:‘Yl = O'{Eﬂ .

m °

be a partition of &-
measurable sets, which is at most countable, such that A\(E"
m = 1,2, ..}, and denote by £5" the space of elements f of L% that are B[o, 7] ® E"-
measurable; it is trivial that £8" C LY. We define the predictable function Y on

Q" x [0,7] x E by

k
n - SN, 1{Z€E‘rnn}
(6.3.3) Vilwnti2) = 33 Y@ pserny 3 pn

m =1
(do not confuse this Y (w, , z) and the original Y;"*(w)’s). Then, it holds for any f € £5"
that
(6.3.4) Fav :/ F(t, )Y (-, 1, 2)dtA(d2)

[0,7]xE

if the integral is finite. We thus introduce the following condition.

Condition 6.3.1 For some p,q € [1,0c] such that (1/p) + (1/q) = 1, it holds that
(6.3.5) O c Lh and Y'w,-, ) € LY Vwe Q"

Furthermore, for a given subset U of O, it holds that

lim lim sup sup £, (Q"\ Q7 (L)) =0,
L—oco p—oo HoelU
where

(6.3.6) (L) = {weam: /7]
and where Y™ is defined by (6.3.3).

quL} VL >0

Under (6.3.5), the equation (6.3.4) does hold for all f € £E" by the Holder inequality,
and thus the same relation as (6.2.2) is fulfilled on the smaller o-field Blo, 7]®@E™. In this
case, the formula (6.3.2) indeed defines a random semimetric on £5" U ©. In particular,

we have that
1 ,
Qn(evﬁ) = \/_/ ‘\/G(t*z) - \/dav Z)
n J0,rxE

and that

2
Yn(t, 2)dtN(dz) V8.0 € LB

0"(0.0) < Lpsy(0,0) Vo, 9 e L on the set Q7 (L).

Hence it would be convenient for computation of entropy to construct a sieve {@"} of
subsets of £4"’s rather than £%. To do it, we introduce the mapping 7" : £ — LB

defined by

2
Lzern)

n 1
T0(t, z) = Z W

™m

,/p,n \/W/\((]m)

(notice that this is different from that of Section 4.2). Then we have the following:
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Lemma 6.3.2 (i) If 0 <o where 8.9 € LY, then 770 < 7).
(ii) If f is a [0, 00)-valued Blo, 7] @ E*-measurable function, then for every 6,9 € LV

/[0 - Vbt z) — /T, ‘ f(t, 2)dtA\(dz)
T|X
/ ‘\/0 (t,2) — /O,
0,7|xE

lx)

f(t,z)dt\(dz),

provided the integrals are finite.

Proof. The assertion (i) is trivial, and (ii) follows from that

‘\/W”H(t,z) — /Tt 2

1 2

= Zm / (\/9?? w) = /Ut U) (dw)| liemy
1 - 2

S zm: W ‘/\%’ 9(1‘,,71,7) — U(t7 U?) /\(d'u/')l{ze},jgl}.

|

Consequently, we obtain that: if we choose (pa,, ¢)-brackets in £, namely [I°F, us*]’s,
which cover the class ©, then it holds on the set Q7(L) that [7"I* 7"u"*]’s form an
(0", Le)-brackets in £5" which cover the class 770. This allows us to make an entropy
condition with respect to the non-random semimetric ps, rather than ¢". Hereafter, we

denote by B,,, (0; ) the closed ball in £ with center # and py,-radius .

Condition 6.3.3 There cwists a function p : (0,00) — (0,00) such that 6 ~» 6 1p(8) is

decreasing and that

6
(6.3.7) / \/l()g(l + NY(O, papi€))de < p(6) V6 € (0, 00).
0

—_ n -

Then, choose some positive constants r, such that n™Y2p(r;t) < r?

Although we have stated the version corresponding to the case ©"(6y;6) = ©" of Condi-

tion 6.2.2 only, it is also possible to replace © of the entropy assumption (6.3.7) by the

local ball © N B, (6y;6) when we can show an “asymptotic equivalence” of ¢" and pa,
(i.e., (6.2.8)).
Theorem 6.3.4 Let U C © C LY for some p € [1,00]. Assume Conditions 6.3.1

and 6.5.3, and choose a sequence r, described there. For a given sequence of subsets
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O" C "0, suppose that there exists a constant M > 0 such that: for every n € N and
0o € U there exists 0 € O" such that

(6.3.8) 0y < M0y, and — pap(0o,05,) < Mr; '
Then, for any mapping g . Q" — O" such that

l”(@l) > sup 1"(0) — nr;?,
fcoOn
it holds that

lim lim sup sup P, < 0 (0” by) > L) =0.

L—oo pn—oso GyeU

This result can be proved exactly in the same way as Theorem 6.2.3 by means of Lemma
6.2.4; those proofs can be read with little change of notation (notice that “¢ € ©"” there
should be read as “7"6 € ©"” here).

The next problem we should consider is how to check the assumption (6.3.8) for
the sieve ©" given as a subset of 770. When O is a class of “smooth” functions, the
assumption is always satisfied if we use a slightly different sieve; a part of the idea has

already appeared in Example 2 of Section 6.1. Define the mapping 7% : £ — LI" by

O(t,w) + 171 \(dw) 1{ cEn}-

(6.3.9) Tt ) =Y s N E”

m

It is easy to show the same facts as Lemma 6.3.2 with 7" replaced by 7). Thus we have:

Corollary 6.3.5 Let U C O C £ﬂ. Assume Conditions 6.3.1 and 6.3.3, and choose a
sequence 1, described there. Define ©" = 710. If there exists a constant M > 0 such
that

sup v/0y(t,z) — inf /6

”EE” ~€E;7;L

<Mr;' VW eU VneN,

sup sup
tef0,7] m

and if \(E) < oo, then the same conclusion as Theorem 6.3.4 holds.

Proof. Notice that: if we choose (pg,. £)-brackets in £4 which cover the class @, namely
1%, u=*]’s, then it holds on the set Q7 (L) that [z =% —r ! 7 us"—r']'s form (9", Le)-
brackets in £4" which cover ©" = 77 ©. Hence it suffices to prove that (6.3.8) is satisfied

for the present sieve ©" = 71 0; we will show it for #; = 77 6y. First observe that

0o(t, 2) < inf.cpn \/m+ Mr;] <1+ M.
T 6(t, 2) inf.cpmn /Oo(t,2) + 7,1
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Next, since

inf /0yt z) < +/7006(t,2) —r, ' < sup /o(t,2)

z€Eg, zeRn
we have
sup Oo(t T 0o (t, (1+ M)
2)€[0,7]x E
Thus it holds that po,(6y, 75 6y) < (1 + M)TA(E) - ;" O

Example 1: Smooth functions

Let us take £ = [0,1]¢ endowed with the Lebesgue measure. Let a > (d + 1)/2 and
H > 0, and we consider the class C% = C%([0,7] x [0,1]¢) given in (11) of Section 1.2.
We set © = {0 € L : /0 € C3}. Then, Condition 6.3.3 is satisfied with U = © and
@(6) = const.(617 (D22 v §): thus we set 7, = n®/CerdtD Tet [0,1]Y = |, E", be a
partition of Borel measurable subsets of [0,1] such that Diam(E") < r;'. Then, the
displayed assumption of Corollary 6.3.5 is satisfied also with U = ©. Hence, we can get
the conclusion of Theorem 6.3.4 if Condition 6.3.1 for p = oo and ¢ = 1 is satisfied.
A sufficient condition for this is that k, = n and the processes Y™ take values only

in a bounded set [0, K]. As in the next example, the state space of the process Y™ is

typically {0, 1} in the context of survival analysis, hence the result above is always valid.

Example 2: Lexis diagram

Let us discuss the Lexis diagram which is an important method describing models in
survival analysis (see Keiding (1990) or Chapter X of Andersen et al. (1993) for the
details). Let E = [0, 7] and k, = n. We suppose that the covariate process Z™' is given
by

ZM = (t—e") Vo,

i

where ™' is a [0, 7]-valued random variable representing the entry time of individual ;

then Z"" is considered to represent the age or duration of the individual i at calendar

}/n,i

time t € [0, 7]. We also suppose that the process is given by

ng __ )
S/;L — ]_{eny,l'gtﬂ Z;L,z<(]n‘1'}7
where U™ is a [0, co]-valued random variable; it is typically of the form U™ = (T} —

™) AC™ where C™ is a [0, oc]-valued random variable representing the censoring time

of the individual i. To guarantee the predictability of the processes Y™ and Z"', the

7

random variables ™" and e"' 4+ U™" are assumed to be stopping times.
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We consider the parameter space © given in the preceding example with d = 1 (and
E =[0,1] is replaced by [0, 7]), and thus we set r,, = n®/(22+2)_Tf we take a sequence of
partitions [0, 7] = {J,, EP of Borel measurable sets E?, such that Diam(E? ) < r !, the

m n

conclusion of Theorem 6.3.4 holds for the sieve ©" = 7 © given by (6.3.9).

6.4 Diffusion-type Processes

Let us consider the stochastic differential equation
(6.4.1) AX, = 0(t, X)dt + n='%dB,,  Xog =19 €R,

where t ~ B, is a standard Brownian motion defined on a stochastic basis (Q, F, F =
(Fi)eepo,r], P) and 7 > 0 is a fixed constant. The functional § appearing above should
satisfy some appropriate properties described as follows. We equip C[0, 7], the canonical

space of sample paths, with the o-field H; = o{x, : s <t} for every t € [0, 7].

Definition 6.4.1 We denote by A the set of functionals 6 : [0, 7] x C[0,7] — R such
that:
(i) &~ 0(t, ) is H;-measurable for every t € [0, 7];

(11> SuptE[O,T} SupxeC[O,T] |6<f,l’)| < 00.

Definition 6.4.2 For a given constant H > 0, we denote by Ly the set of functionals
0 € A such that

|0(t, ) —0(t,y)| < H sup |, — yq
s€[0,1]

Va,y € C[0,7], Vt € [0, 7].

It is well-known that the stochastic differential equation (6.4.1) has a unique strong
solution X™¥ = (X" 9)56[ 0.-] Whenever § € Ly for some H > 0 (see e.g. Theorem 13.1 of
Rogers and Williams (1987)). We denote by 2’ = (2),c0.- the solution of the ordinary
differential equation
(6.4.2) day = 0(t,x)dt, xg € R,

Fix any H > 0. Let us introduce three notations. For every n € N and 6y € Ly we

define the random semimetric gy, on A by

0, (6.9) \//Iﬁt\fnm-ﬂ(t Xr)Pdt Vo0 € A

For 6y € Ly we define the semimetric py, on A by

Po, (0 \/ / |6(t, w0 ) — V(t, 2% )|2dt Vo, 9 € A.
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For every 8y € L and £ > 0, we define
Li(pog;e) =40 € A: 361,05, € Ly such that 6, < 0 < 0y and py,(61,62) < e}

It is clear that £y C L3 (pey;e) C A.

We denote by P*? the induced probability distribution of X™? on the canonical space
C[0,7]. Then, the family {P"’ : § € Ly} is equivalent, and the log-likelihood ratio is
given by /

log%(){) =n{l(6; X) —l(v; X)} Vo, 0 € Ly
¥
where

(6.4.3) 10: X) = /DTe(f,X)d)x} _ %/0 001, X)) 2dt

(see, e.g., page 29 of Kutoyants (1994)). Although the representation of log-likelihood
ratio relies on the existence of unique strong solution of the stochastic differential equa-
tion (6.4.1), the formula (6.4.3) itself is well-defined for all # € A. We then consider a
maximum likelihood estimator (MLE) on the sieve ©" C A
é\"’(X) = argmax(0; X).
R

The precise description will be given in the main theorem below.

The condition which we shall assume is as follows; we denote by Bpeo (0;6) the closed

ball in A with center § and pg,-radius ¢.

Condition 6.4.3 Let U C © C Ly and O™ C A be given. For every n € N and
ty € U, there ewist a proper metric py on ©" such that ps, < pp . and a function

AN

wh 2 (0,00) = (0,00) such that § ~ 6 tpp (6) is decreasing and that

)
(6.4.4) / Vos(1+ N(07 01 By,, (60;0). 75,50))de < 2, (5) Yo € (0,00)
0

- 1/2 n—1/2,n (=1 -2
Then, choose some constants 1y g, € (0,1°/%] such that n™""2pp (v, /5 ) <ry-

Theorem 6.4.4 Let U C © C Ly for a constant H > 0. Suppose that Condition 6.4.53
15 satisfied for some countable sets O" C A, and choose some constants r, g, described

there. Suppose also that there exists a constant M > 0 such that: for every n € N and

by e U
©" C Ly (po,: A/[’r;,éo) and Po, (0o, 0y) < AMT‘;’%O for some 0 € ©".
Then, for any mapping " - C[0,7] — O™ such that

(6.4.5) (6"(X): X) > sup 1(6;X) —r. 2 with 7, = sup T 0
fcOn GoelU
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1t holds that
lim lim sup sup P~ (’r”,oopoo(@“(X"’e“),00) > L) =0;

L—oo .o BoclU

lim lim sup sup P~ ( 1,00 00, (@7’(1‘("'0‘)),90) > L) = 0.

L—oc pnoec doclU
In order to prove the result above, we will apply Theorem 5.1.2 to the processes

0~ T (0) and 6 ~ 75 (0) given by:

(6.4.6) Ty () = 1(6; X"%)

:/De

(6.4.7) a8 = /

0

( : X" 00 dYn bo / |0 ‘/‘Yn 00 dt
e(ux"»%)e (t, X / 0(t, X™%)|2at
1 n,0
= —5900 0 90 |0 ./AY 0 | It

The key point of the proof is that

(6.4.8) Ty (0) — 74 (0) =n 12 / o(t, X"")dB,.
0

First, let us investigate the relationship between pj and oy, .

Lemma 6.4.5 Let H > 0 and ¢ > 0 be arbitrary constants. For every 8y € Ly and
every 0,0 € L3(py,,€) it holds that

|05, (0,0) = po,(0,0)> < n~ ' - 24H?7e*"™ sup |B,|* + 482
t€[0.7]

P-almost surely.

Proof. Observe that

|06()< poo(e l) |2
< /|{M"”° — (X)) — {0(a) = D)) [ dt

< 2 / |0(X" %) — o) dt +2 [ [9(X"%) = o(a)| dt.
0 0

Here, for given 0 € L3 (pg,, <) choose some 0,0, € Ly such that ; < 6 < 6, and that
po,(01,602) < e. Then we have

|0(t, X™%) —0(t, 2%) < |01t X™%) — 0y(t, 2%0)| + |0o(t. X™%) — 0, (t, 2%)|
< 0, XY — 0y (¢, 2%0)| + |0a(t, X0) — Oy(t, )|
+201(t, x%) — O5(t, %)),
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thus

|9(t7X“"9“) — 0(t,a79")|2 < 6H? sup |X§“’e“ — :r,g”|2 + 12|01(t,;179") — HQ(t,:re”)F.
s€[0,1]

It follows from the Grownwall inequality that

.0 Iy
sup | X7 — 2P| < e sup |n7'/%B,
te[0,7] te[0,7]

hence we obtain

/ 6(t, X% — 0(t, 2%)|2dt < 6H*re* T sup |n V2B|? + 1222,
0 te[0,7]

Those inequalities imply the assertion. O
We will use the above lemma in the following form.

Lemma 6.4.6 Let U be an arbitrary subset of Ly for some H > 0, and let M > 0 be
an arbitrary constant. For every n € N and 6y € U, let r, 9, be some positive constants
10 ni/2 4 .+ On S S * Moy—1
such that r, g, < n'/2, and let O™ a countable subset of the set No,cvr L (poy, M1, 4,)-
Then, it holds that:

lim sup sup P < sup |og, (0,7) — pg,(0,0)] > L’rn’éo> =0;

L= neN gyt 0,0€0"

. ‘ Pog (07 U)

lim sup sup P sup ——

K—o0 neNgyet 9.9€0"™ QGVU< s l))
p00(0.19)>l(7“;160

>2\|=0.

Proof. It follows from Lemma 6.4.5 that for every ¢ > 0 there exists a constant L. > (

such that sup, ysupg,ce P2(2\ 4, () < &, where
Qg () = { sup |0, (6.9) — pg, (0,7)] < Lsf'gbo} .
0,9€0n ’

The first assertion is nothing else than this fact. On the other hand. it holds on the set
Q5 (2) that

g, (6. 0 9 (6,10
sup /é()( 3 {) < sup /90( ) —
6,9€0" Qg'o (9 l)) g,9€0™ Py (0 1)) - Lg’rn 0o
»8, (0.19)>Kr;’160 ra, (0.19)>Kr;’160 ’
6.0 .
< sup P00, 9) whenever K > 2L,

0,9€0™ oo (0 1)) - %pgo (9, l?)

e —1
N (9,1))>[\7‘n79(]

= 2.
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This implies the second assertion. O

Proof of Theorem 6.4.4. We will apply Theorem 5.1.2. Formulation 5.1.1 should be read
as follows: for every 6y € U(=U"),

(i) the random semimetric space (©", op ) and the point 65 € ©";

(i) the stochastic processes 8 ~» I'yj (#) and 6 ~ 75 (#) with parameters in ©", given

by (6.4.6) and (6.4.7), respectively.
We then denote Ry (6) = { € ©" : (6/2) < 05, (0,65 ) < 6} for every ¢ € (0,00).

First of all, it follows from Lemma 6.4.6 that for every £ > 0 there exists a constant
K. > 0 such that

sup sup P(Q\ Qp (K.)) <&,

neN 0ol
where
1 o5 (60,0)
Qg( Q” (0, 90 <A1 N {—g”%g? .
{ . noo} g,ﬂQ)n 2 p()0<9,19)
/)90(6,‘§)>K5‘r;’1€0

To show the FIRST INEQUALITY of M-CRITERION, observe that for any L > 161,

09, (05,,00) < K,Sr;]% on the set Qp (K.)
1 46
< - whenever 6 > 8K.r 9
12 b
1
< ZQZO(Q, 0, ) whenever 6 € Ry ().

Hence, we have for every 6 > 8[&’5r;é0 and 0 € Ry (6) that

=) = %{ 05,(0.600) + 2, (05, .00)*}
< %{ o (6,65 )2+ 200 (.60 ) 05,(0.05.) 630 }
— 1090(0 o )
< —11_652

on the set Q (K.). This means that the FIRST INEQUALITY holds for p = 2

Next, notice that whenever K. > 2

01 (K.) C {Rg'o(é JU{05} C OB, (05:K.6) Vo€ [K.rb, oo)} .
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Since ©" U B,, (0 ; [.0) is contained in ©" U B, (fo: (K. + M)é), we can deduce from
Theorem 2.4.5 that for every 6 > K.r 0

E* sup [(Pg —7p,)(0) — (I'g, — 7”50)(955)|15230(A;)
vey (5)

N

6
[&”5-71_1/2/ \/log(l + N(O" N B, (fo; (K. + M)6),pp,:¢))de
< K.on VPop (K. + M)6)
< KK+ M)-n~245 (6).

Thus the SECOND INEQUALITY is fulfilled with ¢p = n=/2pn

0o

Hence it follows from Theorem 5.1.2 that

lim lim sup sup P* (rnﬁo pgo(g)\”(X”"oO), ty, ) > L) = 0.

L—oo pooo GyeU

Noting pg, (05, .00) < .Mr;(l,o, we get the first conclusion of the theorem. The second one
follows from the first and Lemma 6.4.6. |

Example: Markovian case

Consider the stochastic differential equation
dX, = 0(X,)dt + n~"2dB,, Xo =1z €R,

where # : R — R is a bounded, Lipschitz continuous function. Then, the unique strong
. , 1.0 . .

solution XY = (X" )ie[o,7] is a time-homogeneous Markov process. In the same way as

the general case, we denote by 2% = (TLH)TG[O,T] the solution of the ordinary differential

equation

day = 0(xy)dt, 9 € R.

For a given bounded, Lipschitz continuous function 6y : R — R, we define

1 [ , A ,
03 (0.9) = \/ = [ty oo mpae v e A
0

P, (0 \//IH WO2dE V0,0 € A,

where A denotes the space of bounded measurable functions on R.

and




112 6. Non-parametric Maximum Likelihood Estimators

Let some constants & > 1 and H > 0 be given. We consider the class Cf(R) given in
(11) of Section 1.2. Due to the fact that t ~ ¥ takes values only in [vg — HT, 29 + HT]

whenever 6 € Cf(R), and recalling also Lemma 6.4.5, we define the parameter space
©={0€Cy: v~ 0(x)is constant on E°},

where E = [xvg — HT — 1,20 + HT + 1]. We denote by || - ||« the supremum norm on
(>(R); notice that py, < |

) ||oo Since we have
log N(O, || - |lec; 2) < ——

Condition 6.4.3 is satisfied with (&) = const.(§'=1/20) v §) whenever ©” C O. In this

o/2a+1) — Consequently, if we choose a countable subset ©"

case, we get the rate r, =n
of © such that © C Uycgn Bio,1.)(0: Mn=o/o+1) for some M > 0 not depending on

n, then it holds for any ©"-sieved MLE " that:

lim lim sup sup P~ ('n“/<2“+l)/)00(@“(X”’e“), by) > L) = 0;
L= 500 GocO
lim lim sup sup P~ ('n“/<2“+l)93‘0(@“(X”’e“), by) > L) = 0.
L—x 500 GocO

6.A Notes

The rate of convergence of infinite-dimensional M-estimators has been studied vigorously
by Birgé and Massart (1993), van de Geer (1990, 1993, 1995a, 1995b), Wong and Severini
(1991) and Wong and Shen (1995); see also Chapters 3.2 and 3.4 of van der Vaart
and Wellner (1996) and the bibliographical Notes there. Among the preceding works,
van de Geer (1995b) is a unique paper that deals with dependent data. Based on her
general result for counting processes, she considered non-parametric maximum likelihood
estimators in the multiplicative intensity model (without marks); it should be emphasized
that, although there are some differences, a major part of Section 6.2 has been already
known through her work. However, the marks and the discussion about sieves that have
been newly added there are useful for analyzing the non-linear covariate model in Section
6.3.

Some M-estimation problems in finite-dimensional parametric models of diffusion-
type processes have been studied by Lénska (1979), Genon-Catalot (1990), Yoshida
(1990, 1992) and Kutoyants (1994, Chapter 7); see also the references therein. The

results in Section 6.4 seem to be the first attempt in the infinite-dimensional model.



Chapter 7

Miscellanies

7.1 Local Random Fields of Kernel Estimators

It is well-known that kernel density estimators for i.i.d. data have point-wise asymp-
totic normality. However, since the density f is originally defined as a Radon-Nikodym
derivative with respect to Lebesgue measure, the value f(x) at each point x does not
intrinsically make sense. Thus, an assertion in some functional sense is preferable in
order for, e.g., the construction of confidence intervals.

The purpose of this section is to extend the asymptotic normality of kernel density
estimators to the functional sense with respect to a local parameter. The localizing
constants should be chosen to be the same as the bandwidth. Further, in Subsection
7.1.2, we apply it to the estimation problem of the mode of f using also Theorem 5.1.2.
The generalizations of those results to some dependent cases are discussed in Subsection
7.1.3.

7.1.1 I.I.D. Case

Let {X;}ien be an i.i.d. sequence of R?%valued random variables with Lebesgue density
f. Let 29 € R? be a fixed point, and let {b, },en be a sequence of positive constants such
that b, | 0 asn — oc. We are interested in estimating the local function u ~ f(xo+b,u),

where the parameter « runs through a subset U of R?. We consider the kernel estimator
7o + bou) = — ZI Ai = %o VueU
(@ pll) = —— (| —————u ueU,
0 Tonbd b,

where K(x) is a kernel function on RY. Throughout this section, the notation +P) means
the p-th component of a vector # € RY. We make two kinds of conditions either of which

the kernel function should satisfy.

Condition 7.1.1 (smooth kernel) The function K : R? — R satisfies that:

113
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(1) [pa K(x)dr =1, K(x) = K(—x) for every x € R?, and K has a compact support;
(ii) there exist « € (0,1] and L > 0 such that |K(x) — K(y)| < Llz — y|* for every
r.y € RY.

Condition 7.1.2 (monotone kernel) The function K : R? — R is of the product
form K(x) = H;l:l K,(2'P)) of some functions K, : R — R, p =1,....d. The functions
K, need not be the same, but each of them satisfies:

(i) Jo Kplx)de =1, Ky(x) = K,(—x) for every x € R, and K, has a compact support;

(ii) the function x ~ K,(x) is decreasing on [0, 00).

We aim to derive the asymptotic behavior of the sequence of (normalized) residual
processes R" = (R™(u)|u € U) defined by

R™(u) = +/nbd {ﬁ(xo + b,u) — fag + bnu)} Yu e U.

The key point is to investigate the processes Z" = (Z"(u)|u € U) given by

Z"(u) =V le% {J/(;(‘TO + bﬂu) - }:7,(41:0 + bn,u)} vu € L’T,

where

~ 1 Tr—x ,
folzg +byu) = b_;{ ,/Rd K (1 bnlo — u) flx)dx

= / K(y)f(xo 4+ bp(u+y))dy Yu € U.
R4

Notice that the processes R"™ and Z" are not necessarily continuous in the case of a
monotone kernel, and thus we treat them as (*(U)-valued random elements. This is

natural especially in the multi-dimensional case.

Proposition 7.1.3 Choose a kernel function K : R? — R satisfying either Condition
7.1.1 or 7.1.2, and let {b,} be a sequence of positive constants such that b, | 0 and that
nbd 1 oc as n — oo. If f is continuous at xy, and if U is bounded, then it holds that
Z" = Z in (*(U), where u ~ Z(u) a zero-mean, continuous Gaussian process such
that

(7.1.1)  E(Z(w)Z(uz)) = f(l(])/ Ko —u)K(x — up)dx Yuy,uy € U

Rd

Remark. The continuity of the limit process u ~ Z(u) is considered with respect to

the Euclidean metric.
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Let Uy C Uy C --- be a sequence of bounded subsets of R? such that Uloil U, = R?.
We denote by (2 (IR?) the set of all functions z : R — R that are bounded on every U;,
and equip it with the local uniform metric d defined by

d(z1,22) = Z ( 2 (u) — zo(u)| A 1) 2"

i=1 uel;

Using Theorem 1.6.1 of van der Vaart and Wellner (1996), we obtain the following.

Theorem 7.1.4 Choose a kernel function K : R — R and a sequence of constants {b,, }
as 1n Proposition 7.1.3.

(i) If f is continuous at xg, then it holds that Z" = Z in (2(R?), where u ~ Z(u)
a zero-mean, continuous Gaussian process whose covariance E (Z(uy)Z(us)) is given by
(7.1.1) for every uy,uy € RY,

(ii) If f is twice continuously differentiable in a neighborhood of xy, and if

lim nbid =h < oo,

then it holds that R™ = 2y + Z in (2 (R?), where
0’ f(x)
~ _ v (p) (9)
(7.12) _ };}:/‘ Ky oo
p=1q

This result can be applied to construct a confidence band, substituting estimators
for f(xy) in the covariance of the limit process Z and for the second derivatives of f at
xo in the constant zy. Another application is given in Subsection 7.1.2. Notice that the
assumptions appearing above are exactly the same as those in the context of point-wise
asymptotic normality, and thus are quite reasonable. Our conclusion is that the local
smoothness of the density f implies not only the point-wise asymptotic normality but

also the weak convergence of local residual processes R".

Proof of Proposition 7.1.3. We can write Z™(u) = Y. £"(u) where

& (u) = i’bd {K <)% - u) - /RdK (I - u) f(x)dx}.

We will check the conditions of Theorem 3.3.2. For every uy,us € U, since

1 S — X r— X
B (w)§ () = — {/RA ("1 - 10 —u1> K (‘1 - 0 —u2> fla)dz
— / K (I 0 ul) f(:’z;)(]:z;/ K (LE T ug) f(:z')d;r}
RrRd bn R b,n

1 ,
- —{/‘Kw—uan—UQﬂm+Wwﬂy
Rd

n

_bi /d I{(y - Ul).f(iUo + an)dy/d I{(y - Ug)f(l’(] + bny)dl/} )
R R



116 7. Miscellanies

we easily obtain

Jim Y EE (un)€! () = F(o) /R K (y = w)K(y = uz)dy.
i=1

The Lindeberg condition [L2'] follows from the assumption nb? | oco. In the following,
we will show that [PE’] of Theorem 3.3.2 is satisfied under either Condition 7.1.1 or
7.1.2, and that the limit process u ~ Z(u) is continuous with respect to the Euclidean
metric.

[The case of smooth kernel.] Assume Condition 7.1.1. First notice that for any
U, uy € U
(7.1.3) |K(y—u) — K(y —us)| < Lluy —us|*  Vy € RY

We can take a compact set .S which is a common support of the functions y ~ K(y — u)
for all u € U. Now, for every ¢ > 0, choose a finite partition II(¢) = {U(g;k) : 1 <k <
Ni(2)} of U such that the diameter of each partitioning set is not bigger than s/, This

can be done with Nyj(s) < const. ==%*: thus it holds that fo V1og Nyj(e)ds < 0o, On
the other hand, it follows from (7.1.3) that if |u; — us| < 2!/ then

Le XZ — X T — X
&' () = &' (ua)] < T {1s (TJO> + /Rd lg (1 A IO) f(r)a’r} :

We thus have

‘ L & Xi—=x T = -
2 < Ells [ & / 1g ’ 1
1€ < w2 s . + . b, f(a)da
g -

417 r—u
o . lg ( . 0) fla)dx

= 42 [ 14l o + by
R
< 4L*-Leb(S) - sup f(x) for all sufficiently large n € N,

rEN
where N is a neighborhood of xy. The condition [PE’] of Theorem 3.3.2 has been
established.
[The case of monotone kernel.] Assume Condition 7.1.2. For every p = 1,...,d, choose
a constant ¢, > 0 such that [—c¢,, ¢,] is a support of K, and that U C Hp (=cp, ).

For every

U,1 ,] I(sik ) where I,(¢;k,) = (7p(e; kp —1),7,(e:kp)], such that

> 0 and every p = 1,...,d, we introduce a finite partition (—c,,c,] =

0 < 7,(55ky) — yplesk, — 1) < &2 k,=1,..,Nye).
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This can be done with N,(¢) < [2¢,67%] + 1. Now, to check the condition [PE'] of
Theorem 3.3.2, we consider the DFP II = {TI(¢)}.c(o,1) of U given by

d
) = {U N HIP(S;kp) 1<k, <Nye), 1<p< d} .

p=1

Then, since

we have f(]] log Nyi(e)de < oc.

Next, for every u?) € (—c,,c,] we define

2 — )
n,u(®) 3 1 ~ Ty 2) (p)
K (@) = —K, [ ——> —u" ], v ekR
/ P ( bn )

Then it holds that

o (p) o 0 (P) —mn.c,k )
(7.1.4) I&’If’l“p — I&;“’”gp | < K, b whenever u(f), ug“ € I,(s:kp),
where
K,(0) 2® — )
——n,k , Lﬁ if -0 €l g3 k. y
]\p P(l,(p)) — \/lTn ; b, p( ; p),

[&’;L’7"1’<€;k1’) — [x”l")‘ﬂ'f’(“k’f’ “Y)(a (p) ), otherwise.

The key points are the following:

—=n,e ’) I 0 252
(7.1.5) p’ (m—l—bzp)|dJ7’ —pl() ) :
(7.1.6) Support(FZ’g’kp) C [y (P) — 2b,0p, Jgp) + 2b,¢p):
(7.1.7) fo = limsupsup f(xo + b,y) < co, where S = H
n—oo yeSs
p=1

The fact (7.1.5) will be proved later, while (7.1.6) and (7.1.7) are trivial.
Let us proceed with the main part of the proof. Tt follows from (7.1.4) that

I% <:’I,‘ ; ro UI) ok (;1’; ;11‘0 B UQ) ’

d
n. u(p) . uf)p) )
= ([T o - Tt o)
p=1

p=1

1

\/—d
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d p—1
() e P rnul®
S < K7 (29) ) ( T o (o) > {55 (@) = Ky (N))}‘

g=p+1

K (O) g » ) .
< Z (H qb ) [\p’ 1 ([I’([)) — [xp'/ 2 ([I'([))
p=1 \g#p "
d d
K, 0)\ —=nek, o -
< Z (H qé )> [\’p (;17(1’))? if wy,us € H[p(g k,)
p=1 \qg#p n b=l

Here, for every p = 1, ...,d, we obtain from (7.1.5), (7.1.6) and (7.1.7) that for all suffi-
ciently large n € N

=1, ,ky (p dr
(W«:)/” riey

= 1_[|Kq(0)|2 |[\ )—I—Z),Lz/(p))| flao+ byy)dy
qF#p R
< | TTIEAOP | bulfo+1) - / Ko (P 4 b,y )Py
qF#p s
- )Pe?
< (TTm002 ) butso + 1 01%9—————
qFp qFp bn

[ 1
— ;?Dpﬁ where = (H 4eq|15,(0) ) ﬁif—:)’

which implies that

Aq(O &kp 0 (p) ) 2 ‘
H T "(a'P)| f(x)de < 2dY D,
=1 \gp VU p=1
We therefore have
limsup ||£"||n <
It remains to prove (7.1.5). Observe that
K,(0)]? .
/U W+b¢MWMW—<H¢%§&¥+um
where:
L[ ) 2 )
<I> - a . ‘]Xp Pl — 1 ( kp))_lxpﬁ/(] ﬁ])(5;]gl)—1>)| dyl ;
1 [ . -G 2,
(II> = T ’-Kp(y(p) - Wp(s; kp)) - [ip(y(p) - 71)(8 kp - 1)) 3 (p).

bn Tp (5 ;kp )
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Further, it holds that

(11) = bin 000 ‘Kp(y(p)) — [x’p(y(P) + 9,8, k) — (e, kp — 1))|2 dy?)
: zi Ox By () = Ky + )] dy”
< Alb—i()) /0 ) | K, (y'7)) — K (y'?) + £%)| dy™
- AZ—E()) /(; Kp(y(p) + ‘52>d?/(p)
< Kgim - K,(0)e”.

Since the same bound holds also for (1), we get (7.1.5).
[Continuity of the limit process.] Theorem 3.3.2 says that the process u ~ Z(u) is

continuous with respect to the pseudo-metric p on U defined by

plur, ug) = \// |K(x —uy) — K(x — ug)|?dx Yy, uy € U.
Rd

Hence it suffices to show that u; ~ p(uy,us) is continuous at uy with respect to the
Euclidean metric for every uy € U. This is immediate from (7.1.3) in the case of a
smooth kernel. On the other hand, in the case of a monotone kernel, the claim follows

from the inequality

d
| K(x —uy) — K(x — uy)| < Z <H Kq(())) ‘Kp(;v(p) - ugp)) — K, (') — uép))

p=1 \g#p

which can be easily shown by the same argument as above. O

Proof of Theorem 7.1.4. The assertion (i) is immediate from Proposition 7.1.3 and

Theorem 1.6.1 of van der Vaart and Wellner (1996). Next, observe that

ﬁl([l,’o +byu) — f(xg+ byu) = / Ky){f(xo+bo(u+y)) — f(xog+ byu)} dy

Rr]
and that
d
of(z
flro+bu(u+y)) = flao+bou) = bl Yy .f(,l)

é‘([([’)

p=1 r=x0+bru

p2d A, ¢ D*f(x)

n_ (p), (@)

+ 2 Zzy 4 OxP) Ol - ’

p=1 ¢=1
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where 7, is a point on the segment connecting xy + b,u and xg + b,(u + y). We can
obtain the assertion (ii) using the assumption that the kernel function K is symmetric.
O

7.1.2 Estimation of Mode

In this subsection, we consider the 1-dimensional case only. We are interested in estimat-
ing the mode of a density f of an ii.d. data, namely, zy = argmax,.p f(x). A natural

estimator would be 0" = argmax,cp f.(x), where

-~ 1 — X, —u
(1) = — K :
fﬂ (7 ) nb” ; A ( b”

Here, b, is a vanishing sequence of positive constants, and I is a kernel function on R.

) Vr € R.

We now introduce a condition on f in a neighborhood of 2y € R (we do not assume that
xg 1s the maximum point over the whole line R; the point xy should be regarded as a
local mode of f).

Condition 7.1.5 For an even integer p > 2, the function x ~ f(x) is p-times contin-
uously differentiable in a neighborhood N of xy with derivatives fU™, m = 1,...,p such
that:

o f"(z0)=0 for everym=1,...,p—1;
o sup,ey [P(a) <0

Theorem 7.1.6 For a given point vg € R, suppose that Condition 7.1.5 is satisfied for
an even integer p > 2. Put the bandwidth b, = n="CP*Y) and choose a kernel function
K on R following either of Condition 7.1.1 with o = 1 or Condition 7.1.2. Then, for
any R-valued random sequence 0" such that 6% - xy and that

~ ~

ﬁxen) Z f’n(fI/‘O) — €y

for some €, = Op(n=P/2PF1) it holds that |8 — xo| = Ops(n=1/2FD),

Proof. We will check the conditions of Theorem 5.1.2 for r; L = b, = n=1/@r+D For-

mulation 5.1.1 should be as follows: (0", d") is the Euclidean space R, and 62! = x¢; let
["(x) = ﬁl(l‘) and v"(x) = f,(x), where

folr) = = f&’<y_x>f(y)dy

b’n R bn
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We then denote R(6) = {x € R: (6/2) < |xr — xg| < ¢} for every 6 € (0, 00).
To show the FIRST INEQUALITY of M-CRITERION, we denote

¢, = inf |fP(2)] and C, = sup|f®(z)].

xEN reN

It follows from a p-term Taylor expansion of f around xzy + b,y that

Y x) =" () = K(y) {f(x+byy) — flao+boy)} dy

—

= (I)+ (1),
where
p—1 (I —«TO)m (
D= """ KON ™ (2 + b,y)d
D=2 /R*(y)f o
and
x — xolP -
(I < _% / K(y)epdy
! R
_ﬁél’ whenever @ € R(9).

Furthermore, since f*)(24) = 0 for k = 1,...,p — 1, it follows from a (p — m)-term Taylor
expansion of fU™ around x, that

(Buy)"™™ 1y
(p—m)!

for every m =1,...,p — 1. Thus it holds that if 6 € [Lb,,, 00) then

L o —m O) p—m 1~
(Dl < D =0 -M/RILI/II K(y)dy
p—1

, C ,
< & Z o l;)!Lp—Tn, /R|y|p'"K(y)dy whenever x € R(9).

p—n
m=1 p

U (2 + byy) = (7,) for some T, € N,

Thus, choosing a sufficiently large L > 0 we can conclude that the FIRST INEQUALITY
is satisfied.

To check the SECOND INEQUALITY, we will apply Theorem 2.3.3 (ii) to {& }ien =
{(&"|x € ¥)}ien, where U is a subset of R and

na l i - x\rt — s
&= n {bn[x < b, ) fn(l)}

Notice that

N " 1 X, —ux S Xi—y
N enyy < K _ K S
T < \< b ) ‘( b, )’
== 2=y
—_— Kk — I 2)dz.
nb, Jp ' ( b,, ) * ( b, ) ‘ f(z)dz
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We may choose a sufficiently small 6y > 0 so that [z — 26y, 29 + 20¢] C N; then we
have f* = SUp, i,y 260004260 f(7) < 00. We discuss the cases of smooth and monotone
kernels, separately; in both cases, let L > 0 be a constant such that [—L, L] is a support
of K. In each case, for every 6 € (0,06y) we will construct a DFP Iy = {Hé’(f)}ge(oﬂl] of
U =Wy = [rg— 06120+ 6] such that

1
(7.1.8) sup / \/log'(l + Np, (€))de < >0
0

and that

167 |11, < const.p](6) V6 € [Lb,,6y), Vn € N

for some appropriate functions 6 ~ ¢1(6) indexed by n € N. Notice that we have in

both cases that with Ws = [xg — 6, 2 + 0]
n _ 2
Y EIET
i=1

WP KD 26 4 218,) -

IN

n-

nb,

< D-i(d) whenever 6 € [Lb,, &)
where D = 4sup, |K(x)[*f* and ¢5(8) = n~'b,;?6. Then, Theorem 2.3.3 (ii) yields that

E sup |[(T" —~")(x) — (T" = 4" )(x0)| < const.¢"(0) Vo6 € [Lb,, b))
TER(6)

whete 6"(6) = P(8) V (¢3(6)/21(8)).

[The case of smooth kernel.] For every £ € (0, 1], we make a finite partition (xo—90, 29+
o] = Anﬁ( )(u,/{,,l./ uy] such that uy, — w1 < 26. This can be done with Ny, (¢) < [2e7!]+
1, thus (1.1.8) is satisfied. On the other hand, if 2,y € [ugp_1, ug] with w — upy < €6,

AN
A( by, ) A( by, )

where L > 0 is a constant appearing Condition 7.1.1. Thus it holds that if Lb, < 6 < d

then 6
S bv ’ 1[“1.'—1_L’bn7“k+Lbn]('Z) vf, E R7

then
Ls|
||£ ||115 =~ \/ an_ bn ((5 + Lbn) f
< VI2L2f - 9 (5)
where ¢(8) = n~1/2b726%2. We thus have ¢"(8) = (n=1/2b726%/?) v (n=1/26=1/2). The

relation ¢" (b, ) = b2 holds since we put b, = n =1/ et

[The case of monotone kernel.] For every ¢ € (0,1], we make a finite partition

N
(o — 6,20 + 0] = AHf( )(uk 1, ug] such that w, — up_; < £28. This can be done with
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Ny, (g) < [25—2] + 1, thus (7.1.8) is satisfied. On the other hand, if x,y € [u_1, uz| then
K g - K Y K ﬂ — K Z % VzeR.
bn b“ bn b”

Here notice that if uy, — u;_; < 226 then
2
z z—e%0
bn) bn

5
2= up_y 2=y
K (7> K ( )‘ 0
/R bn bn
2 — &2
Kl—)-K dz

IA

INA [l

=

=2
e~

Thus it holds that if Lb, < 6 < dy then

n A ]‘
1€y, < \/MOW -3
VI2[K(0)2f* - 7 (0)

where 7(8) = n=1/2b;161/2. We thus have ¢"(6) = n=1/2b;161/2. The relation ¢"(b,) =

1

KO0 f-

IN

b? holds since we put b, = n~ /(21 O

Corollary 7.1.7 For a given point xo € R, suppose that Condition 7.1.5 is satisfied for
an even integer p > 2. Put the bandwidth b, = n="/CPTV and set K(z) = % ().

Then, for any R-valued random sequence 0" such that 0" 2= xy and that

ﬁl(’é\n) Z sup j;([l?) — €
reR

for some €, = op«(nP/2PTVY it holds that 'nl/@]’“)(@‘ — Z9) SN argmax,p{A(h) +

B(h + 1) —B(h — 1)}, where the deterministic process h ~ A(h) is given by

fPx0) [
Alh) = ——o— h 4+ y)Pd
(h) N /1( + y)Pdy

and h ~> B(h) is the two-sided Brownian motion.
Proof. Theorem 7.1.6 asserts that the sequence b;l(é\” — x¢) is uniformly tight. Let us
consider the stochastic process h ~ M"(h) defined by

M (h) = b;ﬁ){ﬁ(wanh,)—f(;vo)}
= Y"(h)+ Z"(h),
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where:

Y"(h) = b7 {fu(xog+bh) — flxo)};
ZMh) = b? {ﬁ(xo 4 boh) — falwo + b,nh)} .

Noting that \/nb, = b>?, we obtain from Proposition 7.1.3 that Z" L Zin (=(K) for
any compact set K C R, where Z(h) = y/f(z){B(h + 1) — B(h — 1)}/2. On the other
hand, an easy computation shows that lim, ., Y"(h) = Y(h) = /f(x0)A(h)/2 for every
h € R. Since h ~ Y"(h) and h ~ Y'(h) are continuous, this convergence is uniform on
every compact set X' C R. Hence, by the same argument as the last part of the proof of

Proposition 5.2.5, we can obtain the assertion. O

7.1.3 Remarks for Non-1.I.D. Cases
Gaussian White Noise Model

For every n € N, let X" = (X} );cp0,1] be a continuous stochastic process given by
X" = f(t)dt + n ?dB,,

where f € £7[0,1], and B = (B,)iep,1] s a standard Brownian motion. Let t5 € (0,1)
be a fixed point, and let b, be a vanishing sequence of positive constants. In order to

estimate the local function u ~ f(to + b,u), a natural estimator would be

~ 1 [t t—t
fn(t[) + bn“‘) = _/ K ( 0 _ U) d.Xle
0

nb,, by,

where K is a kernel function on R satisfying either of Condition 7.1.1 or 7.1.2 with d = 1.

Then, we can get the same conclusions as Theorem 7.1.4 by using Theorem 3.4.4.

Multiplicative Intensity Model

For every n € N, let u" be an R%valued multivariate point process on a stochastic
basis B" = (Q*, F*,F", P"); u" can be identified with an R%marked point process
{(T7", Z"); i € N} through the equality

2

i wsdt,dz) = Z S () 7w (dt, dz),

where 0 < T} < Ty < --- and each Z!" is an R?%-valued random variable.

We assume that the predictable compensator v” of u” is given by

Vi widt,dz) = alt, 2)Y " (w,t, z)dtdz,
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where a(t, ) is a [0, 00)-valued measurable function on R, x R? and Y"(w,t,2) is a
[0, 00 )-valued predictable function on Q" x R, x R

Let (t9, z0) € (0,00) X R? be a fixed point, and let b, and ¢, be vanishing sequences of
positive constants. In order to estimate the local function (u, v) ~ a(tg + b,u, 2o + ¢,v),

a natural estimator would be

. 1 [t —1 Z— Z N ,
W(to+buu, zg+c,v) = ol / d[’\ ( 2 L . v ’17) YT (et ) (s dt dz),
Untn JREXR n n

where K is a kernel function on R4 satisfying either of Condition 7.1.1 or 7.1.2 with

“d” replaced by “d 4 17, and where Y~ is the generalized inverse of Y.

Assume the “local” version of Condition 5.3.1, that is:

Condition 7.1.8 There erxists a measurable function y = y(t,z) on a neighborhood N

of (to, z0) such that

Pn*
—

sup ‘n_lY”(',t, z) —y(t, 2)
(t.,Z)GL’V

Then, under some conditions of smoothness of the functions (¢, z) ~ a(t, z) and (¢, z) ~
y(t, z), we can derive some conclusions about the residual processes (u,v) ~ R"(u,v)

given by

R"(u,v) = v/nb,cd {@,(ty + byu, 2o + c,v) — alty + bpu, zo + c,v)}

similarly to those of Theorem 7.1.4 by using Theorem 3.2.4; the term “f(2,)” in (7.1.1)

is replaced by “a(to, z0)/y(to, 20)”, while the change of (7.1.2) is clear.

7.2 Log-likelihood Ratio Random Fields

7.2.1 Results

For every n € N, let B" = (Q", F" F" = {F}ien,, P") be a discrete-time stochastic
basis. Let P" = {P™¥ : ) € W} be a family of probability measures on (", F"), indexed
by an arbitrary set W, such that P™% < P" for every ¢» € W. We denote

r’L,y’w
Z“w _ dp,
B dP,;n ’
where P/"" (resp. P") is the restriction of P™" (resp. P") on the o-field F. We assume
P = P! for every 1 € U, hence we can set Z,°" = 1. For a given finite stopping time
0 0 J Y 0
o on B", and we suppose also that the random element log Z7, = (log Z5 |1 € W)

takes values in (°°(W). Here we set

= —1 VYieNVy)eU.
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Theorem 7.2.1 In the above situation, suppose that the following conditions hold:
(ap) 27 VAR e RN C(v, ¢) (90m€ comz‘(mt) for every v, ¢ € U;
(a2) SUPycy ‘27 VAET ¢ “| — C(, 0 ’ —0;
(b) 217:1 E?—1|§£"L|21{|g7\>5} 0 for every e > 0;
(¢) there exists a DFP 11 of U such that
An
I¢" ln.on = Opa(l) and Hy(e)de < .

0
Then, it holds that log Z, LL X in (>°(W), where X(v) = —%C(’t/}, )+ G(0) and ) ~
G(v) is a zero-mean Gaussian process such that EG(1)G(¢) = C(,¢). Furthermore,

the formula

p(0.0) =/ C(,0) + C(9,0) =2C (¢, 6)  Vi,0€ W

defines a semimetric on ¥ such that (U, p) is totally bounded and that almost all paths

of X are uniformly p-continuous.

771<7'10

Remark. If a version of the conditional expectation ET (] satisfies the assumption

(a1), then so does any version. However, this is not true in (a,); the assumption means
29

that there exist some versions of E ||¢" *|2’s which satisfy the requirement.

Example: Ergodic Markov chains

Let {X;}ien, be an ergodic Markov chain, defined on a probability space (Q,F, P),
with values in an arbitrary state space (E,&). Let u(dx) denote the initial distribution,
p(x,dy) the transition distribution, and #(dz) the invariant distribution. Let us equip

the space £2 = L2(E x E,w(dx)p(x,dy)) with the “inner product” given by
(hy, ho) e :/ hy(z,y)ho(x, y)m(de)p(x, dy) Vhy, hy € L2
ExE

The meaning of the quotation marks is that ||h]|z2 = 1/ {(h, k)2 is merely a “semi-"norm.
Next we define the subset £2 of £? by

L3 = {h cL?: / M, y)plae,dy) =0 Ve € E and h> —1} )
B

Fix a subset H C Lj. For every n € N, let us consider a family of probability measures
P" = {P"" : h € H} on (Q,F) such that: under P™" the process {X;}ien, is the
Markov chain with initial distribution p and transition distribution p™” given by

P, dy) = (1 + h(\%y>> pla, dy).
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Here we set F; = 0{ Xy, ..., X;}. Then it holds that
aprt L X 1, X;)
Zﬁ,h _ 7 — 1 J ) J ]
M= =1l ( T/

We need some more notations to state the following result, which concerns the asymp-
totic behavior of the process log Z" = (log Z""|h € H). For a given K € L*(F,w(dx))

J=1

we define the semimetric pg on £2 by

pe(hi, ho) 5
Oy hy) = sup L2020y e g2,
prc(h ) = sup K ()| V1 Mo 2 € L7

where

pe(hy,he) = \// |hy (e, y) — hola, y)|?p(a, dy) Vo e E.
E

Proposition 7.2.2 Let {X;}ien,, (Q,F,F = {Filien,, P) and P" = {P™h : h € H}
as above be given. Suppose that there emists h* € LYE x E,n(dx)p(x,dy)) such that
suppey |h| < W, and also that there exists K € L*(E, w(dx)) such that

1
/ \/logAf’H(HmK;e)ds < 0.
0

Then, it holds thatlog Z" == X in (*(H), where X (h) = —5||Al|%:+G(h) and h ~ G(h)
is a zero-mean Gaussian process such that EG(hi)G(hy) = (hi,ha)r2. Furthermore,

almost all paths of X are uniformly || - || 2 -continuous.

This result is easily derived from the ergodic theorem and Theorem 7.2.1, hence the
proof is omitted. Here we give a statistical application. Fix a subset H C £2 such that
|l]|z2 > 0 for every h € H. Let us consider the testing problem:

hypothesis Hy: p
against ~ HJ': p™" for some h € H.

We propose the test statistics
S —_ 1 h 2 1 o’Z”‘h
= sup 5“ |72 +log Z7"| .
heH | &
Assume the same conditions as in Proposition 7.2.2. Then, it holds that
n P :
S" = sup [(h, u) 2 + G(h)| in R Vue {0} UH,
heH

where the process h ~ G(h) is as above. This fact follows from Proposition 7.2.2 that
implies local asymptotic normality and contiguity, together with Le Cam’s third lemma
and the continuous mapping theorem. In view of Anderson’s lemma (e.g., Lemma 3.11.4

of van der Vaart and Wellner (1996)), the statistics S™ seems reasonable.
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7.2.2 Proofs

Let us denote:

- zne, :
ZM = 1 Vie NV e ;

r’L,y’V
Z('i—l)/\(r‘”

Abe¥ = log szl’wl{z;'ga} Vie NV e ¥ Va> 0.

(3

The process 1 ~ log Z1" = 327" log Z["" can be well-approximated by the process

P~ ATV = il AT Ag a matter of fact, it holds that

0,7L
SUD 110, 7t spmany S Z l@a
Ppew 7 i=1

1 on s
< =5 IGP g,
i=1
hence using also Lenglart’s inequality we obtain

ol by P
sup [log Z." — A% — 0.
pew

We consider the decomposition

o.n 0.774
- ¢ ATLad n n,a, n,a _ 1n n,a,4)
(7.2.1) amed = S et 3 e — B e )
=1 =1

We will derive the uniform convergence of the first term in (outer) probability, and apply
Theorem 3.3.2 to the martingale difference array {}ien, of the second term, that is,

&Y =AY = Er AT We use the following lemma which will be proved later.

Lemma 7.2.3 For every a € (0,1), there exist some versions of the conditional expec-
tations E?  AN""Y such that:
1—17%
P’Il*

(1) if supyey C(1¥, 1) < 00 then sup,cy S ER AR 4 1C(, )| — 0;
(1) S B NN 2 €0 ) for every .6 € W

(iii) 37, [ B AP L0 for every b € .

Remark. (i) We will see later that the conditions of the theorem actually implies
that sup,eq C(¥,7) < oo. (ii) The choice of versions of the conditional expectations
n,a, \n,a,o - :
EM NPT s not important.
Let us proceed with the main part of the proof. It is clear that there exists a constant

6 € (0,1) such that |logxr—logy| < 2|/r—/y| whenever z,y € [1—0,1+6]. We consider
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the decomposition (7.2.1) for @ = /1 + & — 1; then it holds that {x : |\/z — 1| < a} C
{z:]e =1 <6},

First we show the weak convergence of the second term of the decomposition (7.2.1).
The condition [C2'] is direct from (ii) and (iii) of Lemma 7.2.3. Tt is also easy to see that
the assumption (b) implies the Lindeberg condition [L2']. Finally, recalling the choice

of 6 and the relationship between a and 6, we have for any subset W' C ¥

2
n . n,a,p n,a,Q
i1 [ sup |A; -\ |}
W.peEW! .
v,9 ‘Fin‘Pn
2

E!, [ sup |log 2" —log Z"°

]_ =n
= {Ci S“}:|

fin , pPn

2
N |

P,peW! n
¢ ‘7:'[ 7Pn

Thus the assumption (¢) implies the condition [PE’]. Consequently, Theorem 3.3.2 yields
Srer Z5 G in (o).

Next we consider the first term of the decomposition. Observe that

Cot) = VEGP

< VEIGT) — GIOF + VEIGOP = p(10.6) + /C(0.0).

The inequality above and the total boundedness of (¥, p), a consequence of Theorem
3.3.2, imply that sup,,cq C (¢, %) < co. Hence (i) of Lemma 7.2.3 works to show the uni-

form convergence of the first term of (7.2.1). Also, it is trivial from the above inequality

that ) ~ /C(1, ) is uniformly p-continuous, thus so is ¢ ~ C(¢, ).

Proof of Lemma 7.2.3. For every £ > 0 we denote:
(T'L
n,E(,/ _ n n,e,,
B (y) = E B A
i=1
0.71
TE (o) _ T n,E P\ n,E,p
C"™ (¢, 0) = E E (NPEENET
i=1

[STEP 1] First we prove the following facts: for given a € (0, 1) there exist constants
Ky, Ky, K3 > 0 such that for every ¢ € (0, q]

(7.2.2) sup
l/f’E\p

1
B (1) + 50(’1/}, )| < eKy 4+ opa(l),

(7.2.3) |C™5 (1), ) — C(¢, 9)| < Ko+ opa(l) Vi, €W,
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o vmew L ‘
(7.2.4) Z| AT <L 50(1/), V) + K3+ opn(1) Vi € W
In order to show (7 .A.A) first notice that there exists a constant ' > 0 such that
|[logz — (x — 1) +2(/7 — 1)% < K|\/x — 1> whenever |\/x — 1| < a. Hence, for fixed

= € (0,a] we obtain

+ZZE G P <y

=1
< SR BLIGT Pz + ZE:—l 2 =gy
=1

almost surely. Since ET Z ¥ _ 1) = (0 almost surely, the last term on the right hand
J J O

side equals to

Y OELZM = Dy
i=1
< D ELIAT -1
i=1
< S,
i=1
almost surely. Thus we obtain
(7.2.5) ‘B”E( W) + - C(w )

1 1
< (24 :K) ZE NlekdE —4C(’y’;,1¢") +5K-ZC(’1/),7;>)

g+ 2 n =12
+ (2 + —> ZEZ 11 |)1{Z§‘>s}

i=1

almost surely. In order to get the estimate for all w € Q", we can choose the versions
of conditional expectations as follows: first, we may without loss of generality choose
a version of E! [} |? 1w,y which is non-negative identically; next, on the union of
all exceptional sets for the estimates appeared above, we define the values of all other
conditional expectations as zero. Then, the inequality (7.2.5) holds identically for all
Y € U. By taking the supremum of (7.2.5) with respect to ¢» € ¥, and letting n — oo,
we obtain the assertion (7.2.2).

A similar argument yields (7.2.4). In fact, it is much easier than (7.2.2), because the

assertion of (7.2.4) is ¥-wise, for which we do not need any argument about versions of
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conditional expectations. Also, it is easy to show (7.2.3) if we notice the following fact: for
given a € (0,1) there exists a constant ' > 0 such that |logz-logy—4(\/2—1)(,/y—1)| <

K max{|\/r — 1|?,|\/y — 1|*} whenever max{|/x y—1|} <a.
[STEP 2] Next we prove the following facts:
(7.2.6) sup [B™(1) — B () £5 0 Ve € (0, a);
'¢)€\IJ
(7.2.7) IC™ (1, ) — C™ (1, 0)| 250 Vap, ¢ € U Ve € (0. a).

In order to show (7.2.6), notice that for given a € (0,1) there exists a constant K > 0
such that |log x| < K|y/x — 1|> whenever |\/x — 1| < a. For every ¢ € (0, a) it holds that

n n

o2 ea

En \77 a0 n n,e,p
i—17Y i—17Y

i=1 =1

(7.2.8)

71L

", log Z 1{ T <a)

n

g
< KZEzzl|<;;"'~*’|21{5<»c;wsﬂ}
=1
O.‘IL
i —n s
< K ZE?—HQ |21{E?>5}7

i=1
almost surely. We can choose some versions of conditional expectations such that the
estimate above holds identically for all > € ¥, in the same way as in the proof of (7.2.2).
Take the supremum of (7.2.8) with respect to ¢ € ¥, and let n — oo, then we get (7.2.6).
A similar computation yields (7.2.7).

[STEP 3] Now it is easy to see that (7.2.2) and (7.2.6) imply the assertion (i), and
that (7.2.3) and (7.2.7) do the assertion (ii); first choose € > 0 small enough, and then,

let n — oo. In order to show the assertion (iii), notice that for any ¢ € (0, a)

n naL n nSL
Ez 1 E :|E 1/\7

)\n a2 + A” € ;) E171<)\;L,a;¢) _ /\;L,E,y’))

IN

= OP"<1)7

2| log(1 — a?)] Z ’Ein—l log Z%n’l'bl{x?fga}

i=1
hence

o

o.’l],
SOIE R = ST IB AR 4 ope(1)
i=1

1=1
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< Jlog(1 |Z|E” AV opn (1),

We therefore obtain (iii) by virtue of (7.2.4); first choose ¢ > 0 small enough, and then

let n — oo. O

7.3 Model Checking for a Non-linear Times Series

Let us consider the R-valued time series {X;};cz given by
Xi = 0(Xioy) + &4,
where ¢ is an R-valued function on R and ¢; is an R-valued random variable such that

1
P(s; <O0|F) = 5 almost surely,
where F; = o{X; : j <i}.
Let K : R — [0,00) be a kernel function with a compact support, and let {b, },.en be
a sequence of positive constants such that b, | 0 as n — oo. We introduce the stochastic

process V" = (V*(x)|x € R) given by

V() = zw

where . N .
and

Z, = sign (X, — (X,1)).
with

sign(x) =

-1 for x <0,

1 for x > 0.
The process V" is a “smoothed” version of that of Erlenmaier (1997) who considered a
process V" with Y;"(2) replaced by 1(_ o »(Xi—1).

In order to state some conditions which we shall assume, we denote by F, and f,
the empirical distribution function and the empirical density function associated to the

kernel function K and the bandwidth b, of the data X, ..., X,,_1: that is,
~ () l < ] (X )
T - —oco,x]\Ni—1);
! N ;—1: (—oc,a] 1);

A = - i[&’ (u)

nb,, “— by,
i
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We are ready to present our result.

Theorem 7.3.1 Assume the following conditions (i) and (ii):

(1) ﬁ,(l) £ F(x) for every x € R, where F is a continuous distribution function on R;
(ii) there exists a function g € LP(R) such that Hﬁ/gHM(R) = Op(1l) for some p,q €
(1,00) such that (1/p)+(1/q) = 1.

Then, it holds that V" A (*(R) where V(r) = Bp(,) and t ~ By is a standard

Brownian motion on [0, 1].

Notice that, when the time series takes values only in a bounded subset of R, a sufficient

condition for (ii) is that Hﬁ|

rary = Op(1) for an arbitrary ¢ > 1. The result above,

together with the continuous mapping theorem, yields the following.

Corollary 7.3.2 Define S™ = sup,p |V"(2)|. Under the conditions (i) and (ii) of The-
orem 7.5.1, 1t holds that S™ = suPyeio.q) | Bi| in R, where t ~ By is a standard Brownian

motion on [0,1] .

We have thus obtained the asymptotically distribution-free test statistics S™. Notice
that the time series {X;};cz need not be Markovian (the noise ¢; may depend on the

whole past).

Proof of Theorem 7.3.1. We can write V"(z) = Y1 """, where
£ = %Yi"’(r)Z,-.
It is clear that {&" }ien = {(&"" |2 € R) }ien is an (*°(R)-valued martingale difference array
on the discrete-time stochastic basis (0, F, {F; }ieno, ), where F; = 0{X; : j < i}. We
will check the conditions of Theorem 3.3.2.
To check [PE'], for every = > 0, choose some finite points {@.; : 1 <k < N(g) — 1}
of R such that

Tep=—00 <Xy <X <o < T Ne)—1 < OO0 = T N(e)

and that

Le k
/ ga)Pde < Yk =1,.., N(2).

e k—1
This can be done with N(g) < const.e™?, thus it holds that fol V01og N(2)de < co. On
the other hand, it holds that

o , 1 wVy Xio1—u
e K| ~—— ) du
|€z fz | —_ \/ﬁb” /I/\y L < bn ) ay

1 Te k e T .
/ K (17> du it ay € (vop 1, w0
ﬁbvl Te,k—1 bn /
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So we have

sup |&" =&

2
'[7316(1’5,7{'—17'[5,/0] ]]:
1
< —

2
1 Tek X —
2 b_n/L n K <7Z bln u) du
i=1 Lo k—
7172 % K ( b u) du
=1
= /1(1 e i) (1)}‘”({/)(](/
R
1/p R 1/q
( |1(L k—1,Te, k]( (u)|pdu> ’ (/ |fn(u)/g(u)|"du>
R

< e Hf'n/(JHL‘q(R)-

n
E Ei
i—1
n

INA

Hence the condition (ii) implies [PE'].
To check [C2'], first observe that

(7.3.1) / Fo(w)du == F(z)  Va e R

This fact is proved as follows. Since K has a compact support and since b,, | 0, it holds

that for any ¢ > 0

ﬁ”(; ) < nb Z/ ( )(]u < F”<I +¢)

for all sufficiently large n € N. Due to (i), the left and the right hand side converge in
probability to F(x — ¢) and F(a + ), respectively. The claim (7.3.1) follows from the

assumption that x ~ F(x) is continuous.
Let us now turn to the convergence of Y. F; 1&""¢"Y’s. In case of x # y, we have
: : : g =1 Hi—15; ¢ Y,

that
n 1 n
Ei— MY T Y ()Y (:
; 1é1 57, n 72_]: i (I) i (l/)
1 n
= — Y (x A for all sufficiently large n € N
nZ M Ay) or all sufficiently large n

=
= / fo(u)du,

which converges in probability to F(x Ay) due to (7.3.1). In case of x = y, observe that

n n n
Z Ei_]égl,xfsglﬂ,r < Z Ei_, |€Zl,ib|2 < Z E[}j_]g;%xglﬂ,ﬁre Ve > 0,
=1 =1 =1
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and that the left and the right hand side converge in probability to F(x — ¢) and F(x),
respectively. Thus it follows from the continuity of # ~ F(x) that the middle of the

above inequalities converges in probability to F(x). We therefore have shown that

Z B &6 i F(x Ay) Vr,y € R.
i=1
It is trivial that the Lindeberg condition [L2'] is satisfied, and all conditions of The-

orem 3.3.2 have been established. O

7.A Notes

The bandwidth processes or/and deviation processes of kernel density estimators as
random elements taking values in the space C' were studied by Krieger and Pickands, I1I
(1981), Miiller and Prewitt (1992, 1993), and Miiller and Wang (1990). Theorem 7.1.4
could be obtained from a general study of “local empirical processes” by Einmahl and
Mason (1997) combined with a uniform Donsker theorem by Sheehy and Wellner (1992).
Although the notion of “local empirical process” is more general than the local kernel
estimators, their approach is essentially based on the 1.i.d. setup.

The asymptotic behavior of the log-likelihood ratio random fields in finite-dimensional
parametric models has been studied by many authors including Le Cam (1970), Inagaki
and Ogata (1975), Ogata and Inagaki (1977), Ibragimov and Has’minskii (1981), Ku-
toyants (1984) and Vostrikova (1987). Although no result for infinite-dimensional cases
seems to have been presented in the literature so far, some results in i.i.d. cases are
immediate from the Donsker theorems for empirical processes. Theorem 7.2.1 seems the
first to consider the general statistical experiment with abstract parameters.

The problem considered in Section 7.3 and the basic idea of the test statistics were
posed by Erlenmaier (1997), who obtained the same conclusion as Theorem 7.3.1 for
a slightly different statistics in a Markovian case under an explicit assumption on the

transition kernel.
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