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Preface

This is a revised version of my thesis at the University of Utrecht which appeared in

May ����� Let me quote here the preface for the original thesis�

December ����� in Tokyo Yoichi Nishiyama

Preface for my thesis

Let me begin with stating my personal history� readers who are not interested may

skip to the next paragraph� In the spring of ����� I was looking for a subject for my

master�s thesis� I took an interest in censoring problems� and learned that O�O� Aalen�s

paper in ���� is the origin of the martingale approach to those problems� The approach

has been one of the most active areas in statistics since the early �	�s� 
Needless to

say� R�D� Gill�s pioneering monograph in ���	 is also important�� Having read Aalen�s

paper� I made a conjecture� my �rst as a statistician� concerning the weak convergence

of Nelson
Aalen�s estimator in the multiplicative intensity model of point processes with

general marks� where the estimator is considered as a set
indexed stochastic process�

Unfortunately 
or fortunately��� I was not able to solve it in my master�s thesis� which

consequently dealt with another problem� 
At that time� I didn�t know the prominent

paper by R�M� Dudley in ����� this means that I didn�t know anything about the modern

theory of empirical processes�� However� the conjecture brought me the motivation of my

current research subject �how to manage entropy methods� which have been developed

mainly for i�i�d� empirical processes� in the framework of martingales� The result up to

the present is this thesis� An answer to the conjecture is presented in Section ����

I would like to express my greatest gratitude to Prof� R�D� Gill for his advice� com


ments� kindness� patience and encouragement� He has always been the �rst reader of my

drafts during the last two years� and gave me useful advice every time� His enthusiasm

really accelerated my study� Also� although my stay in Utrecht was not originally in


tended to end up in a Doctor�s degree� he has kindly given me this opportunity� It would

i



ii

be a great honor for me to succeed in obtaining a degree at the prestigious University of

Utrecht�

I am really grateful to my supervisor in Osaka� Prof� N� Inagaki� for his general

statistical advice and constant encouragement� without him� I might not be a statistician�

I would like to thank Dr� N� Yoshida for stimulating discussion at many stages of my

work since I moved to Tokyo� without him� my statistics might be much weaker� My

thanks also go to� Dr� S� Aki for his lectures on empirical processes in the winter of �����

����� which inspired me to do this project� Prof� A�W� van der Vaart for a discussion

in February ���� which taught me the importance of maximal inequalities� Prof� S�A�

van de Geer for a discussion in November ���� which improved my understanding of

M 
estimation� I express my gratitude to Profs� N� Ikeda� K� Isii� S� Shirahata� M�

Fukushima� R� Shimizu� K� Hirano� T� Matsunawa� Y� Ogata� S� Eguchi� J� Jacod� Yu�A�

Kutoyants and B�Y� Levit for their advice and encouragement�

My work in Utrecht from June ���� to May ���� has been supported by a JSPS

Fellowship for Research Abroad from the Japan Society for the Promotion of Science�

These two years living here have made a strong positive impact on my study� and I

hope that my scienti�c fruits may have achieved the Society�s high expectations� I also

owe a great deal to the Institute of Statistical Mathematics for allowing such a long

period of leave� and for support from the Tokyo side� and to the kind hospitality of the

Mathematical Institute at the University of Utrecht� which has made my period of work

here exciting beyond my expectations� My special thanks go to the secretarial sta� and

computer managers both in Tokyo and Utrecht� and to the stochastics group in Utrecht�

for their help and kindness� in particular� to Damien White for correcting grammatical

errors and awkward sentenses contained in a draft of the preface� and to Erik van Zwet

for translating the summary � into Dutch�

April ����� in Utrecht Yoichi Nishiyama

�
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Chapter �

Introduction

��� Overview

The purpose of this study is to develop entropy methods� which were �rst introduced for

empirical processes of i�i�d� data� in order to handle some martingales with applications

to statistical inference for stochastic processes� Among a lot of directions of statistical

applications of the methods� we are concerned with two main themes in this monograph�

The following brief description of them is intended to illustrate also the motivation of

our work�

Theme �� Asymptotic normality and e�ciency in ���spaces� Let 
E� E� be a mea


surable space� Let fZigi�N be a sequence of E
valued i�i�d� random variables with the

common law P � and let � be a subset of L�
P � � L�
E� E � P � with an envelope func


tion belonging to L�
P �� We are interested in estimating the ��
��
valued unknown

parameter P � 
P 
��j� � �� given by P 
�� �
R
E
�
z�P 
dz�� a natural estimator is

the empirical process Pn � 
Pn
��j� � �� given by Pn
�� � n��
Pn

i�� �
Zi�� The

Donsker property is then nothing else than the asymptotic normality of Pn about P �

if the class � is P 
Donsker then the residual process
p
n
Pn� P � converges weakly in

��
�� to a Brownian bridge indexed by �� A su�cient condition for the class � to be a

Donsker class is that the class satis�es an integrability condition for metric entropy with

L�
P �
bracketing� given by Ossiander 
������ which we will recall later in this chapter�

When we have the asymptotic normality of an estimator� the next interest should

be to show its asymptotic e�ciency� For this purpose� a general procedure based on

the Le Cam theory for �nite
 or in�nite
dimensional parameters goes as follows 
see e�g�

Chapter ���� of van der Vaart and Wellner 
�������


i� show the local asymptotic normality of a model�


ii� show the di�erentiability of an unknown parameter�


iii� show that the sequence of proposed estimators converges weakly to the distribu


�
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tion of the e�cient bound speci�ed in terms of some factors appearing in the steps


i� and 
ii��

Then� the asymptotic e�ciency in the sense of the local asymptotic minimax theorem

with certain loss functions follows from the weak convergence shown at the step 
iii� and

the continuous mapping theorem� Furthermore if the proposed estimator can be shown

to be regular� then the asymptotic e�ciency in the sense of the convolution theorem is

also ful�lled�

Van der Vaart and Wellner 
����� illustrated the usefulness of this approach by a

discussion about the asymptotic e�ciency of the estimator Pn for the unknown parameter

P 
see their Section ������ for the details�� the Donsker theorems for empirical processes

are applied at the step 
iii� above� On the other hand� a merit of the Le Cam theory is

that� as seen in the step 
i�� the i�i�d� setup has been generalized up to local asymptotic

normality� It is thus meaningful to present some new limit theorems� which should be

useful at step 
iii�� in order to make full use of the general approach� In particular� such

theorems in ��
spaces were given mostly for row
independent arrays in the �	�s� and

have been recently established also for stationary sequences 
see Notes to Chapter ���

We consider this subject in some martingale contexts� �

Theme �� Rate of convergence of M �estimators� Let � � �
�� be a deterministic

process with parameter � in a set �� Suppose that we are interested in estimating a

maximum point �� of the function � � �
��� If � � �
�� is well approximated by a

stochastic process � � �n
��� a natural estimator would be a maximum point b�n of the

latter� that is� an M 
estimator with respect to the criterion process � � �n
���

In the case of i�i�d� data� those processes are typically given by �
�� � P 
��� and

�n
�� � Pn
���� where f�� � � � �g is a given class of elements of L�
P � indexed by ��

When the data is a sample from a density p� with respect to a measure on 
E� E�� the
maximum likelihood estimator is an M 
estimator for �� � log p�� On the other hand�

when E � � � R� if we set �� � ����a���a� for a constant a � 	� then the maximum point

�� of � � �
�� � P 
�� � a� � � a�� is something like a mode of the unknown distribution

P �

Such M 
estimation procedures allowing 
�� d� to be a general metric space have been

studied in recent years� A general approach to derive the rate of convergence requires

the following 
see Theorem ����� of van der Vaart and Wellner 
����� for the details� a

version of the theorem� with some modi�cations� is given also in this monograph� namely

Theorem �������

�
��� �
��� � �d
�� ���� in a neighborhood of ���
������
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E� sup
d��������

j
�n � ��
��� 
�n � ��
���j � �n
�� for small � � 	�
������

Here� � � �n
�� is an appropriate non
decreasing function� When we have checked

those conditions� by choosing some constants rn � 	 which satisfy �n
r��n � � r��n � we

can conclude that rnd
b�n� ��� � OP �
�� for M 
estimators b�n � argmax��	 �n
��� The

crucial point of this approach is how to get a moment inequality for the residual processes

� � 
�n � ��
�� as in 
������� In the case of i�i�d� data mentioned above� the residual


�n� ��
�� equals 
Pn�P �
���� and the function �n
�� is typically of the form �n
�� �

n����	
�� for a function � � 	
�� not depending on n� the function 	
�� � � leads to the

standard rate rn � n���� while 	
�� �
p
� does to the �cube root asymptotics rn � n��
�

It should be noted� however� that this method possesses a good potential to be applied in

much broader situations� As a matter of fact� some authors have already taken this kind

of approach in non
i�i�d� settings� for instance regression models� but most of them are

based on some maximal inequalities for i�i�d� empirical processes� With this aim in mind�

we develop moment inequalities to obtain a bound 
������ when the residual 
�n� ��
��

is the terminal variable of a martingale� �

To handle martingales� we introduce a quantity called �quadratic modulus in Chap


ter �� which plays a key role in this work� For the sake of intuitive explanation� let us

recall Ossiander�s central limit theorem for i�i�d� sequences under the entropy condition

for L�
bracketing� and next see how to generalize it to a dependent case� the idea of the

quantity naturally appears there�

Let 
E� E� be a measurable space� Let fZigi�N be a sequence of E
valued i�i�d� random

variables with the common law P � Let � be a subset of L�
P � with an envelope function

belonging to L�
P �� For every 
 � 
	� �� choose N

� pairs of elements of L�
P �� namely�

�l��k � u��k�� k � �� ���� N

�� such that for every � � � the relation l��k � � � u��k holds

for some k and that sZ
E

ju��k
z�� l��k
z�j�P 
dz� � 
�
������

Ossiander�s theorem says that if this bracketing procedure can be accomplished withZ �

�

p
logN

�d
 ���
������

then the sequence of stochastic processes � � Xn
�� de�ned by

Xn
�� �
p
n
Pn� P �
��

�
�p
n

nX
i��

�
�
Zi��

Z
E

�
z�P 
dz�

�
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converges weakly in ��
�� to a Brownian bridge indexed by ��

Now� let fZigi�N be an arbitrary sequence of E
valued random variables� and denote

by Pi the conditional law of Zi given Fi�� � �fZ�� ���� Zi��g 
F� is the null �
�eld�� We

are interested in the sequence of stochastic processes � � Xn
�� de�ned by

Xn
�� �
�p
n

nX
i��

�
�
Zi��

Z
E

�
z�Pi
dz�

�
�

Consider the bracketing procedure as above with 
������ replaced bysZ
E

ju��k
z�� l��k
z�j�Pi
dz� � Ki
 almost surely�

where Ki is a random variable� not depending on 
 and k� that is Fi��
measurable� since

the left hand side is random in the present case� we have allowed the random coe�cient

Ki in the right hand side� Then� a result given in Chapter � 
Theorem ����� or ������ says

that if the entropy condition 
������ is satis�ed and if the sequence of random variables

K
n
de�ned by

K
n
�

vuut �

n

nX
i��

jKij�

is bounded in probability� then the asymptotic tightness of the processes � � Xn
��

follows from the �nite
dimensional convergence and a Lindeberg condition on an envelope

function of �� Ossiander�s theorem can be thought as the case of Pi � P and Ki � ��

Some quantities �quadratic modulus � which we will de�ne for three kinds of martingales

in Chapter �� have the same spirit as the random variablesK
n
� a closer explanationmight

be that

�quadratic modulus � sup
�������

max
��k�N���

q
n��

Pn
i��

R
E
ju��k
z�� l��k
z�j�Pi
dz�



�

Since this random variable depends awkwardly on the choice of the brackets� and more


over since we will treat also random weight functions� we will actually de�ne the quan


tities in a slightly di�erent way based on a series of �nite partitions of �� avoiding the

explicit construction of pairs �l��k� u��k� in the de�nition of brackets�

The entropy methods were at �rst recognized to be useful to statisticians chie!y

through e�orts to seek for sharper and"or more general versions of uniform laws of

large numbers and central limit theorems for empirical processes especially in multi


dimensional cases� However� some recent works have shown that a core part of them�

namely� chaining and bracketing techniques controlled in terms of entropies� can be
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applied also to other problems in statistics which are not directly connected to those

limit theorems� a good example is M 
estimation 
recall Theme ��� From our point of

view� an important advantage of the methods is that some of the techniques work well

also for the dependent case above on the set fKn � Lg for a given constant L � 	�

Hence� some problems of statistical inference for stochastic processes can be solved by

handling some truncations such that the complements like fKn
� Lg are asymptotically

negligible for a �xed� large constant L� This is the basic outline of the approach which

we frequently take in this work�

Chapters � and � are concerned with some abstract martingales� while the remaining

chapters deal with concrete models in statistics� To be more precise� the stochastic

processes treated in the former chapters are some classes 
X�j� � �� of martingales�

indexed by an arbitrary set �� in the sense that each coordinate process t � X�
t for

every � is an R
valued martingale� We consider the following three situations� 
i� each

coordinate process t� X�
t is represented as a stochastic integral� namely�

X�
t � W� � 

 � ��t

�

Z
���t��E

W�
�� s� z�


�� ds� dz� � �
�� ds� dz���

where W� � W�
�� t� z� is a predictable function on # � R� � E� 
 is an E
valued

multivariate point process� and � is the predictable compensator of 
� 
ii� each process

t� X�
t is a partial sum process of a discrete time martingale� namely�

X�
t �

�tX
i��

��i �

where f��i gi�N is a discrete time martingale and 
�t�t�R� is an increasing family of �nite

stopping times� 
iii� each process t � X�
t is a continuous local martingale� There

are three reasons why we choose the martingales as the objects of our study� First�

the Bernstein inequality� which is a basic tool in the i�i�d� case� is already provided

also in the framework of martingales with the modi�cation that a truncation based on

the predictable quadratic variation is introduced 
Lemma ������� The second reason is

that we can take advantage of the well
developed martingale central limit theorems to

establish the �nite
dimensional convergence in our situation� Last� but not least� the

martingale is a vital concept in analyzing a rich class of statistical models� including

the multiplicative intensity model for survival data� Markov chains� the Gaussian white

noise model� and di�usion processes derived from stochastic di�erential equations�

The organization of the monograph is as follows� In Chapter �� we introduce the

quantities �quadratic modulus and �exponential modulus for the three kinds of mar
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tingales above� and establish maximal inequalities� namely� some bounds for

E sup
t

sup
�����

jX�
t �X�

t j�B

with the truncation by the set B in terms of the modulus� Those inequalities are not

asymptotic estimates� and are applied not only for the proofs of weak convergence the


orems in Chapter � but also as a crucial tool to derive the rate of convergence of M 


estimators in Chapters � and �� As for the case 
iii� of continuous local martingales� we

study also the continuity of the sample paths along the direction of parameter � � X�
t �

Chapter � is devoted to weak convergence theorems for the three kinds of martin


gales� An essential part of the proofs is the asymptotic tightness� which is established by

using the maximal inequalities in Chapter �� As we have mentioned above� the su�cient

condition that we present is that the quadratic modulus is bounded in probability and

that an entropy condition of the type 
������ is satis�ed� In particular� natural gener


alizations of Jain
Marcus� and Ossiander�s central limit theorems are presented� The

entropy condition for the cases 
i� and 
ii� above is analogous to that for L�
bracketing�

while the case 
iii� is based on the metric entropy condition without bracketing� The

results of this chapter are repeatedly applied to derive the asymptotic distribution of

estimators in the subsequent chapters�

Some results concerning Theme � are given in Chapter �� We consider the multiplica


tive intensity model for point processes with general marks� and derive the asymptotic

normality and e�ciency in ��
spaces of a generalized Nelson
Aalen estimator� An inter


esting di�erence from the i�i�d� case� where the L�
bracketing condition is optimal� is that

an Lp
bracketing condition with p � ����� is sometimes preferable� this fact is valid also

for other problems in this monograph� and the multiplicative intensity model provides a

good illustration� We also study two non
linear models� of continuous semimartingales

and of counting processes� both with time
dependent covariates�

Theme �� the M 
estimation procedure� is studied in Chapters � and Chapter � stress


ing non
standard rates of convergence� First� in Section ���� we present a general criterion

for rate of convergence� A di�erence from known results in this area is that a kind of

�twice di�erentiability of criterion functions is generalized to a �p
times di�erentiabil


ity � that is� �d
�� ���
� appearing in 
������ is replaced by �d
�� ���

p � Sections ��� and

��� are concerned with some estimation problems of Euclidean parameters in the Gaus


sian white noise model and the multiplicative intensity model� respectively� Jump point

estimation� among other things� is considered in those models�

Chapter � is devoted to the study of rate of convergence of non
parametric maximum

likelihood estimators� The models considered there are the Gaussian white noise model�
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the multiplicative intensity model� a counting process model with non
linear covariates�

and the di�usion type processes� The third model above contains a discussion about the

Lexis diagram� which is important in the context of survival analysis�

The last chapter contains three independent topics� Since the setups of these problems

are simple� this chapter� as well as Section ���� perhaps gives a guideline of the usage of

the weak convergence theorems in Chapter �� Except for Subsection ������ we do not use

any results presented in Chapters �� � and �� In Section ���� we study the asymptotics

of local random �elds of kernel type estimators� The results are applied to the problem

of estimating the mode of a density function� we derive the asymptotic behavior of an

estimator de�ned as the argmax of kernel density estimator by using also the general

theorem for M 
estimators presented in Section ���� Section ��� is devoted to deriving

the asymptotic behavior of log
likelihood ratio random �elds in a general discrete
time

statistical experiment with abstract parameters� An application to Markov chains is also

discussed� In Section ���� we study a testing problem for a non
parametric regression

model with dependent noise�

��� General Notations and Remarks


�� R � 
������ R� � �	���� N � f�� �� ���g� N� � f	g � N� Z � fintegersg�
Q � frational numbersg�


�� We denote by j 	 j the Euclidean norm� even in the multi
dimensional case� We

denote by Leb
B� the Lebesgue measure of a Borel measurable subset B of a

Euclidean space�


�� The inequality �x � y 
x� y � �	���� means that there exists a universal constant

C � 	 such that x � Cy�


�� ��
�� denotes the set of all bounded functions de�ned on a set �� We denote by

k 	 k� the supremum
norm on ��
���


�� For every p � ������ we denote by Lp
E� E � �� the set of all p
integrable functions

de�ned on a measure space 
E� E � �� 
when p � �� it means the set of all �


essentially bounded functions�� and by Lp
E� E � �� the equivalent classes of elements

of Lp
E� E � ��� These are often abbreviated to Lp and Lp� respectively� This kind

of notational abbreviations of spaces are given section
wisely�


�� Card
�� denotes the number of the elements of a set �� allowing��
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�� Diam
�� �� denotes the diameter of a set � with respect to a semimetric ��


�� When a semimetric space 
S� �� is given� we denote by B�S���
x� 
� the closed ball

with center x � S and �
radius 
 � 	� when there is no danger of confusion� it is

sometimes denoted by B�
x� 
� or even by B
x� 
�� This notational abbreviation is

also given section
wisely�


�� When a semimetric space 
S� �� and a subset � of S are given� we denote by

N
�� �� 
� the minimum number of closed balls with �
radius 
 � 	 which cover ��

allowing�� The centers of the balls need not belong to ��


�	� Let S be a linear space of R
valued functions � de�ned on a set� and let a seminorm

k	k on S be given� For a given pair l� u � S� we denote �l� u� � f� � S � l � � � ug�
Such �l� u� is called a 
k 	 k� 
�
bracket in S if ku� lk � 
� For a given class � 
 S�
the bracketing number N� �
�� k 	 k� 
� is the minimum number of 
k 	 k� 
�
brackets
which cover �� that is� the smallestN � N�f�g such that� there exists lk� uk � S�
k � �� ���� N � such that � 
 SN

k���l
k� uk� and that kuk � lkk � 
 for all k�


��� Let ��H � 	 be given� and denote by � the greatest integer strictly smaller than

�� Let a bounded� convex subset E in Rd with nonempty interior Ei be given�

We denote by C	
H
E� the set of all continuous functions f � E � R such that

kfk	 � H� where

kfk	 � max
k��	

sup
x�Ei

jDkf
x�j �max
k��	

sup
x�y�Ei

x��y

jDkf
x��Dkf
y�j
jx� yj	�	

with the notations k� �
Pd

i�� ki and

Dk �
�k�

�xk�� 	 	 	 �xkdd
for every vector k � 
k�� ���� kd� of d non
negative integers� It is well
known that

there exists a constant K � 	 depending only on � and d such that

logN
C	
H
E�� k 	 k�� 
� � K 	 Leb
E��

�
H




�d�	

�
 � 	�

where E� � fx � jx � Ej � �g 
see� e�g�� Theorem ����� of van der Vaart and

Wellner 
�������


��� A random semimetric � on a set T is a collection f�
�� 	� 	� � � � #g of semimetric

on T indexed by a probability space 
#�F � P �� although we do not require any

measurability� We often denote a random semimetric by � and a 
non
random�

semimetric by ��
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��� The words increasing and decreasingmean �non
decreasing and �non
increasing �

respectively 
the situation where we should use the words strictly increasing or

strictly decreasing does not appear in the monograph��


��� We follow the standard de�nitions and notations of the martingale theory� which

can be found in the book by Jacod and Shiryaev 
������


��� We refer to Part � of van der Vaart and Wellner 
����� for the weak convergence

theory which does not require the measurability of random sequences� In particular�

see their Chapter ��� for the de�nitions of the notations E�� E�� P � and P� that

mean the outer integral� inner integral� outer probability and inner probability�

respectively� Let 
X � d� be a metric space� and for every n � N let Xn be a

mapping from a probability space 
#n�Fn� P n� to X � We denote by �Xn Pn

�
 X

in X  the weak convergence of Xn to a tight� Borel measurable random element

X taking values in X � by �Xn Pn��� c the convergence in P n�
probability to a

non
random element c of X � by �Xn Pn�� c the convergence in P n
probability 
in

this case Xn is assumed to be Borel measurable��



Chapter �

Maximal Inequalities

��� Preliminaries

This chapter is devoted to getting some bounds for expectation of supremum of mar


tingales up to a universal constant� throughout we use the notation �� given in 
�� of

Section ���� The present section prepares two things� namely� quotation of two known

inequalities which are used in Sections ���� ��� and ���� and introduction of two de�ni


tions which are necessary to formulate a quantity �quadratic modulus in Sections ���

and ���� Thus� readers who are interested only in continuous local martingales studied

in Section ��� may skip the latter�

First� let us state two lemmas which are well
known� The �rst one is the Bernstein

inequality for martingales with bounded jumps� see e�g� Section ���� of Liptser and

Shiryaev 
����� for the proof� The second one� which is used in connection with the

former� is an adaptation of Lemma �����	 of van der Vaart and Wellner 
������

Lemma ����� Let t� Xt be an R�valued� locally square�integrable martingale such that

X� � 	 and that j$Xj � a for a constant a � 	� and � a bounded stopping time� Then�

it holds that for every � � 	

P

�
sup
t����
 �

jXtj � 
� hX�Xi
 � �

�
� � exp

�
� 
�

�
a
� ��

�
�
 � 	�

Lemma ����� Let N � N and let X�� ���� XN be arbitrary R�valued random variables�

Assume that for a measurable set B and some constants a � 	 and � � 	

P 
jXij � 
� B� � � exp

�
� 
�

�
a
� ��

�
�
 � 	� �i � �� ���� N�

Then� it holds that

E max
��i�N

jXij�B � a log
� �N� �
p

� log
� �N��

�	
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Combining these inequalities� we can easily get the following�

Corollary ����� Let N � N� Let t � Xt � 
X�
t � ���� X

N
t � be an RN �valued� locally

square�integrable martingale such that X i
� � 	 and that j$X ij � a for a constant a � 	�

and let � be a �nite stopping time� Then� for any constant K satisfying

a
p
log
� �N� � K�

it holds that

E sup
t����
 �

max
��i�j�N

jX i
t �Xj

t j�B � K
p
log
� �N�

where

B �

�
max

��i�j�N

p
hX i �Xj� X i �Xji
 � K

�
�

The purpose of this chapter is to study what happens in the case of �N � � � We

consider this problem for three kinds of martingales in Sections ���� ��� and ���� respec


tively�

Next� let us give two de�nitions for Sections ��� and ����

De
nition ����� Let 
X �A� �� be a ���nite measure space� For a given mapping Z �

X � R � f�g� we denote by �Z�A�� any A�measurable function U � X � R � f�g such

that�


i� U � Z holds identically	


ii� %U � U holds ��almost everywhere� for every A�measurable function %U such that
%U � Z holds ��almost everywhere�

The existence of such a random variable �Z�A�� and its uniqueness up to a �
negligible

set can be shown by using Lemma ����� of van der Vaart and Wellner 
������

De
nition ����� Let � be an arbitrary set such that Card
�� ���

& � f&

�g��������� where $
 � 
	��� � Q� is called a Decreasing series of Finite

Partitions 
DFP� of � if it satis�es the following 
i�� 
ii� and 
iii��


i� each &

� � f�

� k� � � � k � N


�g is a �nite partition of �� that is� � �SN����
k�� �

� k� and �

� k�� ��

� k�� � � whenever k� �� k�	


ii� N

$
� � � and lim���N


� ��	


iii� N


� � N



�� whenever 
 � 
��

& � f&

�g������� �� where $
 � 
	��� � Q� is called a Nested series of Finite

Partitions 
NFP� of � if it satis�es the above 
i� and 
ii� and the following 
iii���


iii�� &

� is a re�nement of &

�� whenever 
 � 
��
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The 
�entropy H


� and the modi�ed 
�entropy %H


� of a DFP & are de�ned by�

H


� �
p

logN


��

%H


� �
p

log
� �N


���

Notice that any NFP is a DFP� Although the converse is not true� we can sometimes

construct a new NFP from a given DFP� due to Lemma ����� given later� without loss

of generality for our purpose� Notice also that for any DFP &Z �

�

%H


�d
 � �
p

log � �

Z �

�

H


�d
 �� � 
	�$
�

if the integral on the right hand side is �nite� in fact� it holds thatp
log
� �N� �

p
log �N �

p
log � �

p
logN �N � ��
������

��� Multivariate Point Processes

Let 
E� E� be a Blackwell space� and let B � 
#�F �F � 
Ft�t�R�� P � be a stochastic

basis� We put %# � # � R� � E and %P � P � E � where P is the predictable �
�eld on

# � R�� For a given predictable function W on %# and a given random measure 
 on

R� � E� we denote by W � 
 the integral process de�ned as the path
wise Lebesgue


Stieltjes integral� for every t � R��

W � 
t
�� �
� R

���t��E W 
�� s� x�

�� ds� dx� if
R
���t��E jW 
�� s� x�j

�� ds� dx� ���

� otherwise�


See Section II��a of Jacod and Shiryaev 
����� for the detail��

Let 
 be an E
valued multivariate point process� Let � be a �good version of

the predictable compensator of 
 
thus �
�� ftg � E� � ��� We introduce the Dol'eans

measure MP
� on 
%#� %P�� which is %P
�
�nite� given by

MP
� 
d�� dt� dx� � P 
d���
�� dt� dx�


See Section II��b� De�nition III����� and III����� of Jacod and Shiryaev 
�������

Let W � fW� � � � �g be a family of predictable functions on %# indexed by an

arbitrary set �� We give a de�nition� using the notation of De�nition ������ which plays

the key role in our context�

De
nition ����� The predictable envelope W of W � fW� � � � �g is de�ned by

W �

�
sup
���

jW�j
�
�P�MP

�

�
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For a given DFP & of �� the quadratic &�modulus kWk
 of W � fW� � � � �g is

de�ned as the �	����valued increasing process t� kWk
�t given by

kWk
�t � sup
��������	Q

max
��k�N����

pjW 
�

� k��j� � �t



�t � R��

where

W 
��� �

�
sup

������
jW� �W �j

�
�P�MP

�

��� 
 ��
������

For a given DFP & of � and a given constant a � 	� the exponential 
&� a��modulus

kWkEa
 of W � fW� � � � �g is de�ned as the �	����valued increasing process t �

kWkEa
�t given by

kWkEa
�t � sup
��������	Q

max
��k�N����

p

Ea
W 
�

� k���� � �t



�t � R��

where

Ea
x� �
�

�a� 
exp
a��x�� �� a��x� �x � �	����
� x ���


������

and W 
��� is de�ned by 
������ for every �� 
 ��

It is clear that there exist some increasing versions of t � kWk
�t and t � kWkEa
�t
uniquely up to a P 
negligible set� respectively� It holds that kWk
�t � kWkEa
�t almost

surely� since jxj� � Ea
x�� Notice also that all of W � kWk
 and kWkEa
 depend on F� P

and �� through %P and MP
� � One may �nd that the exponential modulus above is based

on the �Bernstein norm 
see ��� page of van der Vaart and Wellner 
����� for the i�i�d�

case� a discrete martingale version is contained in van de Geer 
�������

Lemma ����� For any DFP & of � such that
R ��

�
H


�d
 � �� there exists a NFP

&� such that�

$
� � $
�Z ���

�

H
�

�d
 � �

Z ��

�

H


�d
�Z ���

�

%H
�

�d
 � �

Z ��

�

%H


�d
�

kWk
� �t � kWk
�t �t � R��

Proof� For every 
 � 
	�$
�� let us de�ne

&�

� �
�

i��j�i
&
��j� if 
 � ���i� ��i��� � 
	�$
�� i � i��
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where i� � minfi � Z � ��i � $
g� Then� the constructed &� � f&�

�g�������� �
is a

NFP such that $
� � $
� Further� since N
�
�
�i� �Qi��j�iN

�

�j� we haveZ ���

�

H
�

�d
 �
�X
i�i�

��iH
�
�
�i�

�
�X
i�i�

��i
iX

j�i�

H

�
�j�

�
�X
j�i�

H

�
�j�

�X
i�j

��i

� �
�X
j�i�

��j��H

�
�j�

� �

Z ��

�

H


�d
�

The same argument is valid also for the modi�ed entropies� The last inequality is trivial

from the construction of &�� �

Supposing that there exists a version of W such that W � �t
�� � � for all � � #

and t � R�� let us de�ne the random variables X�
t and Xa��

t by

X�
t � W� � 

� ��t �t � R� �� � �
������

and

Xa��
t � W��fW�ag � 

� ��t �t � R� �� � � �a � 	�
������

respectively� Then� the process t � X�
t and the process t � Xa��

t is a locally square


integrable martingale on B� both of which have �nite variation� 
see Lemma I����	 and

Proposition II����� of Jacod and Shiryaev 
������� The following theorem gives some

maximal inequalities for these processes in terms of kWk
�

Theorem ����� Let 
 be an E�valued multivariate point process de�ned on a stochastic

basis B� and � a �good
 version of the predictable compensator of 
� Let W � fW� �

� � �g be a family of predictable functions on %#� indexed by an arbitrary set �� such

that W � �t
�� �� for all � � # and t � R� for a version of predictable envelope W of

W� Let � be a �nite stopping time� Then� we have the following 
i� and 
ii��


i� It holds for any NFP & of � and any constants � � 
	�$
� and K � 	 that

E� sup
t����
 �

sup
��k�N����
��������k�

jXa��
t �Xa��

t j�fkWk����Kg � K

Z �

�

%H


�d
�
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where the random variables Xa��
t are de�ned by 
������ with a � a
��K� � �K� %H

�����


ii� It holds for any DFP & of � and any constants K�L � 	 that

E� sup
t����
 �

sup
�����

jX�
t �X�

t j�fkWk����K� jW j	����Lg � K

Z ��

�

%H


�d
 �
L

$
K
�

where the random variables X�
t are de�ned by 
�������

Theorem ����� Consider the same situation as Theorem ������ It holds for any random

semimetric � on �� any NFP & of � and any constants � � 
	�$
� and K � 	 that

E� sup
t����
 �

sup
�����

��������

jXa��
t �Xa��

t j�fkWk����Kg	B � K

Z �

�

%H


�d
�

where

B �

	
� sup
�����

��������

phXa�� �Xa��� Xa�� �Xa��i

�

� K

�
�
������

and the random variables Xa��
t are de�ned by 
������ with a � a
��K� � �K� %H

�����

Proof of Theorem ����� 
i�� Fix any ��K � 	� we may assume � � Q without loss of

generality� For every integer p � 	� we set

ap � ��p���K� %H

�
�p�����

Next� choosing an element �p�k from each partitioning set �
��p�� k� such that

f�p�k � � � k � N

�
�p��g 
 f�p���k � � � k � N

�

��p�����g�

we de�ne for every � � ��
�p� � �p�k�
&p� � �
��p�� k��

if � � �
��p�� k��

For every integer q � �� we introduce the stopping time

�q � inf

�
t � R� � �
�	� t� �E� �

j %H

�
�q����j�
��

� �

�
� ��

Since �
�	� � � � E� � � almost surely and lim���N


� � �� it holds that �q � � as

q �� almost surely� Hence it is enough to show that

E� sup
t����
q �

sup
���

jXa��
t �Xa�
��

t j�fkWk����Kg � K

Z �

�

%H


�d
 �q � ��
������
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where a � a
��K��

Let us now �x any integer q � �� and denote � � �q �there should be no danger of

confusion�� For every p � 	� �� ���� q� we consider the predictable functions W 
&p�� on %#

de�ned by 
������� Since & � f&

�g������� � is nested� it follows from De�nition �����

that

�W �W 
&��� � W 
&��� � 	 	 	 �W 
&q���
������

MP
� 
almost everywhere� De�ning the values on the exceptional sets as zero� we can

choose some versions such that the above inequality holds identically� Notice also that

W 
&p�� � W 
&p�� holds identically� whenever �� � � �
��q�� k� for some k� Next� let

us introduce the following predictable functions on %#�

Ap
�� � �fW �
����a������W �
p�����ap���W �
p���apg� p � 	� �� ���� q�

Bp
�� � �fW �
����a������W �
p�����ap���W �
p���apg� p � �� ���� q�

B�
�� � �fW �
����a�g�

It is important that Ap
�� and Bp
�� depend on � only through the subsets &��� ����&p�

of �� Next observe the identity

W� �W 
�� � 
W� �W 
���B�
��
������

�

qX
p��


W� �W 
p��Bp
��

�
W� �W 
q��Aq
��

�

qX
p��


W 
p� �W 
p����Ap��
���

Since a� � �a
��K�� we have B�
�� � �fW�a���K�g� Hence we obtain

sup
t����
 �

sup
���

jXa���K���
t �X

a���K��
��
t j � 
I�� � 
I�� � 
II�� � 
II�� � 
III��

where


I�� � sup
���

qX
p��

W 
&p��Bp
�� � 

 �


I�� � sup
���

qX
p��

W 
&p��Bp
�� � �
 �


II�� � sup
���

W 
&q��Aq
�� � 

 �

II�� � sup

���
W 
&q��Aq
�� � �
 �


III� � sup
t����
 �

sup
���

qX
p��

��
W 
p� �W 
p����Ap��
�� � 

� ��t
�� �
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Further� it holds that 
I�� � 
I ��� � 
I�� where


I ��� � sup
���

qX
p��

jW 
&p��Bp
�� � 

� ��
 j �

and that 
II�� � 
II ��� � 
II�� where


II ��� � sup
���

jW 
&q��Aq
�� � 

� ��
 j �

Hereafter we will obtain bounds for the terms 
I ���� 
I��� 
II
�
��� 
II�� and 
III��

Estimation of 
I�� and 
II��� We can easily see that


I�� � sup
���

qX
p��

�

ap
jW 
&p��j�Bp
�� � �


� max
��p�q

sup
���

jW 
&p��j�Bp
�� � �

j��p�j� 	

qX
p��

j��p�j�
ap

� K

qX
p��

��p��� %H

�
�p���� on the set fkWk
�
 � Kg�

On the other hand� it follows from Schwarz�s inequality that


II�� � sup
���

q
jW 
&q��j� � �
 	

p
�
�	� � � �E�

� ��q�K 	
%H

�

�q����
�

�

Hence we have

Ej
I�� � 
II��j�fkWk����Kg � K

q��X
p��

��p��� %H

�
�p����

� �K

Z �

�

%H


�d
�

Estimation of 
I ���� 
II
�
�� and 
III�� Let us consider the term 
I ���� We will apply the

Bernstein inequality 
Lemma ������ to the processes

t� Mt � W 
&p��Bp
�� � 

� ��t�

It follows from

	 �W 
&p��Bp
�� �W 
&p����Bp
�� � ap��

that j$M j � ap��� it is also clear that

hM�Mi
 � jW 
&p��j�Bp
�� � �

� j��p�Kj� on the set fkWk
�
 � Kg�
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Thus we have

P

�
sup
t����
 �

jW 
&p��Bp
�� � 

� ��tj � 
� kWk
�
 � K

�

� � exp

�
� 
�

�
ap��
� j��p�Kj��
�

�
 � 	�

Hence it follows from Lemma ����� that

E sup
���

sup
t����
 �

jW 
&p��Bp
�� � 

� ��tj �fkWk����Kg

� ap��j %H

�
�p��j� � ��p�K %H

�

�p��

� �K 	 ��p� %H

�
�p���

where it should be noted that �sup��� appearing on the left hand side is actually

�max��k�N����p� � We therefore obtain

Ej
I ���j�fkWk����Kg � �K

qX
p��

��p� %H

�
�p��

� �K

Z �

�

%H


�d
�

Exactly the same calculation as for 
I ��� yields some bounds for 
II ��� and 
III�� which

lead to the inequality 
������� �

Proof of Theorem ����� 
ii�� Due to Lemma ������ it su�ces to show the assertion

in the case of & being a NFP� We extend the given NFP & � f&

�g������� � to & �

f&

�g�������� � where N


� � � for all 
 � �$
� �$
�� In order to apply the assertion


i� with � � �$
� we consider the truncated processes Xa��
t with a � a
�$
� K� �

�$
K�
p
log �� notice that

sup
t����
 �

sup
�����

jX�
t �X�

t j � sup
t����
 �

sup
�����

jXa��
t �Xa��

t j

��W�fW�ag � 

 � �W�fW�ag � �
 �

First we have

W�fW�ag � �
 � jW j� � �

a

� L

a
on the set fjW j� � �
 � Lg�

Next� let us introduce the predictable time

S � infft � R� � jW j� � �t � Lg�
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Take an announcing sequence fSng for S 
see I����� of Jacod and Shiryaev 
������� Since

	 � Sn � S almost surely on the set fS � 	g� it holds that jW j� � �Sn � L almost surely�

Thus it follows also from Doob�s stopping theorem that

EW�fW�ag � 
Sn
Tm � EW�fW�ag � �Sn
Tm
� EjW j� � �Sn
Tm

a
� L

a
�

where fTmg is a localizing sequence for the local martingale t� W�fW�ag � 

���t� By

letting n�m��� we obtain EW�fW�ag � 
S � L�a� The predictable time S appearing

in this inequality can be replaced by � on the set fjW j� � �
 � Lg�
Hence it follows from the assertion 
i� with � � �$
 that

E� sup
t����
 �

sup
�����

jX�
t �X�

t j�fkWk����K� jW j	����Lg

� K

Z ���

�

%H


�d
 � � 	 L

�$
K�
p
log �

� �

�
K

Z ��

�

%H


�d
 �
L

$
K

�
�

�

Proof of Theorem ������ We use the notations introduced in the �rst paragraph of the

proof of Theorem ����� 
p � 	 only�� Notice that

jXa��
t �Xa��

t j � jXa��
t �Xa�
��

t j� jXa��
t �Xa�
��

t j� jXa�
��
t �Xa�
��

t j
and thus

sup
��������

jXa��
t �Xa��

t j � � sup
��k�N����
��������k�

jXa��
t �Xa��

t j � sup
��������

jXa�
��
t �Xa�
��

t j�

The second term on the right hand side equals

max
��k��k	�N����

jXa�
��k�
t �X

a�
��k	
t j�Ak� �k	 �

where

Ak��k	 �

�
� � # � ��� � � � s�t�

�
��� � ���k�
��� � ���k	

�
and �
�� ��
�� � �

�
�

Here� notice that for every �� � � �

hXa�
�� �Xa�
��� Xa�
�� �Xa�
��i
 � �hXa�
�� �Xa��� Xa�
�� �Xa��i

��hXa�
�� �Xa��� Xa�
�� �Xa��i

��hXa�� �Xa��� Xa�� �Xa��i




�	 �� Maximal Inequalities

on the set fkWk
�
 � Kg � B� where B is given by 
������� Thus� for every k�� k� �

�� ���� N

�� and every � � fkWk
�
 � Kg � B � Ak��k	 � by choosing some appropriate

� � �
�� k�� k�� and � � �
�� k�� k��� we get

hXa�
��k� �Xa�
��k	 � Xa�
��k� �Xa�
��k	 i
 � ���K��

Thus it follows from Lemma ����� that

P

�
sup
t����
 �

jXa�
��k�
t �X

a�
��k	
t j�Ak� �k	 � 
� k�k
 � K

�
� � exp

�
� 
�

�
�a
� �K����

�
for every 
 � 	� Hence� we obtain from Lemma ����� that

E sup
t����
 �

sup
��������

jXa�
��
t �Xa�
��

t j�kWk����Kg	B

� �a log
� �N

��
�� � ��K

p
log
� �N

����

� �K�
log
� �N

���p
log
� �N

�����

� �
p
��K

p
log
� �N

����

This� together with 
i� of Theorem ������ yields the assertion� �

So far we have been concerned with the truncated processesXa�� � W��fW�ag�

���

except for 
ii� of Theorem ������� This means that the predictable functions of integrands

should be uniformly bounded� and this assumption is sometimes too strong� However� as

is explained in Chapter ��� of van der Vaart and Wellner� it can be replaced by a moment

assumption of exponential order 
see� in particular� their Lemmas ����� and ����� which

are concerned with the i�i�d� case�� the key tool for this purpose is the extended Bernstein

inequality 
e�g�� their Lemma �������� In our situation� we can make use of a martingale

version of the inequality given by van de Geer 
����b� Lemma ����� we will quote it as

Lemma ����� below� Let us begin with giving a version of Theorem ������

Lemma ����� Consider the same situation as Theorem ������ It holds for any NFP &

of � and any constants � � 
	�$
� and K � 	 that

E� sup
t����
 �

sup
��k�N����
��������k�

j
W� �W �� � 

� ��tj�fkWk����Kg

� K

Z �

�

%H


�d
 � E� sup
t����
 �

max
��k�N����

jW 
�
�� k�� � 

 � ��tj�fkWk����Kg


recall the notation W 
��� de�ned by 
������ for every �� 
 ���
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Proof� Recall the proof of 
i� of Theorem ������ it su�ces to consider the �rst term on

the right hand side of 
������� Notice that


W� �W 
���B�
�� � 

� ��t �W 
&���B�
�� � 

� ��t � �W 
&���B�
�� � �t�

The second term on the right hand side is bounded by

�

a�
jW 
&���j� � �
 �

%H

����

�K

�K�� on the set fkWk
�
 � Kg

� �K

Z ���

�

%H


�d
�

On the other hand� the �rst term is bounded by

jW 
&��� � 

� ��tj� jW 
&����fW �
����a�g � 

� ��tj�

and it follows from Corollary ����� that

E� sup
t����
 �

sup
���

jW 
&����fW �
����a�g � 

 � ��tj�fkWk����Kg � �K %H

���

The assertion follows from these inequalities� �

Thus the problem is how to manage the second term on the right hand side of Lemma

������ As we announced above� this can be solved by means of the following lemma that

is an easy consequence of Lemma ��� of van de Geer 
����b�� From now on� we will

assume that �
ftg � E� � 	 for every t � R� for simplicity�

Lemma ����	 Let 
 be an E�valued multivariate point process which has the predictable

compensator � such that �
�� ftg � E� � 	 for all � � # and t � R�� Let W

be a predictable function� and suppose that for a given constant a � 	 it holds that

exp
a��jW j� � �t
�� � � for all � � # and t � R�� Let � be a �nite stopping time�

Then� it holds for every � � 	

P

�
sup
t����
 �

jW � 

� ��tj � 
� 
Ea
jW j�� � �
 � �

�
� � exp

�
� 
�

�
a
� ��

�
�
 � 	�

Lemma ����� Consider the same situation as Theorem ������ For a given constant

a � 	� suppose also that for every � � # it holds that �
�� ftg � E� � 	 and that

exp
a��W � � �t
�� � � for all t � �	� �
���� Then� it holds that for any NFP & of �

and any constants � � 
	�$
� and K � 	 that

E� sup
t����
 �

sup
��k�N����
��������k�

j
W� �W �� � 

� ��tj�fkWk����Kg	B
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� K

Z �

�

%H


�d
 � a log
� �N

����

where

B �

�
max

��k�N����

p

E�a
W 
�
�� k���� � �


�
� K

�
�

Proof� Lemmas ����� and ����� yield that

E� sup
t����
 �

sup
���

jW 
�
�� k�� � 

� ��tj�B � �K %H

�� � a log
� �N

����

which implies the assertion� �

While the argument � in the above lemma is arbitrary� it sometimes su�ces to consider

a speci�c range of �� In the context of M 
estimation studied in Chapter �� we will use

it in the following form that is reasonably weak and simple� It should be noted that one

may get di�erent versions by going back to Lemmas ����� and ������ even removing the

assumption that �
�� ftg �E� � 	 is also possible�

Theorem ����
 Consider the same situation as Theorem ������ For a given constant

a � 	� suppose also that for every � � # it holds that �
�� ftg � E� � 	 and that

exp
a��W � � �t
�� �� for all t � �	� �
���� Let & be an arbitrary NFP of ��


i� For any constants � � 
	�$
� and K � 	 satisfying

a

Z �

�

%H


�d
 � K���
������

it holds that

E� sup
t����
 �

sup
��k�N����
��������k�

jX�
t �X�

t j�fkWkE	a����Kg
� K

Z �

�

%H


�d
�


ii� If a given random semimetric � on � satis�es thatp

E�a
jW� �W �j�� � �
 � �
�� �� ��� � � � P��almost surely�

then� for any constants � � 
	�$
� and K � 	 satisfying 
������� it holds that

E� sup
t����
 �

sup
�����

�������K�

jX�
t �X�

t j�fkWkE	a����Kg	fk�k��Kg
� K

Z �

�

%H


�d
�

where

k�k
 � sup
��������

max
��k�N����

sup
��������k�

�
�� ��



�
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Proof� The second term of Lemma ����� is bounded by a���
���R �� %H


�d


����� which is

bounded by K
R �
�

%H


�d
 whenever a���
R �
�
%H


�d
 � K� Thus we have obtained the

�rst assertion�

For the proof of the second assertion� we use the notations introduced in the �rst

paragraph of the proof of Theorem ����� 
p � 	 only�� The method of the proof is quite

similar to that of Theorem ������ Notice that

jX�
t �X�

t j � jX�
t �X
��

t j� jX�
t �X
��

t j� jX
��
t �X
��

t j
and thus

sup
�������K�

jX�
t �X�

t j � � sup
��k�N����

��������k�

jX�
t �X�

t j� sup
�������K�

jX
��
t �X
��

t j�

The second term on the right hand side equals

max
��k��k	�N����

jX
��k�
t �X


��k	
t j�Ak� �k	 �

where

Ak��k	 �

�
� � # � ��� � � � s�t�

�
��� � ���k�
��� � ���k	

�
and �
�� ��
�� � K�

�
�

Here notice that for every �� � � �p

E�a
jW 
�� �W 
��j�� � �
 � �
���� ����

� �
���� �� � �
���� �� � �
�� ��

� �K� � �
�� ��

on the set fk�k
 � Kg� Thus� for every k�� k� � �� ���� N

��� and every � � fk�k
 �
Kg �Ak� �k	 � by choosing some appropriate � � �
k�� k�� �� and � � �
k�� k�� ��� we can

get p

E�a
jW 
��k� �W 
��k	 j�� � �
 � �K��

Thus Lemma ����� yields that

P �
�

sup
t����
 �

jX
��k�
t �X


��k	
t j�Ak��k	 � 
� k�k
 � K

�
� � exp

�
� 
�

�
�a
� �K����

�
for every 
 � 	� Hence it follows from Corollary ����� that

E� sup
t����
 �

sup
�������K�

jX
��
t �X
��

t j�fk�k��Kg

� �a log
� �N

��
�� � �K�

p
log
� �N

����

� �a log
� �N

��� � �
p
�K�

p
log
� �N

����

This� together with the �rst assertion of the theorem� yields the second� �



�� �� Maximal Inequalities

��� Martingale Di�erence Arrays

Let a discrete
time stochastic basis B � 
#�F �F� P � be given� where 
#�F � P � is a

probability space and F � fFigi�N� is an increasing sequence of sub
�
�elds of F indexed

by N� � f	g � N� Let � be an arbitrary set�

De
nition ����� f�igi�N � f
��i j� � ��gi�N is called an ��
���valued martingale dif�

ference array on B if�


i� �i is a mapping from # to ��
�� for every i � N	

ii� f��i gi�N is an R�valued martingale di�erence array on B for every � � ��

It is required in 
ii� that ��i is Fi
measurable and Ei���
�
i � 	 almost surely� for every

� � �� where Ei�� denotes the Fi��
conditional expectation� the exceptional sets may

depend on �� Notice also that we do not require any measurability of the ��
��
valued

random element �i�

Based on the notation of De�nition ������ we make the following de�nition�

De
nition ����� The adapted envelope f�igi�N of f�igi�N is de�ned by

�i �

�
sup
���

j��i j
�
Fi�P

�i � N�

For a given DFP & of �� the quadratic &�modulus k�k
 of f�igi�N is de�ned as the

R� � f�g�valued increasing process fk�k
�igi�N given by

k�k
�i � sup
��������	Q

max
��k�N����

qPi
j��Ej��j�j
�

� k��j�



�i � N�

where

�i
�
�� �

�
sup

������
j��i � ��i j

�
Fi�P

�i � N ��� 
 ��
������

For a given DFP & of � and a given constant a � 	� the exponential 
&� a��modulus

k�kEa
 of f�igi�N is de�ned as the �	����valued increasing process fk�kEa
�igi�N given by

k�kEa
�i � sup
��������	Q

max
��k�N����

qPi
j��Ej��Ea
�j
�

� k���



�i � N�

where Ea
x� is de�ned by 
������ and �i
�
�� is de�ned by 
������ for every �� 
 ��

Theorem ����� Let f�igi�N be an ��
���valued martingale di�erence array� and let �

be a �nite stopping time� both of which are de�ned on a discrete�time stochastic basis B�

Then� we have the following 
i� and 
ii��
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i� For any NFP & of � and any constants � � 
	�$
� and K � 	�

E� max
��m��

sup
��k�N����
��������k�

�����
mX
i��


�a��i � �a��i �

������fk�k����Kg � K

Z �

�

%H


�d
�

where �a��i � ��i �f�i�ag with a � a
��K� � �K� %H

�����


ii� For any DFP & of � and any constants K�L � 	�

E� max
��m��

sup
�����

�����
mX
i��


��i � ��i �

����� �fk�k����K� P�
� Ei��j�ij	�Lg � K

Z ��

�

%H


�d
 �
L

$
K
�

The result above is similar to Theorem ������ although the proof needs a careful discussion

about the choice of versions of conditional expectations� It gives us the analogue of

Theorem ������

Theorem ����� Consider the same situation as Theorem ������ It holds for any random

semimetric � on �� any NFP & of � and any constants � � 
	�$
� and K � 	 that

E� max
��m��

sup
��k�N����
��������k�

�����
mX
i��


�a��i � �a��i �

����� �fk�k����Kg	B � K

Z �

�

%H


�d
�

where

B �

	
� sup
�����

��������

qP�
i��Ei��j�a��i � �a��i j�

�
� K

�
�
������

and where �a��i � ��i �f�i�ag with a � a
��K� � �K� %H

�����

Proof of Theorem ������ Fix any ��K � 	� and de�ne ap� �p and &p for every integer

p � 	 in the same way as the �rst paragraph of the proof of Theorem ����� 
i�� For every

integer q � � we introduce the �nite stopping time

�q � inf

�
i � N � i �

j %H

�
�q����j�
��

� �

�
� ��

Then� we have �q � � as q � � almost surely� Hence it is enough for getting the

assertion 
i� to show that

E� max
��m��q

sup
���

�����
mX
i��


�a��i � �a�
��i �

����� �fk�k����Kg � K

Z �

�

%H


�d
 �q � ��
������

where a � a
��K��
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Let us now �x any integer q � �� and choose some appropriate versions of �i and

�i
&p��� p � 	� �� ���� q 
recall the argument about 
�������� We de�ne�

Ai�p
�� � �f�i�
����a�������i�
p�����ap����i�
p���apg� p � 	� �� ���� q�

Bi�p
�� � �f�i�
����a�������i�
p�����ap����i�
p���apg� p � �� ���� q�

Bi��
�� � �f�i�
����a�g�

Next observe the identity

��i � �
��i � 
��i � �
��i �Bi��
��

�

qX
p��


��i � �

p�
i �Bi�p
��

�
��i � �

q�
i �Ai�q
��

�

qX
p��


�

p�
i � �


p���
i �Ai�p��
���

Taking the Fi��
conditional expectations of all terms� we obtain


	 �� Ei���
�
i � Ei���


��
i � Ei��
�

�
i � �
��i �Bi��
��
������

�

qX
p��

Ei��
�
�
i � �


p�
i �Bi�p
��

�Ei��
�
�
i � �


q�
i �Ai�q
��

�

qX
p��

Ei��
�

p�
i � �


p���
i �Ai�p��
���

almost surely� Further� it holds that

jEi��
�
�
i � �
��i �Bi��
��j � Ei���i
&���Bi��
��
������

almost surely� and that

jEi��
�
�
i � �


p�
i �Bi�p
��j � Ei���i
&p��Bi�p
�� � ap��� p � �� ���� q�
������

almost surely� and that

jEi��
�

p�
i � �


p���
i �Ai�p��
��j � ap��
������

almost surely� Here we choose versions of conditional expectations as follows� �rst

choose some versions of the terms Ei���i
&p
���Bi�p
�� of 
������ and 
������� which

are non
negative and ful�ll the second inequalities of 
������� identically� next� on the
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exceptional sets of 
������� 
������� 
������ and 
������� we de�ne the values of all other

conditional expectations as zero� Then� the values of Ei���i
&p��Bi�p
�� and Ei��
�

p�
i �

�

p���
i �Ai�p��
�� depend on � only through &��� ����&p� and �p���� �p�� respectively�

while 
������� 
������� 
������ and 
������ hold identically for all � � ��

Since a� � ��K %H

���� we have Bi��
���f�i�a���K�g � 	� This implies that

E�
�
sup
���

���Ei��
�
�
i � �
��i �Bi��
��

��� �f�i�a���K�g

�
� E

�
sup
���

jEi���i
&���Bi��
��j �f�i�a���K�g

�
since 
������ holds identically

� �E
�
�iBi��
���f�i�a���K�g

�
� 	�

and thus

sup
���

���Ei��
�
�
i � �
��i �Bi��
��

��� �f�i�a���K�g � 	

almost surely� Hence we obtain

max
��m��q

sup
���

�����
mX
i��


�a��i � �a�
��i �

����� � 
I ��� � �
I�� � 
II ��� � �
II�� � 
III��

where


I ��� � sup
���

qX
p��

�����
�qX
i��

f�i
&p��Bi�p
�� � Ei���i
&p��Bi�p
��g
����� �


I�� � sup
���

qX
p��

�qX
i��

Ei���i
&p��Bi�p
���


II ��� � sup
���

�����
�qX
i��

f�i
&q��Ai�q
�� � Ei���i
&q��Ai�q
��g
����� �


II�� � sup
���

�pX
i��

Ei���i
&q��Ai�q
���


III� � max
��m��q

sup
���

qX
p��

�����
mX
i��

n

�


p�
i � �


p���
i �Ai�p��
��

�
mX
i��

Ei��
�

p�
i � �


p���
i �Ai�p��
��

o����� �
almost surely� To get 
������� we can deal with terms 
I ���� 
I��� 
II

�
��� 
II�� and 
III�

exactly in the same way as those of the proof of Theorem ����� 
i��
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The assertion 
ii� can be proved in the same way as that of Theorem ������ paying

attention to the choice of conditional expectations� introduce a continuous
time stochas


tic basis and repeat the argument with an announcing sequence 
see page �� and I�����

of Jacod and Shiryaev 
������� �

Proof of Theorem ������ The result follows from the same argument as Theorem ������

�

When a maximal inequality not for the truncated �a��i �s but for the original ��i �s is

needed� one may follow exactly the same discussion as Lemmas ������ ����� and Theorem

������ replacing Lemma ����� by the following version of the extended Bernstein inequality

due to van de Geer 
����b��

Lemma ����� Let � � f�igi�N� be an R�valued martingale di�erence array on a discrete

stochastic basis B� Suppose that for a given constant a � 	 it holds that E exp
a��j�ij� �
� for every i � N� Let � be a �nite stopping time on B� Then� it holds for every � � 	

P

�
max
��m��

�����
mX
i��

�i

����� � 
�
�X
i��

Ei��Ea
j�ij�� � �

�
� � exp

�
� 
�

�
a
� ��

�
�
 � 	�

We state here the analogue of Theorem ����� only�

Theorem ����	 Let f�igi�N be an ��
���valued martingale di�erence array and let �

be a �nite stopping time both of which de�ned on a discrete�time stochastic basis B�

Suppose also that for a given constant a � 	 it holds that E exp
a���i� � � for every

i � N� Let & be an arbitrary NFP of ��


i� For any constants � � 
	�$
� and K � 	 satisfying

a

Z �

�

%H


�d
 � K���
������

it holds that

E� max
��m��

sup
�����

��������

�����
mX
i��


��i � ��i �

����� �fk�kE	a����Kg
� K

Z �

�

%H


�d
�


ii� If a given semimetric � on � satis�es thatvuut �X
i��

Ei��E�a
j��i � ��i j� � �
�� �� ��� � � � P��almost surely�



���� Continuous Local Martingales ��

then� for any constant � � 
	�$
� and K � 	 satisfying 
������� it holds that

E� max
��m��

sup
�����

�������K�

�����
mX
i��


��i � ��i �

����� �fk�kE	a����Kg	fk�k��Kg
� K

Z �

�

%H


�d
�

where

k�k
 � sup
��������

max
��k�N����

sup
��������k�

�
�� ��



�

��� Continuous Local Martingales

Let B � 
#�F �F � 
Ft�t�R�� P � be a stochastic basis and 
�� �� a proper metric space�

Let X � 
X�j� � �� be a family of continuous local martingales de�ned on B indexed

by �� We introduce a kind of �quadratic modulus which �ts in this situation�

De
nition ����� A quadratic ��modulus kXk� of a family X � 
X�j� � �� of contin�

uous local martingales is de�ned as a �	����valued stochastic process t � kXk��t given
by

kXk��t � sup
�����
� ���

phX� �X�� X� �X�it
�
�� ��

�t � R��

Since the set � is not necessarily countable� the random element kXk��t may not have

any measurability� Moreover� although the predictable covariation hX�� X�i is uniquely
determined up to a negligible set for every pair �� � � �� due to the same reason the

quadratic �
modulus of X may not be unique even in the almost sure sense� However�

we do not require its uniqueness because the assertion of the following theorem is valid

for any choice of quadratic �
modulus of X�

Theorem ����� Let 
�� �� be a totally bounded metric space� Let X � 
X�j� � �� be

a family of continuous local martingales indexed by � such that X�
� � 	� and � a �nite

stopping time� both of which are de�ned on a stochastic basis B�

Then� for any choice of quadratic ��modulus kXk� of X� it holds that for every

��K � 	

sup
����

countable

E� sup
t����
 �

sup
������

��������

jX�
t �X�

t j�fkXk����Kg � K

Z �

�

p
log
� �N
�� �� 
��d
�

provided the integral on the right hand side is �nite 
the �rst supremum is taken over all

countable subsets �� of ���
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Proof� Fix any countable subset �� of �� Let f�mgm�N be a sequence of �nite subsets

of �� such that �m � �� as m � �� For every m � N and p � Z� let us denote by

q
m� p� the smallest integer such that q
m� p� � p and that each of closed balls with

centers in �m and �
radius � 	 ��q�m�p� contains exactly one point in �m� Then it is clear

that Card
�m� � N
�� �� ��q�m�p���

Next let us introduce some mappings �m�p
r � �m � �m�p

r � p � r � q
m� p�� de�ned by

�m�p
r � �m�p

r � �m�p
r�� � 	 	 	 � �m�p

q�m�p��

where the sets �m�p
r 
 �m and the mappings �m�p

r � �m � �m�p
r should be speci�ed in

the following way� For p � r � q
m� p�� choose �m�p
r and de�ne �m�p

r which satisfy the

following two conditions� 
i� Card
�m�p
r � � N
�� �� ��r�� 
ii� �
�� �m�p

r 
��� � � 	 ��r for
every � � �m� For r � q
m� p�� put �m�p

q�m�p� � �m and denote by �m�p
q�m�p� the identity

mapping on �m�

In term of the mappings �m�p
r which have been introduced� we consider the chaining

given as follows� for every t � R� and �� � � �m

jX�
t �X�

t j � 
I� � 
II�

where the terms on the right hand side are given by�


I� �

q�m�p�X
r�p��

jX
m�p
r ���

t �X

m�p
r�����

t j�
q�m�p�X
r�p��

jX
m�p
r ���

t �X

m�p
r�����

t j�


II� � jX
m�p
p ���

t �X

m�p
p ���

t j�

First let us consider the term 
I�� It follows from Lemma ����� that for every 
� T � 	

P

�
sup

t����

T �
jX
m�p

r ���
t �X


m�p
r�����

t j � 
� kXk��
 � K

�
� � exp

�
� 
�

� 	 ���r��K�

�
�

and by letting T � � we can replace �� � T by �� on the left hand side� Thus we

obtain from Lemma ����� that

E sup
���m

sup
t����
 �

jX
m�p
r ���

t �X

m�p
r�����

t j�fkXk����Kg � ��rK
p

log
� �N
�� �� ��r���

Next let us consider the term 
II�� Notice that

�
�m�p
p 
��� �m�p

p 
���

�
q�m�p�X
r�p��

�
�m�p
r 
��� �m�p

r��
��� �
q�m�p�X
r�p��

�
�m�p
r 
��� �m�p

r��
��� � �
�� ��



���� Continuous Local Martingales ��

and the right hand side is not bigger than �� 	 ��p whenever �
�� �� � ��p� Hence it

follows from Lemmas ����� and ����� that

E sup
�����m

�������	�p

sup
t����
 �

jX

m�p
p ���

t �X


m�p
p ���

t j�fkXk����Kg

� �� 	 ��pK
p
log
� �N
�� �� ��p��� � ��

p
� 	 ��pK

p
log
� �N
�� �� ��p���

To show the assertion of the theorem� for a given � � 	 choose p � Z such that

��p�� � � � ��p� Then� the estimates for the terms 
I� and 
II� yield that

E sup
�����m

��������

sup
t����
 �

jX�
t �X�

t j�fkXk����Kg

�

q�m�p�X
r�p

��rK
p

log
� �N
�� �� ��r�� � �K

Z ��

�

p
log
� �N
�� �� 
��d
�

The proof is accomplished by letting m��� �

One may sometimes encounter the question whether the paths � � X�

 and 
t� �� �

X�
t are continuous and"or bounded� Applying the result above� we can get two kinds of

answers to this problem� The �rst one is concerned with the case where � is countable�

Theorem ����� Consider the same situation as Theorem ������ Suppose also that � is

countable and that

P 
kXk��
 ��� � � and

Z �

�

p
logN
�� �� 
�d
 ���

Then� almost all paths of � � X�

 are uniformly ��continuous on �	 moreover� they

belong to ��
��� Furthermore� when � � 	 is a constant� almost all paths of 
t� �� �

X�
t are uniformly e��continuous on �	� � � � �� where e�

t� ��� 
s� ��� � jt � sj � �
�� ��	

moreover� they belong to ��
�	� � � ����

Proof� It follows from Theorem ����� that for every i � N there exists �i � 	 such that

E sup
t����
 �

sup
�����

��������i

jX�
t �X�

t j�fkXk����Kg � K 	 ��i�

Here� we set

Ai � f sup
��������i

sup
t����
 �

jX�
t �X�

t j � ��ig �i � N�

Then� since
P

i P 
Ai � fkXk��
 � Kg� � �� it follows from the Borel
Cantelli lemma

that P 
lim supiAi � fkXk��
 � Kg� � 	 for every K � 	� Noting
S

K�NfkXk��
 �



�� �� Maximal Inequalities

Kg � fkXk��
 � �g� we obtain that P 
lim supiAi� � 	� which implies the uniform

continuity� Since 
�� �� is totally bounded� almost all pathes are bounded� �

When � is uncountable� the following gives a su�cient condition for the existence of a

continuous version of � � X�

 �

Theorem ����� Consider the same situation as Theorem ������ Suppose also that it

holds for a choice of quadratic ��modulus kXk��
 of X that

P
�
�kXk��
 �F� �P ��

�
� � and

Z �

�

p
logN
�� �� 
�d
 ���

Then� there exists a family f eX
�� � � � �g of F
 �measurable random variables such thateX
�� � X�

 almost surely for every � � � and that almost all paths of � � eX
�� are

uniformly ��continuous	 moreover� they belong to ��
��� 
Such a process � � eX
�� is

called a ��continuous version of � � X�

 ��

Proof� Consider the F
 
measurable partition # �
S

K�N�f�g#
K� given by

#
K� �
n
�kXk��
 �F� �P � �K � �� K�

o
� F
 �K � N�

#
�� �
n
�kXk��
 �F� �P ��

o
� F
 �

and de�ne the process � � YK
�� by YK
�� � X�

 ���K� for every K � N� Notice that


�� �� is separable� For every K � N� since � � YK
�� is continuous in probability by

Theorem ������ it admits a separable version � � eYK
��� here� we may de�ne YK � 	 on

the set # n#
K�� In the same way as Theorem ������ we can show that almost all paths

of � � eYK
�� are uniformly �
continuous� Thus the process eX �
P

K�N eYK satis�es the

required properties� �

Notice that the constructed eX
�� is not the terminal variable of a continuous local

martingale any more� However� it is conjectured that such a construction� including also

the parameter t� would be possible�

In Theorem ������ the requirement that � should be a proper metric on � is strong for

some applications� The following theorem is concerned with an adaptation to a 
random�

semimetric � which is �weaker than the metric �� the entropy number should be still

computed with respect to the metric �� The proof is similar to 
and easier than� that

for 
ii� of Theorem ������ hence is omitted�

Theorem ����� Let 
�� �� be a totally bounded metric space� Let X � 
X�j� � �� be

a family of continuous local martingales indexed by � such that X�
� � 	� and let � be a



��A� Notes ��

�nite stopping time� both of which are de�ned on a stochastic basis B� If a given random

semimetric � on � satis�es thatp
hX� �X�� X� �X�i
 � �
�� �� ��� � � � P��almost surely�

then it holds that for every ��K � 	

sup
����

countable

E� sup
t����
 �

sup
������

�������K�

jX�
t �X�

t j�fk�k��Kg � K

Z �

�

p
log
� �N
�� �� 
��d
�

where

k�k� � sup
�����
� ���

�
�� ��

�
�� ��
�

provided the integral on the right hand side is �nite 
the �rst supremum is taken over all

countable subsets �� of ���

��A Notes

The martingale version of the Bernstein inequality 
Lemma ������ is due to Freedman


����� who dealt with the discrete
time case� The inequality requires that the jumps of

a martingale are bounded� but this assumption has been replaced by a kind of higher

order moment condition by van de Geer 
����b�� which we quoted as Lemmas ����� and

������

The usefulness of bounds for expectation of supremum was shown by Pollard 
������

See also Pollard 
���	�� Kim and Pollard 
���	� and� for more details� van der Vaart and

Wellner 
������ The inequalities given in Section ��� have the same nature as that of van

de Geer 
����b� ����� who derived a probability inequality with a di�erent de�nition of

brackets�

Related to Theorems ����� and ������ one can �nd a general theory of the regularity

of sample paths in Chapter �� of Ledoux and Talagrand 
������



Chapter �

Weak Convergence Theorems

��� Preliminaries

Let us quote here a tightness criterion for sequences of random elements taking values in

��
spaces� The proof can be found in Chapter ��� of van der Vaart and Wellner 
������

Theorem ����� Let T be an arbitrary set� For every n � N� let 
#n�Fn� P n� be a prob�

ability space and Xn a mapping from #n to ��
T �� Consider the following statements�


i� Xn converges weakly in ��
T � to a tight� Borel law	


ii� every �nite�dimensional marginal of t � Xn
t� converges weakly to a 
tight�� Borel

law	


iii� for every 
� � � 	 there exists a �nite partition fTk � � � k � Ng of T such that

lim sup
n��

P n�
�

max
��k�N

sup
t�s�Tk

jXn
t� �Xn
s�j � 


�
� ��


iv� there exist a semimetric � on T such that 
T� �� is totally bounded and that for every


� � � 	 there exists � � 	 such that

lim sup
n��

P n�

�� sup
t�s�T

��t�s���

jXn
t� �Xn
s�j � 


�A � ��

Then� there is the equivalence 
i� �
 
ii� � 
iii� �
 
ii� � 
iv�� Furthermore� if

the �nite�dimensional marginals of a process t � X
t� have the same laws as those of

the limits in 
ii�� then there exists a version eX of X such that Xn Pn

�
 eX in ��
T � and

that almost all paths t � eX
t� are uniformly ��continuous� where � is the semimetric

appearing in 
iv�� Furthermore� if the �nite�dimensional marginals of the process t �

X
t� are Gaussian� the semimetric �� de�ned by

��
t� s� �
p
EjX
t� �X
s�j� �t� s � T

satis�es the same properties as ��

��
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Remark� No measurability of Xn has been assumed� On the other hand� in the latter

part of the conclusion� all �nite
dimensional marginals of the processes t � X
t� and

t� eX
t� are implicitly assumed to be Borel measurable� Moreover� the assertion means

that it is possible to choose a version eX that is Borel measurable in 
��
T �� k 	 k���

��� Multivariate Point Processes

Let 
E� E� be a Blackwell space and � an arbitrary set� For every n � N� let 
n be an

E
valued multivariate point process de�ned on a stochastic basis Bn � 
#n�Fn�Fn �


Fn
t �t�R�� P

n�� and �n a �good version of the predictable compensator of 
n� LetWn �

fW n�� � � � �g be a family of predictable functions on %#n � #n � R� � E indexed by

�� Let a DFP & of � be given� Notice that 
E� E�� � and & do not depend on n� while

all other objects are indexed by n � N 
we will discuss the case of DFP�s &n varying

with n � N at the end of this section�� In the same way as Section ���� we introduce the

following notations�

� the predictable envelope W
n
of Wn�

� the quadratic &
modulus kWnk
 of Wn�

Further� let a �nite stopping time �n on Bn be given� Throughout this section� we shall

assume�

the process t� W
n � �nt takes values in �	����
������

As in Section ���� we de�ne the local martingales t � Xn��
t and the locally square


integrable martingales t� Xn�a�� on Bn by

Xn��
t � W n�� � 

n � �n�t �t � R� �� � �

and

Xn�a��
t � W n���fW�ag � 

n � �n�t �t � R� �� � � �a � 	�

respectively� We will derive the asymptotic behavior of the processes � � Xn��

n and


t� �� � Xn��
t � as n���

Let us now introduce several conditions� The �rst one is the Partitioning Entropy con�

dition� which is a natural generalization of the metric entropy condition for L�
bracketing

in the I�I�D� case�

�PE� there exists a DFP & of � such that

kWnk
�
n � OPn
�� and

Z ��

�

H


�d
 ���
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Notice that� due to Lemma ������ under �PE� we can always construct a new NFP

& which satis�es the displayed conditions� Next� we shall also consider two kinds of

Lindeberg conditions�

�L�� W
n
�fWn

��g � �n
n Pn�� 	 for every 
 � 	�

�L�� jW nj��fWn
��g � �n
n Pn�� 	 for every 
 � 	�

When we mention �L��� the assumption that

the process t� jW nj� � �nt takes values in �	���
������

is also implicitly imposed in addition to 
������� and in this case the process t� Xn��
t is

a locally square
integrable martingale on Bn� It is trivial that �L�� implies �L���

Next let us introduce some conditions prescribing the asymptotic behavior of the

quadratic covariations� Let S be a subset of R�� and suppose that the family fC�����
t �

t � R�� 
�� �� � ��g of constants in the following satis�es that

t� C
�����
t is continuous for every 
�� �� � �� �
������

�C�� �Xn��� Xn���t
Pn�� C

�����
t for every t � S and 
�� �� � ���

�C�� hXn��� Xn��it Pn�� C
�����
t for every t � S and 
�� �� � ���

�C�a� �X
n�a��� Xn�a���t

Pn�� C
�����
t for every t � S and 
�� �� � ��� for every a � 	�

�C�a� hXn�a��� Xn�a��it Pn�� C
�����
t for every t � S and 
�� �� � ��� for every a � 	�

Similarly to the remark following �L��� the assumption 
������ is implicitly imposed when

we mention �C��� It is well
known that the quadratic covariations are given by

�Xn��� Xn���t �
X
s�t

$Xn��
s $Xn��

s

and 
under the assumption 
�������

hXn��� Xn��it � 
W n��W n��� � �nt �
X
s�t

cW n��
s
cW n��

s �

where cW n��
t 
�� �

R
E
W n��
�� t� x��
�� ftg � dx�� respectively�

Using the constants fC���
t g appeared in the conditions above� we set 
formally�

��

t� ��� 
s� ��� �

q
C

�����
t �C

�����
s � �C

�����
t
s
������

for every 
t� ��� 
s� �� � R� � �� Any of �C��� �C��� �C�a� or �C�a� implies that the

value under the square
root is non
negative for every 
t� ��� 
s� �� � S � �� hence the

R�
valued function �� is well
de�ned by the formula 
������ at least on 
S����� Further�
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by virtue of 
������� this is true also on 
�	� � � � ��� if S is a dense subset of the �nite

interval �	� � � with � being a constant�

The assertions in the following lemma are clear or rather well
known 
see e�g� Theorem

VIII���� of Jacod and Shiryaev 
����� for the part 
ii� below�� but we state the proofs

with minor modi�cation to our situation�

Lemma ����� 
i� The condition �L�� implies the following�


i�� W
n
�fWn

��g � 
n
n Pn�� 	 for every 
 � 		


i�� supt����
n� sup��� jXn��
t �Xn�a��

t j Pn��� 	 for every a � 		


i
� supt����
n�$
W
n � 
nt � Pn�� 	 and supt����
n�$
W

n � �nt � Pn�� 		


i�� supt����
n� sup��� j$Xn�a��
t j Pn��� 	 for every a � 	�


ii� Let �n � � be a �xed constant� and suppose that S is a subset of the �nite interval

�	� � �� Then� under �L�� it holds that �C�� � �C�a� � �C�a�� Under �L��� the condition

�C�� is also equivalent to any of them�

Proof� It follows from Lenglart�s inequality that

P n
�
W

n
�fWn

��g � 
n
n � �
�
� � � P n

�
W

n
�fWn

��g � �n
n � ��
�

�� � 	�

hence the condition �L�� implies 
i��� The assertions 
i��� 
i
� and 
i�� are immediate

from 
i���

Next we show the part 
ii� of the lemma� By polarization it is enough to consider

the case � � �� Observe that���Xn��� Xn���t � �Xn�a��� Xn�a���t
��

�

�����X
s�t


$Xn��
s �$Xn�a��

s �
$Xn��
s �$Xn�a��

s �

�����
� �

X
s�t

���$W n���fW�ag � 

n � �n�s

��� on the set #n
�

� �
���W n

�fW�ag � 
n
 �W
n
�fW�ag � �n


��� �
where #n

� � fsupt����
 � j$Xn��
t j � �g�fsupt����
 � j$Xn�a��

t j � �g� The assertion that �C��

� �C�a� under �L�� is now derived from 
i��� 
i
� and 
i���

To show the equivalence �C�a� � �C�a� under �L��� �x any a � 	� and we set

Y n � �Xn�a��� Xn�a��� � hXn�a��� Xn�a��i� We will prove that sups����t� j$Y n
s j Pn�� 	 for

every t � S under either �L�� � �C�a� or �L�� � �C�a�� Since X
n�a�� is a locally square


integrable martingale� we have that Y n is a local martingale and that so is jY nj���Y n� Y n�
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see Proposition I����	 of Jacod and Shiryaev 
������� Hence Lenglart�s inequality yields

that for every 
� � � 	

P n

�
sup
s����t�

jY n
s j� � 


�
� �




�
� �En sup

s����t�
$�Y n� Y n�s

�
� P n
�Y n� Y n�t � ��

� ��



�

�
��a�



� �

�
P n
�Y n� Y n�t � ���

because $�Y n� Y n� � j$Y nj� � 
j$�Xn�a��� Xn�a���j��j$hXn�a��� Xn�a��ij�� � ��a�� Thus

it su�ces to show that

�Y n� Y n�t
Pn�� 	 �t � S
������

under either �L�� � �C�a� or �L�� � �C�a��

Since the local martingale Y n has �nite variation� we have

�Y n� Y n�t �
X
s�t

j$Y n
s j�

�
X
s�t

j$�Xn�a��� Xn�a���sj� �
X
s�t

j$hXn�a��� Xn�a��isj�

� �nt A
n
t � �nt B

n
t �

where
�nt � sup

s����t�
$�Xn�a��� Xn�a���s� An

t � �Xn�a��� Xn�a���t�

�nt � sup
s����t�

$hXn�a��� Xn�a��is� Bn
t � hXn�a��� Xn�a��it�

Using 
i
�� we obtain that �nt
Pn�� 	 and �nt

Pn�� 	 for every t � S� under �L��� On the

other hand� Lenglart�s inequality yields that

P n
An
t � 
� � � � �a�



� P n
Bn

t � �� �
� � � 	

and that

P n
Bn
t � 
� � � � �a�



� P n
An

t � �� �
� � � 	�

Hence �C�a� implies that An
t � OPn
��� and �C�a� does that B

n
t � OPn
��� The claim


������ has been established�

The equivalence that �C�� � �C�a� under �L�� follows from the inequality��hXn��� Xn��it � hXn�a��� Xn�a��it
��

� jW nj��fWn
�ag � �n


�
X
t�


Z
E

�W
n

t� x��
ftg � dx�

Z
E

W
n

t� x��fW n

�t�x��ag�
ftg � dx�

� jW nj��fWn
�ag � �n
 � �W

n
�fWn

�ag � �n
 on the set #n
� �
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where #n
� � fsupt����
 �$
W

n � �nt � � �g� �

The �rst result of this section is concerned with the processes � � Xn��

n �

Theorem ����� Consider the above situation with 
������� Suppose that every �nite�

dimensional marginal of Xn

n � 
Xn��


n j� � �� converges weakly to a 
tight�� Borel law�

and also that the conditions �PE� and �L�� are satis�ed� Then Xn

n converges weakly in

��
�� to a tight� Borel law�

The result above is a direct consequence of the next lemma� applying Theorem �����

Lemma ����� The conditions �PE� and �L�� imply that for every 
� � � 	 there exists

a �nite partition f�k � � � k � Ng of � such that

lim sup
n��

P n�

�� sup
t����
n�

sup
��k�N
�����k

jXn��
t �Xn��

t j � 


�A � ��

Proof� Take a NFP & which satis�es the requirements of �PE�� Fix any 
� � � 	� First

notice that for any � � 
	�$
� and K � 	

P n�

�� sup
t����
n�

sup
��k�N����
��������k�

jXn�a���K���
t �X

n�a���K���
t j � 


�A � 
I� � 
II��
������

where the terms on the right hand side are given by�


I� � P n
kWnk
�
n � K��


II� �
�



En� sup

t����
n�
sup

��k�N����
��������k�

jXn�a���K���
t �X

n�a���K���
t j�fkWnk���n�Kg�

where a
��K� � �K� %H

����� It follows from 
i� of Theorem ����� that there exists a

universal constant C � 	 such that


II� � C 	 K



Z �

�

%H

��d��
������

Now� the �rst condition of �PE� yields that there exists a constant K � K� � 	

such that lim supn��
I� � ���� Next� since %H

�� � � � H

��� the second condition

of �PE� implies that we can choose a su�ciently small constant � � ���� � 	 such that

the right hand side of 
������ is not bigger than ���� Consequently� 
i�� of Lemma �����

with a � a
����� K�� yields the assertion� �

The next result deals with the processes 
t� �� � Xn��
t �
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Theorem ����� Consider the above situation with 
������ where �n � � is a �xed posi�

tive constant� and let S be a dense subset of the �nite interval �	� � � containing � � Sup�

pose that either �PE� � �L�� � �C�� or �PE� � �L�� � �C�� is satis�ed� Then� it

holds that Xn Pn

�
 X in ��
�	� � � � ��� where each �nite�dimensional marginal of the

process 
t� �� � X�
t has the Gaussian distribution N
	�(� with ( � f(ijg given by

(ij � C
��i��j�
ti
tj � Furthermore� the formula 
������ de�nes a semimetric �� on �	� � � � �

such that �	� � ��� is totally bounded with respect to ��� and that almost all paths of X

are uniformly ���continuous�

The following lemma� which is rather well
known� is used to show the result above�

Lemma ����� Under �L�� � �C��� for every � � � and every 
� � � 	 there exists

� � 	 such that

lim sup
n��

P n

�� sup
t�s�
��� �
jt�sj��

jXn��
t �Xn��

s j � 


�A � ��

Proof� Fix any N � N for a while� and put a � N��� By 
ii� of Lemma ����� we

may assume �L�� � �C�a�� It always holds that C
�����
� � 	 and that t � C

�����
t is

increasing� because so does t � hXn�a��� Xn�a��it� We may assume C
�����

 � 	 without

loss of generality� Since t � C�����
t is continuous and S is dense in �	� � �� we can choose

some points �i � S 
i � �� ���� N� such that C
�����

i � C

�����

i�� � C

�����

 N��� where �� � 	

and �N � � � It follows from Lemma ����� that for every 
 � 	

P n

�
sup

t��
i���
i�

jXn�a��
t �Xn�a��


i��
j � 
� #n

N

�
� � exp

�
� 
�

��
a� �C
�����

 N���

�
�

where

#n
N �

N�
i��

�hXn�a��� Xn�a��i
i � hXn�a��� Xn�a��i
i�� � �C�����

 N��� �

Hence we have

P n

�
max
��i�N

sup
t��
i���
i�

jXn�a��
t �Xn�a��


i��
j � 
� #n

N

�
� �N exp

�
� 
�N

��
� �C
�����

 �

�
�

Here notice that limn�� P n
#n
N � � �� Choosing a large number N � and then letting

n��� we can easily deduce the assertion from 
i�� of Lemma ������ �

Proof of Theorem ������ Let us check the conditions of Theorem ������ First� Theorem

VIII����� of Jacod and Shiryaev 
����� says that either of �L�� � �C�a� or �L�� �



���� Martingale Di�erence Arrays ��

�C�a� implies the �nite
dimensional convergence of Xn�a for any a � 	 
recall also 
i�� of

Lemma ������� Thus the �nite
dimensional convergence of Xn follows from 
i�� and 
ii�

of Lemma ������ The condition 
iii� of Theorem ����� can be shown by means of Lemmas

����� and ������ �

Let us close this section with discussing the case of DFP�s &n varying with n � N�

In this case� we shall check the condition 
iv� of Theorem ����� instead of 
iii�� We thus

introduce the following condition�

�PEn� there exists a semimetric � on � such that 
�� �� is totally bounded� and for every

n � N there exists a DFP &n of � such that�

kWnk
n�
n � OPn
��� lim
���

lim sup
n��

Z �

�

H
n

�d
 � 	�

lim
K��

lim sup
���

lim sup
n��

P n�

�� sup
�����

��������

q
jW n�� �W n��j��fWn��g � �n
n

�
� K

�A � 	�

We then have an analogue of Lemma ������

Lemma ����	 The conditions �PEn� and �L�� imply that for every 
� � � 	 there exists

� � 	 such that

lim sup
n��

P n�

�� sup
t����
n�

sup
�����

��������

jXn��
t �Xn��

t j � 


�A � ��

Proof� Repeat the same argument as Lemma ����� using Theorem ����� instead of 
i� of

Theorem ������ �

Consequently� Theorems ����� and ����� hold also with �PEn� instead of �PE�� In par


ticular� Theorem ����� under �PEn� � �L�� � �C�� re�nes Theorem ��� of Nishiyama


������ the condition 
B
� there has been removed�

��� Martingale Di�erence Arrays

We give some analogues of Theorems ����� and ������ those can be shown using Theorem

����� 
i� instead of Theorem ����� 
i� 
or using Theorem ����� instead of Theorem �������

thus the proofs are omitted� Let � be an arbitrary set� For every n � N� let f�ni gi�N
be an ��
��
valued martingale di�erence array on a discrete
time stochastic basis Bn �


#n�Fn�Fn � fFn
i gi�N�� P n��

Let & a DFP of �� and let &n be a sequence of DPF�s of �� In the same way as

Section ���� we introduce the following notations�
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� the adapted envelope f�ni gi�N of f�ni gi�N�

� the quadratic &
modulus fk�nk
�igi�N of f�ni gi�N�

� the quadratic &n
modulus fk�nk
n�igi�N of f�ni gi�N�

We shall always assume�

En�
n

i �� �i � N�
������

For a given �nite stopping time �n� we make the following conditions�

�PE�� there exists a DFP & of � such that

k�nk
��n � OPn
�� and

Z ��

�

H


�d
 ���

�PEn�� there exists a semimetric � on � such that 
�� �� is totally bounded� and for every

n � N there exists a DFP &n of � such that

k�nk
n��n � OPn
��� lim
���

lim sup
n��

Z �

�

H
n

�d
 � 	�

and

lim
K��

lim sup
���

lim sup
n��

P n�

�� sup
�����

��������

qP�n

i��E
n
i��
j�n��i � �n��i j� � ��

�
� K

�A � 	�

�L���
P�n

i��E
n
i���

n

i �f�ni ��g
Pn�� 	 for every 
 � 	�

�L���
P�n

i��E
n
i��j�

n

i j��f�ni ��g
Pn�� 	 for every 
 � 	�

When we mention �L���� the assumption that

Enj�ni j� �� �i � N�
������

which is stronger than 
������� is implicitly imposed� It is clear that �L��� implies �L����

Theorem ����� Consider the above situation with 
������� Suppose that every �nite�

dimensional marginal of Xn � 
Xn��j� � �� given by Xn�� �
P�n

i�� �
n��
i converges weakly

to a 
tight�� Borel law� and also that either of �PE�� � �L��� or �PEn�� � �L��� is satis�ed�

Then Xn converges weakly in ��
�� to a tight� Borel law�

Next� let us consider the process 
t� �� � Xn��
t given by

Xn��
t �

�ntX
i��

�n��i �t � �	� � � �� � ��
������
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where � � 	 is a constant� and 
�nt �t����
 � is a family of �nite stopping times on Bn such

that �n� � 	 and that each path t � �nt is increasing� c)ad� with jumps equal to �� We

introduce two kinds of conditions� in which the family fC�����
t � t � R�� 
�� �� � ��g of

constants should satisfy 
�������

�C���
P�nt

i�� �
n��
i �n��i

Pn�� C
�����
t for every t � S and 
�� �� � ���

�C���
P�nt

i��E
n
i���

n��
i �n��i

Pn�� C
�����
t for every t � S and 
�� �� � ���

Similarly to the remark following �L���� the assumption 
������ is implicitly imposed

when we mention �C����

Theorem ����� Let S be a dense subset of the �nite interval �	� � � containing � � Con�

sider the above situation with 
������� and assume �PE�� or �PEn�� with �n � �n
 � Suppose

also that either �L��� � �C��� or �L��� � �C��� is satis�ed� Then� the same conclusion as

Theorem ����� holds for the sequence of processes Xn � 
Xn��
t j
t� �� � �	� � ���� de�ned

by 
�������

Let us close this section with stating a generalization of Jain
Marcus� 
����� central

limit theorem to the case of martingale di�erence arrays� We denote by N
�� �� 
� the



covering number of a semimetric space 
�� ���

Proposition ����� Let 
�� �� be a totally bounded semimetric space� For every n � N�
let f�ni gi�N be an ��
���valued martingale di�erence array on a discrete�time stochastic

basis Bn such that

j�n��i � �n��i j � Kn
i �
�� �� ��� � � ��

where fKn
i gi�N is an R��valued adapted process� For given �nite stopping time �n� a

su�cient condition for �PE�� is

�nX
i��

En
i��jKn

i j� � OPn
�� and

Z �

�

p
logN
�� �� 
�d
 ���

��� Continuous Local Martingales

Let us begin with giving a de�nition�

De
nition ����� A family X � 
X�j� � �� of continuous local martingales indexed by

a metric space 
�� �� is said to be ��separable if there exist a countable subset �� of �

and a negligible set N � F such that for every 
 � 	 and � � # nN

X�
t 
�� � fX�

t 
�� � � � ��� �
�� �� � 
g �t � R�� �� � ��

where the closure is taken in R � f�����g�
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When 
�� �� is separable� a su�cient condition for the �
separability is that almost all

paths � � X�
t are �
continuous� but it is not always easy to check the continuity in

general� On the other hand� it is clear that any family of continuous local martingales

indexed by a countable set � is �
separable 
for any metric � on ���

Let us now turn to the context of weak convergence� Let 
�� �� be a totally bounded

proper metric space� For every n � N� let Xn � 
Xn��j� � �� be a 
not necessarily

�
separable� family of continuous local martingales X� such that X�
� � 	 indexed by

� de�ned on a stochastic basis Bn � 
#n�Fn�Fn � 
Fn
t �t�R�� P

n�� Let �n be a �nite

stopping time on Bn� We introduce the Metric Entropy condition�

�ME� Given �nite stopping time �n on Bn�

kXnk��
n � OPn�
�� and

Z �

�

p
logN
�� �� 
�d
 ���

Theorem ����� In the above situation� suppose that the family Xn � 
Xn��j� � �� is

��separable and that Xn

n � 
Xn��


n j� � �� takes values in ��
�� almost surely� Suppose

also that every �nite�dimensional marginal of Xn

n converges to a 
tight�� Borel law� and

that the condition �ME� is satis�ed� Then Xn

n converges weakly in ��
�� to a tight�

Borel law�

Proof� The assertion is immediate from Theorems ����� and ������ �

The result above generalizes Theorem � of Bae and Levental 
����b� who assumed the

continuity of 
t� �� � Xn��
t � According to Theorem ������ when � is countable and

�ME� is assumed� a su�cient condition for Xn

n � 
Xn��


n j� � �� to take values in ��
��

almost surely is that P n
kXnk��
n � �� � �� If one encounters the situation where �

is uncountable and the �
separability of the family Xn � 
Xn��j� � �� itself is di�cult

to show� the following result concerning a uniformly �
continuous version � � eXn
��

of � � Xn��

n will be helpful� Recall that a su�cient condition for the existence of such

a version is given by Theorem ������ and that eXn
�� is not the terminal variable of a

continuous local martingale�

Corollary ����� In the above situation� suppose that every �nite�dimensional marginal

of Xn

n converges to a 
tight�� Borel law� and that the condition �ME� is satis�ed� Suppose

also that it holds for a choice of the quadratic ��modulus kXnk� that

P n
�
�kXnk��
n�Fn

�n �P
n ��

�
� � �n � N�

and choose a uniformly ��continuous version � � eXn
�� of the process � � Xn��

n � TheneXn converges weakly in ��
�� to a tight� Borel law� If the limit of each �nite�dimensional
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marginal of � � Xn��

n coincides with that of a process � � X
��� then there exists a

uniformly ��continuous version eX of X such that eXn Pn

�
 eX in ��
���

Proof� The �nite
dimensional convergence of � � eXn
�� follows from that of � � Xn��

n �

Next choose a countable dense subset �� of �� Then� by Theorem ������ the statement


iv� of Theorem ����� is satis�ed for 
Xn��

n j� � ���� thus also for 
 eXn
��j� � ��� �

Next we consider the process 
t� �� � Xn��
t � Given subset S of R�� we make also

the following condition� in which the family fC�����
t � t � R�� 
�� �� � ��g of constants

should satisfy 
�������

�C�� hXn��� Xn��it Pn�� C
�����
t for every t � S and 
�� �� � ���

Theorem ����� Let S be a dense subset of the a �nite interval �	� � � containing � � In

the above situation� suppose that the family Xn � 
Xn��j� � �� is ��separable and that


Xn��
t j
t� �� � �	� � ���� takes values in ��
�	� � ���� almost surely� Assume �ME� with

�n � � and �C��� Then� the same conclusion as Theorem ����� holds for Xn�

Proof� Repeat the same assertion as Lemma ����� to obtain under �C�� that for every

� � � and every 
� � � 	 there exists � � 	 such that

lim sup
n��

P n

�� sup
t�s�
��� �
jt�sj��

jXn��
t �Xn��

s j � 


�A � ��

This fact� together with Theorem ������ implies the asymptotic tightness� Thus� the

assertion follows from Theorem ����� and the martingale central limit theorem� �

The result above re�nes Theorem ��� of Nishiyama 
������ the condition 
C
� there has

been removed and the condition 
C�� has been weakened�

��A Notes

The study of the Donsker theorems for i�i�d� empirical processes indexed by classes of sets

or functions was initiated by the landmark paper by Dudley 
������ and was developed

in the �	�s� There are two types of su�cient conditions for the Donsker property� namely�

the uniform entropy condition 
Pollard 
������ and the L��bracketing condition 
Ossian


der 
������� see van der Vaart and Wellner 
����� and references therein for re�nement

and generalizations up to row
independent arrays� In particular� it should be noted that

Andersen et al� 
����� contains a result based on a weaker condition than L�
bracketing

one in a row
independent case�
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In the recent years� some authors have considered to remove the assumption of in


dependence� Arcone and Yu 
����� and Doukhan et al� 
����� for stationary sequences

based on mixing conditions� Levental 
������ Bae 
����� and Bae and Levental 
����a�

for stationary martingale sequences� Bae and Levental 
����b� for continuous martin


gales� Nishiyama 
����� for some continuous
time semimartingales� One can �nd the

roots of the quantity �quadratic modulus in the works by Bae and Levental cited above�

A major part of the results in this chapter was originally presented by Nishiyama 
������

although some of the conditions have been re�ned as mentioned in the main text� The

re�nement is partly due to the use of the tightness criterion in terms of partitioning 
i�e��


iii� of Theorem ������ rather than the well
known stochastic �
equicontinuity criterion�

Van der Vaart and Wellner 
����� is apparently the �rst to present the partitioning

criterion�

For the weak convergence of 
�nite
dimensional� semimartingales� one should consult

the excellent book by Jacod and Shiryaev 
����� which we have referred many times�



Chapter �

Integral Estimators

��� Multiplicative Intensity Model

Let 
E� E� be a Blackwell space on which a measure � is de�ned� For every n � N�

let 
n be an E
valued multivariate point process de�ned on a �ltered measurable space


#n�Fn�Fn � 
Fn
t �t�R��� Notice that 
n can be identi�ed with an E
marked point

process f
T n
i � Z

n
i �� i � Ng through the equality


n
�� dt� dz� �
X
i


�Tni ����Zni ����
dt� dz��

where 	 � T n
� � T n

� � 	 	 	 and each Zn
i is an E
valued random variable� We suppose that

the predictable compensator �n of 
n under the probability measure P n on 
#n�Fn� is

given by

�n
�� dt� dz� � �
t� z�Y n
�� t� z�dt�
dz��

where �
t� z� is a �	���
valued measurable function on R� � E� and Y n
�� t� z� is a

�	���
valued predictable function on #n �R� � E�

Let a constant � � 	 be given� Throughout this section� we always assumeZ
���
 ��E

�
t� z�dt�
dz� ���

then �
t� z�dt�
dz� de�nes a �nite measure on �	� � � � E� We will use the following

notation

Lp
�� � Lp
�	� � � �E�B��� � � � E � �
t� z�dt�
dz�� �p � ������

We denote by k 	 kLp�	� the Lp
seminorm on Lp
���

����� Asymptotic Normality

Let � be a subset of L�p
�� with an envelop function 	 belonging to L�p
��� where

p � ����� should be speci�ed in connection with another assumption in Condition �����

��
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below� Our goal is to estimate the functional 
t� �� � A
��t where

A
��t �

Z
���t��E

�
s� z��
s� z�ds�
dz� �
t� �� � �	� � � ���

To do it� we introduce the generalized inverse Y n� of Y n de�ned by

Y n�
�� t� z� �
�fY n���t�z�
�g
Y n
�� t� z�

�

with the convention 	�	 � 	� we de�ne also

In
�� t� z� � �fY n���t�z�
�g�

It then holds that Y n�Y n � In� We propose the estimator 
t� �� � bAn
��t de�ned by

bAn
��t
�� � 
�Y n�� � 
nt 
�� �
t� �� � �	� � ����

The main step is to derive the weak convergence of the residual
p
n
 bAn � eAn�� where


t� �� � eAn
��t is given by

eAn
��t
�� �

Z
���t��E

�
s� z�In
�� s� z��
s� z�dt�
dz� �
t� �� � �	� � ����

We make the following condition�

Condition ����� For some p� q � ����� such that 
��p� � 
��q� � �� and a measurable

function y � y
t� z� on �	� � � �E� which is bounded away from zero� it holds that�

	 � L�p
�� and

Z �

�

q
logN� �
�� k 	 kL	p�	�� 
�d
 ���
������

knY n�kLq�	� � OPn
���
������ ��	� 	 jnY n� � 
��y�j��L��	� � oPn
���
������

This condition generalizes 
������ of Andersen et al� 
������ Although the framework of

this section does not contain empirical processes of i�i�d� data� one may �nd an interesting

�di�erence between the i�i�d� and the present cases� In the i�i�d� case� since the random

elements nY n� do not appear� the entropy condition for L�
bracketing is always optimal�

In the present case� however� it is sometimes wise to seek for the entropy condition 
������

with respect to a stronger semimetric when the requirement 
������ can be checked only

for q ��� For instance� when E � R and � � �����z�� the bracketing entropy condition

is satis�ed with the L�p
semimetric for any p � �� and thus 
������ for an arbitrary

q � � is su�cient� Compare the present Condition ����� with Conditions ��� and ��� of

Nishiyama 
����� which were concerned only with the case of p � � and q ���
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Theorem ����� Suppose that a given class � satis�es Condition ������ Then� it holds

that
p
n
 bAn � eAn�

Pn

�
 G in ��
�	� � ����� where 
t� �� � G�
t is a zero�mean Gaussian

process such that

EG�
t G

�
s �

Z
���t
s��E

�
u� z��
u� z�
�
u� z�

y
u� z�
du�
dz� �
t� ��� 
s� �� � �	� � ���

and that almost all paths are uniformly ���continuous on �	� � ���� where

��

t� ��� 
s� ��� �

q
EjG�

t �G�
s j� �
t� ��� 
s� �� � �	� � ����

Further if

k	 	 
�� In�kL��	� � oPn
n������
������

then it also holds that
p
n
 bAn �A�

Pn

�
 G in ��
�	� � � ����

Proof� We will apply Theorem ����� to Wn � fW n�� � � � �g given by W n�� �p
n�Y n�� It indeed holds that

p
n
 bAn
��t � eAn
��t� � W n�� � 

n � �n�t�

First notice that

hW n�� � 

n � �n��W n�� � 

n � �n�it
� n

Z
���t��E

�
s� z��
s� z�Y n�
s� z��
s� z�ds�
dz��

Since ����Z
���t��E

�
s� z��
s� z�

�
nY n�
s� z� � �

y
s� z�

�
�
s� z�ds�
dz�

����
�

Z
���
 ��E

j	
s� z�j�
����nY n�
s� z�� �

y
s� z�

�����
s� z�ds�
dz�
�

��	� 	 jnY n� � 
��y�j��L��	� �
the condition �C�� follows from 
������� To show �L��� notice that W

n � p
n	Y n� and

that� when p � �������jpn	Y n�j��fpn�Y n���g
� � �n

������

�
��	� 	 nY n��fpn�Y n���g

��
L��	�

� k	kL	p�	� 	
��	 	 nY n��fpn�Y n���g

��
L	p	�	p����	�

� k	kL	p�	� 	 �p
n

k	 	 nY n�kL	p	�	p����	�

� k	kL	p�	� 	 �p
n


	 k	kL	p�	� 	 knY n�kLq�	��
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which converges in P n
probability to zero by 	 � L�p
�� and 
������� The case of p ��
and q � � is easier�

To check the condition �PE�� for every 
 � 
	� ��� choose 
k	kL	p � 
�
brackets �l��k � u��k�
in L�p which cover �� Introduce a DFP & of � induced from these brackets� that is�

&

� � f�

� k� � � � k � N


�g is given by �

� k� � f� � � � l��k � � � u��kg with

modi�cation to make the partition disjoint� This can be done with N


� � N� �
�� k 	
kL	p � 
�� Since

jpn
u��k � l��k�Y n�j� � �n
 �
��ju��k � l��kj�nY n���

L��	�
� ��ju��k � l��kj���Lp�	� 	 knY n�kLq�	�
� ku��k � l��kk�L	p�	� 	 knY n�kLq�	�
� 
�knY n�kLq�	��

the quadratic &
modulus kWnk
�
 is bounded by
pknY n�kLq�	�� which is bounded in

P n
probability� This completes the proof� �

����� Asymptotic E�ciency

Let us discuss the asymptotic e�ciency of the estimator bAn following the general theory

developed in Chapter ���� of van der Vaart and Wellner 
������ We set�

H � L�
�	� � �� E�B��� � �� E � 	�t�z�
y�t�z�

dt�
dz���
������

H � L�
�	� � � �E�B��� � � � E � dt�
dz���

Here� the function y is the one appearing in Condition ������ We equip H with the usual

L�
inner product h	� 	iH � Since ��y is assumed to be bounded� H is a linear subspace of

the Hilbert space H � Let Pn � fP n
h � h � Hg be a family of probability measures on


#n�Fn� indexed by H�

Suppose that the predictable compensator of Nn�i under the probability measure P n
h

is given by

�nh
t� z�Y
n
t� z�dt�

where �nh � �nh
t� z� is de�ned by

�nh �

�
� �

h

�
p
ny

��

��

Notice that �n� � ��
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Step I� Local Asymptotic Normality� Assume P n
h � P n

� � It is well
known

that� under some conditions� a version of the log
likelihood ratio is given by

log
dP n

h jFn



dP n
� jFn




� �

�
log

����� � h

�
p
ny

����� � 
n

������

�
������ � h

�
p
ny

����� � �

�
� �n��



see� e�g�� Theorem III����� of Jacod and Shiryaev 
�������

Proposition ����� Suppose that��
��y�� 	 jn��Y n � yj��L��	� � oPn
�

��

is satis�ed� where y is the function appearing in Condition ������ and introduce the Hilbert

space H given by 
������� Let C be a given subset of H� and suppose that P n
h � P n

� and


������ hold for every h � C� Then� it holds that for every h � C

log
dP n

h jFn



dP n
� jFn




� $n
h�� �

�
khk�H � �n
h��

where

$n
h� �

�
hp
ny

�
� 

n � �n���


and �n
h� � oPn
�

��� Furthermore� it also holds that 
$n
h��� ����$

n
hd��
Pn
��
 N
	�(�

where (ij � hhi� hjiH �

Proof� Since j log
��x��x� x	

�
j � �



x
 for all x � ���

�
� �
�
�� we have that for any 
 � 
	� �������log dP n

h jFn



dP n
� jFn




�$n
h� �Dn
h� � %Dn
h�

���� � ��

�

Dn
h�

whenever supt�z
jh�t�z�jp
ny�t�z�

� 
� where�

Dn
h� �

���� h

�
p
ny

����� � 
n
 �
%Dn
h� �

���� h

�
p
ny

����� � �n��
 �

Notice that %Dn
h�
Pn
��� �

�
khk�H � Also� using Lenglart�s inequality� we have Dn
h� �

%Dn
h�
Pn
��� 	� These facts imply the �rst assertion� The �nite
dimensional convergence

of h� $n
h� follows easily from the martingale central limit theorem� �
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Step II� Differentiability of Unknown Parameter� We consider the func


tional 
t� �� � A
��t as an unknown parameter taking values in the Banach space


��
�	� � � � ��� k 	 k��� We denote by ��
�	� � � � ��� the dual space of ��
�	� � � � ���

Introducing a sequence of operators An � H � ��
�	� � ����� which should be regarded

as a local sequence of A� we aim to get a derivative operator *A � H � ��
�	� � � � ��

with rate rn 
�
p
n in the present case� which should satisfy

rnkAn
h�� An
	�� *A
h�k� � 	 �h � H�

and its adjoint operator *A� � ��
�	� � ����� � +H� where +H is the completion of H in H


thus +H � H in the present case�� which is determined by

h *A�b�� hiH � b� *A
h� �h � H

for every b� � ��
�	� � ������

Now� we de�ne the sequence of operators An � H � ��
�	� � � ��� by

An
h�
��t �

Z
���t��E

�
s� z��nh
s� z�dt�
dz��

Then the sequence An is di�erentiable with rate
p
n and its derivative *A � H � ��
�	� � ��

�� is given by
*A
h�
t� �� � h����t��� hiH �

We denote by �t�� � ��
�	� � � � �� � R the projection on the 
t� ��
coordinate� which

belongs to ��
�	� � � � ���� The above formula shows that *A��t�� � ����t�� for every


t� �� � �	� � � ��� and this means that the process 
t� �� � G�
t appearing in the limit

of Theorem ����� satis�es that

EG�
t G

�
s � h *A��t��� *A��s��iH �
t� ��� 
s� �� � �	� � � ���

Since the law of the process 
t� �� � G�
t is characterized by its �nite
dimensional distri


butions� we can conclude that it coincides with the bound of asymptotic e�ciency 
see

Theorem ������ of van der Vaart and Wellner 
�������

Step III� Asymptotic Efficiency� In order to discuss the asymptotic e�


ciency in the sense of the convolution theorem� it remains to show that the estimator


t� �� � bAn
��t for 
t� �� � An
h�
��t is regular� The following is an easy consequence

of Theorem ����� and Proposition ����� which implies the contiguity�

Proposition ����� Suppose that a given class � satis�es Condition ����� and the as�

sumption 
������ with P n � P n
� � and introduce the Hilbert space H given by 
������� Let
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C be an arbitrary subset of H� and suppose that all assumptions of Proposition ����� are

satis�ed� Then� it holds that

p
n
 bAn � An
h��

Pn
h�
 G in ��
�	� � ���� �h � C�

where 
t� �� � G�
t is the process appearing in the limit of Theorem ������

Proof� The local asymptotic normality established in Proposition ����� implies that P n
h

and P n
� are two
sided contiguous 
see� e�g�� De�nition ���	�� and Example ���	�� of van

der Vaart and Wellner 
������� although P n
h � P n

� su�ces for us� Hence we have that

Condition ����� and the assumption 
������ are satis�ed with P n � P n
h for all h � C� We

can obtain the assertion in the same way as Theorem ������ �

Consequently� the estimator bAn has shown to be regular� It also holds for any bounded�

continuous function � � ��
�	� � ����� �	��� that

sup
I�C

lim sup
n��

sup
h�I

En
h��
�p

n
 bAn �An
h��
�
� E�
G��
������

where the supremum with respect to I 
 C is taken over all �nite subsets I of C�

Summarizing the above discussion� we can conclude that�

Corollary ����� Suppose that all assumptions of Proposition ����� are satis�ed� If C is

a convex cone in H such that its closed linear span coincides with H � then the estimator bAn

for An is asymptotically e�cient in the sense of the convolution and the locally asymptotic

minimax theorems with respect to bounded� continuous� subconvex loss functions�

See Theorems ������ and ������ of van der Vaart and Wellner 
����� for the convolution

and the locally asymptotic minimax theorems� See also their Example ������ for the

choice of loss functions in the latter theorem� In particular� when we choose a loss

function � � ��
�	� � � � �� � �	��� of the type �
z� � ��
kzk��� where �� � �	��� �
�	��� is a bounded� continuous� increasing function� their Theorem ������ says that� for

any T n � #n � ��
�	� � � � �� such that T n
t� �� is Fn

 
measurable for every 
t� �� �

�	� � � ��� it holds that

sup
I�C

lim inf
n��

sup
h�I

En
h��
�p

n
T n �An
h��
� � E�
G��

where the supremum with respect to I 
 C is taken over all �nite subsets I of C�

Recalling 
������� we can see that the estimator bAn achieves this bound�
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��� Continuous Semimartingales with Non�linear Co�

variates

Let 
E� E � �� be a �nite measure space� this is the state space of covariate processes in the

following model� In the n
th statistical experiment� we consider kn continuous� adapted

processes Xn�i de�ned on a �ltered measurable space 
#n�Fn�Fn � 
Fn
t �t�R��� Suppose

that Xn�i�s are special semimartingales under the probability measure P n on 
#n�Fn��

and that their canonical decompositions are given by

dXn�i
t � �
t� Zn�i

t �Y n�i
t dt� Y n�i

t dBn�i
t �i � �� ���� kn�

where �
t� z� is an R
valued B
R�� � E
measurable function� t � Zn�i
t �s are E
valued

predictable processes� t � Y n�i
t �s are f	� �g
valued predictable processes� and t � Bn�i

t �s

are orthogonal Brownian motions� It has implicitly been assumed thatZ t

�

j�
s� Zn�i
s 
���jY n�i

s 
��ds �� �� � #n� �t � R�

for every i� Notice that we do not assume the independence of Zn�i�s and Y n�i�s 
thus

Xn�i�s� too�� We are interested in estimating the functional 
t� �� � A
��t� which is

given by

A
��t �

Z
���t��E

�
s� z��
s� z�ds�
dz��
������

where � belongs to an appropriate class of measurable functions on R� �E�

����� Preliminaries

Let E �
S

mEn
m be a partition of E
measurable sets� that is at most countable� Set

En � �fEn
m � m � �� �� ���g� We denote %Pn � Pn � E and %Qn � Pn � En� where Pn is

the predictable �
�eld on #n � R�� We introduce a kind of �generalized inverse Y n�

de�ned by

Y n�
�� t� z� �
X
m

�fY n
m���t���g�
E

n
m�

Y
n

m
�� t�
�fz�En

mg

with the convention 	�	 � 	� where

Y
n

m
�� t� �
knX
i��

Y n�i
t 
���fZn�it ����En

mg�

Here notice that

	 � Y n� � sup
m

�
En
m� ���
������
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De�ne also

In
�� t� z� �
X
m

�fY n
m���t���g�fz�En

mg�

We denote by �n the B
R���En
measurable majorant of �� and by �n the B
R���En

measurable minorant of �� By using the notation of De�nition ������ they are given

by�

�n � ���B�R���En�dt��dz� �

�n � � ����B�R���En�dt��dz� �

The �generalized inverse Y n� will be useful through the following lemma�

Lemma ����� For any R�valued� %Qn�measurable function W n on #n�R��E� it holds

that

knX
i��

Z t

�

W n
s� Zn�i
s �Y n�
s� Zn�i

s �Y n�i
s ds �

Z
���t��E

W n
s� z�In
s� z�ds�
dz� �t � R��

identically� provided the integrals are �nite� Furthermore� it holds that�����
knX
i��

Z t

�

W n
s� Zn�i
s ��
s� Zn�i

s �Y n�
s� Zn�i
s �Y n�i

s ds�
Z
���t��E

W n
s� z��
s� z�In
s� z�ds�
dz�

�����
�
Z
���t��E

jW n
s� z�j
�n � �n�
s� z�In
s� z�ds�
dz� �t � R��

identically� provided the integrals are �nite�

Proof� The �rst equality indeed holds since

knX
i��

Z
���t��E

W n
�� s� Zn�i
s 
���Y n�
�� s� Zn�i

s 
���Y n�i
s 
��ds

�

Z
���t��E

X
m

W n
�� s� znm��fY n
m���s���g�
E

n
m�ds

�

Z
���t��E

W n
�� s� z�In
�� s� z�ds�
dz��

where znm is any point of En
m� The second inequality is an easy consequence of the �rst�

�

Let a constant � � 	 be given� and denote�

Lp � Lp
�	� � �� E�B��� � � � E � dt�
dz�� �p � ������
������

Lp�n � Lp
�	� � �� E�B��� � � � En� dt�
dz�� �p � ������
������
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We denote by k	kLp the Lp
seminorm on Lp� For every n � N� we introduce the mapping

�n � L� � L��n by

�n
��
t� z� �
X
m

�f��En
m���g

�
En
m�

Z
En
m

�
t� w��
dw��fz�En
mg
������

with the convention 	�	 � 	�

Lemma ����� 
i� For every p � ������ it holds that �nLp 
 Lp�n� and the mapping

�n � Lp � Lp�n is linear�


ii� If �� � � L� and � � �� then �n
�� � �n
���


iii� For every p � ������ it holds for any � � L� and any function f � �	� � ��E � �	���

which is B��� � � � En�measurable thatZ
���
 ��E

j�n
��
t� z�jpf
t� z�dt�
dz� �
Z
���
 ��E

j�
t� z�jpf
t� z�dt�
dz��

provided the right hand side is �nite�


iv� It holds for any � � L� that k�n
��kL� � k�kL� �

Proof� The assertions 
i�� 
ii� and 
iv� are trivial� and 
iii� follows from that

j�n
��
t� z�jp �
X
m

�f��En
m���g

�
En
m�

p

����Z
En
m

�
t� w��
dw�

����p �fz�En
mg

�
X
m

�f��En
m���g

�
En
m�

Z
En
m

j�
t� w�jp�
dw��fz�En
mg�

�

����� Asymptotic Normality

Let � � 	 be a constant� and let � be a countable class of B��� � � � E
measurable

functions on �	� � �� E� We will always assume

sup
���

Z
���
 ��E

j�
t� z�j
j�nj � j�nj�
t� z�dt�
dz� ���
������

then� the functional 
t� �� � A
��t de�ned by 
������ can be thought as an unknown

parameter taking values in the space ��
�	� � � � ��� The main step in our approach is

to estimate the modi�ed unknown parameter 
t� �� � eAn
��t given by

eAn
��t
�� �

Z
���t��E

�n
��
s� z�In
�� s� z�ds�
dz� �
t� �� � �	� � ����
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It follows from Lemma ����� that this also takes values in ��
�	� � � � �� under the

assumption 
������� We will discuss later under which conditions this eAn is indeed

�close to A� We propose the estimator 
t� �� � bAn
��t given by

bAn
��t �
knX
i��

Z t

�

�n
��
s� Zn�i
s �Y n�
s� Zn�i

s �dXn�i
s �
t� �� � �	� � ����

The stochastic integral appearing above is well
de�ned if

sup
t����
 �

j�n
��
t� Zn�i
t 
���jY n�
�� t� Zn�i

t 
��� �� �� � #n� �i � �� ���� kn
������


see Theorem I����� of Jacod and Shiryaev 
������� We will always assume 
������� and

de�ne t � bAn
��t by any version of the stochastic integral� which is unique up to a

P n
negligible set� It is immediate from the de�nitions of �n and Y n� that a su�cient

condition for 
������ is that

sup
t����
 �

sup
m

Z
En
m

j�
t� z�j�
dz� ���

However� it is still unclear even under this condition that 
t� �� � bAn
��t takes values

in ��
�	� � ����� This requirement will be shown to be ful�lled under 
������ and 
������

given below� by means of Theorem ������

Condition ����� For some p� q � ����� such that 
��p�� 
��q� � �� and a B��� � ��E�
measurable function y � y
t� z�� which is bounded away from zero� it holds that � 
 L�p�

and that k 	 kL	p de�nes a proper metric on �� and that�Z �

�

p
logN
�� k 	 kL	p � 
�d
 ���
������

knY n�kLq � OPn
���
������ ��j�n
��j� 	 jnY n� � 
��y�j��L� � oPn
�� �� � ��
�����	�

kf�n
���n
�� � ��g 	 
��y�kL� � 	 ��� � � ��
�������

sup
���

k�n
�� 	 
�n � �n� 	 InkL� � oPn
n������
�������

Compare this with Condition ������ the conditions 
������� 
������ and 
�����	� correspond

to 
������ 
������� and 
������� respectively� while 
������� and 
������� are needed for the

present situation�
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Theorem ����� Suppose that a given countable class � satis�es the assumptions 
������

and 
������ and Condition ������ Then� the random elements 
t� �� � bAn
��t and


t� �� � eAn
��t take values in �
�
�	� � ����� P n�almost surely� and it holds that

p
n
 bAn�eAn�

Pn

�
 G in ��
�	� � � � ��� where 
t� �� � G�
t is a zero�mean Gaussian process such

that

EG�
t G

�
s �

Z
���t
s��E

�
u� z��
u� z�

y
u� z�
du�
dz� �
t� ��� 
s� �� � �	� � ���

and that almost all paths are uniformly ���continuous on �	� � ���� where

��

t� ��� 
s� ��� �

q
EjG�

t �G�
s j� �
t� ��� 
s� �� � �	� � ����

Proof� Observe that

p
n
 bAn
��t � eAn
��t� � Mn��

t �Nn��
t �

where�

Mn��
t �

p
n

knX
i��

Z t

�

�n
��
s� Zn�i
s �Y n�
s� Zn�i

s �Y n�i
s dBn�i

s �

Nn��
t �

p
n

knX
i��

Z t

�

�n
��
s� Zn�i
s ��
s� Zn�i

s �Y n�
s� Zn�i
s �Y n�i

s ds�

It follows from Lemmas ����� and ����� that the term Nn�� is well
de�ned under the

assumption 
������� and that���Nn��
t �pn eAn
��t

��� � p
n

Z
���t��E

j�n
��
s� z�j
�n � �n�
s� z�In
s� z�ds�
dz��

which converges in P n
probability to zero uniformly in 
t� �� � �	� � ��� by 
��������

On the other hand� t� Mn��
t is a continuous local martingale under the assumption


������� Since Bn�i�s are orthogonal Brownian motions� and since jY n�ij� � Y n�i� we obtain

from Lemma ����� that

hMn���Mn��it � n

Z
���t��E

�n
��
s� z��n
��
s� z�Y n�
s� z�ds�
dz��

It follows from Lemma ����� that

hMn�� �Mn���Mn�� �Mn��i

� n

��j�n
�� � �n
��j�Y n���
L�

� n
��j� � �j�Y n���

L�

� nkj� � �j�kLp 	 kY n�kLq
� nk� � �k�L	p 	 kY n�kLq �
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Thus we have that the quadratic k 	 kL	p 
modulus of Mn � 
Mn��j� � �� is bounded byp
nkY n�kLq � Hence� Theorem ����� implies that almost all paths of 
t� �� � Mn��

t take

values in ��
�	� � � ���� and thus so do those of 
t� �� � bAn
��t�

In order to derive the weak convergence of the processes 
t� �� �Mn��
t � we will apply

Theorem ������ The above computation of the quadratic k 	 kL	p 
modulus together with


������� yields �ME�� Next� notice that����Z
���t��E

�n
��
s� z��n
��
s� z�

�
nY n�
s� z�� �

y
s� z�

�
ds�
dz�

����
�

sZ
���
 ��E

j�n
��
s� z�j�
����nY n�
s� z�� �

y
s� z�

���� ds�
dz�
�
sZ

���
 ��E
j�n
��
s� z�j�

����nY n�
s� z� � �

y
s� z�

���� ds�
dz�
and that ����Z

���t��E
f�n
��
s� z��n
��
s� z� � �
s� z��
s� z�g �

y
s� z�
ds�
dz�

����
� kf�n
���n
��� ��g 	 
��y�kL� �

Thus 
�����	� and 
������� imply �C��� This �nishes the proof� �

In order to derive the weak convergence of
p
n
 bAn � A� rather than

p
n
 bAn � eAn��

we have to show that
p
n
 eAn � A�

Pn

�
 	 in ��
�	� � � ���� For this purpose� it su�ces

to check the following�

sup
���

k
�n
�� � �� 	 �kL� � o
n������
�������

sup
���

k� 	 
�� In� 	 �kL� � oPn
n������
�������

Example� Euclidean covariates

Set E � �	� ��d� and equip it with the Lebesgue measure� Suppose that 
t� z� � �
t� z�

is continuous on �	� � �� �	� ��d with respect to the 
d���
dimensional Euclidean metric�

Consider the class of indicator functions � � f����u����������ud�
z� � u � �	� ��dg� This

problem in the case of d � � was studied by McKeague and Utikal 
���	�� based on a

classical criterion of tightness of sequences of stochastic processes with �nite
dimensional

parameters� Among the assumptions appearing above� the entropy condition 
������ is

satis�ed for any p � �� If we choose a partition �	� ��d �
S

mEn
m of d
dimensional
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rectangles with side length at most bn� where bnn
��� � 	� then the weak convergence ofp

n
 bAn �A� in ��
�	� � �� �	� ��d� follows from that�

knY n�kLq � OPn
�� for some q � ��

knY n� � 
��y�kL� � oPn
���

k
�� In� 	 �kL� � oPn
n������

The �rst condition above re�nes 
A�� of McKeague and Utikal 
���	�� which is corre


sponding to the case of q � ��

����� Asymptotic E�ciency

Let us discuss the asymptotic e�ciency of the estimator 
t� �� � bAn
��t along the

general theory exposited in Chapter ���� of van der Vaart and Wellner 
������ again�

We set�

H � L�
�	� � �� E�B��� � � � E � �
y�t�z�

dt�
dz���
�������

H � L�
�	� � � �E�B��� � � � E � dt�
dz���
Hn � L�
�	� � � �E�B��� � � � En� dt�
dz���

Here� the function y is the one which appears in Condition ������ We equip H with the

usual L�
inner product h	� 	iH � Notice that H is a linear subspace of the Hilbert space H

since ��y is assumed to be bounded� Let Pn � fP n
h � h � Hg be a family of probability

measures on 
#n�Fn� indexed by H� De�ne the mapping �n � H � Hn by 
�������

Hereafter� we denote by �n
h� any function of the equivalent elements in Hn�

Suppose that the canonical decompositions of special semimartingalesXn�i under the

probability measure P n
h are given by

dXn�i
t � �nh
t� Z

n�i
t �Y n�i

t dt � Y n�i
t dBn�h�i

t �i � �� ���� kn�
�������

where �nh � �nh
t� z� is de�ned by

�nh � � � n�����n
h�y��
�������

and where t� Bn�h�i
t �s are orthogonal Brownian motions on �	� � � under P n

h � We should

�rst see that the local model 
������� is �well
de�ned in the sense that it does not

depend on the choice of a version of �n
h�y� � Hn� To see this� notice that� if f� g �
L�
�	� � ��E�B��� � ��En� dt�
dz�� such that f
t� z� � g
t� z� for dt�
dz�
almost all 
t� z��

then it holds that for every � � #n

f
t� Zn�i
t 
��� � g
t� Zn�i

t 
��� dt
almost all t�
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Thus� for every � � #n� the function t� �nh
t� Z
n�i
t 
��� is uniquely determined by 
�������

up to a negligible set with respect to the Lebesgue measure on �	� � �� not depending on

the choice of a version of �n
h�y� � Hn� Hence the model 
������� is well
de�ned� and

in particular� it holds that �n� 
t� Z
n�i
t 
��� � �
t� Zn�i

t 
��� for almost all t�

Step I� Local Asymptotic Normality� It is well
known that� under some

conditions� a version of the log
likelihood ratio is given by

log
dP n

h jFn



dP n
� jFn




�
�p
n

knX
i��

Z 


�

�n
h�y�
t� Zn�i
t �Y n�i

t dBn���i
t
�������

� �

�n

knX
i��

Z 


�

j�n
h�y�
t� Zn�i
t �j�Y n�i

t dt


see� e�g�� Theorem III����� of Jacod and Shiryaev 
������� Again� this representation

does not depend on the choice of a version of �n
h�y� � Hn�

Proposition ����� Let C be an arbitrary subset of H� Suppose that the function y

appearing in Condition ����� satis�es that

y � L� and

���� In

nY n� � y

����
L�

� oPn
�

��
�������

with the convention 	�	 � 	� and that

k�n
h��y��n
h��y�y � 
h�h��y�kL� � 	 �h�� h� � C�
�����	�

and introduce the Hilbert space H given by 
�������� Suppose also that P n
h � P n

� and


������� hold for every h � C� Then� it holds that for every h � C

log
dP n

h jFn



dP n
� jFn




� $n
h�� �

�
khk�H � �n
h��

where

$n
h� �
�p
n

knX
i��

Z 


�

�n
h�y�
t� Zn�i
t �Y n�i

t dBn���i
t

and �n
h� � oPn
�

��� Furthermore� it also holds that 
$n
h��� ����$

n
hd��
Pn
��
 N
	�(�

where (ij � hhi� hjiH �

Proof� Notice that $n
h� is the terminal variable of the continuous local martingale

Mn�h given by

Mn�h
t �

�p
n

knX
i��

Z t

�

�n
h�y�
s� Zn�i
s �In
s� Zn�i

s �Y n�i
s dBn���i

s

�
�p
n

knX
i��

Z t

�

�n
h�y�
s� Zn�i
s �

In
s� Zn�i
s �

Y n�
s� Zn�i
s �

Y n�
s� Zn�i
s �Y n�i

s dBn���i
s �



�� �� Integral Estimators

It follows from Lemma ����� that

hMn�h��Mn�h	i
 �
Z
���
 ��E

�n
h��y�
t� z��
n
h��y�
t� z�

In
t� z�

nY n�
t� z�
dt�
dz��

Since ����Z
���
 ��E

�n
h��y�
t� z��
n
h��y�
t� z�

�
In
t� z�

nY n�
t� z�
� y
t� z�

�
dt�
dz�

����
� k�n
h��y�kL� 	 k�n
h��y�kL� 	

���� In

nY n� � y

����
L�
�

the �nite
dimensional convergence of h � $n
h� follows from 
������� and 
�����	� by

means of the martingale central limit theorem�

On the other hand� it follows again from Lemma ����� that

�

n

knX
i��

Z 


�

j�n
h�y�
t� Zn�i
t �j�Y n�i

t dt �

Z
���
 ��E

j�n
h�y�
t� z�j� In
t� z�

nY n�
t� z�
dt�
dz��

which converges in P n
probability to khk�H by 
������� and 
�����	�� �

Step II� Differentiability of Unknown Parameter� The discussion here is

similar to that at Step II of Subsection ������ Recall the �rst paragraph there 
we use

exactly the same notation��

Now� we de�ne the sequence of operators An � H � ��
�	� � � ��� by

An
h�
��t �

Z
���t��E

�
s� z�
�
�
s� z� � n�����n
h�y�
s� z�

�
ds�
dz��

Under the assumption that

sup
�t�������
 ���

��h����t��� �n
h�y�y � hiH
��� 	 �h � H�
�������

the sequence An is di�erentiable with rate
p
n and its derivative *A � H � ��
�	� � ����

is given by
*A
h�
t� �� � h����t��� hiH �

We denote by �t�� � ��
�	� � � � �� � R the projection to the 
t� ��
coordinate� which

belongs to ��
�	� � � � ��� 
do not confuse this with the mapping �n given by 
��������

The above formula shows that *A��t�� � ����t�� for every 
t� �� � �	� � ���� By the same

reason as Step II of Subsection ������ the law of the limit process 
t� �� � G�
t appearing

in Theorem ����� coincides with the bound of asymptotic e�ciency�

Step III� Asymptotic Efficiency� Let us show the regularity of the estimator


t� �� � bAn
��t for 
t� �� � An
h�
��t�
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Proposition ����	 Let C be an arbitrary subset of H� Suppose that a given countable

class � satis�es the assumptions 
������� 
������� 
������� and 
�������� and Condition

����� for P n � P n
� � and introduce the Hilbert space H given by 
�������� Suppose also that

all assumptions of Proposition ����� are satis�ed� Then� the random element 
t� �� �bAn
��t takes values in ��
�	� � � � ��� P n
h �almost surely� for every h � C� and it holds

that p
n
 bAn � An
h��

Pn
h�
 G in ��
�	� � ���� �h � C�

where 
t� �� � G�
t is the process appearing in the limit of Theorem ������

Proof� In view of the contiguity� a consequence of Proposition ������ all assumptions

concerning convergence in P n
� 
probability hold also in P n

h 
probability for every h � C�

Thus the assertion can be proved in the same way as Theorem ������ �

Notice that the assumptions 
�����	� and 
������� follow from that

k�n
h�y�y � hkH � 	 �h � H�

Summarizing the above discussion� we can get the asymptotic e�ciency of the estimatorbAn in the same fashion as Corollary ������ under the assumption that C is a convex cone

in H such that its closed linear span coincides with H �

��� Counting Processes with Non�linear Covariates

Let 
E� E� be a Blackwell space on which a �
�nite measure � is de�ned� this is the state

space of covariate processes in the followingmodel� In the n
th statistical experiment� we

consider kn adapted point processes on R�� namelyNn�i� i � �� ���� kn� de�ned on a �ltered

measurable space 
#n�Fn�Fn � 
Fn
t �t�R��� we then denote T n�i

j � infft � R� � Nn�i
t � jg

for every j � N 
see page �� of Jacod and Shiryaev 
������� Suppose that the predictable

compensator of Nn�i under the probability measure P n on 
#n�Fn� is given by

�
t� Zn�i
t �Y n�i

t dt�

where �
t� z� is a �	���
valued B
R�� � E
measurable function� t � Zn�i
t is an E


valued predictable process� and t � Y n�i
t is a f	� �g
valued predictable process� Let

� � 	 be a constant� and suppose that we can observe the point processes� the processes

t� Y n�i
t � and the covariate processes t� Zn�i

t on the random sets ft � �	� � � � Y n�i
t 
�� �

�g� The goal of this section is to estimate the unknown parameter 
t� �� � A
��t �R
���t��E �
s� z��
s� z�ds�
dz� where ��s are appropriate functions�
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We analyze this problem by using the E
valued multivariate point processes


n
dt� dz� �
knX
i��

X
j


�Tn�ij �Z
n�i

T
n�i
j

�
dt� dz�

which has the predictable compensator

�n
dt� dz� �
knX
i��

�
t� z�Y n�i
t 
Zn�it


dz�dt�

Here� we suppose that T n�i
j �� T n�i�

j� whenever i �� i�� then the basic requirement that


n
ftg � E� � � is indeed satis�ed� The approach which we take here is quite close to

that in the preceding section�

����� Preliminaries

In the same way as Section ������ we consider a partition E �
S

mEn
m of E
measurable

sets� which is at most countable� such that supm �
En
m� � � 
recall 
�������� Introduce

En� %Pn� %Qn� Y n�� In� �n and �n given there� We then have Lemmas ����� and ������ For

a given %Pn
measurable function W n� we denote�

A
W n�t �

Z
���t��E

W n
s� z� x��
s� z�ds�
dz��

A
n

W n�t �

Z
���t��E

W n
s� z� x��n
s� z�ds�
dz��

It follows from Lemma ����� that for any %Qn
measurable function Hn the following two

inequalities hold provided the integrals are �nite���HnY n� � �nt �A
HnIn�t
��
������

�
Z
���t��E

jHn
s� z�j
�n � �n�
s� z�In
s� z�ds�
dz��

��HnY n� � �nt
�� � A

n

jHnjIn�t�
������

Let � be an arbitrary set� We will deal with a family fKn�� � � � �g of %Qn


measurable functions which satis�es that

the process t� 
jKn
Y n�j � jKn

Y n�j�� � �nt is locally integrable
������

where

K
n
�

�
sup
���

jKn��j
�
�Qn�MPn

�n
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cf�� De�nition ������� Then� for every � � �� the process t� Xn��
t de�ned by

Xn��
t � Kn��Y n� � 

n � �n�t
������

is an R
valued locally square
integrable martingale with bounded variation� As an easy

consequence of 
������� we have that a su�cient condition for 
������ is

the process t� A
n

jKnj � jKnj� 	 In�t is locally integrable
������


recall also 
�������� The following lemma gives some tractable conditions to ensure the

weak convergence of the ��
�	� � � � ��
valued random element 
t� �� � Xn��
t by using

Theorem ������

Lemma ����� Let � � 	 be a constant� and let S be a �nite or dense subset of �	� � � such

that � � S� Let fKn�� � � � �g be a family of %Qn�measurable functions satisfying 
�������

and consider Xn � 
Xn��
t j
t� �� � �	� � � � �� de�ned by 
������� When Card
�� � ��

suppose that the following 
i�� 
ii� and 
iii� and satis�ed� when Card
�� � �� suppose

that the following 
i�� 
ii�� 
iii� and 
iv� are satis�ed�


i�
R
���
 ��E jK

n

t� z�j�Y n�
t� z�
�n � �n�
t� z�dt�
dz�

Pn�� 		


ii� A
�
jKnj�Y n��fKn

Y n���g
�



Pn�� 	 �
 � 		


iii� A
Kn��Kn��Y n��t
Pn�� C

�����
t �t � S �
�� �� � ��� where fC�����

t g is a family of

constants satisfying 
������	


iv� there exists a DFP & � f�

� k� � � � k � N


�g������� of � such that

sup
�������	Q

max
��k�N����

A
n

jKn
�

� k��j�Y n��



�
� OPn
�� and

Z �

�

p
logN


�d
 ���

where

Kn
��� �
�
sup

������
jKn�� �Kn��j

�
�Qn�A

n
�dt�dz�

��� 
 ��

Then� it holds that Xn Pn

�
 X in ��
S���� where 
t� �� � X�
t is a zero�mean Gaussian

process such that EX�
t X

�
s � C

�����
t
s � Furthermore� the formula 
������ de�nes a semi�

metric �� on S�� such that S�� is totally bounded with respect to ��� and that almost

all paths of X are uniformly ���continuous� When S is dense in �	� � �� the space S ��

appearing in the conclusion can be replaced by �	� � ����

Proof� By using the inequality 
������ and the assumption 
i�� we get the conditions

�L�� and �C�� of Theorem ����� from 
ii� and 
iii�� respectively� The condition �PE� is

immediate from the inequality 
������ and 
iv�� �
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����� Asymptotic Normality

Let a constant � � 	 be given� and let us consider the estimation problem of 
t� �� �

A
��t� Recall the notations Lp and Lp�n given by 
������ and 
������� and the de�nition

of �n by 
������� respectively� In the following� we will always assume�

��N �
�
n
N

�n � L� for some N � N�
������

Thus ��N 
t� z�dt�
dz� de�nes a �nite measure on �	� � ��E� We then denote

Lp
��N � � Lp
�	� � � �E�B��� � � � E � ��N
t� z�dt�
dz�� �p � ������

Furthermore� we denote by k 	 kLp�	
N � the L
p
seminorm on Lp
��N �� These should not be

confused with the notations Lp and k 	 kLp given by 
�������

Let � be a subset of L�p
��N ��L� with an envelope function 	 � L�p
��N ��L�� where

p � ����� should be speci�ed in connection with another assumption in Condition ������

We propose the estimator 
t� �� � bAn
��t de�ned by

bAn
��t
�� � 
�n
��Y n�� � 
nt 
�� �
t� �� � �	� � ����

where �n is the mapping de�ned by 
������� We shall �rst consider the residual
p
n
 bAn�eAn�� where

eAn
��t
�� �

Z
���t��E

�n
��
s� z�I
�� s� z��
s� z�ds�
dz� �
t� �� � �	� � ����

Condition ����� For some p� q � ����� such that 
��p�� 
��q� � �� and a B��� � ��E�
measurable function y � y
t� z� on �	� � �� E� which is bounded away from zero� it holds

that�

	 � L�p
��N � � L� and

Z �

�

q
logN� �
�� k 	 kL	p�	
N �� 
�d
 ���

where the brackets should be constructed in L�p
��N � � L��

������

knY n�kLq�	
N � � OPn
���
������ ��j�n
	�j� 	 jnY n� � 
��y�j��L��	
N �
� oPn
���
������

kf�n
���n
�� � ��g 	 
��y�kL� � 	 ��� � � ��
�����	�

k	 	 
�n � �n�kL� � o
n������
�������

Theorem ����� Assume 
������� Suppose that a given class � satis�es Conditions

������ Then� it holds that
p
n
 bAn� eAn�

Pn

�
 G in ��
�	� � ����� where 
t� �� � G�
t is a

zero�mean Gaussian process such that

EG�
t G

�
s �

Z
���t
s��E

�
u� z��
u� z�
�
u� z�

y
u� z�
dt�
dz� �
t� ��� 
s� �� � �	� � � ��
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and that almost all paths are uniformly ���continuous on �� where

��

t� ��� 
s� ��� �

q
EjG�

t �G�
s j� �
t� ��� 
s� �� � �	� � ����

Proof� It follows from 
������ and 
������� that

sup
�t�������
 ���

��
�n
��Y n�� � �nt �A
�n
��In�t
�� � oPn�
n������

Thus it su�ces to derive the weak convergence of the sequence of processes 
t� �� � Xn��
t

de�ned by

Xn��
t �

p
n
�n
��Y n�� � 

n � �n�t�

We will apply Lemma ����� with Kn�� �
p
n�n
��� The condition 
������ for n � N

follows 
������ and the fact 	 � L�
��N �� To show the condition 
i�� observe that����nZ
���
 ��E

j�n
	�
t� z�j�Y n�
t� z�
�n � �n�
t� z�dt�
dz�

����
� ��j�n
	�j� 	 jnY n� � 
��y�j 	 
�n � �n�

��
L� �

��j�n
	�j� 	 
��y� 	 
�n � �n�
��
L�

� ��j�n
	�j� 	 jnY n� � 
��y�j��L��	
N �
� k��ykL� 	

��	� 	 
�n � �n�
��
L� �

The �rst term on the right hand side converges in P n
probability to zero by 
������� On

the other hand� since it follows from 
������� that 
�n��n�
t� z� � 	 for 	
t� z�dt�
dz�


almost all 
t� z�� the dominated convergence theorem yields that the second term also

vanishes� Thus the condition 
i� has been proved� Next� it follows from the same com


putation as 
������ that

nA
�j�n
	�j�Y n��fpn
n���Y n���g

�
� ��j�n
	�j� 	 nY n� 	 �fpn
n���Y n���g

��
L��	
N �

� �p
n


	 k�n
	�k�L	p�	
N � 	 knY n�kLq�	
N ��

which converges in P n
probability to zero by 
������ and 
������� Thus the condition 
ii�

has been proved� The condition 
iii� can be shown by using 
������ and 
�����	�� This

�nishes the proof of the case where the set � is �nite�

On the other hand� it follows from Lemma ����� that� if �lk� uk��s are 
k 	 kL	p�	
N �� 
�


brackets in L�p
��N ��L� which cover the class �� then ��n
lk�� �n
uk���s are 
k	kL	p�	
N �� 
�


brackets in L�p
��N ��L� which cover the class �n�� Hence� by using the H,older inequal


ity� it is shown that the DFP of � induced from the minimum brackets satis�es the

requirements of 
iv� of Lemma ������ �
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In order to derive the weak convergence of
p
n
 bAn � A� rather than

p
n
 bAn � eAn��

we have to show that
p
n
 eAn � A�

Pn

�
 	 in ��
�	� � � ���� For this purpose� it su�ces

to check the following�

sup
���

k
�n
�� � �� 	 �kL� � o
n������
�������

k	 	 
�� In� 	 �kL� � oPn
n������
�������

See the discussion after Theorem ����� for getting simple su�cient conditions for all

assumptions appearing above in the case where E � �	� ��d�

����� Asymptotic E�ciency

In order to discuss the asymptotic e�ciency� we set�

H � L�
�	� � �� E� 	�t�z�
y�t�z�

dt�
dz���
�������

H � L�
�	� � � �E�B��� � � � E � dt�
dz���
Hn � L�
�	� � � �E�B��� � � � En� dt�
dz���

Here� the function y is the one which appears in Condition ������ We equip H with the

usual L�
inner product h	� 	iH � Since we always assume 
������� and since ��y is assumed

to be bounded� H is a linear subspace of the Hilbert space H � Let Pn � fP n
h � h � Hg

be a family of probability measures on 
#n�Fn� indexed by H� De�ne the mapping

�n � H � Hn by 
������� Hereafter� we denote by �n
h� any function of the equivalent

elements in Hn�

Suppose that the predictable compensator of Nn�i under the probability measure P n
h

is given by

�nh
t� Z
n�i
t �Y n�i

t dt�
�������

where �nh � �nh
t� z� is de�ned by

�nh �
�
� � n�����n
h��y�

��
��
�������

To see that the compensator 
������� is well
de�ned� recall the discussion after 
�������

and 
�������� In particular� it holds that �n� 
t� Z
n�i
t 
��� � �
t� Zn�i

t 
��� for almost all t�

The predictable compensator �n�h of 
n under the probability measure P n
h is then given

by

�n�h
dt� dz� � �nh
t� z��
n
dt� dz�

where

�n
dt� dz� �
knX
i��

Y n�i
t 
Zn�it


dz�dt�
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Step I� Local Asymptotic Normality� Assume P n
h � P n

� � It is well
known

that� under some conditions� a version of the log
likelihood ratio is given by

log
dP n

h jFn



dP n
� jFn




� �
�
log
��� � n�����n
h��y�

��� � 
n

�������

�
���� � n�����n
h��y�

��� � �
�
� �n��



see� e�g�� Theorem III����� of Jacod and Shiryaev 
������� This representation does not

depend on the choice of a version of �n
h��y� � Hn� because it holds that �n��
��B� � 	

identically and that P n
� 



n
B� � 	� � � for any B � B��� � ��En such that Leb��
B� �

	�

Proposition ����� Let C be an arbitrary subset of H� Assume 
������� Suppose that

the function y appearing in Condition ����� satis�es the following�

y � L�
��N � and

���� In

nY n� � y

����
L��	
N �

� oPn
�

���

����n
h���y��n
h���y�� 
h�h���
�y
��
� 	 y 	 ���L� � 	 �h�� h� � C�

ky 	 
�n � �n�kL� � 	�

Introduce the Hilbert space H given by 
�������� Suppose also that P n
h � P n

� and 
�������

hold for every h � C� Then� it holds that for every h � C

log
dP n

h jFn



dP n
� jFn




� $n
h�� �

�
khk�H � �n
h��

where

$n
h� � n����
��n
h��y�� � 

n � �n���


and �n
h� � oPn
�

��� Furthermore� it also holds that 
$n
h��� ����$

n
hd��
Pn
��
 N
	�(�

where (ij � hhi� hjiH �

Proof� Since j log
��x��x� x	

�
j � �



x
 for all x � ���

�
� �
�
�� we have that for any 
 � 
	� �������log dP n

h jFn



dP n
� jFn




�$n
h� �Dn
h� � %Dn
h�

���� � ��

�

Dn
h�

whenever supt�z jn�����n
h��y�
t� z�j � 
� where�

Dn
h� � jn�����n
h��y�j� � 
n
 �
%Dn
h� � jn�����n
h��y�j� � �n��
 �
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Since�����j�n
h��y�j� In

nY n�Y
n�
�
� �n��
 � A

�
j�n
h��y�j� In

nY n�

�



����
�

����j�n
h��y�j� 	 In

nY n� 	 
�n � �n�

����
L�

�
����j�n
h��y�j� 	 ���� In

nY n� � y

���� 	 
�n � �n�

����
L�

�
��j�n
h��y�j� 	 y 	 
�n � �n�

��
L�

� k�n
h��y�k�L�
����� In

nY n� � y

����
L��	
N �

� ky 	 
�n � �n�kL�
�
�

and since

A

�
j�n
h��y�j�

���� In

nY n� � y

�����



� k�n
h��y�k�L� 	
���� In

nY n� � y

����
L��	
N �

�

it holds that %Dn
h�
Pn
��� �

�
khk�H � Also� using Lenglart�s inequality� we have Dn
h� �

%Dn
h�
Pn
��� 	� These facts imply the �rst assertion� Applying Lemma ����� to the family

of eQn
measurable functions fKn�h � h � Cg given by

Kn�h � n��� 	 ��n
h��y� 	 In

nY n� �

we can show the �nite
dimensional convergence of h� $n
h�� �

Discussion about Step II and Step III is similar to the preceding sections� hence is

omitted�

��A Notes

A part of the results in Section ��� was presented by Nishiyama 
������ As mentioned in

the main text� a progress from the preceding work is the introduction of L�p
bracketing

entropies rather than the L�
bracketing one� This would be important also for other

applications in non
i�i�d� settings� see� e�g�� Chapter �� The problems considered in

Sections ��� and ��� were posed by McKeague and Utikal 
���	� who treated the case

where the state space of covariates is �	� ��� Our way of constructing the estimator is

motivated by their work� A moment assumption of theirs has been weakened�



Chapter �

M�Estimators� General Criterion and

Euclidean Parameters

��� General Criterion

The common structure of the models treated in this and next chapters is as follows�

Formulation ����� For every n � N� let 
#n�Fn� be a measurable space and Pn �

fP n
u � u � Ung a family of probability measures on 
#n�Fn� indexed by an arbitrary set

Un� For every n � N and u � Un� let the following be given�


i� a space �n� a random point �nu � �n� and a �	����valued stochastic process

� � dnu
�� �
n
u� with parameter in �n	


ii� some stochastic processes � � �nu
�� and � � �nu 
��� with parameters in �n�

We then denote Rn
u
�� � f� � �n � 
���� � dnu
�� �

n
u� � �g for every � � 
	����

The �	���
valued stochastic process � � dnu
�� �
n
u� above is usually given by a 
random�

semimetric dnu
�� �� on �n and a 
random� point �nu which should be regarded as an


approximate� true point of unknown parameter� We refer the processes � � �nu
�� and

� � �nu
�� as the �criterion process and the �contrast process � respectively� the latter

is sometimes taken to be deterministic� and in that case it is referred as the �contrast

function � The following result is a version of Theorem ����� of van der Vaart andWellner


������ into which contributions by some other authors in this area are condensed 
see

Notes at the end of this chapter��

Theorem ����� Consider Formulation ����� above� Suppose that the following M �

criterion is satis�ed for some �� � 
	���� p � 	� a � 
	� p�� not depending on n

and u� some functions �nu � 
	� ��� � 
	��� such that � � ��a�nu
�� is decreasing� and

some positive constants rn�u such that r��n�u � 
	� ��� and that �nu
r
��
n�u� � r�pn�u�

��
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M �criterion� For every 
 � 	 there exists some c�� C�� K� � 	 and n� � N such

that� for every n � n� and u � Un there exists a set Bn
u 

� 
 #n such that

�nu
�� � �nu 
�
n
u� � �c��p �� � Rn

u
�� on the set Bn
u 

�

and

En�
u sup

��Rnu ���
j
�nu � �nu�
�� � 
�nu � �nu �
�

n
u�j�Bn

u ��� � C��
n
u
��

whenever � � �K�r
��
n�u� ���� and that P n�

u 
#n n Bn
u 

�� � 
�

Then� for any mappings b�nu � #n � �n such that

lim
L��

lim sup
n��

sup
u�Un

P n�
u

�
�nu

b�nu� � �nu
�

n
u�� Lr�pn�u

�
� 	
������

and that

lim
n��

sup
u�Un

P n�
u

�
dnu

b�nu � �nu� � ����

�
� 	�
������

it holds that

lim
L��

lim sup
n��

sup
u�Un

P n�
u

�
rn�ud

n
u

b�nu � �nu� � L

�
� 	�

When M �criterion is satis�ed for �� ��� the assumption 
������ is unnecessary�

Remark� In the sequel� we refer the �rst and the second displayed inequalities of M 


criterion as the �first inequality and the �second inequality � respectively�

Keeping a two
term Taylor expansion of the function � � �nu 
�� in their mind� van

der Vaart and Wellner 
����� presented some results of this fashion for the case of p � �

as their Theorems ����� and ������ The adaptation to the case of general p will be useful

in Sections ���� ��� and ���� The truncation introduced in the second inequality �ts

in our maximal inequalities based on the quadratic modulus� The last di�erence is the

uniformity in the underlying probability measures 
this is clear if the conclusion is given

in the form of a probability inequality by using universal constants� see� e�g�� Birg'e and

Massart 
����� and van de Geer 
����b��� Although the change of the proof is minor�

we state the whole proof following exactly the same line as that of van der Vaart and

Wellner 
������

Proof of Theorem ������ Fix any 
 � 	� and choose some constants c�� C�� K� � 	 and

n� � N according to M 
criterion� In the following we will consider n � n� only�

Now� �x any L � 	 for a while� and choose any J � N such that c����p�J���L � 	 and

that �J � K�� Put J
n
u � maxfj � N � �jr��n�u � ��g 
we have implicitly assumed �� ���
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but the case of �� � � is easier� read the following argument replacing �J � �j � Jnu  

by ��j � J �� We denote�

Sn
u 
j� �

n
� � #n � b�nu
�� � Rn

u
�
jr��n�u�

o
J � �j � Jnu �

#n
u

� L� �

n
� � #n � �nu


b�nu
���
�� � �nu
�
n
u�
�� � �Lr�pn�u

o
� Bn

u 

��

Then it holds on the set Sn
u 
j� � #n

u

� L� that

sup
��Rnu ��jr��

n�u�

�nu
�� � �nu
�
n
u� � �Lr�pn�u

and that

inf
��Rnu��jr��

n�u�
�nu
�� � �nu 
�

n
u� � �c��p�j���r�pn�u�

thus we have

sup
��Rnu ��jr��

n�u�

f
�nu � �nu�
�� � 
�nu � �nu �
�
n
u�g � 
c��

p�j��� � L�r�pn�u
������

� 
c� � ��p�J���L��p�j���r�pn�u�

Since fdnu
b�nu � �nu� � ����g 
 fdnu
b�nu � �nu� � �J
n
u r��n�ug it holds that

P n�
u

�
�J��r��n�u � dnu


b�nu � �nu� � ����� #
n
u

� L�

�
�

X
J�j�Jnu

P n�
u 
Sn

u 
j� � #n
u

� L�� �

where the summation with respect to j can be read as zero when J � Jnu � If J � Jnu �

recalling 
������� we obtain from the Markov inequality and the second inequality of

M 
criterion thatX
J�j�Jnu

P n�
u 
Sn

u 
j� � #n
u

� L�� � C�

c� � ��p�J���L

X
J�j�Jnu

�nu
�
jr��n�u�

�p�j���r�pn�u

� C�

c� � ��p�J���L

X
J�j�Jnu

�aj�nu
r
��
n�u�

�p�j���r�pn�u

� �pC�

c� � ��p�J���L

X
j
J

��a�p�j�

Here we have also used the fact that �nu
c�� � ca�nu
�� for every c � ��

Consequently we have

P n�
u

�
rn�ud

n
u

b�nu � �nu� � �J��

�
� P n�

u 
#n n #n
u

� L�� � P n�

u

�
dnu

b�nu � �nu� � ����

�
�

�pC�

�� ��a�p�
	 ��a�p�J

c� � ��p�J���L
�
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This inequality holds also in the case of �� � � by regarding the second term on the

right hand side as zero� Notice that the last term on the right hand side does not depend

on n � N and u � Un and converges to zero as J �� since a � p� To get the assertion�

�rst choose large L � 	 according to the assumption 
������� and next let J ��� �

In the remaining sections of this chapter� we are concerned with some problems of

estimating �nite
dimensional parameters� Here� we sketch a procedure for deriving the

asymptotic distribution of M 
estimators based on a continuous mapping theorem for

argmax functionals 
Theorem ����� of van der Vaart and Wellner 
������� In any case�

we shall consider some rescaled criterion processes h� M n
h� of the form

M n
h� � anf�n
�� � r��n h�� �n
���g�

where rn and an are some appropriate constants� Thus the �rst problem should be to

�nd the �rate of convergence rn� and Theorem ����� is useful at this step� The constant

an should be determined in connection with rn� Next� according to Theorem ����� of van

der Vaart and Wellner 
������ we shall show the following�


i� The uniform tightness of the local sequence bhn � rn
b�n � ����


ii� The weak convergence of the process h � M n
h� to a continuous process h �

M 
h� in ��
K�� for every compact subset K of the space of local parameters�


iii� The existence of a unique maximum point bh of the path h� M 
h��

Any Borel random variable on a Polish space is tight� hence so is bh� Thus a result of

the form �rn
b�n � ���
P

�
 bh follows from the argmax continuous mapping theorem�

The reason why we are content with the case of �nite
dimensional parameters in this

approach is that the uniform tightness of the local sequence bhn 
the step 
i� above� is

equivalent to �rnjb�n���j � OP 
�� � which is actually the consequence of Theorem ������

This is not always true when the parameter space is general� but Theorem ����� is still

useful at least for deriving the rate of convergence as we see in Chapter �� We will make

use of the results given in Chapter � at step 
ii�� For simplicity� we will not discuss the

uniformity in the underlying probability measures in Sections ��� and ����

��� Gaussian White Noise Model

����� Criterion for Rate of Convergence

For every n � N� let Xn � 
Xn
t �t������ be a continuous stochastic process given by

dXn
t � f
t�dt � n����dBt� Xn

� � x� � R�
������
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where f � L��	� ��� and B � 
Bt�t������ is a standard Brownian motion on a stochastic

basis B � 
#�F �F � 
Ft�t������� P �� Let 
�� d� be a separable metric space� we will take

it to be a Euclidean space later� Let w � fw� � � � �g be a class of elements of L��	� ���

Equip � with the semimetric �w given by

�w
�� �� � kw� � w�kL	 ����� ��� � � ��
������

We consider the criterion process � � �n
�� de�ned by

�n
�� �

Z �

�

w�
t�dX
n
t �� � ��
������

and the contrast function � � �
�� de�ned by

�
�� �

Z �

�

w�
t�f
t�dt �� � ��
������

The former is indeed well
de�ned as the stochastic integral with respect to the semi


martingale t � Xn
t 
see� e�g�� Theorem I����� of Jacod and Shiryaev 
������� When �

is not countable� the process � � �n
�� is not unique even in the almost sure sense�

However� the following argument holds for any version of the process� because we shall

always consider a countable subset �� of � when we apply Theorem ����� to the terminal

variables of the continuous martingales

�n
�� � �
�� � n����
Z �

�

w�
t�dBt �� � �� 
 ��

We denote by B�	�d�
�� �� the closed ball in � with center � � � and d
radius � � 	�

Theorem ����� Let 
�� d� be a separable metric space� For a given class w � fw� � � �
�g 
 L��	� ��� introduce �w� �

n and � given by 
������� 
������ and 
������� Suppose that

there exists a countable� d�dense subset �� of � such that �w de�nes a proper metric on

��� For a given point �� � �� suppose also that � � �
�� is d�continuous at �� and that

the following conditions are satis�ed for some �� � 
	���� p � 	� a � 
	� p�� c � 	 and a

function 	 � 
	� ���� 
	��� such that � � ��a	
�� is decreasing�

�
��� �
��� � �cd
�� ���p �� � B�	�d�
��� ����
������

sup
��	�

Z �

�

q
logN
B�	�d�
�� ��� �w� 
�d
 � 	
�� �� � 
	� ����
������

sup
��	�

Diam
B�	�d�
�� ��� �w� � 	
�� �� � 
	� ����
������
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Choose any constants rn � 	 such that r��n � 
	� ��� and that n����	
r��n � � r�pn � Then�

for any ���valued random sequence b�n such that d
b�n� ��� � oP �
�� and that

�n
b�n� � sup
��	�

�n
�� � �n

for some �n � OP �
r
�p
n �� it holds that d
b�n� ��� � OP �
r

��
n �� When �� ��� the assump�

tion �d
b�n� ��� � oP �
��
 is unnecessary� When �� � ��� the assumption that � � �
��

is d�continuous at �� is unnecessary�

Proof� We will apply Theorem ������ Since � � �
�� is d
continuous at ��� we can choose

a point �n�� � �� such that j�
�n��� � �
���j � 
c��p��� 	 r�pn and that d
�n�� � ��� � r��n

when �� � ��� the choice �n�� � �� satis�es these requirements� thus the assumption that

� � �
�� is d
continuous is unnecessary�� We then denote Rn
��

�� � f� � �� � 
���� �

d
�� �n��� � �g for every � � 
	����

For any � � �r��n � ���� it holds that

�
��� �
�n��� � �
��� �
��� � �
���� �
�n���

� �cd
�� ���p � c

�p��
	 r�pn

� � c

�p
	 �p � c

�p��
	 ��p �� � Rn

��

��

� � c

�p��
	 �p�

Thus the first inequality of M 
criterion is ful�lled� Next� to show the second

inequality� notice that for every � � 
	� ���

E sup
����Rn�� ���

j
�n � ��
��� 
�n � ��
��j

� n����E sup
����B���d���

n
��
���		�

����Z �

�

w�
t�dBt �
Z �

�

w�
t�dBt

���� �
Since the quadratic �w
modulus of the family of continuous martingales�Z �

�

w�
t�dBt � � � ��
�

is bounded by �� and since Diam
B�	�d�
�
n
��
� ��� �w� � 	
��� it follows from Theorem

����� and 
������ that the right hand side is bounded by 
up to a multiplicative universal

constant�

n����
Z ����

�

q
log
� �N
B�	�d�
�n�� � ��� �w� 
��d
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� n����
�
	
��

p
log � �

Z ����

�

q
logN
B�	�d�
�

n
��
� ��� �w� 
�d


�
�

np
log � � �

o
	 n����	
���

Thus the second inequality is satis�ed with �n�� � n����	� �

The assumptions 
������ and 
������ are analogous to an assumption of Theorem

�����	 of van der Vaart and Wellner 
������ Although the supremum with respect to �

comes out of the integral� this condition may still look awkward at �rst sight� Indeed� it

requires a calculation of certain covering numbers of the sets B�	�d�
�� �� for all su�ciently

small � � 	� However� when the parameter space 
�� d� is Euclidean� this condition can

be replaced by a simple relationship between the two metrics d and �w� as is given in the

next theorem�

Theorem ����� Let � be a subset of a �nite�dimensional Euclidean space with the usual

metric d� For a given class w � fw� � � � �g 
 L��	� ��� introduce �w� �
n and � given

by 
������� 
������ and 
������� Suppose that there exists a countable� d�dense subset ��

of � such that �w de�nes a proper metric on ��� For a given point �� � �� suppose

also that � � �
�� is d�continuous at �� and that there exist some �� � 
	��� and some

constants p � q � 	 and c� C � 	 such that��
�
��� �
��� � �cd
�� ���p �� � B�	�d�
��� ����

�w
�� �� � Cd
�� ��q ��� � � ��

������

Then� the same conclusion as Theorem ����� holds for rn � n����p�q��

Proof� It su�ces to show that the conditions 
������ and 
������ of Theorem ����� are

satis�ed with 	
�� � const��q� First notice that for every � � 	

d
�� �� � 
��q� �
 �w
�� �� � C
�q�
������

Thus we have for every � � ��

N
B�	�d�
�� ��� �w�C
�
q� � N
B�	�d�
�� ��� d� 


��q���

The right hand side is bounded by f
����

��q�� � �gr for every 
 � 
	� ��� where r is the

dimension of �� Hence� noting also N
B�	�d�
�� ��� �w�C�
q� � �� we obtain

C����q
Z �

�

q
logN
B�	�d�
�� ��� �w� 
�d


�

Z �

�

q
logN
B�	�d�
�� ��� �w�C
�q�d


�
Z �

�

q
r logf�
���q � �gd
 
� K� say� ���
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On the other hand� by putting 
 � � in 
������ we obtain Diam
B�	�d�
�� ��� �w� � �C�q�

Hence� 
������ and 
������ are satis�ed with 	
�� � C 	 
K� � �� 	 �q� �

In so
called �regular parametric models� the condition 
������ is satis�ed with p � �

and q � �� which leads to the �square root asymptotics � The �cube root asymptotics 

investigated by Kim and Pollard 
���	�� whose origin goes back at least to Cherno�


������ corresponds to the case of p � � and q � ����

In both theorems� we have to show the consistency of estimators somehow� Thus let

us state here a su�cient condition based on Corollary ����� of van der Vaart and Wellner


������

Proposition ����� Let 
�� d� be a separable metric space� For a given class w � fw� �

� � �g 
 L��	� ��� introduce �w� �
n and � given by 
������� 
������ and 
������� Suppose

also that there exists a countable� d�dense subset �� of � such that �w de�nes a proper

metric on ��� Suppose that it holds for a given point �� � � that

�
��� � sup
� ��G

�
��
�����	�

for every d�open set G 
 � that contains ��� and thatZ �

�

p
logN
�� �w� 
�d
 ���

Then� for any ���valued random sequence b�n such that

�n
b�n� � sup
��	��f��g

�n
�� � �n

for some �n � oP �
��� it holds that d
b�n� ��� � oP �
���

Proof� We will apply 
i� of Corollary ����� of van der Vaart and Wellner 
����� to

�� � �� � f��g 
if �w
�
�
�� ��� � 	 for some ��� � ��� set �� � 
�� n f���g� � f��g to make


��� �w� a proper metric space�� Notice that the inequality 
�����	� still holds for any

G 
 �� containing �� which is open in the relative topology� Theorem ����� yields that

E sup
��	


j�n
�� � �
��j � C 	 n����
Z D

�

p
log
� �N
�� �w� 
��d


� C 	 n����
�
D
p

log � �

Z D

�

p
logN
�� �w� 
�d


�
�

where D � Diam
�� �w� � � by our entropy condition� and C � 	 is a universal

constant� This implies that

sup
��	


j�n
�� � �
��j � oP 
���
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which completes the proof� �

����� Examples

Example �� Peak point of F

Let us consider estimating the value of

�� � argmax
�������

F 
���

where t � F 
t� is the cumulative function of f de�ned by F 
t� �
R t
�
f
s�ds� This

problem can be treated in our general framework by setting

w�
t� � ������
t� �� � �	� ���

The criterion process and the contrast function� de�ned by 
������ and 
������� turn out

to be �n
�� � Xn
� and �
�� � F 
��� respectively�

We equip � � �	� �� with the usual metric d
�� �� � j� � �j to apply Theorem ������

It holds that �w
�� �� �
pj� � �j� and thus �w is de�nes a proper metric on �	� ��� The

function � � �
�� is indeed continuous� Hence� if �� is an inner point of �	� �� and if

there exist some constants ��� c � 	 and p � ��� such that

F 
�� � F 
��� � �cj� � ��jp �� � ��� � ��� �� � ���
�������

then the same conclusion as Theorem ����� holds for rn � n����p����

To derive the asymptotic behavior of the rescaled residual n����p���
b�n � ���� let us

introduce an assumption on the function t� F 
t��

Condition ����� Let p � N be given� For a given point �� � 
	� ��� the function

t� F 
t� is 
p� ���times continuously di�erentiable in a neighborhood of �� with deriva�

tives F �m��m � �� ���� p � �� and has p�th left� and right�derivatives F
�p�
� and F

�p�
� at ���

respectively� which satisfy�

� when p � �� F �m�
��� � 	 for every m � �� ���� p� �	

� when p is odd� F
�p�
� 
��� � 	 � F

�p�
� 
���	

� when p is even� F
�p�
� 
��� � F

�p�
� 
��� � 	�

The condition 
������� follows from this assumption by a Taylor expansion� Moreover�

we obtain the following result�



�	 �� M 
Estimators� General Criterion and Euclidean Parameters

Proposition ����� Under Condition ������ for any �	� �� � Q�valued random sequenceb�n such that b�n P ��� �� and that

Xn
b�n � sup

�������	Q
Xn
� � �n

for some �n � oP �
n
�p���p����� it holds that n����p���
b�n���� P

�
 argmaxh�RfA 
h��B 
h�g
in R� where h� A 
h� is the deterministic process given by

A 
h� �

�
hpF

�p�
� 
����p-� �h � 	�

hpF
�p�
� 
����p-� �h � 	�

and where h� B 
h� is the two�sided Brownian motion� that is� a zero�mean� continuous

Gaussian process such that EjB 
h��� B 
h��j� � jh� � h�j for every h�� h� � R�

Proof� It has already been shown by Theorem ����� that the sequence n����p���
b�n � ���

is uniformly tight� Let us set�

Hn � fh � R � �� � n�����p���h � �	� ��g�
Hn� � fh � R � �� � n�����p���h � �	� �� � Qg�

We consider the stochastic process h� M n
h�� with parameter in Hn� de�ned by

M n
h� � np���p���
�
�n
�� � n�����p���h�� �n
���

�
� A n
h� � B n
h��

where�

A n
h� � np���p���
Z �

�

�
w���n��	�	p���h
t� � w��
t�

�
f
t�dt�

B n
h� � n����p���
Z �

�

�
w���n��	�	p���h
t� � w��
t�

�
dBt�

By Theorem ������ there exists a continuous version h � eB n
h� of h � B n
h��

Thus we �rst consider eM n � A n � eB n instead of M n � An easy computation gives that

limn�� A n
h� � A 
h� for every h � R� Furthermore� since h � A n
h� and h � A 
h�

are continuous� this convergence is uniform on every compact set K 
 R� On the other

hand� it follows from Corollary ����� that eB n P
�
 B in ��
K� for every compact set

K 
 R� Thus we have eM n P
�
 M � A � B in ��
K� for every compact set K 
 R� The

existence and the uniqueness of the maximum point of h� M 
h� follow from Khinchin�s

law of the iterated logarithm 
see� e�g�� page �� of Hida 
���	�� and Lemma ��� of Kim
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and Pollard 
���	�� respectively� Hence Theorem ����� of van der Vaart and Wellner


����� yields the following claim� for any uniformly tight sequence bhn satisfying

eM n
bhn� � sup
h�K

eM n
h�� �n�K

for some �n�K � oP �
�� for each compact setK 
 R� it holds that bhn P
�
 argmaxh�RM 
h�

in R�

Now� for every n � N such that K 
 Hn� using the continuity of h � eM n
h�� we

have

sup
h�K

eM n
h� � sup
h�K	Hn�

eM n
h� P 
almost surely

� sup
h�K	Hn�

M n
h� P 
almost surely

� sup
h�Hn�

M n
h��

Hence� we can apply the above claim to bhn � n����p���
b�n � ���� which takes values in

Hn� identically� in order to obtain that n����p���
b�n � ���
P

�
 argmaxh�RM 
h� in R� �

Since �n
�� � Xn
� � and since � � Xn

� is continuous� it is possible to apply Theorem

����� to B n � without introducing the continuous version eB n by Theorem ������ However�

since it is not always easy to show the �
separability of the original family of continu


ous local martingales fR �
�
w�
t�dBtg� we presented the above approach using eB n � This

argument is indeed necessary for Example � given later�

Example �� Steepest interval of F

Fix a constant b � 
	� ����� We aim to estimate the value of

�� � argmax
��	

Z ��b

��b
f
t�dt�

which is the center of the interval with length �b where the function t� F 
t� increases

most rapidly� This problem �ts in our general framework by setting

w�
t� � ����b���b�
t� �� � �b� �� b��

The criterion process and the contrast function� de�ned by 
������ and 
������� turn out

to be �n
�� � Xn
��b �Xn

��b and �
�� � F 
� � b�� F 
� � b�� respectively�

Here we make an assumption which is similar to Condition ����� in the preceding

example�
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Condition ����	 Let an even integer p � � be given� For given �� � 
b� � � b�� the

function t � f
t� is 
p� ���times continuously di�erentiable on an open set containing

�� � b and �� � b with derivatives f �m��m � �� ���� p� �� satisfying�

� f �m�
�� � b� � f �m�
�� � b� for every m � 	� ���� p� �	

� f �p���
�� � b� � f �p���
�� � b��

Proposition ����� Under Condition ������ for any �b� ��b��Q�valued random sequenceb�n such that b�n P ��� �� and that

Xn
b�n�b �Xn

b�n�b � sup
���b���b�	Q

�
Xn
��b �Xn

��b
�� �n

for some �n � oP �
n
�p���p����� it holds that n����p���
b�n���� P

�
 argmaxh�RfA 
h��B 
h�g
in R� where h� A 
h� is the deterministic process given by

A 
h� � �����hpff �p���
�� � b�� f �p���
�� � b�g�p- �h � R�

and where h� B 
h� is the two�sided Brownian motion�

Proof� It follows from Condition ����� and a Taylor expansion that

�
��� �
��� �
f �p���
%���� f �p���
%���

p-

� � ���

p�

where %�� 
resp� %��� is a point on the segment connecting ��b and ���b 
resp� ��b and

��� b�� Thus� since p is even� it holds that �
��� �
��� � �cj�� ��jp in a neighborhood

of �� for a constant c � 	� On the other hand� it is clear that �w
�� �� �
p

�j� � �j�
and thus �w de�nes a proper metric on �b� � � b�� Hence Theorem ����� implies that

n����p���
b�n � ��� is uniformly tight� Repeating the same argument as that in the proof

of Proposition ����� to the stochastic process h� M n
h� de�ned by

M n
h� � �����np���p���
�

Xn

���b�n��	�	p���h �Xn
���b

�� 
Xn
���b�n��	�	p���h �Xn

���b�
�
�

we can obtain the assertion� �

Example �� Jump point of f

Let us introduce a model for the estimation problem of a jump point of f �
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Condition ����
 For an inner point �� of �	� ��� there exists a constant a � 
	� ����

such that the function t� f
t� is c�adl�ag on the interval ��� � a� �� � a� and that

D � 
R� � L��� 
L� � L�� � 
R� �R�� � 	

where
L� � supt�����a���� f
t�� R� � supt��������a� f
t��
L� � inft�����a���� f
t�� R� � inft���� ����a� f
t��

The constant a � 	 in the above assumption should be known to construct the estimator

given later� but we do not specify any concrete shape of the function t� f
t�� even the

value of the constant D � 	� Condition ����� means that the function t � f
t� has a

positive jump at ��� namely f
��� � f
���� � R� � L�� which is the biggest one in the

interval ���� a� �� � a�� This interpretation shows how natural this assumption is in the

present context�

Let the parameter space � � �a� � � a� be equipped with the Euclidean metric

d
�� �� � j� � �j� Fixing a constant b � 
	� a� we de�ne

w�
t� � kb
t� �� �� � �a� �� a��
�������

where

kb
x� �

	
�
�x� b� x � ��b� 	��
�x� b� x � �	� b��
	� otherwise�

Proposition ����� Under Condition ������ consider the criterion process � � �n
�� �R �
�
w�
t�dX

n
t with w� given by 
�������� For any �a� � � a� � Q�valued random sequenceb�n such that b�n P ��� �� and that

�n
b�n� � sup
���a���a�	Q

�n
��� �n

for some �n � oP �
n
���� it holds that n
b�n � ���

P
�
 argmaxh�RfA 
h� � B 
h�g in R�

where h� A 
h� is the deterministic process given by

A 
h� �

	
� h
n

�b���

R ���b
���b f
t�dt � f
���

o
� �h � 	�

h
n

�b���

R ���b
���b f
t�dt � f
����

o
� �h � 	�

and where h� B 
h� is the two�sided Brownian motion�

Proof� It holds that for any � � ���� �� � a� b�

�
��� �
��� � �
�b� j� � ��j�R�j� � ��j � j� � ��j
R� � L��b

� �j� � ��jfb�
R� � L��� 
R� �R���� j� � ��jR�g
� �j� � ��jfbD � j� � ��jR�g
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and that� in the same way� for any � � ��� � a� b� ���

�
��� �
��� � �j� � ��jfbD � j� � ��jL�g�

Thus� choosing su�ciently small constants ��� c � 	 we have �
�� � �
��� � �cj� � ��j
for every � � ��� � ��� �� � ���� On the other hand� an easy computation implies that

�w
�� �� � C
pj� � �j with C �

p
�b� � �b� Hence Theorem ����� yields that the rate of

convergence in this model is rn � n� Repeat the same argument as Proposition ����� to

the stochastic process h� M n
h� de�ned by M n
h� � 
�b���nf�n
�� � n��h�� �n
���g
to get the assertion� �

����� Remarks for Non�Gaussian Cases

Instead of the Gaussian white noise model 
������� let us consider the following�

dXn
t � f
t�dt � dMn

t � Xn
� � x� � R�

where f � L��	� �� is as before� and Mn � 
Mn
t �t������ is a continuous local martingale�

de�ned on a stochastic basis B� with the quadratic covariation given by hMn�Mnit �R t
�
gn
s�ds� Then� all results in Subsection ����� remain true whenever

sup
t������

gn
t� � OP 
n
����

Furthermore� if

sup
t������

jngn
t� � �j � oP 
���

then all results in Subsection ����� also hold without change of limit distributions� More

generally� if there exists g � L��	� �� such that

sup
t������

jngn
t� � g
t�j � oP 
���

then one can get some results similar to those in Subsection ������ under some smoothness

assumptions on g� with modi�cation of limit distributions�

��� Multiplicative Intensity Model

Let 
n be a �
dimensional point process de�ned on a stochastic basis 
#n�Fn�Fn �


Fn
t �t������� P

n� with the predictable compensator �n given by

�n
�� dt� � �
t�Y n
t 
��dt�
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where � is a �	���
valued measurable function on �	� ��� and t � Y n
t is a �	���
valued

predictable process� Let a class fw� � � � �g of bounded� measurable functions on �	� ��

be given� Assuming
R �
�
�
t�dt ��� we consider the contrast function given by

�
�� �

Z �

�

w�
t��
t�dt �� � ��
������

and the criterion process given by

�n
�� � 
w�Y
n�� � 
n� �� � ��
������

where the generalized inverse process Y n� of Y n is de�ned by

Y n�
t 
�� �

� �
Y n
t ���

if Y n
t 
�� � ��

	 otherwise�

In this section� specializing the class w� we consider two kinds of estimation problems�

In both problems� we will assume the following�

Condition ����� There exists a measurable function y on �	� ��� which is bounded away

from zero� such that

sup
t������

��n��Y n
t � y
t�

�� Pn�� 	�

Now� setting

#n
L� �

�
sup
t������

��n��Y n
t � y
t�

�� � �

L

�
L � sup

t������

�

y
t�
�
������

we have for all n � L that

�n
�� � �
�� � 
w�Y
n�� � 

n � �n�� on the set #n
L�

and that

sup
t������

nY n�
t � L on the set #n
L��

Noting also that limn�� P n
#n n #n
L�� � 	� we will use these facts to establish the

second inequality of Theorem ������

Problem �� Peak point of �

Let us consider estimating the location of 
approximate� peak of the function t� �
t��

This problem can be treated by setting

�
�� �

Z �

�

����b���b�
t��
t�dt �� � 
b� �� b��

where b � 
	� ���� is a given constant�



�� �� M 
Estimators� General Criterion and Euclidean Parameters

Proposition ����� Suppose that Conditions ����� and ����� with f replaced by � are

satis�ed� and that the function t� y
t� appearing in the former is continuous at points

�� � b and �� � b appearing in the latter� De�ne �n
�� by 
������ for the class w �

f����b���b� � � � �b� �� b�g� Then� for any �b� �� b��valued random sequence b�n such thatb�n Pn��� �� and that

�n
b�n� � sup
���b���b�

�n
��� �n

for some �n � oPn�
n�p���p����� it holds that n����p���
b�n � ���
Pn

�
 argmaxh�RfA 
h� �
B 
h�g in R� where h� A 
h� is the deterministic function given by

A 
h� � hp 	 �
�p���
�� � b�� ��p���
�� � b�

p-

�����
�� � b�

y
�� � b�
�
�
�� � b�

y
�� � b�

�������� �
and where h� B 
h� is the two�sided Brownian motion�

Proof� First� let us apply Theorem ����� to get jb�n � ��j � OPn�
n�����p����� The first

inequality of M 
criterion can be shown in the same way as Proposition ������ To

show the second inequality� we apply 
ii� of Theorem ����� to the class

Wn
� � f����b���b�Y n� � � � ��g

where �� � ��� � �� �� � �� � �b� �� b�� Notice that there exist some constants ���M � 	

such that j�
� � b� ��
�� b�j �M for all � � ���� For every � � 
	� ���� we construct a

DFP &� � f&�

�g������� of �� as follows� for every 
 � 
	� �� we divide the interval ���

with length less than ��� into N
�


� sub
intervals with length at most ��
�� this can be

done with N
�


� � �

�	
� �� Then it holds that

kWn
� k
� �� �

p
�� 	M 	 n��L on the set #n
L�

and that

jW n

� j� � �n� � �� 	M 	 n��L on the set #n
L��

where the constant L � 	 and the set #n
L� is given by 
������� Thus we have for all

n � L that

En� sup
��	�

j
�n � ��
��� 
�n � ��
���j��n�L�

� n��������
�p

�ML

Z �

�

s
log

�
�


�
� �

�
d
� �

�
�

Since Condition ����� implies that limn�� P n
#n n #n
L�� � 	� we can deduce from

Theorem ����� with �nu
�� � n�������� that jb�n � ��j � OPn�
n�����p�����
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Next� let us derive the asymptotic behavior of the sequence of rescaled processes

M n
h� � np���p���C�

�
�n
�� � n�����p���h�� �n
���

�
where

C� �

�����
�� � b�

y
�� � b�
�
�
�� � b�

y
�� � b�

�������� �
Let us decompose M n
h� � A n
h� � B n
h�� where

A n
h� � W n�h � �n� �
B n
h� � W n�h � 

n � �n���

with

W n�h � np���p���C�
�����n��	�	p���h�b����n��	�	p���h�b� � �����b����b��Y
n��

An easy calculation implies that A n
h�
Pn�� A 
h� for every h � R� Furthermore� since

h� A n
h� and h� A 
h� are continuous� this convergence is uniform on every compact

set K 
 R� On the other hand� Theorem ����� yields that B n
Pn

�
 B in ��
K� for

every compact set K 
 R� Hence� the same argument as Proposition ����� implies the

conclusion� �

Problem �� Jump point of �

The second problem is concerned with a jump point of the hazard function t� �
t��

Proposition ����� Assume Conditions ����� and ����� with f replaced by �� Fixing

a constant b � 
	� a�� de�ne �n
�� � 
w�Y
n�� � 
n� � where w� � kb
t � �� is given by


�������� Then� for any �a� � � a��valued random sequence b�n such that b�n Pn��� �� and

that

�n
b�n� � sup
���a���a�

�n
��� �n

�n � oPn�
n���� it holds that jb�n � ��j � OPn�
n����

Proof� The first inequality of M 
criterion of Theorem ����� with p � � follows

from the same computation as Proposition ������ Using Theorem ����� again� we can

show that the second inequality holds with the truncation by the set #n
L� de�ned

by 
������ and with �nu
�� � n��������� �

We do not derive the asymptotic behavior of a sequence of �rescaled processes as

in the proof of Proposition ������ the Lindeberg condition is not satis�ed in the present

situation� thus no result in Section ��� works well� It is conjectured that the limit of

n
b�n � ��� would be the argmax of a process with jumps�
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��A Notes

The general criterion Theorem ����� is an adaptation of Theorem ����� of van der Vaart

and Wellner 
����� which is a fruit of recent works by some other authors� including

Birg'e and Massart 
������ van de Geer 
����a� and Wong and Shen 
������ The two

inequalities of M 
criterion are from� e�g�� 
���� and 
���� of van de Geer 
����a��

respectively�

The problem of estimating the mode of a density function� which is the motivation of

Propositions ����� and ������ was studied by Cherno� 
������ It is treated also by Kim

and Pollard 
���	� in their systematic study of the cube root asymptotics� A progress

of our results is that the smoothness around the mode has come into our scope� this is

possible also in the i�i�d� case although we did not state in the main text� We continue

this study further in Section ����

Related to Propositions ����� and ������ let us brie!y review some known results of

jump point estimation� The asymptotic distribution of the maximum likelihood estimatorb�n of a jump point �� of t� f
t� in the Gaussian white noise model 
������ can be found

in Ibragimov and Has�minskii 
����� Section VII���� More precisely� they derived the

asymptotic behavior of n
b�n � ��� when the function f is of the form f�
t� � S
t � ��

with S being a known function� along the approach of �nite
dimensional parametric

estimation� Korostelev 
����� showed the rate of convergence is still order n in a certain

non
parametric model� Wang 
����� considered a broader model� including not only

jumps but also cusps� and derived that the rate of convergence of a jump point estimator

is nj lognj�� with any constant � � 	� which is quite close to the best rate� Our setting is

more general than that of Korostelev 
������ but does not contain that of Wang 
������

The point of Proposition ����� is that we have gotten the asymptotic distribution result

of the rate n� By contrary� Proposition ����� gives the rate n only� See also M,uller and

Wang 
���	� who considered estimating the point where a hazard function changes most

rapidly�



Chapter �

Non�parametric Maximum Likelihood

Estimators

��� Gaussian White Noise Model

Let � � 	 be a �xed constant� and � a subset of L��	� � �� For every n � N� let t� Xn
t be

a continuous� adapted process on a �ltered measurable space 
#n�Fn�Fn � 
Fn
t �t����
 ���

and let Pn � fP n
� � � � �g be a family of probability measures on 
#n�Fn� indexed by ��

Suppose that Xn is a special semimartingale under P n
� with the canonical decomposition

dXn
t � �
t�dt � n����dBn��

t � Xn
� � x� � R�

where t � Bn�� is a standard Brownian motion de�ned on 
#n�Fn�Fn� P n
� �� It is well


known that� under some conditions� the log
likelihood ratio is given by

log
P n
� jFn




P n
� jFn




�

Z 


�

f�
t� � �
t�gdXn
t �

�

�

n
k�k�L	 ����� � k�k�L	 �����

o
��� � � �
������


see e�g� Theorem III����� of Jacod and Shiryaev 
������� Thus the maximum likelihood

estimator is the maximizer of the criterion process � � �n
�� de�ned by

�n
�� �

Z 


�

�
t�dXn
t �

�

�
k�k�L	 ���
 � �� � L��	� � ��
������

For every �� � �� the corresponding contrast function � � ���
�� under P
n
��

turns out to

be

���
�� �

Z 


�

�
t���
t�dt � �

�
k�k�L	���
 � �� � L��	� � �
������

� ��

�
k� � ��k�L	���
 � �

�

�
k��k�L	���
 ��

We shall not use the fact that 
������ gives the log
likelihood ratio� and thus �n
�� can be

thought just as a random variable de�ned by 
������� Moreover� we have de�ned �n
��

��
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and ���
�� for all elements � of L��	� � � in order to consider �sieved maximum likelihood

estimators� In view of 
������ and the first inequality of M 
criterion of Theorem

������ it is natural to adopt the L�
semimetric as the canonical semimetric dnu on the

parameter space �� that is� dnu
�� �� � k� � �kL	 ���
 ��
Let U be a subset of � 
one may take U � � or f��g for instance�� We now introduce

a local entropy condition on a �sieve �n 
 L��	� � �� which need not be contained in ��

uniformly over U � Throughout this section� we denote by B
�� �� the closed ball in

L��	� � � with center � and k 	 kL	 ���
 �
radius ��

Condition 	���� Let a set U 
 � 
 L��	� � � and some countable sets �n 
 L��	� � �

be given� For every n � N and �� � U � there exist a proper metric b�n�� on �n such

that k 	 kL	���
 � � b�n��� and a function 	n�� � 
	��� � 
	��� such that � � ���	n��
�� is

decreasing and thatZ �

�

q
log
� �N
�n � B
��� ��� b�n�� � 
��d
 � 	n��
�� �� � 
	����
������

Then� choose some positive constants rn��� such that n����	n��
r
��
n���

� � r��n����

Theorem 	���� Let a set U 
 � 
 L��	� � � and some countable sets �n 
 L��	� � � be

given� Suppose that Condition ����� is satis�ed� and choose some constants rn��� described

there� Suppose also that there exists a constant M � 	 such that� for every n � N and

�� � U there exists �n�� � �n such that

k�� � �n��kL	���
 � �Mr��n��� �
������

Then� for any mapping b�n � #n � �n such that

�n
b�n� � sup
��	n

�n
��� r��n with rn � sup
���U

rn��� �
������

it holds that

lim
L��

lim sup
n��

sup
���U

P n�
��

�
rn���kb�n � ��kL	���
 � � L

�
� 	�

It is trivial that the assumption 
������ is not a real restriction when �n � �� it is

satis�ed with �n�� � ��� On the other hand� it should be noted that the positive constant

M � MU appearing there may depend on U � the case of U � � leads to the rate of

convergence uniformly in the true parameter ��� while the case of U � f��g implies the

point
wise assertion only� However� from the practical point of view we should choose a

sieve �n satisfying � 
 S��	n B
��M�r��n � with a positive constant M� not depending
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on U even in the case of U � f��g� because statisticians do not know which is the true

point ���

Proof� We will apply Theorem ������ Formulation ����� should be read as follows� for

every �� � U
� Un��


i� the semimetric space 
�n� k 	 kL	���
 �� and the point �n�� � �n�


ii� the criterion processes � � �n
�� and the contrast functions � � ���
��� with

parameters in �n� de�ned by 
������ and 
������� respectively�

We then denote Rn
��

�� �

�
� � �n � 
���� � k� � �n��kL	 ���
 � � �

�
for every � � 
	����

To show the first inequality of M 
criterion with p � �� �rst observe that

k�n�� � ��kL	���
 � � Mr��n���

� �

�
	 �
�

whenever � � �Mr��n���

� �

�
k� � �n��kL	���
 � whenever � � Rn

��

���

Thus we have for every � � �Mr��n��� and every � � Rn
��

��

���
��� ���
�
n
��
� �

�

�

n
�k� � ��k�L	 ���
 � � k�n�� � ��k�L	 ���
 �

o
� �

�

n
�k� � �n��k�L	 ���
 � � �k� � �n��kL	���
 � 	 k�n�� � ��kL	���
 �

o
� �

�

�
�k� � �n��k�L	 ���
 � � �k� � �n��kL	 ���
 � 	

k� � �n��kL	���
 �
�

�
� ��

�
k� � �n��k�L	 ���
 �

� � �

��
���

This means that the first inequality holds for c� �
�
��

and K� � �M 
with �� ����

On the other hand� by 
������ we haveRn
��

�� 
 �n�B
���

�
��� whenever � � ��Mr��n�������

Thus Theorem ����� implies that

En�
�� sup

��Rn�� ���
j
�n � ��
��� 
�n � ��
�n���

�j

� n����
Z �

�

q
log
� �N
�n � B
���

�
�
��� b�n�� � 
��d


� n����	n��

�
�
�� � �

�
	 n����	n��
���

which means that the second inequality holds with �n�� � n����	n�� � Hence Theorem

����� yields that

lim
L��

lim sup
n��

sup
���U

P n�
��

�
rn���kb�n � �n��kL	����� � L

�
� 	�
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Recalling 
������� we obtain the assertion� �

Example �� Monotone functions

Let us set � to be the class of monotone functions � � �	� � � � �	� ��� Then it follows

from Theorem ����� of van der Vaart and Wellner 
����� thatZ �

�

q
logN
�� k 	 kL	���
 �� 
�d
 � const����� �� � 	�

This suggests that� by choosing a sieve �n appropriately� Condition ����� should be

ful�lled with 	n��
�� � const�
���� � ��� which leads to the rate rn � n��
� not depending

on �� � U � ��

Proposition 	���� Choosing any grids 	 � tn� � tn� � 	 	 	 � tnkn � � such that tni �tni�� �
n���
� de�ne �n as the class of monotone functions � � �	� � � � V n which are piecewise

constant on each interval �tni��� t
n
i �� where V

n � fj 	n���
 � j � Zg� �	� ��� Then� it holds

that � 
 S��	n B
��
p
� � �n���
��

Proof� Fix any � � �� Let us choose �u� �l � �n given by�
�u
t� � ui
�l
t� � li

for t � �tni��� t
n
i �� i � �� ���� kn�

where

ui � min

�
y � V n � sup

s��tni���t
n
i �

�
s� � y

�
�

li � max

�
y � V n � inf

s��tni���t
n
i �
�
s� � y

�
�

and �u
�� � �l
�� � 	� If the function t � �
t� is increasing� then ui � li�� � n���
�

Thus we have k� � �lk�L	���
 � � k�u � �lk�L	���
 � � k�u � �lkL����
 � � 
� � ��n���
� The case

of t� �
t� being decreasing is also shown in the same way� �

Since �n 
 �� Condition ����� is indeed satis�ed for b�n�� � k 	 kL	 ���
 � and 	n��
�� �

const�
���� � ��� The above proposition says that the assumption 
������ is also ful�lled�

Consequently� it holds for any b�n satisfying 
������ with �n given in Proposition �����

that

lim
L��

lim sup
n��

sup
���	

P n�
��

�
n��
kb�n � ��kL	 ���
 � � L

�
� 	�

It should be noted that grids of order n���
 is su�cient to get this rate� and the discrete

observation of the process t� Xn
t only on the grids is enough to compute the estimator�
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Example �� Smooth functions

Let some constants � � ��� andH � 	 be given� Let us consider the class � � C	
H
�	� � ��

de�ned in 
��� of Section ���� Recall thatZ �

�

q
logN
C	

H
�	� � ��� k 	 k�� 
�d
 � const��������	��

This suggests that Condition ����� should be ful�lled with 	n��
�� � const�
�������	�� ���
which leads to the rate rn � n	���	����

Choosing any grids 	 � tn� � tn� � 	 	 	 � tnkn � � such that tni � tni�� � n�	���	����

de�ne the mapping �n � �� ���	� � � by

�n�
t� �
knX
i��

��tni���t
n
i �

t�

tni � tni��

Z tni

tni��

�
s�ds �t � �	� � ��

This mapping �n is a special case of 
������� Using also Lemma ������ we have�

k�n� � �n�kL	 ���
 � � k� � �kL	 ���
 � � �k� � �k� ��� � � ��

k� � �n�kL	���
 � � �k� � �n�k� � �Hn�	���	��� �� � ��

Hence� if we choose a sequence of countable subsets �n of �n� such that �n� 
S
��	n B
��Mn�	���	���� for a constant M � 	 not depending on n� then Condition

����� and the assumption 
������ are satis�ed for U � �� b�n�� � k 	 k� and 	n��
�� �

const�
�������	����� Thus� the assertion of Theorem ����� holds for such a sieve �n� with

U � ��

Similarly to the preceding example� this result says that taking some grids of order

n�	���	��� is enough to get the convergence rate rn � n	���	����

��� Multiplicative Intensity Model

Let 
E� E� be a Blackwell space on which a measure � is de�ned� and let � � 	 be a �xed

constant� Let us denote�

Lp
� � ff � Lp
�	� � ��E�B��� � � � E � dt�
dz�� � f
t� z� � �g �p � ������

We also denote by k 	 kLp the Lp
seminorm on Lp
�	� � ��E�B��� � � � E � dt�
dz���
For every n � N� let 
n be an E
valued multivariate point process on a �ltered

measurable space 
#n�Fn�Fn � 
Fn
t �t����
 ��� Let Pn � fP n

� � � � �g be a family of

probability measures on 
#n�Fn� indexed by a subset � of Lp
� for some p � �����
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speci�ed later� We suppose that the predictable compensator of 
n with respect to the

probability measure P n
� is given by

�n��
�� dt� dz� � �
t� z�Y n
�� t� z�dt�
dz��

where Y n is a �	���
valued predictable function� It is well
known that� under some

conditions� the log
likelihood ratio is given by

log
dP n

� jFn



dP n
� jFn




� ln
�� � ln
�� ��� � � ��

where

ln
�� � 
log �� � 
n
 � � � �n

������

with

�n
�� dt� dz� � Y n
�� t� z�dt�
dz��
������

However� as in the preceding section� we shall not use the fact that ln
�� above is a

component of the log
likelihood ratio� it may be regarded just as a ������
valued

random variable de�ned by the right hand side of 
������� As a matter of fact� in the

following we will de�ne ln
�� for all elements � of Lp
� in order to discuss some �sieved 

maximum likelihood estimators� again�

Condition 	���� For some p� q � ����� such that 
��p� � 
��q� � �� it holds that

� 
 Lp
� and Y n
�� 	� 	� � Lq

� �� � #n�

Furthermore� for a given subset U of �� it holds that

lim
L��

lim sup
n��

sup
���U

P n�
�� 
#

n n #n
q 
L�� � 	�

where

#n
q 
L� �

n
� � #n �

p
n��kY nkLq
�� � L

o
�L � 	�
������

A typical case� considered by van de Geer 
����b�� is p � � and q � �� This choice is

optimal in the context of censoring models� where it indeed holds that Y n � n� For our

discussion of rate of convergence� we adopt the random Hellinger semimetric �n de�ned

by

�n
�� �� �

r
�

n

���p� �p����� � �n

�

s
�

n

Z
���
 ��E

���p�
t� z� �
p
�
t� z�

���� Y n
t� z�dt�
dz� ��� � � Lp
��
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Due to the �rst requirement of Condition ������ the above formula indeed de�nes a

random semimetric� On the other hand� an entropy condition on the sieve should be

given in terms of the L�p
Hellinger semimetric ��p de�ned by

��p
�� �� �
���p� �p����

L	p

�

�Z
���
 ��E

���p�
t� z� �
p
�
t� z�

����p dt�
dz�����p

��� � � Lp
��

Then it follows from the H,older inequality that �n � L��p on the set #n
q 
L� given by


������� Throughout this section� we denote by B�	p
�� 
� the closed ball in Lp
� with

center � and ��p
radius 
� and by B�n
�� 
� the 
random� closed ball in Lp
� with center �

and �n
radius 
� We consider a sequence �n of subsets of Lp
� which satis�es the following

condition�

Condition 	���� Let U 
 � 
 Lp
� be given� where p � ������ For every n � N and

�� � U � there exist a function 	n�� � 
	���� 
	��� and some sets �n
��� �� 
 �n 
 Lp
�

for � � 
	��� such that � � ���	n��
�� is decreasing and thatZ �

�

q
log
� �N� �
�n
��� ��� ��p� 
��d
 � 	n��
�� �� � 
	����
������

Then� choose some positive constants rn��� such that n����	n��
r
��
n���

� � r��n����

The subsets �n
��� �� of �
n have to be chosen to satisfy not only 
������ but also 
������

below� It can be taken to be �n �B�	p
��� �� if the random semimetric �n is �asymptot


ically equivalent to the semimetric ��p 
i�e�� the assumption 
������ below�� Generally

speaking� a smaller choice of �n
��� ���s makes it easy to check the entropy condition


������� but does it di�cult to check the condition 
������� If we choose �n
��� �� � �n�

the condition 
������ is always satis�ed� thus this choice is wise when it does not a�ect

the inequality 
�������

Theorem 	���� Let U 
 � 
 Lp
� be given� where p � ������ Suppose that Conditions

����� and ����� are satis�ed for some �n
��� �� 
 �n 
 Lp
�� and choose some constants

rn��� described there� Suppose also that there exists a constant M � 	 such that� for

every n � N and �� � U there exists �n�� � �n such that

�� �M�n�� and ��p
��� �
n
��� � Mr��n����
������

and that

lim
K��

lim sup
n��

sup
���U

P n�
��

#n n #n

��

K�� � 	

where #n
��

K� �

�
Rn
��

�� � f�n��g 
 �n
���K�� �� � �Kr��n��� ���

�
with Rn

��
�� �
�
� � �n � 
���� � �n
�� �n��� � �

�
�


������
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Then� for any mapping b�n � #n � �n such that

ln
b�n� � sup
��	n

ln
��� nr��n with rn � sup
���U

rn��� �
������

it holds that

lim
L��

lim sup
n��

sup
���U

P n
��

�
rn����

n
b�n� ��� � L
�
� 	�

When �n
��� �� � �n� the assumption 
������ is unnecessary� When �n
��� �� � �n �
B�	p
��� ��� the assumption 
������ is satis�ed if

lim
K��

lim sup
n��

sup
���U

P n�
��

�B� sup
�����n

�n�����
Kr��
n���

��p
�� ��

�n
�� ��
� K

�CA � 	�
������

It is trivial that the assumption 
������ is not a real restriction when �n � �� it is

satis�ed with M � � and �n�� � ��� Recall also the remark following Theorem ������

To prove the above result� we shall apply Theorem ����� not to the naive criterion

process � � �n
�� � n��ln
�� but to the process � � �n��
�� given by

�n��
�� �
�

n

��
log

� � �n��
��n��

�
� 
n
 �

��
� � �n��
��n��

� �

�
�n��

�
� �n


�

������

where �n�� is an element of �n satisfying 
������� Then it is natural to introduce the

process � � �n��
�� given by

�n��
�� �
�

n

��
log

� � �n��
��n��

�
� �n���
 �

��
� � �n��
��n��

� �

�
�n��

�
� �n


�

�����	�

�
�

n

��
log

� � �n��
��n��

�
�� �

�
� � �n��
��n��

� �

�
�n��

�
� �n
 �

which can be approximated by

�

n

��
log

� � �n��
��n��

� � � �n��
��n��

� �

�
�n��

�
� �n


if �n�� is �close to ��� We should have noticed in advance that

� � �n��
��n��

should be read as

� � �n����f�n����g

��n��

where 	�	 � ���
�������

However� it follows from the assumption 
������ that f�n�� � 	g 
 f�� � 	g� and we also

have P n
��


n
f�� � 	g� � 	� � �� These facts allow us to adopt the notational convention


�������� The merit of these �modi�ed processes is that

� � �n��
��n��

� �

�
�
�������

To justify the �modi�cation � we should �rst see the following�
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Lemma 	���� Under the �rst requirement of 
������� for any mapping b�n � #n � �n

satisfying 
������� it holds that

�n��

b�n� � �n��
�

n
��
� � �

�
r��n P n

��
�almost surely�

Proof� Since the function x� log
x� is concave� it holds that

n�n��

b�n� �

�
log
b�n � �n��
��n��

�
� 
n
 �

�

�

b�n � �n��� � �n


� �

�

�
log

b�n
�n��

�
� 
n
 �

�

�

b�n � �n��� � �n
 on the set f
n
f�n�� � 	g� � 	g

� �

�

ln
b�n�� ln
�n����

� ��

�
nr��n �

Since �n��
�
n
��
� � 	� and since P n

��


n
f�n�� � 	g� � 	� � P n

��


n
f�� � 	g� � 	� � �� we

obtain the assertion� �

For computation of the Hellinger semimetric� we will use the following inequalities�

�

�

��px�py�� � �����
r
x� y

�
�py

����� � ��px�py�� �x� y � �	����
������� ��px� a�py � a
�� � ��px�py�� �x� y� a � �	����
�������

Proof of Theorem ������ We will apply Theorem ������ Formulation ����� should be read

as follows� for every �� � U
� Un��


i� the random semimetric space 
�n� �n� and the point �n�� satisfying 
������ and


�������


ii� the stochastic processes � � �n��
�� and � � �n��
��� with parameters in �n�

de�ned by 
������ and 
�����	�� respectively�

As in 
������� we denote Rn
��

�� �

�
� � �n � 
���� � �n
�� �n��� � �

�
for every � � 
	����

Notice that �n��
�
n
��
� � �n��
�

n
��
� � 	�

To show the first inequality of M 
criterion� let us write �n��
�� � 
I� � 
II��

where�


I� �
�

n

��
log

� � �n��
��n��

� � � �n��
��n��

� �

�
�n��

�
� �n
 �


II� �
�

n

��
log

� � �n��
��n��

�

�� � �n���

�
� �n
 �
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Since logx� x� � � �jpx� �j� for all x � 	� we have


I� � � �

n

�������
s
� � �n��
��n��

� �

�����
�

�n��

�A � �n


� �
�����n�� � �n��

�
� �n��

������
� ��

�

���n
�� �n������ by 
�������

� � �

��
�� whenever � � Rn

��

���

On the other hand� since j logxj � c�j
p
x� �j for all x � ��� where c� � 
� �

p
�� log ��

it follows from 
������� that

j
II�j � c�
n

������
s
� � �n��
��n��

� �

����� ���q�n�� �
p
��

��� ���q�n�� �
p
��

���� � �n

� c�
� �

p
M�

n

������
s
� � �n��
��n��

� �

�����q�n�� 	
���q�n�� �

p
��

���� � �n

� c�
� �

p
M��n

�
� � �n��

�
� �n��

�
�n
�n�� � ���

� c�
� �
p
M��n
�� �n����

n
�n�� � ��� by 
�������

� c�
� �
p
M� 	 � 	Mr��n��� whenever � � Rn

��
���

Thus� we have

�n��
��� �n��
�
n
��
� � � �

��
�� �� � Rn

��

��

whenever � � Kr��n��� with any K � �� 	 c�
� �
p
M�M �

To show the second inequality� observe that


�n�� � �n���
��� 
�n�� � �n���
�
n
��� �

�

n
	W n�� � 

n � �n����
 �� � �n�

where W n���s are de�ned by

W n�� � log

�
� � �n��
��n��

�
�� � Lp

�


we have extended the parameter space �n to Lp
� in the latter�� For a given � � 	�

choose some L�� K� � � and n� � N such that P n
��

#n n #n

q 
L�� � #n
��

K��� � � holds

for all n � n�� where the sets #n
q 
L�� and #n

��

K�� are given by 
������ and 
�������

respectively� For every n � n� and �� � U � �x any � � �r��n��� ���� and we will apply

Theorem ����� to the class W � fW n�� � � � �n
���K���g of predictable functions with
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a � �� Indeed� since �n
�� �	� � � � E� � � for all � � #n� we have that exp
jW j� �
�n
 
�� � � by using also 
������� For every 
 � 	� choose 
��p� 
�
brackets �l��k � u��k��

k � �� ���� N� �
�
n
���K���� ��p� 
�� in Lp

�� which cover the class �n
���K���� Construct a

NFP & of �n
���K��� from this series of brackets� We have that

jW n�� �W n��j �W n�u��k �W n�l��k if l��k � �� � � u��k

and that� since 	 � �
x� �� logx� � jx� �j� for all x � ��

�

�

�
E�
jW n�u��k �W n�l��k j�

�
� �n���


� �

�
exp

�
�

�
jW n�u��k �W n�l��k j

�
� �� �

�
jW n�u��k �W n�l��k j

�
� �n���


� �

��s
u��k � �n��
l��k � �n��

� �� log

s
u��k � �n��
l��k � �n��

�
��

�
� �n


� �M

��s
u��k � �n��
l��k � �n��

� �� log

s
u��k � �n��
l��k � �n��

�
�n��

�
� �n


� M

�������
s
u��k � �n��
l��k � �n��

� �

�����
�

�n��

�A � �n


� M

����qu��k � �n�� �
q
l��k � �n��

����� � �n

� Mnj�n
u��k � �n�� � l

��k � �n���j�

� Mnj�n
u��k� l��k�j� by 
�������

� L�
�Mnj��p
u��k� l��k�j� on the set #n

q 
L��

� L�
�Mn
��

where the set #n
q 
L�� is given by 
������� Thus we obtain kWkE	
�
 �

p
�MnL� on the set

#n
q 
L��� Likewise� it holds thatq

E�
jW n�� �W n��j� � ���
 �
p
�Mn�n
�� �� ��� � � �n�

this can be shown by computing on the sets f
t� z� � �
t� z� � �
t� z�g and f
t� z� �

�
t� z� � �
t� z�g separately� This suggests that we should apply Theorem ����� to the

random metric � �
p
�Mn�n� Notice that kp�Mn�nk
 �

p
�MnL� on the set #n

q 
L���

Hence� applying the theorem to K �
p
�MnL�K� and � � 	 we obtain

En
��

sup
�����n����K���

�n�������

j
W n�� �W n��� � 

n � �n����
 j��nq �L��
�������
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�
p
�MnL�K�

Z �

�

q
log
� �N� �
�n
���K���� �� 
��d


�
p
�MnL�K�	

n
��
K��� �

p
�MnL�K

�
�	

n
��
��

whenever � satis�es the restriction that 	n��
K��� �
p
�MnL�K� 	 ��� assumingM � ���

without loss of generality� this restriction is weaker than n����	n��
�� � ��� Thus the

above inequality holds for any � � �r��n ���� Now� recall that Rn
��

���f�n��g 
 �n
���K���

for all � � �K�r
��
n���

��� on the set #n
��

K�� given by 
������� Multiplying the both sides

of 
������� by n��� we have that

En
��

sup
��Rn�� ���

j
�n�� � �n���
��� 
�n�� � �n���
�
n
���

�j��n�L��	�n�� �K�� �
p
�ML�K

�
� n

����	n��
��

for any � � �K�r
��
n ���� The second inequality has been established� �

��� Counting Processes with Non�linear Covariates

Let 
E� E� be a Blackwell space on which a �
�nite measure � is de�ned� this is the state

space of covariate processes in the following model� Let � � 	 be a constant� We de�ne

the notations Lp
� and k 	 kLp in the same way as the �rst paragraph of Section ����

In the n
th statistical experiment� we consider kn adapted point processes on �	� � ��

namely Nn�i� 
i � �� ���� kn�� de�ned on a �ltered measurable space 
#n�Fn�Fn �


Fn
t �t����
 ��� we then denote T n�i

j � infft � �	� � � � Nn�i
t � jg for every j � N 
see

page �� of Jacod and Shiryaev 
������� Let Pn � fP n
� � � � �g be a family of proba


bility measures on 
#n�Fn� indexed by a subset � of Lp
� for some p � ����� speci�ed

later� Suppose that the predictable compensator of Nn�i with respect to the probability

measure P n
� is given by

�
t� Zn�i
t �Y n�i

t dt�

where t � Zn�i
t is an E
valued predictable process and t � Y n�i

t is a �	���
valued

predictable process� It is implicitly assumed that
R 

�
�
t� Zn�i

t 
���Y n�i
t 
��dt � � for

every � � #n� Suppose that we can observe the processes Nn�i� Y n�i and Zn�i on the

random sets ft � �	� � � � Y n�i
t 
�� � 	g� The goal of this section is to derive the rate of

convergence of sieved maximum likelihood estimators for ��

We analyze this problem by using the E
valued multivariate point processes


n
dt� dz� �
knX
i��

X
j


�Tn�ij �Zn�i
T
n�i
j

�
dt� dz��
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Here� we suppose that T n�i
j �� T n�i�

j� whenever i �� i�� then all requirement for 
n to be an

E
valued multivariate point process� including that 
n
ftg�E� � �� are indeed satis�ed


see De�nition III����� of Jacod and Shiryaev 
������� The predictable compensator of


n with respect to the probability measure P n
� is given by

�n��
dt� dz� � �
t� z��n
dt� dz�

where

�n
dt� dz� �
knX
i��

Y n�i
t 
Zn�it


dz�dt�
������

Under some conditions� the log
likelihood ratio is given by

log
dP n

� jFn



dP n
� jFn




� ln
�� � ln
�� ��� � � ��

where

ln
�� � 
log �� � 
n
 � � � �n
 �
although we shall not require any property of the log
likelihood ratio�

For our discussion of rate of convergence� we adopt the randomHellinger �semimetric 

�n which is �formally de�ned by

�n
�� �� �

r
�

n

���p� �p����� � �n

������

�

vuut �

n

knX
i��

Z 


�

����q�
t� Zn�i
t ��

q
�
t� Zn�i

t �

����� Y n�i
t dt

for every �� � � Lp
�� The meaning of the quotation marks is that �n
�� �� � � may

not hold� although it has been implicitly assumed at least for �� � � �� On the other

hand� an entropy condition on the sieve should be given in terms of the L�p
Hellinger

semimetric ��p de�ned by

��p
�� �� �
���p� �p����

L	p

�

�Z
���
 ��E

���p�
t� z� �
p
�
t� z�

����p dt�
dz�����p

��� � � L�p
� �

A main di�culty in this model is that the random measure �n
dt� dz� on �	� � � � E

de�ned by 
������ is not dominated by the measure dt�
dz�� compare 
������ and 
�������

Hence� in the present situation� an entropy condition in terms of ��p is not directly

translated into that in terms of �n as in the multiplicative intensity model where the

relation �n � L��p holds on the set #n
q 
L� given by 
������� To solve this problem� we
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will take the same approach as Sections ��� and ���� Let E �
S

mEn
m be a partition of E


measurable sets� which is at most countable� such that �
En
m� � 
	���� Set En � �fEn

m �

m � �� �� ���g� and denote by Lp�n
� the space of elements f of Lp

� that are B��� � � � En

measurable� it is trivial that Lp�n

� 
 Lp
�� We de�ne the predictable function Y n on

#n � �	� � ��E by

Y n
�� t� z� �
X
m

knX
i��

Y n�i
t 
���fZn�it ����En

mg
�fz�En

mg
�
En

m�

������


do not confuse this Y n
�� t� z� and the originalY n�i
t 
���s�� Then� it holds for any f � Lp�n

�

that

f � �n
 �

Z
���
 ��E

f
t� z�Y n
	� t� z�dt�
dz�
������

if the integral is �nite� We thus introduce the following condition�

Condition 	���� For some p� q � ����� such that 
��p� � 
��q� � �� it holds that

� 
 Lp
� and Y n
�� 	� 	� � Lq�n

� �� � #n�
������

Furthermore� for a given subset U of �� it holds that

lim
L��

lim sup
n��

sup
���U

P n�
�� 
#

n n #n
q 
L�� � 	�

where

#n
q 
L� �

n
� � #n �

p
n��kY nkLq � L

o
�L � 	
������

and where Y n is de�ned by 
�������

Under 
������� the equation 
������ does hold for all f � Lp�n
� by the H,older inequality�

and thus the same relation as 
������ is ful�lled on the smaller �
�eldB��� � ��En� In this

case� the formula 
������ indeed de�nes a random semimetric on Lp�n
� ��� In particular�

we have that

�n
�� �� �

s
�

n

Z
���
 ��E

���p�
t� z� �
p
�
t� z�

���� Y n
t� z�dt�
dz� ��� � � Lp�n
�

and that

�n
�� �� � L��p
�� �� ��� � � Lp�n
� on the set #n

q 
L��

Hence it would be convenient for computation of entropy to construct a sieve f�ng of

subsets of Lp�n
� �s rather than Lp

�� To do it� we introduce the mapping �n � Lp
� � Lp�n

�

de�ned by

�n�
t� z� �
X
m

�

�
En
m�

�

����Z
En
m

p
�
t� w��
dw�

����� �fz�En
mg


notice that this is di�erent from that of Section ����� Then we have the following�
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Lemma 	���� 
i� If � � � where �� � � Lp
�� then �n� � �n��


ii� If f is a �	����valued B��� � � � En�measurable function� then for every �� � � Lp
�Z

���
 ��E

���p�n�
t� z� �
p
�n�
t� z�

����p f
t� z�dt�
dz�
�

Z
���
 ��E

���p�
t� z� �
p
�
t� z�

����p f
t� z�dt�
dz��
provided the integrals are �nite�

Proof� The assertion 
i� is trivial� and 
ii� follows from that���p�n�
t� z� �
p
�n�
t� z�

����p
�
X
m

�

�
En
m�

�p

����Z
En
m

�p
�
t� w� �

p
�
t� w�

�
�
dw�

�����p �fz�En
mg

�
X
m

�

�
En
m�

Z
En
m

���p�
t� w� �
p
�
t� w�

����p �
dw��fz�En
mg�

�

Consequently� we obtain that� if we choose 
��p� 
�
brackets in Lp
�� namely �l��k� u��k��s�

which cover the class �� then it holds on the set #n
q 
L� that ��nl��k� �nu��k��s form an


�n� L
�
brackets in Lp�n
� which cover the class �n�� This allows us to make an entropy

condition with respect to the non
random semimetric ��p rather than �n� Hereafter� we

denote by B�	p
�� 
� the closed ball in Lp
� with center � and ��p
radius 
�

Condition 	���� There exists a function 	 � 
	��� � 
	��� such that � � ���	
�� is

decreasing and thatZ �

�

q
log
� �N� �
�� ��p� 
��d
 � 	
�� �� � 
	����
������

Then� choose some positive constants rn such that n����	
r��n � � r��n �

Although we have stated the version corresponding to the case �n
��� �� � �n of Condi


tion ����� only� it is also possible to replace � of the entropy assumption 
������ by the

local ball � � B�	p
��� �� when we can show an �asymptotic equivalence of �n and ��p


i�e�� 
��������

Theorem 	���� Let U 
 � 
 Lp
� for some p � ������ Assume Conditions �����

and ������ and choose a sequence rn described there� For a given sequence of subsets
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�n 
 �n�� suppose that there exists a constant M � 	 such that� for every n � N and

�� � U there exists �n�� � �n such that

�� �M�n�� and ��p
��� �
n
��
� �Mr��n �
������

Then� for any mapping b�n � #n � �n such that

ln
b�n� � sup
��	n

ln
�� � nr��n �

it holds that

lim
L��

lim sup
n��

sup
���U

P n
��

�
rn�

n
b�n� ��� � L
�
� 	�

This result can be proved exactly in the same way as Theorem ����� by means of Lemma

������ those proofs can be read with little change of notation 
notice that �� � �n there

should be read as ��n� � �n here��

The next problem we should consider is how to check the assumption 
������ for

the sieve �n given as a subset of �n�� When � is a class of �smooth functions� the

assumption is always satis�ed if we use a slightly di�erent sieve� a part of the idea has

already appeared in Example � of Section ���� De�ne the mapping �n� � Lp
� � Lp�n

� by

�n��
t� z� �
X
m

�

�
En
m�

�

����Z
En
m

p
�
t� w� � r��n �
dw�

����� �fz�En
mg�
������

It is easy to show the same facts as Lemma ����� with �n replaced by �n�� Thus we have�

Corollary 	���� Let U 
 � 
 Lp
�� Assume Conditions ����� and ������ and choose a

sequence rn described there� De�ne �n � �n��� If there exists a constant M � 	 such

that

sup
t����
 �

sup
m

����� supz�En
m

p
��
t� z� � inf

z�En
m

p
��
t� z�

����� �Mr��n ��� � U� �n � N�

and if �
E� ��� then the same conclusion as Theorem ����� holds�

Proof� Notice that� if we choose 
��p� 
�
brackets in Lp
� which cover the class �� namely

�l��k � u��k��s� then it holds on the set #n
q 
L� that ��

n
�l

��k�r��n � �n�u
��k�r��n ��s form 
�n� L
�


brackets in Lp�n
� which cover �n � �n��� Hence it su�ces to prove that 
������ is satis�ed

for the present sieve �n � �n��� we will show it for �n�� � �n���� First observe thats
��
t� z�

�n���
t� z�
� infz�En

m

p
��
t� z� �Mr��n

infz�En
m

p
��
t� z� � r��n

� � �M�
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Next� since

inf
z�En

m

p
��
t� z� �

q
�n���
t� z� � r��n � sup

z�En
m

p
��
t� z�

we have

sup
�t�z�����
 ��E

����p��
t� z� �
q
�n���
t� z�

���� � 
� �M�r��n �

Thus it holds that ��p
��� �
n
���� � 
� �M���
E� 	 r��n � �

Example �� Smooth functions

Let us take E � �	� ��d endowed with the Lebesgue measure� Let � � 
d � ���� and

H � 	� and we consider the class C	
H � C	

H
�	� � � � �	� ��d� given in 
��� of Section ����

We set � � f� � L�� �
p
� � C	

Hg� Then� Condition ����� is satis�ed with U � � and

	
�� � const�
����d�����	 � ��� thus we set rn � n	���	�d���� Let �	� ��d �
S

mEn
m be a

partition of Borel measurable subsets of �	� ��d such that Diam
En
m� � r��n � Then� the

displayed assumption of Corollary ����� is satis�ed also with U � �� Hence� we can get

the conclusion of Theorem ����� if Condition ����� for p � � and q � � is satis�ed�

A su�cient condition for this is that kn � n and the processes Y n�i take values only

in a bounded set �	� K�� As in the next example� the state space of the process Y n�i is

typically f	� �g in the context of survival analysis� hence the result above is always valid�

Example �� Lexis diagram

Let us discuss the Lexis diagram which is an important method describing models in

survival analysis 
see Keiding 
���	� or Chapter X of Andersen et al� 
����� for the

details�� Let E � �	� � � and kn � n� We suppose that the covariate process Zn�i is given

by

Zn�i
t � 
t � en�i� � 	�

where en�i is a �	� � �
valued random variable representing the entry time of individual i�

then Zn�i
t is considered to represent the age or duration of the individual i at calendar

time t � �	� � �� We also suppose that the process Y n�i is given by

Y n�i
t � �fen�i�t� Zn�it �Un�ig�

where Un�i is a �	���
valued random variable� it is typically of the form Un�i � 
T n�i
� �

en�i��Cn�i where Cn�i is a �	���
valued random variable representing the censoring time

of the individual i� To guarantee the predictability of the processes Y n�i and Zn�i� the

random variables en�i and en�i � Un�i are assumed to be stopping times�
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We consider the parameter space � given in the preceding example with d � � 
and

E � �	� �� is replaced by �	� � ��� and thus we set rn � n	���	���� If we take a sequence of

partitions �	� � � �
S

mEn
m of Borel measurable sets En

m such that Diam
En
m� � r��n � the

conclusion of Theorem ����� holds for the sieve �n � �n�� given by 
�������

��� Di�usion�type Processes

Let us consider the stochastic di�erential equation

dXt � �
t�X�dt � n����dBt� X� � x� � R�
������

where t � Bt is a standard Brownian motion de�ned on a stochastic basis 
#�F �F �


Ft�t����
 �� P � and � � 	 is a �xed constant� The functional � appearing above should

satisfy some appropriate properties described as follows� We equip C�	� � �� the canonical

space of sample paths� with the �
�eld Ht � �fxs � s � tg for every t � �	� � ��

De
nition 	���� We denote by A the set of functionals � � �	� � � � C�	� � � � R such

that�


i� x� �
t� x� is Ht�measurable for every t � �	� � �	


ii� supt����
 � supx�C���
 � j�
t� x�j ���

De
nition 	���� For a given constant H � 	� we denote by LH the set of functionals

� � A such that

j�
t� x� � �
t� y�j � H sup
s����t�

jxs � ysj �x� y � C�	� � �� �t � �	� � ��

It is well
known that the stochastic di�erential equation 
������ has a unique strong

solution Xn�� � 
Xn��
t �t����
 � whenever � � LH for some H � 	 
see e�g� Theorem ���� of

Rogers and Williams 
������� We denote by x� � 
x�t �t����
 � the solution of the ordinary

di�erential equation

dxt � �
t� x�dt� x� � R�
������

Fix any H � 	� Let us introduce three notations� For every n � N and �� � LH we

de�ne the random semimetric �n�� on A by

�n��
�� �� �

s
�

�

Z 


�

j�
t�Xn����� �
t�Xn����j�dt ��� � � A�

For �� � LH we de�ne the semimetric ��� on A by

���
�� �� �

s
�

�

Z 


�

j�
t� x���� �
t� x���j�dt ��� � � A�
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For every �� � LH and 
 � 	� we de�ne

L�
H
���� 
� � f� � A � ���� �� � LH such that �� � � � �� and ���
��� ��� � 
g �

It is clear that LH 
 L�
H
��� � 
� 
 A�

We denote by Pn�� the induced probability distribution of Xn�� on the canonical space

C�	� � �� Then� the family fPn�� � � � LHg is equivalent� and the log
likelihood ratio is

given by

log
Pn
�

Pn
�


X� � nfl
��X� � l
��X�g ��� � � LH

where

l
��X� �

Z 


�

�
t�X�dXt � �

�

Z 


�

j�
t�X�j�dt
������


see� e�g�� page �� of Kutoyants 
������� Although the representation of log
likelihood

ratio relies on the existence of unique strong solution of the stochastic di�erential equa


tion 
������� the formula 
������ itself is well
de�ned for all � � A� We then consider a

maximum likelihood estimator 
MLE� on the sieve �n 
 A
b�n
X� � argmax

��	n

l
��X��

The precise description will be given in the main theorem below�

The condition which we shall assume is as follows� we denote by B���

�� �� the closed

ball in A with center � and ���
radius ��

Condition 	���� Let U 
 � 
 LH and �n 
 A be given� For every n � N and

�� � U � there exist a proper metric b�n�� on �n such that ��� � b�n��� and a function

	n�� � 
	���� 
	��� such that � � ���	n��
�� is decreasing and thatZ �

�

q
log
� �N
�n � B���


��� ��� b�n�� � 
��d
 � 	n��
�� �� � 
	����
������

Then� choose some constants rn��� � 
	� n���� such that n����	n��
r
��
n���

� � r��n����

Theorem 	���� Let U 
 � 
 LH for a constant H � 	� Suppose that Condition �����

is satis�ed for some countable sets �n 
 A� and choose some constants rn��� described

there� Suppose also that there exists a constant M � 	 such that� for every n � N and

�� � U

�n 
 L�
H
��� �Mr��n���� and ���
��� �

n
��� � Mr��n��� for some �n�� � �n�

Then� for any mapping b�n � C�	� � �� �n such that

l
b�n
X��X� � sup
��	n

l
��X� � r��n with rn � sup
���U

rn��� �
������
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it holds that

lim
L��

lim sup
n��

sup
���U

P �
�
rn������
b�n
Xn����� ��� � L

�
� 	�

lim
L��

lim sup
n��

sup
���U

P �
�
rn����

n
��

b�n
Xn����� ��� � L

�
� 	�

In order to prove the result above� we will apply Theorem ����� to the processes

� � �n��
�� and � � �n��
�� given by�

�n��
�� � l
��Xn����
������

�

Z 


�

�
t�Xn����dXn��� � �

�

Z 


�

j�
t�Xn����j�dt�

�n��
�� �

Z 


�

�
t�Xn������
t�X
n����dt� �

�

Z 


�

j�
t�Xn����j�dt
������

� ��

�
�n��
�� ���

� �
�

�

Z 


�

j��
t�Xn����j�dt�

The key point of the proof is that

�n��
��� �n��
�� � n����
Z 


�

�
t�Xn����dBt�
������

First� let us investigate the relationship between �n� and �n���

Lemma 	���� Let H � 	 and 
 � 	 be arbitrary constants� For every �� � LH and

every �� � � L�
H
���� 
� it holds that

j�n��
�� �� � ���
�� ��j� � n�� 	 ��H��e�H
 sup
t����
 �

jBtj� � ��
�

P �almost surely�

Proof� Observe that

j�n��
�� �� � ���
�� ��j�

�
Z 


�

��f�
Xn����� �
Xn����g � f�
x���� �
x���g��� dt
� �

Z 


�

���
Xn����� �
x���
��� dt� �

Z 


�

���
Xn����� �
x���
��� dt�

Here� for given � � L�
H
���� 
� choose some ��� �� � LH such that �� � � � �� and that

���
��� ��� � 
� Then we have

j�
t�Xn����� �
t� x���j � j��
t�Xn����� ��
t� x
���j � j��
t�Xn����� ��
t� x

���j
� j��
t�Xn����� ��
t� x

���j � j��
t�Xn����� ��
t� x
���j

��j��
t� x���� ��
t� x
���j�
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thus

j�
t�Xn����� �
t� x���j� � �H� sup
s����t�

jXn���
s � x��s j� � ��j��
t� x���� ��
t� x

���j��

It follows from the Grownwall inequality that

sup
t����
 �

jXn���
t � x��t j � eH
 sup

t����
 �
jn����Btj�

hence we obtainZ 


�

j�
t�Xn����� �
t� x���j�dt � �H��e�H
 sup
t����
 �

jn����Btj� � ��
��

Those inequalities imply the assertion� �

We will use the above lemma in the following form�

Lemma 	���	 Let U be an arbitrary subset of LH for some H � 	� and let M � 	 be

an arbitrary constant� For every n � N and �� � U � let rn��� be some positive constants

such that rn��� � n���� and let �n a countable subset of the set
T

���U L�
H
����Mr��n�����

Then� it holds that�

lim
L��

sup
n�N

sup
���U

P

�
sup

����	n

j�n��
�� �� � ���
�� ��j � Lr��n���

�
� 	�

lim
K��

sup
n�N

sup
���U

P

�B� sup
�����n

���
�����
Kr��

n���

���
�� ��

�n��
�� ��
� �

�CA � 	�

Proof� It follows from Lemma ����� that for every 
 � 	 there exists a constant L� � 	

such that supn�N sup���	 P 
# n #n
��


�� � 
� where

#n
��


� �

�
sup

����	n

j�n��
�� �� � ���
�� ��j � L�r
��
n���

�
�

The �rst assertion is nothing else than this fact� On the other hand� it holds on the set

#n
��


� that

sup
�����n

���
�����
Kr��

n���

���
�� ��

�n��
�� ��
� sup

�����n

���
�����
Kr��

n���

���
�� ��

���
�� �� � L�r
��
n���

� sup
�����n

���
�����
Kr��

n���

���
�� ��

���
�� �� � �
�
���
�� ��

whenever K � �L�

� ��
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This implies the second assertion� �

Proof of Theorem ������ We will apply Theorem ������ Formulation ����� should be read

as follows� for every �� � U
� Un��


i� the random semimetric space 
�n� �n��� and the point �n�� � �n�


ii� the stochastic processes � � �n��
�� and � � �n��
�� with parameters in �n� given

by 
������ and 
������� respectively�

We then denote Rn
��

�� � f� � �n � 
���� � �n��
�� �

n
��
� � �g for every � � 
	����

First of all� it follows from Lemma ����� that for every 
 � 	 there exists a constant

K� � 	 such that

sup
n�N

sup
���U

P 
# n #n
��

K��� � 
�

where

#n
��

K�� �

�
�n��
�

n
��
� ��� � K�r

��
n���

� � �
�����n

���
�����
K�r

��
n���

�
�

�
� �n��
�� ��

���
�� ��
� �

�
�

To show the first inequality of M 
criterion� observe that for any L � ��L�

�n��
�
n
�� � ��� � K�r

��
n���

on the set #n
��
K��

� �

�
	 �
�

whenever � � �K�r
��
n���

� �

�
�n��
�� �

n
��� whenever � � Rn

��
���

Hence� we have for every � � �K�r
��
n���

and � � Rn
��

�� that

�n��
��� �n��
�
n
��
� �

�

�

���n��
�� ���� � �n��
�
n
��
� ���

�
�

� �

�

���n��
�� �n���� � ��n��
�� �
n
����

n
��
�

n
�� � ���

�
� �

�

�
��n��
�� �n���� � ��n��
�� �

n
���

�n��
�� �
n
��
�

�

�
� ��

�
�n��
�� �

n
���

�

� � �

��
��

on the set #n
��

K��� This means that the first inequality holds for p � ��

Next� notice that whenever K� � �

#n
��
K�� 


n
Rn
��
�� � f�n��g 
 �n � B���


�n�� �K��� �� � �K�r
��
n���

���
o
�
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Since �n �B���

�n�� �K��� is contained in �n �B���


��� 
K� �M���� we can deduce from

Theorem ����� that for every � � K�r
��
n���

E� sup
��Rn�� ���

j
�n�� � �n���
�� � 
�n�� � �n���
�
n
��
�j��n�� �K��

� K� 	 n����
Z �

�

q
log
� �N
�n � B���


��� 
K� �M���� b�n�� � 
��d

� K� 	 n����	n��

K� �M���

� K�
K� �M� 	 n����	n��
���

Thus the second inequality is ful�lled with �n�� � n����	n���

Hence it follows from Theorem ����� that

lim
L��

lim sup
n��

sup
���U

P �
�
rn������
b�n
Xn����� �n��� � L

�
� 	�

Noting ���
�
n
��
� ��� �Mr��n��� � we get the �rst conclusion of the theorem� The second one

follows from the �rst and Lemma ������ �

Example� Markovian case

Consider the stochastic di�erential equation

dXt � �
Xt�dt� n����dBt� X� � x� � R�

where � � R � R is a bounded� Lipschitz continuous function� Then� the unique strong

solution Xn�� � 
Xn��
t �t����
 � is a time
homogeneous Markov process� In the same way as

the general case� we denote by x� � 
x�t �t����
 � the solution of the ordinary di�erential

equation

dxt � �
xt�dt� x� � R�

For a given bounded� Lipschitz continuous function �� � R� R� we de�ne

�n��
�� �� �

s
�

�

Z 


�

j�
Xn���
t �� �
Xn���

t �j�dt ��� � � A

and

���
�� �� �

s
�

�

Z 


�

j�
x��t �� �
x��t �j�dt ��� � � A�

where A denotes the space of bounded measurable functions on R�
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Let some constants � � � and H � 	 be given� We consider the class C	
H
R� given in


��� of Section ���� Due to the fact that t� x�t takes values only in �x� �H�� x� �H� �

whenever � � C	
H
R�� and recalling also Lemma ������ we de�ne the parameter space

� � f� � C	
H � x� �
x� is constant on Ecg�

where E � �x� � H� � �� x� � H� � ��� We denote by k 	 k� the supremum norm on

��
R�� notice that ��� � k 	 k�� Since we have

logN
�� k 	 k�� 
� � const�
���	�

Condition ����� is satis�ed with 	
�� � const�
�������	� � �� whenever �n 
 �� In this

case� we get the rate rn � n	���	���� Consequently� if we choose a countable subset �n

of � such that � 
 S��	n B�	�k�k��
��Mn�	���	���� for some M � 	 not depending on

n� then it holds for any �n
sieved MLE b�n that�

lim
L��

lim sup
n��

sup
���	

P �
�
n	���	������
b�n
Xn����� ��� � L

�
� 	�

lim
L��

lim sup
n��

sup
���	

P �
�
n	���	����n��


b�n
Xn����� ��� � L
�
� 	�

��A Notes

The rate of convergence of in�nite
dimensionalM 
estimators has been studied vigorously

by Birg'e and Massart 
������ van de Geer 
���	� ����� ����a� ����b�� Wong and Severini


����� and Wong and Shen 
������ see also Chapters ��� and ��� of van der Vaart

and Wellner 
����� and the bibliographical Notes there� Among the preceding works�

van de Geer 
����b� is a unique paper that deals with dependent data� Based on her

general result for counting processes� she considered non
parametric maximum likelihood

estimators in the multiplicative intensity model 
without marks�� it should be emphasized

that� although there are some di�erences� a major part of Section ��� has been already

known through her work� However� the marks and the discussion about sieves that have

been newly added there are useful for analyzing the non
linear covariate model in Section

����

Some M 
estimation problems in �nite
dimensional parametric models of di�usion


type processes have been studied by L'anska 
������ Genon
Catalot 
���	�� Yoshida


���	� ����� and Kutoyants 
����� Chapter ��� see also the references therein� The

results in Section ��� seem to be the �rst attempt in the in�nite
dimensional model�



Chapter �

Miscellanies

	�� Local Random Fields of Kernel Estimators

It is well
known that kernel density estimators for i�i�d� data have point
wise asymp


totic normality� However� since the density f is originally de�ned as a Radon
Nikodym

derivative with respect to Lebesgue measure� the value f
x� at each point x does not

intrinsically make sense� Thus� an assertion in some functional sense is preferable in

order for� e�g�� the construction of con�dence intervals�

The purpose of this section is to extend the asymptotic normality of kernel density

estimators to the functional sense with respect to a local parameter� The localizing

constants should be chosen to be the same as the bandwidth� Further� in Subsection

������ we apply it to the estimation problem of the mode of f using also Theorem ������

The generalizations of those results to some dependent cases are discussed in Subsection

������

����� I�I�D� Case

Let fXigi�N be an i�i�d� sequence of Rd
valued random variables with Lebesgue density

f � Let x� � Rd be a �xed point� and let fbngn�N be a sequence of positive constants such

that bn � 	 as n��� We are interested in estimating the local function u� f
x��bnu��

where the parameter u runs through a subset U of Rd� We consider the kernel estimator

bfn
x� � bnu� �
�

nbdn

nX
i��

K

�
Xi � x�

bn
� u

�
�u � U�

where K
x� is a kernel function on Rd� Throughout this section� the notation x�p� means

the p
th component of a vector x � Rd� We make two kinds of conditions either of which

the kernel function should satisfy�

Condition ����� �smooth kernel� The function K � Rd � R satis�es that�

���
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i�
R
Rd
K
x�dx � �� K
x� � K
�x� for every x � Rd� and K has a compact support	


ii� there exist � � 
	� �� and L � 	 such that jK
x� � K
y�j � Ljx � yj	 for every

x� y � Rd�

Condition ����� �monotone kernel� The function K � Rd � R is of the product

form K
x� �
Qd

p��Kp
x
�p�� of some functions Kp � R � R� p � �� ���� d� The functions

Kp need not be the same� but each of them satis�es�


i�
R
R
Kp
x�dx � �� Kp
x� � Kp
�x� for every x � R� and Kp has a compact support	


ii� the function x� Kp
x� is decreasing on �	����

We aim to derive the asymptotic behavior of the sequence of 
normalized� residual

processes Rn � 
Rn
u�ju � U� de�ned by

Rn
u� �
p
nbdn

n bfn
x� � bnu�� f
x� � bnu�
o

�u � U�

The key point is to investigate the processes Zn � 
Zn
u�ju � U� given by

Zn
u� �
p
nbdn

nbfn
x� � bnu�� efn
x� � bnu�
o

�u � U�

where

efn
x� � bnu� �
�

bdn

Z
Rd
K

�
x� x�
bn

� u

�
f
x�dx

�

Z
Rd
K
y�f
x� � bn
u� y��dy �u � U�

Notice that the processes Rn and Zn are not necessarily continuous in the case of a

monotone kernel� and thus we treat them as ��
U�
valued random elements� This is

natural especially in the multi
dimensional case�

Proposition ����� Choose a kernel function K � Rd � R satisfying either Condition

����� or ������ and let fbng be a sequence of positive constants such that bn � 	 and that

nbdn � � as n � �� If f is continuous at x�� and if U is bounded� then it holds that

Zn �
 Z in ��
U�� where u � Z
u� a zero�mean� continuous Gaussian process such

that

E 
Z
u��Z
u��� � f
x��

Z
Rd
K
x� u��K
x� u��dx �u�� u� � U�
������

Remark� The continuity of the limit process u � Z
u� is considered with respect to

the Euclidean metric�
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Let U� 
 U� 
 	 	 	 be a sequence of bounded subsets of Rd such that
S�

i��Ui � Rd�

We denote by ��loc
R
d� the set of all functions z � Rd � R that are bounded on every Ui�

and equip it with the local uniform metric d de�ned by

d
z�� z�� �
�X
i��

�
sup
u�Ui

jz�
u�� z�
u�j � �

�
��i�

Using Theorem ����� of van der Vaart and Wellner 
������ we obtain the following�

Theorem ����� Choose a kernel function K � Rd � R and a sequence of constants fbng
as in Proposition ������


i� If f is continuous at x�� then it holds that Zn �
 Z in ��loc
R
d�� where u� Z
u�

a zero�mean� continuous Gaussian process whose covariance E 
Z
u��Z
u��� is given by


������ for every u�� u� � Rd�


ii� If f is twice continuously di�erentiable in a neighborhood of x�� and if

lim
n��

nb�dn � h ���

then it holds that Rn �
 z� � Z in ��loc
R
d�� where

z� �

p
h

�

dX
p��

dX
q��

Z
Rd
y�p�y�q�K
y�dy

��f
x�

�x�p��x�q�

����
x�x�

�
������

This result can be applied to construct a con�dence band� substituting estimators

for f
x�� in the covariance of the limit process Z and for the second derivatives of f at

x� in the constant z�� Another application is given in Subsection ������ Notice that the

assumptions appearing above are exactly the same as those in the context of point
wise

asymptotic normality� and thus are quite reasonable� Our conclusion is that the local

smoothness of the density f implies not only the point
wise asymptotic normality but

also the weak convergence of local residual processes Rn�

Proof of Proposition ������ We can write Zn
u� �
Pn

i�� �
n
i 
u� where

�ni 
u� �
�p
nbdn

�
K

�
Xi � x�

bn
� u

�
�
Z
Rd

K

�
x� x�
bn

� u

�
f
x�dx

�
�

We will check the conditions of Theorem ������ For every u�� u� � U � since

E�ni 
u���
n
i 
u�� �

�

nbdn

�Z
Rd
K

�
x� x�
bn

� u�

�
K

�
x� x�
bn

� u�

�
f
x�dx

�
Z
Rd
K

�
x� x�
bn

� u�

�
f
x�dx

Z
Rd
K

�
x� x�
bn

� u�

�
f
x�dx

�
�

�

n

�Z
Rd

K
y � u��K
y � u��f
x� � bny�dy

�bdn
Z
Rd
K
y � u��f
x� � bny�dy

Z
Rd
K
y � u��f
x� � bny�dy

�
�
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we easily obtain

lim
n��

nX
i��

E�ni 
u���
n
i 
u�� � f
x��

Z
Rd
K
y � u��K
y � u��dy�

The Lindeberg condition �L��� follows from the assumption nbdn � �� In the following�

we will show that �PE�� of Theorem ����� is satis�ed under either Condition ����� or

������ and that the limit process u � Z
u� is continuous with respect to the Euclidean

metric�

�The case of smooth kernel�� Assume Condition ������ First notice that for any

u�� u� � U

jK
y � u���K
y � u��j � Lju� � u�j	 �y � Rd�
������

We can take a compact set S which is a common support of the functions y � K
y�u�

for all u � U � Now� for every 
 � 	� choose a �nite partition &

� � fU

� k� � � � k �
N


�g of U such that the diameter of each partitioning set is not bigger than 
��	� This

can be done with N


� � const� 
�d�	� thus it holds that
R �
�

p
logN


�d
 � �� On

the other hand� it follows from 
������ that if ju� � u�j � 
��	 then

j�ni 
u��� �ni 
u��j �
L
p
nbdn

�
�S

�
Xi � x�

bn

�
�

Z
Rd

�S

�
x� x�
bn

�
f
x�dx

�
�

We thus have

k�nk�
 � L�

nbdn

nX
i��

E

�����S �Xi � x�
bn

�
�

Z
Rd

�S

�
x� x�
bn

�
f
x�dx

�����
� �L�

bdn

Z
Rd

�S

�
x� x�
bn

�
f
x�dx

� �L�

Z
Rd

�S
y�f
x� � bny�dy

� �L� 	 Leb
S� 	 sup
x�N

f
x� for all su�ciently large n � N�

where N is a neighborhood of x�� The condition �PE�� of Theorem ����� has been

established�

�The case of monotone kernel�� Assume Condition ������ For every p � �� ���� d� choose

a constant cp � 	 such that ��cp� cp� is a support of Kp and that U 
Qd
p��
�cp� cp��

For every 
 � 	 and every p � �� ���� d� we introduce a �nite partition 
�cp� cp� �SNp���
kp��

Ip

� kp� where Ip

� kp� � 
�p

� kp � ��� �p

� kp��� such that

	 � �p

� kp�� �p

� kp � �� � 
�� kp � �� ���� Np

��
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This can be done with Np

� � ��cp

��� � �� Now� to check the condition �PE�� of

Theorem ������ we consider the DFP & � f&

�g������� of U given by

&

� �

�
U �

dY
p��

Ip

� kp� � � � kp � Np

�� � � p � d

�
�

Then� since

N


� � .&

� �
dY

p��

Np

� �
dY

p��

��
�cp

�

�
� �

�
we have

R �
�

p
logN


�d
 ���

Next� for every u�p� � 
�cp� cp� we de�ne

Kn�u�p�

p 
x�p�� �
�p
bn
Kp

�
x�p� � x

�p�
�

bn
� u�p�

�
� �x�p� � R�

Then it holds that

jKn�u
�p�
�

p �Kn�u
�p�
	

p j � K
n���kp
p whenever u

�p�
� � u

�p�
� � Ip

� kp��
������

where

K
n���kp
p 
x�p�� �

	
� Kp
	�p
bn

� if
x�p� � x

�p�
�

bn
� Ip

� kp��

jKn��p���kp�
p �Kn��p���kp���

p j
x�p��� otherwise�

The key points are the following�Z
R

jKn���kp
p 
x

�p�
� � bny

�p��j�dy�p� � �jKp
	�j�
�
bn

�
������

Support
K
n���kp
p � 
 �x

�p�
� � �bncp� x

�p�
� � �bncp��
������

f� � lim sup
n��

sup
y�S

f
x� � bny� ��� where S �
dY

p��

���cp� �cp��
������

The fact 
������ will be proved later� while 
������ and 
������ are trivial�

Let us proceed with the main part of the proof� It follows from 
������ that

�p
bdn

����K �x� x�
bn

� u�

�
�K

�
x� x�
bn

� u�

�����
�

�����
dY

p��

Kn�u
�p�
�

p 
x�p���
dY

p��

Kn�u
�p�
	

p 
x�p��

�����
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�

�����
dX

p��

�
p��Y
q��

Kn�u
�q�
	

q 
x�q��

��
dY

q�p��

Kn�u
�q�
�

q 
x�q��

�n
Kn�u

�p�
�

p 
x�p���Kn�u
�p�
	

p 
x�p��
o�����

�
dX

p��

�Y
q ��p

Kq
	�p
bn

����Kn�u
�p�
�

p 
x�p���Kn�u
�p�
	

p 
x�p��
���

�
dX

p��

�Y
q ��p

Kq
	�p
bn

�
K

n���kp
p 
x�p��� if u�� u� �

dY
p��

Ip

� kp��

Here� for every p � �� ���� d� we obtain from 
������� 
������ and 
������ that for all su�


ciently large n � N�Y
q ��p

Kq
	�p
bn

�� Z
Rd
jKn���kp

p 
x�p��j�f
x�dx

�

�Y
q ��p

jKq
	�j�
�
bn

Z
Rd
jKn���kp

p 
x
�p�
� � bny

�p��j�f
x� � bny�dy

�
�Y
q ��p

jKq
	�j�
�
bn
f� � �� 	

Z
S

jKn���kp
p 
x

�p�
� � bny

�p��j�dy

�
�Y
q ��p

jKq
	�j�
�
bn
f� � �� 	

�
dY

q ��p
�cq

�
�jKp
	�j�
�

bn

� 
�Dp� where Dp �

�
dY

q��

�cqjKq
	�j�
�

�
f� � ��

�cp
�

which implies thatZ
Rd

�����
dX

p��

�Y
q ��p

Kq
	�p
bn

�
K

n���kp
p 
x�p��

�����
�

f
x�dx � 
�d
dX

p��

Dp�

We therefore have

lim sup
n��

k�nk
 �
vuut�d

dX
p��

Dp�

It remains to prove 
������� Observe thatZ
R

jKn���kp
p 
x

�p�
� � bny

�p��j�dy�p� � 
I� �
jKp
	�j�

bn

� � 
II��

where�


I� �
�

bn

Z �p���kp���

��

��Kp
y
�p� � �p

� kp���Kp
y

�p� � �p

� kp � ���
��� dy�p��


II� �
�

bn

Z �

�p���kp�

��Kp
y
�p� � �p

� kp�� �Kp
y

�p� � �p

� kp � ���
��� dy�p��
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Further� it holds that


II� �
�

bn

Z �

�

��Kp
y
�p���Kp
y

�p� � �p

� kp�� �p

� kp � ���
��� dy�p�

� �

bn

Z �

�

��Kp
y
�p���Kp
y

�p� � 
��
��� dy�p�

� Kp
	�

bn

Z �

�

��Kp
y
�p���Kp
y

�p� � 
��
�� dy�p�

�
Kp
	�

bn

Z �

��	
Kp
y

�p� � 
��dy�p�

� Kp
	�

bn
	Kp
	�


��

Since the same bound holds also for 
I�� we get 
�������

�Continuity of the limit process�� Theorem ����� says that the process u � Z
u� is

continuous with respect to the pseudo
metric � on U de�ned by

�
u�� u�� �

sZ
Rd

jK
x � u���K
x� u��j�dx �u�� u� � U�

Hence it su�ces to show that u� � �
u�� u�� is continuous at u� with respect to the

Euclidean metric for every u� � U � This is immediate from 
������ in the case of a

smooth kernel� On the other hand� in the case of a monotone kernel� the claim follows

from the inequality

jK
x� u���K
x� u��j �
dX

p��

�Y
q ��p

Kq
	�

����Kp
x
�p� � u

�p�
� ��Kp
x

�p� � u
�p�
� �
���

which can be easily shown by the same argument as above� �

Proof of Theorem ������ The assertion 
i� is immediate from Proposition ����� and

Theorem ����� of van der Vaart and Wellner 
������ Next� observe that

efn
x� � bnu�� f
x� � bnu� �

Z
Rd
K
y� ff
x� � bn
u� y�� � f
x� � bnu�g dy

and that

f
x� � bn
u� y�� � f
x� � bnu� � bdn

dX
p��

y�p�
�f
x�

�x�p�

����
x�x��bnu

�
b�dn
�

dX
p��

dX
q��

y�p�y�q�
��f
x�

�x�p��x�q�

����
x��xn

�
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where %xn is a point on the segment connecting x� � bnu and x� � bn
u � y�� We can

obtain the assertion 
ii� using the assumption that the kernel function K is symmetric�

�

����� Estimation of Mode

In this subsection� we consider the �
dimensional case only� We are interested in estimat


ing the mode of a density f of an i�i�d� data� namely� x� � argmaxx�Rf
x�� A natural

estimator would be b�n � argmaxx�R bfn
x�� where
bfn
x� � �

nbn

nX
i��

K

�
Xi � x

bn

�
�x � R�

Here� bn is a vanishing sequence of positive constants� and K is a kernel function on R�

We now introduce a condition on f in a neighborhood of x� � R 
we do not assume that

x� is the maximum point over the whole line R� the point x� should be regarded as a

local mode of f��

Condition ����� For an even integer p � �� the function x � f
x� is p�times contin�

uously di�erentiable in a neighborhood N of x� with derivatives f �m�� m � �� ���� p such

that�

� f �m�
x�� � 	 for every m � �� ���� p� �	

� supx�N f �p�
x� � 	�

Theorem ����	 For a given point x� � R� suppose that Condition ����� is satis�ed for

an even integer p � �� Put the bandwidth bn � n�����p���� and choose a kernel function

K on R following either of Condition ����� with � � � or Condition ������ Then� for

any R�valued random sequence b�n such that b�n P�� x� and that

bfn
b�n� � bfn
x��� �n

for some �n � OP �
n
�p���p����� it holds that jb�n � x�j � OP �
n

�����p�����

Proof� We will check the conditions of Theorem ����� for r��n�u � bn � n�����p���� For


mulation ����� should be as follows� 
�n� dnu� is the Euclidean space R� and �nu � x�� let

�n
x� � bfn
x� and �n
x� � fn
x�� where

fn
x� �
�

bn

Z
R

K

�
y � x

bn

�
f
y�dy

�

Z
R

K
y�f
x � bny�dy�
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We then denote R
�� � fx � R � 
���� � jx� x�j � �g for every � � 
	����

To show the first inequality of M 
criterion� we denote

cp � inf
x�N

jf �p�
x�j and Cp � sup
x�N

jf �p�
x�j�

It follows from a p
term Taylor expansion of f around x� � bny that

�n
x� � �n
x�� �

Z
R

K
y� ff
x� bny�� f
x� � bny�g dy
� 
I� � 
II��

where


I� �

p��X
m��


x� x��
m

m-

Z
R

K
y�f �m�
x� � bny�dy

and


II� � �jx� x�jp
p-

Z
R

K
y�cpdy

� � cp
p-�p

�p whenever x � R
���

Furthermore� since f �k�
x�� � 	 for k � �� ���� p� �� it follows from a 
p�m�
term Taylor

expansion of f �m� around x� that

f �m�
x� � bny� �

bny�

p�m


p�m�-
f �p�
exn� for some exn � N�

for every m � �� ���� p� �� Thus it holds that if � � �Lbn��� then

j
I�j �
p��X
m��

jx� x�jm
m-

	 bp�mn 	 Cp


p�m�-

Z
R

jyjp�mK
y�dy

� �p
p��X
m��

Cp

m-
p�m�-Lp�m

Z
R

jyjp�mK
y�dy whenever x � R
���

Thus� choosing a su�ciently large L � 	 we can conclude that the first inequality

is satis�ed�

To check the second inequality� we will apply Theorem ����� 
ii� to f�igi�N �

f
�n�xi jx � ��gi�N� where � is a subset of R and

�n�xi �
�

n

�
�

bn
K

�
Xi � x

bn

�
� fn
x�

�
�

Notice that

j�n�xi � �n�yi j � �

nbn

����K �Xi � x

bn

�
�K

�
Xi � y

bn

�����
�

�

nbn

Z
R

����K �z � x

bn

�
�K

�
z � y

bn

����� f
z�dz�
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We may choose a su�ciently small �� � 	 so that �x� � ���� x� � ���� 
 N � then we

have f� � supz��x������x������ f
z� � �� We discuss the cases of smooth and monotone

kernels� separately� in both cases� let L � 	 be a constant such that ��L�L� is a support

of K� In each case� for every � � 
	� ��� we will construct a DFP &� � f&�

�g������� of
� � �� � �x� � �� x� � �� such that

sup
��������

Z �

�

q
log
� �N
�



��d
 ��
������

and that

k�nk
�
� const�	n�
�� �� � �Lbn� ���� �n � N

for some appropriate functions � � 	n�
�� indexed by n � N� Notice that we have in

both cases that with �� � �x� � �� x� � ��

nX
i��

Ej�ni j� � n 	
����supxK
x�

nbn

����� 	 
�� � �Lbn� 	 f�

� D 	 	n�
�� whenever � � �Lbn� ���

where D � � supx jK
x�j�f� and 	n�
�� � n��b��n �� Then� Theorem ����� 
ii� yields that

E sup
x�R���

j
�n � �n�
x� � 
�n � �n�
x��j � const��n
�� �� � �Lbn� ���

where �n
�� � 	n�
�� � 
	n�
���	
n
� 
����

�The case of smooth kernel�� For every 
 � 
	� ��� we make a �nite partition 
x���� x��
�� �

SN��
���

k�� 
uk��� uk� such that uk�uk�� � 
�� This can be done with N
�


� � ��
����

�� thus 
������ is satis�ed� On the other hand� if x� y � �uk��� uk� with uk � uk�� � 
��

then ����K �z � x

bn

�
�K

�
z � y

bn

����� � L
�

bn
	 ��uk���Lbn�uk�Lbn�
z� �z � R�

where L � 	 is a constant appearing Condition ������ Thus it holds that if Lbn � � � ��

then

k�nk
�
�

s
�n 	 �

n�b�n
	
����L�bn

����� 	 
� � �Lbn� 	 f�

�
p

��L�f� 	 	n�
��

where 	n�
�� � n����b��n �
��� We thus have �n
�� � 
n����b��n �
��� � 
n����������� The

relation �n
bn� � bpn holds since we put bn � n�����p����

�The case of monotone kernel�� For every 
 � 
	� ��� we make a �nite partition


x� � �� x� � �� �
SN��

���

k�� 
uk��� uk� such that uk � uk�� � 
��� This can be done with
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N
�


� � ��
��� � �� thus 
������ is satis�ed� On the other hand� if x� y � �uk��� uk� then����K �z � x

bn

�
�K

�
z � y

bn

����� � ����K �z � uk��
bn

�
�K

�
z � uk
bn

����� �z � R�

Here notice that if uk � uk�� � 
�� thenZ
R

����K �z � uk��
bn

�
�K

�
z � uk
bn

������ dz �

Z
R

����K � z

bn

�
�K

�
z � 
��

bn

������ dz
� K
	�

Z
R

����K � z

bn

�
�K

�
z � 
��

bn

����� dz
� �jK
	�j�
���

Thus it holds that if Lbn � � � �� then

k�nk
�
�

s
�n 	 �

n�b�n
	 �jK
	�j�� 	 f�

�
p

��jK
	�j�f� 	 	n�
��

where 	n�
�� � n����b��n ����� We thus have �n
�� � n����b��n ����� The relation �n
bn� �

bpn holds since we put bn � n�����p���� �

Corollary ����� For a given point x� � R� suppose that Condition ����� is satis�ed for

an even integer p � �� Put the bandwidth bn � n�����p���� and set K
x� � �
�
	 �������
x��

Then� for any R�valued random sequence b�n such that b�n P ��� x� and that

bfn
b�n� � sup
x�R

bfn
x�� �n

for some �n � oP �
n
�p���p����� it holds that n����p���
b�n � x��

P
�
 argmaxh�RfA 
h� �

B 
h � ��� B 
h � ��g� where the deterministic process h� A 
h� is given by

A 
h� �
f �p�
x��p
f
x��p-

Z �

��

h � y�pdy

and h� B 
h� is the two�sided Brownian motion�

Proof� Theorem ����� asserts that the sequence b��n 
b�n � x�� is uniformly tight� Let us

consider the stochastic process h� M n
h� de�ned by

M n
h� � b�pn
nbfn
x� � bnh�� f
x��

o
� Y n
h� � Zn
h��
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where�

Y n
h� � b�pn ffn
x� � bnh� � f
x��g �
Zn
h� � b�pn

nbfn
x� � bnh� � fn
x� � bnh�
o
�

Noting that
p
nbn � b�pn � we obtain from Proposition ����� that Zn P

�
 Z in ��
K� for

any compact set K 
 R� where Z
h� �
p
f
x��fB 
h � ��� B 
h � ��g��� On the other

hand� an easy computation shows that limn�� Y n
h� � Y 
h� �
p
f
x��A 
h��� for every

h � R� Since h � Y n
h� and h � Y 
h� are continuous� this convergence is uniform on

every compact set K 
 R� Hence� by the same argument as the last part of the proof of

Proposition ������ we can obtain the assertion� �

����� Remarks for Non�I�I�D� Cases

Gaussian White Noise Model

For every n � N� let Xn � 
Xn
t �t������ be a continuous stochastic process given by

dXn
t � f
t�dt � n����dBt�

where f � L��	� ��� and B � 
Bt�t������ is a standard Brownian motion� Let t� � 
	� ��

be a �xed point� and let bn be a vanishing sequence of positive constants� In order to

estimate the local function u� f
t� � bnu�� a natural estimator would be

bfn
t� � bnu� �
�

nbn

Z �

�

K

�
t� t�
bn

� u

�
dXn

t

where K is a kernel function on R satisfying either of Condition ����� or ����� with d � ��

Then� we can get the same conclusions as Theorem ����� by using Theorem ������

Multiplicative Intensity Model

For every n � N� let 
n be an Rd
valued multivariate point process on a stochastic

basis Bn � 
#n�Fn�Fn� P n�� 
n can be identi�ed with an Rd
marked point process

f
T n
i � Z

n
i �� i � Ng through the equality


n
�� dt� dz� �
X
i


�Tni ����Zni ����
dt� dz��

where 	 � T n
� � T n

� � 	 	 	 and each Zn
i is an Rd
valued random variable�

We assume that the predictable compensator �n of 
n is given by

�n
�� dt� dz� � �
t� z�Y n
�� t� z�dtdz�
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where �
t� z� is a �	���
valued measurable function on R� � Rd� and Y n
�� t� z� is a

�	���
valued predictable function on #n �R� � Rd�

Let 
t�� z�� � 
	����Rd be a �xed point� and let bn and cn be vanishing sequences of

positive constants� In order to estimate the local function 
u� v� � �
t� � bnu� z�� cnv��

a natural estimator would be

b�n
t��bnu� z��cnv� �
�

nbncdn

Z
R��Rd

K

�
t � t�
bn

� u�
z � z�
cn

� v

�
Y n�
	� t� z�
n
	� dt� dz��

where K is a kernel function on Rd�� satisfying either of Condition ����� or ����� with

�d replaced by �d� � � and where Y n� is the generalized inverse of Y n�

Assume the �local version of Condition ������ that is�

Condition ����
 There exists a measurable function y � y
t� z� on a neighborhood N

of 
t�� z�� such that

sup
�t�z��N

��n��Y n
	� t� z� � y
t� z�
�� Pn��� 	�

Then� under some conditions of smoothness of the functions 
t� z� � �
t� z� and 
t� z� �

y
t� z�� we can derive some conclusions about the residual processes 
u� v� � Rn
u� v�

given by

Rn
u� v� �
p
nbncdn fb�n
t� � bnu� z� � cnv� � �
t� � bnu� z� � cnv�g

similarly to those of Theorem ����� by using Theorem ������ the term �f
x�� in 
������

is replaced by ��
t�� z���y
t�� z�� � while the change of 
������ is clear�

	�� Log�likelihood Ratio Random Fields

����� Results

For every n � N� let Bn � 
#n�Fn�Fn � fFn
i gi�N�� P n� be a discrete
time stochastic

basis� Let Pn � fP n�� � � � �g be a family of probability measures on 
#n�Fn�� indexed

by an arbitrary set �� such that P n�� � P n for every � � �� We denote

Zn��
i �

dP n��
i

dP n
i

�

where P n��
i 
resp� P n

i � is the restriction of P n�� 
resp� P n� on the �
�eld Fn
i � We assume

P n��
� � P n

� for every � � �� hence we can set Zn��
� � �� For a given �nite stopping time

�n on Bn� and we suppose also that the random element logZn
�n � 
logZn��

�n j� � ��

takes values in ��
��� Here we set

�n��i �

vuut Zn��
i
�n

Zn��
�i���
�n

� � �i � N �� � ��
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Theorem ����� In the above situation� suppose that the following conditions hold�


a��
P�n

i�� �E
n
i���

n��
i �n��i

Pn�� C
�� �� 
some constant� for every �� � � �	


a�� sup���
���P�n

i�� �E
n
i��j�n��i j� �C
�� ��

��� Pn��� 		


b�
P�n

i��E
n
i��j�ni j��fj�ni j��g

Pn�� 	 for every 
 � 		


c� there exists a DFP & of � such that

k�nk
��n � OPn
�� and

Z ��

�

H


�d
 ���

Then� it holds that logZn
�n

Pn

�
 X in ��
��� where X
�� � ��
�
C
�� ���G
�� and � �

G
�� is a zero�mean Gaussian process such that EG
��G
�� � C
�� ��� Furthermore�

the formula

�
�� �� �
p
C
�� �� �C
�� �� � �C
�� �� ��� � � �

de�nes a semimetric on � such that 
�� �� is totally bounded and that almost all paths

of X are uniformly ��continuous�

Remark� If a version of the conditional expectationEn
i���

n��
i �n��i satis�es the assumption


a��� then so does any version� However� this is not true in 
a��� the assumption means

that there exist some versions of En
i��j�n��i j��s which satisfy the requirement�

Example� Ergodic Markov chains

Let fXigi�N� be an ergodic Markov chain� de�ned on a probability space 
#�F � P ��

with values in an arbitrary state space 
E� E�� Let 

dx� denote the initial distribution�

p
x� dy� the transition distribution� and �
dx� the invariant distribution� Let us equip

the space L� � L�
E �E� �
dx�p
x� dy�� with the �inner product given by

hh�� h�iL	 �
Z
E�E

h�
x� y�h�
x� y��
dx�p
x� dy� �h�� h� � L��

The meaning of the quotation marks is that khkL	 �
phh� hiL	 is merely a �semi
 norm�

Next we de�ne the subset L�
� of L� by

L�
� �

�
h � L� �

Z
E

h
x� y�p
x� dy� � 	 �x � E and h � ��
�
�

Fix a subset H 
 L�
�� For every n � N� let us consider a family of probability measures

Pn � fP n�h � h � Hg on 
#�F� such that� under P n�h� the process fXigi�N� is the

Markov chain with initial distribution 
 and transition distribution pn�h given by

pn�h
x� dy� �

�
� �

h
x� y�p
n

�
p
x� dy��
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Here we set Fi � �fX�� ���� Xig� Then it holds that

Zn�h
i �

dP n�h
i

dPi
�

iY
j��

�
� �

h
Xj��� Xj�p
n

�
�

We need some more notations to state the following result� which concerns the asymp


totic behavior of the process logZn
n � 
logZn�h

n jh � H�� For a given K � L�
E� �
dx��

we de�ne the semimetric �K on L� by

�K
h�� h�� � sup
x�E

�x
h�� h��

jK
x�j � �
�h�� h� � L��

where

�x
h�� h�� �

sZ
E

jh�
x� y�� h�
x� y�j�p
x� dy� �x � E�

Proposition ����� Let fXigi�N�� 
#�F �F � fFigi�N�� P � and Pn � fP n�h � h � Hg
as above be given� Suppose that there exists h� � L�
E � E� �
dx�p
x� dy�� such that

suph�H jhj � h�� and also that there exists K � L�
E� �
dx�� such thatZ �

�

q
logN� �
H� �K� 
�d
 ���

Then� it holds that logZn
n

P
�
 X in ��
H�� where X
h� � ��

�
khk�L	�G
h� and h� G
h�

is a zero�mean Gaussian process such that EG
h��G
h�� � hh�� h�iL	� Furthermore�

almost all paths of X are uniformly k 	 kL	 �continuous�
This result is easily derived from the ergodic theorem and Theorem ������ hence the

proof is omitted� Here we give a statistical application� Fix a subset H 
 L�
� such that

khkL	 � 	 for every h � H� Let us consider the testing problem�

hypothesis H� � p
against Hn

� � pn�h for some h � H�
We propose the test statistics

Sn � sup
h�H

������khk�L	 � logZn�h
n

���� �
Assume the same conditions as in Proposition ������ Then� it holds that

Sn Pn�u

�
 sup
h�H

jhh� uiL	 �G
h�j in R �u � f	g � H�

where the process h � G
h� is as above� This fact follows from Proposition ����� that

implies local asymptotic normality and contiguity� together with Le Cam�s third lemma

and the continuous mapping theorem� In view of Anderson�s lemma 
e�g�� Lemma ������

of van der Vaart and Wellner 
������� the statistics Sn seems reasonable�
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����� Proofs

Let us denote�

%Zn��
i �

Zn��
i
�n

Zn��
�i���
�n

�i � N �� � ��

�n�a��i � log %Zn��
i �f�ni �ag �i � N �� � � �a � 	�

The process � � logZn��
�n �

P�n

i�� log
%Zn��
i can be well
approximated by the process

� � /n�a�� �
P�n

i�� �
n�a��
i � As a matter of fact� it holds that

sup
���

�flogZn���n ���n�a��g �
�nX
i��

�f�ni �ag

� �

a�

�nX
i��

j�ni j��f�ni �ag�

hence using also Lenglart�s inequality we obtain

sup
���

j logZn��
�n � /n�a��j Pn��� 	�

We consider the decomposition

/n�a�� �
�nX
i��

En
i���

n�a��
i �

�nX
i��

n
�n�a��i � En

i���
n�a��
i

o
�
������

We will derive the uniform convergence of the �rst term in 
outer� probability� and apply

Theorem ����� to the martingale di�erence array f�ni gi�N� of the second term� that is�

�n��i � �n�a��i �En
i���

n�a��
i � We use the following lemma which will be proved later�

Lemma ����� For every a � 
	� ��� there exist some versions of the conditional expec�

tations En
i���

n�a��
i such that�


i� if sup���C
�� �� �� then sup���
���P�n

i��E
n
i���

n�a��
i � �

�
C
�� ��

��� Pn��� 		


ii�
P�n

i��E
n
i���

n�a��
i �n�a��i

Pn�� C
�� �� for every �� � � �	


iii�
P�n

i�� jEn
i���

n�a��
i j� Pn�� 	 for every � � ��

Remark� 
i� We will see later that the conditions of the theorem actually implies

that sup���C
�� �� � �� 
ii� The choice of versions of the conditional expectations

En
i���

n�a��
i �n�a��i is not important�

Let us proceed with the main part of the proof� It is clear that there exists a constant

� � 
	� �� such that j logx�log yj � �jpx�pyj whenever x� y � ����� ����� We consider
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the decomposition 
������ for a �
p
� � � � �� then it holds that fx � jpx � �j � ag 


fx � jx� �j � �g�
First we show the weak convergence of the second term of the decomposition 
�������

The condition �C��� is direct from 
ii� and 
iii� of Lemma ������ It is also easy to see that

the assumption 
b� implies the Lindeberg condition �L���� Finally� recalling the choice

of � and the relationship between a and �� we have for any subset �� 
 �

En
i��

�
sup

������
j�n�a��i � �n�a��i j

��
Fn
i �P

n

� En
i��

�
sup
�����

j log %Zn��
i � log %Zn��

i j�f�ni �ag
��
Fn
i �P

n

� En
i��

�
sup

������
�j�n��i � �n��i j

��
Fn
i �P

n

�

Thus the assumption 
c� implies the condition �PE��� Consequently� Theorem ����� yieldsPn
i �

n
i

Pn

�
 G in ��
���

Next we consider the �rst term of the decomposition� Observe thatp
C
�� �� �

p
EjG
��j�

�
p
EjG
�� �G
��j� �

p
EjG
��j� � �
�� �� �

p
C
�� ���

The inequality above and the total boundedness of 
�� ��� a consequence of Theorem

������ imply that sup���C
�� �� ��� Hence 
i� of Lemma ����� works to show the uni


form convergence of the �rst term of 
������� Also� it is trivial from the above inequality

that � �
p
C
�� �� is uniformly �
continuous� thus so is � � C
�� ���

Proof of Lemma ������ For every 
 � 	 we denote�

Bn��
�� �
�nX
i��

En
i���

n����
i �

Cn��
�� �� �
�nX
i��

En
i���

n����
i �n����i �

�STEP �� First we prove the following facts� for given a � 
	� �� there exist constants

K�� K�� K
 � 	 such that for every 
 � 
	� a�

sup
���

����Bn��
�� �
�

�
C
�� ��

���� � 
K� � oPn
���
������

jCn��
�� �� � C
�� ��j � 
K� � oPn
�� ��� � � ��
������
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�nX
i��

jEn
i���

n����
i j � �

�
C
�� �� � 
K
 � oPn
�� �� � ��
������

In order to show 
������� �rst notice that there exists a constant K � 	 such that

j logx � 
x � �� � �

p
x � ���j � Kjpx � �j
 whenever jpx � �j � a� Hence� for �xed


 � 
	� a� we obtain�����Bn��
�� � �
�nX
i��

En
i��j�n��i j��f�ni ��g

�����
� 
K

�nX
i��

En
i��j�n��i j��f�ni ��g �

�����
�nX
i��

En
i��
 %Z

n��
i � ���f�ni ��g

�����
almost surely� Since En

i��
 %Z
n��
i � �� � 	 almost surely� the last term on the right hand

side equals to �����
�nX
i��

En
i��
 %Z

n��
i � ���f�ni ��g

�����
�

�nX
i��

En
i��j %Zn��

i � �j�f�ni ��g

� 
 � �




�nX
i��

En
i��j�n��i j��f�ni ��g

almost surely� Thus we obtain����Bn��
�� �
�

�
C
�� ��

����
������

� 
� � 
K�

�����
�nX
i��

En
i��j�n��i j� � �

�
C
�� ��

����� � 
K 	 �
�
C
�� ��

�

�
� �


 � �




� �nX
i��

En
i��j�

n

i j��f�ni ��g

almost surely� In order to get the estimate for all � � #n� we can choose the versions

of conditional expectations as follows� �rst� we may without loss of generality choose

a version of En
i��j�

n

i j��f�ni ��g which is non
negative identically� next� on the union of

all exceptional sets for the estimates appeared above� we de�ne the values of all other

conditional expectations as zero� Then� the inequality 
������ holds identically for all

� � �� By taking the supremum of 
������ with respect to � � �� and letting n � ��

we obtain the assertion 
�������

A similar argument yields 
������� In fact� it is much easier than 
������� because the

assertion of 
������ is �
wise� for which we do not need any argument about versions of
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conditional expectations� Also� it is easy to show 
������ if we notice the following fact� for

given a � 
	� �� there exists a constantK � 	 such that j logx	log y��

p
x���


p
y���j �

K maxfjpx� �j
� jpy � �j
g whenever maxfjpx� �j� jpy � �jg � a�

�STEP �� Next we prove the following facts�

sup
���

jBn�a
�� � Bn��
��j Pn��� 	 �
 � 
	� a��
������

jCn�a
�� �� �Cn��
�� ��j Pn�� 	 ��� � � � �
 � 
	� a��
������

In order to show 
������� notice that for given a � 
	� �� there exists a constant K � 	

such that j logxj � Kjpx� �j� whenever jpx� �j � a� For every 
 � 
	� a� it holds that�����
�nX
i��

En
i���

n�a��
i �

�nX
i��

En
i���

n����
i

�����
������

�

�����
�nX
i��

En
i�� log %Zn��

i �f���ni �ag

�����
� K

�nX
i��

En
i��j�n��i j��f��j�ni j�ag

� K
�nX
i��

En
i��j�

n

i j��f�ni ��g�

almost surely� We can choose some versions of conditional expectations such that the

estimate above holds identically for all � � �� in the same way as in the proof of 
�������

Take the supremum of 
������ with respect to � � �� and let n��� then we get 
�������

A similar computation yields 
�������

�STEP �� Now it is easy to see that 
������ and 
������ imply the assertion 
i�� and

that 
������ and 
������ do the assertion 
ii�� �rst choose 
 � 	 small enough� and then�

let n��� In order to show the assertion 
iii�� notice that for any 
 � 
	� a������
�nX
i��

jEn
i���

n�a��
i j� �

�nX
i��

jEn
i���

n����
i j�

�����
�

�����
�nX
i��

En
i��
�

n�a��
i � �n����i �En

i��
�
n�a��
i � �n����i �

�����
� �j log
�� a��j

�nX
i��

���En
i�� log %Zn��

i �f���ni �ag

��� � oPn
���

hence

�nX
i��

jEn
i���

n�a��
i j� �

�nX
i��

jEn
i���

n����
i j� � oPn
��
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� j log
�� 
��j
�nX
i��

jEn
i���

n����
i j� oPn
���

We therefore obtain 
iii� by virtue of 
������� �rst choose 
 � 	 small enough� and then

let n��� �

	�� Model Checking for a Non�linear Times Series

Let us consider the R
valued time series fXigi�Zgiven by

Xi � �
Xi��� � 
i�

where � is an R
valued function on R and 
i is an R
valued random variable such that

P 

i � 	jFi��� �
�

�
almost surely�

where Fi � �fXj � j � ig�
Let K � R� �	��� be a kernel function with a compact support� and let fbngn�N be

a sequence of positive constants such that bn � 	 as n��� We introduce the stochastic

process V n � 
V n
x�jx � R� given by

V n
x� �
�p
n

nX
i��

Y n
i 
x�Zi�

where

Y n
i 
x� �

�

bn

Z x

��
K

�
Xi�� � u

bn

�
du

and

Zi � sign 
Xi � �
Xi���� �

with

sign
x� �

� �� for x � 	�
� for x � 	�

The process V n is a �smoothed version of that of Erlenmaier 
����� who considered a

process V n with Y n
i 
x� replaced by �����x�
Xi����

In order to state some conditions which we shall assume� we denote by bFn and bfn
the empirical distribution function and the empirical density function associated to the

kernel function K and the bandwidth bn� of the data X�� ���� Xn��� that is�

bFn
x� �
�

n

nX
i��

�����x�
Xi����

bfn
x� �
�

nbn

nX
i��

K

�
Xi�� � x

bn

�
�
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We are ready to present our result�

Theorem ����� Assume the following conditions 
i� and 
ii��


i� bFn
x� P�� F 
x� for every x � R� where F is a continuous distribution function on R	


ii� there exists a function g � Lp
R� such that k bfn�gkLq�R� � OP 
�� for some p� q �

���� such that 
��p� � 
��q� � ��

Then� it holds that V n P
�
 V in ��
R� where V 
x� � BF �x� and t � Bt is a standard

Brownian motion on �	� ���

Notice that� when the time series takes values only in a bounded subset of R� a su�cient

condition for 
ii� is that k bfnkLq�R� � OP 
�� for an arbitrary q � �� The result above�

together with the continuous mapping theorem� yields the following�

Corollary ����� De�ne Sn � supx�R jV n
x�j� Under the conditions 
i� and 
ii� of The�

orem ������ it holds that Sn P
�
 supt������ jBtj in R� where t� Bt is a standard Brownian

motion on �	� �� �

We have thus obtained the asymptotically distribution
free test statistics Sn� Notice

that the time series fXigi�Z need not be Markovian 
the noise 
i may depend on the

whole past��

Proof of Theorem ������ We can write V n
x� �
Pn

i�� �
n�x
i � where

�n�xi �
�p
n
Y n
i 
x�Zi�

It is clear that f�ni gi�N � f
�n�xi jx � R�gi�N is an ��
R�
valued martingale di�erence array

on the discrete
time stochastic basis 
#�F � fFigi�N�� P �� where Fi � �fXj � j � ig� We

will check the conditions of Theorem ������

To check �PE��� for every 
 � 	� choose some �nite points fx��k � � � k � N

� � �g
of R such that

x��� � �� � x��� � x��� � 	 	 	 � x��N����� �� � x��N���

and that Z x��k

x��k��

jg
x�jpdx � 
�p �k � �� ���� N

��

This can be done with N

� � const�
��p� thus it holds that
R �
�

p
logN

�d
 � �� On

the other hand� it holds that

j�n�xi � �n�yi j � �p
nbn

Z x�y

x
y
K

�
Xi�� � u

bn

�
du

� �p
nbn

Z x��k

x��k��

K

�
Xi�� � u

bn

�
du if x� y � 
x��k��� x��k��
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So we have

nX
i��

Ei��

�
sup

x�y��x��k�� �x��k �

j�n�xi � �n�yi j
��
Fi

� �

n

nX
i��

����� �bn
Z x��k

x��k��

K

�
Xi�� � u

bn

�
du

�����
�

� �

n

nX
i��

�

bn

Z x��k

x��k��

K

�
Xi�� � u

bn

�
du

�

Z
R

��x��k���x��k �
u�
bfn
u�du

�

�Z
R

j��x��k�� �x��k �
u�g
u�jpdu
���p

	
�Z

R

j bfn
u��g
u�jqdu���q

� 
� 	 k bfn�gkLq�R��
Hence the condition 
ii� implies �PE���

To check �C���� �rst observe thatZ x

��
bfn
u�du P�� F 
x� �x � R�
������

This fact is proved as follows� Since K has a compact support and since bn � 	� it holds
that for any 
 � 	

bFn
x� 
� � �

nbn

nX
i��

Z x

��
K

�
Xi�� � u

bn

�
du � bFn
x� 
�

for all su�ciently large n � N� Due to 
i�� the left and the right hand side converge in

probability to F 
x � 
� and F 
x � 
�� respectively� The claim 
������ follows from the

assumption that x� F 
x� is continuous�

Let us now turn to the convergence of
Pn

i��Ei���
n�x
i �n�yi �s� In case of x �� y� we have

that
nX
i��

Ei���
n�x
i �n�yi �

�

n

nX
i��

Y n
i 
x�Y

n
i 
y�

�
�

n

nX
i��

Y n
i 
x � y� for all su�ciently large n � N

�

Z x
y

��
bfn
u�du�

which converges in probability to F 
x� y� due to 
������� In case of x � y� observe that

nX
i��

Ei���
n�x��
i �n�xi �

nX
i��

Ei��j�n�xi j� �
nX
i��

Ei���
n�x
i �n�x��i �
 � 	�
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and that the left and the right hand side converge in probability to F 
x� 
� and F 
x��

respectively� Thus it follows from the continuity of x � F 
x� that the middle of the

above inequalities converges in probability to F 
x�� We therefore have shown that

nX
i��

Ei���
n�x
i �n�yi

P�� F 
x � y� �x� y � R�

It is trivial that the Lindeberg condition �L��� is satis�ed� and all conditions of The


orem ����� have been established� �

	�A Notes

The bandwidth processes or"and deviation processes of kernel density estimators as

random elements taking values in the space C were studied by Krieger and Pickands� III


������ M,uller and Prewitt 
����� ������ and M,uller and Wang 
���	�� Theorem �����

could be obtained from a general study of �local empirical processes by Einmahl and

Mason 
����� combined with a uniform Donsker theorem by Sheehy and Wellner 
������

Although the notion of �local empirical process is more general than the local kernel

estimators� their approach is essentially based on the i�i�d� setup�

The asymptotic behavior of the log
likelihood ratio random �elds in �nite
dimensional

parametric models has been studied by many authors including Le Cam 
���	�� Inagaki

and Ogata 
������ Ogata and Inagaki 
������ Ibragimov and Has�minskii 
������ Ku


toyants 
����� and Vostrikova 
������ Although no result for in�nite
dimensional cases

seems to have been presented in the literature so far� some results in i�i�d� cases are

immediate from the Donsker theorems for empirical processes� Theorem ����� seems the

�rst to consider the general statistical experiment with abstract parameters�

The problem considered in Section ��� and the basic idea of the test statistics were

posed by Erlenmaier 
������ who obtained the same conclusion as Theorem ����� for

a slightly di�erent statistics in a Markovian case under an explicit assumption on the

transition kernel�
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