
I
El.SEVIER

Abstract

Journal of Computational and Applied Mathematics 66 (1996) 53-71

Parallel predictor-corrector methods 1

P.J. van der Houwen*, B.P. Sommeijer, J.J.B. de Swart
CWI, P.O. Box 94079, 1090 GB Amsterdam. The Netherlands

Received 4 May 1994; revised 17 March 1995

In this paper we construct predictor-corrector methods using block Runge-Kutta methods as correctors. Like
conventional Runge-Kutta methods, these correctors compute stage values at non-uniformly distributed, intermediate
points. The predictor-corrector nature of the methods make them suitable for implementation on parallel computers.
Comparisons of an 8th-order, 5-processor predictor-corrector method using Radau II points with the celebrated 8(7)
Runge-Kutta method of Prince and Dormand show speed-up factors from 1.9 until 2.9.

Keywords: Numerical analysis; Predictor-corrector iteration; Runge-Kutta methods; Parallelism

1. Introduction

We shall consider predictor-<:orrector methods (PC methods) for solving the (non-stiff) initial
value problem (IVP)

y'(t) =/(y(t)), y(to) =y0 , y,fE IR" (1.1)

on parallel computers. On one-processor computers, PC methods based on linear multistep (LM)
methods of Adams-type are most widely used. However, the use of multi-processor computers
enables us to apply PC methods with a much more powerful corrector than in the conventional
one-processor PC methods. The general characteristic of these correctors is that they relate whole
blocks of solution values with each other, rather than single solution values (as in classical LM
methods). This has already been observed and tried out in a number of papers. For example, in
[1, 2], correctors have been constructed where the solution values in each block are equidistant
(like LM methods), and in [5-9], blocks with non-equidistant solution values have been considered

• Corresponding author. E-mail: senna@cwi.nl.
1 The research reported in this paper was partly supported by STW (Netherlands Foundation for the Technical

Sciences).

0377-0427/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 03 77-042 7(95)0015 8-1

54 P.J. van der Houwen et al./Journa/ of Computational and Applied Mathematics 66 (/996) 53-71

(like Runge-Kutta methods). The block structure of both families of correctors makes it possible to
implement the PC method efficiently on a parallel computer system. Moreover, parallel computers
also allow us to use local Richardson extrapolation for automatic stepsize control without
additional sequential costs, because the "reference" solution used in the error estimate can be
computed in parallel.

In applying PC methods, we may fix the number of iterations in advance (PE(CE)m mode with
m usually 1 or 2), or we may iterate until the iterated values satisfy accuracy requirements. The first
strategy was followed by Birta and Abou-Rabia [1] and by Chu and Hamilton [2]. A disadvantage
of this approach is that the stability regions usually are extremely small, unless the corrector is
tuned to the particular PE(CEr mode employed. For example, the real stability boundaries of the
"best" PECE methods constructed by Birta and Abou-Rabia (methods using the "null-weight
predictor") range from /JrcaJ = 0.576 for blocksize 2 until /3reat = 0.078 for blocksize 10. By using
a number of free parameters in the corrector for improving stability, Chu and Hamilton [2]
succeeded in increasing the real stability boundary substantially. However, for a given blocksize,
the order is of course reduced. Both [1, 2] restrict the stability considerations to the real axis.

In the second strategy, where the corrector is iterated until the iterated values satisfy our
accuracy requirements, we are not only faced with the stability region of the corrector, but also with
its convergence region. The cross-section of these regions may be interpreted as the stability region
of the PC method. So far, the investigations have mainly been concerned with Runge-Kutta (RK)
correctors. As it happens, the classical RK correctors of Gauss-Legendre or Radau type, have
a high order of accuracy (superconvergence), they are unconditionally stable, and they possess very
large convergence boundaries. Hence, RK-based PC methods are both highly accurate and highly
stable. Moreover, by their one-step nature, RK correctors allow an easy and highly efficient
stepsize strategy (provided that the predictor formula is also of one-step type). In [5] experiments
are reported showing that the sequential costs of one-step PC methods based on the
Gauss-Legendre corrector of order 10 are about half the sequential costs of the DOPRI8 code. The
DOPRI8 code of Hairer et al. [3] is based on the 13-stage, 8th-order embedded RK method of
Prince and Dormand [10], and is generally considered as one of the most efficient sequential codes
(cf. [3, p. 378]). We remark that by sacrificing the one-step nature of the predictor-corrector pair,
the efficiency of parallel RK-based PC methods can be improved drastically, of course at the cost of
a less easy implementation and stepsize strategy. A few first experiments were reported in [8].

The LM-based and RK-based PC methods discussed above are very special examples of
methods that fit into the large class of general linear methods introduced by Butcher in 1966. In this
paper, we shall try to find more efficient predictor-corrector pairs than constructed so far by
looking in this class of general linear methods. In particular, we shall combine the multistep nature
of the Birta and Abou-Rabia and Chu and Hamilton methods with the non-equidistant-solution
values property of RK methods. In fact, the methods of this paper belong to the family of block
Runge-Kutta(BRK) correctors studied in [6], where a first few results for BRK-based PC methods
can be found. Here, we shall pursue these investigations. In particular, we pay attention to the
stability of the PC method, because the weak point of most block methods is their small stability
reg10n.

In Section 2, we specify a family of two-stage BRK correctors and we discuss the order of
accuracy and their stability. Section 3 analyses PC iteration of these BRK correctors and defines
the convergence factors associated with the iteration process. The main results of this paper can be

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71 55

found in Section 4 where a number of BRK correctors that combine high order of accuracy, fast
convergence and sufficiently large stability boundaries are constructed. Finally, in Section 5, PC
methods based on BRK pairs are compared with DOPRl8, showing that speed-up factors derived
from sequential function calls range from 1.9 until 2.9. When implemented on a parallel computer
system, these speed-up factors will decrease. However, in earlier experiments with iterated RK
methods on the Alliant FX/4, we found that in this type of methods, the loss due to synchronization
of the processors is about 10% (this is confirmed by experiments of Lie [8]). Since the new methods
are of the same type as iterated RK methods, we may expect that the speed-up factors based on
sequential function calls will be reduced by only 10% when run on an Alliant.

2. Block Runge-Kotta methods

For the definition and analysis of the block Runge-Kutta (BRK) methods, it is convenient to
introduce some notations. Firstly, we shall frequently use the componentwise notation for func
tions of vectors. For example, 1' 2 is understood to be the vector whose entries are the squares of the
entries of v. Furthermore, e denotes the vector with unit entries, ei the ith unit vector whose entries
vanish except for the ith entry which equals 1, 144 is the d-by-d identity matrix, Omn is the m-by-n
zero matrix, and Emn is the m-by-n matrix whose entries are zero except for its nth column which
equals e. The dimension of e and ei may change, but will always be clear from the context.

Our starting point is a method of the form

Y =(A® /44)Y,;-1 + h(B ® l4d)F(f,;_ i) + h(C ®]44)F(Y),

Yn =(A*® /44)¥,.-1 + h(B* ® h1)F(Y..-d + h(C* ® l44)F(Y),

Yn = Yn-1 + h(b'[®]44)F(Y..-1) + h(ci ® /44)F(Y,,), n = 1, .. ., N.

(2.la)

(2.lb)

(2.lc)

Here, the s-by-s matrices A, B, C, A*, B*. C* and the s-dimensional vectors b8 and c8 contain the
method parameters, h denotes the stepsize tn - tn _ 1 , and ® denotes the Kronecker product.
Furthermore, Y and Yn represent numerical approximations to the exact solution vectors
y(etn- i +ah). where a denotes the abscissa vector, and where for any vector V = (11), F(V)
contains the derivative values (/(Jli)). It is assumed that the components of a are distinct.

The formulas (2.la), (2.lb) and (2.lc) are, respectively, called the stage vector equation with
s internal stages, the output formula with s external stages, and the step point formula. The external
stages are all explicit, while the internal stages can be implicit or explicit. For example, if Chas
q zero rows and r := s - q rows with non-zero entries, then there are q explicit stages and r fully
implicit stages. The quantities Y, Yn and Yn are, respectively, called the stage vector, the output
vector and the step point value.

With respect to parallel implementation, methods of this type have been studied in [6], and were
called block Runge-Kutta (BRK) methods, because they can be obtained from conventional RK
methods by replacing the scalar RK parameters by matrices and the stage values by blocks of stage
values. Like RK methods, the stage values correspond to non-uniformly spaced points at the t-axis.
In terms of the array notation used in [6], the method (2.1) can be represented as a two-stage BRK

56 P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 66 (1996) 53-71

method with one explicit and one implicit (block) stage:

I 0 0
A B C

(2.1 ')
A* B* C*

In the determination of the parameter matrices in the stage vector equation (2.la), the order
conditions (see Section 2.1) will play an important role, together with the requirement that the
iteration method used for solving the stage vector equation is rapidly converging. In this paper, we
will solve the stage vector equation by predictor-corrector (PC) type iteration. The convergence of
PC iteration is largely controlled by the "magnitude" of the matrix C, that is, convergence is better
as C is smaller in some sense. For example, its spectral radius is often a first indicator of the
potential convergence speed (see Section 3). In this connection, we should remark that strictly
triangular matrices C lead to a zero spectral radius (in fact, the method is an explicit method, so
that no iteration process is needed). However, such explicit methods approximate the components
of Yby extrapolation formulas which are considerably less accurate than the interpolation formulas
associated with implicit methods. Fortunately, it turns out that high accuracy and fast convergence
often go together. Hence, if the stage vector Yhas sufficient accuracy and stability, then the output
formula (2.lb) can be dropped (i.e. A =A*, B = B*, C = C*, so that f,; = Y).

In most of the BRK correctors constructed in this paper, we do not use an output formula. How
ever, we shall show in Section 4.3 that output formulas can be used for stabilizing the corrector.

The step point formula can be used to increase the order at the step points (superconvergence).
This can be achieved by setting bs = 0 and by identifying the components of Cs and the abscissa
vector a with the quadrature weights and quadrature points of Gaussian quadrature formulas. The
step point order is then one higher than the order of the output vector ,fn. Since in the methods
considered in this paper, the order of the output vector will be at most s + 1 ors+ 2, there is, as far
as order of accuracy is concerned, no need for basing the abscissa vector on quadrature formulas of
the highest possible order (Gauss-Legendre formulas). This leads us to use abscissa vectors with
a 1 =I= 0 and as= 1 which often simplifies the implementation (e.g. the Radau II points fit into this
group).

Finally, we remark that (2.1) reduces to an RK method by setting A= A*= Ess• B = B* = 0,
C = C*, bs = 0 and ci = ei C with C denoting the RK matrix of the collocation method defined by
the abscissa vector a. We shall call this collocation method the RK method associated with the
abscissa vector a. By identifying the BRK method (2.1} in the first step with such an RK method, we
can avoid the problem of computing starting values, because we only need the initial value y 0 , and
not the whole starting vector Yo.

2.1. Accuracy

Given the abscissa vector a, the conditions for pth-order consistency of the stage vector equation
(2.la) are given by (see, e.g. [6])

Ae = e, A(a - e)i + jB(a - e)i- 1 + jCai-l = ai, j = 1, ... ,p.

PJ. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71 57

We may write these order conditions in the form

Ae = e, AXsp + BWsP + CV,p = U,P,
(2.2a)

Usp:=(]ai). V,p:=(ai- 1), Wsp:=((a-e)i- 1), X 5p:=(]<a-e)i). j=l, ... ,p,

where the lower indices again refer to the number of rows and columns of the matrix. If (2.2a) is
satisfied, then p will be called the internal stage order. The vector of principal error constants
associated with the stage vector equation is given by

E . 1 { p+l ()P+l () C)((a - e)P)} p+ 1 .= (p + l)! a - A a - e - p + 1 (B aP . (2.3a)

Note that for p = s, A = Ess and B = 0 55 , the stage vector equation reduces to the stage vector
equation of the RK method with RK matrix C = U ss V;; 1•

For the output formula (2.1 b) we proceed as follows. Imposing the localizing assumption, that is,
assuming that the components .Y,,- 1,i are on the locally exact solution curve through the point
(tn-i.Yn-d. we may set Y..- 1 =y(etn- 2 +ah) and, by virtue of (2.2a), Y=y(etn-l +ah)
+ O(hP+ 1). Hence,

Y,. =(A*® ldd)Yn-1 + h(B* ® J.,.,)F(Yn-d + h(C* ® J.,.,)F(Y)

=(A*® I.,.,)y(etn-2 +ah)+ h(B* ® I.,.,)y'(etn- 2 +ah)

+ h(C* ® I.,d)y'(etn- I +ah)+ O(hP+ 2).

By Taylor expansion it can be shown that

Y.. =y(etn-1 +ah)+ O(hP+ 2) + O(hP*+ 1),

provided that

(2.2b)

where the matrices Xsp•, Wsp•• V,p•• and Usp• are defined as in (2.2a) with p replaced by p*. Thus, the
output vector Y,. has order min{p + l,p*}. This order will be called the external stage order, or
briefly the stage order.

There are two error vectors associated with the output formula, viz.

E* ·-C*E l,p+2 .- p+1,

Ei ·+1:= 1 {ap•+ 1 -A*(a-e)P*+ 1 -(p*+l)(B* C*)((a-aP~)P*)} .
• p (p* + 1)!

(2.3b)

where Ep+ 1 is defined by (2.3a).
Finally, we consider the step point formula (2.lc). It is possible to achieve order of consistency 2s

for this formula, so that the order at the step points becomes min { 2s, p + 2, p* + 1}. However, this
may lead to rather large entries in b5 and C8 • Alternatively, we may use a zero bs vector and identify

58 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71

ci with the last row vector of the RK matrix associated with a, that is, ci = ei Uss Vs-; 1• If
PRK denotes the order of the RK method, then we have order of accuracy min{PRK.P + 2,p* + 1}
at the step points. This will be called the step point order. We summarize the preceding discussion in
the following theorem:

Theorem 2.1. If (2.2a) and (2.2b) are satisfied, then the BRK method (2.1) has stage order
min{p + l,p*) and output vector errors given by (2.3b). Jf, in addition, bs = 0, ci = eiUss Vs~ 1, and if
the abscissa vector a defines an RK method of order PRK• then the step point order is given by
min{PRK.P + 2,p* + 1}.

2.2. Stability

In order to ensure stability for h = 0 (zero-stability), we shall require that A* has s - 1
eigenvalues inside the unit circle (since (2.2b) prescribes that A* e = e, A* necessarily has one
eigenvalue 1). Such matrices will be referred to as zero-stable matrices.

For h > 0, stability also depends on the other parameter matrices and on the abscissa vector a.
With respect to the scalar test equation y' = A.y, where A. runs through the spectrum of the Jacobian
matrix of(yn)/ay, we obtain the recursion

Y,, = M(z)Y,,- i. M(z) :=A* + zB* + zC*(I - zC}- 1(A + zB), z := A.h. (2.4)

Assuming that the stability matrix M(z) has s distinct eigenvalues, we have that (cf. [11])

(2.5)

where v(z) is bounded by the condition number of the eigensystem of M (z). This estimate suggests
defining the stability region, and the real and imaginary stability intervals according to

§ := {z: p(M(z)) < 1},

(-Prcai.O) := {z: Z E §, Z < O}, (-fJimas•Pimag) := {z: Z E §, Re(z) = 0, Z i= O},
(2.6)

where p(·)denotes the spectral radius function. The quantities /3reaJ and Pimas are respectively called
the real and the imaginary stability boundary of the BRK method. By (2.6) stability conditions of the
type h < {J/p(of/oy) are implied, so that we should require the method to have sufficiently large
stability boundaries, say not less than 1. In addition, we should impose the condition that v(z) is of
moderate size, particularly for z = 0, because zero-stability implies p(M(O)) = p(A *) = 1, so that

II Yn Iii :::;; v(O) 11 Yo II 2 as n - oo. (2.5')

If A* is singular, then estimating an upper bound for v(O) by means of the condition number of
A* is not possible. For example, this happens in the important case where A*= Ess (in [6] BRK
methods of this form were called BRK methods of Adams type). However, for such methods,
M"(O) = [A*]"= Em hence ll M"(O) II 2 = II Ess 11 2 = j;, so that for z = 0, Adams-type BRK
methods satisfy (2.5) with v(O) = Js.

P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 66 (1996) 53-71 59

3. The iteration scheme

We approximate the solution Y of (2.la) by successive iterates yU> satisfying the PC scheme (or
fixed-point iteration scheme)

ytil = (A ® 144) Y..- 1 + h(B ® ldd)F(Y,,- i) + h(C ® 144)F(YU- 1>), j = 1,. .. , m; n ;::i:: 1. (3.1)

Evidently, if the iterates yw satisfying (3.1) converge to a fixed vector Vasj--+ oo, then V = Y. In
actual computation, the number of iterations m is dynamically determined by requiring that the
corrector equation is solved within a given tolerance (cf. Section 5). This iteration scheme has a high
degree of parallelism, because the sequential costs of each iteration on s processors are independent
of the number of implicit stages r.

For the predictor formula providing y<0 >, we may take the explicit BRK method

yto> =(Ao® ldd)Yn-1 + h(Bo ® l44)F(Yn-d· (3.2)

One option defines Ao and B0 according to

(x)-1
s, 2s- l e

(A0 Bo)=(Us,2s-1 e) W. O '
a, 2s- l

(3.3a)

where Xs, 2s- 1 , Ws, 2s- 1 and Us, 2s- 1 are defined as in (2.2a). It is easily seen that (3.3a) satisfies (2.2a)
for A = A0 , B = B 0 , C = 0 and p = 2s - 1, so that (3.3a) generates predictor values of order 2s - 1
(provided that the stage order of the BRK method (2.1) is at least 2s - 1). In fact, (3.3a) is a Hennite
integration formula generated by the abscissa vector a. In addition to the high orders of Hermite
formulas, the error constants llEp+i llco as defined in (2.3a) are extremely small. In Table 1, this is
illustrated for the Radau II abscissas. However, in spite of their high orders and relatively small
error constants, Hermite predictor formulas have the drawback of extremely large coefficients in
the parameter matrices Ao and B0 , especially for larger values of s. This may cause considerable
round-off errors unless sufficiently high arithmetic is used (we remark that to some extent,
round-off can be suppressed by using shifted iterates x<i> := yw - e ® Yn- 1 in an actual imple
mentation (cf. [4, p. 128])).

An alternative to the Hermite predictor formula is offered by the Adams-Bashforth-type formula
defined by

Ao = Em Bo = Uss W;; 1 , (3.3b)

which satisfies (2.2a) for A =Em B = B0 , C = 0 and p = s. Its error constants associated with the
Radau II abscissas can be found in Table 1. From these figures it is clear that if arithmetic allows,
we should use the Hermite predictors.

Table 1
Error constants UEp+ 1 \\.., associated with Radau II abscissas for Hermite and
Adams-Bashforth predictor formulas

Predictor

Hermite
Adams-Bashforth

s=2

0.12
0.33

s=3

0.0087
0.13

s=4

0.00034
0.041

s=S

0.0000081
0.010

60 P.J. van der Houwen et al./Jounra/ of Computational and Applied Mathematics 66 (1996) 53-71

The method { (3.1), (3.2)} will be called a PIBRK method (parallel iterated BRK method). The
sequential costs of PIBRK methods depend on the structure of the parameter matrices. Therefore,
we postpone a discussion of computational costs until the special cases developed in this paper
have been specified.

For the convergence analysis of (3.1) we define the iteration error

e<i> := yw _ Y.

On substitution in (3.1), we obtain

eW = h(C®144)[F(Y<i- 1>)-F(Y)].

This relation immediately leads to the estimate

II eu> II :-:;; hL II C 1111 eu- ii II.

where L denotes a Lipschitz constant on the right-hand side function/ Although this estimate has
the advantage of being valid for the general IVP (1.1), it does not provide much information for
selecting efficient corrector methods. Therefore, we resort to the familiar approach of approximat
ing the IVP by a linear model. In this way, we obtain detailed information on the iteration process
for the class oflinear IVPs. Like the linear stability theory, this linear convergence theory turns out
to be highly reliable for a large class of non-linear problems.

Assuming the right-hand side function/ sufficiently smooth, we may write

F(U + <5)- F(U) = J(U)b + Q(,P),

where J(U) is an sd-by-sd block-diagonal matrix whose diagonal blocks consist of the Jacobian
matrices af(~)/ay, ~being the components of U. On substitution, we straightforwardly derive the
error recursion

e<i> = zeu-1i + O(eu-1i)2,

where the matrix

Z = Z(hJ(Y)) := h(C ® l)J(Y) (3.4)

controls the convergence of the iteration scheme. Assuming that higher-order terms can be
neglected, the iteration error of the stage vector satisfies

(3.5)

Thus, the iteration matrix C plays a crucial role in the convergence of the PC iteration process.
We shall define the (averaged) convergence factor for the scalar test equation y' = A.y. For this test

equation, (3.5) reduces to

(3.6)

Hence,

P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 66 (1996) 53-71 61

so that, with respect to the maximum norm, the (averaged) convergence factor over m iterations is
given by

(3.7)

The region of convergence in the complex z-plane is given by oc(m, z) < 1, that is, the open disk

(3.8)

where Ym may be considered as the convergence boundary. From (3.8) we deduce the stepsize
condition h < Ym/p(8f/oy). Thus, large convergence boundaries relax the convergence condition
and improve convergence at the same time.

In actual computation, one should satisfy both the convergence condition associated with (3.8)
and the stability condition associated with (2.6), that is, the spectrum of the matrix ha f /8y should
be contained in the intersection of the stability region § and the convergence region Cm (here, we
assume that the IVP is itself stable, so that the spectrum of of/oy is located in the left half-plane). As
a consequence, there is no point in trying to construct correctors whose stability region is much
larger than their region of convergence. However, it may be feasible to have correctors whose
convergence region is much larger than their region of stability, because, as we just saw, large
regions of convergence also improve convergence speed. Notice that strictly lower (or upper)
triangular matrices C have zero convergence factors form ~ s + 2. However, as already remarked,
then the generating BRK corrector (2.1) is explicit and therefore has reduced accuracy.

4. Construction of BRK correctors

In all BRK correctors considered in this paper, the abscissa vector a is identified with the Radau
II points. We do not claim that these points are most optimal, but it is likely that results based on
Radau II points are indicative for other sets of abscissas.

In the construction of BRK correctors, we have to take into account: (i) the consistency
conditions (2.2), (ii) the zero-stability and condition of the matrix A*, (iii) the stability region, and
(iv) the rate of convergence. These aspects will be characterized by the step point order, by the
condition number 1<: 00 (A *)of A* (provided A* is non-singular), the stability boundaries defined by
(2.6), the condition number K 00 (C) and the convergence boundaries defined in (3.8).

4.1. Adams-type correctors without output formulas

We start with the class of methods without output formula, i.e. the output formula coincides with
the stage vector equation, so that A= A*, B = B*, and C = C* (i.e. there are no external stages).
Within this class, zero-stability is automatically achieved by choosing the subclass of Adams
methods, i.e. A = Ess. One option for choosing the remaining matrices Band C is such that a high
order of consistency is obtained. In our preliminary analysis of this type of methods we found that
in general the convergence factors associated with the matrix C improve as the order of consistency
increases. In particular, we observed that the entries in the upper part and in the lower right-hand

62 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71

corner of C are relatively small. This observation led us to consider BRK correctors of which the
matrix C is of the form

c = (gl gJ,
where (1 and (2 , respectively, are an r-by-q and an r-by-r matrix with q + r = s. Evidently, such
correctors have r implicit stages and q explicit stages. In particular, the matrix (;2 determines the
convergence of the PC iteration process.

We shall define the first q rows of the matrix B completely by consistency conditions. From (2.2a)
it follows that the first q stages are consistent of order s if they coincide with the first q rows of the
matrix Uss W s~ 1. In fact, the resulting formulas are Adams-Bashforth formulas (cf. the
Adams-Bashforth predictor formula (3.3b)). Although these formulas are based on pure extrapola
tion, the extrapolation errors are relatively small, because they correspond to the first (and
therefore smaller) components of the abscissa vector a.

The class of methods indicated above is defined by

C=(g1 gJ. (4.la)

A*= A, B* = B, C*=C, (4.lb)

where the r-by-s matrix (:= ((;1 (2) is still free. This method is zero-stable (because A is
zero-stable). Since (4.1) satisfies (2.2a) for p = s it follows from Theorem 2.1 that the stage order
equals s. In the following subsections, a few options for choosing the matrix (;will be discussed.

4.1.1. Adams-Bashforth-Moulton methods
The most simple option defines the implicit stages by imposing consistency conditions of highest

possible order, i.e. r is defined by the r-by-s matrix occurring in the lower right-hand corner of the
s-by-2s matrix

(Ws 2s)-l
Us,2s V.' ·

s,2s
(4.2)

The resulting BRK corrector defines the first q components of Y,. = Y by (explicit)
Adams-Bashforth-type formulas (of order s) and the last r components of Yn by implicit Adams
type formulas of highest possible order of consistency (i.e. order 2s). In this respect, these implicit
formulas resemble the conventional Adams-Moulton formulas. Therefore, we shall refer to these
correctors as Adams-Bashforth-M oulton correctors (ABM correctors). The special methods arising
for q = 0 and q = r will be called Adams-Moulton (AM) correctors and Adams-Bashforth (AB)
correctors, respectively.

We recall that the stage order of ABM correctors equals s. However, for AM correctors where no
explicit stages occur (q = 0), the stage order becomes 2s. For q > 0, Theorem 2.1 shows that the
step point order can be raised to s + 1 by choosing in the step point formula bs = 0 and
ci = eI Uss V s~ 1• However, it turns out that for ABM correctors

eiB~O and eiC~eIVssVs-:; 1 • (4.3)

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71 63

Hence, in practical applications, we achieve superconvergence at the step points by defining the
step point formula simply by y,. = (e'! ® Ic1c1)Yn.

We computed the convergence and stability characteristics for a large number of ABM correc
tors. In the case of a zero imaginary stability boundary, we have also computed the value of
Pt:nai defined by the length of the imaginary interval where the spectral radius of the amplification
matrix M(z) is bounded by 1 + 8, 8 > 0. For sufficiently small values of 8, these values can be used
as the "effective" imaginary stability boundary in practical computations. For a given value of r, it
turns out that the stability boundaries decrease and the convergence boundaries increase with q.
For each r (2 ~ r ~ 5), Table 2 presents the two cases where the stability boundaries Preai and
P/:nag (with 8 = 10- 3) are both sufficiently large (say at least ~ 1) while the convergence boundaries
are maximal. A more extensive list including cases with smaller convergence and stability bound
aries can be found in the Appendix to the corresponding CWI-report NM-R9408. Notice that
a large condition number for {;2 implies relatively small convergence boundaries in the first few
iterations.

Next, we discuss the sequential costs of the PIBRK method based on ABM correctors. Let us
consider the following implementation of the PIBRK method:

f<0 > =(.do® lc14) Y,,- 1 + h(go ® lc1c1)F:- i.

f(j) = (A®Ic1c1)Y..- 1 + h(B®lc1c1)F:-1,

f(j) = (~ ® lc1c1)Y..-1 + h(g ® lc1c1)F:-1 + h({;1 ® Ic1c1)F(Y1i-1)) + h({;2 ® / 44)F(fu- 1'), (
4.4)

(y(m))
Y,, = f(m) '

where j = 1, ... , m. Here, upper and lower bars refer to the first q and last r rows of a matrix, and the
underlying matrices A, Band Care defined by (4.1) and (4.2). Notice that the first q components of
the iterates y(i) do not depend on j.

It is easily verified that (4.4) does yield the solution to the corrector method as m -+ oo (provided
that it converges). Assuming that 1 ~ q ~ r, the sequential costs on r processors are m + 1

Table 2
Characteristics for selected ABM correctors

s=q+r Order flrcal Pimaa /Ji*maa ""'<r2) Y2)13 Y4 Y10 y..,

3=1+2 4 3.33 0 3.81 17 2.48 3.08 3.55 5.16 6.17

4=2+2 5 0.94 0 0.91 15 3.82 4.55 5.20 7.79 9.06

4=1+3 5 2.88 0 2.53 81 1.79 239 2.96 5.91 8.23

5=2+3 6 1.26 0 1.78 64 2.48 3.26 3.99 7.47 10.35

5=1+4 6 1.88 0 2.90 383 1.68 2.11 2.59 5.45 10.68

6=2+4 7 1.38 0.99 0.99 239 2.06 2.64 3.26 6.60 12.28

5=0+5 6 2.26 0.01 3.16 13 853 1.33 1.93 2.26 4.50 10.80

6=1+5 7 0.92 1.13 l.13 2700 1.56 2.05 2.47 5.12 13.05

64 P .J. van der Houwen et al./ Journal of Computational and Applied Mathematics 66 (1996) 53-7 I

right-hand side evaluations, i.e. the evaluation of F(fCml) plus the evaluation of the m right-hand
side functions F(f<i- 1>). The evaluation of F(f<ml) can be done in parallel with that of F(!"<0>), but
this would require q additional processors. However, if we apply local Richardson extrapolation
for stepsize control and if we use additional processors for computing the "reference" solution, then
these processors can also be used for evaluating F(f<m>). Since the "reference" solution is computed
with a double step, it is likely that there is some idle time, in spite of the fact that larger steps will
require more iterations to solve the stage vector equation. Hence, in such a case, the total sequential
costs per step are just m right-hand side evaluations.

4.1.2. Adams-Bashforth-Radau methods
A second option identifies the matrix (~'t ~2) in (4.la) with the last r rows of the Radau IIA

matrix Uss V s; 1. Then the matrix ll vanishes, so that the r implicit stages are determined by Radau
formulas. The stage order and the step point order are the same as for ABM correctors, i.e. s and
s + l, respectively. We shall call this corrector an Adams-Bashforth-Radau corrector (ABR correc
tor) because the first q components of Y,. are defined by Adams-Bashf orth formulas and the last
r components by Radau IIA formulas. For r = 0 the corrector reduces to the AB corrector and
r = s leads to the Radau IIA correctors. The PIBRK method generated by the ABR correctors can
be defined according to (4.4), so that the sequential costs are the same.

The analogue of Table 2 is given in Table 3 where we included the case q = 0 defining the pure
Radau IIA corrector. A comparison of these selected methods with the corresponding ABM
correctors reveals that ABR correctors have smaller convergence boundaries (particularly for
larger m), but possess considerably larger stability boundaries. One may argue that the stability
boundaries of the selected ABM correctors are sufficiently large for integrating non-stiff problems,
so that the ABM correctors seem to be the more attractive ones. However, if the stage vector
equation is not solved to convergence (for example, if the tolerance parameter in the stopping
criterion is not sufficiently small), then we are faced with the fact that the stability region of the

Table 3
Characteristics for selected ABR correctors

s=q+r Order /Jrcal P1mas /J1':na1 1'"'((2) 'jlz 1'3 1'4 'l'lo y,,,

2=0+2 3 00 00 00 7 1.41 1.59 1.86 2.36 2.45
3=1+2 4 8.30 4.32 4.32 9 2.15 2.48 2.87 3.66 4.31
4=2+2 5 1.05 0 0.93 10 3.39 3.92 4.49 5.93 7.11

3=0+3 5 00 00 ao 18 1.41 1.82 2.21 3.03 3.64
4=1+3 5 17.18 0.00 9.02 24 1.81 2.32 2.62 4.08 4.94
5=2+3 6 1.97 0.02 1.89 27 2.45 3.08 3.47 5.80 7.03

4=0+4 7 00 00 00 34 1.41 1.82 2.21 4.28 5.04
5=1+4 6 30.16 0.04 15.74 44 1.65 2.11 2.55 4.84 5.99
6=2+4 7 3.35 0 2.86 50 2.04 2.61 3.15 5.80 7.74

5=0+5 9 00 00 00 55 1.41 1.82 2.21 4.44 6.29
6=1+5 7 47.80 0 24.92 69 1.57 2.02 2.44 4.70 6.87
7=2+5 8 5.23 0.07 4.57 79 1.84 2.36 2.85 5.40 8.39

P.J. van der Houwen et al. /Journal of Computational and Applied Mathematics 66 (1996) 5 3 - 71 65

ABM method is much smaller than that of the ABR method. Section 5 will show that ABR is more
efficient than ABM because of its better stability characteristics for small numbers of iterations.

4.2. Adams-type correctors with Radau output formula

By adding an output formula (i.e. introducing external stages), it is possible to improve the
stability of the corrector method. We shall illustrate this by using output formulas of Radau-type:

(4.5)

If the stage order of Yis p, then Yn has stage order min{p + 1,s} and step point orders+ 1.
The stability matrix M(z) associated with { (4.la), (4.5)} is given by

(4.6)

where MAdams(z) is the stability matrix of (4.1). The large entries in MAdams(z) are responsible for the
possibly poor stability of (4.1). Since the entries of the Radau matrix Uss V,; 1 are rather small, it is
likely that the large entries in MAdams(z) are neutralized, so that the stability region of M(z) is
improved. This is confirmed by the Tables 4 and 5.

In comparison with the Adams methods without output formula, the higher stability has to be
paid for by the additional evaluation of F(Yn-d· This can be concluded from the following
implementation of the generated PIBRK method (cf. (4.4)):

f<O> = (do® /44) Y..-1 + hrno ® l44)F(Y..-1),
-(') - -
Y 1 =(A® Jdd)Y..-1 + h(B ® Idd)F(Y,.-d, (4.7)

Table 4
ABM (+ Radau) correctors

Corrector s=q+r Order p,.,.1 /J1mag Pr'!iaa

ABM 6=4+2 7 0.02 0.02 0.02
ABM+R 6=4+2 7 1.51 0.02 1.40

ABM 6=3+3 7 0.17 0.03 0.18
ABM +R 6=3+3 7 1.98 1.79 1.79

ABM 7=4+3 8 0.01 0.01 0.01
ABM+R 7=4+3 8 1.01 0.01 0.95

ABM 7=3+4 8 0.19 0.22 0.22
ABM +R 7=3+4 8 2.18 1.83 1.83

ABM 7=2+5 8 0.47 0.36 0.36
ABM+R 7=2+5 8 2.31 0.03 2.78

66 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71

Table 5
ABR (+ Radau) correctors

Corrector s=q+r Order /3real /3imag Ptmag

ABR 6 = 4+ 2 7 0.01 0.01 0.02
ABR+R 6=4+2 7 1.52 0.01 1.41

ABR 6=3+3 7 0.18 0.04 0.19
ABR+R 6=3+3 7 1.70 0 1.81

ABR 7=4+3 8 0.01 0.01 0.01
ABR+R 7=4+3 8 0.98 0 0.97

ABR 7=3+4 8 0.27 0.06 0.28
ABR +R 7=3+4 8 1.90 0.01 2.08

ABR 8=3+5 9 0.40 0.01 0.43
ABR+R 8=3+5 9 2.27 0.01 2.54

where j = 1, ... , m. Note that the evaluation of F(Y,,- 1) cannot be replaced by F:_ 1 as in (4.4),
because then the effect of the stabilizing output formula is not taken into account. However, in the
ABR case (where the mth iteration is identical with the output formula), we may replace the last
r components of F(Y..- 1) by those of F':- 1 , without changing the corrector solution. Thus, with
respect to the method (4.4), the additional costs are one right~hand side evaluation in the ABR case
and two right-hand side evaluations in the ABM case. As before, if we have q additional processors
at our disposal, then the total sequential costs per step can be reduced by one right-hand side
evaluation (cf. the discussion of the method (4.4)).

The Tables 4 and 5 illustrate the stabilizing effect of adding a Radau output formula.

4.3. More general correctors

In the ABM and ABR correctors of Section 4.1, the first q (explicit) stages have orders, so that
the resulting stage order can never exceed s. The stage order can easily be increased by using
a number of the zero entries occurring in the matrices A, Band C defined in (4.1}. For example,
adding to the ABR corrector, the (s - l)st column of A and the last column of lJ for satisfying
additional consistency conditions, we obtain a corrector of order s + 1. This corrector may be
considered as a "minimal" modification of the ABR corrector and will be referred to as the modified
ABR corrector. A drawback of these modified correctors is the rather large magnitude of the entries
in the matrix A, even in the case of this minimal modification. Using more zero entries for a further
increase of the stage order leads to dramatically large entries, so that it does not seem feasible to use
this approach for constructing correctors with stage order ~s + 2.

Since the matrix ~ of the modified ABR correctors is no longer defined by the Radau IIA
formulas, the step point formula Yn = (e}' ® Idd) Y,. does not have superconvergence at the step
points. Nevertheless, in practical applications we do observe step point order s + 2, because, again
it turns out that e}' B ::::::: 0 and e"! C ~ eI Uss V5;

1 (cf. the discussion in Subsection 4.1.1). Hence, the
modified ABR method can be implemented according to (4.4), so that the sequential costs per step
are the same as for the ABM and ABR methods.

P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71 67

Table 6
Characteristics for selected modified ABR correctors

s=q+r Order Preal P1maa P!.... Kco({:2) 1'2 /'3)'4 ')110 Yoo

3=1+2 5 4.15 0 1.44 12 2.33 2.72 3.12 4.14 4.98
4=1+3 6 7.16 0 2.41 34 1.83 2.37 2.86 4.85 5.97
6=2+4 8 0.99 0.02 1.17 64 2.05 2.63 3.20 6.04 8.73
7=2+5 9 1.42 0.01 1.74 107 1.85 2.38 2.89 5.66 9.55

The characteristics of a few modified ABR correctors are summarized in Table 6. A comparison
with the corresponding ABR correctors of Table 3 reveals that the modification leads to compara
ble convergence boundaries and smaller stability boundaries. However, the stage order and
(effective) step point order is raised by one. A detailed investigation of this promising family of
methods will be subject of future research.

5. Numerical experiments

Our numerical tests were performed using 15-digits arithmetic. The accuracies obtained are
given by the number of correct digits ..1, defined by writing the maximum norm of the absolute error
at the endpoint in the form 10-Lt. The PIBRK method is implemented according to (4.4) with the
PC pairs (AB, ABM) and (AB, ABR), where the correctors have orders 7 and 8, and are selected
from the Tables 2 and 3. In view of the relatively high corrector orders and the 15-digits arithmetic,
we did not use Hennite predictors.

First, we will make a mutual comparison between ABM and ABR correctors, using a constant
number of iterations per step. For that purpose, we select the following well-known test problems
(cf. [3]), viz. the Fehlberg problem

Yi= 2ty1log(max{y2,10- 3 }), y 1 (0) = 1,

y2 = -2ty2log(max{yi.10- 3 }), Y2(0) = e,

and the Euler problem

y]. = Y2Y3, Y1(0)=0,

y2 = -y1y3, Y2(0) = 1, 0 ~ t ~ 20.

y3 = -0.51Y1Y2, y3(0) = 1,

0 ~ t ~ 5, (5.1)

(5.2)

Secondly, in Section 5.2, we add a dynamic iteration strategy to the 8th-order (AB, ABR) and we
compare this code with three existing codes from the literature. The paper is concluded with
a performance evaluation of these four codes on the Brusselator problem [3, p. 381] which was
transformed into an IVP for ODEs of dimension d = 882.

68 P.J. van der Houwen et a/./Journal of Computational and Applied Mathematics 66 (1996) 53-71

5.1. Comparison of ABM and ABR correctors

We applied the PC pairs (AB, ABM) and (AB, ABR) with s = 2 + 4. These correctors are both of
order 7, require four processors, and are equally expensive. The Tables 7 and 8 present ..1-values for
a few values of hand m (overflow is indicated by*). From these figures, we may conclude that the
efficiency of the two methods is comparable in the case of convergence, but for larger stepsizes
(AB, ABR) is more robust than (AB, ABM). This can be explained by the larger stability regions of
the (AB, ABR) method.

5.2. Comparisons with DOPR18. PIRK8 and PIRKJO

Since (AB, ABR) pairs are more stable and therefore more robust, we restrict our considerations
to this family of PC methods. In particular, we tested the s = 2 + 5 method. This parallel,
eighth-order (AB, ABR) method was compared with the 8(7) RK pair of Prince and Dormand [10]

Table 7
LI-values for (5.1) obtained by (4.4) with (AB,ABM) and (AB,ABR) PC pairs

PC pair s=q+r h-1 m=l m=2 m = 3 m=4 m=oo

(AB,ABM) 2+4 10 • • * * 3.7
(AB,ABR) 2+4 10 • • 2.6 3.7 4.2

(AB,ABM) 2+4 20 0.5 • 3.0 6.5 7.5
(AB,ABR) 2+4 20 0.5 4.5 5.9 6.5 6.9

(AB,ABM) 2+4 40 4.6 • 8.8 9.3 9.6
(AB,ABR) 2+4 40 4.6 7.2 9.0 9.2 9.3

(AB,ABM) 2+4 80 7.9 9.2 10.7 10.7 10.7
(AB,ABR) 2+4 80 7.9 9.4 12.0 11.5 11.5

Table 8
LI-values for (5.2) obtained by (4.4) with (AB,ABM) and (AB,ABR) PC pairs

PC pair s=q+r h-1 m = 1 m=2 m=3 m=4 m=oo

(AB,ABM) 2+4 * * • * 4.6
(AB,ABR) 2+4 * * 3.2 3.9 4.9

(AB,ABM) 2+4 2 • • 2.2 6.4 6.5
(AB,ABR) 2+4 2 * 4.6 5.4 6.6 6.4

(AB,ABM) 2+4 4 4.4 • 8.0 8.4 8.4
(AB,ABR) 2+4 4 4.4 7.7 8.1 8.3 8.3

(AB,ABM) 2+4 8 7.2 9.1 10.5 10.6 10.6
(AB,ABR) 2+4 8 7.1 10.2 10.4 10.4 10.4

P.J van <kr Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71 69

and the parallel PC methods based on Gauss-Legendre correctors of order 8 and 10. For the
Dormand-Prince method we took the DOPRI8 implementation of Hairer et al. [3], and for the
Gauss-Legendre methods we used the four and five-processor one-step codes PIRK8 and PIRKlO
developed in [5].

The (AB, ABR) method was equipped with a dynamic iteration strategy based on the require
ment that the step point component of the residue left on substitution of the jth iterate into the
stage vector equation should be less than a tolerance parameter TOL, i.e.

II (e"! ® JdJ)Ru> II ~ TOL,

where

R<i> := yU> - (Ess ® Jdd) Y.i-1 - h(B ® Idd)F(Yn- i) - h(C ® h1)F(Y<l>).

According to (4.4) we may write

RUl = yU> - yu+i> - h(B ® ldd)(F(Yn-d -F:'-1).

Clearly, the error caused by the iteration process should be smaller than the local truncation error.
This is achieved by requiring TOL to be a factor~ less than the local error. In our experiments, we
shall estimate the local error at tn- 1 by II (ei ® Jcld)(Y,.- 1 - Y;~\) II, where Y;~\ denotes the
prediction in the preceding step. Using the maximum norm and observing that
(eJ ® Idd)(F(Y..-d -F:'-d vanishes in the case of ABR correctors, we are led to the stopping
criterion

(5.3)

Below, the resulting implementation will be referred to as the ABR8 code (we did not yet implement
a stepsize strategy, so that the results produced by this code may be improved when this facility is
included).

As a third test problem, we take the Brusselator problem (see [3, p. 381]), defined by

au (a 2u a2 u) ot = 1 +u 2 v-4.4u +iX oxl + oy2 '

0 ~ x ~ 1, 0 ~ t ~ 23.5, (5.4a)

av (o 2v o2 v)
ot = 3.4u - ulv + l'.X ox2 + oy2 '

supplemented with homogeneous Neumann boundary conditions and the initial conditions

u(t = O,x,y) = 0.5 + y,

v(t = O,x,y) = 1 + 5x.
(5.4b)

Furthermore, iX = 2 -10- 3 and N (the number of equidistant points in the spatial direction) is set
to 21, resulting in an ODE-system of dimension 882.

The Tables 9-11 show results for the various methods (for the first two test problems, the results
for DOPRI8, PIRK8, and PIRK10 were taken from [5]). In the ABR8 code, b is set to 10-4 • To
facilitate a comparison, the listed numbers of sequential right-hand side evaluations have been
obtained by interpolation to arrive at integer values of LI. Furthermore, we list the (averaged) factor

70 P.J. van der Houwen et al./Journal of Computational and Applied Mathematics 66 (1996) 53-71

Table 9
Number of sequential right-hand side evaluations for the Fehlberg problem (5.1)

Method Ll = 5 .d = 6 .d = 7 LI= 8 Ll = 9 .d = 10 Ll = 11 µ

DOPRI8 595 759 963 1227 1574 1990 2503 2.3
PIRK8 379 495 623 786 978 1383 1874 1.5
PIRKlO 327 388 490 704 884 977 1078 1.2
ABR8 240 335 430 532 689 846 1067 1.0

Table 10
Number of sequential right-hand side evaluations for the Euler problem (5.2)

Method LI= 6 LJ = 7 .1=8 .1=9 .d = 10 .1 = 11 .1 = 12 µ

DOPRI8 415 576 728 898 1133 1422 1817 2.9
PIRK8 294 381 534 728 961 1172 1746 2.3
PIRKIO 252 297 357 426 580 730 920 1.5
ABR8 160 192 223 293 379 506 643 LO

Table 11
Number of sequential right-hand side evaluations for the Brusselator problem (5.4)

Method LJ = 3 .d = 4 LI= 5 LI= 6 Ll = 7 LI= 8 LI = 9 µ

DOPRI8 1594 2376 2908 3570 4532 5985 7856 1.9
PIRK8 1161 1579 1950 2462 3225 4190 5448 1.3
PIRKlO 901 1362 1824 2148 2673 3265 3989 1.1
ABR8 591 1169 1747 2237 2624 3288 3953 1.0

by which the existing codes are more expensive than ABR8 (this factor is denoted by µ). These
tables clearly show that ABR8 is the most efficient solver. We see that the speed-up factor of ABR8
with respect to the 8th-order code DOPRI8 (to be considered as one of the most efficient sequential
codes) ranges from 1.9 to 2.9. For the four-processor PIRK8 code of order 8, and the five-processor
lOth-order code PIRKlO this factor is in the range 1.3-2.3 and 1.1-1.5, respectively.

6. Concluding remarks

The search for efficient parallel PC methods reported in this paper has resulted in several fastly
converging and sufficiently stable PC pairs. With respect to the fully automatic code DOPRI8, the
averaged speed-up factor of the fixed stepsize, five-processor ABR8 code ranges from 1.9 to 2.9. The
efficiency of this code can be improved by including a stepsize strategy. Uthe local error estimate is
based on local Richardson extrapolation where the "reference" solution is computed in parallel on
an additional set of processors, then these processors can also be used for saving one function call

P.J. van der Houwen et al./Joumal of Computational and Applied Mathematics 66 (1996) 53-71 71

per step (see the discussion of the scheme (4.4)). In the numerical examples of this paper, this would
increase the speed-up factor by about 20%.

Acknowledgements

The authors are grateful to Dr. K.J. in 't Hout for his interest and useful remarks during the
preparation of this paper.

References

[1] L.G. Birta and 0. Abou-Rabia, Parallel block predictor-corrector methods for OD Es, IEEE Trans. Comput. C-36
(1987) 299-311.

[2] M.T. Chu and H. Hamilton, Parallel solution ofODE's by multi-block methods, SIAM J. Statist. Comput. 8(1987)
342-353.

[3] E. Hairer, S.P. N0rsett and G. Wanner, Solving Ordinary Differential Equations I. Nonsti.ff Problems, Springer Series
in Comp. Math., Vol. 8 (Springer, Berlin, 1987).

[4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems,
Springer Series in Comp. Math., Vol. 14 (Springer, Berlin, 1991).

[5] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Runge--Kutta methods with stepsize
control, J. Comput. Appl. Math. 29 (1990) 111-127.

[6] P.J. van der Houwen and B.P. Sommeijer, Block Runge--Kutta methods on parallel computers, Z. angew. Math.
Mech. 72 (1992) 3-18.

[7] K.R. Jackson and S.P. Nersett, The potential for parallelism in Runge--Kutta methods, Part I: RK formulas in
standard form, SIAM J. Numer. Anal. 32 (1995) 49-82.

[8] I. Lie, Some aspects of parallel Runge--Kutta methods, Report 3/87, Dept. Mathematics, University of Trondheim,
1987.

[9] S.P. Nersett and H.H. Simonsen, Aspects of parallel Runge--Kutta methods, in: A. Bellen, C.W. Gear and E. Russo,
Eds, Numerical Methods for Ordinary Differential Equations, Proc. L'Aquila 1987, Lecture Notes in Mathematics,
Vol. 1386 (Springer, Berlin, 1989).

[10] P.J. Prince and J.R. Dormand, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math. 7 (1981)
67-75.

[11] R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962).

