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Abstract

Riesz fractional derivatives of a function, Dα
xf(x) (also called Riesz

potentials), are defined as fractional powers of the Laplacian. Asymp-
totic expansions for large x are computed for the Riesz fractional
derivatives of the Airy function of the first kind, Ai(x), and the Scorer
function, Gi(x). Reduction formulas are provided that allow one to ex-
press Riesz potentials of products of Airy functions, Dα

x {Ai(x)Bi(x)}
and Dα

x

{
Ai2(x)

}
, via Dα

xAi(x) and Dα
xGi(x). Here Bi(x) is the Airy

function of the second type. Integral representations are presented for
the function A2 (a, b;x) = Ai (x − a) Ai (x − b) with a, b ∈ R and its
Hilbert transform. Combined with the above asymptotic expansions
they can be used for computing asymptotics of the Hankel transform
of Dα

x {A2 (a, b;x)}. These results are used for obtaining the weak ro-
tation approximation for the Ostrovsky equation (asymptotics of the
fundamental solution of the linearized Cauchy problem as the rotation
parameter tends to zero).
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1 Introduction

It is well known that fundamental solutions of the linearized Cauchy prob-
lems for equations of the Korteweg-de Vries (KdV henceforth) type can be
expressed in terms of the Airy function of the first type, Ai(x). Indeed, for
the KdV

ut + uxxx +
(
u2
)

x
= 0,

the above fundamental solution has the representation

E0(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
. (1.1)

A close relative of KdV, the Ostrovsky equation takes into account the effect
of the weak rotation (Earth’s rotation) and, after the appropriate rescaling,
it can be written in the form (see [12])

ut + uxxx +
(
u2
)

x
= γ

∫ x

−∞
u(y, t) dy,

where γ = const > 0 is a small rotation parameter. It was shown in [19] that
the fundamental solution of the Cauchy problem for the linearized Ostrovsky
equation can be represented in the form

E(x, t) = E0(x, t) + Eγ(x, t), (1.2)

where E0(x, t) is given by (1.1) and

Eγ(x, t) = −
√
γt

3
√

3t

∫ ∞

0

Ai

(
x+ y

3
√

3t

)
J1 (2

√
γty)√
y

dy, (1.3)

where Jν(x) is the Bessel function of order ν.
Riesz fractional derivatives (also called Riesz potentials) are defined as

fractional powers of the Laplacian, Dα
x = (−∆)α/2. Riesz potentials of fun-

damental solutions of linearized Cauchy problems are of great importance in
the study of global solvability, properties and long-time behavior of solutions
to initial-value problems (see [14, 8, 9, 10, 7, 20] and the references therein).
In the current paper we are concerned with obtaining asymptotic expansions
as x → ±∞ of the Riesz fractional derivatives of Ai(x) and its conjugate,
the Scorer function Gi(x) = −HAi(x). Here H is the Hilbert transform (see
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(2.1) below). Riesz potentials of these functions of order α = 1/2 stand out
as the highest fractional derivatives that are still uniformly bounded on the
whole real axis (see [9, 10]). Moreover, all semi-integer derivatives of Ai(x)
and Gi(x) can be expressed in terms of the products of the Airy functions
(see [20]).

In the next section, we give definitions of Riesz potentials and integral
transforms used in the current work. In Section 3, we provide asymp-
totic expansions of the Riesz potentials of the Airy function of the first
kind, Ai(x), and the Scorer function, Gi(x), from which asymptotic esti-
mates of the Riesz fractional derivatives Dα

x {Ai(x)Bi(x)}, Dα
x {Ai2(x)} and

Dα
x {Ai (x− a)Ai (x− b)} with a, b ∈ R can be obtained. Here Bi(x) is the

Airy function of the second type. Section 4 is devoted to integral represen-
tations of the Riesz potentials of the products of Airy functions and their
Hankel transforms. It can be used for obtaining their asymptotic expan-
sions. In Section 5, we show applications of the above results for obtaining
the weak rotation approximation for the Ostrovsky equation (asymptotics of
the fundamental solution of the linearized Cauchy problem as γ → 0). In
the Appendix, we collect integral representations, properties and asymptotic
expansions of the Airy functions Ai(x) and Bi(x) and the Scorer function
Gi(x) used in the current paper. We also derive asymptotic expansions of
the antiderivative

∫ x

0
Gi(t) dt as x→ ±∞.

2 Definitions and preliminaries

Let f : R → R. Define the Fourier transform of this function by the formula

f̂(ξ) = F {f(x)} (ξ) =

∫ ∞

−∞
e−iξxf(x) dx

and the inverse Fourier transform by

f(x) = F−1
{
f̂(ξ)

}
(x) =

1

2π

∫ ∞

−∞
eiξxf̂(ξ) dξ.

Introduce the Hankel transform of the function f by (see [4, p. 316])

f̃(k) = Hx→k {f(x)} (k) =

∫ ∞

0

f(x)J0(kx)x dx
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and the corresponding inverse transform by

H−1
k→x

{
f̃(k)

}
(x) =

∫ ∞

0

f̃(k)J0(kx)k dk.

Introduce the Hilbert transform of f by the formula (see [16, p. 120])

H {f(x)} =
1

π
P.V.

∫ ∞

−∞

f(y)

y − x
dy, (2.1)

where P.V. denotes the Cauchy principal value of an integral. According to

our choice of the Fourier transform, (̂Hf)(ξ) = isgn(ξ)f̂(ξ). Also, H2 = −I
on Lp(R), p ≥ 1, where I is the identity operator (see [5], p 51).

For x ∈ R
n Riesz potentials are defined via the Fourier transform (see

[15, p. 117] and [5, p. 88])

(
(−∆)α/2 f

)∧
(ξ) = |ξ|αf̂(ξ). (2.2)

For x ∈ R and real α > −1

Dα
xf(x) =

1

2π

∫ ∞

−∞
|ξ|αf̂(ξ)eiξx dξ, (2.3)

provided that the integral in the right-hand side exists.
We shall also use the notation

(Dαf) (g(x)) = Dα
z f (z)

∣∣∣∣
z=g(x)

(2.4)

whenever a fractional derivative is computed first and then its argument is
set to equal g(x). Notice that for any a = const > 0

Dα
x (f(ax)) = aα (Dαf) (ax), (2.5)

where in the left-hand side Dα
x acts on f(ax) and the right-hand side is under-

stood in the sense of (2.4). The proof of (2.5) is based on using (2.3) and the
well-known property of the Fourier transform F {f(ax)} (ξ) = (1/a)f̂(ξ/a)
for a > 0.

Introduce the function

A2(a, b; x) = Ai (x− a)Ai (x− b) . (2.6)
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This function appears in the studies of the Gelfand-Levitan-Marchenko equa-
tion (see [2, p. 408]), the second Painleve equation (see [18, p. 134]) and the
limit at the “edge of the spectrum” of the level spacing distribution functions
obtained from scaling random models of Hermitian matrices in the Gaus-
sian Unitary Ensemble [3, 17]. Recently, a new integral representation has
been found for A2(a, b; x) (see (4.1) below). It allows us to compute Riesz
fractional derivatives of this function.

The next statement was proved in [21]. It provides projection formulas
for the Riesz potentials of the products of Airy functions.

Theorem 1. Riesz fractional derivatives of the products of Airy functions
have the following representations for α > −1/2 and x ∈ R:

Dα
x

{
Ai2(x)

}
= kα

[(
Dα−1/2Ai

) (
22/3x

)
−
(
Dα−1/2Gi

) (
22/3x

)]
(2.7)

and

Dα
x {Ai(x)Bi(x)} = kα

[(
Dα−1/2Ai

) (
22/3x

)
+
(
Dα−1/2Gi

) (
22/3x

)]
, (2.8)

where

kα =
22(α−1)/3

√
2π

. (2.9)

The fractional derivatives in the right-hand sides are defined by (2.4) and the
Scorer function Gi(x) by (6.7).

3 Riesz potentials of Ai(x) and Gi(x)

The Riesz potentials of Ai(x) and Gi(x) can be written in the form

Dα
xAi(x) = ℜ{F α(x)} , Dα

xGi(x) = ℑ{F α(x)} , (3.1)

where

F α(x) =
1

π

∫ ∞

0

ξα exp
[
i
(
xξ + ξ3/3

)]
dξ. (3.2)

This integral is defined for real x and −1 < ℜ(α) < 2. However, we can
modify the integral over the positive semi-axis by turning the half line slightly
upwards into the complex plane, say, in such a way that arg ξ = π/6, with
the path running into the valley of exp (iξ3). In the analysis to follow we
shall make this type of modification, and in the new representations we shall
take x to be any complex number. This will also remove the upper bound
restriction on ℜ(α). Hence, in the analysis to follow we shall only assume
that ℜ(α) > −1.
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Figure 1: Modification of the paths of integration for the integrals in (3.2) (left)

and (3.29) (right), giving the two integrals Fα
1 (x) and Fα

2 (x) in (3.4) and (3.5),

and the two integrals Gα
1 (x) and Gα

2 (x) in (3.30) and (3.31).

3.1 Asymptotic expansion for x → +∞

We use a representation of the integral in (3.2) similar to that for Gi(x) in
(3.18) of [6]. The exponential function in the integrand of (3.2) has a saddle
point at ξ = i

√
x. We integrate from the origin to this saddle point, and from

there to infinity inside the valley at ∞ exp(πi/6) (see Fig. 1). As a result,
we can write

F α(x) = F α
1 (x) + F α

2 (x), (3.3)

where

F α
1 (x) =

exp [iπ(α+ 1)/2]

π

∫ √
x

0

vα exp
(
−xv + v3/3

)
dv (3.4)

and

F α
2 (x) =

1

π

∫ ∞ exp(iπ/6)

i
√

x

ξα exp
[
i(xξ + ξ3/3)

]
dξ. (3.5)

3.1.1 Asymptotic expansion of F α

1
(x) for large positive x

Lemma 1. The following asymptotic expansion holds for x → +∞:

F α
1 (x) ∼ exp [iπ(α + 1)/2]

π xα+1

∞∑

k=0

Γ(α+ 3k + 1)

3k k!

1

x3k
. (3.6)
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Proof. The derivation of (3.6) is based on the application of Watson’s lemma
(see [11]). Expanding the exponential in the integrand of (3.4) into the power
series,

exp

(
v3

3

)
=

∞∑

k=0

v3k

3k k!
,

and replacing the upper limit of integration by ∞ we integrate termwise. As
a result, we get

F α
1 (x) ∼ exp [iπ(α + 1)/2]

π

∞∑

k=0

1

3k k!

∫ ∞

0

vα+3ke−xv dv. (3.7)

Evaluating the integrals we deduce (3.6).

Remark. For α = 0 the imaginary part of (3.6) equals the expansion of
Gi(x) as given in (6.11). Also, for α = 0 the real part of (3.6) vanishes, and
the expansion of Ai(x) cannot be recovered from it. Therefore, for α = 0
we need the asymptotic expansion of F α

2 (x) (see (3.5)) in order to recover
the expansion of Ai(x) as given in (6.3). The expansion of F α

2 (x) is also
important for other non-negative integers α, and we continue to deal with
this function for general values of this parameter.

3.1.2 Asymptotic expansion of F α

2
(x) for large positive x

Lemma 2. The integral F α
2 (x) has the following asymptotic expansion for

x→ ∞:

F α
2 (x) ∼ xα/2−1/4e−ζ(x) exp (iπα/2)

2π

∞∑

k=0

fk
Γ ((k + 1)/2)

x3k/4
, (3.8)

where ζ(x) = 2
3
x3/2.

Proof. The main contribution to the asymptotics of the integral in (3.5)
comes from a neighborhood of the lower limit i

√
x. The first transformation,

ξ =
√
x(i+ η), gives

F α
2 (x) = x(α+1)/2e−ζ(x) exp (iπα/2)

π

∫ ∞

0

(1 − iη)αe−x3/2(η2−iη3/3) dη. (3.9)
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The substitution w = η
√

1 − iη/3 transforms this integral into the standard
form

F α
2 (x) = x(α+1)/2e−ζ(x) exp (iπα/2)

π

∫ ∞

0

e−x3/2w2

f(w) dw, (3.10)

where

f(w) = (1 − iη)α dη

dw
.

The asymptotic expansion in question can be obtained from (3.10) by devel-
oping f(w) as a power series and term by term integration. First we use an
expansion

dη

dw
=

w

η (1 − iη/3)
=

∞∑

k=0

akw
k (3.11)

and write the coefficients ak in the form of a Cauchy integral,

ak =
1

2πi

∫

Cw

dη

dw

dw

wk+1
, (3.12)

where Cw is a small circle around the origin in the w−plane. This can be
written as an integral in the η−plane:

ak =
1

2πi

∫

Cη

g(η)
dη

ηk+1
, (3.13)

where g(η) = (1 − iη/3)−(k+1)/2 and Cη is a small circle around the origin.
We see that the coefficient ak is the coefficient of ηk in the Taylor expansion
of g(η). Since

g(η) =

∞∑

j=0

Cj
−(k+1)/2(−1

3
iη)j, (3.14)

where Cm
n are binomial coefficients, we deduce

ak = Cj
−(k+1)/2

(
−1

3
i
)k

=
ik

3kk!

Γ
(

3k+1
2

)

Γ
(

k+1
2

) , k = 0, 1, 2, . . . . (3.15)

Next, we have

η =
∞∑

k=0

ak

k + 1
wk+1 and (1 − iη)α =

∞∑

k=0

bkw
k, (3.16)
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where a few first coefficients are

b0 = 1, b1 = −iα, b2 = 1
2
α(1 − α− ia1). (3.17)

Finally, we can write

f(w) =

∞∑

k=0

fkw
k, (3.18)

where a few first coefficients are

f0 = 1, f1 = a1 − iα, f2 = (2a2 − 3iαa1 − α2 + α)/2. (3.19)

Taking into account (3.15), we can rewrite this in the form

f0 = 1, f1 = i(1 − 3α)/3, f2 = (−5 + 24α− 12α2)/24. (3.20)

Using expansion (3.18) for the calculation of the integral in (3.10) we obtain
(3.8).

3.1.3 Asymptotic expansions of Dα

x
Ai(x) and Dα

x
Gi(x)

We summarize here the results for the Riesz fractional derivatives defined by
(3.1).

Theorem 2. The following asymptotic expansions hold for x→ +∞:

Dα
xAi(x) ∼ −sin(πα/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k

+
xα/2−1/4e−ζ(x)

2π
[cos(πα/2)S1(α, x) − sin(πα/2)S2(α, x)]

(3.21)

and

Dα
xGi(x) ∼

cos(πα/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k

+
xα/2−1/4e−ζ(x)

2π
[sin(πα/2)S1(α, x) + cos(πα/2)S2(α, x)] ,

(3.22)

where

S1(α, x) ∼
∞∑

k=0

f2kΓ(k + 1
2
)

x3k/2
, S2(α, x) ∼

∞∑

k=0

f2k+1Γ(k + 1)

x3k/2+3/4
(3.23)

and a few first coefficients fk are given by (3.20).
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Remark. It follows from the construction that the coefficients f2k are real
and f2k+1 are imaginary. Also, setting α = 0 yields fk = ak, where ak is
given in (3.15). Moreover, for α = 0 the real part of the expansion in (3.8)
becomes

ℜ
{
F 0

2 (x)
}
∼ exp [−ζ(x)]

2
√
πx1/4

∞∑

k=0

a2k (1/2) k

x3k/2
for x→ ∞, (3.24)

where (b)n = b(b+ 1)...(b+ n− 1) is the Pochhammer symbol. According to
(3.15), we have

a2k (1/2)k

x3k/2
=
ck
ζk
, k = 0, 1, 2, . . . . (3.25)

Thus, we see that (3.24) turns into the expansion for Ai(x) as given by (6.3).

Proof. We have

Dα
x {Ai(x)} = ℜ{F α

1 (x) + F α
2 (x)} , Dα

xGi(x) = ℑ{F α
1 (x) + F α

2 (x)} .
(3.26)

Taking the real and imaginary parts of the expansions in (3.6) and (3.8) we
get for large positive x

ℜ{F α
1 (x)} ∼ −sin(πα/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k
,

ℑ{F α
1 (x)} ∼ cos(πα/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

1

x3k
,

(3.27)

ℜ{F α
2 (x)} =

1

2π
xα/2−1/4e−ζ(x) [cos(πα/2)S1(α, x) − sin(πα/2)S2(α, x)] ,

ℑ{F α
2 (x)} =

1

2π
xα/2−1/4e−ζ(x) [sin(πα/2)S1(α, x) + cos(πα/2)S2(α, x)] ,

(3.28)
where S1(α, x) and S2(α, x) are defined by (3.23).

Remark. The expansions for ℜ{F α
2 (x)} and ℑ{F α

2 (x)} are relevant only
for integer values of α. For other values of α they can be neglected.
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3.2 Asymptotic expansions for large negative x

In this case we write

Gα(x) = F α(−x) =
1

π

∫ ∞

0

ξαei(−xξ+ξ3/3) dξ, x > 0. (3.29)

There is a positive stationary point (saddle point) at ξ0 =
√
x, which

gives a contribution to the asymptotic expansion, but one should take into
account a contribution from ξ = 0 as well. In order to handle both of them,
we replace the original path of integration by the two new contours (see
Fig. 1). This leads to

Gα(x) = Gα
1 (x) +Gα

2 (x),

where

Gα
1 (x) =

1

π

∫ −i∞

0

ξαei(−xξ+ξ3/3) dξ (3.30)

and

Gα
2 (x) =

1

π

∫ ∞eπi/6

−i∞
ξαei(−xξ+ξ3/3) dξ. (3.31)

Notice that the contour forGα
2 (x) runs from the valley at −i∞ to the valley at

∞ exp(iπ/6), and we can take this contour through the saddle point ξ0 =
√
x.

3.2.1 Asymptotic expansion of Gα

1
(x)

Lemma 3. The integral Gα
1 (x) has the following asymptotic expansion for

x→ +∞ :

Gα
1 (x) ∼ exp (−iπ(α + 1)/2)

π xα+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

(−1)k

x3k
, x → +∞. (3.32)

Proof. We set ξ = −iv with v > 0 in the integral representation of Gα
1 (x)

and get

Gα
1 (x) =

exp (−iπ(α + 1)/2)

π

∫ ∞

0

vαe−(xv+v3/3) dv. (3.33)

Conducting the same arguments as in the proof of Lemma 1 we deduce
(3.32).
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3.2.2 Asymptotic expansion of Gα

2
(x)

Lemma 4. Gα
2 (x) has the following asymptotic expansion for x→ +∞ :

Gα
2 (x) ∼ xα/2−1/4 exp [i(π/4 − ζ(x))]

π

∞∑

k=0

g2k
ik Γ (k + 1/2)

x3k/2
. (3.34)

Proof. First, we set ξ = η
√
x in (3.31) which gives

Gα
2 (x) =

x(α+1)/2

π

∫ ∞eπi/6

−i∞
ηα exp

[
−x3/2φ(η)

]
dη, (3.35)

where
φ(η) = i

(
η − 1

3
η3
)
.

Notice that φ(1) = 2i/3 and φ′′(1) = −2i.
Performing the transformation φ(η) = φ(1) + 1

2
φ′′(1)w2 we get

w2 = 2
3
− η + 1

3
η3 and w = (η − 1)

√
(η + 2)/3. (3.36)

Next, we integrate over the neighborhood of the saddle point at w = 0
along the straight line passing through the origin, having an angle of π/4
with the positive w−axis. This yields

Gα
2 (x) = x(α+1)/2 exp [−iζ(x)]

π

∫ ∞ exp(iπ/4)

∞ exp(−i3π/4)

g(w) exp
(
ix3/2w2

)
dw, (3.37)

where g(w) = ηαdη/dw and ζ(x) is given by (6.4).
After that we expand g(w) into the power series, g(w) =

∑∞
k=0 gkw

k, and
get

Gα
2 (x) ∼ x(α+1)/2 exp [−iζ(x)]

π

∞∑

k=0

g2k

∫ ∞ exp(iπ/4)

∞ exp(−i3π/4)

w2k exp
(
ix3/2w2

)
dw.

(3.38)
In order to evaluate these integrals we set w = teiπ/4, which gives

exp
[

1
4
πi(2k + 1)

] ∫ ∞

−∞
t2k exp

(
−x3/2t2

)
dt

= exp
[

1
4
πi(2k + 1)

]
Γ
(
k + 1

2

)
x−3(k+1/2)/2.

(3.39)
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Finally, we obtain (3.34), where a few first coefficients are

g0 = 1, g2 = 1
24

(
12α2 − 24α+ 5

)
,

g4 = 1
3456

(144α4 − 1344α3 + 3864α2 − 3504α+ 385).

(3.40)

3.2.3 Asymptotic expansions of Dα

x
Ai(x) and Dα

x
Gi(x) for large

negative arguments

Theorem 3. The following asymptotic expansions hold for x→ −∞:

Dα
xAi(x) ∼ −sin(πα/2)

π |x|α+1

∞∑

k=0

Γ(α+ 3k + 1)

3k k!

(−1)k

|x|3k

+
|x|α/2−1/4

π
[sinψ(|x|)T1(α, |x|) − cosψ(|x|)T2(α, |x|)]

(3.41)

and

Dα
xGi(x) ∼ −cos(πα/2)

π |x|α+1

∞∑

k=0

Γ(α + 3k + 1)

3k k!

(−1)k

|x|3k

+
|x|α/2−1/4

π
[cosψ(|x|)T1(α, |x|) + sinψ(x)T2(α, |x|)] ,

(3.42)

where ψ(x) = ζ(x) + π/4, ζ(x) is given by (6.4),

T1(α, y) ∼
∞∑

k=0

(−1)k g4kΓ(2k + 1/2)

y3k
,

T2(α, y) ∼
∞∑

k=0

(−1)k g4k+2Γ(2k + 3/2)

y3k+3/2

(3.43)

and a few first coefficients gk are given by (3.40).

Proof. Taking the real and imaginary parts of (3.32) and (3.34) we get for
x < 0

Dα
xAi(x) = ℜ{Gα

1 (|x|) +Gα
2 (|x|)} , Dα

xGi(x) = ℑ{Gα
1 (|x|) +Gα

2 (|x|)} .
(3.44)

Summing the results we obtain (3.41) and (3.42).
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Remark. For α = 0 these expansions simplify to give those for Ai(x)
and Gi(x) as x → −∞. First, we observe that the coefficients g2k can be
written as

g2k =
1

32k(2k)!

Γ(3k + 1/2)

Γ(k + 1/2)
, k = 0, 1, 2, . . . . (3.45)

This can be shown in the same way as for proving (3.15). Next, for Ai(x) the
first item in (3.41) vanishes and the first term in (3.42) gives the first item
in (6.6). For Gi(x) we can use (6.10), (6.11) and the expansion for Bi(x) in
(6.6) to verify that the expansions in the second lines of (3.41) and (3.42)
reduce to the known expansions.

4 Riesz potentials of products of Airy functions

In this section we provide integral representations for the products of Airy
functions, their Riesz potentials and the Hankel transforms of the latter.
They can be used for obtaining asymptotic expansions for large values of the
arguments.

The next statement was proved in [23].

Theorem 4. The following representation holds for x ∈ R; a, b, ω1, ω2 ∈ R

and ω1, ω2 6= 0:

Ai

(
x− a

ω1

)
Ai

(
x− b

ω2

)

= − 2

Ω1

∫ ∞

0

d

dx

[
Ai2

(
Ω1x− A+ η2

)]
J0 (2 (Ω2x+B) η) η dη, (4.1)

where

Ω1 =
ω1 + ω2

2ω1ω2
, Ω2 =

ω2 − ω1

2ω1ω2
,

A =
aω1 + bω2

2ω1ω2
, B =

bω1 − aω2

2ω1ω2
.

(4.2)

We list here several important corollaries that allow us to get the Hankel
transforms of the function A2(a, b; x) and its fractional derivatives. Notice
that

Ai (x− a)Ai (x− b) = Ai (x− Y − Z)Ai (x− Y + Z) ,

where

Y =
a+ b

2
and Z =

b− a

2
. (4.3)
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Corollary 1. The following formulas hold for x ∈ R and a, b ∈ R:

A2(a, b; x) = −2
d

dx

∫ ∞

0

Ai2
(
x− Y + η2

)
J0 (2Zη) η dη (4.4)

and

−H {A2(a, b; x)} = −2
d

dx

∫ ∞

0

Ai
(
x− Y + η2

)

×Bi
(
x− Y + η2

)
J0 (2Zη) η dη.

(4.5)

Proof. Evidently, (4.4) is a particular case of (4.1) when ω1 = ω2 = 1. Taking
into account that [18]

−H
{
Ai2(x)

}
= Ai(x)Bi(x)

and computing the Hilbert transform of (4.4) with respect to x yield (4.5).

Corollary 2. For α, a, b ∈ R fractional derivatives of the function A2(a, b; x)
are given by the formula

Dα
x {A2(a, b; x)} = −kα

d

dx

∫ ∞

0

[(
Dα−1/2Ai

) (
22/3

(
x− Y + η2

))

−
(
Dα−1/2Gi

) (
22/3

(
x− Y + η2

))]
J0 (2Zη) η dη,

(4.6)

H {Dα
x {A2(a, b; x)}} = kα

d

dx

∫ ∞

0

[(
Dα−1/2Ai

) (
22/3

(
x− Y + η2

))

+
(
Dα−1/2Gi

) (
22/3

(
x− Y + η2

))]
J0 (2Zη) η dη,

(4.7)

where kα is given by (2.9) and the integrals in the right-hand sides exist at
least in the sense of distributions.

Proof. The proof follows from (4.4), (4.5).

Corollary 3. The following relations hold for α > −1/2:

2H−1
Z→ζ

{
Dα−1

x (Ai(x− Z)Ai(x+ Z))
}

= kα

[(
Dα−1/2Ai

)
(X) +

(
Dα−1/2

)
Gi (X)

]
,

(4.8)
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2H−1
Z→ζ

{
Dα−1

x Hx (Ai(x− Z)Ai(x+ Z))
}

= kα

[(
Dα−1/2Ai

)
(X) −

(
Dα−1/2

)
Gi (X)

]
,

(4.9)

where kα is defined by (2.9) and X = X(x, ζ) = 22/3 (x+ ζ2/4).

Remark. Combining the asymptotic expansions (3.21), (3.22), (3.41) and
(3.42) and Corollary 3 we can obtain asymptotic expansions of the Hankel
transforms (4.8) and (4.9) for x → ±∞ or ζ → ∞.

5 Weak rotation approximation for the Ostro-

vsky equation

In this section we shall establish a pointwise estimate as γ → 0 for the
fundamental solution E(x, t) of the Cauchy problem for the linearized Ostro-
vsky equation. This asymptotic estimate is referred to as the weak rotation
approximation.

Recall representation (1.2) for the above fundamental solution. Comput-
ing the Riesz potential for E(x, t) we can write

Dα
xE(x, t) = Dα

xE0(x, t) +Dα
xEγ(x, t),

where

Dα
xE0(x, t) =

1

(3t)(1+α)/3
(DαAi)

(
x

3
√

3t

)
,

Dα
xEγ(x, t) = − a

(3t)(1+α)/3

∫ ∞

0

(DαAi)

(
x+ η2

3
√

3t

)
J1 (aη) dη,

a = 2
√
γt and γ > 0 is a small rotation parameter.

The next statement is a modification of Lemma 1 of [22].

Lemma 5. For α > 0 and x ∈ R

∫ x

0

Dα
t Ai(t)dt = Dα−1

x Gi(x) −Dα−1
x Gi(0) (5.1)

and ∫ x

0

Dα
t Gi(t)dt = −Dα−1

x Ai(x) +Dα−1
x Ai(0). (5.2)
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Proof. Using the relations d/dx = H ◦ D, Ai(x) = HGi(x) and Gi(x) =
−HAi(x) (see [18, p. 71]) and integrating the identities

Dα
xAi(x) =

d

dx

(
Dα−1

x Gi(x)
)

and Dα
xGi(x) = − d

dx

(
Dα−1

x Ai(x)
)

we establish (5.1) and (5.2).

Remark. It follows from (5.1), (5.2), (3.21), (3.22), (3.41) and (3.42) that
for 0 ≤ α ≤ 3/2, x ∈ R

∣∣∣∣
∫ x

0

Dα
t Ai(t) dt

∣∣∣∣ ≤ C1, (5.3)

for 0 < α ≤ 3/2, x ∈ R

∣∣∣∣
∫ x

0

Dα
t Gi(t) dt

∣∣∣∣ ≤ C2, (5.4)

and for x ∈ R ∣∣∣∣
∫ x

0

Gi(t) dt

∣∣∣∣ ≤ C3 ln(1 + |x|) (5.5)

where the constants Ci, i = 1, 2, 3, are independent of x. Estimate (5.3)
for α = 0 follows from the properties of

∫ x

0
Ai(t)dt (see [1, p. 449]) and the

inequality (5.5) follows from the arguments presented in the Appendix.

Now consider a Cauchy problem for the linearized Ostrovsky equation

ut + uxxx = γ
∫ x

−∞ u(y, t)dy, x ∈ R, t > 0,

u(x, 0) = φ(x), x ∈ R,

(5.6)

and the corresponding Cauchy problem for the linearized KdV with the same
initial data

vt + vxxx = 0, x ∈ R, t > 0,

v(x, 0) = φ(x), x ∈ R.

(5.7)

We are interested in obtaining pointwise estimates of the differenceDα
xE(x, t)−

Dα
xE0(x, t) as γt → 0, where E(x, t) and E0(x, t) are the fundamental solu-

tions for the linearized Cauchy problems (5.6) and (5.7), respectively (see
(1.1) and (1.2)).
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Theorem 5. The following estimate holds for 0 ≤ α ≤ 3/2, γ > 0, x ∈ R

and t > 0:
|Dα

xE(x, t) −Dα
xE0(x, t)| ≤ Cγt1−α/3. (5.8)

where C = const > 0 is independent of x, t and γ.

Proof. Notice that for α = 0, the estimate (5.8) follows from the results of
[19]. Let α > 0. Using (2.5) and setting

√
y = η we get

Dα
xE0(x, t) =

1

(3t)(1+α)/3
(DαAi)

(
x

3
√

3t

)

and

Dα
xEγ(x, t) = − a

(3t)(1+α)/3

∫ ∞

0

(DαAi)

(
x+ η2

3
√

3t

)
J1 (aη) dη.

First consider x > 0. Introducing the notation χ = x/ 3
√

3t and making
the change of variable ζ = χ + η2/ 3

√
3t we get

Dα
xEγ(x, t) = − a

(3t)1/6+α/3

∫ ∞

χ

Dα
ζAi (ζ)

J1

(
a 6
√

3t
√
ζ − χ

)

2
√
ζ − χ

dζ.

Using the inequality (see [24, p. 49])
∣∣∣∣
J1 (x)

x

∣∣∣∣ ≤
1

2
for x ∈ R

and the asymptotics (3.21) with α > 0 we obtain

|Dα
xEγ(x, t)| ≤ a2

(3t)α/3

∫ ∞

χ

∣∣Dα
ζAi (ζ)

∣∣ dζ

≤ a2

(3t)α/3

∫ ∞

0

∣∣Dα
ζAi (ζ)

∣∣ dζ ≤ C
a2

(3t)α/3
.

(5.9)

Consider now x < 0. In this case we can write

Dα
xEγ(x, t) = − a

(3t)(1+α)/3
(I1 + I2) , (5.10)

where

I1 =

∫ √
|x|

0

(DαAi)

(
−
(
|χ| − η2

3
√

3t

))
J1 (aη) dη (5.11)
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and

I2 =

∫ ∞

√
|x|

(DαAi)

(
η2

3
√

3t
− |χ|

)
J1 (aη) dη. (5.12)

First we deal with the integral I1. Making the change of variable ζ = |χ| −
η2/ 3

√
3t and setting b = a 6

√
3t we can rewrite it in the form

I1 =
6
√

3t

∫ |χ|

0

(DαAi) (−ζ)
J1

(
b
√

|χ| − ζ
)

2
√
|χ| − ζ

dζ

Integrating by parts we get

I1 =
6
√

3t

∫ |χ|

0

J1

(
b
√
|χ| − ζ

)

2
√

|χ| − ζ
dζ

(∫ ζ

0

(DαAi) (−y) dy
)

=
6
√

3t



J1

(
b
√

|χ| − ζ
)

2
√
|χ| − ζ

∫ ζ

0

(DαAi) (−y) dy
∣∣∣∣
ζ=|χ|

ζ=0

−
∫ b

√
|χ|

0

(∫ |χ|−z2/b2

0

(DαAi) (−y) dy
)

d

dz

(
J1(z)

z

)
dz

]
.

Using the formula (see [24, p. 46])

d

dz

(
Jν(z)

zν

)
= −Jν+1(z)

zν

we can get

I1 = b
6
√

3t

[
1

4

∫ |χ|

0

(DαAi) (−y) dy

+

∫ b
√

|χ|

0

(∫ |χ|−z2/b2

0

(DαAi) (−y) dy
)
J2(z)

z
dz

]
.

(5.13)

Recalling (5.3) and using the estimate (see [24])

∣∣∣∣
J2(x)

x

∣∣∣∣ ≤
c

|x|3/2
for x→ ∞
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we can see that for 0 < α ≤ 3/2

|I1| ≤ Ca
3
√
t. (5.14)

Making the change of variable ρ = η2/ 3
√

3t−|χ| we can rewrite the integral
(5.12) in the form

I2 =
6
√

3t

∫ ∞

0

Dα
ρAi (ρ)

J1

(
b
√
ρ+ |χ|

)

2
√
ρ+ |χ|

dρ.

In view of the asymptotics (3.21) with α > 0 we can estimate the integral I2
in the following way:

|I2| ≤ b
6
√

3t

∣∣∣∣∣∣

∫ ∞

0

Dα
ρAi (ρ)

J1

(
b
√
ρ+ |χ|

)

2b
√
ρ+ |χ|

dρ

∣∣∣∣∣∣

≤ Cb
6
√

3t

∫ ∞

0

∣∣Dα
ρAi (ρ)

∣∣ dρ ≤ Ca
3
√

3t.

(5.15)

Combining (5.9), (5.10), (5.14) and (5.15) we establish (5.8).

Remark. We observe that for 1/2 < α ≤ 3/2 fractional derivatives of the
KdV fundamental solution, Dα

xE0(x, t), are unbounded. In order to avoid
this difficulty, we can assume that φ ∈ W 1

1 (R) and integrate by parts. As a
result we obtain

Dα
xu =

∫ ∞

−∞
Dα

xE0(x− y, t)φ(y) dy

=
1

3
√

3t

∫ ∞

−∞
HDα−1

x ∂x

(
Ai

(
x− y

3
√

3t

))
φ(y) dy

=
1

3
√

3t

[
− 1

(3t)(α−1)/3

(
Dα−1Gi

)(x− y
3
√

3t

)
φ(y)

∣∣∣∣
y=∞

y=−∞

+
1

(3t)(α−1)/3

∫ ∞

−∞

(
Dα−1Gi

)(x− y
3
√

3t

)
φ′(y) dy

]

(5.16)

Here the first term in the brackets vanishes since Dα−1
x Gi(x) is bounded for

0 < α ≤ 3/2 (see (3.22) and (3.42)) and φ(x) → 0 for |x| → ∞ due to
the imposed smoothness condition. Various linear estimates can be obtained
from (5.16) with the help of the asymptotics of Dα

xGi (x).
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6 Appendix: Airy and Scorer functions

We summarize below the main properties of the Airy and Scorer functions
that are used in this paper.

6.1 Airy functions

Linearly independent solutions of the homogeneous Airy equation w′′−zw =
0 are denoted by Ai(z) and Bi(z). They have integral representations

Ai(z) =
1

π

∫ ∞

0

cos
(
zξ + ξ3/3

)
dξ,

Bi(z) =
1

π

∫ ∞

0

sin
(
zξ + ξ3/3

)
dξ +

1

π

∫ ∞

0

ezξ−ξ3/3 dξ,

(6.1)

where z is assumed to be real. Initial values are

Ai(0) = Bi(0)/
√

3 = 3−2/3/Γ(2/3),

Ai′(0) = −Bi′(0)/
√

3 = −3−1/3/Γ(1/3).

(6.2)

For large positive z we have asymptotic expansions

Ai(z) ∼ e−ζ

2π1/2z1/4

∞∑

k=0

(−1)k ck
ζk
, Bi(z) ∼ eζ

π1/2z1/4

∞∑

k=0

ck
ζk
, (6.3)

where

ζ = ζ(z) = 2
3
z3/2, ck =

Γ(3k + 1/2)

54kk! Γ(k + 1/2)
, k = 0, 1, 2, . . . . (6.4)

A few first coefficients are

c0 = 1, c1 =
5

72
, c2 =

385

10368
, c3 =

85085

2239488
. (6.5)

For complex values of z the expansion of Ai(z) in (6.3) is valid for −π <
arg z < π, and the expansion for Bi(z) holds for −π/3 < arg z < π/3.
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For large negative arguments the expansions are

Ai(−z) ∼ π−1/2z−1/4

(
sinψ(z)

∞∑

k=0

(−1)k c2k

ζ2k
− cosψ(z)

∞∑

k=0

(−1)k c2k+1

ζ2k+1

)
,

Bi(−z) ∼ π−1/2z−1/4

(
cosψ(z)

∞∑

k=0

(−1)k c2k

ζ2k
+ sinψ(z)

∞∑

k=0

(−1)k c2k+1

ζ2k+1

)
,

(6.6)
where ψ(z) = ζ(z) + π/4. For complex values of z these expansions hold in
the sector −2π/3 < arg z < 2π/3.

6.2 Scorer functions

The Scorer function Gi(z) is a particular solution of the non-homogeneous
Airy differential equation w′′− zw = −1/π. For z ∈ R we have the represen-
tation

Gi(z) =
1

π

∫ ∞

0

sin
(
zξ + ξ3/3

)
dξ. (6.7)

For the same z a particular solution of the equation w′′ − z w = 1/π is given
by

Hi(z) =
1

π

∫ ∞

0

ezξ−ξ3/3 dξ. (6.8)

Initial values are

Gi(0) = 1
2
Hi(0) = 3−7/6/Γ(2

3
), Gi′(0) = 1

2
Hi′(0) = 3−5/6/Γ(1

3
). (6.9)

From (6.1), (6.7), and (6.8) it follows that

Gi(z) +Hi(z) = Bi(z). (6.10)

We have the asymptotic expansions (see [11, pp. 431–432])

Gi(z) ∼ 1

πz

(
1 +

1

z3

∞∑

s=0

(3s+ 2)!

s!(3z3)s

)
, −π

3
< arg z <

π

3
, (6.11)

and

Hi(−z) ∼ 1

πz

(
1 − 1

z3

∞∑

s=0

(−1)s (3s+ 2)!

s!(3z3)s

)
, −2π

3
< arg z <

2π

3
. (6.12)
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Other relations are (see [6])

Hi(z) = e±2πi/3Hi
(
ze±2πi/3

)
+ 2e∓πi/6Ai

(
ze∓2πi/3

)
. (6.13)

and
Gi(z) = −e±2πi/3Hi

(
ze±2πi/3

)
± iAi(z). (6.14)

The proofs follow easily by verifying that the right-hand sides satisfy the
differential equations, and from the initial values given in (6.2) and (6.9).

With the connection formulas (6.13) and (6.14) and with (6.10) asymp-
totic relations in other sectors of the complex plane can be derived.

6.3 Asymptotics of the antiderivative of Gi(x)

In Section 5 we dealt with the estimates of the integrals
∫ x

0
Gi(t) dt for |x| →

∞. It follows from the expansions in (6.10)–(6.12) that this integral has a
logarithmic estimate shown in (5.5). In this section we would like to treat this
issue in more detail using the asymptotic expansions of the Riesz potentials
Dα

xAi(x) with α > −1 obtained above.

Theorem 6. The following asymptotic expansions hold for the antiderivative
of the Scorer function Gi(x):

∫ x

0

Gi(t) dt ∼ −2γ + 3 lnx+ ln 3

3π
+

1

π

∞∑

k=1

Γ(3k)

3k k!

1

x3k

+
e−ζ(x)

2πx3/4
S2(−1, x) for x→ +∞

(6.15)

and

∫ x

0

Gi(t) dt ∼ −2γ + 3 ln |x| + ln 3

3π
+

1

π

∞∑

k=1

Γ(3k)

3k k!

(−1)k

|x|3k

+
1

π|x|1/4
[sinψ(|x|)T1(−1, |x|) − cosψ(|x|)T2(−1, |x|)]

for x→ −∞,

(6.16)

where γ = 0.57721... is the Euler constant, S2(−1, x) is given by (3.20) and
(3.23) with α = −1, ψ(x) = ζ(x) + π/4, and T1(−1, |x|) and T2(−1, |x|) are
defined by (3.43) with α = −1.
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Remark. Since the notation γ for the Euler constant is used only in the
current subsection, it cannot be confused with the rotation parameter in the
Ostrovsky equation.

Proof. We have from (6.7)
∫ x

0

Gi(t) dt =
1

π

∫ ∞

0

cos (xξ + ξ3/3) − cos (ξ3/3)

ξ
dξ. (6.17)

It is not possible to break up this integral into two with a single cosine term
in the integrand because of the divergence of the resulting integrals at ξ = 0.
Instead we split it up in the following way:

∫ x

0

Gi(t) dt = lim
α↓−1

[Φ1(α, x) − Φ2(α)] , (6.18)

where for α > −1

Φ1(α, x) =
1

π

∫ ∞

0

ξα cos
(
xξ + ξ3/3

)
dξ,

Φ2(α) =
1

π

∫ ∞

0

ξα cos
(
ξ3/3

)
dξ.

(6.19)

Taking into account (3.1) and (3.2) we see that

Φ1(α, x) = Dα
xAi(x) (6.20)

and, according to (2.5.3.10) of [13],

Φ2(α) =
3(α−2)/3

π
cos

(
π(1 + α)

6

)
Γ

(
1 + α

3

)
. (6.21)

Here both Φ1 and Φ2 are singular at α = −1.
For Φ1(α, x) we use the asymptotic expansions given in Theorems 2 and

3 (see (3.21) and (3.41)). We notice that in these expansions only the terms
with k = 0 in the infinite series become singular in the limit as α ↓ −1. These
terms should be combined with Φ2(α) in order to get regular expressions when
finding limit (6.18).

Thus, in order to obtain the asymptotic representation for x → ±∞ we
have to compute the limit

L(x) = lim
α→−1

[
−sin(πα/2)

π|x|α+1
Γ(α + 1) − Φ2(α)

]
. (6.22)
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After some manipulations with computer algebra it turns out to be

L(x) = −2γ + 3 ln |x| + ln 3

3π
, (6.23)

where γ is the Euler constant. Using the other terms in (3.21) and (3.41) with
α = −1 we obtain asymptotic expansions for large x (6.15) and (6.16).
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