

Contents lists available at ScienceDirect

# Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb



# Tangles, tree-decompositions and grids in matroids <sup>☆</sup>

Jim Geelen<sup>a</sup>, Bert Gerards <sup>b,c</sup>, Geoff Whittle <sup>d</sup>

- <sup>a</sup> Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
- <sup>b</sup> Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
- <sup>c</sup> Technische Universiteit Eindhoven, Eindhoven, The Netherlands
- <sup>d</sup> School of Mathematical and Computing Sciences, Victoria University, Wellington, New Zealand

#### ARTICLE INFO

#### Article history:

Received 8 September 2004 Available online 8 April 2009

Keywords: Branch-width Tangles Tree-decomposition Matroids Graph Minors

#### ABSTRACT

A tangle in a matroid is an obstruction to small branch-width. In particular, the maximum order of a tangle is equal to the branch-width. We prove that: (i) there is a tree-decomposition of a matroid that "displays" all of the maximal tangles, and (ii) when M is representable over a finite field, each tangle of sufficiently large order "dominates" a large grid-minor. This extends results of Robertson and Seymour concerning Graph Minors.

© 2009 Elsevier Inc. All rights reserved.

#### 1. Introduction

Robertson and Seymour [6] introduced branch-width for graphs and showed that this parameter is characterized by "tangles". Robertson and Seymour also stated that their results extend to matroids [6, p. 190]; the details were later given by Dharmatilake [1] (see, also, [3]). Here we use the definitions given in [3]; we defer these definitions until Section 3. For the purpose of this introduction, a tangle of order  $\theta$  in M can be thought of as a " $\theta$ -connected component" of M. We prove the following two results.

**1.1.** Each matroid has a tree-decomposition that "displays" all its maximal tangles.

This will be made precise in Theorem 9.1, which extends a result in Graph Minors X [6, (10.3)].

E-mail address: jfgeelen@uwaterloo.ca (J. Geelen).

<sup>\*</sup> This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Marsden Fund of New Zealand.

**Theorem 1.2.** For each finite field  $\mathbb{F}$  and positive integer k there exists an integer  $\theta$  such that, if M is an  $\mathbb{F}$ -representable matroid and  $\mathcal{T}$  is a tangle in M of order  $\theta$ , then  $\mathcal{T}$  dominates a minor N that is isomorphic to the cycle matroid of a k by k grid.

The proof is given in Section 7. Theorem 1.2 extends a result of Robertson, Seymour, and Thomas [8, (2.3)]. The term "dominates" is used specifically with respect to grid-minors and is defined in Section 7. To prove Theorem 1.2 we will use the main result of [4] which says that an  $\mathbb{F}$ -representable matroid with huge branch-width contains a large grid-minor.

These results are technical, but the motivation is to, hopefully, use them in extending the Graph Minors Structure Theorem [7]. For example, for certain fixed binary matroids N, we are interested in the class of binary matroids that do not contain an N-minor. Typically we choose N to be a highly structured matroid, such as: the cycle matroid of a grid, the cycle matroid of a complete graph, or a projective geometry. In such cases N has a unique maximal tangle  $\mathcal{T}_N$ . Now, if N is a minor of some binary matroid M, then the tangle  $\mathcal{T}_N$  "induces" a tangle  $\mathcal{T}_M$  in M. Any tangle in M that contains  $\mathcal{T}_M$  is said to "dominate" N. Now 1.1 shows that the maximal tangles in M are composed in a tree-like way. This tree structure essentially localizes each maximal tangle in M and shows how M is composed from these local parts. So, to determine the structure of binary matroids with no N-minor, it suffices to determine the local structure of each maximal tangle in M that does not dominate an N-minor. Unfortunately the local structure of tangles that do not dominate N is complicated. This is partly overcome by considering only tangles whose order is much larger than the order of  $\mathcal{T}_N$ . By Theorem 1.2, each such tangle dominates a huge grid. Supposing that our tangle does not dominate an N-minor, the hope then is that this huge grid-minor will impose local structure on M.

## 2. Connectivity and branch-width

We assume that the reader is familiar with matroid theory; we use the notation of Oxley [5].

Let  $\lambda$  be a function that assigns an integer value to each subset of a finite set E. We call  $\lambda$  symmetric if  $\lambda(X) = \lambda(E - X)$  for all  $X \subseteq E$ . We call  $\lambda$  submodular if  $\lambda(X) + \lambda(Y) \geqslant \lambda(X \cap Y) + \lambda(X \cup Y)$  for all  $X, Y \subseteq E$ . If  $\lambda$  is integer-valued, symmetric, and submodular, then we call  $\lambda$  a connectivity function on E. A connectivity system is a pair  $K = (E, \lambda)$  where  $\lambda$  is a connectivity function on E. A partition (A, B) of E(K) is called a separation of order  $\lambda_K(A)$ .

For a matroid M and  $X \subseteq E(M)$ , we let  $\lambda_M(X) = r_M(X) + r_M(E(M) - X) - r(M) + 1$ . It is straightforward to prove that  $K_M = (E(M), \lambda_M)$  is a connectivity system. For a graph G and  $X \subseteq E(G)$ , we let  $\lambda_G(X)$  denote the number of vertices of G that are incident with both an edge of X and an edge of X is a connectivity system. Moreover, if X is connected we have for each  $X \subseteq E(G)$  that X is a connectivity system.

Branch-width plays only a minor role in this paper, but we include a definition for completeness. Let K be a connectivity system. A tree is *cubic* if its internal vertices all have degree 3. A *branch-decomposition* of K is a cubic tree T whose leaves are labeled by elements of E(K) such that each element in E(K) labels exactly one leaf of T and each leaf of T receives at most one label from E(K). If T' is a subgraph of T and  $X \subseteq E(K)$  is the set of labels of T', then we say that T' displays X. The width of an edge e of T is defined to be  $\lambda_K(X)$  where X is the set displayed by one of the components of  $T - \{e\}$ . The width of T is the maximum among the widths of its edges. The *branch-width* of K is the minimum among the widths of all branch-decompositions of K.

The *branch-width* of a matroid M is the branch-width of its connectivity system  $K_M = (E(M), \lambda_M)$ . We remark that there are some trivial graphs G, such as trees, for which  $K_G$  and  $K_{M(G)}$  have different branch-width. It is, however, conjectured that, if G has a circuit of length at least 2, then  $K_G$  and  $K_{M(G)}$  have the same branch-width. In Section 6 we prove that this is at least true for n by n grids.

## 3. Tangles

In this section we review results and definitions from [3].

Let K be a connectivity system. A *tangle* in K of *order*  $\theta$  is a collection  $\mathcal T$  of subsets of E(K) such that:

- (T1) For each  $B \in \mathcal{T}$ ,  $\lambda_K(B) < \theta$ .
- (T2) For each separation (A, B) of order less than  $\theta$ ,  $\mathcal{T}$  contains either A or B.
- (73) If  $A, B, C \in \mathcal{T}$ , then  $A \cup B \cup C \neq E(K)$ .
- (*T*4) For each  $e \in E(K)$ ,  $E(K) \{e\} \notin \mathcal{T}$ .

It is proved in [3, Lemma 3.1] that, to verify that  $\mathcal{T}$  is a tangle, we may replace (T3) by the following weaker conditions:

- (T3a) If  $B \in \mathcal{T}$ ,  $A \subseteq B$ , and  $\lambda_K(A) < \theta$ , then  $A \in \mathcal{T}$ .
- (T3b) If  $(A_1, A_2, A_3)$  is a partition of E(K), then  $\mathcal{T}$  does not contain all three of  $A_1$ ,  $A_2$ , and  $A_3$ .

Note that throughout this text partitions may have empty members; in particular, (T3b) also says that no two members of  $\mathcal{T}$  partition E(K).

The following slight variation of [6, (3.5)] was proved in [3, Theorem 3.2].

**Theorem 3.1.** Let K be a connectivity system. Then, the maximum order of a tangle in K is equal to the branchwidth of K.

A *tangle* in a matroid M is a tangle in its connectivity system  $K_M$ . The following fact is used in the proof of 7.3.1.

**Lemma 3.2.** Let T be a tangle of order  $\theta$  at least 3 in a matroid M. Then each subset of E(M) with rank less than  $\theta - 1$  is in T.

**Proof.** Let X be a smallest possible subset in E(M) that is not in  $\mathcal{T}$ . As  $\theta \geqslant 3$  it follows from (T2) and (T4) that singletons are in  $\mathcal{T}$ . So X can be partitioned into two smaller sets. By the choice of X these two sets are in  $\mathcal{T}$ . Hence by (T3), E(M) - X is not in  $\mathcal{T}$ . Thus by (T2),  $\lambda_M(X) \geqslant \theta$ . Note that, for any  $Y \subseteq E(M)$ , the rank of Y is at least  $\lambda_M(Y) - 1$ . So X has rank at least  $\theta - 1$ ; as required.  $\square$ 

Let  $\mathcal{T}$  be a tangle of order  $\theta$  in matroid M. For  $X \subseteq E(M)$ , if X is a subset of a set in  $\mathcal{T}$ , then we let

$$\phi_{\mathcal{T}}(X) = \min(\lambda_M(A) - 1: X \subseteq A \in \mathcal{T}),$$

otherwise we let  $\phi_{\mathcal{T}}(X) = \theta - 1$ . The following result was proved in [3, Lemma 4.3].

**Lemma 3.3.** Let M be a matroid and let T be a tangle in M of order  $\theta$ . Then  $\phi_T$  is the rank-function of a matroid of rank  $\theta - 1$ .

This matroid is referred to as the *tangle matroid* of T.

## 4. New tangles from old

In this section we look at different constructions for tangles. Let  $\mathcal{T}$  be a tangle of order  $\theta$  in a connectivity system K and let  $\theta' \leq \theta$ . Now let  $\mathcal{T}'$  be the collection of all sets  $A \in \mathcal{T}$  with  $\lambda_K(A) < \theta'$ . It is straightforward to verify that:

**Lemma 4.1.** T' is a tangle in K of order  $\theta'$ .

We say that T' is the *truncation* of T to order  $\theta'$ . Note that if T' and T are tangles in K, then T' is a truncation of T if and only if  $T' \subseteq T$ .

Let  $K = (E, \lambda)$  be a connectivity system and let  $X \subseteq E$ . We let  $K \circ X = ((E - X) \cup \{e_X\}, \lambda')$  where, for each  $A \subseteq E - X$ ,  $\lambda'(A) = \lambda(A)$  and  $\lambda'(A \cup \{e_X\}) = \lambda(A \cup X)$ . It is straightforward to verify that:

**Lemma 4.2.** If K is a connectivity system and  $X \subseteq E(K)$ , then  $K \circ X$  is a connectivity system.

We can also obtain a tangle in  $K \circ X$  from a tangle in K.

**Lemma 4.3.** Let  $\mathcal{T}$  be a tangle of order  $\theta$  in the connectivity system K and let  $X \in \mathcal{T}$ . Now let  $\mathcal{T}'$  be the collection of subsets of  $E(K \circ X)$  such that, for  $A \subseteq E(K) - X$ ,  $A \in \mathcal{T}'$  if and only if  $A \in \mathcal{T}$ ; and  $A \cup \{e_X\} \in \mathcal{T}'$  if and only if  $A \cup X \in \mathcal{T}$ . Then  $\mathcal{T}'$  is a tangle of order  $\theta$  in  $K \circ X$ .

**Proof.** Each of the conditions (T1)–(T4) for  $\mathcal{T}'$  to be a tangle follows directly from the corresponding condition for  $\mathcal{T}$ .  $\square$ 

A set X of elements in a connectivity system K is called *titanic* if each partition  $(A_1, A_2, A_3)$  of X satisfies  $\lambda_K(A_i) \geqslant \lambda_K(X)$  for at least one i = 1, 2, 3.

The following result is a partial converse of Lemma 4.3; it generalizes a result in Graph Minors X [6, (8.3)].

**Lemma 4.4.** Let K be a connectivity system, let  $X \subseteq E(K)$  be titanic with  $\lambda_K(X) < \theta$ , and let  $\mathcal{T}'$  be a tangle of order  $\theta$  in  $K \circ X$ . Now let  $\mathcal{T}$  be the collection of all  $A \subseteq E(K)$  such that  $\lambda_K(A) < \theta$  and either  $A - X \in \mathcal{T}'$  or  $(A - X) \cup \{e_X\} \in \mathcal{T}'$ . Then  $\mathcal{T}$  is a tangle of order  $\theta$  in K.

**Proof.** Let Y = E(K) - X and  $L = K \circ X$ . Note that  $\lambda_L(\{e_X\}) = \lambda_L(Y) = \lambda_K(Y) = \lambda_K(X) < \theta$ , so  $\{e_X\} \in \mathcal{T}'$ . By definition,  $\mathcal{T}$  satisfies (T1).

We next prove that  $\mathcal{T}$  satisfies (T2). Consider a separation (A,B) of order less than  $\theta$  in K. Since X is titanic in K, either  $\lambda_K(X \cap A) \geqslant \lambda_K(X)$  or  $\lambda_K(X \cap B) \geqslant \lambda_K(X)$ . By symmetry between A and B, we may assume that  $\lambda_K(X \cap A) \geqslant \lambda_K(X)$ . Then, by submodularity and symmetry of  $\lambda_K$ , we see that  $\lambda_L(Y \cap B) = \lambda_K(Y \cap B) = \lambda_K(A \cup X) \leqslant \lambda_K(A) + \lambda_K(X) - \lambda_K(A \cap X) \leqslant \lambda_K(A) < \theta$ . Therefore, as  $\mathcal{T}'$  satisfies (T2), one of  $Y \cap B = B - X$  or  $(Y \cap A) \cup \{e_X\} = (A - X) \cup \{e_X\}$  is in  $\mathcal{T}'$ . Thus,  $\mathcal{T}$  contains B or A, as required. So  $\mathcal{T}$  satisfies (T2).

Next consider (T3a). Let  $B \in \mathcal{T}$  and  $A \subseteq B$  with  $\lambda_K(A) < \theta$ . Then, by definition, B - X is contained in a set in  $\mathcal{T}'$ . Since  $A \subseteq B$ , the union of (E(K) - A) - X, B - X and  $\{e_X\}$  is E(L). As  $\{e_X\}$  in  $\mathcal{T}'$  and as  $\mathcal{T}'$  satisfies (T3), this implies that (E(K) - A) - X is not contained in a set of  $\mathcal{T}'$ . So,  $E(K) - A \notin \mathcal{T}$ . As  $\lambda_K(A) < \theta$  and as  $\mathcal{T}$  does satisfy (T2) this implies that  $A \in \mathcal{T}$ , as required. So  $\mathcal{T}$  satisfies (T3a).

We next prove by contradiction that  $\mathcal{T}$  satisfies (T3b). Let  $A_1$ ,  $A_2$ , and  $A_3$  be members of  $\mathcal{T}$  that partition E(K). Then each of  $A_1-X$ ,  $A_2-X$  and  $A_3-X$  is contained in a set in  $\mathcal{T}'$ . So, since E(L) cannot be covered by three sets in  $\mathcal{T}'$ , none of the sets  $(A_1\cap Y)\cup\{e_X\}$ ,  $(A_2\cap Y)\cup\{e_X\}$ , or  $(A_3\cap Y)\cup\{e_X\}$  is in  $\mathcal{T}'$ . Thus  $\mathcal{T}'$  contains each of  $A_1\cap Y$ ,  $A_2\cap Y$ , and  $A_3\cap Y$ . Since  $A_1\cap Y$  and  $\{e_X\}$  lie in  $\mathcal{T}'$ ,  $\mathcal{T}'$  does not contain  $Y-A_1$ . Now since  $\mathcal{T}'$  contains neither  $Y-A_1$  nor  $(A_1\cap Y)\cup\{e_X\}$ , we have  $\lambda_K(Y-A_1)=\lambda_L(Y-A_1)\geqslant\theta>\lambda_K(A_1)$ . So, by submodularity and symmetry of  $\lambda_K$ , we get that  $\lambda_K(X\cap A_1)\leqslant\lambda_K(X)+\lambda_K(A_1)-\lambda_K(X\cup A_1)=\lambda_K(X)+\lambda_K(A_1)-\lambda_K(Y-A_1)<\lambda_K(X)$ . Similarly  $\lambda_K(X\cap A_2)<\lambda_K(X)$  and  $\lambda_K(X\cap A_2)<\lambda_K(X)$ . However this contradicts the fact that X is titanic. Thus  $\mathcal{T}$  satisfies (T3b) and, hence,  $\mathcal{T}$  is a tangle of order  $\theta$  in K.

Finally we prove by contradiction that  $\mathcal{T}$  satisfies (T4). Suppose  $e \in E(K)$  with  $E(K) - \{e\} \in \mathcal{T}$ . Then at least one of  $E(L) - \{e, e_X\} = E(K) - \{e\} - X$  or  $E(L) - \{e\} = (E(K) - \{e\} - X) \cup \{e_X\}$  is in  $\mathcal{T}'$ . As  $\mathcal{T}'$  satisfies (T4), this means  $E(L) - \{e, e_X\} \in \mathcal{T}'$  and  $e \in E(L) - \{e_X\}$ . Now we have, as  $E(K) - \{e\} \in \mathcal{T}$ , that  $\lambda_L(\{e\}) = \lambda_K(\{e\}) = \lambda_K(E(K) - \{e\}) < \theta$ . So, as  $\mathcal{T}'$  satisfies (T4), the singleton  $\{e\}$  is in  $\mathcal{T}'$ . But since also  $\{e_X\}$  and  $E(L) - \{e, e_X\}$  are in  $\mathcal{T}'$ , this contradicts that  $\mathcal{T}'$  satisfies (T3). So  $\mathcal{T}$  does indeed satisfy (T4).  $\square$ 

### 5. Minors and tangles

Let N be a minor of M and let  $\mathcal{T}_N$  be a tangle in N of order  $\theta$ . Now let  $\mathcal{T}_M$  be the collection of all sets  $A \subseteq E(M)$  where  $\lambda_M(A) < \theta$  and  $A \cap E(N) \in \mathcal{T}_N$ . The following result is an immediate consequence of definitions.

**Lemma 5.1.**  $T_M$  is a tangle in M of order  $\theta$ .

We say that  $\mathcal{T}_M$  is the tangle in M induced by  $\mathcal{T}_N$ .

Let  $f: \mathbb{Z}_+ \to \mathbb{Z}_+$  be a function and  $m \in \mathbb{Z}_+$ . A matroid M is called (m, f)-connected if whenever (A, B) is a separation of order  $\ell$  where  $\ell < m$  we have either  $|A| \le f(\ell)$  or  $|B| \le f(\ell)$ .

Let  $g(n) = (6^{n-1} - 1)/5$ . Note that g(1) = 0 and g(n) = 6g(n-1) + 1 for all n > 1. The main result in this section is the following.

**Theorem 5.2.** Let  $\mathcal{T}$  be a tangle of order  $\theta$  in a matroid M. Then there exists a  $(\theta, g)$ -connected minor N of M and a tangle  $\mathcal{T}'$  of order  $\theta$  in N such that  $\mathcal{T}$  is the tangle in M induced by  $\mathcal{T}'$ .

We will use the following result from [2, Lemma 3.1].

**Lemma 5.3.** Let  $f: \mathbb{Z}_+ \to \mathbb{Z}_+$  be a nondecreasing function. If e is an element of an (m, f)-connected matroid M, then  $M \setminus e$  or M/e is (m, 2f)-connected.

**5.4. Proof of Theorem 5.2.** The proof is by induction on |E(M)| with  $\theta$  fixed; the root of this induction lies in the  $(\theta, g)$ -connected matroids. Let  $\mathcal{T}$  be a tangle of order  $\theta$  in a matroid M and assume M is not  $(\theta, g)$ -connected. Choose  $m \in \{1, \ldots, \theta - 1\}$  as small as possible such that M is not (m + 1, g)-connected. Then there exists a separation (A, B) of order m with |A|, |B| > g(m). By symmetry we may assume that  $A \in \mathcal{T}$ . Now let  $e \in A$ . By Lemma 5.3 and duality, we may assume that M/e is (m, 2g)-connected.

**5.4.1.**  $A - \{e\}$  is titanic in M/e.

**Subproof.** When m=1 this is vacuously true. Suppose that m>1 and consider any partition  $(A_1,A_2,A_3)$  of  $A-\{e\}$ . Since |A|>g(m)=6g(m-1)+1, we have  $|A_i|>2g(m-1)$  for some  $i\in\{1,2,3\}$ . Then, since M/e is (m,2g)-connected,  $\lambda_{M/e}(A_i)\geqslant m\geqslant \lambda_{M/e}(A-\{e\})$ . Hence  $A-\{e\}$  is indeed titanic in M/e.  $\square$ 

**5.4.2.** For each  $X \subseteq B$ ,  $\lambda_M(X) = \lambda_{M/e}(X)$ .

**Subproof.** Since M/e is (m, 2g)-connected,  $\lambda_M(B) = \lambda_{M/e}(B)$ . Hence  $e \notin cl_M(B)$ . Therefore, for each  $X \subseteq B$ ,  $e \notin cl_M(X)$ . So  $\lambda_M(X) = \lambda_{M/e}(X)$ ; as required.  $\square$ 

**5.4.3.** For each  $X \subseteq E(M)$  with  $\lambda_M(X) < \theta$  we have that  $X \in \mathcal{T}$  if and only if  $X - A \in \mathcal{T}$  or  $X \cup A \in \mathcal{T}$ .

**Subproof.** Let  $X \subseteq E(M)$  with  $\lambda_M(X) < \theta$ . First assume that  $X - A \in \mathcal{T}$  or  $X \cup A \in \mathcal{T}$ . Then, as  $A \in \mathcal{T}$ , it follows from (T3) that  $E(M) - X \notin \mathcal{T}$ . Hence  $X \in \mathcal{T}$ .

For the reverse implication assume now that  $X \in \mathcal{T}$ . By 5.4.2,  $\lambda_M(A) = \lambda_M(B) = \lambda_{M/e}(B - \{e\}) = \lambda_{M/e}(A - \{e\})$ . So as A is titanic in M/e either  $\lambda_M(A - X) \geqslant \lambda_{M/e}(A - X) \geqslant \lambda_M(A)$  or  $\lambda_M(A \cup X) \geqslant \lambda_{M/e}(A \cup X) \geqslant \lambda_M(A)$ . If  $\lambda_M(A - X) \geqslant \lambda_M(A)$ , then by symmetry and submodularity of  $\lambda_M$  we have that  $\lambda_M(X - A) = \lambda_M(X \cap B) \leqslant \lambda_M(X) + \lambda_M(B) - \lambda_M(X \cup B) = \lambda_M(X) + \lambda_M(A) - \lambda_M(A - X) \leqslant \lambda_M(X) < \theta$ . Hence, if  $\lambda_M(A - X) \geqslant \lambda_M(A)$  then it follows from (T3a) that  $X - A \in \mathcal{T}$ . If  $\lambda_M(A \cap X) \geqslant \lambda_M(A)$ , then, again by submodularity,  $\lambda_M(A \cup X) \leqslant \lambda_M(X) + \lambda_M(A) - \lambda_M(A \cap X) \leqslant \lambda_M(X) < \theta$ . So by (T2) either  $A \cup X \in \mathcal{T}$  or  $B - X \in \mathcal{T}$ . However, as  $A \in \mathcal{T}$  and  $X \in \mathcal{T}$  it follows from (T3) that  $B - X \notin \mathcal{T}$ . We conclude that if  $X \in \mathcal{T}$  then  $X - A \in \mathcal{T}$  or  $X \cup A \in \mathcal{T}$ .  $\square$ 

Let  $\mathcal{T}_1$  be the tangle in  $K_M \circ A$  of order  $\theta$  obtained from  $\mathcal{T}$  via Lemma 4.3. By 5.4.2, there is a natural isomorphism between  $K_M \circ A$  and  $K_{M/e} \circ (A - \{e\})$ ; let  $\mathcal{T}_2$  be the tangle in  $K_{M/e} \circ (A - \{e\})$  of order  $\theta$  that is obtained from  $\mathcal{T}_1$  via this isomorphism. In both  $K_M \circ A$  and  $K_{M/e} \circ (A - \{e\})$  denote the element that is not in B by e'.

Let  $\mathcal{T}_3$  be the tangle in M/e of order  $\theta$  that is obtained from  $\mathcal{T}_2$  via Lemma 4.4. Finally let  $\mathcal{T}_4$  be the tangle in M that is induced by  $\mathcal{T}_3$ .

**5.4.4.** 
$$T = T_4$$
.

**Subproof.** Let (X, Y) be a separation of M of order less than  $\theta$  with  $e \in Y$ . Then each of the following sequence of equivalences follows directly from definitions:

$$X \in \mathcal{T}_4 \iff X \in \mathcal{T}_3$$
 $\iff X - (A - \{e\}) \in \mathcal{T}_2 \text{ or } (X - (A - \{e\})) \cup \{e'\} \in \mathcal{T}_2$ 
 $\iff X - A \in \mathcal{T}_1 \text{ or } (X - A) \cup \{e'\} \in \mathcal{T}_1$ 
 $\iff X - A \in \mathcal{T} \text{ or } X \cup A \in \mathcal{T}.$ 

So by 5.4.3,  $X \in \mathcal{T}_4$  if and only if  $X \in \mathcal{T}$ ; as required.  $\square$ 

The result now follows easily by applying induction to the tangle  $\mathcal{T}_3$  in M/e.  $\square$ 

# 6. A tangle in a grid

An *n* by *n* grid is a graph  $G_n$  with vertex set  $V = \{(i, j): i, j \in \{1, ..., n\}\}$  where vertices (i, j) and (i', j') are adjacent if and only if either i = i' and |j - j'| = 1, or j = j' and |i - i'| = 1.

The goal of this section is to prove the existence of a natural tangle of order n in  $M(G_n)$ . For  $i \in \{1, ..., n\}$  let  $P_i$  denote the path in  $G_n$  on vertices (i, 1), ..., (i, n) and let  $Q_i$  denote the path in  $G_n$  on vertices (1, i), ..., (n, i). Now we let  $\mathcal{T}_n$  denote the collection of all subsets  $A \subseteq E(G_n)$  such that  $\lambda_{M(G_n)}(A) < n$  and A does not contain any  $E(P_i)$  for  $i \in \{1, ..., n\}$ . We will prove, for  $n \ge 3$ :

**Lemma 6.1.**  $\mathcal{T}_n$  is a tangle in  $M(G_n)$  of order n.

A similar result was proved by Kleitman and Saks; see [6, (7.3)]. They considered tangles in  $K_{G_n}$ , whereas we consider tangles in  $K_{M(G_n)}$ . Our proof follows that of Kleitman and Saks; we need some preliminary results on connectivity.

Let *X* and *Y* be disjoint subsets of E(M), we define  $\kappa_M(X,Y) = \min(\lambda_M(A): X \subseteq A \subseteq E(M) - Y)$ . The following result, due to Tutte [9], is an extension of Menger's Theorem.

**Theorem 6.2** (Tutte's Linking Theorem). If S and T are disjoint sets of elements in a matroid M, then there exists a minor N of M such that  $E(N) = S \cup T$  and  $\lambda_N(S) = \kappa_M(S, T)$ .

The following result was proved in [4].

**Lemma 6.3.** Let S and T be disjoint sets of elements of a matroid M. Then there exist sets  $S_1 \subseteq S$  and  $T_1 \subseteq T$  such that  $|S_1| + 1 = |T_1| + 1 = \kappa_M(S_1, T_1) = \kappa_M(S, T)$ .

In order to prove Lemma 6.1, we first need to establish that certain sets of edges in a grid are "highly connected".

**Lemma 6.4.** Let  $i \in \{1, ..., n\}$  and, for each  $j \in \{1, ..., n\} - \{i\}$ , let  $e_j$  and  $f_j$  be disjoint edges of  $P_j$ . Now let  $X = \{e_j: j \in \{1, ..., n\} - \{i\}\}$  and let  $Y = \{f_j: j \in \{1, ..., n\} - \{i\}\}$ . Then  $\kappa_{M(G_n)}(X, Y) = n$ .

**Proof.** Let  $D = E(Q_2) \cup \cdots \cup E(Q_{n-1})$  and let  $C = E(Q_1) \cup E(Q_n) \cup ((E(P_1) \cup \cdots \cup E(P_n)) - (X \cup Y))$ . Now let  $H = G_n \setminus D/C$ . Note that H[X] and H[Y] are disjoint spanning trees of H. Therefore  $n = \lambda_{M(H)}(X) = \kappa_{M(H)}(X, Y) \leqslant \kappa_{M(G_n)}(X, Y) \leqslant |X| + 1 = n$ . Thus  $\kappa_{M(G_n)}(X, Y) = n$ , as required.  $\square$  The proofs of the following two results are similar to that of Lemma 6.4; we leave these to the reader.

**Lemma 6.5.** Let  $i, j \in \{1, ..., n\}$ . Then  $\kappa_{M(G_n)}(P_i, Q_j) = n$ . Also, if  $i \neq j$ , then  $\kappa_{M(G_n)}(P_i, P_j) = n$  and  $\kappa_{M(G_n)}(Q_i, Q_j) = n$ .

**Lemma 6.6.** Let  $X \subseteq E(P_1) \cup E(P_n)$  with  $|X| \ge n-1$  and let  $j \in \{1, \ldots, n\}$ . Then  $\kappa_{M(G_n)}(X, Q_j) = n$ .

We call a set  $A \subseteq E(G_n)$  small if  $\lambda_{M(G_n)}(A) < n$  and A does not contain any of  $E(P_1), \ldots, E(P_n)$  or  $E(Q_1), \ldots, E(Q_n)$ .

**Lemma 6.7.** Let (A, B) be a separation of  $M(G_n)$  of order less than n. Then one of A and B is small. Moreover, if B is small, then A contains one of  $E(P_1), \ldots, E(P_n)$  and one of  $E(Q_1), \ldots, E(Q_n)$ .

**Proof.** By Lemma 6.4, either A or B must contain one of  $E(P_1), \ldots, E(P_n)$ . Then, by symmetry, either A or B must contain one of  $E(Q_1), \ldots, E(Q_n)$ . However, by Lemma 6.5, A and B cannot both contain one of  $E(P_1), \ldots, E(P_n), E(Q_1), \ldots, E(Q_n)$ .  $\square$ 

Note that  $\mathcal{T}_n$  trivially satisfies conditions (T1), (T3a), and (T4). By Lemma 6.7,  $\mathcal{T}_n$  also satisfies (T2). Thus in order to complete the proof of Lemma 6.1, we need only verify (T3b); this is achieved by the following result.

**Lemma 6.8.** For  $n \ge 3$ ,  $E(G_n)$  cannot be partitioned into three small sets.

**Proof.** The proof is by induction on n. The case n = 3 is trivial; suppose then that  $n \ge 4$  and that the result holds for  $G_{n-1}$ . Now assume  $(A_1, A_2, A_3)$  is a partition of  $E(G_n)$  into three small sets.

By symmetry we may assume that  $Q_n$  meets  $A_1$  and  $A_2$ . (That is,  $A_1 \cap E(Q_n)$  and  $A_2 \cap E(Q_n)$  are nonempty.) By Lemma 6.7, there is a path  $Q_j$  disjoint from  $A_1$ . Note that  $\kappa_{M(G_n)}(A_1 \cap (E(P_1) \cup E(P_n)), Q_j) \leqslant \lambda_{M(G_n)}(A_1) < n$ . Then, by Lemma 6.6,  $|A_1 \cap (E(P_1) \cup E(P_n))| < n - 1$ . Similarly  $|A_2 \cap (E(P_1) \cup E(P_n))| < n - 1$ . Therefore either  $P_1$  or  $P_n$  meets  $A_3$ ; by symmetry, we may assume that  $P_n$  meets  $A_3$ . Therefore  $E(P_n) \cup E(Q_n)$  meets each of  $A_1$ ,  $A_2$ , and  $A_3$ .

Note that  $G_{n-1} = G_n - (V(P_n) \cup V(Q_n))$ . For each  $i \in \{1, 2, 3\}$ , let  $A'_i = E(G_{n-1}) \cap A_i$ .

**6.8.1.** There exists  $k \in \{1, 2, 3\}$  such that  $\lambda_{M(G_{n-1})}(A'_k) \geqslant n-1$ .

**Subproof.** By the induction hypothesis, there exists  $k \in \{1,2,3\}$  such that  $A'_k$  is not small in  $G_{n-1}$ . Suppose that  $\lambda_{M(G_{n-1})}(A'_k) < n-1$ . Then  $A'_k$  contains one of  $E(P_1) \cap E(G_{n-1}), \ldots, E(P_{n-1}) \cap E(G_{n-1})$  or one of  $E(Q_1) \cap E(G_{n-1}), \ldots, E(Q_{n-1}) \cap E(G_{n-1})$ . By Lemma 6.7,  $A_k$  avoids some path  $P_i$  and some path  $Q_j$ . Since  $E(P_n) \cup E(Q_n)$  meets each of  $A_1$ ,  $A_2$ , and  $A_3$ , either  $i \neq n$  or  $j \neq n$ . Thus  $A'_k$  avoids one of  $E(P_1) \cap E(G_{n-1}), \ldots, E(P_{n-1}) \cap E(G_{n-1})$  or one of  $E(Q_1) \cap E(G_{n-1}), \ldots, E(Q_{n-1}) \cap E(G_{n-1})$ . So, applying Lemma 6.7 to  $G_{n-1}$ , we contradict the assumption that  $\lambda_{M(G_{n-1})}(A'_k) < n-1$ .  $\square$ 

By Lemma 6.3, there exist  $S \subseteq A_k'$  and  $T \subseteq E(G_{n-1}) - A_k'$  such that  $|S| + 1 = |T| + 1 = \kappa_{M(G_{n-1})}(S,T) \geqslant n-1$ . Now, by Tutte's Linking Theorem, there exists a minor H of  $G_{n-1}$  such that  $E(H) = S \cup T$  and  $\lambda_{M(H)}(S) \geqslant n$ . Suppose that  $H = G_{n-1} \setminus D/C$ ; we may choose D and C such that D does not contain a cut of  $G_n$ . Thus H is connected and S and T are disjoint spanning trees of H; thus  $|V(H)| \geqslant n-1$ . Now let  $H' = G_n \setminus D/H$ . Vertices (1,n) and (n,1) both have a neighbour in V(H) in H'. Note that there exist  $e \in (E(P_n) \cup E(Q_n)) \cap A_k$  and  $f \in (E(P_n) \cup E(Q_n)) - A_k$ . Now there exists a minor H'' of H' such that  $S \cup \{e\}$  and  $T \cup \{f\}$  are disjoint spanning trees of H''. Thus  $\lambda_{M(H'')}(S \cup \{f\}) \geqslant n$ . However, this contradicts the fact that  $\lambda_M(A_k) < n$ .  $\square$ 

## 7. A grid in a tangle

Let M be a matroid and let N be a minor of M that is isomorphic to the cycle matroid of the n by n grid. Now let  $\mathcal{T}_N$  be the tangle in N of order n given by Lemma 6.1 and let  $\mathcal{T}_M$  be the tangle in M of order n that is induced by  $\mathcal{T}_N$ . (We recall that the term "induced" was defined at the start of Section 5 and the term "truncation" was defined at the start of Section 4.) A tangle  $\mathcal{T}$  in M is said to dominate N if  $\mathcal{T}_M$  is a truncation of  $\mathcal{T}$ . In this section we prove Theorem 1.2. We need the following lemma. (We use the "tangle matroid" which is defined at the end of Section 3.)

**Lemma 7.1.** Let  $\mathcal{T}$  be a tangle in a matroid M and let  $M_{\mathcal{T}}$  be the tangle matroid of  $\mathcal{T}$ . Now let  $G_n$  be the n by n grid and suppose that  $N = M(G_n)$  is a minor of M. Then  $\mathcal{T}$  dominates N if and only if each of the sets  $E(P_1), \ldots, E(P_n)$  is independent in  $M_{\mathcal{T}}$ .

**Proof.** Note that, if  $\mathcal{T}'$  is the truncation of  $\mathcal{T}$  to order n, then  $M_{\mathcal{T}'}$  is the truncation of  $M_{\mathcal{T}}$  to rank n-1. Thus, by possibly truncating, we may assume that  $\mathcal{T}$  has order n. Now let  $\mathcal{T}_n$  be the tangle in N of order n given by Lemma 6.1 and let  $\mathcal{T}_M$  be the tangle in M of order n that is induced by  $\mathcal{T}_N$ . Thus  $\mathcal{T}$  dominates N if and only if  $\mathcal{T} = \mathcal{T}_M$ . Now  $\mathcal{T} \neq \mathcal{T}_M$  if and only if there exists a set  $A \in \mathcal{T}$  that contains one of  $E(P_1), \ldots, E(P_n)$ . On the other hand,  $E(P_i)$  is independent in  $M_{\mathcal{T}}$  if and only if there does not exist  $A \in \mathcal{T}$  such that  $E(P_i) \subseteq A$ .  $\square$ 

We also need the following result from [4].

**Theorem 7.2.** There exists an integer-valued function f(k,q) such that for any positive integer k and prime-power k, if k is a k if k is a k if k is a k integer k and prime-power k if k is a k if k is a k integer k and prime-power k is a k integer k and prime-power k is a k integer k and prime-power k in k is a k integer k and prime-power k in k is a k integer k integer k and prime-power k in k

Note that, if M has a tangle of high order, then M has large branch-width and, hence by Theorem 7.2, M has a big grid as a minor. Unfortunately, this grid-minor need not be dominated by the tangle.

**7.3. Proof of Theorem 1.2.** Let  $g(t) = (6^t - 1)/5$  for any integer  $t \ge 0$ . Let n = g(k - 1) + 2, let q be the order of  $\mathbb{F}$ , and let  $\theta = f(n,q)$ . Now let M be an  $\mathbb{F}$ -representable matroid and let  $\mathcal{T}$  be a tangle in M of order  $\theta$ . By Theorem 5.2, there exists a  $(\theta,g)$ -connected minor  $M_1$  of M and a tangle  $\mathcal{T}_1$  in  $M_1$  of order  $\theta$  such that  $\mathcal{T}$  is the tangle in M that is induced by  $\mathcal{T}_1$ . By Theorems 3.1 and 7.2, there exists a minor N of  $M_1$  that is isomorphic to  $M(G_n)$ . By possibly relabeling, we may assume that  $N = M(G_n)$ . Now let  $P_1, \ldots, P_n$  be the vertical paths in  $G_n$ , let  $M_{\mathcal{T}_1}$  be the tangle matroid of  $\mathcal{T}_1$ , and let  $\phi_1$  be the rank-function of  $M_{\mathcal{T}_1}$ .

**7.3.1.**  $\phi_1(E(P_i)) \geqslant k - 1$  for each  $i \in \{1, ..., n\}$ .

**Subproof.** Suppose to the contrary that  $\phi_1(E(P_i)) < k - 1$  for some i. Thus there exists  $A \in \mathcal{T}_1$  such that  $E(P_i) \subseteq A$  and  $\lambda_{M_1}(A) \le k - 1$ . By definition  $|A| \ge |E(P_i)| = n - 1 > g(k - 1)$ . Therefore, since  $M_1$  is  $(\theta, g)$ -connected,  $|E(M_1) - A| \le g(k - 1) = n - 2 \le f(n, q) - 2 < \theta - 1$ . Moreover, as  $k \ge 1$ , we have that  $\theta \ge 3$ . Hence by Lemma 3.2,  $E(M_1) - A \in \mathcal{T}_1$ ; contradicting  $(T_3)$ .  $\square$ 

For each  $i \in \{1, ..., k\}$ , let  $A_i$  be an  $M_{\mathcal{T}_1}$ -independent subset of  $E(P_{1+(i-1)k})$  with  $|A_i| = k-1$ ; as  $k^2 - k + 1 \le n$  these sets  $A_i$  exist. Now there exists a minor H of  $G_n$  such that H is isomorphic to  $G_k$  and such that  $A_1, ..., A_k$  are the edge-sets of the vertical paths in H. By Lemma 7.1,  $\mathcal{T}_1$  dominates H. Then, since  $\mathcal{T}$  is induced by  $\mathcal{T}_1$ ,  $\mathcal{T}$  also dominates H.  $\square$ 

# 8. Tree-decompositions and laminar families

We begin by reviewing some elementary results on laminar families and tree-decompositions. Let E be a set. A partition of E into two sets is called a *separation* of E. Two separations  $(A_1, A_2)$  and  $(B_1, B_2)$  of a set E are said to *cross* if  $A_i \cap B_j \neq \emptyset$  for each i and j in  $\{1, 2\}$ . A collection S of separations of E is *laminar* if no two separations in S cross.

A tree-decomposition of E consists of a pair  $(T, \mathcal{P})$  where T is a tree and  $\mathcal{P} = (P_v : v \in V(T))$  is a partition of E (where one or more of the  $P_v$  may be empty). For any  $X \subseteq V(T)$ , we let  $\mathcal{P}[X]$  denote the set  $\bigcup_{v \in X} P_v$ . Now, for any  $e \in E(T)$ , the separation of E displayed by e is  $(\mathcal{P}[V(T_1)], \mathcal{P}[V(T_2)])$  where  $T_1$  and  $T_2$  are the two components of T - e. The following result is both easy and well known.

**Lemma 8.1.** If  $(T, \mathcal{P})$  is a tree-decomposition of E, then the set of all separations displayed by  $(T, \mathcal{P})$  is laminar.

Let  $(T, \mathcal{P})$  be a tree-decomposition of E and let S be a set of separations of E. We say that  $(T, \mathcal{P})$  represents S if S is the set of separations displayed by  $(T, \mathcal{P})$ . The following converse to Lemma 8.1 is also well known.

**Lemma 8.2.** If S is a laminar set of separations of E, then there is a tree-decomposition of E that represents S.

Let K be a connectivity system. A set  $X \subseteq E(K)$  is *robust* if for each proper partition  $(X_1, X_2)$  of X either  $\lambda_K(X_1) > \lambda_K(X)$  or  $\lambda_K(X_2) > \lambda_K(X)$ . (A partition is *proper* if all its members are nonempty.) A separation (X, Y) of K is *robust* if X and Y are both robust.

**Lemma 8.3.** Let K be a connectivity system and let S be the set of all robust separations of K. Then S is laminar.

**Proof.** Suppose that  $(A_1, A_2), (B_1, B_2) \in \mathcal{S}$  cross. By symmetry, we may assume that  $\lambda_K(A_1) \leqslant \lambda_K(B_1)$ . As  $\lambda_K$  is symmetric, we may assume that  $\lambda_K(A_2 \cap B_2) \geqslant \lambda_K(A_1 \cap B_2)$ ; otherwise swap  $A_1$  and  $A_2$ . Then, since  $B_2$  is robust,  $\lambda_K(A_2 \cap B_2) > \lambda_K(B_2)$ . So symmetry and submodularity of  $\lambda_K$  yield  $\lambda_K(A_1 \cap B_1) \leqslant \lambda_K(A_1) + \lambda_K(B_1) - \lambda_K(A_1 \cup B_1) = \lambda_K(A_1) + \lambda_K(B_2) - \lambda_K(A_2 \cap B_2) < \lambda_K(A_1)$ . So, since  $A_1$  is robust,  $\lambda_K(A_1 \cap B_2) > \lambda_K(A_1)$ . Also, as  $\lambda_K(B_1) \geqslant \lambda_K(A_1) \geqslant \lambda_K(A_1 \cap B_1)$  and as  $B_1$  is robust,  $\lambda_K(A_2 \cap B_1) > \lambda_K(B_1)$ . Combining the last two strict inequalities we get  $\lambda_K(A_1 \cap B_2) + \lambda_K(A_2 \cap B_1) > \lambda_K(A_1) + \lambda_K(B_1) = \lambda_K(A_1) + \lambda_K(B_2)$ . As  $\lambda_K(A_2 \cap B_1) = \lambda_K(A_1 \cup B_2)$ , this contradicts submodularity.  $\square$ 

### 9. Tree-representations of maximal tangles

The main result of this section is Theorem 9.1; when applied to the maximal tangles  $\mathcal{T}_1, \ldots, \mathcal{T}_n$  of the matroid, those that are not truncations of others, it is the result alluded to in the introduction by 1.1.

If  $\mathcal{T}_1$  and  $\mathcal{T}_2$  are two tangles in a connectivity system K, neither of which is a truncation of the other, then there exists a *distinguishing separation*  $(X_1, X_2)$  with  $X_1 \in \mathcal{T}_1$  and  $X_2 \in \mathcal{T}_2$ .

**Theorem 9.1.** Let K be a connectivity system and let  $\mathcal{T}_1, \ldots, \mathcal{T}_n$  be tangles in K, none of which is a truncation of another. Then there exists a tree-decomposition  $(T, \mathcal{P})$  of E(K) such that  $V(T) = \{1, \ldots, n\}$  and such that the following hold:

- (i) For each  $i \in V(T)$  and  $e \in E(T)$  if T' is the component of T e containing i then  $\mathcal{P}[V(T')]$  is not in  $\mathcal{T}_i$ .
- (ii) For each pair of distinct vertices i and j of T, there exists a minimum-order distinguishing separation for  $T_i$  and  $T_i$  that is displayed by T.

Let K and K' be connectivity systems with E(K) = E(K'). We call K' a *tie-breaker* for K if for each  $X, Y \subseteq E(K)$ :

- (i)  $\lambda_{K'}(X) \neq \lambda_{K'}(Y)$  unless X = Y or X = E(K) Y,
- (ii)  $\lambda_{K'}(X) < \lambda_{K'}(Y)$  if  $\lambda_{K}(X) < \lambda_{K}(Y)$ .

## **Lemma 9.2.** Each connectivity system has a tie-breaker.

**Proof.** Let K be a connectivity system. We may assume that  $E(K) = \{1, ..., n\}$ . Now, for  $X \subseteq \{1, ..., n-1\}$ , let  $\lambda_L(X) = \sum_{i \in X} 2^i$  and let  $\lambda_L(E(K) - X) = \lambda_L(X)$ . We leave it to the reader to verify that  $L = (E(K), \lambda_L)$  is indeed a connectivity system. Now, for each  $X \subseteq E(K)$ , we let  $\lambda_{K'}(X) = 2^n \lambda_K(X) + \lambda_L(X)$ . It is easy to check that  $K' = (E(K), \lambda_{K'})$  has the desired properties.  $\square$ 

It is evident that a tangle in a connectivity system K is a tangle in any tie-breaker for K.

**Lemma 9.3.** Let  $\mathcal{T}_1$  and  $\mathcal{T}_2$  be tangles in a connectivity system K that are incomparable by truncation, let K' be a tie-breaker for K, and let  $(X_1, X_2)$  be a distinguishing separation for  $\mathcal{T}_1$  and  $\mathcal{T}_2$  with minimum order in K'. Then  $(X_1, X_2)$  is a robust separation of K'.

**Proof.** Suppose otherwise. Then, by symmetry, we may assume that there exists a proper partition (A,B) of  $X_1$  such that  $\lambda_{K'}(A) \leqslant \lambda_{K'}(X_1)$  and  $\lambda_{K'}(B) \leqslant \lambda_{K'}(X_1)$ . Since K' is a tie-breaker,  $\lambda_{K'}(A) < \lambda_{K'}(X_1)$  and  $\lambda_{K'}(B) < \lambda_{K'}(X_1)$ . Condition (T3a) for  $T_1$  implies that  $A,B \in T_1$ . Then, by our choice of the distinguishing separation  $(X_1,X_2)$ ,  $T_2$  contains neither E(K)-A nor E(K)-B. Then, by (T2),  $A,B \in T_2$ . But then  $T_2$  contains each of A,B, and  $X_2$ ; contrary to (T3).  $\square$ 

**Proof of Theorem 9.1.** Let K' be a tie-breaker for K. As  $\mathcal{T}_1,\ldots,\mathcal{T}_n$  are tangles in K', we may assume that K=K'. For each  $i,j\in\{1,\ldots,n\}$  with  $i\neq j$  let  $(X_{ij},Y_{ij})$  be the minimum-order separation of K distinguishing  $\mathcal{T}_i$  and  $\mathcal{T}_j$  (where we assume that  $X_{ij}\in\mathcal{T}_i$ ). By Lemma 9.3,  $(X_{ij},Y_{ij})$  is a robust separation of K. Now let S be the collection of all of these distinguishing separations. By Lemma 8.3, S is laminar. Then, by Lemma 8.2, there is a tree-decomposition  $(T,\mathcal{P})$  of E(K) that represents S. We may assume that if V is a vertex of T with degree 1 or 2, then  $P_V \neq \emptyset$  (since, otherwise, we could find a smaller tree-decomposition representing S). This means that the edges of T display proper and distinct separations. It remains to show that there is a bijection between  $\mathcal{T}_1,\ldots,\mathcal{T}_n$  and V(T) satisfying the conclusion of Theorem 9.1.

For  $i = \{1, ..., n\}$ , consider the collection  $\mathcal{X}_i$  of nonempty subsets X of V(T) such that  $E(K) - \mathcal{P}[X] \in \mathcal{T}_i$  and such that  $(\mathcal{P}[X], E(K) - \mathcal{P}[X])$  is displayed by T. Each member of  $\mathcal{X}_i$  induces a subtree of T and by (T3) each two members of  $\mathcal{X}_i$  intersect. As any collection of pairwise intersecting subtrees of a tree has a common vertex, the members of  $\mathcal{X}_i$  have a nonempty intersection. Call that intersection  $V_i$ .

Note that by construction of  $V_i$  each edge of T that leaves  $V_i$  displays a separation (A, B) with  $\mathcal{P}[V_i] \subseteq A$  and  $B \in \mathcal{T}_i$ . From this, (T2), (T3) and the fact that each separation in  $\mathcal{S}$  is displayed by T it is straightforward to see that to prove Theorem 9.1 it suffices to show that  $(V_1, \ldots, V_n)$  is a partition of V(T) into singletons.

The sets  $V_1, \ldots, V_n$  are pairwise disjoint as for each  $i \neq j$  the set  $\mathcal{P}[V_i]$  lies in  $Y_{ij}$  and the set  $\mathcal{P}[V_j]$  lies in  $Y_{ji} = X_{ij}$ .

It remains to prove that if w in V(T) then  $\{w\} = V_i$  for some i. Among the edges incident with w take the one that displays the separation,  $(X_{ij}, Y_{ij})$  say, of largest order. So that order is at most the order of  $\mathcal{T}_i$  and of  $\mathcal{T}_j$ . We may assume that  $\mathcal{P}_w \subseteq Y_{ij}$ . As no two edges of T display the same separation, all other edges incident with w display a separation of order less than those of  $\mathcal{T}_i$  and  $\mathcal{T}_j$ . By the definition of  $(X_{ij}, Y_{ij})$  these separations do not distinguish  $\mathcal{T}_i$  from  $\mathcal{T}_j$ . Combining that with (T3) for  $\mathcal{T}_j$ , we see that for each of these separations  $\mathcal{P}_w$  is not part of the side that is in  $\mathcal{T}_i$ . Hence  $V_i \subseteq \{w\}$ . As  $V_i$  is not empty,  $\{w\} = V_i$  as claimed.  $\square$ 

We conclude with a simple corollary to Theorem 9.1.

**Corollary 9.4.** An m-element connectivity system has at most  $\frac{m-2}{2}$  maximal tangles.

**Proof.** Let K be an m-element connectivity system and let  $\mathcal{T}_1, \ldots, \mathcal{T}_n$  be the maximal tangles in K. Now let  $(T, \mathcal{P})$  be the tree-decomposition of E(M) given by Theorem 9.1. Let v be a vertex of T of degree  $d_v$ . By (T3) and (T4),  $d_v + |P_v| \geqslant 4$ . Now  $4n \leqslant \sum_{i=1}^n (d_i + |P_i|) = 2|E(T)| + |E(M)| = 2(n-1) + m$ . So  $n \leqslant \frac{m-2}{2}$  as claimed.  $\square$ 

# Acknowledgments

We thank the referees for carefully reading this paper.

### References

- [1] J.S. Dharmatilake, A min-max theorem using matroid separations, in: Matroid Theory, Seattle, WA, 1995, in: Contemp. Math., vol. 197, Amer. Math. Soc., Providence, RI, 1996, pp. 333–342.
- [2] J.F. Geelen, A.M.H. Gerards, N. Robertson, G.P. Whittle, On the excluded-minors for the matroids of branch-width k, J. Combin. Theory Ser. B 88 (2003) 261–265.
- [3] J. Geelen, B. Gerards, N. Robertson, G. Whittle, Obstructions to branch-decomposition of matroids, J. Combin. Theory Ser. B 96 (2006) 560–570.
- [4] J. Geelen, B. Gerards, G. Whittle, Excluding a planar graph from GF(q)-representable matroids, J. Combin. Theory Ser. B 97 (2007) 971–998.
- [5] J.G. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
- [6] N. Robertson, P.D. Seymour, Graph Minors. X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B 52 (1991) 153–190.
- [7] N. Robertson, P.D. Seymour, Graph Minors. XVI. Excluding a non-planar graph, J. Combin. Theory Ser. B 89 (2003) 43-76.
- [8] N. Robertson, P.D. Seymour, R. Thomas, Quickly excluding a planar graph, J. Combin. Theory Ser. B 62 (1994) 323-348.
- [9] W.T. Tutte, Menger's theorem for matroids, J. Res. Nat. Bur. Standards, B. Math. Math. Phys. 69B (1965) 49–53.