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Chapter 1 

Introduction 

1.1 Agents and electronic markets 

Multi-agent systems are one of the most promising new technologies to emerge in recent 
decades, at the crossroads hetween several fields such as artificial intelligence, distributed 
systems, economics and even sociology. Some authors f 16,231] have outlined a vision, in 
which many of the tasks performed today by humans are delegated to intelligent, autonomous 
and proactive programs, generically called software agents. A system composed of several 
such agents is called a multi-agent system (MAS). 

Electronic markets represent key coordination mechanisms in multi-agent systems. They 
allow parties to efficiently allocate resources, tasks and capahilities in large disttihuted sys
tems, composed of self-interested agents. The rapid rise in electronic commerce and mar
keting, logistics, distributed networks (among many others) have made the development of 
agent technologies capable of automating such processes increasingly important. For exam
ple, electronic commerce has witnessed an exponential increase in the value of the goods and 
services sold on line just in the past few years. It is not just the sale of physical goods that 
has greatly increased, but also the sale of "virtual" services, such as screen attention space 
for displaying advertising in e-commerce, or keyword hits by surfers using search engines. 
Such sales require frequent, repeated interactions, which arc the type of processes that arc 
likely to henelit most from automation using software agents. 

There are many challenges that designers of agents acting in electronic markets must 
face. Perhaps the most easily recognized challenge in designing and using such a system, 
is the lack of centralized control. Agents arc autonomous actors, that take their own deci
sions, rather than simply executing operations assigned to them by an outside process (such 
as objects or web services do). Furthermore, perhaps more importantly, they arc often self
interested actors, whose goals and objectives may not match. For example, in optimizing 
a transportation logistics network involving several carrier companies, the optimal alloca-
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tion of loads from the perspective of each company may he very different than the optimal 
allocation for the entire system. In other application scenarios, such as online advertising, 
agents representing different companies actively compete for virtual commodities, such as 
consumer attention space. 

An important challenge in MAS is the presence of uncertainty, i.e. incomplete or im
perfect information, hoth regarding the market environment, the preferences, strategies and 
behaviour of the other agents and, sometimes, even uncertainty in specifying the agent's 
own preferences. Furthermore, unlike assumptions commonly made in game theory, !he 
agents arc hounded rational actors and often have to make decisions in limited time, under 
risk aversion or based on other constraints imposed hy their owners or !he market environ
ment. Moreover, the opposing agents participating in the same market may also he hounded 
rational and even act 'irrationally", which makes modeling the agent's own "optimal" or 
"rational"' behaviour in such a setting even harder. 

Another important approach in the study of agent-mediated electronic markets arc the 
so-called complex systems techniques. The aim of such approaches is lo examine how order 
and structure can emerge in a large system composed of many autonomous entities (i.e. 
agents), acting independently, without any central controller to provide coordination. The 
recent surge of interest in systems such as weh communities and online electronic markets, 
where structure emerges out of individual agent decisions, makes such questions increasingly 
important. 

1.2 Negotiation (bargaining) vs. auction protocols 

Negotiation, very broadly defined, is the "process hy which a group of agents communicate 
with one another lo try to reach agreement on some matter of common interest" c.F. [ 111, 
189]. Automated negotiation has hcen at the forefront of research interests in the multi-agent 
research community ever since the beginning of the field [ 129, 189). 

One of the main distinction lines heing drawn in existing literature is between automated 
negotiation (bargaining) protocols and auction protocols [ 111, 1471. Bargaining is always 
a decentralized process and is typically (though not necessarily) based on an "alternating 
offcrs"-type of protocol. Some authors [ 111, 115, 175) (among others) argue that bargain
ing does have some advantages over auctions, especially in multiple issue cases, in which 
!here is incomplete information ahoul the opponent preferences (or even uncertainty ahoul 
!he agent's own preferences) and the space of possible deals to he explored is very large. 
Bargaining also allows more Hexihility in how the negotiation is modeled, as well as a de
gree of self-interest on the part of the agents. Some sources [87, I 15,175,179) even argue 
that, in electronic commerce, multi-issue negotiation should he modeled, at least partially, 
as a cooperative process, because sellers have an interest in maintaining a good relationship 
and the long-term satisfaction of their huyers. 

Auctions, on the other hand, follow protocols with fixed rules, that typically rely on a 
trusted center lo collect the bids and compute the winner (or winners) and corresponding 
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payments. Auctions have a long history of research in fields economics [38, I 27, 158, I 59], 
management science [ 190], but also artificial intelligence and theoretical computer science 
[27, 55, 58, 59, 81, 142, 174, 194]. They have been the method of choice for automating elec
tronic marketplaces. 

In our work, we have looked at both mechanisms, for different settings. Our initial work 
in the topic started on designing efficient bilateral negotiation mechanisms, first for linear 
utility functions (Chapter 2 of this thesis), then for complex, interdependent utility functions 
(Chapter 3). We have also looked at designing bidding strategies for sequential auctions, 
in settings not previously considered in existing literature, such as the case when some of 
the agents are risk averse (Chapter 4), or when options are auctioned instead of the items 
themselves (Chapter 5). 

This thesis takes an engineering approach, meaning that we aim to identify open prob
lems, and then engineer and validate solutions for them. We do study to what degree these 
problems can be addressed using an analytical, mathematical approach in so far as possible. 
However, many negotiation and auctioning processes are too complex to be solved using a 
purely analytical approach, as is normally the case for real-world problems. In such cases, 
experimental validation is a promising alternative, which was used extensively in this thesis. 

A common thread running through the research presented in this thesis is that we take 
the heuristic approach to the design of bidding agents. That is, we focus our attention on 
designing the strategies that bidding agents use to bid or negotiate in a given market envi
ronment (usually one widely encountered in practice), not the market protocol itself. This is 
an important distinction, as explained in the next section. 

1.3 Designing for strategic behaviour: market mechanisms 
vs. individual agent strategies 

With the growth of interest in electronic markets, several research lines have emerged, 
proposing different approaches to modeling strategic, self-interested behaviour when allo
cating resources or tasks among a set of agents. One of the most promising such approaches 
is computational mechanism design - or to be more precise, that part of mechanism design 
theory that concerns design of electronic markets. 

Mechanism design initially developed as a branch of algorithmic game theory [ 168]. Ba
sically defined, mechanism design is concerned with defining the "rules of the game" (i.e. the 
market mechanism), such that the outcome (i.e. final allocation of the items, together with 
the corresponding payments) guarantees certain desiderata (i.e. properties). Commonly
cited desiderata include, for example: Pareto-optimality, efficiency, budget balance or indi
vidual rationality [58]. 

Besides from these game-theoretic desiderata, computational requirements (i.e. the com
putation time or memory needed to find such a mechanism) often play an important role. The 
mechanism design approach aims to relieve the need of strategic reasoning on the part of the 

.,... 
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hidding agents, as the structure of the market provides hidders with an equilihrium hidding 
strategy. Different equilihrium concept exist, varying in their strength, e.g. dominant strate
gies, ex-post efficient, Bayesian. The most dcsirahlc market mechanisms arc strategy-proof 
mechanisms, i.e. those mechanisms in which truthful hidding is the dominant strategy. 

The mechanism design approach has proven to be very successful in many applications. 
However, there exists a wide range of practical settings for which it is unrealistic to assume 
that one can design a completely new market mechanism from scratch. Furthermore, many 
mechanisms proposed hy this line of research often involve allocation and bidding rules that 
carefully designed and mathematically sound, but may he counter-intuitive for human users 
of the system. 

Moreover, in many real-life allocation problems, there is more than one market an agent 
can/should participate in, and the strategic hehaviour across "market borders" hccomes the 
crucial issue. Even if an agent has an optimal (e.g. dominant) bidding strategy in each of the 
markets he participates in, when coordinating the bidding in different markets, his optimal 
strategy may he very different from the dominant strategy for each market taken in isolation. 
One such example is hidding in a sequence of second price (i.e. Vickrey) auctions, for 
agents which have complementary utilities over the items heing offered f27, 89, 187. 21 Tl 
1. Although the agents in such a sequential auction have a dominant hidding strategy in 
each individual Vickrey auction taken in isolation, hidding optimally in a sequence of such 
auctions is a complex decision problem, and the hids placed in the optimal sequential hidding 
policy may differ considerahly than the dominant bids in the individual auctions 2. 

Similarly, a related decision prohlem is faced by agents hidding in a set of simultaneously 
ascending ascending English auctions, when agents have complementary utility functions [I. 
184]. Whereas a simple, dominant hidding strategy exists for each English auction taken in 
isolation, determining the optimal hidding strategy for the entire set is a challenging problem, 
for which no dominant strategy results arc known. Intuitively explained, it is difficult for 
a hidding agent to distribute the additional complementarity value across a sequence or a 
set of simultaneous auctions, hecausc an agent can only know if he can benefit from the 
complementarity once all items in the desired bundle have hcen acquired (i.e. once all the 
auctions close). 

While the computational mechanism design community has hegan to address some of 
these challenges, through such techniques as onlinc mechanism design or adaptive mecha
nism design [33, 74, 92], these approaches still impose several restrictions on the structure of 
the prohlem, and for many market setting widely used in practice, no dominant equilibrium 
strategies are [yell known to exist. 

The research performed for this thesis mostly follows the other main direction of research 

1 While these notions will be fonnally defined later, inluilively. a complementary valuation implies 1ha1 an agent 
assigns a combination of items a super-additive ulilily (i.e. a ulilily higher than the sum of the items taken individ
ually). while suhs1i1u1ahility implies a sub-additive utility (sec Chapter 3) 

2 tn a sequence of auctions. this is true whenever either complementarity or subs1i1u1abili1y effects exist between 
items. or there arc other preference constraints 10 account for. such as hudget constraints or aversion to risk (c. f. 
(27. 89. 187] and Chapters 4 and 5. 
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on agent-mediated electronic markets: given a market structure and protocols, how can one 
design the optimal agent strategies for bidding in such markets? 

Work on designing bidding agents' strategies also has a relatively long history in the 
MAS community [1,27,81,83,89, 184,188,223] (among may others). Several platforms 
have been proposed to enable comparison of different auction trading strategies (as well as 
learning and adaptation heuristics). The most well-known is the Trading Agent Competition 
(TAC) platform, with its different versions: TAC classic, TAC supply-chain management 
etc. [96, 192,227, 230]. The market structure for the TAC competitions is built to resemble 
trading scenarios that would be encountered in practice. Reasoning required for the trad
ing agents in these platforms combines elements of both efficient bidding in sequential and 
simultaneous auctions, as well as learning, anticipation of future orders, inventory manage
ment etc. Another direction of work (mentioned here for completeness) examines bidding 
heuristics for double auction settings L226 ], which is characteristic to financial markets [ 124 ]. 

As already discussed, in this thesis we also lake the heuristic approach, and we arc mostly 
concerned about the design of agent strategics, rather than the the market mechanism itself. 
In particular, we arc concerned with one aspect of the problem, which is how to model and 
cflicicntly use preference information of the agents taking part in such markets. 

1.4 Modeling preferences and utilities in agent-mediated 
market settings 

In building efficient electronic markets, the method of modeling and reasoning about the 
preferences of participating agents is a key modeling choice. Some sources call model
ing preferences of buyers and providers remains the "Achilles' heel" in the application of 
multi-agent resource allocation lo industrial procurement settings [46]. There are, however, 
considerable differences as lo their meaning of the terms "preforence" and "utility" in dif
ferent sources in the economics and multi-agent system literature. In the broadest sense, 
preferences express the "relative or absolute satisfaction of an individual when faced with a 
choice between different alternatives" [46]. In this thesis, we broadly distinguish between 
two broad classes of concepts of preference or utility: preferences in combinatorial settings 
(i.e. lo reason regarding multiple criteria or multiple items) and preferences under uncer
tainty. 

Most existing literature on multi-agent resource allocation and market mechanisms con
siders combinatorial preferences and utilities. Combinatorial preferences are either multi
item (i.e. involve expressing preferences over combinations of items) or multi-issue or multi
allribute (e.g. involve combinations of allributes for the same item, e.g. colour, price and 
mileage for a used car, to lake the example used in Chapter 2). Moreover, in many (if not 
most) realistic applications, it is reasonable to expect that there are complex dependencies 
between attributes or items, and the choice in one may affect the choice made for a subset of 
others (i.e. the preferences are non-linear). Efficient representation and reasoning with such 
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non-linear, combinatorial preferences in market situations is a complex prohlem, which we 
discuss in Sect. 1.7 below. 

Another perspective on defining preferences considers the complex decisions an agent 
faces, not so much with respect to specifying desired combinations over multiple items or 
issues, but with respect to uncertainty about the future. This appears to he a standard under
standing of "preference·• in some fields, such as econometrics. For instance, in a 2006 MIT 
textbook on econometric analysis of auction data [ 171 ], the chapter regarding preferences 
deals exclusively with preferences towards risk. In this thesis, we consider both perspec
tives on preference, and both types of market-based interaction discussed above: bilateral 
negotiation and auctions, although for different problems. 

1.5 Emergence of collaboration and structure in multi-agent 
systems 

As noted in Section 1. 1, another important problem arising in multi-agent systems is the 
lack of centralized control. Nevertheless, many systems occurring in real-life that one would 
intuitively recognize as "multi-agent", exhibit a remarkable degree of structure, although 
they lack any recognizable central authority or "controller". Instead, order seems to emerge 
from the decentralized actions of many autonomous agents, acting independently to satisfy 
their own interest. Examples of such systems include: the formation of equilibria and pricing 
structure in markets (a phenomena first referred to by Adam's Smith as the "guiding hand"), 
emergence of stable vocabularies in human languages (but also in tagging systems) [40, 93, 
206], formation of stable groups in on line social networks [ 131] etc. This raises questions not 
only regarding the existence and properties of such stable structures, but also the dynamics of 
the process, i.e. how do they form, especially in an environment with no central information 
source and/or self-interested parties. 

One of the recently emerging fields that aims to study such phenomena is complex sys
tems theory [ 11, 160,228]. The seminal work of Robert Axelrood on the evolution of co
operation [7] marked a turning point, since it showed, through computer simulations, how 
cooperation can emerge in a multi-agent system, even in the absence of a central authority. 

A related discipline that aims lo examine complex-systems type phenomena through 
large-scale simulations is agent-based computational economics [218]. There has been much 
work recently in this area. For example, researchers have simulated the dynamics of artificial 
agent societies [7], stock markets [61, and even entire economics [37, 68]. The development 
of the web has given a new stimulus to this work, and researchers have built complex sim
ulations of the emergence of social networks [ 131 l, on line market systems [54] or artificial 
languages and semiotic dynamics [42, 21 0]. 

But, perhaps more important, the emergence of the "social web'' provides, for the first 
time, the opportunity to test these hypotheses empirically, on real-world data. In fact. while 
there has been a lot of work on simulations (starting from different assumptions), only re-
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cently did researchers begin to study this problem at an empirical level, using large scale 
datasets generated by the actions of very many (thousands, or in some cases even millions) 
of web users. 

Interestingly, many of the effects found resembled closely what was hypothesised in 
complex systems theory from the beginning. In particular, it appears that there arc impor
tant "network effects" when many users collaborate online and make decisions in an on
line community or marketplace. What this means, basically, is that the actions and choices 
made by previous users may considerably influence the choices made by future users. This 
type of self-reinforcing focdback loop often gives rise to the so-called "power law" distri
butions [ I I, 41], which arc characteristic of large-scale systems that can be characterised as 
"complex". 

This thesis makes two important contributions lo understanding the emergence of social 
structure in such large-scale, decentralized systems. One is collaborative lagging (results 
presented in Chapter 6) and sponsored search markets (Chapter 7). 

1.6 Positioning of the contributions of this thesis 

The previous discussion identified some important open challenges in understanding and 
designing multi-agent systems: 

• Complexity of representing (and reasoning with) complex preferences. These include 
both combinatorial preferences and preferences towards risk and uncertainty. 

• Strategic reasoning of agents based on these complex preferences, especially for cases 
when agents arc self-interested. 

• Lack of central control, and especially, the emergence of cooperation in the absence 
or a central authority. 

In this thesis, we aim to make several contributions lo the stale or the art in understanding, 
modeling and solving these challenges, as follows. 

Part I of the thesis is mostly concerned with the issue of modeling combinatorial prefer
ences (multi-issue or multi-item) in bilateral negotiations. Chapter 2 considers how prefer
ence information can be efficiently used in a negotiation model in which users preferences 
arc expressed over several discrete attributes and one continuous attribute (price). Chapter 3 
considers how complex, multi-issue negotiations over many binary items or bundles of_ items 
can be modeled using utility graphs. Part I also deals with some issues related lo strategic 
reasoning, since, although bilateral negotiation is often a partially cooperative process, there 
is an important degree of self-interest involved on the part of the bargaining agents. 

Part II of the thesis can be seen as mostly dealing with prcforcnccs in uncertain envi
ronments and strategic reasoning, in particular the strategic reasoning of agents with inter
dependent valuations participating in a sequence of auctions. Chapter 5 discusses how a 
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priced options mechanism can help solve the exposure prohlem hidders face in a sequen
tial auctions selling (and implicitly, the strategic reasoning it involves during the hidding 
process). But the issue of preference is also important in this part as well, although in the 
form of agent preferences towards risk, when faced with an uncertain future. In this context, 
Chapter 4 examines how an agent's preferences towards risk affects his/her optimal hidding 
policy and resulting market allocation. 

Finally, Part Ill of the thesis studies the issue of lack of centralised control, more particu
lar the emergence of collaboration and structure in a large multi-agent system. in the ahsence 
of a central controller. For this part, we use large scale, empirical data from two important 
"social weh" applications: collaborative tagging and sponsored search markeK While in in 
collahorative tagging, for instance, the issue of strategic/game-theoretic reasoning does not 
play a direct role (since there is no competing allocation of some scarce resource), still the 
issue of how agents take decisions is a crucial one lo model. Arguably, there is also a con
nection to the issue of preference, since through their choice of tags and links lo click agents 
express an implicit opinion (which may or may not he influenced hy that of other users). 

The rest of this introductory chapter is organised as follows. In the following sections 
(Sect. I. 7- 1.10), we give more detailed descriptions of the problems in this space which we 
aim lo address in this thesis, as well as hrief abstracts of our results for each. In Section 1.11 
we give the overview of the structure of [the rest ofl the thesis. Section 1.11 also summarizes 
the structure of the thesis through a diagram, such as to more intuitively highlight and explain 
the relations that exist hetween the different chapters. The introduction concludes with a list 
of resulting refereed puhlications related lo each chapter. 

1.7 Modeling of combinatorial preferences (multi-issue or 
multi-item) in bilateral negotiations 

There arc many ways lo express a choice between multiple outcomes defined in multi-agent, 
economics and AI literature. A taxonomy of preferences used in the multi-agent literature 
would include: 

• Qua/itatiire preferences: No numerical utility values arc assigned lo outcomes, only 
value lahels such as "good", "very good"', "unsatisfactory" etc. 

• Quantitative preferences: Preference over outcomes are expressed in the form of a 
utility function (to be defined helow). Note that sometimes qualitative and quantitative 
preferences taken together are called "cardinal" preferences. 

• Ordinal preferences: only an order can he specified between ranking (i .e. through an 
asymmetric and transitive preference relation hetween alternatives). 

• Fuu.y: - a degree of preference can he specified for each alternative, etc. 
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In this thesis, we generally consider quantitative preferences, i.e. those preferences for which 
a user can assign a numerical value (either utility or monetary value) to possible outcomes 
(or combination of items), and the discussion in the following sections of this introduction 
refers to the 4uantitative case. 

However, note that, if one defines preference as any choice between several outcomes or 
alternatives, the concept of preference can be constructed as broader. For example, actions 
such as choosing a tag that other users have also selected in the past (see Chapter 6), or 
clicking on the link at the top of a list, in order to save reading time (see Chapter 7) may 
be seen as expressing an implicit preference. We return to this idea in Section 1.10, when 
describing the chapters in Part III of the thesis - the discussion in the following sections 
referring to the case of quantitative, economic preferences. 

The basis of quantitative preference modeling is utility theory. Following the work of 
Kenney and Raiffa [ 179], many multi-issue negotiation and resource allocation models use 
a utility function, which maps the outcome space over a set of issues (attributes, criteria) to 
a utility value, which is frequently - though not necessarily - scaled between O and I. The 
crucial thing to note is that Raiffa's models and much of the initial research on multi-issue 
negotiation considers linearly additive utility jimctions, i.e. each issue/attribute under nego
tiation is assigned a weight, and the utility of each possible outcome/contract is computed as 
a weighted sum over the issues under negotiation. 

A special subclass of quantitative preference functions, which is implicitly used in most 
of existing auction literature, arc the so-called "quasi-linear" preferences. This basically 
means that the utility of the agents is expressed in monetary terms (as an amount of money), 
as opposed to utils (i.e. conventional units, usually scaled between O and I). This can be 
viewed as a restriction for some settings, as real utility functions over monetary endowments 
are known to be concave, i.e. humans arc known to have a decreasing marginal utility for 
money (see, e.g. [171]). 

1.7.1 Pareto-optimal outcomes in multi-issue negotiation 

As shown in LI 79J, multi-issue and multi-attribute negotiation models arc fundamentally 
different from single-issue negotiation (such as bargaining over a price). Multi-issue ne
gotiations represent non-zero sum games, in the sense that it is possible to find mutually 
beneficial trade-offs between the issues under negotiation such as to increase the gains for 
both parties. Raiffa also shows that the more asymmetric preferences between the negotia
tors are, the higher the potential for mutually beneficial trade-offs between the issues. 

The main criteria to measure how efficient an agreement (or contract) is the so called 
Pareto cllicicncy. An outcome is said to he Pareto optimal if it is not strictly dominated by 
any other outcome in the preferences of both (or all) sides (agents) in a negotiation. That 
means, there are no trade-offs possible that would increase the utility of one agent, without 
making another agent worse off. The set of all Pareto-optimal points form the so called 
Pareto-frontier. The distance of an outcome to this frontier gives a measure of how efficient 
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that outcome/contract is. 

An important concept in designing multi-issue negotiation models is the uncertainty re
garding opponent preferences, defined here as the amount of information regarding the op
ponent preferences available when making negotiation offers. 

Direct vs. indirect revelation mechanisms 

The literature on agent-mediated electronic markets identifies two main approaches by which 
agents can share their private preference information: 

• Direct revelation mechanisms. Direct revelation mechanisms arc based on the revela
tion principle [58]. Basically explained, the revelation principle states that any allo
cation mechanism with a certain equilibrium can he transformed into another mecha
nism, in which a trusted centcr asks the agents to truthfully rcveal their prefercnces and 
implements the original equilibrium (and allocation) on their behalf. This means that 
typically (though not exclusively), direct revelation leads to a centralized allocation 
mechanism, such as a combinatorial auction. 

• Indirect revelation mechanisms: In this type of mechanism, the agents arc not assumed 
to directly reveal their preferences to the other agents, hut communicate their prefer
ences throughout their counter-offers (or their bids, for an auction). For instance, in 
a bilateral, multi-issue negotiation over the sale of a car (sec f 115, I I 6] and Chap
ter 2 of this thesis), the agcnts do not directly reveal to each other how much they 
arc willing to pay to get their favourite colour or their favourite accessories (e.g. CD 
player, air conditioning) installed, hut in practice, this can he deduced indirectly from 
the offers/counter-offers they make. Similarly, an agent representing a customer on a 
large electronic commerce wchsite (see [ 185, 186,220) and Chapter 3) does not have 
lo reveal all his preferences lo the merchant, hut the merchant (who may or may not 
also act as the auctioneer) can learn part of their preferences from previous counter
offers. 

Basically, in this thesis we take the indirect revelation approach, as we argue this is more 
realistic in many real-life applications, in which only a limited degree of trust exists between 
parties in sharing information and no fully trusted third party can be established. The rea
sons for this may be endogenous lo the negotiation mechanism (e.g. there is no "optimal" 
inccntive compatible mechanism and the opponent may use any information supplied lo gel 
a heller deal for himself) or exogenous (e.g. it may he undesirable to have to specify prefer
ences over the whole set of alternatives, due to privacy concerns or future business interests). 

Furthermore, for complex non-linear preferences, there are also preference formulation 
and communication costs. As we show in Chapter 3, because of hounded rationality and 
communication ability, it is often difficult for an agent herself to formulate and communicate 
bids over all possible item combinations in advance. 
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In the remainder of this introduction, we will discuss some important directions of re
search into modeling preferences in agent-mediated markets, followed by brief descriptions 
of the contributions made in this thesis to open problems in the field. Therefore, some sec
tions of the introduction present important concepts from a general point of view, while other 
sections describe how these general concepts were extended by our own research, described 
in the chapters of this thesis. The goal is to allow the reader lo gel a better understand the 
positioning and contribution of our work with respect lo the stale of the art in the field. 

1.7.2 Modeling multi-attribute negotiation with incomplete preference 
information 

An important direction of work in the literature on multi-issue negotiation is how lo design 
efficient bargaining strategics in settings when agents do not have any information about the 
opponent's (i.e. negotiation partner's) preferences. They may have, however, some prior 
knowledge about the domain they arc negotiating about. This prior domain knowledge can 
be, for example, fuzzy logic distances between attributes, such as the perceptual distance 
between different colours (such as in [71, 163)), or an ordering between a set of qualitative 
attribute labels (such as "good", "standard", "meager" etc), in our research (see Chapter 2). 

The work presented in Chapter 2 and [ 115, I 16] considers such an incomplete informa
tion negotiation model. The aim oflhis model is lo investigate the role that partially revealing 
preference information can improve the outcome of a multi-attribute negotiation. As a prac
tical domain case, we considered a bilateral negotiation between a buyer (customer) and a 
seller (car dealer) over the sale of a car. The negotiation is not exclusively on price, but also 
on the quality of the accessories which the dealer has lo install in the car lo gel the deal 
done (such as a CD player, extra speakers, air conditioning and tow hedge). In this setting, 
we show that it is possible for both parties lo reach close lo Pareto-efficient agreements, by 
revealing only partial (i.e. incomplete) information about their preferences of the negotiation 
partner. Furthermore, we proposed a novel guessing heuristic, by which an agent uses the 
history of opponent's bids lo predict his/her preferences in order to propose better deals. 

1.7.3 Non-linear and combinatorial preferences in negotiation 

A crucial problem in applying multi-issue or multi-item negotiation models in many realistic 
settings is the fact that there may be complex inter-dependencies between different issues, 
leading lo non-linear preferences or utility functions [ l08, 126, 138, 186). The problem ap
pears both when considering integrative, multi-issue negotiations, as well as negotiations 
over bundles of items [46, 186]. In both these cases, it is important lo allow for concise 
representations of the utilities over possible outcomes 3. 

3The problem is in fact, two-fold. First there is the complcJtity related to preference for11111/a1ion or combinatorial 
preferences, as well as one of preference co1111111111ication complexity. 
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The easiest way to represent preferences is to enumerate all possible outcomes (or com
binations of goods), together with their utility value for those goods (monetary or otherwise). 
This is called the explicit.form of preference representation (or "bundle form"). The explicit 
form is fully expressive, in the sense that any utility function may be described hy listing 
all possible combinations and their values. It is, however, impractical for most non-trivial 
settings, as the number of descriptions would he exponential in the number of resources (e.g. 
for only 50 binary issues or items, 250 > 101" values would need to be assigned - sec Chap
ter 3). This has prompted another important direction of research in electronic markets, that 
of designing more concise utility representation ( or preference) languages. There arc several 
classes of such preference languages: 

• Bidding languages, which arc typically used in combinatorial auctions to allow agents 
to formulate their bids (and, implicitly, communicate their preferences to the auction
eer). Some specific bidding languages include: 

• - The OR language: The agent can specify an array of valuations over differ-
ent subsets of items in a given bundle of items. The value of any combination 
can then he computed as the maximal value that can he obtained as a sum over 
disjoint subsets specified [46J. For example, in the hid: < {/1 }, 3 > OR < 
{/2 }, 3 > OR < {/:i} , 3 > OR < {/1 ,12 }, 8 > expresses that the bidder is 
willing to pay 3 for either 11 , /.i , I:,. or 11 for all 3 items (in this case, it is better 
to take the value of the subset < {/1 , h }, 8 > than the values of each individual 
item separately). Because the OR dependency is not exclusive, the OR language 
cannot express substitutability dependencies, i.e. it cannot express the fact that 
getting a combination of items has lesser utility than the sum of individual items. 
In the ahove example, it is not possible for the agent to express that he is only 
willing to pay 4 if he gets both / 1, / 2. If the hid < {/1, / 2 }, 4 > were added 
to the set of bids placed, then the auctioneer would simply match the hids over 
the individual items < {/1 }, 3 > and < { / 2}, 3 > (as any terms of the OR 
dependency may be chosen). 

- "Exclusive OR" (i.e. XOR) bidding language [ 194] - is an alternative to OR, in 
which all combination hids are assumed to he mutually exclusive. For example, 
in the ahove example, a hid such as: < {/1 }, 3 > XOR < {12}, 3 > XOR < 
{I:,.} , 3 > XOR < {/1 ,12}, 4 > means that the agent (bidder) can either use 
only one item from / 1, / 2, I:{ with a utility of 3, or the combination of { / 1, / 2} 
with a utility of 4, hut no other combination (so, e.g. getting both / 1 and l:i 
would still only have the utility of 3). XOR is fully expressive, in the sense that 
it can represent any monotonic utility function. However, XOR may have a high 
communication/elicitation cost, even for simple settings. An example is the util 
ity function that, for any set R of items Ii, ... I ,. E R , simply counts the number 
of items the agent owns - i.e. u(R) = jRj . Such a function would require an 
exponential number of bids in the XOR language, hut only a linear number in 
OR language. This is because, using XOR, all combinations specified are mutu
ally exclusive, so all possible combinations of then items of size IRI needs to he 
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specified as a terms in the bid. Because of this issue, and because OR language is 
considered more natural way to represent preferences, there exists a line of work 
that aims to extend its expressiveness, without requiring an exhaustive listing of 
XOR bids [169]. 

• Weighted propositional formulas and straight line programs arc other alternatives to 
representing complex preferences, which make use of logical formalisms. For exam
ple, weighted propositional formulas are derived from a qualitative form of preference 
representation, in which the preferences of the agent are expressed as goals. In the 
weighted case (unlike in purely formal logic approaches), goals can be assigned a util
ity weight if satisfied. We do not deal with this kind of preference languages in this 
paper, but the reader can consult [ 139] for the full details of this approach. 

• The k-additivc form [46,55, 186] (also called the polynomial form [133J) is another 
natural and concise method to represent combinatorial preferences. K-additivc func
tions can encode synergy (complementarity or substitutability) effects between subsets 
of up to k items. For instance, if we denote by x 1, ... x,. the instantiation of the set of 
n items, the expression for a 3-additivc utility form (i.e. taking a maximum k=s) is: 

I :S: i :S: 11 l :S: i,j,k :S: 11 

Where x 1 , .. , x 11 represents a vector of I and 0, denoting whether an item is (or is not) 
considered in the combination being evaluated, the reals o:1 ... u 11 , 11 ,11 ,11 arc the param
eters of the function, while k (same k as in "k-additivity") is the maximum rank of the 
polynomial, i.e. all the polynomial terms having a rank above k 11wx have the coeffi
cients n = 0. Linearly additive functions form a subclass of the k-additivc class, as 
defined above, for k 11rnx = 1. The k-additivc form is fully expressive, for unbounded 
k. This means that, if k is sufficiently large, it can be used to express any utility func
tion over a given, finite, binary set of items. In practice, although (as discussed in 
Chapter 3 this thesis), in order for this representation to be computationally useful, the 
maximum rank of the polynomial k is generally assumed to be bounded to a limited 
value (e.g. 2-4, as discussed in Chapter 3). 

1.7.4 Modeling multi-item negotiations over k-additive utility functions 
using utility graphs 

In Chapter 3 of the thesis, we consider the case of modeling complex bilateral negotiations 
over a set of multiple, binary issues (which can also represent a bundle of items). From the 
concise representation forms discussed in the taxonomy from Sect. 1.7.'J, the one we used, 
as we found it most natural in the context of the multi-issue negotiation, is the k-additive 
form. This representation is a natural extension of linear utility models already used in much 
previous multi-issue bargaining literature although, as we will show, allowing any degree on 
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nonlinearity in preference makes the bargaining problem considerably harder. For example. 
in Eq. I. I above, the case of kmax = 2 is already much harder than k,,, ,,x = l. 

Multi-issue negotiation with non-linear utility functions is known lo be a complex prob
lem, even for the case of binary issues [108,126,207]. The stale of the art in this field 
proposes complex solutions that involve a mediator, as well as techniques such as simulated 
annealing [ 126] or econometric methods [207] that are either computationally expensive or 
do not scale well for settings with many issues. In [ 186] (corresponding to the first part 
in Chapter 3) we introduce a novel utility graph formalism for modeling nonlinear (i .e. k
additive) preferences, and we show how such graphs can he used to model and learn oppo
nent preferences in complex, multi-issue negotiations. Utility graphs are originally inspired 
from prohahilislic graphical models, hut they encode utilities, rather than prohahilitics. The 
main idea behind our approach is lo use the structure of the graphs lo restrict the opponent 
modeling and search to the most promising region of the utility space. A seller agent can 
start a negotiation with an approximation of the utility function of a typical random huyer in 
the form of a maximal utility graph, and then refine this model based on the counter-offers 
he observes during the negotiation. In our case, the initial utility graph reflects the prior 
information that the sci lcr has ahoul how the utility function of a random huycr is structured, 
in order lo help in the search. 

An important question is, of course, how docs the seller acquire this initial huyer utility 
graph approximation. One solution is lo assume some prior domain knowledge, such as 
plausible constraints on the shape a utility function could lake (which may he reasonable 
for some settings). For e-commerce domains, we have proposed another alternative: using 
collaborative filtering on previous sales data, that will he presented after the discussion in 
the next subsection. 

1.7.5 Individual preferences and social influence 

In the previous discussion on combinatorial preferences, preferences are defined from a 
single-agent perspective, meaning that the utility of any agent is assumed lo he private and 
independent o_f what other agents may desire. Otherwise put, if a seller encounters a buyer 
and negotiates with him the configuration of a product or the composition of a hundle of 
items, he will assume that the preferred combinations of this particular huyer arc completely 
independent of what other huyers encountered wanted in the past. This is, in fact, a standard 
assumption in much of negotiation and auction theory. 

However, existing practice in electronic commerce suggested, for the Chapter 3 of this 
thesis, an alternative approach. The success of social search in providing on line huying rec
ommendations provides considerable evidence that preferences are not strictly independent. 
hut are in some way clustered. Consider for example, the case of Amazon.com, who has 
several million hook titles in its collection. Eliciting, for each individual customer, his/her 
preferences over these hooks lo propose acceptable hundles for the huyers would he a nearly 
impossible task. However, Amazon implicitly assumes that if a large numbers of customers 
that bought a certain book in the past were also interested in another book (or set of hooks), 
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then there is a high probability that future customers may be interested in this combination 
as well. For instance, if a customer buys a book on travelling to Portugal, the Amazon en
gine assumes he may also be interested in a book on travel to Spain, since many customers 
encountered in the past showed interested in both. Therefore proposing a deal (e.g. postage 
reduction, or a small discount) may be a good way to incentivise the customer to buy both 
books from the site. 

Note that this does not always have to be a correct prediction: in fact many customers 
may not be interested in the exact combination proposed. However, it does provide a good 
approximation in searching the space of a customer's preferences, even if the customer was 
never encountered before. 

Traditionally, research in multi-issue negotiation does not explicitly model this social 
dimension of customer preferences, or consider the role that social influence plays on the 
structure of utility functions. We show that having an explicit representation that relates the 
two fields (in our case in the form of utility graphs) allows us to considerably improve search 
in an online negotiation setting. Furthermore, the interaction between these fields does not 
have to be one-way: negotiation also has a lot to add to web-based recommendation in 
electronic commerce. Through an iterative negotiation process, the initial proposals (based 
on anonymous, aggregate preferences) can be customized to the preferences of a particular 
customer, based on the indirect revelation made through his/her counter-offers in negotiation. 

1.7.6 Learning the structure of utility graphs used in multi-item nego
tiation through collaborative filtering 

Our approach to modeling opponent preferences in negotiation makes use of the above in
tuition. Chapter 3 of this thesis proposes a novel collaborative filtering method by which 
previously concluded negotiation data can be used to construct the initial approximation of 
the utility graph of a random buyer that the seller can use in later negotiations. The seller 
will then adjust (learn) the values in the graph, for each specific negotiation, based on the 
counter-offers the buyer makes, until an agreement is reached over the bundle combination. 
Therefore, we take what can be described as a two-step customization approach: initially, 
an approximation of the maximal structure of a utility graph for a random buyer is obtained 
using collaborative filtering on all concluded negotiation data (which does not have to be 
buyer-specific). Then, this deal is refined through offers and counter offers during the nego
tiation with a specific customer. 

We show that the combined approach can enable buyers and sellers to reach efficient 
agreements even in complex non-linear settings, involving only indirect revelation (although 
there are some assumptions regarding the maximal complexity of the utility graphs that a 
buyer can have). One of the contributions of this approach to the state of the art in automated 
negotiation is that it provides a link between the customization techniques used in multi-issue 
or multi-item negotiation and those used in collaborative filtering and social computing. In 
fact, we show that the use of collaborative filtering techniques can lead to more efficient 
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and shorter negotiations for complex, non-linear utility settings than was reported in other 
research [ 126]. 

1.8 Preferences under uncertainty and bidding in sequen
tial auctions 

In the previous discussion, we have mainly discussed the concept of preference (or utility) 
in the context of integrative negotiation, in which the allocations for all items (or issues) is 
agreed at the same time. Thus, when an agent specifies a preference hy assigning a mone
tary value to a comhination of items, he is hidding for an entire comhination, and there is 
no uncertainty that he will not get some of items in the agreed configuration, if the seller ac
cepts the offer. This is a reasonahle assumption for integrative negotiation and comhinalorial 
auctions (where the allocation for all items is negotiated simultaneously). However, it docs 
not hold for other widely used allocation mechanisms, such as sequential/simultaneously 
ascending auctions (27, 89, 184, 217] or onc-hy-one issue negotiations (72]. 

In this section (corresponding to Chapters 4 and 5 of the thesis), we consider the case 
when agents have to hid sequentially items sold in different auctions, without knowing with 
certainty that they will gel the entire comhinalion of items they desire. In such cases, eco
nomic theory identifies another important class of preferences, preferences towards risk. 
Risk aversion is a very important part of economic theory - in fact, a 2006 MIT texlhook on 
the econometrics of auction data [ 171 ], the chapter on "preferences" is basically concerned 
with preferences towards risk. 

The way econometric theory models risk aversion is through the so-called Neumann
Morgenstern preference functions, in which the utility derived hy an agent from a certain 
amount of money is not a linear function, but a concave one. Otherwise slated, utility func
tions are not quasi-linear, in the sense that the utility that each agent derives from an amount 
of money is not directly proportional to the amount paid/received. 

In the following, we hriefly define the exposure problem in sequential auctions, the role 
that risk aversion plays in the bidding decision, as well as an overview of the contrihutions 
in Chapters 4, 5 and Appendix A. 

1.8.1 Sequential auctions and the exposure problem 

As shown in Sect. 1.3 above, there are two main directions of research in the application of 
agent systems to auction markets. One concerns the design of the auction mechanism itself, 
such that participant agents have a dominant bidding strategy (usually, lo declare truthfully 
their values), as well as certain properties, such as efficiency, individual rationality or hudgel 
balance. However, for many market designs that are necessarily encountered in practice, 
such as sequential or simultaneously ascending auctions, this is not possihle, and research 
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has focused instead on designing the bidding strategies of agents participating in such auc
tions. 

As shown in [27, 89, 187] and Chapters 4 and 5 of this thesis, the main problem that a 
bidder faces in a sequential auction is the exposure problem. Informally defined, the expo
sure problem means that an agent has to commit to buying an item, before he/she can be sure 
that he will able to secure other items in his useful set or bundle (defined as the set of items 
that gives him a positive utility). If she fails to acquire this bundle, then he makes a loss. 
Hence, we say that the agent is exposed to the risk of a loss. 

Most of the models that study bidding auction bidding start from the assumption that 
agents have quasi-linear utility functions. Basically defined, quasi-linearity assumes each 
agent has a set of payoffs that he/she assigns to any combinations of items. These payoffs 
arc, for many of the models studied, private: they arc not known to the other parties. The 
utility that an agent get from participating in the auction is assumed proportional to the 
difference between his/her private payoff and the amount he pays to acquire the items in 
question, in other words, it is defined strictly in monetary profit/loss terms. 

This quasi-linearity of preferences assumption, while widely used and valid for many 
business models and settings, docs not universally hold. In many real-life settings, even 
assuming it is true that agents have private values for different subsets of items under nego
tiation, profit and loss are not judged in the same terms. Making a loss from an interaction 
(i.e. paying more than his/her private payoff value) is not proportional as gaining the same 
amount as profit. In other words, agents arc risk-averse to making a loss, even if the potential 
for gain is considerably larger. 

1.8.2 Designing sequential auction strategies for risk-averse bidders 

Prior to the publication of our research, there had been quite a lot of previous work on 
designing efficient bidding strategics for agents participating in sequential [27, 89, 2 I 7 J and 
simultaneously ascending [I, I 84J auctions. 

While this work reported some positive results, an important limitation of existing litera
ture we examined was that it docs not explicitly model the risk-taking attitude of the bidding 
agents. By "explicitly model" we mean building a profile of the agent's risk preferences 
towards uncertain, future outcomes (such as the final allocation of a sequential auction). In 
standard economic theory, since the seminal work of K. Arrow and J. Pratt, preferences to
wards risk have been considered essential in understanding and modeling decision making 
under uncertainty [5,88, 153,171]. Auction literature from standard economics [158,171] 
considers risk aversion an important problem in modeling real bidder preferences. How
ever, the economic literature that we arc aware of docs not consider sequential auctions with 
complementary bidder valuations, except perhaps in the simplest of settings (because such 
auctions do not h ave well-defined equilibria). More specifically, unlike the AI community, 
researchers in economics arc not concerned with designing automated bidding heuristics for 
sequential auctions. 
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The main contrihution of Chapter 4 of this thesis is making a link hetwccn risk-aversion 
models, and the strategics that risk-averse hidders can use in sequential auctions. First, we 
introduce the Arrow-Pratt risk models from economics to the prohlem of modeling agent 
bidding strategics. We then study the way in which the perceived optimal hidding strategy 
computed hy a risk averse agent, given her probabilistic model of the future, differs from 
the optimal strategy of a risk neutral agent. We find that agents more averse lo risk bid more 
aggressively, in order to cover their sunk costs for the initial items in the sequence. However. 
if the future sequence of auctions is initially perceived as loo risky (given the agent's initial 
estimation of future closing prices), the hest strategy available lo a risk averse agent is simply 
not to participate al all. 

Our experimental results show that a risk averse bidder has, as expected, a lower chance 
to end up with an incomplete hundle of goods, thus make a loss. However, when considering 
long-term and repealed interactions, such agents make, on average, a lower expected profit, 
because they participate in less auctions. For some market settings. this also affects, in a 
negative way. the auctioneer revenues from the auctions. 

In the following section, we look al a different side of the prohlcm of exposure lo risk of 
loss in sequential auctions, namely what can he done to reduce it. 

1.8.3 Options mechanisms in sequential options 

As discussed above, sequential auctions do not guarantee a dominant hidding strategy for the 
agents (unlike the comhinalorial case). However, the prohlem remains, as many allocation 
prohlems occurring in practice are inherently decentralized and sequential. Different sellers 
may prefer, for a variety of reasons, to sell their items separately - or even through different 
markets. as the numher of electronic auction sites online indicates. Furthermore. in many 
application settings, not all resources that arc lo he allocated arc known in advance, but they 
appear dynamically over time. In Chapter 5 of this thesis, we study an alternative lo this 
very difficult prohlem that, although it cannot completely eliminate hidder's exposure. it can 
significantly reduce it: the use of priced options. 

Intuitively defined, an option is a contract hetwcen the buyer and the seller of a item. 
where the buyer has the right to choose in the future whether or not he will purchase the 
item against the pre-agreed exercise price. The seller is then bound to sell the item al the 
demand of the buyer. Since the huycr gains a right, he has to pay the option price regardless 
of whether he will exercise the option or not. 

Options reduce the exposure prohlcm a synergy huycr faces. He still has to pay the option 
price, but if he fails to complete his desired bundle. then he does not pay the exercise price 
as well, and thus he limits his loss. The risk of not winning subsequent auctions is partly 
transferred to the seller. who may miss out on the exercise price. However, the seller can 
benefit indirectly from the participation in this market of additional complementary-value 
buyers (also called "synergy buyers"), who would have otherwise stayed out. 

Our work builds on an idea first proposed in Juda & Parkes [ 120, 121 ]. Their work pro-
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poses a market design with free (i.e. zero-priced) options. To prevent huycrs from hoarding 
options (i.e. which they may have an incentive to do, as they arc offered free and can be 
exercised optionally), bidders are assumed to place their hids only through proxy agents 
provided hy the mechanism. They show that, in this market mechanism, truth-telling is a 
dominant strategy on the part of the buyers. The sellers are incentivised to use the proposed 
options mechanism by market entry effects. We note that there arc some important limita
tions to their approach, which we aimed to address through our work. First, market entry 
effects are often not sufficient to motivate the sellers lo offer options for free (due to the 
risk of remaining with their items unsold) and, in such cases, only positively-priced options 
can provide sufficient incentive for both sides to use the mechanism. Moreover, the design 
proposed in [ 120] cannot deal with the case when several synergy buyers arc active in the 
market simultaneously. With priced options, while the problem of selling exercise prices 
becomes more difticult with multiple synergy buyers present simultaneously in the market, 
options can still he shown lo be beneficial. 

1.8.4 Using priced options to solve the exposure problem 

By comparison to [ 120, 121 ], although it starts from the same idea, the work described in 
Chapter 5 takes a different approach. Rather than attempting to design a complex, custom
made mechanism, our goal is to investigate, in a decision-theoretic model, under which 
conditions selling options for the items would be more henelicial for hoth sides in a market 
(sellers and buyers), by comparison lo direct auctions. 

We consider a model in which buyers obtain the right to huy the item for a certain exercise 
price in the future. Each option is described by a fixed exercise price and a flexible, market
determined option price. The seller lixcs the exercise price of an option For the item he has 
for sale and then sells this option through a first-price auction. Buyers bid for the right to 
buy this option, i.e., they bid on the option price. Note that in this model, direct auctions 
appear as the particular case of fixing the exercise price at zero: such options would always 
he exercised, assuming free disposal. 

Our approach and analysis can be characterized as decision-theoretic, meaning both 
buyer and seller reason with respect lo expected Future prices. First, we consider a setting in 
which n complementary-valued items are auctioned sequentially, assuming there is only one 
synergy buyer (the competition consists of local hiddcrs desiring only one item). If options 
arc auctioned for these items instead of the items themselves, the agent may bid an option 
price corresponding lo a higher total amount (option+ exercise price) than in a direct sale, 
because he docs not have lo pay the exercise prices if he fails to get the desired combination. 
However, the seller also takes an exposure to the risk of a possihlc loss by auctioning options 
instead of items, hccausc the huycr may not exercise the acquired options, and hence he/she 
may not collect the exercise price. Therefore, in order for him to have an incentive to offer 
options, he expects an increase in the bids he receives lo compensate for this risk. For this 
selling, we show analytically that using priced options can increase the expected profit for 
both the synergy huycr and the seller, compared to auctioning the items directly. 
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Second. we study experimentally market settings in which multiple synergy huyers arc 
active simultaneously. In such settings, the prohlem of fixing the right exercise price be
comes harder, hecause the seller has to maximize expected huyer participation, hut at the 
same time reduce his own exposure. We find that, while some synergy huyers loose hecausc 
of the additional competition, others may actually henefit, hecause sellers have an incen
tive to fix exercise prices at high enough levels which encourage more synergy huyers to 
participate in the hidding. 

1.9 Applications to transportation logistics 

Besides the theoretical results discussed in Chapters 2 - 5, we also investigated a practical 
husiness setting in which sequential auctions are used: distributed transportation logistics. 
As this research represents a practical case study, rather than a contrihution lo fundamental 
research, the full details arc included as Appendix A, rather than a chapter. However, the 
experience gained from performing this case study served lo inform many of the choices 
made in our theoretical work on auction hidding strategies. 

Transportation logistics and supply chain management represents a challenging, but po
tentially very fruitful area for the application of agcnt-hased electronic market techniques. 
such as the ones we consider. The increasing complexity and shifting structure of mod
ern supply chains, as well as increasing competitive pressures in this market has led to an 
increasing demand and interest for such distributed optimization techniques, involving mul
tiple parties. The practical impact of improved allocation which can he achieved through 
such techniques can he significant. For example, in the Netherlands, the average transport 
performance is ahout 60%-70%. Improving this utilization rate is also the goal of the DEAL 
(Distrihuted Engine for Advanced Logistics) project, which groups together several univer
sities and large logistics service providers in the Netherlands. The applied research work 
reported in Appendix A was carried out in collaboration with Vos Logistics Organizing. 
Nijmegcn, one of the largest European transportation logistics companies. 

1.9.1 Auction-based allocation of transportation loads in multi-party 
transportation logistics 

Multi-party transportation logistics settings are those in which the company that accepts 
an order to transport goods docs not necessarily also own the actual capacity (i.e. trucks) 
to also carry out this order. This is an increasing trend in modern supply chains. where 
often multinational companies with large, regular amounts of cargo to be delivered prefer to 
outsource these orders to other companies that undertake to find convenient delivery options, 
within a set of pre-negotiated terms. These intermediary logistic companies then negotiate 
how to distrihute these orders with other, often smaller, companies who have the actual 
transportation capacity (which own the actual trucks and hire the drivers). This is actually 
a cheaper and more efficient option in many cases, as a fit for the order can be searched 
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in the transportation plans of several companies. In standard transportation management 
literature [221] such distributed supply chains are called multi-party logistics. 

Typically, such supply chains are composed of companies with different business mod
els. Third-party logistic providers (3PL companies) are those that have their own transport 
capacity (i.e. truck lleet) and plan this own capacity, while fourth party logistic providers 
(4PL companies are those which "orchestrate" the supply chain, i.e. acquire large sets of 
orders from large shippers and then re-distribute these orders among a set of other compa
nies with actual transport capacity. This is also the way in which Vos Logistics Organizing 
operates. Our goal in the joint project was to examine how such outsourcing activities could 
potentially be automated, by building an auction-based platform, in which transportation 
orders arc allocated among a set of agents representing different companies. 

Thus, the business case that this platform addresses involves a large 4PL company re
ceives orders from a large shipper (orders can arrive throughout the day) and has to find 
transportation capacity for them among a set of other 3PL companies. The 4PL company 
that outsources the orders acts as the auctioneer, while the 3PL companies are the bidders 
taking part in a set of (reverse) auctions, in which the bidders that offers the lowest trans
portation costs usually wins (although there is some llexibility and the exact auction design 
in the decision of the auctioneer, see Chapter A). Our initial goal was not to design spe
cific bidding strategies, but to build an auction platform around a real transportation business 
case, in which actual bidding strategies (both human and automated) can be implemented 
and tested. As a next step to this practical user study, the strategies developed for repeated 
allocation in our more theoretical work (such as risk-averse bidding strategies, option mech
anisms etc.) could be re-implemented in this platform, and also tested against the bidding 
strategies used by human planners. The full details of the implementation, choices made and 
results are presented in Appendix A. 

1.10 Preferences in social web communities and online mar
kets 

The last part of this thesis, consisting of two chapters, is about modeling collective pref
erences in large web-based systems. These chapters are a different in their methodology 
and scope from the others, in the sense they arc mostly concerned empirical analysis of 
large-scale web data, rather than proposing theoretical models and validating them through 
simulations. Nevertheless, as we show in Chapter 6, this research is highly relevant to the 
issue of modeling preferences in on line settings, including electronic markets. Although the 
concept of "preference" is used here more generically, as a choice between several alter
natives/outcomes, rather than the narrower, utilitarian sense taken in economics, the topic 
is relevant to the topic of the thesis. Moreover, it often uses similar techniques, such as 
the graphical models. This part also complements the approach taken in other chapters, by 
providing analyses of empirical web data produced from the actions of thousands (or even 
millions) of human users, rather than computer simulation data. 
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The techniques we use for this analysis arc so-called "complex syslcms"-lypc techniques. 
Basically stated, the goal of such techniques is to examine how the local actions of individual 
agents can lead to the emergence of order or structure at the glohal level [I I]. For online 
environments, the user action usually consists of a click on some link or ad, or assigning a 
tag to a resource, while the emerging structures can he correlation graphs hetween terms, 
hased on the clicks they receive, market power of the advertisers in the system etc. Complex 
systems analysis usually allows insights into phenomena such as fecdhack and the influence 
of previous actions on other users. 

This Section is divided into two separate topics: analysis of the dynamics of tagging 
systems, and an analysis of sponsored search markets. 

1.10.1 The complex dynamics of collaborative tagging systems 

The first part concerns a large scale analysis of collaborative tagging data. This line of re
search resulted from a collahoration after an extended stay at the Santa Fe Complex Systems 
Institute. It resulted in several papers, including a WWW'07 paper [9JI and an extended 
journal version. 

In this joint work, we use data from the social hookmarking site dcl.icio.us to empirically 
examine the dynamics of tagging systems, and especially whether coherent categorization 
schemes can emerge from the unsupervised tagging done by many individual users. Our 
findings are two-fold. First, we find lhal final lag frequencies descrihing most tagged re
sources converge to "power law" distributions. This is important, as it shows that coherent, 
stahle categorization can actually emerge in such a system, without a central controller of 
the terms which should be used. The specific power law-type distribution has hecn shown 
to appear in other complex, decentralized systems, and is typically interpreted to show that 
an implicit feedback process is at work in the system [ 166). Other than studying the shape 
of the final dislrihutions, We also propose an information-theoretic method to examine the 
dynamics of this convergence to stable distrihutions, both for the most used lags, and for the 
so-called "long tail" of tag distrihutions. 

The second part of the chapter proposes a method to construct information structures 
from collahorativc tagging, which we call tag correlation (or "folksonomy") graphs. In such 
graphs, the distances between nodes (representing individual tags) is indirectly proportion 
to their co-occurrence frequencies in descrihing the same resources. It is worth noticing that 
the methods used to derive these tag correlations graphs closely resemhlc the collahorative 
filtering methods used for the utility graphs developed in our negotiation work (sec Chapter 
3 of the thesis). 

We also describe a method to partition such graphs to ohtain simple tag vocahularics, 
using so-called "community detection" algorithms. In this context, the simple vocabularies 
that can be obtained from applying such techniques on tagging data are compared to those 
that can be extracted from search engine data for the same domain. We find that the methods 
applied lo collahorativc tagging data outperform the results from a large search engine, at 
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least in some respects. 

1.10.2 An empirical analysis of sponsored search markets 

A final direction of research, also using empirical techniques on large scale web data, is 
reported in Chapter 7, which examines the dynamics of sponsored search markets. Spon
sored search, in which advertisers pay for the clicks received by their text ads displayed 
alongside search engine results, has become an important part of modern advertising. It now 
represents the main source of revenue for large search engines, such as Google, Yahoo or 
Microsoft. Furthermore, since advertising link slots arc allocated through an auction, which 
takes place automatically for each placed query, sponsored search provides fertile ground for 
investigating automated market-based techniques in a real, large-scale setting. 

The data used for the study in this Chapter comes from the search engine Livc.com4 . 

Basically, this study, like the study in Chapter 6 also takes an complex-systems type of 
approach to analyzing sponsored search data. In this context, we show that not only the 
search keywords themselves, but also the relative weights of the advertisers in the market 
follow power law distributions. Thus, a small number of advertisers have a dominating share 
of the number of user clicks in the market. We discuss how this effect may be due to the 
way winners arc determined, based on their historical click-through rates, which reinforces 
the position of the top advertisers through a feedback-type mechanism. Furthermore, we 
also study the issue of user attention, especially how users prefer to scan a list of sponsored 
search results. We find a clear relationship between the position occupied by a text ad in the 
list returned to a user and its probability of receiving a click. 

Finally, we use our graph-based and collaborative filtering techniques (similar to the 
techniques as in Chapter 6, but now based on advertising click data), to output recommenda
tions on which sets of search terms arc most commercially promising. Herc, in computing 
similarities between search terms, we only consider the queries that lead to an actual click 
on a returned text ad. Note that this is different from using organic search or tagging results, 
since we only take into account the "opinion" of a subset of users that show a clear interest 
in buying something onlinc. 

1.11 Structure of the thesis 

Following the outline described above, this thesis is organized in 6 chapters, divided into 
three main parts. Part I contains two chapters that both deal with modeling multi-issue or 
multi-item preferences in complex, bilateral negotiations. Chapter 2 proposes an agent ar
chitecture that can handle incomplete preference information in negotiations over several 
discrete-valued attributes and one continuous attribute (price). Chapter 3 presents a negotia
tion model that uses utility graphs to represent many binary-valued issues, but with interdc-

4This data was kindly provided to us by Microsoft Research, as part of a '"Beyond Search" grant. 

.,. 
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pendent, k-additivc utility functions. Furthermore, Chapter 3 also discusses how the initial 
structure of a huyer's utility graph can be learned from past data, based on collahorativc 
filtering techniques. 

The second part of the thesis consists of two chapters that deal with auction hidding 
strategics, especially bidding strategies in sequential auctions. Chapter 4 shows how an 
agent's attitude towards future risk influences his/her optimal decision-theoretic hidding 
strategy, when participating in multiple, sequential auctions. In Chapter 5, we consider a 
different approach to solving the difficult prohlem of sequential allocation, and we show 
how priced options could reduce the exposure to risk that hiddcrs with complementary val
uations face in such auctions. Appendix A descrihes an auction platform that would allow 
hidding strategics (hoth automated and human) to he tested in a practical scenario: allocation 
of orders in transportation logistics. 

The third part of the thesis deals with emergent collaboration and large-scale empirical 
studies of wch systems. Chapter 6 studies how stahle distrihutions and information structures 
can emerge in decentralized tagging systems, while Chapter 7 uses similar, complex-systems 
type approaches for an empirical study of sponsored search markets. The thesis is concluded 
by a discussion of the results and a discussion of issues that were left to further work. 

Figure 1.1 summarizes, in graphical from, the hasic structure of the thesis, and it high
lights (through arrows) the connections that exist hetween different parts and chapters. These 
connections arc either at the level of the fundamental problem hcing studied, or at the level 
of the technique used to address those problems. For example, both Parts I and II consider 
different types of agent-mediated market techniques (negotiations or auctions), especially 
problems related to modeling complex preferences and strategic reasoning in such settings. 
The two chapters in Part I both deal with the bilateral negotiation problem, while the two 
chapters in Part II deal with the problem of sequential allocation in competitive environ
ments, in particular sequential auctions. 

There arc also important connections between chapters that may seem initially unrelated 
in scope, at the level of the type of techniques used. For example hoth Chapter 3 and Chapter 
6 use similar graphical models techniques (in fact ideas developed in the initial research for 
Chapter 3 served at the source of inspiration for the tagging work from Chapter 6). These 
two chapters also share important idea about how social preferences can he exploited and 
how collahorativc filtering can he used to learn graphical structures from past data. The 
two chapter in Part III are directly related hy their use of complex systems type techniques, 
applied to empirical weh data, although for different settings (tagging systems vs. sponsored 
search markets). 

Bui there arc also connections at the level of practical applications of the techniques 
in different chapters. For example, the applied case study work reported in Appendix A 
actually served to motivate and guide the type of design choices and prohlems to be studied 
in our more fundamental work on auction bidding, dcscrihed in Chapters 4 and 5. One of 
the reasons we focused on the sequential auction case in these chapters is that sequential 
auctions appeared very frequently in practical case studies we examined, yet we found few 
theoretical results for this setting in prior literature. 
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Finally, there is also a connection between the chapters in Part II and the keyword auc-
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lions in sponsored search markets. The keyword auctions from sponsored search provide 
large scale, empirical data for the type of sequential auction hidding behaviour, studied al 
a more theoretical level in Chapters 4 and 5. Chapter 7 provides a first indication of the 
type of insights that could he extracted from such data. Furthermore, we envisage that some 
techniques, such as the use of options, could potentially also he used for sponsored search 
markeL<;, as repeated/ sequential bidding problems are also important in those settings. 

For the reader, we note that all chapters of this thesis, while they do refer to each other 
at different points, are self contained and can he read independently. In the remainder of this 
introduction, we provide a list of the most important publications that resulted from each of 
the chapters, as well as brief references to other published research results of the author that 
were not included in this thesis. 

1.12 Publications related to each chapter 

All the Chapters of this thesis are hased on at least 2 peer reviewed puhlications (journal, 
refereed international conference or refereed hook chapter), as follows: 

• Chapter 2: Jonker, C., Robu, V., Treur, J. "An Agent Architecture for Multi-Attrihule 
Negotiation Using Incomplete Preference lnformation",Joumal of Autonomous Agents 
and Multi-Agent Systems (JAAMAS), Springer-Verlag, Vol. 15(2), pp. 221 -252, Oct. 
2007. A conference version of this paper appeared as: Jonker, C.M., and Robu, V., 
"Automated Multi-Attrihute Negotiation with Efficient Use of Incomplete Preference 
Information", Proceedings ri the Third International Joint Cmterence on Autonomous 
Agents and Multi-Agent Systems (AAMAS'04), New York. ACM Press, 2004, pp. 
I 056- 1064. A hook chapter descrihing the platform used for hoth this work and other 
negotiation work performed al VU Amsterdam appeared as: Bosse, T., Jonker, C.M., 
Meij, L. van der, Rohu, V. , and Treur, J. "A System for Analysis of Multi-Issue Nego
tiation", In: Calisti, M., Klusch, M., and Unland, R. (eds.), Software Agent-Based Ap
plicatiom·. Plat.forms and DeFelopment Kits, Birkhauser Publishing, Springer-Verlag 
Group, 2005, pp. 253-280. 

• Chapter 3: Rohu, V., Somefun, DJ.A., La Poutre J.A. "Modeling Complex Multi
Issue Negotiations Using Utility Graphs", Proc. of the Fourth International Joint Con
ference on Autonomous Agents and Multi-Agent Systems (AAMAS'05), Utrecht. The 
Netherlands. ACM Press, 2005, pp. 280-287. The collaborative filtering extension 
first appeared as: Rohu, V., La Poutre J.A. "Retrieving the Structure of Utility Graphs 
for Multi-Issue Negotiation Through Collahorative Filtering of Aggregate Buyer Pref
erences", Proc. of Second International Workshop on Rational, Robust and Secure 
Negotiations in Multi-Agent Systems ( Best Paper Award), Springer Series on Compu
tational Intelligence, vol. 89, 2008, pp. 147-168. An earlier version was presented in 
2005 al the Proc. of the Pacific Rim Workshop on Multi-Agent Systems (PRIMA'05), 
but the Springer LNCS post-proceedings were only confirmed to appear in 2009. A 
journal version, comprising both parts is under submission. 
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• Chapter 4: Robu, V., La Poutre, J.A - "Designing bidding strategies in sequential 
auctions for risk averse agents: a theoretical and experimental investigation" Post
proceedings of the 9th Int. Workshop on Agent Mediated Electronic Commerce (AM EC'07), 
Honolulu, Hawaii, 2007. Springer Leet. Noles in Business Informatics, vol. 13, pp. 
76-89. An extension oflhe results appeared as: Robu, V., La Poutre, J.A- "Designing 
risk-averse strategies for bidding for outsourcing through sequential auctions" Ad
vances in Agent-based Complex, Automated Negotiations - Proc. of the I st Int. Work
shop (ACAN'08), Estoril, Portugal, Springer Series on Computational Intelligence (lo 
appear, 2008). 

• Chapter 5: Mous, L., Robu, V., La Poutre, J.A - "Using Options lo Solve the Se
quential problem in Sequential Auctions", Post-proceedings of the 10th Workshop on 
Agent Mediated Electronic Commerce (AMEC'08), Estoril, Portugal. Springer Lec
ture Noles in Business Informatics (LNBI), Springer-Verlag (lo appear, 2009). A syn
opsis of the main results was also reported as: Mous, L., Robu, V., La Poutre, J.A 
- "Can Option Mechanisms Solve the Exposure Problem in Sequential Auctions'!", 
ACM SIGEcom Exchanges, vol. 7, no. 2, ACM Press, July 2008. A more extended 
version, which includes the detailed proofs and full result graphs for different aspects 
(and which is the version included in this Chapter) appears in the Proceedings of the 
Dagslllghl Seminar on Multi-Agent Planning Systems, DROPS Electronic publication, 
Nov. 2008. 

• Chapter 6: Halpin, H., Robu, V., Shepherd, H.- "The Complex Dynamics of Collab
orative Tagging", Proceedings of the 16th International World Wide Web Conference 
(WWW'07), Ban ff, Canada 2007, ACM Press, pp. 211-220. The exlended,joumal ver
sion of this paper has been conditionally accepted as: Robu, V., Halpin, H., Shepherd, 
H. - "Emergence of Consensus and Structured Vocabularies in Collaborative Tagging 
Systems", ACM Transactions on the Web, ACM Press (conditionally accepted, 2009). 
A preliminary version also appeared as: Halpin, H., Robu, V., Shepherd, H.- "On the 
Dynamics and Semantics of Collaborative Tagging", Proc. of the /st Semantic Au
thoring and Annotation Workshop (SAAW'06, Atlanta, Georgia, USA, 2006 and as a 
technical report of the Santa Fe Complex Systems Institute, Santa Fe, New Mexico, 
USA. 

• Chapter 7: Rohu, V., La Poutre H., Bohte, S. - "Analyzing data from sponsored 
search markets from an agent-based and complex systems perspective", International 
Workshop on Agents and Data Mining Interaction (ADM/'09), Springer Lecture Notes 
in Artificial Intelligence (16 pages, lo appear 2009-20IO). A journal special issue 
version is in preparation. 

• Appendix A: Robu, V., Nool, H., La Poutre, J.A., van Schijndel, W.J. "An Interactive 
Platform for Auction-Based Allocation of Loads in Transportation Logistics", Proc. 
Of 7th Int. Joint Conj: on Aut. Agents and Multi-Agent Systems (AAMAS'08), Jndustl)' 
Track, Estoril, 2008, IFAAMAS Press, 2008, pp. 3-11. A preliminary version describ
ing the underlying business case appeared as: Pullen, S. v.d., Robu, V., La Poutre, J.A., 
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Jorritsma, A., Gal, M.- "Automating Supply Chain Negotiations using Autonomous 
Agents: a Case Study in Transportation Logistics", Proc. Of 5th Int . .Joint Cm~f. on 
Aut. Agents and Multi-Agent Systems (AAMAS'06), Hakodate, .Japan, 2006, ACM 
Press, 2006. pp. 1506- I513. The demonstration platform was also nominated as a 
finalist for the Amsterdam Science Park lnnm•ation Prize. 

Furthermore, papers resulting from almost the chapters were presented al the Belgium
Netherlands Conference on Artificial Intelligence (BNAIC) as extended ahstracls. 

1.12.1 Research work not included in the current thesis 

Besides the work reported ahove, the research work of the author also lead to a few other 
publications that have not hcen included here. For complctness, we provide references to it 
and hricf abstracts here, hut the reader can skip this part, without loss of understanding of 
the other parts. 

Decommitment mechanisms in transportation logistics 

• ' t Hoen, P.J, Rcdekar, G .. Rohu, V., La Poutre. J.A. "Decommitment in a Com
petitive Multi-Agent Transportation Setting", In: Ca/isti, M., Klusch, M., and Un 
land, R. (eds.), Software Agent-Based Applications, Platforms and Development Kits, 
Whittestein Series on Software Agents Technologies, Birkhauser Puhlishing, Springer
Verlag Group, 2005, pp. 409-433. A shorter version appeared as: 't Hoen, P.J, Rc
dekar, G., Robu, V., La Poutre, J.A. "Simulation and Visualization of a Market-Based 
Model for Logistics Management in Transportation", Proc. of the 3rd Int . .Joint Con
ference on Aut. Agents and Multi-Agent Systems (AAMAS'04). ACM Press, 2004. pp. 
1218- 1219. 

Dccommitment is the action of foregoing of a contract for another (superior) offer - and 
has heen extensively studied, for the hilateral case, by [4, 193, 195). In the ahovc hook chap
ter [216), we study the dccommitment concept for the novel setting of a large-scale logistics 
setting with multiple, competing companies. We consider a setting in which transportation 
orders are allocated to agents representing trucks through a system of distrihuted auctions. 
Using a large scale, spatial simulation, this work shows that, if agents arc allowed to de
commit from acquired transportation orders as helter opportunities appear. the mechanism 
can lead to significant increases in expected profits. One-sided decommitment method is 
related to the option method reported in Chapter 5 of this thesis. The difference is that in 
the model descrihed in (216], trucks are only allowed to pass orders to each other through 
decom mitment if they belong to the same company. This removes strategic reasoning prob
lems associated with two-sided decommitment, which makes the problem different in nature. 
The hook chapter cited ahovc also dcscrihcs a novel visualization platform was developed to 
illustrate the decommitment strategy, for different input scenarios. 
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Design of a PLAT trading strategy 

• Silaghi, G.C., Robu, V. "An Agent Strategy for Automated Stock Market Trading 
Combining Price and Order Book Information", Proc. of the ICSC Congress 011 Com
putational Intelligence Methods and Applications ( CIMA 2005 ), Advanced Computing 
in Financ:ial Markets Track, Istanbul, Turkey, IEEE Press, 2006. 

This was work performed in collaboration with G. Silaghi on designing a mixed automated 
stock trading strategy (i.e. one that combines several strategies) for the Penn-Lehman Au
tomated Trading Platform (PLAT) [124]. Our strategy combined several existing strategics, 
based on a weighted "vote" function. 

Workshop proceedings edited 

• Ito, T., Zhang, M., Robu, V., Matsuo, T. (editors) "Rational Robust and Secure Nego
tiations In Multi-Agent Systems", Proc. ofIAT/WI Workshops, IEEE Press, 2008. 

• Ito, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T. (editors) "Advances is Agent
Based Complex, Automated Negotiations", volume in Springer Series on Computa
tional Intelligence, Springer-Verlag, 2009. 
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Chapter 2 

An Agent Architecture for 
Cooperative Multi-Attribute 
Negotiation With Incomplete 
Preference Information 

2.1 Introduction 

Recent years have seen a surge of interest in negotiation technologies, seen as a key coordi
nation mechanism for the interaction of providers and consumers in future electronic markets 
that transcend the selling of uniform goods [ 134, 21 I] . Suggested applications range from 
modeling interactions between customers and merchants in retail electronic commerce [911, 
lo the on line sale of information goods 1208], or reducing operational procurement costs of 
large companies L 14]. Such technologies could prove especially useful in the case of multi 
attribute negotiations, which represent non-zero sum games, where "as values shift along 
multiple directions, it is possible for both parties lo be better off' [ 189]. 

Gutman and Macs [91] discuss the difference between competitive and co-operative ne
gotiation models in electronic commerce. They show that modeling retail market negotia
tions as strictly competitive assumes that merchants arc unnecessarily hostile to customers 
and, furthermore, it offers them no long-term bcnelits. They conclude that sellers often care 
less about prolil on any given transaction and care more about long-term profitability, which 
implies customer satisfaction and long-term customer relationships. Their analysis makes a 
strong case for co-operative negotiation models for the retail market. 

However, even assuming partial cooperation, in many application settings such as c
commcrce, only a limited degree of trust exists between parties in sharing preference in-

33 
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formation . The reasons for this may he endogenous to the negotiation (e.g., fear the other 
may ahusc this information to gel a heller deal) or exogenous (e.g., privacy concerns). This 
position is supported, among others, hy [71] who argue that "what is required arc agent 
architectures that implement different search mechanisms, capahle of exploring the set of 
possihle outcomes under hoth limited information and computation assumptions". 

The work presented in this chapter starts from the hasic intuitions descrihed above: that 
in multi-attribute negotiations in electronic commerce often agents are only willing to share 
partial preference information to each other directly (or even none, for some cases). There
fore, agents have to use any amount of preference information the opponent is willing to 
share, and if not. to huild a model of opponent preferences based on his/her hids or counter
offers. 

Our work considerably extends an agent architecture and negotiation model developed 
in the AI department of the Free University in Amsterdam [ I 181, to allow it to deal with 
incomplete or partial information. We lake into account two different types of incomplete 
information: 

• Partial profile information, which is communicated hy the negotiation partner herself 
in the beginning of the negotiation. 

• Profile information which can be deduced (learned) from successive hids during the 
negotiation itself. Here we start from the assumption that the way the negotiation 
partner is bidding may reveal something ahout his preferences. For this mechanism 
we use the term guessing lo clearly show ii is a heuristic. 

The Chapter is organised as follows. First, Section 2.2 presents the formal design of the 
negotiation model. Next, the experimental validation of the model is presented in Section 
2.3. Section 2.4 discusses the results of our model and compares it other approaches in 
literature, while Sect. 2.5 concludes the chapter with a discussion. 

2.2 The multi-attribute negotiation model 

The hilaleral negotiation considered in our model follows an allernating-offers protocol. A 
hid in such a negotiation has the form of values assigned to a number of attributes. 

To make ii more intuitive, the multi-attribute negotiation model in this chapter is built 
around a specific domain example: the sale of a car. In this domain, the relevant attributes 
lo be considered are: CD player, extra speakers, airco, low hedge, price. A hid then consists 
of an indication of which CD player is meant, which extra speakers, airco and low hedge, 
and what the price of the offer is. Although the model and examples are huilt around this 
domain, the underlying negotiation techniques proposed are generic, and this section pro
vides a generic formal description of the model. Instantiations in other domains are possible 
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and have been considered - for example an employer and employee negotiating about work 
shifts and overtime pay (work performed in collaboration with Almcndc B.V., Rotterdam). 

As already mentioned in the introduction, the model in this chapter builds on results 
initially presented in l 118]. This initial model was adapted, through the work of the main 
author of this thesis, in two main directions (c.f. [ 115, 116]): 

• A mechanism where the agents arc allowed lo exchange and take into account partial 
preference information from the negotiation partner was modeled. 

• A novel heuristic by which an agent can estimate the preferences of the other using 
his past bids was proposed and tested (we call this a "guessing" heuristic). 

Both for the original work and the extension, the DESIRE software environment and 
conceptual design methodology [31 J were used lo design the agents. DESIRE was a long 
running research project al VU Amsterdam, in which conceptual designs of multi-agent sys
tems for many application areas were developed. It is beyond the topic of this thesis lo go 
into the specifics of the DESIRE methodology, especially as it was not used later in other 
chapters. The reader should note, however, that some decisions taken in this chapter, for ex
ample the separation of the algorithm into conceptual components, were initially motivated 
by the use of the DESIRE method. 

We do cover, however, some elements of the original, DESIRE-based negotiation model, 
lo allow more extensive explanations for the parts that were added or adapted through the 
research of the author. For further details readers arc asked lo consult [ 118] and I I 16]. 

The proposed negotiation model works by performing computations on two levels: the 
overall bid level and the attribute level. This involves first evaluating the utility opponent's 
previous bid, and then planning the target utility for the own next bid. Finally, the config
uration of the next bid will be selected such that it fits this target value. In the design of 
our agent, these steps arc modeled as separate DESIRE components (sec Fig. 2.1 ), and our 
presentation follows this structure. 

2.2.1 Bid Utility Determination and Planning Component 

The evaluation for each attribute is computed based on an evaluation function, specified by 
the agent owner (user) in the beginning of the negotiation. This function lakes the generic 
form cval: V -+ E, where V is either a finite set of discrete values or continuous interval , 
while E = [O, l] . For example, in the car sale domain, accessories have discrete values 
(quality levels, assigned an evaluation by the user), while attributes such as mileage or price 
arc continuous. 

The utility of the negotiation partner's previous bid is computed by first computing the 
utility of each attribute, and the the overall bid utility. The overall utility U 8 for each bid or 
contract combination B is taken as a weighted sum of the attribute evaluation values Ej for 
the different attributes (issues) j: 
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(2.1) 

From the above formula, one can already see that the model in this chapter assumes 
linearly additive utility.functions between the attributes. Here, all weights w1 are normalized 
importance factors based on the raw importance factors {)1 for the different attributes. The 
user (owner) of each agent provides these non-normalised importance factors 1?1 through an 
interface, in the beginning of the negotiation. These are then normalized as: 

1? . 
Wj = __ J_ 

I:k 1?k 
(2.2) 

For each consequent bid an agent makes, first a target evaluation is chosen at the overall 
hid level. For determination of the next bid's target utility TU the following formula is used: 
T U = Uns +CS, with UBS is the utility of the agent's own last hid ("hid of self'), and the 
concession step CS determined as: 

fl 
CS = fj( l - U) * (Uoo - U13.c;) 

BS 
(2.3) 

Where U BO denotes the utility of the opponent's last bid ("bid of other"), but computed 
with respect to the agent"s own utility function. Note that this choice for the concession step 
follows the existing negotiation model [ 118] and was designed to ensure that the target utility 
for the next hid is always scaled between (0 .. 1]. Factor fJ stands for negotiation speed, while 
factor (l - Jt/U os) expresses that the concession step will decrease lo O if UBS approximates 
a minimal utility JL. The minimal utility JL is a measure of how far the agent is willing lo 
concede to the opponent in the current negotiation round. 

2.2.2 The Attribute Planning Component 

This component (whose internal decomposition is shown in Figure 2.1) determines the at
tribute values for the next bid, in such a way that the next hid will always have the target 
utility as its utility. This is done in two steps: first a target evaluation is computed per at
tribute, based on the target evaluation planned for the whole bid. Next, attribute values arc 
chosen with the evaluation closest lo the target evaluations, for all attributes except price. 
The configuration of the next hid is then completed by selecting a value for price, such that 
the utility of the final bid fits exactly its target. In order to make heller directed concessions, 
in planning the target evaluation for each attribute we take into account not only the own 
preference weight of the agent, hut also the weight of the opponent. If the opponent is not 
willing lo reveal her preference weight for some (or maybe all) attributes, an estimation of 
these weights is computed i n "Estimation of Opponent's Parameters" component. The role 
of the "Guess Coefficients" component is to analyze the way the opponent is bidding and to 
provide some extra information to be used for estimating these private preference weights. 
In the following we discuss these components in a separate sections. 
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Attribute PlaMlng 

L. j Guess Provision of . .. Coefllci ents Initial Guess -Information 

'--' Estimation of ___. Opponent's Parameters 

1 
I . Target Evaluation Configuration .. ___. -. Determination Determination .. .. 

Figure 2.1: Internal composition of Attribute Planning 

2.2.3 The Target Evaluation Planning Component 

This component outputs a target evaluation for each attribute in the next bid, based on the bid 
target value. The target attribute evaluation is determined in two steps. First a basic target 
attribute evaluation for each attribute is computed as: 

a · 
BTE- = EBL" + 2 (TU - UBs·) J ., ,J N .. (2.4) 

Where Ens,j represents the evaluation for attribute j in the agent's own previous bid, 
UBS the overall evaluation of the agent's previous hid (i.e. "bid of seir'), while T U repre
sents the target utility for the next hid (computed as shown in Section 2.2.1 ). The parameter 
a. j is chosen as H j = (1 - Wj )(1 - EBs,j ), where the first parameter expresses the inHuence 
of the user's own importance factor, while the second factor assures that the target evalua
tion values remain scaled in the interval between O and I . Parameter N is a normalization 
factor, defined as: N = L j Wj * H j - By this choice we ensure that the following relation 
holds: L j W j BT Ej = T U (for a full proof of this property we refer the reader lo the paper 
describing the original negotiation model [ I 18)). 

The Basic Target Evaluation, however only lakes into accounts the own preference weights 
of the agent. Using only this value does lead lo a working model, but the outcomes that it 
leads lo can be sub-optimal, as the preferences of the negotiation partner ( or opponent agent) 
are not taken into account when computing concessions. To improve on this, the following 
solution was implemented. 
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Based on this existing negotiation framework, we can now propose a model to deal with 
the incomplete information. For each attribute j E A (where A denotes the set of all at
tributes) a Preference DUference Coefficient rSj is computed as: 

r5 . _ Woth er,j - Wown,j 

J - ltl',,11u,r,j + W ,,,,,,. ,3 
(2.5) 

This coefficient (scaled between - I and I) expresses how different the preferences of the 
two parties for each attribute are. Positive values for rSi denote a stronger preference of the 
negotiation partner for attribute j, while negative values denote a stronger own preference 
for this attribute. 

The concession to he made in each attribute j E A depends on a parameter called 
co11fig11ratio11 tolerance, denoted as Tj E [- 1, l]. The tolerance parameter is chosen to 
he attribute-specific, in order to heller differentiate the amount of concessions between at
tributes. Therefore, for each attribute j E A, the configuration tolerance depends on the 
preference difference coefficient of that attribute, according to the following formula: 

(2.6) 

Where the parameter T_qw represents the general tolerance, used hy the agent for all 
attributes j. The general tolerance is always chosen between O and 0.5 and also gives a 
measure of how fast the agent is willing to make concessions. Values closer lo O will denote 
an agent who is less willing to make concessions, while values closer to 0.5 will denote an 
agent who is interested to reach a deal quickly. Since 8i E [- 1, 1], the tolerance for any 
attribute j is scaled between O and 2 * T!I " " . 

Finally. the target evaluation for each attribute j is computed. This is done hy taking into 
account hoth the basic target attribute evaluation (as described above) and a concession to 
the attribute evaluation from the previous hid of negotiation partner, as follows: 

(2.7) 

Where BT Ei is the hasic attribute evaluation for attribute j and Eao,j is the evaluation 
for attribute j from the opponent's previous bid. From the above formula. one can sec 
that values of the configuration tolerance Tj close to O signify that mostly the user's own 
importance factors are taken into account, while values close to I shows that maximum 
possible concession is made towards the other·s value. And since Tj depends directly on r5j , 
it is the difference in preference for each attribute that determines how much concession is 
made in that attribute. 

Because, in this model hoth the sum of the agent's own weights and sum of the op
ponent's weights arc always scaled to 1, the above mechanism leads lo a situation where 
greater concessions in some attributes (more important to the opponent) will always he bal
anced by smaller concessions in other attributes (more important to him/herself). Such an 



An Agent Architecture for Cooperative Multi -Attribute Negotiation With Incomplete 
Preference Information 39 

asymmetric concession system allows both negotiating parties to reach agreements closer lo 
Pareto-optimality, because each party gets a higher local utility value for the attributes he/she 
cares more about. 

In this component we have assumed that the opponent's preference weights for an at
tribute arc known. However, if the other is not willing to share his weights for some (or all) 
attributes, then they will need to he estimated. 

2.2.4 Estimation of Opponent's Parameters Component 

This component determines, for those attributes for which the opponent was not willing lo 
reveal his preference weights, an estimation of those weights. 

First, we denote by Ak11uw11 the set of attributes for which the opponent was willing 
lo reveal his importance weights in the beginning of the negotiation and by Aunk 11 ow 11 the 
attributes whose preference weights arc kept private. Since all preference weights arc nor
malised (c.f. Section 2.2. 1 ), the sum of weights for the private attributes is computed as: 

(2.8) 
J E Aunkn uwn 

For attributes with private weights, the remaining weight ~J.E A W;· has to be di-L..J unkno1vn 

vidcd between them. For this purpose we assign a parameter called the Remaining Weight 
Distribution Coefficient Rj E lR lo each attribute j E Au11k11uwn• 

The attributes of unknown weight can be further classified into two subsets: 

• Attributes for which a reliable guess about the preference of the opponent can be 
made based on her previous bids (we denote this class by A(G)). These attributes will 
he assigned a coeflicient R j in the "Guess Cocmcicnts component (as described in 
Section 2.2.5). 

• Attributes for which no reliable information about the preference weights of the op
ponent can be made from his previous bids (denoted by A(NG)). These attributes arc 
assigned a default value R j = 2, which is empirically chosen between the values for 
attributes for which there is an indication they are important to the opponent (from her 
past bids) and those attributes which arc less important to her (as will be explained in 
Sect. 2.2.5). 

After establishing the value of the R j parameters, the estimation of the actual weights 
for the attributes j E Aunk,wwn is computed as: 

(2.9) 
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It is possihle that no reliahle information can he ohtained from the opponent's past bids for 
any of the attrihutes. Then all distrihution coefficients will be equal and applying the above 
formula results in equal distribution of the remaining weight hctween private attrihutcs. or 
formally: A unknown = A(NG) ==> Vj, k E A,mk11own, l-l'j = H1k-

2.2.5 Guess Coefficients Component 

This component analyses the opponent's bids and, for those attrihutcs for which a trend is 
reliahle detected, returns a value for the remaining weigh distrihution coefficient R j . 

In the current model the explicit assumption used in guessing (for the Seller's side only) 
is that, everything else heing equal, a human Buyer would prefer a helter quality item to 
a poorer quality one. Otherwise stated there exists a (partial) ordering of the attribute val
ues such as: evaluation(.qood) > <!1mluatim1,(fafrlygood) > evaluatim1,(s tandard) > 
evaluation(meager) > evaluatim1.(nmic) . We define the Attribute Value Distance AV D(j) 
for each attrihutcj E A as the distance hctwccn values for an attribute in two successive bids, 
on an ordinal scale. For example, given the ahovc ordering, the distance between good and 
fairly good is 1, while the difference hetween good and standard is 2. It is important to note 
that this attribute value distance docs not depend on the exact values the opponent assigns 
to these lahcls - since in the current model this information is private (not disclosed to the 
other). From the experiments run for this domain, we ohserved that this simple ordering 
information can lead to a reasonably good heuristic. Partial ordering information is usually 
sufficient to make a good prediction ahout the opponent's preferences in the negotiation (i,c. 
if this distance is known only for some lahels, this is enough). 

Next we need a mapping of the detected concession distances to the remaining weight 
distrihution coefficients introduced in Section 2.2.4 (sec Tahlc 2.2). The values for the ahove 
coefficients were determined experimentally as follows: first between each two different la
bels (representing quality levels) an initial value was computed hy subtracting their distance 
value from 4 (the maximum distance). Then the parameters were adjusted to provide a best 
fit for the results over a large number of tests. It is important to note that the mapping in Tahlc 
2.2 should be seen as domain-specific. It led lo good experimental results for the model and 
tests reported in this chapter (as we will show next). However, if this bilateral negotiation 
model is adapted for other domains (for example with more attributes, different number of 
levels/attribute etc.), then prohahly another choice of parameters would he needed. 

Another issue to be discussed is how many successive bids in the negotiation trace need to 
he analyzed in order to make a prediction for RJ. From our empirical tests we observed that 
in most cases it is sufficient to adjust the R i parameter hased only on the first 3-5 bids. This 
can he explained by the fact that. in our model, being partially cooperative, agreement over 
the attrihutcs with discrete values occurs in the first rounds of the negotiation and usually the 
last rounds can he characterized as "haggling" over the only continuous attrihutc, the price. 
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Figure 2.2: Remaining Weight Distribution Coefficients assigned to Attribute Value Dis
tances for all attributes E A( G) 

2.3 Implementation & Experimental validation 

The model introduced in Section 2.2 was implemented in the DESIRE agent platform [31 ]. 
However, the conceptual negotiation model presented in Section 2.2 is platform independent. 
In fact, after the publication of our original research [ I 15, I 18], a negotiation model which 
re-uses our mathematical model, but implemented in the more commercial Java Aglets plat
form was presented in [201]. 

In these tests, the model is assumed as symmetrical, i.e. both buyer and seller use the 
concession and opponent modeling heuristics described in Sect. 2.2.1 -2.2.4. An important 
difference is that only the seller agent can use the guessing heuristic. This choice is explained 
by the fact that the model must he seen as partially cooperative and, furthermore, in most 
e-commerce scenarios, it is the seller that has more information to make such an estimation. 

This section first discusses the experimental set-up used in testing the model presented 
in Section 2.2. Following, a full example trace is presented for the implementation. Finally 
the aggregate experimental results (for different test parameters) arc presented. 

2.3.1 Experimental set-up 

In order to test the robustness of the above model, we considered the following dimensions: 

• The number of attribute weights revealed (i.e. the degree of "opcncss" of the negotia-
tion) 

• Whether guessing is used or not by the seller 

• The choice for the attribute importance factors 

• The evaluations for the attribute value levels 

The importance factors assigned to different attributes are presented in Table 2.3. Note 
that these were also chosen to be typical for the space of possible preferences of users in 
this domain. The values presented in Table 2.3 are raw importance factors, which arc then 
normalized to add up to I, using the formulas from Section 2.2.1. 
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Next, we should check that these results hold for different possihlc value configurations. 
Again the search space here is very large, so we must restrict our attention to a few profiles 
comhinations, which arc shown in Tahlc 2.4. 

Tow hedge Airco Extra speakers CD player Price 
Fully asymmetric 90 I 15 90 / 15 15 / 90 15 / 90 :mo 1300 

Partially asymmetric 53 / 53 90/ 15 15 / 90 53 / 53 300 / 300 
Fully symmetric 53 / 53 53 / 53 53 / 53 53 / 53 300 / 300 

Figure 2.3: Importance factors used for Buyer/Seller, for different level s of preference asymmetry 

In our tests, we assume a business model in which the Seller prefers to sell the car for 
a standard price and not have to install extra accessories, hut he is willing to do so in order 
to sell it. However, if he docs have to install some accessories, as shown in Fig. 2.4. he 
would prefer them to he "standard" quality. On the seller side, these local utility values 
capture an ease utility for the seller to perform the required installation. For example, he 
may already have a stock of "standard" quality components ready to install, if asked, but 
very good components arc difficult to get and must he ordered in advance. Furthermore, in 
real life, there may be guarantee issues in selecting these values. 

On the huycr side, hccausc in our model the values for the attrihutcs represent quality la
bels, the distances hctwccn utilities assigned to each label can be interpreted as how "quality 
conscious" or selective that huycr is. For example, by looking at Table 2.4, a huycr of Profile 
2 is more selective than a buyer of Profile 1, hccausc his utility for "fairly good" and "stan
dard" qualities drops quicker, when compared to the optimal quality level "good". Other 
choices arc possihlc, hut in order to properly test the model the choice for the values must he 
asymmetrical - meaning the two parties would like different values for each attrihutc. Other
wise the parties quickly agree on the configuration (since their interests arc convergent) and 
the negotiation reduces to haggling about the price. 

Profile I Profile 2 
BUYER I 00 / 85 / 70 / 30 / 0 I 00 / 70 / 50 / 35 I 0 
SELLER 30 / 65 / 80 / 65 / 100 30 I 50 /70 / 85 / I 00 

Figurc2.4: Value levels Good / Fairly Good / Standard / Meager / None for each of the 4 attrihutes 

2.3.2 An example negotiation trace 

In this section, we illustrate the model presented in Section 2.2 through an example. Herc 
we take the negotiation hctwccn a Buyer and Seller with totally asymmetric preferences (sec 
Table 2.3), where the only information revealed between parties is the normalized weight of 
1 attrihutc (Tow hedge). For accessories, for hoth Buyer and Seller, profile I is used (sec 
Table 2.4). For this example, we use the perspective of the Seller, which in our case is the 
party using guessing. For reasons of space, we can illustrate only a small part of the full 
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mathematical model, it should be enough for the reader lo understand the rationale behind 
some of our design choices. 

The attribute Tow Hedge has the following normalized preference weights (see Table 
2.3): W13UYE/t ,T ow l-f ed f/e = 90 I (90+90+15+15+300) = 0. 1764 

W s e1, /, Ell ,T uw /J edge = 15 I (90+90+15+15+300) = 0.0294 

From the perspective of the Seller the preference Difference Coeflicienl for Tow Hedge 
will be: 

'5row /J edge= (W B u y1!1·,TI-I - w .'frller,T/J) I (W B u yer,T/-1+ W se/l i,r,T/J) = (0.1764-0.0294) 
I (0.1764+0.0294) = 0. 714. 

A positive value close to I (as shown in 2.3), indicates this the attribute is more important 
to the other party (the Buyer). As the general tolerance (for the Seller side) in this case is 
T 9 ,, 11 = 0.3, the attribute specific tolerance will be TTow /-/ i, tlge = T 9 ,,,. * ( I + '5row /-/ edy e ) = 
CU * ( 1+0.714) = 0.514. Since TTowfletlye> T y e11 , a larger concession than average will be 
made towards the Buyer's requested value in this attribute. This can be seen in Table 2.7 
as a large concession, in the first round from "none" to "fairly good". Next we exemplify 
the guessing of the opponent's weights discussed in Sections 2.4 and 2.5. We do this only 
after the first two rounds from the opponent's bids, though the mechanism is the same for 
subsequent rounds. 

The Value Distances and Remaining Weight Distribution Coefficient, computed for the 
attributes of unknown weights are as follows (sec Fig. 2.6 for the Buyer's first 2 bids and I 
for the coefficient mapping). For the attribute "Airco", the value distance is between levels 
"good" and "standard" (see trace in Fig. 2.6), thus 2, so based on the mapping in Table 2.6, 
we gel R Aircu= 3. 

Similarly, for the attributes "CD player" and "Extra speakers", the value distances arc 
between "good" and "meager", thus 3 => Re o _pln yer=R s p""kas= I. 

Since 1;) E A,..,knvwn W j = I-( 15+300)/510=0.235, the estimated weights are: 

W ;1 1nc o = 3 / (I+ 1+3) * 0.235 = 0.141, 

W c o _Pl,A}' ER = I /(1+1+3) * 0.235 = 0.()47 

In this case, the estimations produced by the guessing are not far from the true (non
revealed) values of the Buyer: 0.176 for Airco and 0.0294 for CD player. 

Tables 2.6 provides the complete trace of this negotiation from the perspective of the 
Buyer, while Table 2.7 does the same from that of the Seller. The vertical columns show the 
bids made by the two parties in successive rounds. 

Figure 2.5 provides a visualization of the negotiation progress in the joint utility space 
(as automatically produced by the implementation in our software environment). For clarity, 
only the first 3 bids of the Buyer (marked with a I (B), 2(B), respectively 3(B)) and the first 
2 of the Seller (marked l(S) and 2(S)) are shown. The remaining offers all lie close together 
in the straight line between point 3(8) of the buyer and point 2(S) of the seller. 
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Figure 2.5: Utility space corresponding lo the example trace from Tahles 2.6 and 2.7 
BUYER I 2 3 4 5 Closing bid 

price 18000 17450 17968 18047 18083 18083 
Tow hedge good fairly good fairly good fairly good fairly good fairly good 

airco good standard standard standard standard standard 
speakers good meager none none none none 

CD player good meager none none none none 
Utilities 
Own bid 0.9203 0.9130 0.9094 0.9068 0.9068 

Seller's hid 0.7407 0.8782 0.8830 0.8864 0.8889 0.8889 

Figure 2.6: The negotiation trace: BUYER's perspective 

SELLER 2 3 4 5 6:accepl 

price 16900 18468 18404 18359 18325 18083 
Tow hedge none fairly good fairly good fairly good fairly good fairly good 

airco none standard standard standard standard standard 
speakers none none none none none none 

CD player none none none none none none 
Utilities 
Own hid 0.9378 0.9296 0.9238 0.9195 0.8884 

Seller's hid 0.3167 05932 0.8737 0.8838 0.8884 0.8884 

Figure 2.7: The negotiation trace: SELLER's perspective 

This is an interesting effect, which we have seen in a numher of negotiation traces: after 
cstahlishing mutually agreeahle values for the discrete-value attrihules, the agents seem lo 
"walk" the Pareto-efficient frontier towards each other's hid. This corresponds lo the hag
gling ahoul the price from rounds 3-5 in Tahles 2.6 and 2.7. 
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The effect is interesting, since neither one of the agents knows exactly where the Pareto
frontier lies. They cannot compute this information because they only have partial knowl
edge of the opponents utility function (in our experiments, the position of the frontier was 
computed after the fact using the full information, but only as a benchmark to measure per
formance - i.e. without giving this information to the agents). Since bargaining agents' 
heuristics only model the opponent preferences and do not try to actually predict where the 
frontier lies, the fact that they end up so close to it shows the proposed heuristics arc work
ing (of course, for this particular negotiation trace). This effect can he explained by the fact 
that, if opponent modeling is performed efficiently, the agents "discover" the Parcto-frontii::r 
implicitly, using their approximate opponent models. 

2.3.3 Comparing traces from the same test set 

We define a test set as the set of all negotiation traces which share the same Parcto-cllicicnt 
frontier and therefore whose outcomes arc directly comparable. Between the negotiations in 
the same set, the preferences of the two parties are the same: the only difference is the amount 
of information shared and their willingness to use guessing. Test sets arc distinguished from 
each other hy two (sets of) parameters: 

• The level of asymmetry in the attribute importance factors (sec Tahle 2.3) 

• The distances between the value labels (cf. Table 2.4) 

Comparing the efficiency of outcomes, holh within the same lest set and between test 
sets, is important in our setting, since, as is shown here, the efficiency of the outcomes which 
can be reached depends on how asymmetric the preferences of the parties arc. First, we first 
discuss the results from a lest set with maximum preference asymmetry (this setting also 
corresponds lo the example in Seel. 2.3.2 above). Next, we discuss the results from two 
related lest sets, but where preferences are more asymmetric. Finally, in Section 2.3.4 we 
present the aggregate results for all lest sets, across all value distance settings and preference 
symmetry profiles considered. 
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Distribulion of final outcomes for the negotialions between a Buyer with a stronger preference for Drawing Hook 
and Airco. and a Seller with a stronger preference for CD player and Extra Speakers. 

Figure 2.8: Outcomes for negotiations hetween a Buyer and Seller with asymmetric prefer
ence weights 
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Test set with maximal preference asymmetry 

The table in Fig. 2.8 shows the final outcomes of negotiations involving a Buyer and Seller 
with asymmetric prnfcrcnccs and value profiles I, while the graph in the same figure shows 
these outcomes arc plotted w.r.l the Pareto-optimal frontier. The notation is: 1 .. 3 denotes 
the numhcr of attributes shared and NG/G denotes whether guessing is used or not. The 
Pareto frontier in the lop graph from Fig. 2.8 is actually the same as the one in Fig. 2.5. 
just scaled between different values. In fact, the outcome reached in Fig. 2.5 appears as 
point I G in Figure 2.8 (top). The irregular, non-convex shape of the Pareto-efficient frontier 
(computed according to [180]) is typical for real-life domains, where some attributes take 
discrete values and only some arc continuous. 

From the above lest set we can already make some observations. First, more attrihutc 
weights shared improves the outcome, so the heuristic makes efficient use of incomplete 
preference information. In Table 2.8, this is illustrated by the fact that, as more attribute 
weights arc shared, a better match is ohlaincd between the preferences of the parties, with 
each one obtaining its preferred values in the more important attrihulcs. Second observation 
is that the guessing heuristic may improve the outcome, sometimes considerably. In the trace 
presented for I or 2 attribute weights shared guessing helps bring the outcome very close lo 
the Parelo-cflicicnt frontier. For O attribute weights shared (i.e. perfectly closed negotiation), 
in this particular test set guessing docs not help much (however there arc test sets where it 
docs). In the 3 attribute weights shared case the outcome without guessing is already Parclo
eflicicnl. Note however that this case i s not equivalent lo fully open negotiation, because 
the evaluations for the values assigned lo each quality level arc still not revealed between 
parties. 

BUYllR BU1'ER 

09 

0 .1~ 

SBLLl!R 0 .1.S Oll 

Bqu Pq,,rlloa of 
P~ablli.ne 

0.9 0.95 

Figure 2.9: A (left side): Outcomes for a negotiation between a huyer and seller with completely 
symmetric prcl"erenccs (i.e. all aurihutes have equal weights for hoth parties). B (right side) Outcomes 
of a negotiation hetwecn a buyer and seller with partially symmetric prclcrences (i.e. two aurihutes 
have equal weights. two arc asymmetrical - c.f. Tahlc 2.3 
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Test sets with symmetric and partially symmetric preferences 

In this section we illustrate two other test cases, related to the one ahove. The distances 
hetween values for the huyer and seller are still I (cf. Tahle 2.4). Figure 2.9 plots the 
outcomes from two test sets: the first one in which the preference weights of hoth parties are 
the same across all 4 discrete-valued attrihutes, the second one in which only two attrihutes 
have equal preference weight, the other two having asymmetrical weights (see Tahle 2.3 for 
the exact values). 

From Figure 2.9, it can he observed that, in fact, for more symmetric preferences reveal
ing more information and/or using guessing docs not make too much difference (the tahlcs 
with the exact outcomes reached are not given here for lack of space, hut they point to the 
same conclusion). In fact, for the case with completely symmetric preferences (Fig. 2.9(a)) 
we can see that all outcomes actually overlap. In this special case (equal weights across all 
attrihutes), the negotiation actually hecomes a zero-sum game, since there are no mutually 
hencficial trade-offs hetween attributes, so the best that can he achieved is to settle on the 
middle of the range value. 

2.3.4 Comparing results from all test sets 

The ahove traces give a fairly good idea of the effects ohserved for different levels of pref
erence asymmetry and openness. Suhsequcntly, we tested all considered combinations of 
attrihute level profiles (c.f. Tahle 2.4), numher of weights revealed (c.f. Table 2.3), levels 
of openness regarding preference weights for different attrihutes (up to 4) and whether the 
agent chooses to makes use of the guessing heuristic. Figure 2.10 shows the average utilities 
across tested profiles, grouped hy the level of asymmetry in preference weight between par
ties. Within each group, from left to right the level of openness is varied from no attrihutes 
revealed and no guessing used to 3 attributes weights revealed. 

Based on Figure 2.10, we can sec that our observations from Section 2.3.3 generalize 
across profiles: hoth sharing more information and guessing improves the utility (on aver
age). It can he seen that the more asymmetrical the preferences of the two parties are, the 
greater the scope for potential gains that can be ohtained either hy sharing more informa
tion or using the guessing heuristic. For example, for all profile comhinations tested in the 
perfectly symmetrical preferences case, the outcome always had a 0% improvement, either 
from sharing more preference weight information or hy using the guessing heuristic. By 
contrast in the partially symmetric preferences improvements were of the order of 3-4%, 
which went up to around 10% for asymmetric preference weights. This effect can he ex
plained hy the fact that our mechanism exploits precisely this preference asymmetry in order 
to increase the efficiency of the joint outcome for hoth parties. Another observation is that, 
if the overall concession speed parameter is roughly the same for both parties, the outcomes 
will always lie relatively close to the equal proportion of potential line, regardless of the 
guessing/openness model used. Otherwise stated, the overall concession for the hid level are 
similar, even though for each attribute may differ widely. This ensures that, if the negotia-
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Figure 2.10: Average utilities for all profiles tested, for different cases of preference asym
metry and openness 

lion outcome lies on, or close to, the Pareto-efficient frontier, it will also be relatively close 
to the Kalai-Smorodinsky bargaining outcome. This may be important, since some sources 
(e.g. [1801) consider closeness to this point as a measure of "fairness" of the negotiation 
outcome. 

2.3.5 Human-computer experiments 

The results reported in this Chapter refer only the automated negotiation case, i.e. the case 
when both Buyer and Seller are represented in the negotiation by automated software agents. 
The user (or owner of the agent) in this case, only needs to input its preference parameters 
that describe his/her utility function , and the software agent computes the bids/counter-offers 
on his/her behalf. We find it useful to mention, however, that other work performed using 
this negotiation system considered the case when humans propose their own bids against 
software agents. That work involved testing the negotiation model on 70 students, negotiat
ing both against each other and against our automated agents. The full details and results of 
that work are outside the scope of this thesis (as the human tests were not performed directly 
hy the author), but the interested reader can find a comprehensive description of the results 
in [22, 23]. 
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Finally, a note should he made regarding the potential for exploitation of the system 
hy other users. While the negotiation system proposed here is essentially cooperative in 
nature, the negotiation mechanism was designed to prevent obvious ways of cheating, like 
over-stating attribute preference weights. This is because each agent scales the sum of the 
preference weight<; declared hy the opponent to I. So an agent has no incentive to over-state 
his preferences for any attribute, since this may lead to the opponent making smaller or no 
concessions in other attrihutes. Furthermore, a system was added hy which an agent stops 
negotiating when it detects insufficient concessions from the other in several successive hids. 
which should prevent situations where one party makt:s all the concessions. This made the 
system difficult to exploit in the human tt:sts reported in [22, 23], but we note that these tests 
were made as "one run" (i.e. subjects did not get to learn to exploit the system through 
repeated interactions). 

2.4 Discussion 

In this section we provide an overview of existing work on negotiation that is most related 
to the work reported in this Chapter, such as to contrast them to this model. However, we 
leave a more complete review of negotiation techniques for Chapter 3, after the presentation 
of the other negotiation model discussed in the thesis. 

In Gutman and Maes [91] a number of criteria and benefits are discussed of some dif
ferent approaches to negotiation. This paper makes a strong argument for building partially 
co-operative negotiation systems, and shows that merchants often care less about profit on 
any given transaction and care more about long-term profitahility, which implies customer 
satisfaction and long-term customer relationships. The work of Gutman and Maes served 
as a conceptual starting point for the negotiation model developed at the Free University 
of Amsterdam, which was further extended through the heuristics presented in this chapter. 
The ideas proposed in [91] arc supported in our model hy allowing consumers and provider 
agents to specify 1:xtensive multi-attrihutc profiles and degree of openness regarding prefer
ence information, and hy developing heuristics that make use of this information to reach 
negotiation outcomes that aim to satisfy hoth parties. 

Technically, the work that is most related to the one reported here is Faratin, Sierra & 
Jennings ·03 [71 ]. Like Faratin et al., we start from the perspective of distributed negotiation, 
which eliminates the need of a central planner. As in [71 ], we also take the heuristic approach 
and we model agents that arc ahle to jointly explore the space of possible outcomes with 
a limited (incomplete) information assumption. In [71], this is done through a trade-off 
mechanism, in which the agent selects the value of its next offer based on a similarity degree 
with previous bids of the opponent. In our design, we do no explicitly model trade-offs. yet 
the same effect is achieved through the asymmetric concessions mechanism. An advantage 
of our model over [71] is that we allow agents to take into account not only their own weights, 
but also those of the opponent in order to compute the next hid. In this way agents may 
exchange partial preference information for those attributes for which their owners feel this 
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does not violate their privacy. Also the initial domain information for the attributes with 
discrete ("qualitative") evaluation is different. In [71], this consists of fuzzy value labels, 
while in our model it is a partial ordering of attribute weights. 

Finally, a paper that provides a completely independent re-implementation or the model 
presented here is Shakshuki & Abu-Driaz'05 [20 I]. They propose a peer-to-peer, agent
mediated e-commerce system, that uses multi-issue negotiation as one of its core compo
nents. At the conceptual level, the negotiation model employed by [20 I] is basically the 
same as the one presented in this Chapter and was inspired by it, after the initial, conference 
publication of our work [ I 17, 118]. Therefore, indirectly, this paper provides another valida
tion of the conceptual negotiation model presented here, since it represents an independent 
re-implementation of this model in a different domain (web services) and using a completely 
different software platform (in [20 I], the Java Ag lets platform was used instead of DESIRE). 

2.5 Conclusions 

The Chapter introduces a component-based generic agent architecture for partially cooper
ative multi-attribute negotiation. An application of the model is described in a prototype 
system for negotiation about cars, developed started from a practical application, partially in 
co-operation with, among others, Dutch Telecom KPN and Almende B.V. Rotterdam. 

The main original contributions of this work are: 

• It develops a generic component-based generic agent architecture that supports inte
grative multi-attribute negotiation, for both agent-agent and agent-human scenarios. 

• Developing a heuristic that can use a limited amount of preference information to 
achieve outcomes on or close to the Pareto-efficient rrontier. 

• A guessing strategy that further improves the outcome of the negotiation, in case such 
partial information is not forthcoming from the negotiation partner. 

The negotiation model described was implemented using the DESIRE software environ
ment, and it follows component-based design principles of that framework. However, the 
applicability of the conceptual negotiation model presented in this chapter is not strictly lim
ited to that framework. In fact, a negotiation framework that uses the heuristics developed 
here, but independently implemented after the publication of our initial work was presented 
in [201]. 

A possible limitation of this work may be the limited dimensionality of the domain con
sidered, and in particular the fact that it implicitly assumes that bargaining agents' utility 
functions over the multi-attribute space are linearly additive. This limitation has been dealt 
with in subsequent work by the author, presented in the next chapter. 
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Chapter 3 

Modeling Complex Multi-Issue 
Negotiations Using Utility Graphs 

3.1 Introduction 

As shown in the introductiona and the previous chapter, automated negotiation forms an 
important type of interaction in agent based systems for electronic commerce [ 147 J. It allows 
buyers and sellers to determine the terms and content of a trade iteratively and bilaterally. 
Consequently, deals consisting of sets of complex goods or services can be tailored to the 
preferences of individual buyers and flcxihlc to changing circumstances. 

In this chapter, we consider the problem of a seller agent negotiating hilaterally with 
a customer about selecting a subset from a collection of goods or services, i.e. a bundle, 
together with a price for that bundle. Thus, the bundle configuration - an array of hits, 
representing the presence or absence of each of the shop's goods and services in the bun
dle - together with a price for the bundle, form the negotiation issues. Like the the model 
presented in Chapter 2 (and the work of [7 I, 115, 126, 163,207], among others), the tech
niques developed in this chapter aim to benefit from the so-called win-win opportunities. In 
the multiple item setting considered here, this means finding mutually henelicial alternative 
bundles of items during negotiations. 

Several papers on automated automated approach the problem of finding win-win op
portunities during bargaining through modeling the preferences of the negotiation partner 
(among them we mention Faratin ct al. [71 ], Coehoom & Jennings [ 163] and Jonker & Robu 
'04 [115], the last one serving as the basis ofChapter2). However, an important limitation of 
all these approaches is they assume the issues under negotiation have independent (i.e. lin
early additive) valuations for the negotiation partner. The approach taken by this chapter is 
also based on opponent modeling: we consider interdependencies between issues however, 
which, as we will show, makes the problem considerably harder. In order to model such 
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complex utility interdependencies hetween items, we introduce the novel concept of utility 
graphs. 

Utility graphs huild on the idea introduced in Chajewska and Koller 144) and Bacchus and 
Grove [9] that highly nonlinear utility functions, which are not decomposable in suh-utilities 
of individual items (such as in the seminal work of Raiffa [ 179]), may he decomposahle in 
suh-utilities of clusters of inter-related items. They mirror the graphical models developed 
in (Bayesian) inference theory (cf. [ 140, 172]). Graphical models have heen shown to he a 
powerful formalism for modeling decisions and preferences of other agents (see e.g. f30] for 
an overview). The idea behind using utility graphs in a multi-issue bargaining setting is to 
provide the seller with a formalism that can be used to efficiently explore the exponentially 
large bundle space. In this chapter, we show how utility graphs can be used to model an 
opponent's (i.e. customer's) preferences. 

To illustrate our approach, consider the following application setting, which is quite natu
ral from the point of view of current e-commerce practice. The seller represents an electronic 
merchant which aims to sell (suhsets of) a set of items (e.g. hooks, CDs, pay-per view music 
tunes, news items etc.). He encounters and negotiates with random buyers who log in his 
website or web service at different times (thus all negotiations are hi lateral and sequential). 
Buyer utilities are completely private (not known to the negotiation opponent), and the same 
holds for seller costs of providing the items. Finally, buyer preferences can be efficiently 
encoded in k-additive form (and, thus, are representable as utility graphs - c.f. definition 
in Sect. 3.3.2). Intuitively defined, k-additive utilities are a widely encountered and fully 
expressive class of non-linear utility functions, which he represented as a summation over 
partial functions over a set of [not necessarily disjoint] utility clusters, each containing up to 
k interdependent items (a full, formal definition is provided in Sect. 3.3.1 ). Although in this 
chapter we return to the e-commerce scenario to exemplify our approach, we note our model 
is not limited to an application setting: it applies to any selling where huyer preferences can 
he concisely represented in k-additive form. 

We assume that, for privacy reasons, the seller is not allowed, between negotiations, to 
store preference information which is traceable back to indil•idual buyers. This is actually a 
natural model for very large, open environments such as the Internet, where the same buy
ers and sellers arc unlikely to encounter each other very frequently and most negotiation 
encounters are first time. Furthermore, there may be other reasons why personalized infor
mation cannot be stored in some settings (e.g. existing legislation). The seller can, however, 
store aggregate buyer preferences for the items he sells, information not traceable hack to 
individual buyers. 

Based on practice and existing literature, our negotiation approach (and resulting model) 
addresses a few important properties (which can be seen as desiderata of the model): 

• The negotiation is maximally privacy preserving. Unlike combinatorial auctions, there 
is no direct preference information which either the buyer/seller needs to reveal to the 
opponent before the negotiation starts. An important reason for this (besides preserv
ing privacy) is the difficulty the buyer may encounter in formulating his/her exact pref-
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ercnces over the full set of items under negotiation. This is often a recurring situation 
in practice: the buyers do nol have, or find ditlicull to fonnulale their exact valuation 
over all possible bundles. The number of possible contracts (i.e. bundles which can be 
formed) is exponential: for example, for only 50 items, there are 250 > 1015 possible 
bundles. Even though they can be more compactly represented using a utility graph, it 
is, in general, it is far easier for a buyer lo report her preferred combination al a given 
price level, rather than elicit the full preferences encoded in her utility graph (both in 
terms of structure and values). This argument resembles the perspective taken in pref
erence elicitation with demand queries ( (30,32, 133]). This work identifies the need 
lo elicit exact preferences as the main bottleneck encountered for the practical appli
cation of direct revelation mechanisms, such as combinatorial auctions. In our model, 
the only preference infonnalion which the agents (indirectly) reveal is that which can 
be gathered from the offers/counter-offers they exchange. 

• The negotiation should maximize, as far as possible, the Pareto-optimality of agreed 
deals (formally defined, in Sect. 3.2, in terms of gains of trade associated lo a contract). 

• The number of negotiation rounds (i.e. offer/counter-offers exchanged during the ne
gotiation) should be minimized as far as possible. This would enable our approach lo 
be used in applications where time constraints or the impatience of buyers are limiting 
factors. 

Al the start of a negotiation process, the seller's approximation of the customer's utility 
graph represents some prior information about the maximal structure of the utility space 
lo be explored. After every (counter) offer of the customer, this approximation is updated 
based on this offer. We show that, by using only a fairly weak assumption on the maximal 
structure of customers' utility functions, the updating procedure enables the seller lo suggest 
offers that closely approximate Pareto efliciency. Moreover, etlicienl outcomes are reached 
after relatively few negotiation rounds, by efficiently exploiting the decomposable structure 
of complex utility functions . 

The concept of the structure of a maximal graph of dependencies is a crucial part of our 
model. Intuitively defined, the maximal graph can he seen as a limitation of the types of 
nonlinear item-item dependencies which need lo he considered when modeling the prefer
ences of a randomly encountered buyer (i.e. mathematically equivalent to a limitation on the 
number of the tcnns of the polynomial describing a k-additive utility function, as formally 
presented in Sect. 3.3.2). In practical settings, this is a natural way lo model the problem, 
since for most users their utility function over many binary issues or items, although it can 
contain non-linearities, is not arbitrarily complex. This maximal graph enables us lo restrict 
the opponent modeling, from a super-exponential number of possible utility functions, to a 
more manageable number. This enables the seller to focus the search on the most promising 
region of the high-dimensional utility space. For this reason, the problem of finding a mutu
ally efficient contract can be addressed in a limited number on negotiation steps, despite the 
high dimensionality of the contract space. 

The issue of how the seller acquires this initial graph information is an important one 
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- and is addressed in the second part of our model. One method would be to elicit it from 
domain experts (i.e. an e-commerce merchant is likely to know which items are usually sold 
together or complimentary in value for the average buyer and which items are not). For 
example, if the electronic merchant is selling pay-per-item music tunes, the tunes from the 
same composer or performer can he potentially related - and this information can be used in 
negotiations with newly encountered customers. 

We show this initial graph information can also he retrieved automatically, by using 
information from completed negotiation data. The implicit assumption we use here is that 
huyer preferences arc in some way clustered, i.e. by looking at buyers that have shown 
interest (through their negotiation bids) for some combinations of items in the past, we can 
make a prediction about future huying patterns of a random customer. This holds, even if we 
assume we have not encountered a particular buyer in previous negotiations. In our model, 
only aggregate, not personalized preference data is maintained. Note that this assumption 
is not uncommon: it is a building block of most recommendation mechanisms deployed in 
Internet today [ 1971. In order to generate this initial structure of our utility graph. in this 
chapter we propose a technique inspired hy collahorativc filtering. 

Collaborative filtering has been widely used in electronic commerce to provide huycr 
decision support, even when very large numhers of items are involved (e.g. Amazon.com 
offers over 2 million hook titles). Recommendations arc hased on aggregate information 
ohtaincd from a community or class of huyers, but they are not tailored specifically to the 
preferences of an individual huyer. By combining filtering with multi-issue negotiation a 
much greater degree of flexibility can he achieved, because, in addition to an estimation from 
aggregate preferences, deals can he tailored to the specific needs of the individual huyers. 
Therefore our work can he seen as estahlishing a link, in the form of a well-defined formal 
model (i.e. utility graphs), hetween customization mechanisms typically used in multi-issue 
negotiation and customization mechanisms used in collahorative/social preference filtering. 

The remainder of this chapter is organized as follows. Section 3.2 presents the negotia
tion setting: it defines the efficiency criteria, the negotiation protocol and the top-level outline 
of the negotiation algorithm. Section 33 defines the concept of utility graphs, it describes 
how such graphs can be used to model complex utility functions and also introduces the con
cept of a maximal graph for a class of huyers. Section 3.4 defines the core of the negotiation 
model, hy dcscrihing how utility graphs can be used for eflicient exploration of the contract 
space and to learn opponent preferences in negotiation settings. Section 3.5 presents the 
method used in constructing the structure of the maximal utility graphs, based on concluded 
negotiation data. Section 3.6 presents the set-up and results from the experiments performed 
to validate the model. This Section consists of two main parts: validation of the negotiation 
model and validation of the graph retrieval algorithms. Section 3.7 presents a discussion of 
related work, in comparison to other approaches to this prohlem. Section 3.8 concludes the 
chapter, hy highlighting the main contrihutions of our work and outlining some possihle di
rections for further research. The chapter includes one appendix, containing a formal proof 
of equivalence between Pareto-efficiency and gains of trade maximization. This is incidental 
to the main ohjcctivc of the chapter, hut it is included for consistency. 
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3.2 The negotiation setting 

We consider a buyer and seller who negotiate bilaterally over a set of n binary-valued issues 
or items, and one continuous issue, the price. Henceforth, we will refer to the binary-valued 
issues as items and to subsets formed with these items as bundles. Negotiations are con
ducted in an alternating exchange of offers and counter offers, using an alternating offers 
protocol. The offers and counter offers contain a n-dimcnsional vector of O's and 1 's repre
senting an instantiation of then items, plus a price offered/asked for the current bundle. 

The utility (measured in terms of monetary value) a buyer assigns to any bundle of items 
is given by a non-linear (i.e. k-additivc - as defined in Sect. 3.3.2) function that takes into 
account interdependencies between various items. The seller's utility for a bundle (measured 
in net monetary value) is the difference between the price received for a bundle and the costs 
incurred for providing a bundle. In the model used, the costs of the seller for providing the 
items arc linearly additive: i.e. the bundle cost equals the cost of offering the items individ
ually. Thus, in our model, the non-linearity in utility is mainly centered on the part of the 
buyer. However, both the buyer's utilities and the seller's cost represent private infonnation, 
which remains undisclosed before or during the negotiation. Therefore, the negotiation set
ting can be describes as double-sided incomplete infom1ation. For reasons outlined in the the 
introduction, this is a natural requirement in bilateral , agent-mediated negotiation settings. 

3.2.1 Net Utility functions of Buyer and Seller 

Let B = { J1, ... , In} denote the collection of n items a seller and buyer negotiate over. 
Each item I ; takes on either the value O or 1: 1 (0) means that the item is (not) purchased. 
Thus B has the domain Dom(B ) = {O, 1 }" (so there arc 211 possible bundles). The n
dimcnsional vector b E Dmn(B ) denotes an instantiation of these n items. In our approach, 
the utilities assigned to different outcomes (combinations) arc quasi-linear, i.e. represented 
by monetary units, rather than values normalized between O and I, as in other negotiation 
models [7 I, 115, 163, I 79,232]. Quasi-linear utility functions have several advantageous 
properties (discussed in the next Section) and represent a natural choice in a wide variety 
of application settings that could be considered for bilateral negotiations, such as electronic 
commerce, task allocation, distributed logistics etc. 

The utility function u : Dom(B ) 1-t Ii specifics the monetary value a buyer assigns to 
all (211

) possible outcomes. Due to interdependencies between various items the function 'U 

can be highly nonlinear. The buyer's net utility (i.e. net monetary value) for purchasing a 
bundle b for a price p, denoted by nub(b, p), is defined as follows: 

nub(b, p ) = u (b) - p (3.1) 

That is, nub( b, p) is the difference between the monetary value for acquiring (consuming) 
bundle b minus the price p paid for purchasing bundle b. The net monetary value of the seller 
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is computed as: 

nu.-(h,p) = JJ - Cmd.'l(h) (3.2) 

Thus, the seller's net monetary value for the sales of a hundle b for a price JJ is just the 
price minus the cost for sellin~ the items. Currently, the seller has an additive cost structure: 
i.e. , the hundle costs Costs(b) equals the sum of the cost incurred when selling the items 
individually. 

3.2.2 Using gains from trade as efficiency criteria 

The most widely used performance criteria in multi-attrihute negotiations is Pareto effi
cicm:y. Raiffa [ 179] provides a method to compute Pareto-efficient outcomes in the case 
utility functions of hoth parties are normalized hetween O and I (a choice made in several 
other multi-agent negotiation models e.g. [ I 02, I 15] etc.). 

In our model, utilities are represented in monetary units instead of mappings hctween 0 
and I, or otherwise stated utility function are quasilinear. In the case of quasilinear utility 
functions, in order to determine Pareto-efficiency, it is enough to compute the gains from 
trade that can result from exchanging a certain hundle of items h. The gains from trade are 
defined as: 

GT(b) = u(h) - Co.'lt(h), (3.3) 

where u(h) denotes the buyers monetary value for h. The notion of gains from trade is 
well founded in the economic literature on trade (c.f. [881). Moreover, for the above setting 
(where utility is expressed in monetary units) the set of hundlcs maximizing the gains from 
trade can he proven to be the same as the set of Pareto-efficient hundles (a formal proof is 
provided in Appendix 3.A of this chapter and [207]). Intuitively, the gains from trade can he 
seen as the maximal size of joint gains, which can he achieved through negotiation, while 
the continuous attrihute, the price represents different ways to divide these joint gains. 

3.2.3 Outline of the negotiation setting and protocol 

The negotiation, in our model, follows an alternating offers protocol. At each negotiation 
step, each party (huycr/seller) makes an offer which contains an instantiation of 0/1 for all 
items in the negotiation set (denoting whether they arc/arc not included in the proposed 
bundle), as well as a price for this hundlc. The decision process for each party, at each 
negotiation step, is composed of 3 inter-related parts: (I) take into account the previous offer 
made by the other party, (2) compute the contents (i.e. item configuration) of the next bundle 
to he proposed, and (3) compute the price to he proposed for this hundle. 

In our model, the burden of exploring the huge bundle space and recommending jointly 
profitable solutions is passed to the seller, who must solve it by modeling the preferences of 
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the buyer. This is a reasonable model, in cases where an electronic merchant negotiates with 
different buyers in succession and tries to optimize both his own profits and buyer satisfac
tion (essential for building up a durable client relationship, which would generate repeated 
business). Furthermore, in many settings, one party can be seen as more knowledgeable than 
the other (e.g. in e-commerce domains it is reasonable to assume that electronic merchants 
are more knowledgeable than individual buyers, while in distributed logistics settings larger 
transportation providers have more knowledge of the market than random customers). 

Following Gerding at al. [80] (among others), we view a multi-issue negotiation strategy 
as composed of two parts: 

• The Pareto-search strategy, which enables agents to reach mutually profitable agree
ments, with incomplete or uncertain information about opponent preferences. 

• The concession strategy employed during the negotiation, which can be one or the 
standard, time-dependent strategies, from the ones discussed in L 70] ( and other sources). 

The focus of this chapter is on the Pareto-search aspect or the negotiation, in particu
lar on proposing a search method for the case the utility functions of different agents are 
unknown and non-linear. The seller's approach is to search for a bundle that maximizes 
the gains from trade, since this increases the joint gains: the only way he can continue to 
offer a better concession on price, but also increase his own profits. Thus, there is a semi
cooperative nature of the negotiation: although the seller is selfish and tries to maximize his 
own utility, he achieves this by trying to find a better trade-off between issues, a trade-off 
which better matches the buyer's preferences, estimated from the buyer's responses so far. 
Such a mechanism also used in other negotiation approaches ( e.g. L 71, 163, 232)), although 
these only consider linearly additive utilities. 

With respect to pricing, the seller starts the negotiation by posting an ask price for each 
item. This price reflects the maximum profit the seller expects to make by selling that item 
(i.e. the ask price reflects his maximal aspiration level). The lower bound of the seller's 
aspiration level (i.e. how far he is willing to go w.r.t. price concessions) is given by his 
vector of costs for providing each item, information which remains hidden from the buyer 
during the negotiation. The buyer also has a maximal aspiration level, which reflects the 
minimum price he expects to pay. The price the buyer will actually pay for a bundle depends 
on the content or that bundle and on the negotiation process itself. Both the buyer and the 
sci ler compute, for the current proposed bundle their current aspiration level and then make a 
time-dependent price concession with respect to that aspiration level. For consistency, results 
reported in this chapter refer to the monotonic, time-dependent concession case. However 
other time-dependent concession strategies usually employed in bilateral negotiations (such 
as hard-headed, boulware [701) have been considered. 

It is important to note that the specific time-dependent concession strategy used refors 
only to prices, not to the search for a bundle configuration. With respect to the bundle 
configuration, both parties have an incentive to search for a Pareto-efficient combination, 
that maximizes the joint utility. For the seller side, this search is explicit, through opponent 
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modeling. For the buyer side, the bundles proposed simply reflect his/her preferences. In the 
current set-up, there is no obvious incentive for the buyer to falsely reveal his preferences, 
given the Pareto-search strategy of the seller, since revealing false preferences will lead to 
a bundle with sub-optimal Gains from Trade to be selected, which is also in its detriment. 
Because we make the explicit choice that the concession strategy only concerns the pricing 
of the bundles, it is also in the interest of the buyer to search for a good bundle combination, 
regardless of the price concession tactic he/she employs. Finally, we model time pressure 
and/or buyer impatience through a hreak-off prohahility: at each step there is a small risk of 
breakdown (a value of 2% was used in the simulations). 

3.2.4 Assumptions about buyer knowledge 

Given that our aim is to develop a model for handling incomplete preference information, an 
issue which needs to he discussed is the type of knowledge about the preferred combination 
the huyer can provide. The aim, in our model, is to handle buyers that do not (or are unable 
to) specify their preferences directly (i.e. cannot, or arc not willing to, reveal the subutilities 
corresponding to the individual clusters/interdependencies, that form their utility function). 

In our model, the huycr can maintain a vector of price expectations of items, based on 
the previous offers of the seller. With regards to the knowledge required, we assume only 
that the huyer is ahlc to respond with (one of) the bundle comhination(s) that, given his price 
expectations for the items at some point during the negotiation, maximizes his own utility. 
This is considerably less difficult for a buyer than revealing his exact preference function 
over all possible bundles. The assumption is similar to the assumption made in demand 
queries in preference elicitation literature (e.g. [ l:H]), i.e. that the agents arc required to 
only locally reveal their preferred combination, for a given price level. The negotiation 
problem, is however, more complex than combinatorial preference elicitation with a trusted 
proxy, since there are double sided-incomplete information and strategic considerations at 
play. Furthermore, as will he shown, our method is a heuristic rather than an exact elicitation 
method, which makes it computationally considerably more efficient. 

3.2.S Top-level negotiation algorithm used by the seller 

Alg. I gives an outline of the algorithm the seller uses in each negotiation step. There 
are several stages. First, the seller checks if the configuration of the last 2 offers of buyer 
and seller coincide and if the difference in price is below a given, small threshold lip. This 
threshold can be set as small as desired; in our current model is expressed as a percentage 
of the seller's last price. In case the difference is below the threshold, the seller accepts the 
buyer's last offer and the negotiation ends. 

As briefly outlined in the introduction (and will be formally defined in the next Section), 
the seller models the preferences of his huycr in the form of a utility graph, in which each 
edge (cluster) is associated to a table of values. There arc several main computational steps 
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during the negotiation: the opponent modeling step (line 2 of Alg. I), in which the seller 
updates the values in the utility graph, based on the last offer made by the buyer, the counter
offer sent to the buyer is computed (line 4 of Alg. I) and a step in which the price to be 
proposed next is determined (line 5 of Alg. I). Note that there is a separation between the 
strategy the seller uses in opponent preference modeling and computing the best bundle and 
the price concession tactic. 

Algorithm 1 Top level algorithm used by the seller 

Denote by (b1,, Pb ) the previous offer of the buyer and by (b.si P., ) the previous offer or the 
seller. 
1. If b1, = b8 (configuration is agreed) and Ps - Pb < Cip (difference in ask and offer prices 
is under some maximum acceptable threshold), then Success. 
2. Otherwise: 
3. Update the estimated utility graph of the buyer based on his past bid bb uyer 

4. Compute (one ol) the bundles b* with the highest gains from trade 
5. Compute the price to be proposed for b* such that it represents a linear time concession 
from my previous offer 
6. Propose this bundle and price to the buyer 

3.3 Decomposable utility functions and their graphical rep
resentation 

Recall that we consider a buyer who negotiates with a seller over a bundle or n items, denoted 
by B = { 11, ... , 111 }. Each item l ; takes on either the value 0 or 1: 1 (0) means that the 
item is (not) purchased. The utility function 11, : Dom(B ) t-+ JR specifics the monetary value 
a buyer assigns to each of the 211 possible bundles (Dom(B ) = { 0, 1 }11

). 

In traditional multi-attribute utility theory, ·u would be decomposable as the sum of util
ities over the individual issues (items) [ 179]. In this chapter we relax this assumption by 
considering 'll decomposable in sub-clusters of individual items such that ·u is equal to the 
sum or the sub-utilities or different clusters. 

Definition 1 Let C be a set of clusters of items C1, ... , C,. (with C; ~ B ). We say that 
a lllility jimction is factored according to C if there exists functions u ; : Dom(C;) t-+ JR 
(i = l , ... , r and Dom(C;) = {0, l} ICd ) such that 11,(b) = I:; 'll;(c;) where bis the 
assignment to the l'liriables in B and c ; is the assignment to the variables in C;. induced 
from the assignmellt b. We call the functions u ; sub-utility/unctions. 

The factorization of a decomposable utility function is not unique. In this chapter, we 
use the following factorization, which is a relatively natural choice within the context of 
negotiation. Single-item clusters (IC;! = 1) represent the individual value of purchasing an 
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item, regardless of whether other items are present in the same bundle. Clusters with more 
than one clement (IC; I > 1) represent the syner[?y effect of buying two or more items; these 
synergy effects are positive for complementary items and negative for substitutable ones. 

Note that the synergy value associated with a cluster (set) of k items represents and 
additional value, beyond the utility associated with any of its proper subseL<.;. This method 
of defining utility functions is, in fact, equivalent to what existing literature refers to as a 
k-additive form. 

3.3.1 The k-additive utility form 

The k-additive form represents an important class of representing decomposable utility func
tions described in existing literature (see [46, 55](the same class is referred to as the "poly
nomial representation" is some sources, e.g. [ 133]). 

For unbounded k, the k-additivc form is fully expressive, meaning any utility function 
over a set of (binary) issues (or bundles of items) can be represented in k-additivc form 
(cf. 1461). In practice, however, the maximum size of k can nearly always he hounded to a 
small value. For instance, if we denote hy :r. 1, ... :1:11 the instantiation of the set of n items, the 
expression for a 4-additivc utility form (i.e. taking a maximum k=4) is given hy: 

l :5;; i :5;; 11 I :5;; i ,j :5;; 11 1:s;i ,J,k :5;; 11 

(3.4) 

In the binary case, :r. 1, .. , :r. 11 represents a vector of O and I, denoting whether an item 
is (or is not) considered in the combination being evaluated, the reals a 1 ... a 11 , 11 , 11 , 11 arc the 
parameters of the function, while the maximum k, henceforth denoted by kma:r. (same k as in 
"k-additivity'') is the maximum rank of the polynomial, i.e. all the polynomial terms having 
a rank above h:""'"' have the coefficients a = 0. For example, linearly additive functions 
form a subclass of k-additive class. where kma:r. = 1. The expression given in Eq. 3.4 
corresponds to a 4-additive utility function. 

There is a natural connection between the definition in Def. I and Eq. 3.4. Each cluster 
corresponds a term of the polynomial, the number of clusters (also denoted by r) represents 
the number of tenns in the polynomial expression with n -/:- 0. Only terms corresponding to 
clusters in the graphical model constructed for the buyer will be considered in the negotiation 
algorithm. 

In practice, in the experimental part of this chapter, we limit our experiments for bilat
eral negotiation to kma :r. = 4. This means that, in the negotiation tests we performed, the 
polynomials modeling the utility functions of buyers arc assumed to have maximum degree 
hounded to 4 (c.f. Eq. 3.4). Furthermore, the collaborative filtering method we propose. 
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which is used hy the seller lo get an approximation of the super-graph of buyer's utilities, 
was developed for a k11wx = 2. 

Intuitively, this means that for the case some structural information is available about 
the structure of the utility preference of the buyer (i.e. which terms of the polynomial arc 
most likely to appear in his utility function in Eq. 3.4), we have validated the approach for 
up to 411' degree polynomials. The entire approach, including collaborative filtering, which 
assumes no personalized information exists about the utility function of any particular buyer 
agent, was investigated for 2nd degree polynomials. 

Although the type of non-linearity our negotiation approach handles is restricted, l"rom 
the point of view or the potential application domains, it is reasonable to assume a bounded 
k,,w,, . For example, if our generic negotiation model would be applied business-to-consumer 
(B2C) e-commerce, then it is reasonable to assume buyers would have difficulty in assessing 
the additional benefits of very high-order synergies (this is also a reasonable assumption in 
many 828 e-commerce scenarios). Moreover, because the terms of the polynomials (corre
sponding to clusters in the graph) overlap, the problem remains significantly more complex 
than in the linear dependencies case. 

3.3.2 Using graphs to model complex utility functions 

The factorization defined above can he represented as an undirected graph G = (V, E), 
where the vertexes V represent the set of items/ under negotiation. An edge between two 
vertexes (items) i, j E V is present in this graph if and only if there is some cluster Ck that 
contains both / ; and l j . More generally, i r we allow for more than binary dependencies, we 
can define hyper-edges between k items. A hyper-edge hctwccn any k items: ii, ... h E V 
is present in this graph iff there is some cluster Ck that contains all items / ;1 , ... l ;k . We will 
henceforth call such a graph Ga utility graph 1. 

Example I Let B = {Ii , I2,l3,J4} and C = {{Ji},{/2}, {/1,/2},{h /3}, {/2, / 4}} 
such that 'IL ; is the sub-utility function associated with cluster i (i = 1, ... , 5). Then the 
utility ofpurchasing,for instance, items / 1, /2, and 13 (i.e., b = (l, 1, 1, 0)) can be comp111ed 
as follows: u( (1, 1, 1, 0) ) = 'lt1 (1) + u2(l) + n:1 ( ( 1, 1)) + 'IL4 ( (1, 1) ), where we use the fact 
that -u5((l , 0)) = 0 (synergy effect only occur when two or more items are purchased). The 
utility graph of this factorization is depicted in Fig. 3.1. There exist ( indirect) interdepen
dencies between all 4 goods, beca11se the choice of Ii is inji11enced by the relations between 
1"2, la and h , Li. 

To gi11e a numerical example, suppose: u 1 (1) = $7, '1t2 (1) = $5. ·u:1((1, 1)) = - $5, 
u.1((1, 1) = $4, u5 ((1, 1)) = $4. Moreover. all item costs are equal to $2: i.e., c(/1 ) = 
c(/2) = c(l:i) = c(/4 ) = $2. /11 this case the b1111dle with the maximum gains from trade 
(i.e. the bundle denoted by b* in Alg. I) is: (0, I, /, I), which has the net monetary value 

1 The concept of cluster defined for utility graphs corresponds 10 the concept of cliques in probabilistic ne1works. 
However, for consistency, we use only the 1cnn "cluster" throughoul this chaplcr. 
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of $5+$4+$4 - 3*$2 = $7. From this simple example we can already highlight an important 
problem. The assignments for items / 1 and l:i, 14 i1{fluence each other indirectly. through 
the assignment.for / 2 (although there are no direct links.from / 1 to l:1, / 4). This.feature is 
exploited by our decomposition algorithm. 

Figure 3. 1: The utility graph that corresponds lo the factorization according lo C in Example 
I. The + and - signs on the edges indicate whether the synergy effect arc positive or 
negative. 

Al the computational level, each cluster is represented by a joint utility table, which 
assigns a utility value for all combinations of instantiations with 0/1 of items in that cluster 
(this is similar in concept lo the joint probability tables, used lo represent inter-dependent 
variables in probabilistic networks). Although (as mentioned above), in the experiments, 
we limit the maximum size of the cluster lo a small kma x (which means up lo i~nrnx items 
arc directly interdependent in utility, i.e. linked by an edge, any number of items can be 
indirectly interdependent, depending on the connectivity of the graph. Any two issues whose 
corresponding vertexes are connected by a path in the utility graph arc, potentially, inter
dependent. For example, the factorization corresponding to the graph discussed in Example 
I and Fig. 3.1 from above has k = 2 (only two-item dependencies), though all items arc in 
fact interdependent through the choice of / 2 . 

3.4 Negotiation heuristics based on utility graphs 

As shown in Seel. 3, in our approach we model the buyer's utilities a graph. The structure 
of this graph, as well as the sub-utilities corresponding to different clusters constitute private 
information which is not revealed directly during the negotiation. 

However, in our model, the seller does have some prior information lo guide his opponent 
modeling. He starts the negotiation by having a super-graph of possible buyer graphs, i.e. 
a graph containing all possible inter-dependencies between the issues (items) which can be 
present in a given domain. The utility graphs of buyers form subgraphs of this graph. We 
call this graph a maximal item inter-dependence w·aph, because from the perspective of the 
seller, it gives the maximal set of clusters that need lo he considered during the negotiation. 
Otherwise slated, the maximal graph tells the seller which terms of the k-additive sum in 
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Eq. 3.4 can potentially, have non-zero values for any random buyer he encounters in a 
negotiation. 

The negotiation is still with double sided incomplete information, because: I. The seller 
docs not know anything about the values the buyer assigns to different issues (i .e. values cor
responding to the clusters). These need to he estimated during the negotiation itself, from the 
counter-offers he makes. 2. The exact structure of the utility graph of the buyer is not known, 
the super-graph represents only a maximal (and potentially inaccurate) approximation. 

The presence of this graph helps to greatly reduce the complexity of the search space on 
the side or the seller. The structural information contained in such a graph can he obtained 
either l"rom a history of past negotiations or elicited from human experts. Note that in most 
domains it is reasonahlc lo assume that the seller docs know something about the goods he is 
selling. For example, i r he is selling on line pay-per-view journal articles, then articles within 
the same category (or with the same author) can be potentially related (though not guaran
teed to be related for every buyer). A method for automatically constructing its structure is 
provided in Sect. 3.5. 

Therefore, our model docs not assume the seller has to know the exact structure of the 
utility graph of the huycr. For example, suppose two issues are assumed substitutable by 
the se ller, so the utility of the combination containing both items is lower than the sums of 
utilities for individual items. If the buyer signals (through his bids) that he is willing to accept 
hundlcs containing both items, the seller will adjust the weight of this relation (i.e. adjust the 
values for the relevant cluster sub-utility) towards the sum of utilities for individual items. 
Conceptually, this is cquivah:nl to removing the edge from the graph - or the corresponding 
term l"rom the summation (which means the items arc no longer assumed substitutable). 
Thus, in this model it is possible to conceptually remove edge dependencies (by adjusting 
their perceived weight towards 0), hut it is not possible to add new dependencies - other than 
those present in the maximal graph. Thus, the maximal graph can be seen as a restriction on 
the utility space considered during the negotiation. 

3.4.1 Selecting the best counter off er 

The prohlem faced by the seller at each negotiation step (sec Alg. I, step 2) is lo choose a 
hundle b* which has the highest gains from trade of the 211 bundles. More formally stated: 
b* = arr1ma:1:6(GT(b)) = <L1"f/11l<Lx6(ft(b) - Cost(b)) . In the ahovc equation and subse

quent ones we use the notation GT and ·u, to distinguish them rrom the actual values GT 
and u, since the seller docs not know the true utility values of the huyer. He only has an 
estimation of these values, which are updated after receiving a (counter) offer. 

A straight-forward, ''brute-force" solution to determine b* is lo generate all bundles band 
select one which has the highest (estimated) gains from trade. Since this involves 211 steps 
al e1•e0• iteration, it is clearly not l"casiblc for large n, so a heuristic is needed lo reduce this 
search space. Now, suppose the utility graph is dccomposahlc into two or more completely 
disjoint parts (no overlapping vertexes). We can then compute an optimal sub-bundle for 
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each of the parts and merge them. However, for the more general case we still need a method 
for reducing the complexity of the search, when the original graph (or a large suh-component 
of it) is not decomposahlc in such a straight-forward way. We do this hy applying ideas from 
graph decomposition theory to the utility graph G = (ll', E). 

Informally, the decomposition of a graph is a family of small, not necessarily disjoint, 
suhgraphs G1, •.• , Gk (for some k E f::l), the union of which makes up the initial graph. 
Associated with a decomposition G 1, ... , G k is a collection of culscts: a cutscl is a suhsct 
of vertexes that belong simultaneously to the same two subgraphs. (Sec (61,215] for a more 
formal discussion of graph decomposition algorithms). 

Example 2 Figure 3.2 depicts such a decomposition. The vertexes {Jal , I a2, I a3 , I a4, I c} 
and {/bl, Ib2 , Ib3 , Jc} .fonn the two cliques and corresponding subgraphs of G. There are 
only two .rnbgraphs there.fore there is only 1 cutset: I ,:.forms this cutest because it is the only 
1·ertex that lies in both subgraphs. 

I 
I 
I 
I 

I 

, , 

SUBGRAPH A ------- ------- ...... 
,,,, ,ai 

...... ------------- --
p nodes 
(p=4) 

CUTSET 

c nodes 
(c = 1) 

SUBGRAPH B 

----------- - ... -... 
lbl 

lb2 

---------------
q nodes 
(q=3) 

,, 
, , 

, , 

I 
I 

I 

Figure 3.2: Utility graph where the vertexes { Ia.I , I a2, Ia.3 , I a4 , Ic} and 
{Jbl,Ib2, Jb3,Ic} form the two cliques and corresponding suhgraphs of G. More
over, {I,, } forms the only cutest. 

Given a decomposition G 1, ... , Gk of the graph G we can define GT; : Dom(Vi) ~ JR 
as the predicted gains from trade that results from the sales of a subset of the item represented 
by the suhgraph G ;. Herc we use the formal notation Dom(Vi) to represent the domain of 
possihlc values (in our case 0/ I) assigned to the subset of vertexes Vi in suhgraph G ;. Alg. 
2 generates all possihle comhinations only for items that overlap between suhgraphs (i.e. 
culscl items). Then, for all suhgraphs it chooses the sub-comhination that represents a local 
maximum for the gains from trade function in the considered suhgraph, but suhjcct lo the 
constraint that the items that belong to more than one subgraph (i.e. cutset items) have the 
same values in all suhgraphs. The hcst overall comhination is chosen as a maximum of 
comhinations of local maximums achieved for all possihle instantiations for culset vertexes 
(items). 
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Algorithm 2 Algorithm returns b*, a bundle with the highest gains from trade (i.e., b* E 

argmaxbEDom( B)GT(b)) 

Subgraphs G 1 = (Vi, E,) , . .. , Gk = (Vi, Ek) and the union or all cutset nodes S ~ V 
determined by the decomposition; GTi : Dom(V;) H ~ denotes the predicted gains rrom 
trade resulting from the sales of a subset of the items in subgraph G;; and Vi [j], S[·i] E 
{1, ... , n} denote the relcrence to the item in B that corresponds to the j'" and i th vertexes 
in Vi and S, respectively. 

1. X := 0 //X will contain n -dimcnsional vectors 
2. For all.? E Dom(S) { 
3. Initialize b !lb is an-dimensional vector 
4. For(l :S i :S k){ 
5. //Get local max. gains from trade in subgraph G; consistent with.? 

6. -ii; E argmaxx'EDom(V;)GT;(x) 
7. s.t. x(l) = .?(m) ir V;[l] = S[m] 

for some 1 ::; l ::; IVil and 1 :S m :S ISi 
8. For(l :S j :S IVil)b(V;[j]) := -il;(j) 
9. }X := X u b 
10.} return b* E argmaxxE.\" GT{x) 

Example 3 Consider the graph in Figure 3.2. Generating all b1111dle combinations and 
testing them takes 2P+c:+q steps. Our algorithm generates all possible combinations only for 
cutset C, then computes optimal sub-bundles for subgraphs A and B for each combination 
of C and merges them. This requires only 2"(2P + 2'1) steps. Since c in our case is of size I or 
2, while p and q can be arbitrarily large, the decrease i11 the number of steps is exponential. 

More generally, suppose the decomposition or a utility graph uses ks = IS i cutset ver
texes and results in JJ subgraphs of sizes IG1 I, IG:i 1---IGvl (whcre IGd denotes the number or 
vertexes in subgraph G;). The computational complexity of determining the optimal bundle 
(Alg. 2) can he written as: 

(3.S) 

If we denote by MaxV the number of vertexes in the resulting subgraph with the largest 
number or vertexes (i.e. 1\Ja:i:V = rnax ;IG;I), by ISi the number of cutset vertexes (nodes) 
and by p the number of subgraphs G;, then this complexity measure is upper bounded hy the 
factor: 

(3.6) 
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An important prohlcm to be addressed is how to find an (approximate) optimal partition 
(required by Alg. 2), given a utility graph structure, as well as the quality and computational 
complexity of this partition. This is the scope of Sect. 3.4.1. 

Algorithms for efficient graph partitioning 

Recall that Alg. 2 takes as input a graph decomposition that is already given and uses it to 
compute the optimal hundle comhination. In this Section, we look at the prohlem of how 
can we partition any random graph structure, such as to assure a minimal computational cost 
for the search algorithm (Alg. 2). The upper hound for the complexity of Alg. 2 depends 
exponentially on two terms: ISi (number of cutset or separator nodes) and .M a:i:V, which 
is the size of the maximal suhgraph. Thus, the partition required needs to he, as much as 
possible, a balanced partition: one that minimizes the number of vertexes in the largest 
suhgraph. 

The prohlcm of efficiently determining a balanced graph partition has hccn extensively 
studied in OR and theoretical computer science literature, since it is a prohlem that appears in 
many application settings, thus is not specific to multi-issue negotiation. It can he formulated 
as a specific case of the k-multiway separator problem [69. 77]. To our knowledge, the most 
efficient approximate solution to this problem in existing literature is provided hy Even et 
al. [69]. 

Formally, the problem can he stated as follows: given a graph G(V, E), with n vertexes 
and m edges, where each vertex and edge is assigned a capacity (weight). In our case, we 
apply the partition to the unweighed case, thus we take the capacities: w(v) = 1, \Iv E V 
and c(c) = 1, Ve EE. 

The problem is to partition the initial graph G(V, E) into k parts, such that the sum of 

vertex weights in each of the resulting subgraphs is at most: 2 I:; ,, f ~ w( 
11

). In order to preserve 
standard notation, we use k to denote the number of parts that the graph is partitioned into 
(denoted by JJ in Eq. 3.S and 3.6). Thus k here has a completely different meaning than the 
k expressing the maximum degree of the polynomial, in k-additive utility. If n denotes the 
total numher of vertices in the graph and w( v) = 1, \Iv E V. this hound is equivalent to 'J"t. 

Thus, since each of the resulting subgraphs contains at most 2t nodes, thus we can write 
Afa:1:F = 2t. For a graph with all edge and vertex capacities equal to I. [69] proposes 
an approximation algorithm where the total capacity of the separators (in our case denoted 
hy ks or ISi) is bounded hy: (2 + o(l))(lnn)OPTk, where OPTk is the optimal separator 
capacity that is possible for the given graph topology. The upper complexity bound for Alg. 
2 from eq. 3.6 becomes: 

(3.7) 

Where n is the number of vertexes (items) in the utility graph, k is the numher of suh
graphs the graph is to he partitioned into, o( I) is a constant factor and OPTk is the number 
of cutset nodes and represents a factor that is dependent on the actual topology of the graph. 
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Admittedly, the above equation is not a very tight bound - especially since it is still 
exponential in the factor OPTk, which is a theoretical optimum, but depends on the graph 
topology and thus cannot be bound in advance. However, if wc want to have a bound fur 
the general case graph (i.e. without making any prior assumptions on our utility graph), the 
bound offered by k-balanccd partition algorithm is probably the best we can do. 

For many specific cases, the partitioning problem can be considerably more efficient, 
however. We cover this briclly, in the next Section. 

Recursive decomposition of utility graphs. Restricted cases. 

The complexity measure for Alg. 2, as discussed in Sect. 3.4.1 refers to one-step appli
cation of Algorithm 2. However, it is possible to apply Alg. 2 recursively on a utility 
graph G: first decompose G into m1 subgraphs G 1, G2, ... G111 1, according lo k1 cutsct 
nodes, then apply Alg. 2 again lo find the optimal combination in each of the subgraphs 
G

1

, G
2

, ... G,,,
1 

and then merge them for all combinations of cutsct nodes k
1

. The advan-
tage of this procedure is that the algorithm docs not have to iterate over all cutest nodes 
k1,k1 ,2 ---k1 ,m 1 , k 2,1,m2•• •k2,,,11,m2, .. . , but the iteration over the cutsct nodes is localized 
in each subgraph. This can achieve considerable computational savings, but iff. the graph 
structure allows for a suitable recursive decomposition. 

To illustrate, for trees, it is natural to apply Alg. 2 as follows: the root of the tree is also 
taken as the cutset node. For all instantiations of the root, the local optimal combinations 
corresponding to all the items (vertexes) in the subtrees arc computed and then merged. The 
local optimal combinations in each subtree can then be computed recursively, by applying 
the decomposition and search algorithm in each subtree. Thus, it is straightforward to show 
that recursive decomposition works on trees and graphs of (limited) bounded trecwidth (up 
to 2-3), which can be approximated to trees. For the general case, however, obtaining an 
approximate partition through the minimum b-vertex separator algorithm (c.f. Sect. 3.4.1) 
and then applying Alg. 2 of the resulting partition is the optimal way to proceed, given 
available state-of-the-art in graph decomposition algorithms. 

Finally, we should mention that, in practice, for the experiments performed in this chap
ter, we randomly generated and tested several graph structures (including some complex 
ones, to assure robustness of the results). However, the method we employed to generate 
random structures was such as to always assure their decomposability, thus we implicitly set 
k and OPTk throught the graph generation method (sec Sect. 3.6.3 for a discussion of this 
issue) . 

3.4.2 Updating Sub-utility Functions 

The search method described in Section 3.4.1 works on the utility graph G, and correspond
ing sub-utility functions u;(C; ('i = 1, ... , ICI, where C denotes the set of clusters). They 
represent the best model of the opponent (i.e. buyer) that the seller has so far. Arter receiving 
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a counter offer from the buyer, he will update this model. More precisely, he will update the 
sub-utility functions. In this Section, we will discuss the rule for updating these sub-utility 
functions. 

The updating algorithm determines, for all C; E C, which combination of items in C; 
was asked by the buyer al the last iteration (where there arc 21°d possible combinations). 
Then it increases the expected monetary value of the buyer for that combination and de
grades the other combinations in the cluster. Intuitively, the idea is to strengthen a link 
between vertexes (represented by the corresponding sub-utility value) whenever a buyer in
deed expresses an interest in purchasing the items corresponding to the vertexes; otherwise 
the link is weakened. Algorithm 3 gives the actual updating rules. 

Algorithm 3 Algorithm for updating sub-utility functions 

The seller"s and buyer's last bids contain the binary assignments b .• and h1, lo the variables 
in B ; moreover <:; ,8 and c ;,1, denote the assignmenl'> to the items (corresponding lo nodes) in 
C; , induced by h., and b,, (i.e. 2 ;, .• and c ; ,/1 arc sub-arrays of hs and b1, ). 

1. For c1 :S i :S ICI> { 
2. ir c;, _. =1- c;,1, { 
3. 'll ; (c; ,1,) := u ; (c;,1,) * (1 + o ,, ) 
4. Forall c E {0, l} ICd \ {c;,1,} 
5. u ;(c) := u;(c) * (1 - o:(i) )}} 

Example 4 Suppose we have the cluster C; = { l:i , Ir, , In} (for a i E { 1, ... , ICI} ). The 
buyer's last o_ffer contains the combination l:i = 0, Jr, = 1. and / 0 = 1. Then the expected 
buyer utility.for purchasinf? item 5 and 6 is increased: i.e., u ;( (0, 1, 1)) = n ;( (0, 1, 1)) * (1 + 
o:(i) ). The expected utilities.fora/I other cmnhinations in {0, l} ICd (namely ·tt;(l , 1, 0), 11.; ( l , 0, 1), 11 ;(1, 0, 0), 
etc.) are decreased. 

Parameter o ( i) in Algorithm 3 defines how much weight should be given to the request from 
the buyer's last hid, in each cluster. A higher o{ i) mean that the seller is more likely to 
give in to buyer's preferences for a cluster. A straightforward choice would he lo assign the 
same a to all clusters. The seller would then only take into account the buyer's preferences. 
However. in our model, the seller also takes into account the expected gains from trade of a 
cluster, which also depend on his cosL<; (unknown lo the buyer). The rationale for this is in 
the way the constructed utility graph is used during the negotiation: it docs not have to be a 
perfect model of buyer preferences, hut it is used to search for the bundle with the highest 
Gains from Trade (which also depend on the seller's cost). We therefore define a factor 
called the Gains from Trade Importance Ratio (GTR) as: 

GTR (i) = GT;(c~1,)) 
GT(b11 ) 

(3.8) 
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for all 't = 1, ... , ICI, the clusters obtained by the decomposition from the previous Section. 
In the above equation, bb denotes the buyer's last offer, and Ci ,b denote the binary sub-vectors 

of bb, containing the instantiations with 0/1 of the items contained in each cluster Ci . 

Intuitively, this ratio provides a measure of the cluster's importance weight, by compar
ing the gains which can be obtained in this cluster lo the gains for the whole bundle. The 
measure can be compared lo the inverse of total number of clusters 1/ICI, for the purpose 
of tine-tuning the alpha parameter for each cluster (although the clusters vary in size in 
the conducted experiments from 1-4 items, the above mtio still provides a useful heuristic). 
The cluster-specific u is then computed as the sum between a fixed and variable component 
(computed by a sigmoid function): i.e., 

, 1 
n ('t) = Hf ixetl +a,,,,,. * l + cf:l * (GTR(i) - t /lCI )) (3.9) 

for all -i = 1, ... , ICJ. Herc the parameter fJ is a positive value, which gives a measure of how 
steep the sigmoid function is. After conducting a number of experiments, we observed that 
transforming the function into a simpler step function (by assigning f-J -+ oo) still works well 
in many experimental tests. The values assigned lo the alphas were determined empirically 
for each sel of experimcnts.2 

The rationale behind the above formula is the following: if a cluster has a high impor
tance for the seller (i,e. if GT R(-i) > 1/ICI), then the concession made for this particular 
cluster will be small (equal lo n f ixed)- Intuitively, this means that for this cluster, the costs 
of the seller arc low, so the the seller should keep insisting more on offering his own values 
for the items in this cluster for longer, since he knows he can offer them cheaper (the buyer 
docs not know this, because he docs not know the cost structure of the seller). For clusters 
with relatively low gains from trade (i.e. if GT R('i) < 1/ICI ), there is not much difference 
between the offer of the buyer and that of the seller - therefore the seller can agree to the 
values asked by the buyer in that cluster without much perceived utility loss. 

Note lhal our learning rule entails lhal in all clusters al least a small, non-negative ad
justment Hf ixed is made towards the buyer's offer. We made this choice since it assures that 
our algorithm guarantees convergence (i.e configuration agreement) within a limited number 
of negotiation steps and, thus, the negotiation is guaranteed to converge to an agreement al 
some point (although how efficient this agreement is depends on the tuning of parameters 
and needs lo be experimentally investigated). 

It is important lo note that the aim of our learning algorithm is not lo exactly learn the 
buyer's preferences of converge lo his/her true utility graph model. Rather, it is a heuristic, 
that aims lo lind a good outcome in a complex utility space under uncertainty, for the multi 
issue negotiation selling we consider. This approach is somewhat similar to other algorithms 
developed in the preference elicitation literature (e.g. [ I '.HJ), but the aim in multi-issue ne
gotiation research is different, since the goal is not lo converge to an exact opponent model. 

2To exemplify, common pammeter settings were: a fix"d = 0. 1 and °'""r = 0.3. 
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Exact preference elicitation is not strictly required in a hilateral negotiation setting: our 
goal is to ohtain a model of the huyer that is sufficiently good to find a jointly agreeahle hun
dle (given the cost vector of the seller), and not to learn exactly all the utility clusters' values 
that describe the huyer's utility function . Indeed, for the rather complex utility functions we 
consider in our experimental analysis, the joh of learning the exact buyer values could not be 
solved in an average of 50 negotiation steps (as shown in Sect. 3.6). But for the multi-issue 
negotiation prohlem, this is not needed: we do not need an exact model of huyer preferences, 
only one good enough to compute and propose a jointly agrceahle contract. 

3.5 Constructing the structure of utility graphs using ag
gregate negotiation data 

The previous sections have focused on the prohlem of modeling the negotiation process it
self, with an individual buyer, starting from the structure of a maximal preference graph, 
which encode dependencies to he considered. We have speculated how this initial prefer
ence information could be ohtained, in a given domain. For example, it may he the case 
that an electronic merchant knows which of the items he is selling are potentially related 
(e.g. music tunes from the same alhum, related weh services, hooks covering the same topic 
etc.). In this section, we show that it can also he learned automatically, from previous ag
gregate negotiation data, through a technique inspired from work on collaborative filtering. 
The section is structured as follows. In Sections 3.5.1 and 3.5.2, we present an overview 
of collahorative filtering and how it relates to our negotiation model. In Section 3.5.3 we 
formally define the structural graph for a set of huyers, which is our target criteria, while 
Sections 3.5.4 and 3.5.5 descrihe how similarity measures are obtained from previous nego
tiations data. Finally, Sections 3.5.6 and 3.5.7 propose a method for building the structure of 
the resulting graph, using these similarities. 

3.5.1 Collaborative filtering: brief introduction 

Collahorative filtering [ 197] is the main underlying technique used to cnahle personalization 
and huyer decision aid in today's e-commerce, and has proven very successful hoth in re
search and practice. The main idea of collaborative filtering is to output recommendations to 
buyers, based on the buying patterns detected from buyers in previous huy instances. There 
arc two approaches to this problem. The first of these is use of the preference datahase to 
discover, for each buyer, a neighhorhood of other huyers who, historically, had similar pref
erences to the current one. This method has the disadvantage that it requires storing a lot 
of personalized information and is not scalahle (see [ 197]). The second method, of more 
relevant to our approach, is item-based collaborative filtering. Item based techniques first 
analyze the user-item matrix (i.e. a matrix which relates the users to the items they have 
expressed interest in huying), in order to identify relationships between different items, and 
then use these to compute recommendations to the users [ 197]. 
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3.5.2 Overview of our filtering and negotiation approach 

There arc two main stages of our approach (sec also Figure 3.3): 

I. Using information from previously concluded negotiations to construct the structure 
of the utility super-graph. In this phase the information used (past negotiation data) 
refers lo a class of buyers and is not traceable lo individuals. This is is the focus of 
Sect. 3.5. 

2. The actual negotiation, in which the seller, starting from a super-graph for a class 
(population) of buyers, will negotiate with an individual buyer, drawn at random from 
the buyer population above. In this case, learning occurs based on the buyer's previous 
bids during the negotiation, so information is buyer-specific. However, this learning 
al this stage is guided by the structure of the super-graph extracted in the first phase. 
The algorithms used in this stage were covered in Section 3.4. 

Seller Agent Architecture 

Seller Negotiation 
Agent (stage 2) 

Utility graph of 
inter-dependencie 
to be considered 

• 

Estimator of maximal 
utility graph structure 

(stage 1) 

i 
Dataset of previous 

negotiations 

Negc iation Thread Instance 

Offers Buyer Agent 
Counter-offers ~ 

Store concluded 
negotiation trace 

Generate Buye 
profile instance 

Generator of buyer utility 
functions (by independent, 
normal distributions in 

each of the graph clusters) 

Figure 3.3: Top-level view of our agent architecture and simulation model 
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Phase 2 is descrihed in our previous work [ 186]. The rest of this chapter will focus on 
descrihing the first phase of our model, namely retrieving the structure of the utility super
graph from previous data. 

3.5.3 Minimal super-graph for a class of buyers 

The definition of utility graphs given in Section 3.3 corresponds to the modeling the utility 
function of an individual huyer. In this chapter, we call the utility graph of an individual 
huycr the underlying or true graph (to distinguish it from the retrieved or learned graph. 
reconstructed through our method). The underlying graph of any huyer remains hidden from 
the seller throughout the negotiation. 

We do assume, however, that the huyers which negotiate with a given electronic mer
chant belong to a certain class or population of huyers. This means the utility huyers assign 
to different hundles of items follow a certain structure, specific to a huying domain (an as
sumption also used indirectly in [79, 197, 207]). Buyers from the same population (or class) 
can he expected to have largely overlapping graphs, meaning there is a suhsct of dependen
cies that are much more likely to appear than others for a random huycr in that class. This 
docs not entail that all buyers will have all dependencies specific to that class. 

To illustrate this concept, consider the example of an e-commerce merchant negotiating 
over the configuration of a hundle of n goods with a random huyer. For simplicity, let's as
sume the huycr's utility graph can contain only hinary dependencies (i.e. his utility function 
is 2-additivc). Even so, there are n 2 possible dependencies (corresponding to edges) in the 
utility graph of the huyer ( e.g. 2500 for 50 binary issues, I 0000 for I 00 hi nary issues etc.). 
The numher of possihle utility graph structures that a random huyer can potentially have is 
the size of the power set of the number of dependencies: P( n2 ) = 211 2

, a quantity which is 
so large that the prohlem of efficiently capturing huyer preferences seems to require solving 
an intractahle modeling prohlcm. 

In practice, however, the seller knows that not all n2 dependencies arc relevant, and 
considering a much smaller set of dependencies usually leads to extracting most gains from 
trade from buyer preferences. Otherwise stated, the super-graph of huyer preferences to he 
considered is likely to he much sparser than fully connected: in fact most dependencies will 
not occur in the function of any buyer. In the following, we define these intuitions more 
formally. 

Definition 2 Let A = { A1 , .. A,.} be a set ( class, population) of n buyers. Each buyer 
i = l..n has a utility .function u ;. which can he .factored according to a set of clusters 
C; = {C;,1,C;,2 .. C, ,r(id- We de.fine the super-set of clusters.for the class of huyer.1· A = 
{A,, .. A,,} as: CA = C, U C2 U .. UC,,. 

In graph-theoretic terms (as shown in Section 3.3), the set of clusters C; according to 
which the utility of a huyer A; is structured is represented hy a utility graph G ;, where each 



Modeling Complex Multi-Issue Negotiations Using Utility Graphs 75 

binary cluster from { C;,1 , .. C1,,·( i)} represents a dependency or an edge in the graph. The 
super-set of buyer clusters CA can also be represented by a graph GA, which is the minimal 
super-graph of graphs G;, i = 1..n. In practice, our negotiation algorithm uses a graph 
structure that is reasonably close lo the minimal one, but may contain spurious (extra) or 
even missing edges. 

C1 = { {Ji}, {/2}, {13}, {/1,!2}, {h,13}, {/2,Li} }. This super-graph is minimal, be
cause is we were to add the dependency { 11 , I:i} lo CA we would also obtain a super-graph, 
though nol lhe minimal one. 

It is important lo note that the above definition for the utility super-graph for a class of 
buyer refers only lo the structure (i.e. clusters C;) and makes no assumption about the sub
utility values (i.e. functions u ;) in these clusters. To illustrate the difference, suppose that al 
a structural level, there is a complementarity effect between two items. However, for some 
buyers in the population, the utility value corresponding to this dependency may be very 
high (i.e. it is important for the agent to get both items), while for others it is much more 
moderate (or even close lo zero). 

3.5.4 Extracting information from concluded negotiation data 

Suppose the seller starts hy having a dataset with information about previous concluded 
negotiations. This dataset may contain complete negotiation traces for different buyers, or 
we may choose, in order to minimize bias due lo uneven-length negotiations, lo consider 
only one record per negotiation. In our model, we take the first bid a buyer makes in each 
negotiation thread. An alternative would be to take the final outcome of the negotiation -
however, as this results after a process of negotiation and matching with the seller costs, ii is 
not as rellective of buyer preferences as his/her initial asking offer. 

The considered dataset is not personalized, i.e. the data which is collected online can
not be traced back lo individual customers (this is a reasonable assumption in e-commerce, 
where storing a large amount of personalized information may harm customer privacy). 
However, in constructing of the minimal utility graph which the customers use, we implic
itly assume that customers' preference functions are related - i.e. their corresponding utility 
graphs, have a (partially) overlapping structure. 

Our goal is lo retrieve the minimal super-graph of utility interdependencies which can 
be present for the class or population of buyers from which the negotiation data was gener
ated. 

We assume that past data can be represented as a N * n matrix, where N is the number 
of previous negotiation instances considered (e.g. up to :moo in the tests reported in this 
chapter) and n is the number of items (e.g. 50 for our tests). All the data is binary (i .e. with 
values of" I" in the case the buyer asked for this item or "O" if he does not). In the remainder 
of this Section, we use the following notations: 

• N for the total number of previous negotiation outcomes considered 
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• For each item i= l..n, N;(l) and N;(O) represent the numher of times the item i was 
(respectively was not) asked by the huyer, from the total of N previous negotiations 

• For each pairof items i , j = l..n we denote hy N;,j(O, 0), N;,j(O, 1), N;,j( l , 0) and 
N;,i (1, 1) all possibilities of joint acquisition (or non acquisition) of items i and j. 

From the above definitions, the following property results immediately: N ;,i (0, O) + 
N;,j(O, 1) + N ;,i( l , 0) + N ;,J (l , 1) = N;(O) + N; (l) = Ni (O) + Nj( l ) = N, for all items 
i, j = l..n. 

3.5.5 Computing the similarity matrices 

Item-based collaborative littering [ 197] works hy computing "similarity measures" hetwecn 
pairs of items. The literature on item-based collahorative filtering uses two main criteria for 
computing similarities between pairs of items: cosine-based and correlation-based simi
larity. Both had to he adapted for our specific prohlem, i.e. retrieving the utility super-graph 
for a class of huyers from previous negotiation data. In particular, we needed to derive the 
expressions for the binary case, since existing mathematical definitions [ 197 J arc given only 
for real-valued preference scores. 

In the following, we present the resulting expressions in hoth cases in separate suhsec
tions. As we will later show in the experimental part, only correlation-hased similarity was 
found to work for our task, i.e. retrieving utility graphs from past data, hut for for complete
ness sake, in this chapter, we will report the formulas and experimental results we performed 
for both similarity criteria. 

Cosine-based similarity 

Cosine-hascd similarity is only useful for detecting complementarity effects hetwccn pairs 
of items. The resulting item-item similarity matrix contains only positive entries (hetween 
0 and I), a higher numher denoting a stronger potential similarity. The formula to compute 
the entries in the is: 

N;,j (l , 1) 
S im r.ompt(i ,j) = ~====== 

J N ;(l ) * Nj( l ) 
(3.10) 

Correlation-based similarity 

For correlation-hased similarity, the resulting similarity matrix contains hoth positive and 
negative values (hetween - I and I). We first we define for each item i = l..n, the average 
huy rate: 

Av; = N;( l ) 
N 

(3.11) 
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The following two terms are defined: 

N · ·(O 0) *Av · * Av · - N ·(O 1) *Av · * (1 - 4v ·) i,J ' t J t,J ' i .. J 

- Ni,j( l ,O) * (1 - Avi) * Avj + Ni,j( I , 1) *(I - Av;)* (1 - Avj) 

and the normalization factor: 

Ni(O) * N;(l) 
N * 

The values in the correlation-based similarity matrix are then computed as: 

(3 .1 2) 

3.5.6 Building the super-graph of buyer utilities 

After constructing the similarity matrices, the next step is to use this inforn1ation to build 
the utility super-graph for the class of buyers likely to be encountered in future negotiations. 
This amounts to deciding which of the item-item relationships from the similarity matrices 
should be included in this graph. For both similarity measures, higher values (i.e. c loser 
to I) represent stronger potential complementarity. For substitutability detection, the cosine 
similarity uses a different matrix, while the correlation-based it is enough to select values 
closer to - I . 

Ideally, all the inter-dependencies corresponding to the arcs in the graph representing 
the true underlying preferences of the buyer should feature among the highest (respectively 
the lowest) values in the retrieved correlation tables. When an interdependency is returned 
that was not actually in the true graph, we call this is an excess (extra, erroneous) arc or 
interdependency. Due to noise in the data, it is unavoidable that a number of such excess 
arcs arc returned. For example, if item / 1 has a complimentary value with h and 1'2 is 
substitutable with I :i , it may be that items / 1 and f:J often do not appear together, so the 
algorithm detects a substitutability relationship between them, which is in fact erroneous. 

The question on the part of the seller is: how many dependencies should be considered 
from the ones with highest correlation, as returned by the filtering algorithm'? There arc two 
aspects that affect this cut-off decision: 

• If too few dependencies arc considered, then it is very likely that some dependencies 
(edges) that are in the true underlying graph of the buyer will be missed. This means 
that the seller will ignore some interdependencies in the negotiation stage completely, 
which can adversely affect the Pareto-efficiency of the reached agreements. 

• If too many dependencies are considered, then the initial starting super-graph of the 
seller will be considerably more dense than the "true" underlying graph of the buyer 
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(i.e. it contains many excess or extra edges). Actually, this is always the case to 
some degree, and in f 186] we claim that Pareto-efficient agreements can he reached 
starting from a super-graph of the huyer graphs. However, this super-graph cannot he 
of unlimited size. For example, starting from a graph close lo full connectivity (i .e. 
with 11.2 edges for a graph with n issues or vertexes) would he equivalent to providing 
no prior information lo guide the negotiation process. 

In the general case, we consider graphs whose numher of edges (or dependencies) is a 
linear in the numher or items (issues) in the negotiation set. Otherwise stated, we restrict our 
allenlion to graphs in which the numhcr of edges considered is some linear factor ~: times 
the numhcr of items (vertexes) negotiated on. Framed in this way, the prohlcm hccomcs of 
choosing the optimal value for parameter k (henceforth denoted hy ~~op/). The choice of the 
parameter k,,1,I (and, implicitly, of the density of the maximal utility graph to he considered) 
should depend on the negotiation stage of our model - since it is the negotiation stage that 
actually makes use of this structure. The following section presents the method used for 
choosing this parameter. 

3.5. 7 Minimization of expected loss in Gains from Trade as cut-off cri
teria 

Denote hy N 111 ;ssin!J the numher of edges that arc in the "true", hidden utility graph or 
the huyer, hut will not he present in the super-graph huilt through collahorativc filtering. 
Similarly. we denote hy N cxlra the number of excess (or erroneous) edges, that will he 
retrieved, hut arc not in the true utility graph of the huycr. (in the experimental analysis in 
Section 3.6.6. rather than working with ahsolute figures, we find it more intuitive to report 
these measures as percentages with respect to the number of edges in the true underlying 
utility graph of the huycr). 

The number of edges which arc missing (not accurately retrieved) or excess (too many 
extra edges) depends on the accuracy of the underlying collahorative filtering process. More 
precisely stated, the numhcr or missing edges depends on 3 parameters: the type of filtering 
used (correlation or cosinc-hascd), the amount or concluded negotiation records available 
for filtering (we denote this numher hy N r ) and the number of edges considered in the 
cut-off criteria,~~- Formally, we can thus write: N 111;.,sin_q(corr, Nr , k). In thi~ section we 
focus, however, exclusively on choosing a value fork, and consider the other two parameters 
as already chosen at the earlier step. Thus we simplify the notation to: Nmi.ssin_q(k) and 
N ,,,,1,-n(~'.), respectively. 

As discussed in Section 3.5.6, both having missing and too many extra edges inlluences 
the efficiency or outcome of the subsequent negotiation process. Our goal is to choose a value 
for~; that minimizes this expected efficiency loss during the negotiation. The efficiency loss, 
in our case. is measured as the difference in Gains from Trade which can be achieved using a 
larger/smaller graph, compared to the Gains from Trade which can he achieved hy using the 
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"true" underlying utility graph of the buyer (in earlier work [186,207], we have shown that 
maximizing the Gains from Trade in this setting is equivalent to reaching Pareto optimality). 

In order to estimate this error rate, we consider a second negotiation test set, different 
from the one used for filtering. The purpose of this second test set is to obtain an estimation 
of the loss in gains from trade which occurs if we use a sparser/denser graph than the true 
underlying graph of the buyer. This is done by removing and/or adding random edges to the 
utility graph the seller starts the negotiation with and measuring the effect hy re-running a 
numhcr of negotiation threads. The ideal value for the size of the super-graph will be the 
one that minimizes the expected loss in Gains from Trade, compared to the gains from trade 
which can be achieved by an optimal outcome (henceforth we use the abbrev. "GT loss"). 

In more formal terms, the expected utility loss for using k edges can be written as: 

(3.13) 

Thus, for each value of the number of cutoff edges k, we compute the loss expected as 
maximum between the losses of having too few and loo many edges. As we will show in the 
experimental results (Section 3.6.6), a too small value of k may lead tu many edges heing 
missed, compared tu the true utility graph of the buyer. A too large value of k may lead 
to considering very dense graphs to start with, which also damages the negotiation process, 
albeit more gently (as will he shown in Section 3.6.6). 

Thus we denote the optimal choice of k as: 

(3.14) 

Note that our criteria for choosing k in Eq. 3.14 relies on a similar intuition as "min
max regret" decision criteria, sometimes used in preference elicitation problems involving 
multiple issues [32, 39]. 

The application of the above principle tu selecting a value of k0 ,,1 in practice will be dis
cussed in Section 3.6.6, after we introduce the experimental results we obtained for di fferenl 
cut-off criteria. 

3.6 Experimental Analysis 

This section covers the results from the computer experiments performed to test the negoti
ation and retrieval models formally presented in Sections 4 and 5. Following the structure 
of the chapter itself, this section is divided in two main parts. In Subsections 6. 1 lo 6.3 we 
describe the results from experiments performed on the negotiation model itself (i.e. the 
algorithms presented in Section 4). In Subsections 6.4 to 6.6 we provide results from the 
experiments for the collaborative graph retrieval methods (presented in Section 5). 
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3.6.1 Experimental analysis of the automated negotiation heuristics 

There arc two main dimensions, which we want lo lest in our model: 

• The distance lo Pareto-efficiency of the outcome reached (measured, in our case, as 
the average percentage from the maximum possihlc gains from trade) 

• The time taken to reach a solution, measured as the numher of negotiation steps. 

However, the preference structures, especially of the buyer side, arc considerahly com
plex, thus we need to ensure that the results are rohust enough to hold in a wide range of 
possihle settings. In particular, there are two sets of parameters which can be varied: 

• The parameters of the distributions used to generate values for each of the clusters 
of huyer's utility graph and seller's costs. for a given graph topology arc generated at 
random, according to a set of normal prohahility distributions. 

• The structure (topology) of the Buyer's utility graph itself (thus not only the utility 
values per cluster) can also be generated at random, hased on several classes of graph 
topologies. This is needed in order to show that the results arc not just specifically 
fitted for one graph structure. Moreover, it enahles us to study how the type of topology 
considered affects the performance. 

To intuitively explain the difference, we can consider the k-additivc form of the utility 
function which, in our model, is represented in graphical form (see Equation 3.4, Section 
3.3.1 ). In this case the distrihutions of cluster utilities represent the numerical values which 
will he added up in these sums, while the topology of the graph represents which comhina
lions of terms will appear in this summation (implicitly, all terms for which there is no edge 
in the graph, have the corresponding term equal to zero). 

The organization of this Section is as follows. First we present the a restricted case. in 
which we vary the dispersions of the distributions of the sub-utilities assigned to different 
clusters, for one graphical structure comprised or 20. respectively 50 vertices. These arc 
presented in Section 3.6.2. Section 3.6.3 presents the full simulation results, hy examining 
how well these results generalize across different, randomly-generated graph structures, for 
graphs comprised of 50 vertices. 

Generic experimental set-up for negotiation tests 

Our negotiation model was tested in negotiations of different dimensions, involving 10, 20 
and 50 binary-valued issues. Most of the tests and analysis reported in this chapter refers 
lo the case when utility graphs of the buyer contains 50 vertices (i.e. hinary issues) and 80 
binary dependencies, 50 of which represent positive pairwise synergies and 30 negative ones. 
This cnahles us to explore a wide range of graph topologies in our tests, the choice of these 
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values being founded in the expected properties of the random graphs, as will he explained 
in Sect. 6.4. Graph structures (i.e. topologies) were generated at random, hut following a 
certain distribution of edges into sub-graphs or topics (cf. Sect. 3.6.3). 

However we also tested many other configurations of smaller/larger graphs, as well as 
configurations involving higher-order synergies between up to 4 items (i.e. hyper-edges 
connecting up to 4 vertexes), with consistently good results. For lack of space and need of 
consistency, we cannot cover all the tests for all dimensions here, hut to provide the reader 
some idea of the results for the case of smaller graph dimensions, for comparison, we include 
some results for the 20 binary issues case as well. 

Both buyer monetary utilities, in each cluster (i.e. interdendency) and seller costs are 
generated from normal distributions. On the seller side, the cost of each or the n items 
is normally distributed according to N(JLcust, a cust) - On the buyer side, the value of each 
of n individual items is normally distributed according to N(µ 911;,,8, ay 11 ;,,s) . Moreover, 
the synergy effects between subsets in each of the above 80 binary clusters is normally 
distributed according to N(0, 2a8y11 ). 

To somewhat limit the number of parameters, we set a = a costs = ayuins = a syn• The 
parameter a captures the problem of finding Pareto-efficient solution very, nicely: the higher 
a the higher the likelihood of complementarity and substitutability effects, hence the higher 
the likelihood of non-linearity, in the problem. 

The mean of the cost distribution for each item, on the seller's side, JLcust.s, is set to 
I. For the mean of the distributions for the buyer JLyuins, we conduct experiment with 3 
different values: 1.1, 1.25, 1.5. Otherwise stated, the valuations of the Buyer arc, on al'erage 
I UC¼,, 25% lo 50% greater than those of the Seller. In the reported tests, a takes 8 values, 
ranging from O to 5. In other words, we consider to whole spectrum from no randomness, 
and consequently linear preferences, to a high degree of randomness, and consequently ( with 
probability) highly nonlinear preferences. (i.e. a normal distribution with a mean of I and 
spread 0.5 is rather centered around the mean, while a normal with mean I and spreads or 4 
or 5 is virtually "flat", thus sums over such distributions are more non-linear and difficult to 
distinguish). 

For each combinations of values of µ co.,ts, JLyu ius , and a, 100 tests were performed. 
Therefore for each result point in the graphs from Fig. 4 and 6 refer to averages over 100 
tests. All of these settings for generating cluster values were applied to different randomly
generated graph structures, leading to a large number of negotiation tests. 

In all of the tests reported in this chapter, we considered a buyer and the seller who 
use a time-dependent, monotonic concession strategy in proposing prices the bundles of 
goods. Other concession strategies were implemented with reasonably good results, but we 
acknowledge that there exist conceivable strategies (e.g. hard-headed), that do not lead to 
similar results or, in some cases, do not enable agents to reach a negotiation agreement at all. 

As shown in Seel. 3.2.4, the scope of this chapter is to provide a robust model that 
enables agents to reach agreements in negotiations with complex utility functions and with 
incomplete information. Otherwise stated, our focus is on the Pareto-search aspect of the 
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negotiation, for which, in the complex setting considered, some implicit degree of cooper
ation is needed. Regarding price concessions, we selected a widely used strategy from the 
literature, which is suitahle for our setting, leaving the exhaustive comparison of the effects 
of other concession strategies to future work. 

In the following, we structure the presentation as follows. First, in Section 3.6.2 we report 
and compare the results for two graph structures, involving 20 and 50 binary issues. Next, 
in Section 3.6.3 we take the higher dimension case from our set-up (i.e. the 50 vertex case) 
and we examine the influence of different topologies (i.c structures) of utility graphs on the 
negotiation process. First, we dcscrihc our method for generating different random graph 
structures to encode huycr preferences and we compare the experimental results obtained 
from each of these. 

3.6.2 Experimental results for differently sized graphs 

In this Section, we present the results of negotiation, using two different graph sizes. Re
sults for the case involving 20 issues arc presented in Fig. 3.4, while results for the case of 
50 issues are presented in Fig. 3.5. The basic experimental settings arc the same as pre
sented in the experimental setup, i.e. Sect. 3.6.1 ahovc. Each point was produced from I 00 
negotiations and the error hars give the resulting variance. 

In hoth cases, the right-side figures highlight the results with respect to reaching an agree
ment over the hundle configuration (i.e., the actual content of the hundlc). By agreement, 
we mean that thereafter the hundle content no longer changes. After such an agreement is 
reached, it may take more negotiation rounds hefore bargainers agree upon the final price. 
The bundle to he traded, and thus the Pareto-efficiency of a deal - which is the focus of this 
chapter - is then already determined. even if the parties continue to haggle ahout its final 
price. 

These results arc for just one structure (topology) of the utility graphs, as follows. For 
the 50 issue graph, we have 80 binary dependencies (edges in the graph, as dcscrihcd above) 
and we use the ''Ring" topology (see Sect. 3.6.3 hclow). For the 20-issue case, we have 
used a graph with 24 dependencies, but 4 of these arc 4-way dependencies and 8 are 3-way 
dependencies (representing hyper-edges in the graph). 

From examining the results from Figs. 3.6.1 and 3.5 already some (partial) conclusions 
can he highlighted: 

• Regarding the ability to find bundles close to maximum efficiency, the figures show 
that our approach performs well, for both graph dimensions. For the 20 issue graph, 
the approach is ahlc to extract on average 97% of the maximal Gains from Trade, while 
for the SO-issue configuration only slightly less at 94% of the optimal GT. Worthy of 
note is the performance, in both cases for the higher values of a (e.g., a hetwecn 
4-5). For these values, (with all likelihood) the prohlem hccomes highly nonlinear 
and the buyer's utilities will show a high variance. Thus, for large values of sigma 
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the normal distributions become virtually flat, thus the mixture of such distributions 
becomes harder to detect. 

• Regarding the number of steps required to reach agreement on the configuration, we 
do sec a significant increase in this number for larger values or a. Furthermore, here 
we also sec a significant difference (more than a 2-fold increase) between the 20 and 
50-issuc cases. Clearly, for higher-dimensional problems and larger values of a, the 
negotiation becomes more difficult to solve, so more steps arc needed to correctly 
update the model of buyer's preferences and to find a good bundle. Nevertheless, a 
bundle very close to maximal efficiency is usually found, even in these more diflicult 
cases. 

Of course, the above conclusions were reached by varying the cluster potentials, but not 
the graph structures themselves. In order to fully validate our approach, we need to verify 
whether these results hold for a variety of different graph topologies - which correspond to 
different mixtures of utilities obtained from the distributions in each cluster. 

3.6.3 Set-up and results for different graph structures 

As mentioned in Section 3.6.1, we tested our models for graphs with n = 50 binary issues 
and m = 80 random clusters (edges). The question we try to answer here is: given these 
coordinates, how arc graph structures generated? One obvious solution would be to generate 
the graph completely at random - i.e. select at random, for each of the 80 dependencies, 
the vertexes which they connect from the 50 vertexes/items (checking they do not coincide). 
However, for reasons explained in the sequel, here we use a more structured approach. In 
our approach, the n vertexes and m dependencies (edges) arc first divided into k1 topics 
(subgraphs), not necessarily disjoint, each of them containing n/ k1 vertexes and m/ k1 de
pendencies (in the experiments reported in this chapter, we use k1 = 5, hut other values have 
also been considered). 3 Thus, each topic is a completely random subgraph, containing, in 
our case IO(+/- 2) vertexes and 16 edges (differences arc given by the fact that there arc 
some vertexes that belong to more than one topic. As opposed lo to other uses of the term 
"topic" [47,48], in our usage of the word, topics are just a way lo generate separately random 
subgraphs - topics arc not separated from each other (except in one case: con fig. B from Fig. 
3.6). 

There arc several reasons why we chose this form of generating random graphs: 

• Having a graph which is decomposable, based on a set of cutscl nodes, is important 
for the search algorithm. The size of the maximal subgraph (or topic) which results 
from such a decomposition has lo he manageable, in order to be explored exhaustively. 
This property cannot be guaranteed for a random graph with a large number of edges 

J As used in this chapter, the notion of .. topics" is quite different from that of .. clusters". Topics represent sub
grnphs, while utility clusters arc represented by graph edges (or hyper-edges for more than 2-additivc dependencies). 
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Figure 3.4: Percentage of the maximal Gains from Trade (compared to the Pareto-optimal 
hundle) and number of steps needed to configuration agreement, for a huyer utility graph 
with 20 issues. 
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Figure 3.5: Percentage of the maximal Gains from Trade (compared to the Pareto-optimal 
bundle) and numher of steps needed to configuration agreement, for a huyer utility graph 
with 50 issues. 

[20,191]. Of course the alternative is to choose much sparser graphs (with fewer 
edges). Nevertheless, we need relatively dense graphs (with a sufficient number of 
edges, representing linear inter-dependencies), in order to test the robustness of the 
model. This solution enahles us to achieve hoth desired effects. 

5 
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• The parameter k1 given ahove can provide a fine tuned-control for the type of graphs 
we generate. For example, for kt = l, we gel back the fully random graph described 
above, while For kt = n (i.e. choosing one item per topic), we gel hack the linearly 
additive case (if there are no edges, hence no interdependencies). Thus, increasing 
k1 has the effect or increasing the structure of the resulting graphs. Nevertheless, 
graphs obtained with higher values of k1 arc easier lo decompose. We considered 
several values, but we argue kt = 5, reported in this chapter provides a good trade-off 
between randomness and a decomposable structure. 

• By using this procedure, we can considerdifferentjoinings of the random graph topics 
(which can share one or more cutsel nodes). This is important, since the goal or our 
lo obtain a characterization of how (and whether) different types of graph structures 
affect the negotiation algorithm results. Several cluster arrangements were selected, 
as shown in Fig. 3.6 - with the culsel nodes (i.e. nodes belonging lo more than one 
topic) marked. 

An issue lo be discussed is the connectivity of the graph that results from this procedure. 
The issue of connectivity is important - since, in our case, the utility graph represents a 
number of interacting hyperplanes - which determines the complexity of the problem for the 
learning algorithms. In our case, we can show the following property: 

Proposition 1 The random graph structures generated from Fig. 3.6 (for configurations A, 
C, D and E) are connected with probability 97%. 

Proof: This is a simply an application of random graph theory. For each random topic of 
IO nodes and 16 randomly-generated edges, the probability that ii is fully connected is equal 
lo 99.4% (cf. [20), pg. 402 - for c=2.25). Since, for all conliguralions A, C, D, and E the 
topic arc connected by construction (there are nodes belonging lo more than one topic), the 
probability that the graph composed of 5 topics is connected is: 99.4a = !)7%. This also 
explains our choice for 80 edges (clusters) for 50 issues. 

In Fig. 3.7, the experimental results for all the graph topologies are shown. The experi
mental procedure is the same as described in Section 3.6.2, hut repeated over all topologies. 
Each point from Fig. 3.7 (corresponding lo a given topology/ standard deviation for a clus
ter) represents an average taken over 100 tests. However, for the clarity and readability of 
the picture, we do not show the error hars here (they arc around the same scale as those in 
Fig. 3.5 - around 5% for each data point). 

Several conclusions can be drawn from the analysis of these figures . First, we observe 
that when the graph topology is loose (i.e. the graph is completely separated into 5 topics 
that are not connected to each other), the negotiation produces the best results and over 
95% of the maximal Parco-efficiency is achieved. The most "difficult" topologies for the 
algorithm were the ''double chain" and the irregular ones, where there arc several cutsel 
nodes, belonging lo morn than I topic (in this case, the average efficiency achieved goes 
down to around 85% ). However, it's important lo note that the variances of these results arc 
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Figure 3.7: Percentage of the maximal Gains from Trade and number of steps needed to 
configuration agreement, for all graph topologies studied 

also quite significant (around+/- 5% for each data point). Because of these high variances, 
the differences hctwccn the different graph structures (topologies) arc, statistically, not very 
significant. These results show that the proposed negotiation heuristics can extract a high 
percentage of the gains from trade and are relatively rohusl to different graph structures 
(extracting 85% of the maximal Pareto-efficiency for complex topologies and high variance 
in cluster utility values -generated around a mean of I - is a rohusl result). 

Regarding the numhcr of negotiation steps required to reach the outcome, we ohscrve a 

5 



Modeling Complex Multi-Issue Negotiations Using Utility Graphs 87 

similar effect: when the utility functions have a "loose" or "star" topology, negotiations take, 
on average, less steps than then in the "double chain" case, when there are more than I node 
in each cutset. However, we observe that overall, the standard deviation used in generating 
utilities in each cluster has a stronger impact than the topology of the graph itself. In terms 
of Fig. 3.7 b, the number of negotiation steps increases as we move towards higher standard 
deviations for all plots, by a higher factor than the differences between topologies. 

However, the negotiation algorithm is able to extract over 85% of the Gains from Trade 
for all standard deviations and topologies, even if in some cases the process takes 50 negotia
tion steps (as stated before, we report results here do refer to the monotonic, time-dependent 
concession case). Thus, overall these results support the underlying idea put forward in this 
chapter. That is, having a maximal utility graph of possible interdependencies can be used to 
successfully navigate the contract space and reach Pareto-efficiency with a limited number 
of steps, even for a relative large number of interdependent issues. 

Finally, we should mention that, while our method for generating random graphs is well 
grounded in theory and allows us to generate highly non-linear preference classes, future 
work we could consider adapting custom-made generators, such as CATS (Leyton-Brown ct 
al. [ 142]) for this problem. While the CATS approach was designed mostly for generating 
bids in combinatorial auctions, it could conceivably be adapted for multi-issue bargaining 
settings, such as ours. 

3.6.4 Experimental set-up and analysis of the collaborative filtering 
model 

All the experimental results reported above for automated negotiation tests refer to the case 
when the seller does know a an approximate (i.e. maximal) structure of the utility graph of 
the buyer (although, of course, not anything about the actual values in that graph, for the 
particular buyer he is negotiating with). Otherwise stated: even though for each negotiation 
trace both the structure and utility values for each buyer were generated at random, the seller 
agent does know a graph topology which is a super-graph of the actual topology of the buyer 
(with a certain number of extra, spurious edges added at random). The question is: in a real 
e-commerce scenario, how does the seller acquire this (approximate) structure information 
in order to help him make proposals during the negotiation'! The answer (already extensively 
provided in Section 3.5 of this chapter) involves using the intuition that graph topologies for 
a set (or class) of buyers are not completely random, but largely overlapping. Therefore, 
by looking at previous concluded negotiation data, the seller can approximately retrieve this 
structure. In this section, we present the results from experiments performed to test this 
graph topology retrieval model. 

The settings used in generating artificial negotiation data for graph retrieval are largely 
the same as the ones described in the above section. Thus, we still work with graphs con
taining 50 issues, 80 random binary dependencies of which 50 positive and 30 negative. The 
tests we performed can be basically classified into two parts, which follow the structure of 
the model presented in Section 3.5: 
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• First, a set of tests was performed in order to choose which similarity criteria arc 
relevant and useful for this setting (sec Sect. :t5.5). In this section, we examined 
how rohust arc these results to higher deviations in generating random huycr profiles 
and how much previous negotiation data is needed in order lo efficiently learn this 
approximate structure. 

• The second set of tests concerned the selection of the cul-off point for the numhcr of 
edges lo he included in the maximal graph (see Sect. 3.5.7 for a formal description). 
We tested different graph sizes and we examined how error in the retrieval of the 
structure of the maximal graph affects the negotiation stage. 

In the following, we first descrihc the experimental set-up for these tests. Next, in suh
scction 3.6.5, we present and compare the results for the two collaborative filtering criteria 
considered. Finally, in Section 3.6.6 we show the results for determining the maximal graph 
cut-off point. 

Experimental set-up for graph retrieval tests 

There arc two dimensions across which the the efficiency of retrieval needs lo be tested: 

• The strength of the interdependencies in the generated buyer profiles. This is 
measured as a ratio of the average strength of the inter-dependency over the average 
utilities of an individual item. To explain, each buyer profile is generated as follows: 

First, for each item, an individual value is generated hy drawing from identical , in
dependent normal distributions (i.i.d.-s) of center Cindilliduat - it.em = 1 and variance 
0.5. Next, the suhstilutability/complcmentarity effects for each each binary cluster 
are generated hy drawing from a normal i.i.d-s with a centers Cnon- l in c,,rily · The 
strength of the interdependency is then taken to he ?nnn - lin,arity . The smaller this 

C;ndi,,i.dual - ilfo.m 

ratio is, the more difficult it will be to detect non-linearity (i.e. complementarity and 
suhstitutahility effects between items). In fact, if this ratio lakes the value 0, there arc 
no effects to detect (which explains the performance at this point), at 0.1 the effects 
arc very weak, hut they become stronger as it approaches I and 2 (which is the range 
considered here). Thus, this ratio can he intuitively interpreted as a "signal to noise·• 
ratio (i.e. the non-linearity effect representing the signal to he detected, vs. the noise 
due to dispersions in individual utilities). 

• Number of previous negotiations for which information is available. 

The performance measure used is computed as follows. Each run of the collaborative 
filtering algorithm (for a given history of negotiations, and a certain probability distribution 
for generating that history) returns an estimation of the utility graph of the buyer. Our per
formance measure is the recall, i.e. the percentage of the dependencies from the underlying 
utility graph from which buyer profiles are generated, which arc found in the graph retrieved 



Modeling Complex Multi-Issue Negotiations Using Utility Graphs 89 

by the seller. Due to noise and/or insufficient data, we cannot expect this graph retrieval pro
cess to always have IOO% accuracy. We therefore studied what is the effect of an imprecise 
graph on the part of the seller on the negotiation process itself (stage 2 of our approach). 
This is discussed in Section 3.6.6. 

3.6.5 Results from retrieval experiments using cosine-based vs. corre
lation based similarity 

The setting presented above was tested for both cosine-based and correlation based similarity 
(see Sect. 3.5.5). Figure 3.8 gives the resulting graphs for the cosine-based case, while 
Fig. 3.9 gives the results for the correlation-based one. Each of the points plotted and 
resulting dispersions was computed by averaging over 100 different tests. To make the tests 
as independent as possible, a new data set was generated for each test. 

The overall conclusion which can be drawn from our tests (see Fig. 3.8 and Fig. 3.9) 
is that one of the techniques we investigated, namely correlation-based similarity is consid
erably more successively than the simpler, cosine-based similarity technique. This can be 
observed from Fig. 3.8 and Fig. 3.9: while correlation-based similarity can extract 96% 
(+/- 7%) of dependencies correctly given enough data (from around 1500 completed nego
tiations) and strong enough dependency effects (above I), cosine-based similarity achieves 
a maximum of just above 40%. Thus, we find that correlation-based similarity seems to 
pcrfom1 well for our task - i.e. retrieving the graph topology, especially since we need to de
tect not only complementarity effects, but also substitutability ones. Cosine-based similarity 
(which, according to some sources, e.g. [145] was the initial algorithm behind Amazon's rec
ommendations) is conceptually simpler and works well only in detecting complementarity 
dependencies and only in the case when the data is relatively sparse (each buyer expresses in
terest only in a few items). Correlation-based similarity gives a more sophisticated measure 
which docs not have these limitations. 
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Figure 3.8: Results for the cosine-hased similarity. Left-side graph gives the percentage of 
correctly retrieved dependencies, with respect to the average interdependency strength, while 
right-side graph gives the percentage of correctly retrieved dependencies with respect to the 
size of the availahle dataset of past negotiation traces. 
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Figure 3.9: Results for the correlation-based similarity. Left-side graph gives the percentage 
of correctly retrieved dependencies, with respect to the average interdependency strength , 
while right-side graph gives the percentage of correctly retrieved dependencies with respect 
to the size of the availahle dataset of past negotiation traces. 
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3.6.6 Experimental results for selecting graph cut-off number of edges 
in the maximal graph 

After measuring the effect of the two similarity criteria considered (i.e. cosine and correlation
bascd), as well as the effect of different amounts of data, we present results for different 
cut-off sizes for the maximal graph (i.e. the k parameter introduced in Section 3.5.7). For 
all tests reported in this Section, we used correlation-based similarity and we assumed l000 
records of previous negotiations are available for filtering. We chose lo focus on correlation
based similarity since this criteria clearly performs better, in this setting, than cosine-based 
similarity (see above results). Also, as shown in Sec. 3.6.5, l000 records is a reasonable 
amount of data lo ensure a good accuracy of retrieval for correlation similarity. 

For all the tests reported here, we report the cut-off values (which are in fact, a maximal 
number of edges considered) as percentages of the number of edges in the true, underlying 
graph of the buyer (which, as shown above, contains 80 edges, generated at random). 

.; 100 
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Figure 3.10: Percentage or correctly retrieved dependencies from the underlying graph or 
the buyer for different number of cut-off number of edges considered. On the vertical axis, 
the difference to 100% corresponds to the percentage of missing edges in the retrieval. The 
number of cutoff edges on the horizontal axis are given as percentages of the actual true size 
of the buyer's graph (i.e. 80 edges in our case) 

From Figure 3.10 we can see that the number of missed edges decreases as we increase 
the number of edges taken as part of the maximal graph (the edges are taken in decreasing 
order of value from the correlation tables). However, we should point out that after a value 
of 150% - 200% frm the actual size of the true graph (i.e. k = 3 from Section 3.5.7), 
this increase is not so great and the dispersion of the results also increases. Intuitively, this 
means that there arc a number of edges - about 15%-20% or the total (remember graphs 
arc generated at random), which appear inherently "hard" to find for the filtering algorithm. 
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Of course, we may achieve a higher percentage if we take more information on concluded 
negotiations, hut for consistency, here in all tests we limit ourselves to I 000 records. 

After determining what the error rate is likely to he for different maximal graph sizes 
(i.e. sizes of k), we performed another set of tests in order to estimate the loss in Gains from 
Trade during the actual negotiations when when the seller starts the negotiation with a graph 
topology which misses edges or contains considerably more edges than usual. Results are 
reported in Figures 3.1 I and 3.12. For all results reported in these figures, l<Xl tests/point 
have heen performed. We should point out, though, that the difficulty of the search problem 
in such a setting depends not only on the sparseness or density of the graph. hut also on 
the dispersions of the normal utility function used to generate random values in the clusters 
corresponding lo each edge (as discussed in the experimental results from the negotiation 
model itself). In order not lo artificially inflate the results, for all the tests reported here we 
used a normal distribution centered around I with spread S, which is the most non-linear 
case considered during the negotiation tests. 

From Figs. 3. 11 and 3.12, several conclusions can he drawn. First, missing edges from 
the graph the Seller starts the negotiation with has a considerably greater negative effect than 
adding too many extra (erroneous) edges. 

Thus, as shown in Fig. 3.1 I, in order lo gel above 90% of the optimal Gains from Trade 
in future negotiations, the retrieval process cannot miss more than about IS% of the true 
inter-dependencies in the true graph of the Buyer. However, having a considerably denser 
starting graph does not degrade the performance so significantly. In fact, as we see in Fig. 
3.12, having 3 times as many edges than in the original buyer graph (which means 2/3 of all 
edges are erroneous). only decreases performance with around 4%. 

By examining the 3 graphs above, we can conclude that in this setting (i.e. a random 
graph of SO issues with 80 edges), the hcst cut-off point would he having 200% more de
pendencies than in the true graph of the seller (i.e. around I SO edges, or a k = 3). This 
level would mean that about IS% from the edges in the true super-graph of the buyer will 
be missed hy the filtering process. However, it would ensure that we still get at least 90% of 
optimal Pareto-efficiency, on average, after 40 negotiation steps. 
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Figure 3.11: Effect of missing edges (dependencies) in the starting Seller graph on the 
Pareto-optimality of reached negotiation outcomes 
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3. 7 Discussion 

In this section we provide a comprehensive review or related work, highlighting the features 
which arc comparable lo those from our approach. First, we position our work on multi-issue 
negotiation, by comparing it lo other direct-revelation allocation methods such as combina
torial auctions. We show there is a strong connection between our approach with the work 
on preference elicitation over multiple issues (items). Next, we provide a review of previ
ous work on agent-mediated negotiation, focusing in particular on multi-issue negotiation 
models (Seel. 3.7.1 ). We conclude by summarizing the main contributions of our work and 
identifying directions for future research. 

3.7.1 Comparison to other automated negotiation (bargaining) approaches 

Agent-mediated negotiation is a widely researched problem in electronic commerce and re
source allocation settings (for comprehensive overviews or the field, the reader is asked lo 
consult, e.g.: Kraus'99 [1291, Lomuscio el al.'03 [1471, Gerding cl. al, '00 [821, Lai cl. al, 
'05 [ 134]). Several previous results model automated negotiation as a tool for supporting the 
buyer's decision process in complex e-commerce domains [60, 79, 126,207]. Most or the 
work in multi-issue negotiations has focused on the independent valuations case. 

Faralin, Sierra & Jennings [71] introduce a method lo search the utility space over mul
tiple attributes, which uses fuzzy similarity criteria between allribulc value labels as prior 
information. Cochoom and Jennings [ 163] extend this model with a method lo learn the 
preference weights lhal the opponent assigns lo different issues in the negotiation scl, by 
using kernel density estimation. These papers have the advantage lhal they allow flexibility 
in modeling and deal with incomplete preference information supplied by the negotiation 
partner. They do nol consider the question or functional interdependencies between issues, 
however. 

Other approaches lo multi-issue negotiation problem are the agenda based approach (Fa
tima el. al. [72, 73]) and the fuzzy constraint-based negotiation approach (Luo cl. al. [149, 
2321). Debenham [60] proposes a multi-issue bargaining strategy lhal models the iterative 
information gathering which lakes place during the negotiation. The agents in Debenham 
'04 [60] do nol explicitly model the preferences of their opponent, bul construct a proh
ahilily distribution over all possible outcomes. However, these models arc nol explicitly 
designed lo address the problem of complex and high dimensional negotiations. 

The argumentation approach lo negotiation (sec Rahwan el. al. [ 178] for an overview) 
allows the agents lo exchange nol only bids, bul also arguments that influence other agents' 
beliefs and goals, which, il is claimed, allows more flexibility. Some issues which are usually 
left open in such approaches are: how do the agents' mental slates relate lo their utilities 
and if (or how) can the efficiency of such negotiations he measured from game-theoretic 
perspective. 

Raz cl. al.'06 [ 1831 propose a model for hilalcral multi-issue negotiation with bounded 
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rational agents (including humans). Their approach uses Bayesian updating lo estimate the 
type of the opponent, considering linearly additive preference functions. Kraus & Schechter, 
' 03 [ 128] consider a model of bilateral negotiation, hut in a complete information selling. 
Their work mostly focuses on examining agent strategics in case one agent loses utility over 
lime, while the other gains utility over lime. 

Luo el. al. [ 148] propose a "default and adjust" technique lo acquire a user's trade-off 
preferences for negotiating agents. This work is only loosely related lo ours, since the paper 
mostly focuses on acquiring trade-offs between two, continuous-valued issues (e.g. quantity 
and price). Gerding cl. al. [79] also consider two attributes (price & quantity) in a setting 
where agents utilities can he described by a Cobb-Douglas utility function. The use evolu
tionary simulation to model the agents' learning and adaptation. The emphasis of this paper 
is more on adaptation to different strategies in a one-many setting than on multi-issue explo
ration. Other lines work focus on other aspects of negotiation, such as coordination between 
multiple, concurrent negotiation threads (Nguyen & Jennings [ 167]), generating promises 
of future rewards in repeated negotiation games (Ramchurn ct al. [ 181]) or possibi listic se
lection of negotiation partners (Brzostowski & Kowalczyk [341). Other lines of work pro
pose multi-issue negotiation protocols specifically geared lo an application domains, such 
as crisis management (Hcmaissia ct al. [99)) or internet-based service provision (Dang & 
Huhns [57]). 

Somefun, Gerding & La Poutre [80] propose a negotiation mechanism where the bar
gaining strategy is decomposed into a concession strategy and a Pareto-search strategy. This 
is somewhat similar to the approach taken in this chapter, though here we mostly focus on the 
Pareto-search. The Pareto search strategy discussed in [80] is, however, rather different than 
the on presented on this chapter, since [80] focuses on two continuous issues, correspond
ing to a two-part tariff. The search is performed using an orthogonal or derivative-follower 
strategy, in the space of ISO-utility lines. A similar negotiation strategy, which involves 
choosing an offer on the iso-utility (or "indifference") curve that is closest to the best of
fer made hy the opponent in the previous negotiation period is proposed by Lai, Sycara & 
Li [ 135, 138]. The methods presented in these papers build on earlier work hy Ehtamo & 
Hamalainen [67], who present a constraint proposal method to construct the Pareto-efficient 
frontier of a multi-attribute negotiation, by means of a non-biased mediator. 

Boutilier ct al. [26] present a cooperative negotiation model for autonomous systems, 
through incremental utility elicitation. Using decentralized resource allocation as a problem 
setting, they emphasize the difficulty of eliciting complex utility functions and propose a 
strategy that requires only a small set of sampled utility function points in order to find 
near-optimal allocations. The perspective on negotiation as partially a preference modeling 
problem is close to the one taken in this chapter - however there arc important differences, 
since their model uses minimax regret, not Parcto-cflicicncy as an optimality criteria and 
the work reported in [26] does not handle multidimensional utility functions over multiple 
resources. 

Another, more fundamental, direction is taken in papers that study the communication 
complexity ( e.g. Chevalcyre cl. al. '05 [ 47, 48]) and or computational complexity (Dunne cl. 
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al. [66]) of multi-issue negotiation protocols. The work of Chevaleyre et al. [ 47, 48) is related 
to our approach in the way they define complex utility functions over bundles of resources. 
However. unlike this work (and much of the work on multi-issue negotiation reviewed in 
this Section), their work is mostly concerned with deriving theoretical bounds for different 
negotiation protocols and utility function classes. While this provides very useful insight 
for other research, they do not propose directly implementable negotiation algorithms or 
heuristics (that can handle incomplete information settings, for instance). 

Two negotiation approaches that specifically address the problem of complex inter-dependencies 
in high dimensional negotiations over binary issues - and are therefore most related to our 
work - are Klein et. al. [ 126] and Lin [ 144). Klein et. al. [ 126] use a setting similar to the 
one considered in this chapter, namely bilateral negotiations over a large number of boolean-
valued issues with binary interdependencies. In this setting, they compare the performance 
of two search approaches: hill-climbing and simulated annealing and show that if hoth par-
ties agree to use simulated annealing, then Pareto-efficient outcomes can be reached. In a 
similar line of work, Lin [144) uses evolutionary search techniques and mediation to reach 
optimal solutions. By comparison to our work, these approaches do not try to use prior in
formation, in the form of the clustering effect between the preference functions of different 
buyers, in order to shorten individual negotiation threads. At least from the results reported 
in [ 126), they appear computationally more expensive (around 2500 steps/ 50 binary issues). 
However, there is no established benchmark for this problem, so the complexity of non-linear 
dependencies considered in [126] cannot he directly compared to the complexity considered 
here (though, in future work, it would be interesting to compare the two approaches, if a 
clear benchmark could he defined). 

In more recent work, Ito, Hattori & Klein [ I 081 propose an auction-based negotiation 
protocol for agents with non-linear utility functions. In their approach, each agent samples 
and searches its own utility space, and then submits the hest found contract points to a 
central mediator (or auctioneer). The mediator then selects the contract combination that 
is consistent and maximizes the social welfare of the bidders. Although such a centralized 
method (resembling a combinatorial auction) has some advantages (e.g. it easily allows 
multi-party negotiation), assuming a central, impartial mediator may not he suitable in many 
application settings. Fujita & Ito [75] develop an extension of this work, by proposing a 
mechanism of adjusting the utility threshold above which hids are accepted hy the auctioneer. 

Another related work, which also considers bundles of binary issues is Somefun, Klos 
and La Poutre [207). Our work builds on the framework for analyzing negotiation outcomes 
developed in [207], expecially with regards to defining Pareto-utility through Gains of Trade 
(see Appendix 3.A of this chapter). However, the actual negotiation model proposed in [207) 
involves attempting to learn a relationship between pairs of bundles of items (as opposed to 
between the items themselves, such as in this work). As the number of bundles is exponen
tial, even for relatively small number of items (e.g. for 10 items, there are already 210 > 106 

possible bundles), their approach is computationally feasible only for small-scale settings. 

Hyndriks, Thykohonov & Jonker [ 102) handle bilateral multi-issue negotiations with 
interdependent valuations, by proposing a method to eliminate the dependencies between 
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the issues. Unlike our model, their approach does not involve building a model of opponent 
preferences, but it relies on approximating a jointly agreeable point in the contract space 
and then performing a local search around this point (through a weight function). This may 
be a promising solution in some settings, although in the complex k-additive utilities case 
we consider, eliminating or "linearising" the dependencies would not be Feasible for most 
settings. Furthermore, in a large contract space finding a good initial contract (around which 
to base the search) is a complex problem in itself, which, similar to our work, requires some 
implicit assumption about the structure of buyer preferences. 

3. 7 .2 Relation to graphical utility models and preference elicitation 

Regarding graphical representation of utilities, several other well-known formalisms have 
been proposed and analysed in terms of expressiveness and conciseness of the functions 
which can be represented. The best known are CP-nets and Directed Acyclic Graphs (DAGs) 
- and their extensions l9, 30, 32, 39, 44,219]. Some of this work was actually developed in 
parallel to ours, with a view of application to a different class of problems although, in 
retrospect, it would be very interesting to also study how these formalisms could be used 
in a multi-issue negotiation setting. There are, however, some important differences by 
comparison to our utility graphs definition. 

First, existing literature on DAGs uses directed graphs to model utility. By comparison 
to [9, 30, 39, 44], our model is based on undirected graphs, which are specifically geared 
for representing k-additive utility functions. In the setting of negotiation, the undirected 
utility graph Formalism may have some important computational benefits. As shown in this 
chapter and the related publications, efficient heuristics can be found (c.f. Sect. 3.4) for 
decomposing such utility graphs online and learning the associated cluster values. Moreover, 
for the undirected graphical model proposed here, we also show how the structure of the 
graph itself could be constructed from past, aggregate negotiation data. To the best of our 
knowledge, this has not been attempted before in prior literature on directed graphical utility 
models. In Bayesian probability theory, learning causalities from data is known to be a 
considerably more difficult than just learning correlations [ I 72, I 73]. Therefore, we can 
conjecture that learning structure could also prove more difficult for directed utility graphs 
than for undirected ones, although further research is needed in this direction. 

Another important and somewhat related line of work is that of preference elicitation. In 
this context, we can identify a link between models used in preference elicitation and multi
item negotiation. For example, Brazunias and Boutilier [32] propose a model (developed 
independently and concurrently with our work), for utility elicitation in generalized addi
tive independence (GAi) models. There are, however, also important differences. First, the 
model proposed in [32] uses a different graphical fonnalism to encode preferences, while 
their optimization criteria is the error in reached in the utility of the buyer, not Pareto effi
ciency. In preference elicitation settings, the prices asked by the seller are fixed throughout 
the process and are known to the oracle (if one sees the oracle as roughly corresponding 
to the buyer agent in our setting, i.e. the party whose preferences need to be modeled or 
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learned). By contrast, negotiation is usually a game with douhle-sided incomplete infor
mation. Although the parties start from an initial vector of asking prices, the huyer has an 
incentive not only to explore the bundle contents, hut also to bargain about the price of the 
hundle heing offered (according to his/her negotiation strategy). Finally, in [32] (just as in 
our previous work [ 1861), the problem of acquiring the initial graphical model structure is 
left for future research. In this chapter a complete model is proposed, since we show how 
the topology of such utility graphs (an implicitly of the utility space) can he approximated 
from anonymous huycr data, using techniques from item-hased collaborative filtering [ 1451. 

3.8 Conclusions and future work 

Much of the existing work (of which we are aware) of that consider negotiation settings close 
to ours (i.e. large number of issues with complex dependencies [ I 08, 126, 144]) assume, in 
some form, the presence of an independent mediator. The role of the mediator and the exact 
protocol used varies in each approach, corresponding to varying degrees of centralization. In 
seuings where a non-biased mediator is used (similar to combinatorial auctions), the problem 
of indirectly learning the negotiation opponent's preferences is not posed (and often docs not 
need to be posed), because the mediator agent can elicit the preferences of negotiating agents 
through direct queries. This is a significant difference with this work, where the problem of 
modeling a randomly-encountered negotiation partner's preferences is central in order to 
reach jointly efficient (close to Pareto-optimal) agreements. Given the complexity of this 
task, we propose a solution based on two-step model. First, we use some information ahout 
the most likely preference structure, based on the clustering effect of the preferences for a 
statistical population of huycrs (a similar approach as to that taken in collaborative filtering). 
Next, this model is refined and improved during the negotiation stage itself, based on the 
counter-proposals of the specific negotiation partner. 

The contribution of our work lo existing negotiation literature can he summarized as 
follows: 

• It shows that multi-issue negotiations for agents with complex, k-additive utility func
tions can lead to jointly efficient outcomes, even with a limited number of negotiation 
steps are available (due to time constraints, buyer impatience etc.) and even when the 
preference functions of the two parties remain private. 

• It considerably improves the speed of existing heuristics for this problem, for the type 
of utility functions we consider, hy using anonymous, aggregate huyer data. 

• It shows that graphical models of utility (an area of AI that has received considerable 
research attention) can be naturally applied lo multi-issue negotiation settings. In par
ticular, it shows the usefulness of undirected graphical models in handling negotiations 
for agents with k-additive utility functions. 
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• ll eslablishes a formal link (in lhe form of lhe maximal slruclure of a ulilily graph for 
a class of buyers) belween opponent preference modeling used in negotiation settings 
and the way of modeling preferences used in collaborative/social ti ltering systems. 

As Future work, there are several directions which could he explored in this area. An 
immediate one is to sludy olher classes of non-linear preference functions for which it is 
possible to reach Parelo-eflicient agreements, under double-sided incomplete information, 
wilh a linear number of negoliation steps. To this end, we inlend to make use of results from 
random graph theory [ 191] and constraint processing [61 ]. 

Second, we could consider several, distinct super-graphs for different sub-populations of 
buyers (rather than just one, as in this chapter). Buyers could then be assigned to a certain 
sub-population at runtime, during the negotiation thread itself. In the longer term, another 
potentially very fruitful area of research would be to explore the connection between our 
work and problems studied in preference elicitation. Arguably, the techniques developed in 
this chapter and [ 186] in lhe context of multi-issue negotiation could also he applied to the 
problem of eliciting user preferences for non-linear, high-dimensional setlings. 

Appendix 3.A: Equivalence between maximization of the Gains 
for Trade and Pareto-optimality 

In this Appendix, we formally prove that, in quasi-linear utility settings, bundles maximizing 
the Gains from Trade Pareto-dominate all other bundles. This proof holds for settings where 
the utilities of the agents can be expressed in monetary terms, i.e. are quasi-linear. For 
our case, this means the ulility lhat buyer and seller gel from lrading a bundle of ilems can 
be expressed in terms of net monetary value. For the buyer, this net monetary value is the 
difference between his ulilily from getting the bundle being exchanged (expressed in lerms 
of money) and the price he pays for it. For the seller's (i.e. electronic merchant's), the net 
monetary value is the difference between the price he receives for a bundle and his cost for 
providing it. This proof first appeared in previous work on negotiation of [207]. 

Formal Discussion 
Before being able to more formally state the results, some notation is necessary. Let N C N, 
with n = INI, denote the collection of n individual goods and 2N denotes the power set of N 
(i.e., the collection of all subsets of n), then B = 2N \ {0} denotes the collection of all pos
sible bundles. Furthermore, lel P = Ii denole the collection of all possible bundle prices.4 

The cuslomer and the shop allach lhe monetary values of v.,( b) and v,, ( b ), respectively, to 
a bundle b E B (with vc(b) , v.,(b) E P). The funclion Xj : B x P 1-t Ii with j E { c, s} 
denotes the net monelary value for bundle band bundle price p: xc(b,p) = vc(b) - p and 
x,,(b,p) = p -v,,(b) denote the customer's and the shop's net monetary values, respectively. 

~Negative prices may not Ile realistic, hut we want to make as few bchavioml assumptions as possible. For the 
results the possibility of ncgalive prices is not problematic (sec Foo1nolc 5). 
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We assume that the customer's and the shop's utility for consuming hundle b for a price 
p, denoted by 1Lj ( b, p) with j E { c, s}, can he expressed as the composition function [/j o 

Xj (b, p) with j E { c, .'I} and [/j : IR t-+ Ill For Yi we assume that d!!~~xl > 0 for all :r. E IR 
and j E { c, s }. Thus we have that Uj (b , p) = !Jj (Xj ( h, p)) and since Yi is a strictly increasing 
function we can without loss of generality assume that 1L j ( b, p) = x J ( b, p) for j E { c, .'I} 
(cf. [153]). 

Given the customer's and shop's monetary values, we define a useful suhset B * of Bas 
follows: B * = arg maxt,EB ( V e ( b) - V 8 (I,)), that is, B* represenl'- the collection of hundlcs 
with the highest gains from trade. We arc now ready to introduce the following proposition. 

Proposition 2 A deal (b , p) with b E B and p E Pis Pareto efficient (f and only (f b E B*. 

Remark I A deal (b , p) is Pareto efficient (f there is no ( b', 7/) such thatuj ( I,, p) ::; 1Lj (// , 7/ ) 
for all j E { c, s} and the inequality is strict.for at least one j. 

Proposition 2 means that a deal is Pareto efficient if and only if it entails a hundle with 
the highest gains from trade. For the proof of this proposition the following lemma is very 
useful. 

Lemma I For any two deals (b* ,p*) and (b , p) with p* ,P E P, b* E B *. and b E B \ B * 
wehave x c(b,p) < Xc(b* , p*) orx.,(b,p) < X8 (b*,p*). 

Proof I We prol'e the above lemma by contradiction. Suppose that for any /,* E B * and 
b E B\B* we ha11e Xc(b,p) 2: Xc(h* ,p*) and X 8 (b,p) 2: x ., (b* , p*). A necessary conditions 
for this to hold is that vc(b) - vs(b) 2: Vc(b*) - v.,(b*). However, b* E B* and b E B\ B * 
means, by definition of B *, that Vc(b) - v., (h) < Ve( b*) - v,.(b*). 

We arc now ready to prove Proposition 2. 

Proof 2 /. ({{) Pick any j E {c, s }. Suppose that j's position impro11es by moving.from 
any deal (b,p) with b E B* to (b',p'), that is, 1LJ(b,p) < ui (b',p'). It then s1{{
fices to show that the opponent denoted by j' will always be made worse off, that is, 
u J' (I, , p) > ui' ( h', p'). From the properties of [/j and !/j' it .follows that a bargainer's 
position improves/worsens whenel'er the net monetary value increases/decreases. Since 
j's position improves, it follows from Lemma 1 that j' is made worse off whenel'er 
b E B \ B*. Moreover, (f b*, I, E B * then the gains from trade remain unchanged, 
hence j' is made worse off. 

2. (Only (n We will prove this part by contradiction. Suppose that b </:. B * with the price 
being any p E P. Pick any ll E B * and set the bundle price top' = p+v,.(ll ) - v.,(b). 
so that p' - v.,(b' ) = p - v8 (b). It.follows.from p E P that p' E P (recall that P = !R)5 

' If we choose to a priori rule out p < 0 and !lj (/1) < 0 (for .i E { c:, 8} and all b E B), then 71 2: 11 .• (/J) should 
hold because otherwise the shop will not he willing to sell the bundle in the first place. Consequently, p' P still 
holds. 
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and the properties ofgs that the shop is indifferent between the deals ( b, p ) and ( b' , p' ). 
Also, it follows from Lemma I and the properties <Jf gc that the customer is made better 
off. That is, any b' E B * Pareto dominates b ff. B *. Thus b ff. B * cannot be a Pareto 
efficient solution. 
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Chapter 4 

Designing bidding strategies in 
sequential auctions for risk averse 
agents 

4.1 Introduction 

Design of electronic auctions is considered an important open area of research in electronic 
commerce, both from a theoretical and an application perspective. There arc two main ap
proaches to this problem. One concerns the design of the auction mechanism itself, such as 
ii guarantees certain properties, such as efficiency, individual rationality or budget balance. 
However, for some auction designs, such as simultaneous ascending, sequential and repeated 
auctions, this is not possible and research has focused on designing the bidding strategies of 
the agents participating in such auctions. 

As previous shown in [27, 89, 184, 217], the main problem that a bidder has to face in a 
sequential (or simultaneous ascending) auction is the exposure problem. Informally stated, 
exposure means that an agent has to commit to buying an item (and thus take a "sunk" 
cost ll84]), before she can he sure that she will able to secure other items in her useful set 
or bundle (i.e. the set of items that gives her a positive utility). If she docs not manage to 
acquire the other items, she is exposed to the risk of a loss. 

In order to deal with this problem, several strategics have been proposed in existing 
literature. Boutilier et al. '99 examines the role of dynamic programming in computing 
bidding policies in sequential auctions, based on distributions over estimated prices. Reeves 
ct. a. '03 [ 184] study the problem of bidding in simultaneous ascending auctions (a problem 
closely related to the sequential settings) - in the context of market-based scheduling. Oscp
ayshvili ct al. '05 [I] continue this line of research, but use probabilistic prediction methods 
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of final prices and introduce the concept of self-confirming price distribution predictions. 
Gerding ct al.'07 [83] derive the optimal bidding strategy for a global bidding agent that 
participates in multiple, simultaneous second-price auctions with perfect substitutes. Unlike 
this work, however, they do not consider complcmentaritics (i.e. agents requiring bundles of 
items), and the setting is slightly different, as all auctions arc assumed to close exactly at the 
same time, not sequentially. 

In a direction of work that considers a setting very related to this chapter, Greenwald & 
Boyan ·04 [89] study the bidding problem, both in the context of sequential and simultane
ously ascending auctions. For the sequential auctions case, they consider a decision-theoretic 
model and show that marginal utility bidding represents an optimal policy. Their result ap
plies, however, only to risk neutral agents. Hoen ct al. '05 [217] look at the related problem 
of bidding in repeated auctions with complementarities and draw a parallel with the N-person 
iterated prisoner's dilemma. The above approaches have been shown to he efficient in many 
situations, both in self play and against a wide variety of other strategics, in competitions 
such as the TAC. Although most do implicitly consider the aspect of risk, they do not ex
plicitly model the risk-taking attitude of the bidding agents. By "explicitly model" we mean 
building a profile of the agent's risk preferences towards uncertain, future outcomes (such as 
the final allocation of a sequential auction). 

In standard economic theory, since the seminal work of K. Arrow and J. Pratt, prefer
ences towards risk have been considered essential in understanding and modeling decision 
making under uncertainty [5, 88, 122, 171 ]. In fact, a body of auction theory from eco
nomics [ I 58. 171] identifies risk preferences as a very important, open research area. In 
recent econometrics and financial economics literature, this has lead to considerable research 
interest in efficiently modeling and eliciting risk aversion from human users [45, 171. 176] 1 

Existing economic approaches to risk modeling do not, however, consider sequential auc
tions over combinations of items, nor propose bidding heuristics for this setting. 

From the point of view of multi-agent systems literature, only a limited number of papers 
discuss risk profiles. Babanov et al. '04 [8] use the concept of certainty equivalence, similar 
to our work, in the context of optimal construction of schedules for task execution. Liu ct 
al. [ 146.1 do consider risk-aversion on the part of the agents (similar to the approach taken in 
this chapter) - hut their work is mostly concerned with providing an analytical solution to the 
one-shot auction case. Vytelingum et al '04 [58] consider risk-based bidding strategies in a 
double-auction setting. However, both the auction setting (i.e. CDA) and the risk model used 
(which is not based the standard Arrow-Pratt model) make this work rather different in focus 
from ours. Finally, Vetsikas and Jennings [223,224] also consider a model that includes 
agent attitudes towards risk (among other factors, such as budget constraints and reserve 
prices), for the case on multi-unit, scaled-hid auctions. They provide a thorough theoretical 
analysis of this case, hut they do not considcrcomplementarities (i.e. agents desiring bundles 
of goods), nor sequential allocation. 

1 A practical example of risk elicitation in finance arc the questionnaires involving prohahilislic choices hetwcen 
several scenarios that investment fund managers send to potential investors. 
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4.1.1 Goals and organisation of this chapter 

The basic goal of this chapter is to study the relationship between a bidder agent's attitude 
towards risk (measured by the standard Arrow-Pratt risk aversion model - more specifically 
the CARA model) and her perceived best available bidding policy in a sequential auction 
(modeled by a Markov Decision Process). In this context, we consider the bidding decisions 
of an agent that desires a bundle of complementary-valued goods that are sold through a 
sequence of auctions. 

First, we investigate analytically how an agent's perception of her optimal bidding policy, 
given her probabilistic expectation of future prices, is affected by her risk aversion profile. 
Similar to [27, 89, I 12, 184, 217 J, we take a decision-theoretic approach to the design of bid
ding agents, meaning agents reason w.r.t. the probability of future price distributions, and 
do not explicitly deliberate over the preferences, risk profiles and strategies of other bidders. 
Next, we conduct an experimental study of how an agent's with complementaritics attitude 
towards risk affects her chances of winning a desired bundle, when bidding against a popula
tion of local bidders, desiring only one good. Furthermore, we also look at how this bidding 
policy affects the auctioneer's revenue. Our primary goal is to gain a qualitative understand
ing of how sequential auction markets are intluenced when bidders with complementary 
valuations participating in them are risk averse. 

The remainder of the chapter is organized as follows. Section 4.2 presents the risk aver
sion model, which forms the foundation of the following sections. Section 4.3 describes the 
bidding model and discusses the optimal bidding policies for both first and second-price se
quential auctions. Section 4.4 provides the experimental results, while Section 4.5 concludes 
the chapter with a discussion. 

4.2 Modeling Utility Functions Under Risk 

The literature on risk aversion identities several 3 main types of agents w.r.t. their risk 
profiles: risk averse, risk neutral (indifferent) and risk proclavc ("risk loving") agents. In 
the following we will focus our attention mostly on the risk averse and risk neutral cases, 
since these arc the cases that describe the behaviour of economic agents in most practical 
situations (c.f. [5, 158, 171 ]). Denote the private payoff z achieved by an agent participating 
in an auction or lottery. The utility a risk-averse agent assigns to this payoff is described by 
the Arrow-Pratt utility function: 

(4.1) 

For the case of risk indifference (r = 0), we take u(z) = z. 

Note that the auction model we consider in this paper is a private value model. The 
payoff z of a bidder after participating in an auction is a di ffcrencc between a private value v 
and the amount of money paid to acquire the item in the auction ( or cost) c. Since the private 
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value v is private to each agent, the payoff value is also private. Therefore, in a risk averse 
setting there arc parameters descrihing the private preferences of a hidder: value v and risk 
aversion coefficient r. Preferences of agents cannot he directly compared hy comparing their 
private values or payoffs, as the risk factors r must also be taken into account. 

Our choice of defining Eq. 4.1 rcpresenl<; a standard form of defining utility functions 
under uncertainty [ 171 J (the same choice is made in [ 159, 1711, among others). This form 
ensures that the following relation holds: 

u 11 (z ) 
ru(z) = --,() 

'll Z 
(4.2) 

As defined in Eq. 4.2, r 11 (z ) corresponds to the Arrow-Pratt measure of ahsolute risk aver
sion [5, 171 ]. In this chapter, we consider r constant for each agent, i.e. r 11 (z ) = r, Vz , thus 
we use the constant ahsolutc risk aversion (CARA) model.2 Factor r represents a constant 
which differs for each agent, characterizing her own preference towards risk-taking. 

We use a statc-hased representation, in which all possihlc future outcomes at time t is 
denoted hy S1. All s E S1 arc assigned hy the agent a monetary payoff z., and an expected 
prohahility ])., (where p,. > 0 and L .,ES, ]!., = 1). We define the lottery L1 over a set of 
payoffs z., (corresponding to the state S1) as the set of payoff-probahility pairs, i.e. L1 = 
{( z ., , JJ.,)} wheres E S1 .. In this form, the definition is generic, hut as we show in Sect. 3, 
there is a natural correspondence hctwcen lotteries and states in a sequential-auction game. 

The expected utility of the agent at time t over the lottery L 1. is dcscrihcd by a von 
Neumann-Morgenstern utility function: 

E,,[Lt] = L p;u( z; ) (4.3) 

(z,. p;) E I,, 

In case all the agents arc risk-neutral (i.e. have u(z ) = z ), it is easy to compare expected 
utilities and payoffs across agents. However, for risk averse agents this is not the case, and 
we need a measure that cnahlcs comparison of payoffs across agents with different attitudes 
to risk in uncertain domains. The utility functions of the agents arc not directly comparahlc 
in this setting, since each agent has a different attitude towards future risk (different r factor). 

The widely used concept in risk modeling is to identify a monetary value (i.e. amount 
of money). such that the agent is indifferent hetwecn receiving this value with certainty or 
entering the lottery. This amount is called the certainty equivalent (CE) of the lottery. It 
can he seen as the monetary payoff the agent would attach to the future, if all the uncertainty 
(and hence risk) were discounted. 

Formally defined, the certainty equivalent (CE) of a lottery L 1. is defined as the certain 
payoff value which is equivalent to the expected utility of the lottery L 1. That is: 

u(CE(L,)) = E 11 (L1 ) 

2This is a widely used risk aversion model. which we deemed sufficient for 1hc purpose of this work. We leave 
the study of Relative Risk Aversion (RRA) models to future research. 
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Expanding both sides using Eqs. 4. 1 and 4.3 above, we have: 

-e- ,·C E(L,) = L - p ;e- r z; 

( z; ,p;)E L, 
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Hence the following expression can be derived for the certainty equivalent of the lottery: 

{ 

- ~ lnI; (z,,p; )E D,PiC __ ,·z ; forr > 0 
CE (Lt) = 

L ( -· p · )E l p;z; for r = 0 
- 1 7 l .Jt 

(4.4) 

In other words, the certainty equivalent can be seen as the certain amount of money which 
has the same utility to the agent as the equivalent lottery, before the outcome of the lottery is 
known. In the following, we define and prove a recursive property of CE functions, which is 
relevant for their application to sequential games considered in this paper. 

Property 1: Suppose we have a game that occurs in stages t; at each time step t the 
game can transition into either one of 2 states: xt (having an associated reward z't) with 
probability Pi , or x,- (having an associated reward Zt ), where Pi + Pt = 1. In the 
sequential auction case considered here, X t , respectively x,- represent the states in which 
the agent wins/ does not win an upcoming auction (the formal link is made in Sect. 2). The 
following relation holds: 

Note that the notations z+ and z- , for each time t only relate to whether the agent wins 
or does not win the auction. These numbers can actually be negative, in case the payoff for 
a state is negative. For example, an agent with a strictly complementary valuation for items 
sold at times t and t + 1, that wins the item at time t but does not win the item at time t + 1, 
gets the payoff z4 1, which is negative. 

Proof: The proof involves repeated application of Eq. (4.4) to the left-side term: 

CE [(CE [(zt.-, , Pi+ 1), (z4 , ,Pt+1 )], pi), (zt ,p-;-) ] = 
= - ~ ln[pi e- ,·C E [(=7+1'1'7+ 1 ),( z;-+ l'P;-+1 )] + Pt e - r z;- ] 

1' 

1 ·[ I [ + - ,•:'( I . - - ,·z; I jj -= -- ln[IJi C- , - ,. ln1•, + 1" + + P1 +1 c + + p te- r z,] 
1' 

After reducing - r ( - ~) and using that e111 X = X, we get: 

T 
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Note that the above properly can be applied recursively lo games with any number of 
stages. This properly, while apparently straightforward, is important since it shows that 
performing local CE optimization al each lime step gives the same result as CE optimization 
for the entire game (a property which is nol obvious for non-linear functions). As such, it is 
used as an implicit assumption in our MOP model. 

4.2.1 The importance of risk aversion in decision making: an example 

In the following, we give an illustration why risk aversion can have an important effect on 
monetary values. Consider the case of two complementary-valued items: A anti R, which arc 
sold sequentially. Suppose the agent has lo accept a sunk cost of $5 (dollars or any monetary 
units) for item A. If she acquires hoth A and B, she makes a profit of$ IO, hut if she doesn't, 
she makes a loss of -$5 (thus potential profit is double the size of potential loss). Supposing 
the agent estimates the prohahility of acquiring R at J>n, how large does PR have lo he in 
order for the agent lo accept the gamhlc? 

Certainty equivalenl ulililies lor lottery belween 10 and - 5 Certainty cqlrivalenl when maximal outcome has d;tferent utilities 

10 

E o --
-~ 
(.) -2 

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
ProbabiUty of desirable vs. non-desirable oulcomo 

--4 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Probability of desirable vs. non-desirable outcome 

Figure 4.1: Example of the certainly equivalents of 3 agents with 3 different risk profiles 
for a lottery with 2 possible outcomes: -$5 (non-desirable) and $10 (desirable). The figure 
illustrates 2 cases: A(lefl): The desirable outcome is assigned a monetary value of $10 hy 
all agents. B(righl): The desirable outcome is assigned a monetary value of $5 (for the risk 
indifferent agent (r➔O) , $7 .5 hy the slightly risk averse one (r=0.15) and $10 hy the strongly 
risk-averse agent (r=0.3) 

We plot the CE payoffs in this lottery for 3 risk attitudes of the agents, from r ➔ 0, 
r = 0.15 and r = 0.3. The left-hand side of Fig. 4.1 shows the case when all agents have 
the same evaluation for hoth the desirable (i.e. +$10) and the non-desirable (-$5) outcome. 
From this figure, one can already sec that a risk neutral agent (r = 0) would "join in" this 
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lottery or sequence of auctions, if the probability of winning (getting the desirable outcome) 
exceeds 33.3%. However, a relatively risk-averse agent (r = 0.3) would need to have at 
least 78% probability of winning in order for it to assign a positive CE value to this lottery 
(and thus have an incentive to participate in the game). In the right-hand side of Fig. 4.1, 
we keep the payoff of the non-desirable outcome constant at -$5, but we vary the maximal 
payoff from $5 (for the risk indifferent agent), lo $7.5 (for r = 0.15) and $10 (for r = 0.3). 
Even if the estimated probability of acquiring the bundle { A, B} is exactly the same for all 3 
agents, the probability of winning has lo be above 97% in order for the agent with the highest 
valuation lo assign the sequence of auctions the highest CE value, among these agents. 

4.3 Bidding in sequential auctions with complementarities 

As shown in the introduction, the main problem that a bidder has to face in a sequential 
auction with complcmcnlaritics is the exposure problem. Following Boutilier ct. al. [27] and 
Greenwald & Boyan [89], we model the decision problem that the bidder agent has lo face 
in sequential auctions as a Markov Decision Process. 

Assume there is a set of items It, sold in sequential auctions held at time points t = l..n. 
A state in this game is specified by a set of goods X 1 acquired up lo time t (where X 1 ~ I 
fort = l..n). The bidding policy of an agent in this game is described by a vector of bids 
ii = (bi, ... , b,.), which assigns a bid b1 to each item sold at time point t. Fig. 4.2 illustrates 
this, for an auction with 2 items. 

Stage 1: Stago 2: 

Auction item A Auction item B 

I L(1=1,(A}) 

I L(l=O,{}) 

Final 

rewards 

v(A 1 8 ) - b(A)·b(B) 

v(A)- b(A) 

v(B)- b(B) 

payoff=O 

Figure 4.2: The decision process faced by an agent in sequential auction, for a two stage 
example, with goods labeled A and B 

The bidding agent maintains a probabilistic expectation of the closing prices for items 
I,, ... /,., in the form of n distributions. In the current model, these distributions arc assumed 
independent of each other and stationary during one bidding round of n auctions (n could 
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also be seen as the numher of auctions the agent can stay in the game hcforc its deadline). 
This definition of stationarity docs not exclude the agent hcing able to learn, or refine its 
distributions of closing prices between episodes hut, in this chapter, we assume they arc 
stationary for the duration of n auctions (i.e. one episode). 

Considering the probabilistic distribution of future prices (a similar choice as in [I, 27, 
89]) is more relevant to this setting than simply working with a vector of the average past 
prices (such as in [ 184, 217]), since the thickness of the tails of the distribution may he of 
particular importance if the agents arc risk averse. Note that in this form, we do not make 
any assumption on the type or shape of the expected future distributions: they can he normal, 
log-normal (usually used to model future prices in financial markets), uniform, binomial etc. 
For the results reported in this chapter, we employed the normal distribution, hut the generic 
approach can he applied to other distributions as well. The transition prohahilitics between 
different states arc the cumulative distribution prohahilitics that the agent wins the lottery 
with it current bid b1: 

Prol,(X1+ 1 = X 1 U {JI} ) = Prob( Closin!JPricc1 ::::; bi) = cd/1 (bi) 

where cdf1 (b1) denotes the cumulative de11sity.f1111ctio11 of the prohahility distribution over 
the closing prices, when bid b1 is placed. 

We model the utility of a future outcome at each time step t (except the final one when 
all the goods have been allocated) as equivalent to a lottery £ 1 (X1, b1). The payoffs of this 
lottery arc determined by the agent's utility function, the set of items acquired so far X

1 

and 
hid 1,1. The prohahilitics over outcomes depend on the bid b1 and expectation of future price 
distributions. The decision problem the agent faces, at each time point is to choose a hid b

1 

that provides the right balance between expected payoff and probability of winning, given 
her risk aversion r. This means choosing b

1 

which maximizes the certainty equivalent of 
lottery CE(Lt(X1, b1 )). Using formal MOP notation, the value at each state is: 

Q(X
1

, b
1

) = C E(L
1 

(X1 , b
1

)) 

The optimal biding policy and the corresponding reward as: 

1,; = 1r(X1) = argmax1,,Q(X1,b1) 

V(X1) = max1,,Q(X1,b1) 

We can rewrite the ahove two equations, for the optimal bid at time t bt and the associated 
optimal certainty equivalent value CE*, that can be obtained hy taking the optimal bidding 
decision as: 

1i; = argma:r,1, 1 CE(L1(X1, b1)) 

CE*( L, ) = ma:r,,,,CE(L1(X1,l,1)) 

Note that this optimization of the certainty equivalent value CE is performed for the 
current auction at time t, hut assuming that the optimal bidding decisions arc taken the 
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whole sequence of future auctions, occurring at times t + 1, ... n. Therefore, the problem of 
determining the optimal bid bi for time point t actually involves recursively determining the 
hids bi , ... b;' that maximize the certainty equivalents of states at t1 , .. n. Due to the recursive 
property of the CE function (captured hy Lemma I ahove), maximizing C E (L 1) at each 
state leads to maximizing the initial certainty equivalent expectation for the entire sequence 
of auctions, i.e. maximizing CE(L0 ). This means that standing MOP reasoning models can 
be applied to this prohlem, where the Q values of the standard MOP definition are the CE 
values of the lottery over future expectations at each step. 

A naive alternative to this method would be the application MOP optimization directly 
to the utility function of the agent (as done in [27J for risk neutral agents). For risk-averse 
agents, however, due to the non-linear nature of the utility functions, definitions of bidding 
policies in sequential auctions can only he defined in terms of the CE values of future states3. 
This is done in the following Sections, which also include a numerical example and an 
illustration that provides insight into the dynamics of the problem. 

4.3.1 Optimal bidding policy for sequential 2nd price (Vickrey) auc
tions 

Greenwald & Boyan [89] show that the optimal hidding strategy for a risk-neutral agent in 
a second-price sequential auction is to bid the difference hetween the expected value of the 
state when the auction is won and the expected value of the state when the auction is not 
won. Here we can extend these results to the risk-averse case as follows. 

Suppose at time t (after a set of t previous auctions) the agent is in a state in which 
he has the set of items X 1. At the next step (i.e. after the auction occurring at t), he can 
transition in either one of two possihle states: one in which he ohtains the set of items 
xt 1 = X, U{It+ I} (if the auction is won) or Xi+i = X 1 (if the auction is not won. If the 
auction at time t is a second-price one, the optimal hidding policy availahle to the agent is: 

(4.5) 

assuming that at all subsequent steps t + 1, .. , n the locally optimal bids are chosen. 

Proof3 The proof resembles the proof in the textbook of Krishna/ 130], which refers, how
ever, only to risk-neutral bidders. First, we simplify the notation by denoting the certainty 
equil'alentofthe state when the item is acquired by CEt 1 = C E(L1+1 (Xt 1 )) and the cer

tain()• equil'alent <~{the state when the item is not acquired by CEi-:j_ 1 = C E (L t+ 1 (Xi+ i )). 
There is a set of n" independent bidders in each auction, that only desire the item sold 
in that auction. All auctions being second price, they always hm•e a dominant policy of 

3We stress that the Lenn "optimal" used in this chapter, should he interpreted as optimal w.r.l. the bidder's 
aversion to risk and estimation of fulure price distributions. This is not the same conccpl as dominant bidding 
stmlegy from standard auction theory (i.e. independent of the behaviour of other bidders). As discussed in the 
introduction, dominant slmtegics arc not known Io exist for the sequential scllings considered in this paper. 
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bidding their true l'alue. Let the valuation .function over these na bidders be denoted by 
G(x) = Gi(x) 11

a . where G(x) is the cumulative distribution that bids <~fall n,. agents are 
smaller than :r, (Gi(x) here refers to a single independent bidder. hut we can consider them 
in aggregate, without loss o_f precision). Then _q(x) is the density.function of this distribution, 
i.e. it denotes the probability that the highest bid of the independent bidders is exactly :r.. 

Note that the state of winning the auction and ha Ping to pay x brings a monetary gain 
of C E 't+- 1 - :r. for the agent, while loosing brings a monetary gain of C Ei+ 1. In this case, 
however. the amount to be paid depends on the highest bid of independent bidders, so the 
standard certainty equivalence definition needs adjusting. Basically, the CE of bidding b1 

in a state at time t can be expressed as: 

The optimal bid b; can be obtained by taking the derivative of the above expression. i.e. 
I dC:E( t,, ) () ...,., • • w ien - 1-1- = . , ms g11•es: 

( ,, 

Of this expression, the first fraction is never zero and can be reduced, which basically gil>es: 

Which finally, after applying the logarithm and dividing by (- r) gil'es: 

Resulting in the final expression for b1 as: 

So hasically, the marginal optimal hi<l 1,; in a sequence of second price auctions is al 
ways the marginal difference hetween the certainly equivalenl-; of the next two slates. Nole 
that this was known from standard auction theory for the case of risk-neutral bidders [ 130). 
Basically, since a rational agent views all previous payments as sunk costs, they can he dis
counted and do not have to be accounted for in future bids. The intuitive reason why we 
find this result in the case of risk-averse bidders as well is that certainty equivalent functions, 
although not linear, are hasically monotonically increasing in the monetary payoffs of future 
slates, so it is rational for the agent to increase her hid until the difference CE't+- 1 - CEi+ , 
is covered. 
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4.3.2 Optimal bidding policy for sequential 1st price auctions: numer
ical solutions 

For first-price auctions no closed form optimal bidding policy can be formulated, because 
agents have, as in the case of risk-neutral agents, an incentive to shade their bid. Liu et. al. 
'03 [ 146] show, for the case of single-shot first-price auctions that, on average, risk averse 
agents shade their bid less than risk neutral agents, since they want to minimize the chance 
of losing the auction. In this case, the optimal hid level bt given in Eq. 4.5 above for the 
second price auction represents an upper bound on the bid level a rational agent would place 
in a first-price auction. 

For the sequential case, in order to get insight into the case, we computed the numerical 
solutions of the optimal bidding policy as perceived by the agents at time t = 0 (hefore 
entering the sequence of auctions). This is done for a sequence of 2, respectively 3 upcoming 
auctions (items are numbered alphabetically, by the order they are being auctioned). The 
analysis can be extended to any number of auctions, and the results are largely similar). 

We take the expected distributions for future prices for individual items are drawn from 
identical, independent normal distributions (i.i.d.s are a choice widely used in economic 
modeling [I 53]). In this case, we chose normal distrihutions with mean µ = 2.5 and disper
sion a = 1.5. The chosen valuations levels are: V{A} = 0, v{B} = 0 and V{A,B} = 10 (for 
the 2-stage auction), respectively V{A,B,C} = 15 and O for all other subsets (for the 3-stage 
auction). This choice of values is such that the sum of the mean expectation of the costs is 
exactly half the bundle payoff. 

A bidding policy is defined as a combination of hids for item b,1 , b13 , with the note that 
the hid for B is only placed if the agent wins A in the preceding auction (otherwise, it has 
a dominant policy to bid O and earns a reward of 0). Using a mathematical optimization 
package (in our case Matlah), we computed the optimal hid levels of this game (b:, b8 ), 
for each level of risk aversion from O to I, as well as the expected CE level of this optimal 
bidding policy, i.e. nwxb,1,1,HCE(Lt=o)-

In Fig. 4.3, we show the CE value of the initial choice to enter the set of auctions (i.e. 
CE( L1=o)) for one level of risk aversion r and all possible comhinations of bids for the first, 
respectively second good in the sequence. As can he seen in Fig. 4.3, the surface of possible 
bids has a single optimum point, for each level of risk aversion. 

In Fig. 4.4 we plot the optimal bid levels for a sequence of 2, respectively 3 auctions. 
Basically, each point on the left (i.e. two-item) side of Fig. 4.4 corresponds to the coordinates 
of the optimum point in exactly one bidding surface, such as shown in Fig. 4.3. The same 
can be said ahout the right side (i.e. the 3 item case), although in this case the bidding surface 
cannot be actually visualized (heing 4-dimensional). 

From the analysis of Fig. 4.4, we can already highlight some important effects: 

• The more averse a risk agent is, the higher she will hid for the second item in a 2-stagc 
auction sequence. Intuitively, a risk averse agent is more concerned with reducing as 
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Expected CE values ot different bidding policies, for r- >0 Expected CE vakles of different bidding policies, for r=0.3 

0 0 
Bid for item B Bid tor item A Bid for item B Bid for item A 

Figure 4.3: Example of the certainly equivalent payoff in a two-stage sequential auction for 
2 items: A (al time l= I) and B (al l=2). The graph shows the CE value of the corresponding 
2-stagc game, if the costs for hoth items arc drawn from N(JI, = 2.5, a = 1.5). for an agent 
with r ➔ 0 (left) and r = 0.3 (right). 

Optimal bidding policy lor a two- item sequential auction payoff l0f A+B: 10 
6.----~ --~--~--~-----= 

Optimal bidding policies tor a 3- item seq. auction - items labmed A, B, C 

5.5 

" 5 li 

0.2 

Optimal bid for item A 

0.4 0.6 
Bidder agent risk adversity (r factor) 

0.8 

"6 
:,; 

0.1 

Oplimal bd Im B (1=2) 

0.2 0.3 0.4 0.5 0 6 0.7 
Bi<idor agent risk adversity (r factor ) 

0.6 0.9 

Figure 4.4: The optimal bidding policy available lo an agent having risk aversion r, in a 
2, respectively 3-stage sequential auction. The items have a complementarity value of$ I 0 
(resp. $15) if acquired together, but no value if acquired separately. The cosl'i for all items 
arc drawn from a normal distrihulion N(JL = 2.5, a = 1.5). 

much as possible the prohahility she will loose the auction for B and not cover her 
sunk cost for item A. By contrast, a more risk-neutral agent is willing lo accept a 
slightly higher prohahility she will have a sunk cost, if the potential gain is greater. 
Otherwise stated, agents with different risk profiles have different levels of awareness 
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of costs already incurred. 

• By contrast, the optimal bid level for item A slightly decreases as the agent becomes 
more risk averse. Risk averse agents arc not willing lo accept a high sunk cost - thus 
their optimal policy is lo avoid bidding aggressively in the first round. They may pre
fer not lo participate al all in the sequence of auctions, than lo win the first auction 
with a high sunk cost, which would be difficult lo cover. Furthermore, note that in 
this example, the average mean expectation of cost of the first item is only a quarter 
($2.5) of the maximal possible cost. We also performed tests with other mean expec
tation costs, and found lhal, if these costs become higher, the effect is considerably 
more pronounced - and risk-averse agents' optimal bid policy may simply be not lo 
participate al all in the auction sequence. 

4.3.3 Bidding strategy for multiple copy auction sequences 

The MOP-based bidding strategy outlined above can lead lo an optimal bidding policy, but 
only if all CE values of the stales for the entire game arc computed. This can become 
computationally expensive, especially if the sequence contains many stages (auctions). In 
the simulations presented in Seel. 4.4 below, we make an approximation that enable us 
lo significantly prune the stale tree in solving the multiple copies problem. This problem 
appears when the bidding agent is interested in only a limited number of items to form a 
useful bundle, but these arc offered for sale rcpcalcdly.4 Suppose items arc divided into 
several types. The agent's expectation of closing price distributions for all items of a given 
particular type is the same (thus she docs not model the future expectation probability per 
auction or per item, but per type of item). If this expectation remains the same during the 
number of bidding rounds the agent slays in the game, then it is possible to reduce the stale 
tree representation from a representation dependent on the number of future auctions lo a 
representation which depends only on the size of the bundle the agent wishes lo buy. 

Formally, if there arc several items oflypc A and the agent knows that there arc n,1 more 
auctions of items of type A lo lake place. Then the probability of transition from any stale 
X lo a stale X U {A} (i.e. winning al least one item of type A al some point in the next 
sequence of rt A opportunities), given that the agents bids bA in each of the auctions in that 
sequence is: 

Prob(Clos'ingPr-icc,1 :S b,1) = 1 - [1 - cdf ,1(bA)]"A 

The above formula can be used lo determine the probabilities of the gelling an item of 
type A in the final stale (i.e. after all auctions for a good of type A have closed). One still 
needs lo apply the MOP lo determine the best policy based on these probabilities, hut this is 
straightforward, as it docs not require computing the whole tree. 

Nole that this policy only uses as input the numhcr of future auctions of each type re
maining before the auction has lo leave the market, nol their exact order. In fact, if one 

4 Multiplc copies can be seen as an instance or the substitutability problem - though substitutability is wider, if 
we allow for partial substitutes. These arc not considered in the current work. 
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knows the exact order that future auctions take place in, then it might he helter to compute 
the whole tree (although that's exponentially more expensive). However, not knowing the 
exact order that future auctions will take place in, only the numher of auctions of each type, 
is more realistic in many real-world settings. So, for example, in the simplified transporta
tion case shown in Section 4.4.S below, in practice, planners may know that a numher of 
opportunities (i.e. transportation orders) lo fill a truck may appear hefore the truck needs lo 
start driving, hut they don't know exactly the order in which these will he offered. 

For the experiments reported in this chapter, hccause goods arc all of the same type 
(even if a bidder may desire only a hundlc consisting of several such goods), this heuristic 
approximates very well the optimal hidding policy. In this case (i.e. same-type goods), there 
is basically only one possihlc sequence of future auctions, and the length of this sequence 
hasically represents the full information needed to dcscrihc it. If there arc several possi
hlc types of bundles, then the difference in performance may depend on the exact auction 
sequence. However, even this problem can he mitigated hy randomizing over all possihlc 
auction sequences when performing experimental evaluation. 

As we discussed in the numerical example, having multiple future opportunities to buy 
a good may determine risk-neutral agents to reduce their bids (since there is a higher chance 
of winning one of them), but it may also encourage risk-averse bidders lo join the hidding, 
bidders which would otherwise find a short sequence of auctions to be too risky to participate. 

4.4 Experimental analysis 

The goal of the experimental results presented in this chapter is to test how different sequen
tial auction market settings arc influenced hy the presence of a complementary valuation 
hidders, with different risk aversion levels. We look at how risk aversion influences the ex
pected profit that the synergy bidder makes over a sequence of auctions, as well as the proh
ahi lity of completing the desired hundle and ending up with an incomplete bundle (which 
can result in a loss). Furthermore, we also study how the expected revenue of the scllcr(s) 
is influenced by the presence of a synergy bidder in a market, as well as how the number of 
buying opportunities (i.e. length of the auction sequence) influences the expected profits of 
seller and buyer. 

The first part of this chapter studies these questions for a market with a single synergy 
hidder participates in a sequence of auctions for items of the same type. More concretely. 
we assume a market consisting of a sequence of auctions, each populated by a set of local 
(single-item) bidders and one synergy (glohal) bidder that desires exactly one bundle of two 
items. The numher of auctions that the synergy hiddcr can stay in the market is fixed for each 
simulation round (although this parameter will be varied hctwecn different experiments). 
In the second part of our experimental study, we introduce bundle differentiation, i.e. the 
auction sequence consisting of auctions for two types of items and a synergy buyer that can 
choose between the two possible hundles. This setting was motivated hy a transportation 
logistics setting dcscrihed in Section 4.4.S. 
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4.4.1 Experimental hypotheses 

In order lo heller structure the presentation, we lirsl formulate three hypotheses, that should 
be confirmed or disproved in the experimental tests. These hypotheses are intuitively formu
lated based on the properties observed in the theoretical part of this chapter and should help 
the reader understand better the focus and choices made in the simulation model. 

Hypothesis 1: A more risk averse agent will have a lower chance of ending the sequence 
of auctions with an incomplete bundle (i.e. a bundle in which the first item is acquired, 
but not the subsequent ones, hence resulting in a loss). 

Nole that the statement in Hypothesis 2 appears obvious: it is more a control hypothesis. 
If we do not find this, then there may be reasons lo believe something is wrong in our 
experimental set-up. The most important side effect is slated as: 

Hypothesis 2: A synergy bidder with a higher risk aversion will obtain a lower average 
profit from bidding in a sequence of auctions than a synergy bidder which is less risk 
averse. 

The final hypothesis refers lo the case of different auction lengths. 

Hypothesis 3: For all risk aversion levels, the expected profit of a synergy buyer desiring 
a bundle of items will be higher if there are more auctions in the sequence (i.e. more 
opportunities lo buy), while the chance of ending up with an incomplete bundle will 
be lower. 

Besides these hypotheses, referring lo the buyer, in our experiments we also look al the 
average revenue that a seller of a set of items sold in sequence will be lower if the synergy 
buyer present in the market is more risk averse. There are a further two further hypotheses, 
related lo markets with different item types, but they will he introduced them later. 

4.4.2 Experimental setup 

The experimental set-up used is as follows. We consider a sequence of n closed, first-price 
auctions, in all of which exactly one item of the same type A is sold. In each of these 
auctions, there are an (unspecified) number of local bidders, assumed myopic, that desire 
exactly one item of type A. Since these agents are assumed myopic (i.e. they only consider 
the current auction they participate in), we can model their bids in each auction through 
some random distribution. Nole that the myopicity assumption of local bidders is important 
here: if the bidders are able lo slralegize over the sequence of auctions, or over the presence 
of a synergy buyer in this sequence, then the model we use for their bidding behaviour may 
not hold. In this model, because in all auctions an identical good is sold, we can model 
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the maximum bid received from the competition in each of then auctions in the sequence 
through identical, independent probability distributions (i.i.d.) - a choice that is also made in 
other decision-theoretic bidding models, e.g. (831. Since we do assume any prior information 
about the way independent bidders place their bids, we take the most general case and assume 
they follow normal distributions N (/t, 11). 

In each sequence of auctions there is exactly one synergy ( or global) bidder participating. 
This bidder desires exactly one bundle of two items of the same type A (and is assumed to 
have no value for an individual item). The synergy bidder must acquire this bundle in exactly 
n auctions (here, the number n of auctions that a bidder can stay in the game can also he 
thought of as a way to model a shorter or longer deadline that a bidder has). The value 
v(2 * A) that the synergy bidder assigns to the useful bundle, the number of auctions n, 
as well as the parameters /L and 11 that model the behaviour of single-item bidders arc all 
parameters of the simulation. For each market configuration, average results arc reported 
over I()(){) runs. 

4.4.3 Experimental results for one-type item auctions 

In this section we give the results for a market setting where only one type of item A is sold, 
and the synergy bidder desires exactly one bundle of two such items. Initially, we do this 
for sequences of n = 7 auctions, where the values of independent bidders are drawn from a 
distribution N(µ = 4, 11 = 2). The synergy bidder assigns a value of v(A, A) = 10 (notice 
that this means the synergy buyer values a bundle of two item, on average, with 25% more 
than the independent bidders). The bids of the synergy buyer are computed according to the 
heuristic in Sect. 4.3.3, based on the risk aversion coefficient shown on the abscissa. Results 
(with averages over IO00 runs) are shown in Fig. 4.5. 

Returning to the hypotheses stated in Seel. 4.4.1, we see that indeed, Hypothesis 2 is 
confirmed for this setting: the higher the risk aversion of a synergy bidder, the lower his/her 
average expected profit (the drop is quite considerable - from 4 to around 2.5). However, one 
can also notice the variance of the results decreases slightly for the risk-averse bidder. These 
results arc consistent with expectations. 

The right side of Fig. 4.5 shows the average revenues of the seller for this setting. These 
arc somewhat surprising, given that one would intuitively expect seller revenues to drop if 
bidders in the market are more risk averse. In fact, it seems there is some type of revenue 
equivalence, in the sense that the revenue that a seller can expect in such a sequence of 
sequential auctions with a risk averse bidder does not depend on his/her risk aversion. From 
further examination, this can be explained as follows: since these are first price auctions, 
a more risk averse bidder will bid less often in this sequence. However when he docs hid, 
he will hid considerably more which, on average, has a compensating effect for the reduced 
participation. Nevertheless, a more in-depth investigation is needed (with a larger market 
and more synergy bidders), in order to formulate a hypothesis regarding this point. 
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Figure 4.5: Setting with 7 sequential auctions and one synergy buyer with v(A, A) = 1(), 

and independent agents for each auction, bidding according to N(4, 2). The left side give 
the average profit of the synergy buyer, while the right the average revenue of the seller (both 
averaged over 1000 runs) 

4.4.4 Results for one item and different auction lengths 

In this Section, we extend the above analysis to a setting where we vary not only the risk 
aversion r of the synergy buyer, hut also the number of auctions he/she can participate in to 
acquire the desired two-item bundle. Furthermore, we made this setting more competitive: 
while the valuation of each synergy buyer for a bundle of 2 A-s remains v(A, A) = 10, the 
competition is slightly more aggressive and will be according to N(4.5, 2). This basically 
means that we reduce from 20% to I 0% the advantage in valuation that a synergy buyer 
has, on average, over the independent bidders. The motivation for this is that it seems more 
relevant to study how the success rate is influenced by multiple buying opportunities (i.e. 
varying number of auctions), for a more competitive setting. 
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Figure 4.6: Results for the average profit of the synergy huyer (left) and seller revenue (right). for a 
setting with one synergy agent with v(2A) = 10 and a set of independent agents bidding according 
to N ( 4.5, 2). The numher of auctions the synergy agent can stay in the game to acquired the desired 
hundle, as well as his/her risk aversion coefficient arc varied for the different settings. All results arc 
averages over 1000 runs. but lo avoid overloading the picture, error bars were not included. 
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Figure 4.7: Success and failure rates for a setting with one synergy agent with v(2A ) = 10 and a 
set of independent agents bidding according to N(4.5, 2). The lert side graph show the percentage 
(among the IO00 runs) in which the agent acquired his/her target bundle of two A items. The right 
side graph shows the percentage of runs with incomplete hundlcs (i.e. runs in which the synergy huycr 
ohtained the first item, hut not the second, hence resulting in a loss). 
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Results from these tests are shown in Fig. 4.6, respectively 4.7. Returning to the above 
stated hypotheses, we can conclude that, indeed Hypothesis 2 can be confirmed. Even for 
this modified setting, there is a marked decrease in average synergy bidder profits, as his/her 
risk aversion increases. This effect is more noticeable for the higher auction lengths (5, 7 or 
IO items). The reason for this is that, for this competitive setting, the participation rates, even 
for the more risk-neutral agents are on the low side (sec left side of Fig. 4.7) and relatively 
constant over r. Furthermore, it seems that the revenue the seller can expect is also relatively 
constant over the risk aversion of the synergy buyer, even for these more general tests. 

From looking at Figs. 4.6 and 4.7 one can clearly sec the very large effect that the num
ber of available auctions has, both on the expected profit and success rate of the synergy 
buyer (thus confirming Hypothesis 3 above). This effect clearly holds for all risk aversion 
coefficients of the synergy buyer and all configurations. From Fig. 4.7, one can also sec 
that a more risk averse bidder, while making, on average, less profit, docs have some ad
vantages in this type of auctions: his/her chances of ending up with an incomplete bundle 
before the deadline (hence making a loss in that particular auction run) decrease consider
ably. Thus, these results support Hypothesis I, as expected. Since in many real life bidding 
situations (one will be discussed in the following Section), agent consider only the possi
bility of profit/loss in an immediate run (not the long-term statistical average), minimizing 
chance of a loss, even if it has only 5%- 10'¼, probability, can he an important consideration. 

4.4.5 Setting with different item types and more complex preferences 

The previous Section has already highlighted the complexity of bidding in sequential auction 
to get a bundle of two items, even for the simplified setting with one possible item type. 
However, in most real-life scenarios, on top of the question of how to divide their bids 
between complementary items in a sequence, agents are confronted with several alternatives 
that they must choose from during bidding. In fact, the potential complexity of the space 
possible preferences is very large. In this Section, while we do not completely model the full 
potential complexity of possible preferences, we show that having a second type of good to 
choose from introduces a whole different dimension to the dynamics of decision-theoretic 
bidding in sequential auctions. 

We should mention that our choice for the valuation structure of the bundles, while sim
ple, is motivated hy a transportation logistics application setting and does capture much of 
the dynamics of that use case. Therefore, before we describe the experimental set-up and 
results, we motivate it hy briefly describing how the experimental choices made could plau
sibly fit a real-life application setting. 

Bidding in sequential auctions for transportation orders 

The problem setting we considered in our auction model is that of distributed transporta
tion logistics with partial truck loads (a real-life, business-oriented platform for this case, 
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developed in collaboration with a large logistic company, is described in Chapter A of this 
thesis). 

In the logistic setting we consider, transportation orders (either from one, but usually 
from different sellers/shippers) are usually sold at different points in time through spot mar
ket type mechanisms (usually auctions). The bidders for these loads are small lransporlation 
companies who try to acquire a suitahlc set (hundle) of orders that would fit the capacity of 
their trucks. In this model, we assume all orders arc ready for pick-up or return delivery at 
one central transportation depot5. Fig. 4.8 shows just such a topology, with delivery point 
group into 2 main delivery regions). 

D--+ , 
Re~. A) 

, _, 

Figure 4.8: Example transportation scenario with one central depot D and two disjoint trans
portation regions: A and B. 

Acquiring suitahlc comhinations (hundlcs) of orders lo fit the same trip with one truck 
is crucial for profitahility in this setting. A truck acquiring, for example, an order for 1/2 
truck load lo he delivered to a certain region usually counts on acquiring another 1/2 truckload 
order from the same region, in order to make a profit. In this case, item types represent 
different delivery regions - each trucking company expecting different costs/profit structure 
per region, depending on its transportation network. Another possihility for hundling can 
concern symmetrical outgoing/return orders which originate in the same region. 

In the utility model used in our auction simulations, we abstract the main characteristics 
of this setting. In this way, hidders can he considered as truck owners (i.e. carriers), the items 
are transportation orders, item types correspond to different delivery or pick-up regions. In 
practice, auctions for transportation orders are reverse auctions: the bidders that offer the 
lowest cost gel the order. However, the corresponding model with sequential ascending 
auctions studied in this paper is basically equivalent to this, and it's easier to compare with 
other models and in existing literature. 

Furthermore, in reporting the results, we also make the assumption that there is a single 
seller for all the goods (or orders) in the sequence. While in practice transportation orders 
may originate from multiple shippers (or customers), the aggregate revenue of the single 
seller can be seen as indicative of a global average, that a seller, without knowing his/her 
precise place in the sequence of auctions, has from selling items in this sequence. 

~This is actually a realistic assumption in many cases, especially if there is just one shipper, or seveml small 
shippers who aggregate their demand to one centml distrihution point. 
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Multiple item simulation set-up 

The sequential model we consider is as follows. The numher of auction rounds is still fixed 
at 7, but there are two types of goods: A and B. In this setting, we introduce a differentiation 
between the items: items of type B are relatively "rarer" (they are sold only in 2 auctions out 
of the 7), while items of type A are more common, and sold in 5 out of 7 auctions. 

However, the value the synergy huyer assigns to a bundle of such items is also asymmet
rical. A bundle of 2 items of type B has a valuation of v(B, B ) = 20, while a hundlc of 2 
items of type A: v(A, A) = 10. The competition coming from single-item bidders for those 
goods is also different. For goods of type A, the bids from this competition are modeled 
through a normal distrihution N (µA = 4, u A = 2), while for items of type B through a 
distrihution: N(µn = G, aa = 2). Therefore, the additional valuation of the synergy agent 
for a bundle of two items, compared to the average paid by independent hidders is only 2/10 
= 20% for a hundle of type A, hut 8/20 = 40'¼, for a hundle of type B. at the same time, a 
hundle of type B is twice as rare. 

4.4.6 Multiple item setting: hypotheses 

Before we present the result graphs for this setting, we follow the format of the previous 
Sections, and formulate two additional hypotheses: 

Hypothesis 4: In a market with two types of items, one of which is rarer, but also more 
valuahle than the other, the synergy hidders with a risk aversion coefficient above 
a certain level may select to bid for a bundle of the more common item, in order 
to maximize their chances of completing the bundle. This can reduce the synergy 
hidder's average expected profit from the auction sequence. 

Hypothesis 5: In the ahove setting, if risk averse agents prefer to bid for more common, 
hut less valuable goods, this also reduces the revenues of the auctioneer. 



126 

Average prolh ol a synergy buyer bidding in a sequence ol 7 auctions 
10 

- 6 

m 
"ll 
E 
m 

50 

E Jo 

i 
m 
"' ~ 25 

£ 

Chapter4 

Average income of lhe seller for each sequence of 7 auctions 

20 '------~----'--~--~ ---'----'--~ 
- 0.2 

70 

8. 60 

"' C 
e 

~50 
0 . 
" _g -to 
C 

~ 
C i 30 

al 
~ 
~ 20 

02 0.4 0.6 0.8 1.2 -0.2 0.2 0.4 0.6 0.8 
Risk aversion coefficient of synergy bidder Rrsk aversion coelficient of synergy bujc( 

Figure 4.9: Results for the average prolit of the synergy huycr (left) and seller revenue (right). for a 
selling with two items A (of value 11,1,1 = 10) sold in 5 auctions, and B (of value va,B = 20) sold in 
2 auctions. Notice there is a transition. hecause agents with risk aversion r >= 0.5 do not try to gel 
the higher value hundlc (of item B). 

Percenlago of runs the synergy bidder gels an compk!te bundlo of each lype Percentage of runs tho synergy bidder fails to complete the desired bundle 

- - Item type A 

- 'II' -llemtype B 

~ t-- - - - - --v
... 

--llemtypoA 

- 'II' - llem lypeB 
10 

---&- No!hing won 

1.2 

0o~-o~.-, --0~2--o~.J--o~.◄--o .... s- ~ oP-.6--01.1~~0".8_.....,0_9 

Risk aver.iion coefficient ot synergy biddef 

0c_-~--'--~ -_;1....:-=-1-== .3=c.c-=-=-'EC--=-=-ci-,e- _,-,_,,, 
0 0.1 0.2 O.J 0.4 0.5 06 0.7 0.8 0.9 

Rlskaver-coofficicntolsynergybidder 

Figure 4.10: Percentages of success and failure per 1000 simulation runs, for a selling with two 
different type of items descrihcd ahove. Notice the transition al r >= 0.5. showing that risk averse 
bidders do not try Lo gel the hundfc with the rarer item B, hut only one of A. 
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4.4. 7 Results for two-item case 

Experimental results for the above selling are presented in Figures 4.9 and 4.10. Fig. 4.9 
gives the average profit of the synergy agent and the seller, while Fig. 4.10 gives the percent
ages of auctions that agents complete (or fail lo complete) bundles of items or either type. 
All results reported are averages over 1000 runs. 

Basically, Hypotheses 4 and 5 are, on the whole, confirmed by these tests: there is a 
decrease in the expected profit oflhe synergy buyer and seller. However, there is an important 
caveat: there seems, for this parameter settings, lo be an important threshold effect as the 
risk aversion factor of the agent becomes r = 0.5. The reason for this threshold effect is 
clear from Fig. 4.10: al this level, the more risk averse agents slop trying lo bid for the more 
valuable, but also "riskier" bundle of item B (for which there are only 2 available auctions), 
and go for a bundle of item A, from which there is less absolute profit lo be made, hut for 
which there are 5 available auctions. 

The left-hand side of Fig. 4.9 shows that, while going for the bundle of item B brings, 
on average, slightly more profit, this result also is subject lo a much higher variance, i.e. the 
bidding agents are more likely lo loose money by failing lo complete their desired bundle. 
By contrast, bidding for a bundle of type A (as the more risk-averse agents do), can slightly 
decrease the average expected profit, hut the bidder is less likely lo loose money. In fact, the 
lower interval oflhe variance bars, in this case, seem lo be all above the zero axis. 

The seller revenue (right side of Fig. 4.9) is also influenced by the risk aversion (and, 
hence, the bidding behaviour) of the synergy bidder, but the decrease in seller revenue that 
occurs al the threshold level is relatively slight (of only a few percentage points). Neverthe
less, one should note this is a selling with only one synergy bidder present in the market, 
therefore the average effect may be understated. 

4.5 Conclusions and further work 

To summarize, the main contributions of the work presented in this Chapter are as follows. 

First, we establish a formal link between bidding strategies in sequential auctions and 
standard (Arrow-Prall) risk aversion models from economics. Next, we derive a useful prop
erly of certainly equivalence functions and it shows how such functions can be naturally 
applied lo sequential auction games. We study the way in which the perceived optimal bid
ding strategy computed by a risk averse agent, given her probabilistic model of the future, 
differs from the optimal strategy of a risk neutral agent. Risk averse agents lend lo hid more 
aggressively throughout the sequence of auctions, in order lo cover their sunk costs for the 
initial items in the sequence. However, if the future sequence of auctions is initially per
ceived as loo risky (given the agent's initial estimation of future closing prices), the best 
strategy available lo a risk averse agent is simply not lo participate al all. 

Then, we study experimentally the effect that this decision-theoretic bidding behaviour 
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of risk averse bidders has on his/her expected profit, for markets in which the competition is 
formed of "myopic", local bidders (i.e. bidders that require only one particular good). We 
show that, as expected, more risk-averse bidders have less of a chance to end up with an 
incomplete bundle, and hence make a loss. But, on average (i.e. assuming a market with 
repeated interactions), they make less expected profit. When bundles of two possible items 
are availahle, we show that more risk averse bidders may prefer to hid for the more common 
one (even if it has less absolute value), rather than risk the chance of making a loss. This is 
rational for them, as it their reduces their risk. although it also reduces their average expected 
profit. 

The chapter, while providing some important results regarding the complexity of the 
sequential bidding problem for risk averse agents, leaves several issues to he answered in 
further work. An important one is deriving optimal bidding strategies in markets in which 
several synergy agents (i.e. bidders with complementary valuations) hid against each other, 
not only against myopic, single-value bidders, such as in this work. New bidding heuris
tics could be developed for software agents that do not only target raw efficiency, hut also 
allow their owners to select a balance between expected profit and risk, based on their per
sonal preferences. Finally, the role of mechanisms such as decommitment [ 1951 and op
tions [ 120) in reducing or eliminating the exposure problem that risk-averse agents face is 
another promising direction for further work, which is further explored in Chapter S of this 
thesis. 



Chapter 5 

Using Priced Options to Solve the 
Exposure Problem in Sequential 
Auctions 

5.1 Introduction 

The previous Chapter introduced the exposure problem that a bidder with complementary 
valuations, i.e. synergies, faces when she tries lo acquire a bundle of goods sold through 
sequential auctions. Informally, the problem occurs whenever an agent may buy a single 
good al a price higher than what it is worth lo her, in the hope of obtaining extra value 
through synergy with another good, which is sold in a later auction. However, if she then 
fails lo buy this other good al a profitable price, she ends up with a loss. Otherwise staled, 
after acquiring the first good, she is exposed lo the risk of a potential loss. In the analysis 
presented in this Chapter (as in much of the previous Chapter), we will henceforth call such 
a global bidder a synergy buyer. 

The exposure problem is well known in auction theory and multi-agent systems research. 
The usual way lo tackle this problem in the mechanism design community is lo replace se
quential allocation with a one-shot mechanism, such as a combinatorial auction [ 194]. How
ever, this approach has the disadvantage of typically requiring a central point of authority, 
which handles all the sales. Moreover, many allocation problems occurring in practice (sec 
also Chapters 4 and A of this thesis) are inherently decentralized and sequential. Possible 
examples range from items sold on Ebay by different sellers, loads appearing over lime in 
distributed transportation logistics, dynamic resource allocation in hospitals, etc. 

In Chapter 4, we have already have shown how complex the problem that the synergy 
bidder faces in such a sequence of auctions can be. In lhal chapter, we have looked al the 
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prohlcm from the perspective of modeling the bidding decisions of individual agents, hascd 
on their aversion to the perceived future risk. However, we did not modify the sequential 
auction mechanism itself, to try and somehow reduce the exposure to loss that the agents 
face. In this chapter, we consider a different approach than converting the mechanism to a 
one-shot, comhinatorial auction, one that preserves the sequential nature of such prohlcms, 
hut still reduces considerahly the exposure prohlem that synergy bidders face. The basic idea 
of our approach (puhl ishcd as [ 161, 162 ]), is to to allow each seller to auction options for the 
goods she owns, instead of the goods themselves. 

Note that this is a very complex problem, and this chapter provides a decision-theoretic 
analysis of how priced options can be used to address this problem, as well as a first math
ematical model to compute option and exercise prices. This is, to our knowledge, the first 
decision-theoretic analysis for how options should be priced and used in sequential auctions 
with complementary valued-bidders (pricing models for options in financial markets are very 
different, as will be explained shortly). As a caveat, we stress that options should not he seen 
as a "silver bullet" that completely removes the exposure prohlem, rather, they arc a mech
anism that, under some assumptions, removes part of the risk exposure and is preferahlc to 
both sides (huycrs and sellers). hy comparison to a direct sale. In fact, auctions for direct 
sale of the good (as will hccome apparent in Section 5.1.3) becomes, in our option model, a 
particular suh-casc. 

5.1.1 Options: basic definition 

An option can he seen as a contract between the buyer and the seller of a good, subject to 
the following rules: 

• The writer or seller of the option has the obligation to sell the good for the exercise 
price, but not the right. 

• The holder or buyer of the option has the right to buy the good for the exercise price, 
hut not the obligation. 

Since the huyer gains the right to choose in the future whether or not she wants to buy 
the good, an option comes with an option price, which she has to pay regardless of whether 
she chooses to exercise the option or not. 

Options can thus help a synergy buyer reduce the exposure problem she faces. She still 
has to pay the option price, but if she fails to complete her desired bundle, then she does not 
have to pay the exercise price as well and thus she limits her loss. So part of the uncertainty 
of not winning subsequent auctions is transferred to the seller, who may now miss out on the 
exercise price if the huycr fails to acquire the desired hundlc. At the same time, the seller can 
also benefit indirectly, from the additional participation in the market by additional synergy 
buyers, who would have otherwise stayed out, because of the exposure to a potential loss. 
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5.1.2 Related work 

In existing multi-agent literature, to our knowledge, there has heen only limited work to 
study the use of options to address the exposure problem. 

The first work to introduce an explicit option-based mechanism for sequential-auction 
allocation of goods to the MAS community is Juda & Parkes [ 120, 121 ]. They create a 
market design in which global bidders are awarded free (i.e. zero-priced) options, in order to 
cover their exposure problem and, for this setting, they show that truth-telling is a dominant 
strategy. In this case model, the exposure problem is entirely solved for the synergy buyers, 
because they do not even have a possible loss consisting of the option price. Having a 
dominant bidding strategy for the buyers is a very important property, which is difficult to 
achieve in a model with priced options. 

However, the model of Juda & Parkes does have some limitations. First, there may be 
cases when the market entry effects are not sufficient to motivate the sellers of items to use 
options. Because the options are assumed to be offered freely (zero-priced), there may be 
cases in which sellers do not have a sufficient incentive to offer free options, because of the 
risk of remaining with their items unsold. The sellers could, however, demand a premium (in 
the form of the option price) to cover their risk. In such cases, only positively-priced options 
can provide sufficient incentive for for hoth sides to use the mechanism. Furthermore, this 
free options model relies on the assumption that sellers are always willing to stay in the 
market longer than buyers. 

Priced options have a long history of research in finance (see [ I 07] for an overview). 
However, the underlying assumption for all financial option pricing models is their depen
dence on an underlying asset, which has a current, public value that moves independently 
of the actions of individual agents (e.g. this motion is assumed to be Brownian for Black
Scholes models). This type of assumption docs not hold for the onlinc, sequential auctions 
setting we consider. In our case, each individual synergy buyer has its own private value for 
the goods/bundles on offer, and bids accordingly. 

Another relevant work that studies the use of options in online auctions is that of Gopal 
et al [87]. Gopal et al. discuss the benefits of using options to increase the expected revenue 
of a seller of multiple copies of the same good. They do not consider the use of options to 
solve the exposure problem of buyers with complementary valuations over a bundle of goods 
(i.e. the synergy buyers in our model). Furthermore, in [87], it is the seller that fixes hoth the 
option price and the exercise price when writing the option, which requires rather restrictive 
assumptions on the behaviour of the bidders. 

Finally, there is a connection between options and levelled commitment mechanisms, 
first proposed by Sandholm & Lesser [ 195]. In levelled commitment, both parties have the 
possibility to decommit (i.e. unilaterally break a contract), against paying a pre-agreed de
commitment penalty. However, as [ 195] show, setting the level of the decommitment penalty 
can he hard, due to the complex game-theoretic reasoning required. There are situations in 
which both parties would find it beneficial to decommit but neither docs, hoping the other 
party would do so first, to avoid paying the decommitment penalty. This differs from option 
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contracts, where the right to exercise the option is paid hy one party in advance. In our 
model, this right is sold through an auction, thus the option price is estahlished through an 
open market. 

5.1.3 Outline and contribution of our approach 

The goal of this chapter is to study the use of priced options to solve the exposure problem 
and to identify the settings in which using priced options benefits hoth the synergy buyer and 
the seller. 

An option consists out of two prices, so an adjustment needs to be made to the standard 
auction with bids of a single price. The essence of options, in our model, is that huyers obtain 
the right to huy the good for a certain exercise price in the future. The value of such an option 
may be different for different market participants at different times. Throughout this study, 
in order to make the analysis tractable, we have a fixed exercise price and a llcxihlc option 
price. The seller determines the exercise price of an option for the good she has for sale and 
then sells this option through a first price auction. Buyers hid for the right to huy this option, 
i.e. they bid on the option price. 

Note that, in this model, direct auctioning of the items appears as a particular sub-case 
of the proposed mechanism, assuming free disposal on the part of the buyers. If the seller 
fixes the future exercise price for the option at zero, then a huycr hasically hids for the right 
to get the item for free. Since such an option is always exercised (assuming free disposal), 
this is basically equivalent to auctioning the item itself. 

Based on the ahove description, we provide hoth an analytical and an experimental inves
tigation of the setting. Our analysis of the problem can be characterized as decision-theoretic, 
meaning hoth buyer and seller reason with respect to expected future price. Our contrihution 
to the lileralurc can he characterized as twofold: 

First, we consider a setting in which n complementary-valued goods (or options for 
them) are auctioned sequentially, assuming there is only one synergy hidder (the rest of the 
competition is formed hy local bidders desiring only one good). For this setting, we show 
analytically (under some assumptions), that using priced options can increase the expected 
profit for hoth the synergy huycr and the seller, compared to the case when the goods are 
auctioned directly. Furthermore, we derive the equations that provide minimum and maxi
mum hounds hetwcen which the bids of the synergy huyer are expected to fall, in order for 
hoth sides to have an incentive to use options. 

In the second part of the chapter, we consider market settings in which multiple syn
ergy huyers (global bidders) arc active simultaneously, and study it through experimental 
simulations. In such settings, we show that, while some synergy buyers lose because of the 
extra competition, other synergy buyers may actually benefit, because sellers arc forced lo 
fix exercise prices for options at levels which encourages participation of all huyers. 

We note also that, while both parts of the paper look into decision theoretic hidding he
haviour, we consider different levels of information ahout the future available to the synergy 
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bidder. In the analytical case, the exact order of the auctions is assumed to be known, and 
we consider a bidder that wants a bundle of all the items to he auctioned. In the experimental 
part, where the synergy bidder only wants a sub-bundle of the goods from a potentially large 
sequence, we assume that bidding agents only know the number of future buying opportu
nities for an item of each type, not their exact order. This is actually more realistic for the 
application scenarios we consider. For example, when bidding to acquire a part-truck order 
in transportation logistics, it is more realistic to assume that a carrier can approximate the 
number of future opportunities to buy a complementary load, hut not the exact auction order 
in which future loads will be offered for auction. 

The structure for the rest of this chapter is as follows. Sect. 2 lays the foundation for 
further analysis by deriving the expected profits of synergy buyers and sellers for both the 
direct sale, respectively for a sale with options. Sect. 3 provides the analytical results and 
proofs of the chapter, for a market of sequential auctions with one synergy buyer. Sections 4 
and 5 summarize the results from our experimental investigations, while Sect. 6 concludes 
with a discussion. 

5.2 Expected profit for a sequence of n auctions and 1 syn
ergy buyer 

Section 5.3 will analytically prove, that options can he profitable to both synergy buyer and 
seller. In order to do that, this section derives the expected profit functions (which depend on 
the bids of the synergy buyer) for the synergy buyer and the seller. Throughout this study it 
is assumed that both sellers and buyers arc risk neutral and that they want to maximize their 
expected utility, respectively - in this case - their expected profit. 

5.2.1 Profit with n unique goods without options 

This section describes the expected profit of the synergy buyer and the sellers as a function 
of the synergy buyer's bids for a market with n unique, complementary goods, which arc 
sold without options. 

Let G be the set of n goods for sale in a temporal sequence of auctions and v.,y11 (Gsub) 
be the valuation the synergy buyer has for Gsub ~ G. In this section, we further assume 
that v,.y11 (G ) > 0 and VG sub ~ G , Vsy n(G . .ub ) = -0. In other words, to somewhat simplify 
the theoretical model, we consider a synergy buyer that desires the bundle of all the goods 
considered in the model (Gs ub = G). This assumption will not be used in the experiments. 

The goods G 1 •• G,. E G arc sold individually through sequential, first-price, scaled-bid 
auctions. Herc we choose the auctions to he first price, as they are more tractable to study 
using game-theoretic analysis. Furthermore, in a sequential setting with valuation complc
mentarities of the agents, second-price auctions do not have the nice dominant strategics 
properties, described by Vickrey. Furthermore, in many settings where such a model could 
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he used in practice, such as request-for-quotes (RFQ) auctions in logistics or supply chains, 
first-price auctioning is often used. 

The time these auctions lake place in is t = I .. . n, such that at time t good G, E G 
is auctioned. The above assumptions mean that if the synergy huyer has failed to obtain 
G 1, then she cannot achieve a hundle, for which she has a positive valuation. So if G1+ 1 is 
auctioned with a positive reserve price, then obtaining G1+ 1 will only cost the synergy buyer 
money. Therefore, if the synergy huycr fails to ohtain G1, then ii is rational for her to not 
place hids in suhsequent auctions. 

The hids of the synergy huyer arc B = (b1, . . . , b,,), where 1,1 is the hid the synergy 
huycr will place for good G 1,, conditional on having won the previous auctions. Because of 
the first-price auction format, b1 is also the price the synergy huyer has to pay if she has won 
the auction. 

Throughout this analysis, we assume the competition the synergy buyer faces for each 
good G1 (sold al time t) is formed by local hiddcrs that only require the good G1 .. We further 
assume that these local hidders arc myopic, i.e. the hids placed hy the synergy buyer have no 
effect on their hidding hchaviour. Therefore, from the perspective of the synergy buyer, the 
competition can be modeled as a distrihution over the expected closing prices at each time 
point t, more precisely as a dislrihution over a value lmi,1, which is the maximal bid placed 
hy the competition not counting b1. 

Denote hy F1 (b1) the probability that the synergy huycr wins good G 1. with bid b1 - where 
F, (b1 ) depends on whether b1. can outhid the maximal hid bm1 placed by the competition, 
excluding b1. For each good G1., there exists a strictly positive reserve price of b1, r ,,.s , which 
is the seller's own valuation for that good. Then bm.1 is the highest hid of the local hiddcrs 
(who only want Gi), if that hid is higher than b1,rcs· Otherwise lnn1. equals b1,rc.• · To deal 
with tics, we assume the synergy buyer only wins Gt if b1 > bmt and not if the hids arc 
equal. Then F1 (b1) can he defined as follows: 

(5.1) 

The synergy huycr only has a strictly positive valuation for the bundle of goods G, which 
includes all the goods G 1, sold al times t = l..n. Therefore, in a market without options, the 
a-priori expected profit 1r~t~ of the synergy buyer is: 

(5.2) 

The synergy huyer wants to maximize her expected profit. So her optimal bids B* 
(bj, .. . , b~) maximize equation 5.2: 

B- * E( t1i r ) = U1'.<J11UlX B· 7r_."" (5.3) 
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Next the profit of the sellers are examined. ll is assumed that all sellers have their own 
valuation for the good that they sell and that they set their reserve price of b1,r.,,, equal to 
this private valuation. So when the good is sold for b1, the seller of G1 has a profit -rrt,ir of 
b1 - b1,, . .,.,. As previously shown, the synergy buyer only participates when she has won the 
previous auctions; otherwise lnn1 is the maximal placed hid. The expected profit of the seller 
of the good G1 sold at time t is: 

1- 1 

E(-rr;tir) = (E(bmt.) - b1,,·eH )(l - II F;(b;)) + ( F1(b1 )(b, - bt ,re.,) 

i = I 

1- 1 

+ (1 - F,(b,))(E(lnndlnn1 2: b,) - b1,,·es)) IT F;(b;) (5.4) 
i= I 

Intuitively explained, the equation defines the expected utility over 3 disjoint cases: one 
in which the optimal bids b; of the synergy bidder were not sufficient to win all auctions up 
to time t, in which case the expected profit of the seller is the highest expected bid of the 
local bidders E(bmt), minus its own reservation value b1,,.,,,,; the second case in which the 
synergy bidder wins all previous auctions, including the current one (i.e. the one al lime t), 
in which case the expected profit is this bid minus reservation b1. - bt res , and the third in 
which the synergy buyer won all previous auctions but fails to win the current one, in which 
case still the highest bid hy the local bidders is taken. 

5.2.2 Profit with n unique goods with options 

Section 5.2.1 derived the expected profit functions for the synergy huyer and the sellers in 
a market without options. The next step is lo do the same for a market with options. This 
section has the same setting as the general model with n goods being sold, only now an 
option on G1 is auctioned al lime t. Therefore, all the sellers in the market will sell options 
for their goods, instead of directly the goods themselves. After the n auctions have taken 
place, the buyers need lo determine whether or not they will exercise their option. h is 
assumed that an option is only exercised if a buyer has ohlained her entire, desired bundle. 
The local hidders are only interested in G1 , so they will always exercise an option on G1 

should they have one. The synergy buyer is only interested in a bundle of all goods, so she 
will only exercise an option (and pay the corresponding exercise price) if she has options on 
all the goods required. 

The option exists out of a lixed exercise price [(1 and the synergy buyer's bids on the 
option price are OP = (op1 , ... , op,, ). The maximal bid without the synergy huyer was 
lnn1, but now crprn1 is the maximal placed option price. 

Since the competition only wants one good, they do not benefit from having an option 
and they will always exercise any option they acquire. Therefore the competition's best 
policy is lo keep bidding the same total price, which is the hid without options minus the 
exercise price. Thus the distribution of the competition is only shifted horizontally to the 
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left, by the reduction of the exercise price: opm1 = bm.1 - K 1. Thus, if the synergy buyer 
bids the same total price (option+ exercise), then she has the same probability of winning 
the auction in both models. Let F,° (op1} he the probability that op1 wins the auction for the 
option on G,. So if op1 + 1(1 = b1, then F/'(opi) = F/' (b1 - K 1) = Fj (b1). 

The synergy buyer's expected profit with options then is: 

(5.5) 

So her optimal hids OP• = (opr, . . . , oz,:, ) maximize the profit equation 5.5: 

(5.6) 

The main difference for the seller of G1, is that if the synergy buyer wins, then she only 
cams K 1 - 1,1 ,res when the option is exercised. She then gains the exercise price, hut loses the 
value the good has to her, which is the reserve price. And the probability of exercise is the 
prohahility that the synergy huyer wins all the other auctions. Therefore, the total expected 
profit of the seller of good G I sold at time t is: 

/ - ) 

E (11-;'7') = (E (opm, ) + K1 - b1 ,re.,}(l - II F:' (op;)) 
i= l 

II 

+ ( Fi"(op,} [op, + (K1 - bt,rc., ) II F[;(op1i}] 
h = l--1- 1 

1- 1 
+ (1 - Fi"(op, ))(E (oJJ'ln1 /opm, ~ O]J1 ) + K, - b1 ,rcs)) II F;'(op; ) (5.7) 

i= l 

Briefly explained, this equation has the same 3-case structure as Eq. 5.4 ahove. In two 
cases: when the synergy buyer loses an auction for one the earlier items in the sequence 
(before the items sold at time t), or when she wins all the earlier auctions, hut not the auction 
at time t, the expected payoffs are equivalents to the direct auctioning case, although this 
time expressed slightly differently, hascd on both the exercise and option price. However 
in one case, when the synergy buyer acquires all the previous items and the current one 
(middle line in Eq. 5.7), the payoff is composed of two amounts. The option price op1 will 
he gained for sure, in this case. However, the difference between the exercise and reserve 
price K,. - b1,,.,, .• (which signifies the item actually changes hands) is acquired only if the 
synergy bidder also wins all the subsequent auctions at times h = t + l..n. 

This is an important difference, and it would seem from these equations that the seller 
has no interest to use options, since in one important case, part of the amount she is about to 
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receive depends on the outcome of future auctions. The key, however, rests in the observation 
that the synergy buyer should be willing to bid more in total (i.e. Kt+ opi) than in the direct 
auctioning case. This will be analysed in the next Section. 

5.3 When options can benefit both synergy buyer and seller 

Section 5.2 resulted in the a-priori, expected prolit for the synergy buyer and the sellers as 
a function of the synergy buyer's bids for a market with and without options. This section 
uses these functions to determine the difference in profit between the two markets, which is 
7rcif and 1fosyn for the seller of good G1 and the synergy buyer respectively, where: 

Definition 3 

7f _ 7fup _ 7fdir 
lit - I I , 

_ op dir 
1fosyn - 1fsy11 - 1fsy11 

So if 7f/it and 7f/isyn are positive, then both agents are better off with options. 

5.3.1 When agents are better off with options 

Let B* denote the synergy buyer's optimal bidding policy in a market where goods arc sold 
directly (without options). We assume for the rest of Sect. 5.3 that for 1 :S t '.S n, F1 (bi) > 
0 and F1 (b;) < 1. So she may complete her bundle, but may also end up paying for a 
worthless subset of goods. Thus she faces an exposure problem. For the market with options, 

- I we define a benchmark strategy OP for the synergy buyer, so that the two markets can easily 
be compared. 

- I Definition 4 The benchmark of the ~:vnergy buyer's bids with options OP = (op~, ... , op;,) 
is that for 1 :S t '.S n: 

In other words, the benchmark strategy implies that the synergy buyer will bid the same 
total amount for the good, as if she used her optimal bidding policy in a direct sale market. 
Clearly this docs not have to be her profit-maximizing bid in a market where priced options 
are used. In fact, it is almost always the case that the synergy buyer will bid a different value 
in a market with priced options. This deviance from the benchmark is denoted by .X1.: 

Definition 5 Let A1 denote the deviation in the bid of the synergy buyer on the item G1 sold 
at time t, in a model with options, with respect to her profit-maximizing bid bi in a model 
witholll options. So her bid on an option for G1. will be op; + .X1. 
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Res op ' op'+,\, 

Figure 5.1: A possible situation in which options are desirable. 

These definitions enable us to rigorously define the bounds within which the use or op
tions (with a given exercise price) are desirable for both the synergy buyer and the seller, for 
each good in the auction sequence (except the last one, for which there is no uncertainty, so 
the use of options is indifferent). Fig. 5.1 gives the visual description of a generic setting in 
which options arc beneficial for both sides. It shows the possible bids a synergy buyer can 
place for an option. First, valid bids have to he bigger than the reserve price R e.,;, for each 
good in the sequence. The point op' is where the synergy buyer keeps bidding the same total 
price as in a market without options, c.f. Def. 4. 

The deviations, in an option model, from the benchmark hid op' is measured hy three 
levels, all denoted with A: A/ is the minimal risk premium the seller requires to benefit from 
using options, A1, is the maximal extra amount the synergy buyer is willing to pay for an 
option and op* = op' + A* is the synergy buyer's profit-maximizing hid in an option market. 
So, if it is rational for the synergy buyer to hid an additional quantity between A/ and A1, (as 
shown in Fig. 5.1 ), then both she and the seller arc better off with options. 

In the rest of Sect. 5.3, we derive the analytical expressions which can he used to deter
mine the values for A/, A1, and A* and compare them. Before this, however, we describe an 
important assumption behind the p~oofs in the remainder of this Section. 

Assumption used in deriving the proof 

Performing an exhaustive theoretical analysis of the minimum, maximum and optimal bid
ding levels of the A-s for all auctions in a sequence would not he tractable, as they all influ
ence each other. Therefore, we simplify our proof structure by focusing only on one of the 
A parameters: the one corresponding to the first good. This is possible since, as explained 
in the introduction, each seller sells one good and is only interested in maximizing the ex
pected profit from that sale. The decision of using options contract or a direct sale has to 
benefit both the seller and the synergy buyer. The buyer must he incentiviscd to participate in 
the auction for that particular good, while the seller is inccntiviscd hy an additional bidding 
activity (i.e. higher hid levels) in order to use options. 

The reason why we focus on the first good in the sequence is that, for this good, the 
buyer"s probability of not completing her desired bundle, hence her exposure problem, is the 
greatest. Our proof structure could he generalized as a recursive procedure: if one shows 
that options arc beneficial to use for the first item in a sequence, given a remaining [non
empty] sequence of auctions, this can he generalized to all remaining sub-sequences, (except 
perhaps, for the very last item, for which the analysis is trivial, as options cannot bring a 
benefit by comparison to direct sale). 
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In order to analytically examine the benefits of deviating from the benchmark strategy 
up'1 in the first auction, the proofs in this chapter use the additional assumption that the 
synergy buyer will use the benchmark strategy from Def. 4 for all remaining goods in the 
sequence. The use of the benchmark bidding strategy for the remaining items can be seen 
a giving an "upper bound" for the lower lambda value expected by the seller (i.e. At) and a 
lower bound for the highest value that can be offered by the buyer (i.e. A1,). We can sec this 
by examining the effect of this assumption on each of the parties: 

• For the synergy buyer: Being offered the opportunity to use options also in future 
auctions can only increase his expected profit from future auctions (since .X * 2'.: 0 and 
op* 2'.: up'). Otherwise, the synergy buyer will revert to using his benchmark strategy 
op', which brings the same expected profit as the direct sale case. His expected profit 
is at least as large in the options case as in the direct sale case i.e. E (<:,.,t.?_ '2) 2'.: 
E ( t1ir ) 

7rs1111 ,l ?_ '2 • 

• For the seller of the first item: Because for each of the following items op* 2'.: op', the 
probability that the agent will get all the future items can only increase, for each of the 
items in the sequence. Formally: F1~(upi.) 2'.: F1~(op~.) = F1, (bi. ), Vh = 2 .. n. This 
implies that IJ::='2 Ff: (upi.) 2'.: IJ::='2 F1i(bi. ), therefore the probability that the option 
for the first item is exercised can only increase. Therefore, this benchmark case acts 
as a lower bound for the expected profit of the seller, and as an upper bound on the At. 

In future auctions the synergy seller and buyer can use options, but this will not nega
tively affect the initial decisions, i.e. at the beginning of the auction sequence. Therefore, 
the lambda values referred to in the equations in the following sections could be formally de
noted as .Xt' and -Xi:•• , where in the general case it holds that 3.Xt , .X,. such that At ::; .Xi'8 and 
A1, 2'.: -Xi:". To avoid overloading the notation, we still use At and .X,., but the reader should 
be aware these refer to the tightest bounds on these lambda values, under the assumption that 
the benchmark bidding strategy is used in all auctions subsequent to the current one. 

When synergy buyer is better off with options 

This part of Section 5.3.1 examines for which bids the synergy buyer is better off with op
tions. This is done by detennining the maximal amount she is willing to pay for options. 

Lemma 5.3.1 Let B* =< bi > for 1 ::; t ::; n be the vector of optimal bids of the synergy 
buyer in the model without options, and op! + .X1 be the bids in a model with options. Then 
the expected gain (i.e. difference in expected profit) from using options E(1r.,s1111 ) can be 
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written as: 

1l 1l 

E (1ri1 s1111 ) = [vs11n(G )( II F;(bf + A;) - II F;(b;))] 
i= J i= l 

n j n 

+ [I: J(j(II Fk(b'j. + Ak ) - II F;(b; + A;))] 
j = I k = l i = I 

11 j 

+ I: (- Aj) II Fk(b'j. + -Xk) 
j = l k= l 

Proof 4 We compute the d(fferent in pmfit between a model with options and a model without 
options. using expected pn~fit equations (5.5) and (5.2), as de.fined in the prel'ious section. In 
a model without options, the optimal bids <f the synergy buyer at each time step t are given 
by b; . In a model with options, we express the bidding policy as a deviation with respect to 
the benchmark strategy with options, i.e. op; + -X1. This gil•es the d(fference: 

We can now replace op~ with the definition of the benchmark strategy (i.e. same total 
bid amount. as in the case without options), using the properties: ov; = b7 - K 1 and 
F,"(op; + -X1) = F1 (bt + -Xi). This giFes: 

[ 

11 j ] 
+ ~ (- bj + Ki - -XJ) g Fk(b'j. + -Xk) 

- [vsyn(G) TI F;(b;)] - [ t(- bj) g Fk(b'j.) ] 
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This .formula is now re-grouped, separating the terms VsynG, "i:,j'=1 K 1, "L-;'=1 ( - ,\1) 
and "i:,j'=1 (- bj) , each with its corresponding probabilities to complete the proof the prooJ:-

11 11. 

E(7rJHyn) = [vsyn(G)(II F ;(b'; + A;) - II F;(b';))] 
i = l i = l 

1l j 1l 

+ [ L K j( II Fk(bi. + Ak) - II F;(b; + A;))] 
) = I k= l i = l 

" j 

+ L (- Aj) II Fk(bi. + .\k) 
) = I k= l 

[ 

II j j ] 
+ L (- bj)( II Fk(bi. + .\k) - II Fk(Vi)) 

J= l k= l k= l 

To explain intuitively Lemma 5.3. 1, the difference in expected profits between the two 
models is formed of 4 parts (corresponding to the 4 lines). First, in an options model, the 
synergy bidder has a higher probahility of getting the desired hundle and extract its value, 
since she bids more in total (line I). Furthermore, in an options model, the bidder docs not 
have to pay exercise prices unless she acquires all n items in the desired bundle (line 2). On 
the minus side, on hut she docs have to pay a set of additional amounts ,\ (line 3) for all 
items she bids on until one is lost (line 3) and, for these items, the chance of acquiring them 
increases slightly, which also increases the chance of lost bids (line 4). 

In the following, we turn our attention to providing equations that allow us to deduce 
the ,\ parameters that give the synergy huycr an incentive to use options. As previously 
explained in Sect. 5.3.1 ahovc, we simplify the proof structure by only focusing on the most 
important option for the synergy huycr: the one on the lirst good (when bidding for this 
good, the prohability of not completing her entire bundle is the greatest). This is done under 
the assumption that for the goods in the sequence, we assume the hcnchmark strategy is used 
(i.e . .\1 = 0 fort > 1). For the rest of the items in the sequence, the same proof technique 
can be applied recursively. 

Theorem 5.3.2 Let .\ 1 be the deviation in the biddin,: strate,:y, compared to the benchmark 
strategy op\ , as defined in Def 4. l.f .\1 = O.for 1 < t ~ n, then by definition, E(7rt1sy11 ) >= 
0 ifO ~ Ai < .\11. The 11a/11e o.f .\1i (correspondin,: to E(7r,L,y11 ) = 0) can be solved as the 
numerical solution to the fo llowing equation: 

n j " 

F, (b; + -\,. ).\1, = F1(Vi + .\1i )[ LKJ( II F,.(bi.) - II F;(bT))] 
J= l k= :! i = :! 

" n j 

+ (F1 (Vi+ A1i ) - F1 (b;)) [vs 11 ,.(G) II F;(b';) - L (bj) II Fk(bi.)] 
i= "2 J= I k= :! 
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Proof 5 The pr(}(~{ is based on the d(fference in profit fun ction derived in Lemma 5.3. I, using 
the assumption that At = Ofor 1 < t :S n. As the expectation function of the synergy bidder 
is descending in the value of A, we determine when E (1r15H!J 11 ) = 0. 

11 

[vsyn(G )(F1 (Vi + A1,} - F1(bn) II F;(bn] 
i= 2 

n j n 
+ [ I:Kj(F1u,r + A,, ) II FdbZ)} - (Fi(br + A1, ) II F;(bm ] 

j = I k= 2 i = 2 

+ (- A1, )F1 (Vi + A1, ) 
n j 

+ [ I: (- bj}(F1 (br + A,, ) - Fi (Vi )) II Fd bD] = o 
J= I k= 2 

Isolating the values of A1, yields the formula in Th. 5.3.2. 

11 

Fi (br + A1, )A1, = (Fi (br + A1, ) - F 1 (br)) [vHy11(G) II F;(bn ] 
i= 2 

n j " 

+ F1 (Vi + A1,) [I: K j( II Fk(bt,) - II F;(b;))] 
J= I k= 2 i = 2 

Which giJ,e thefollowing equation.for determining A1,: 

n j n 
F1 (Vi + A1, )A1, = F1 (Vi + A1, ) [I:Kj (II Fk(bZ) - II F;(lJi' )} ] 

J= I k = 2 i = 2 

n n J 

+ (F, (br + A1, ) - F1 (Vi )) [v.,yn(G) II F; (b;) - L (bj) II Fk(bZ )] 
i = 2 j = I k = 2 

When the first seller is better off with options 

We now determine the minimum or lower hound At (the level of A that, according to Def. 5, 
keeps the seller of G 1 indifferent ahout options). In order to compare this bid with the A1, 
from the previous section, it is again assumed that At = 0 for 1 < t :S n . 

Theorem 5.3.3 {f without options the synergy buyer bids B* and with options op~ + Ai for 
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G1 and op;Jorl < t '.S n, then E(1r0i)for the seller ofG1 is: 

Tl 

E(1r,51) = F1 (bi')(A1 + (b1,1·cs - l(t) [ 1 - II F1i(bi,)]) 
h = '2 

11 

+ (b1 ,,·cs - 1(1)[1 - II F1i(bi,)]) 
h = '2 

By definition, A1 is the lower bound for At that guarantees that the expected profit of the seller 
E(1r,5 1 ) > 0. The l'alue of At can be obtained as the solution to the equation E(1r01 ) = 0, 
which using the equation above gives: 

II 

F1 (bi+ A1)( - A1) = F1 (bi+ A1)((b1,rcs - Kt) [ 1 - II F1,(bi,)]) 
h = '2 

Proof6 The difference in profit is equation (5.7) minus equation (5.4): 

II 

E(1r?) - E(1rj'i,.) = (F.(opi) [0JJ1 + (K1 - b1,res) II F,~(op1i)] 
h = '2 

+ (1 - F{'(opt) )(E(o1nn1 lo1mi1 2: opt) + /(I - b1 ,,·es)) 

- ( F1 (bi)(Vi - bi ,,..,s) + (1 - F1 (/Ji)(E(bm1 lbm1 2: Vi) - bi,res)) 

Recall that the the price op1 hid in an options model can be expressed in terms of the benclz
mark strategy op; and the del'iation A1. 

11 

E(1r5i) = F{'(op; + A1)(op; + A1 + [u<1 - bi,re.,) II FK(op,.)]) 
h = '2 

+ (1 - Fi"(op; + Ai))(E(o1miJ!opm1 2: op;+ Ai)+ K1 - b1 ,res) 

- Fi (bt)(bi - b1,res) - (1 - F1 (!Ji))(E(bm1 llmt1 2: bi) - b1,,.., ,.) 

Furthermore, we can make the substitution to replace op; with its definition, as follows: 
op1 = op; + A1 = bt - 1(1 + A1 and F{'(opt) = F{'(op; + At) = F1 (bt + Ai): 

II 

E(1r5i) = F1 (bi+ A1)(bi - K1 + AJ + [u<i - b1 ,res) II Fu1i(op;,)] ) 
h = '2 

+ (Fi (bi+ At) - F1 (br))( - E(bm,i I/Ji+ A1 2: bm1 > bi)+ bi,,•cs) 

- F1 (b7)(bt - b1,m) 
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ti 

E(1r,;i) = F1 (br)( - Ki + bi,rc.• + A] + [U(i - bi ,re .• ) II F,~(op~,)]) 
h = '2 

n 

+ (Fi (b; + Ai) - F1 (bn)(f,; - Ki + Ai+ [u(, - b1,rc.,) II F,~(op~,)] 
h = '2 

Thus: 

71 

E(1r,;i) = F1 (br}(Ai + (bi ,r,: .s - Ki) [1 - II F1,(bi.)] ) 
h= '2 

ti 

+ (b1 ,rcs - K i)[l - IIF1i (bi,)]) 
h = '2 

Since, by definition, E(1r1i1) = 0 Ril>es the l'lllue <~f AI, this value can be soflied l'ia the 
equation in Th. 5.3.3. 

n 

Fi (b7 + At)( - At) = F1 (b; + A1)((b1,rcs - Ki) [ 1 - II F1,(bi,) ]) 
h = '2 

Intuitively, the difference in profit has two parts: the cases where the synergy buyer wins 
the auction in both markets and the ones where she only wins with options. With the first, 
the synergy buyer pays more than she used to and with the second, the synergy buyer pays 
more than the local bidders, who used to win if Ai < Af. But both cases have the downside 
for the seller that the synergy buyer may now not cxen.:isc her option. 

Both agents can be better off with options 

The previous parts of Section 5.3.1 give the equations for the cases when the individual 
agenl'i arc heller off with options. These results will now be combined to give the formal 
conditions when they are both better off. This is done by simply stating that the minimum 
hid the seller of G i requires should he below the maximal value the synergy buyer is willing 
to pay. As shown the beginning of Section 5.3.1, the equations for A/ and A1, that arc derived 
in Theorems 5.3.2 and 5.3.3 above arc the narrowest possible interval values, under the 
assumption that all remaining auctions arc direct auctions. Therefore, the solutions to the 
equations in Thm. 5.3.2 and 5.3.3 arc two values Ni," and A'/'', where :U1, A1, such that 
A/ ::; A1·' and A/1 2: A,;-•. We summarize the results in a final theorem: 
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Theorem 5.3.4 Under the condition that the optimal decision of the synergy buyer is to bid 
,\,, additionallyfor an option on G1 (where >.'!8 < Ax < >.,:s ), then both the seller ofG I and 
the synergy buyer have a higher expected profit in a market with only options compared to 
one without options. 

Proof 7 The proof of thisfollowsfrom the previous theorems. Say that the synergy buyer bids 
op~ + Ax for the first good in the sequence, where >,-?8 < Ax < >.'f,8 and op; for the other 
goods. Then the synergy buyer bids more than op' + >.;is 2: op' + >.1 (because>., :S >.t' ), so 
according to Theorem 5.3.3 the seller of G I has a higher expected profit with options. Also, 
the ,\)'nergy buyer bids between O < Ax :S >.'f,8 :S >..,. extra ( as >.11 2: >..,:·• ), so according to 
Theorem 5.3.2 she too has a higher expected profit with options with these bids. Therefo re 
3 a non-empty inten•al [>.1, >.1,] for which both parties prefer using options, rather than a 
direct sale. 

5.3.2 Synergy buyer's profit-maximizing bid 

In the previous Section, we focused our attention on deriving equations for the bounds >.1 

and >..,. between which the additional bids of the synergy buyer have to fall in order for both 
parties to be incentivised to use options. While these bounds were defined in relation to 
the expected-profit maximizing bid b* in a model without options, we have not said much 
about the optimal (i.e. expected profit maximizing) bid op* in a model with options. The 
reason for this is that deriving this is much more involved than the optimal policy in a model 
without options. In this Section, we look at the synergy buyer's profit-maximizing bids op*, 
but with the added assumption that F1 (b 1) follows a uniform distribution in the range of 
the possible bids. Actually, we do this by using the same framework introduced in Def. 5 
and Fig. 5.1 above. That means, we compute the deviation >..* between the optimal bid 
in a model with options and the optimal bid in a model without options, i.e. the difference 
>. * = (K1 + opr) - bj (the reason to do this will become apparent in the proof, but, basically, 
by taking the difference, several terms drop out). Note that in this section, we still apply the 
above results and assumption regarding bidding the benchmark strategy in future auctions, 
but to simplify the notation, we still use >.1 and >..,., instead of >.t' and>..,:·' . 

If the profit-maximizing bid opj > op~ + >.1, then according to Theorem 5.3.3 the seller 
of G1 is better off with options. Therefore, it is in the rational interest of the seller to set 
the exercise price for selling her good such that the expected optimal bid of her buyers, in 
a model with options, will provide sufficient incentive for the seller to also use options, and 
thus the following condition holds: opj > op~ + >.1. Note that in order to use Theorem 5.3.3, 
the bids for the other goods are fixed at op;. First opj and >..1 are derived. 

Lemma 5.3.5 If F1 ( b1) follows a uniform distribution between 'IUL and 'Ub, then opj + I{ 1 -
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{

0.5(K1(l - n;~ '.l F i(l,7)) + r:.;·= '.l Kj(I1{= 2 Fk(b';J - n:~ 2 F;(bi:))), 

.X* = (fua :S E(1r1t~, ,k?_ J :S ub+ (ub - ua) 

0, otherwise 

Proof 8 With a un(form bid distribution between ua and ub, the prohahility <~f winning with 
hid b1 has the.following shape: 

Ji (bi ) = {1/ (ub - ua) = o , 
o, 

(f ua :S bl :S ub 

otherwise 

(f bi < 1ui 

(f ua :S l11 :S ub 

(f b1 > ub 

(5.8) 

(5.9) 

For F f the variables a 0 , ua0 and 1tl,0 are used, where ua0 = 1ui - Ki and ub0 = ub - Ki. 
so that F1(b1) = Ff(oJJi) when bi - K 1 = opi. 

First, we determine, for this type of distribution, the equation.for the optimal hid bj in a 
model without options. To do this, we start.from the expected profit equation (5.2): 

11 11 j 

E(1rit~) = Fi (bi) [vsyn (G) II F;(b;)] + Fi (b1 )( - bi)+ F1 (bi) [ 2)- bj) II Fk(l,k )] 
j = '.l k = 2 

II '1 j 

E(1ri!~J = F1 (bi) [ - b1 + [v.,y 11 (G) II F;(b;)] + [2) - bj) II H-(bk) ]] 
i = 2 j = '.l k = 2 

So the derivative wrt. b1: 

8E( dir) 11 

a:"' 11" = f1(bi)[ - bi + [v .,1111(G) II F;(b;)] 
I i= 2 

Tl j 

+ CL) - bj) II Fk(bAJ]] + F1(bi)( - l) = 0 
j = '.l k= 2 

Filling in the equations.for J1 and F1 leads to: 

11 11 j 

[v.,1111(G) II F;(b;)] + [ 2)- bj) II Fk(bk)] + 1/.(L = 21,r 
i = 2 J

._ ., 
- - k = '.l 
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Nevertheless, the bi obtained through this formula still has to satisfy the inten1al con
.\·traints ua :'.S bj :'.S ·ub. This means: 

[vsyn(G) fE=2 F;(bi) ] [ I::'=J - bj) Tit 2 Fk(bk) ] 1Ul 
'IUl < -=---'------'---"'----=- + ---=---------- + - < 'Ub 

- 2 2 2 -

Which yields: 

II 71 j 

'IL<L :'.S [vsy 11 (G ) II F;(b;)] + [1)- bj) II Fk(bk)] :'.S 2ub - tw 

j=2 k = 2 

Note that the middle expression is, in fact, the expression for the expected profit of a 
direct synergy bidder.from the second auction onwards (i.e. fork 2': 2), discou1lling the bid 
to be paid for the first item. Therefore, we can rewrite this condition as: 

·1w :'.S E (rrti~,, k>2 ) :'.S 'Ub + (-ub - 'Ua ) 

From this form, it is easier to explain why outside this inten1al, ,\* = 0. If the expected 
profit of the fitture sequence E( rrti~•,k?.2) < -ua, there is no point in the buyer to cofltinue 
bidding ( either direct or with options), as she cannot afford her desired bundle anyway. 
Therefore, both b* and,\• should be zero. If the expected profit of the future sequence exceeds 
the value of -ub with a whole inten1al ub - 'IUL (i.e. E (rr~i~, ,k?_ J > ub + (ub - ua ), then 
the direct bid assures the bidder of winning the item (as wzifonn distributions are bounded). 
But this means that options are also not useful, so again,\• = 0 (there is no point of bidding 
more than in a direct model). 

To get the value of,\* outside these trivial cases is more involved. First, we compute the 
optimal bid opi in a model with options: 

[ [
71 ] 71 ] [ " j ] E (rr~t ,.) = (vsy71(G ) - L K,. ) II F;°(opi) + L (- opj) II F!:(opk) 

h = I i = I J= I k = l 

First, we isolate op1 in the above equation: 
11, 11, 

E (rr~t,.) = F f( op1 ) [(vsy71(G ) - [ L K1,]) II F;°(opi)] 
h= I i=2 

n n 

E (rr~t ,.) = Fo1(up1 ) [ - UJJ1 + [(vs y .. (G ) - [LK1i]) II F0 ;(up;)] 
h= l i = 2 

II j 

+ [L (- OJJJ) II F,,k(opk) ]] 
j = '2 k = '2 
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We take the derivatil'e wrt. op1: 

DE( OJI ) 71 11 

0
;; 1111 = ff(opi)[ - op1 + [(v., 11,.(G) - c~=K1i]) fi F;"(op;)] 

11 h= I i= 2 

11 j 

+ [~)- oJJi) n Ft(opk)]] + Ff (q>i) (- I ) = 0 
j = 2 k= 2 

I d d • I • I I * dd I d. • 1JB(1r"" J 0 11 or, er to etermme tie optima l'a ue op1. we a tie con 111011 "J • un = : 
< OJJt 

1l 1l 

lto [ - OJ); + [(vsu11(G) - [I: K1,]) n Ff'( oJJ;)] 
h = I i= 2 

11 j 

+ [ 1:(- <>pj) fi Ft(op~.)J] + n:,,(oi>r - 'IULo)( - I ) = 0 
j = 2 k= 2 

Which .finally yields the .followinf? equation for determininf? opj: 

1L 1& 1l j 

[(vs11n(G) - L K,, ) n F;°(op; )] + [1:( - 0JJJ) n F,'.'(opk)] + M o = 2oJJ; 
h= I j = 2 k= 2 

We now.focus our attention at computing the d(fference A* between the optima decision
theoretic bid in a model with options I'S. a model without options. By definition. we have 
that: A* = (K 1 + opj) - bj, so 2A* = 2opj + 2K1 - 2bj . When taking this d(fferen ce. 
ua0 = ua - 1(1 and opk are replaced accordinf? to OJJk = 01{ = 1,; - /(1 (because.for the 
other auctions. the benchmark strategy is used) and F,'.'(01{ ) = F1 (bi). Then all variables 
cancel each other 0111. except.for the K 1: 

" 11 

2(Vi + A* - l{i) = [[(v.,y11(G ) - [L K1,] ) n F;(bi)] 
h= I i= '.! 

II j 

+ [1:(- bj + K i) IT F~-(bZ)] ] +1ta - K1 
j = '.! k= '2 

hence 

11 11 

2A* = [[(v., 1111 (G) - [L K,,]) fi F;(tJ;)] 
h= l i= 2 

n j 

+ [ L (- bj + KJ) fi Fk(bZ)]] + ua + K1 - 21,; 
j = 2 k= '2 
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thus 

n n 

A* = 0.5( [ [(vS!Jll(G) - c~=K,.]) II F;(bn] 
h= I i = '2 

" j 

+ [I)- bj + Kj) II Fk(bi)] ] + 'IUL + K1 
J= '2 k= '2 

n n j 

- ( [ [vs!Jn(G) II F;(b;)] + [z)- bj) II Fk(bk)]] + ua)) 
i = '2 j = '2 k= '2 

After some re-writing: 

n n n j 

A* = 0.5(( - L K1, ) II F;(br) + L K j II Fk(bZ) + K i) 
h= I J= '2 k - ·, 

Re-arranging the parantheses: 

n n n 11 j 

A* = 0.5(K 1 - K 1 II F;(tJ; ) - L K,. II F;(br) + L K j II Fk(bZ)) 
h= '2 i= 2 J= '2 

Which finally leads to the equation in Lemma 5.3.5: 

11 1l j 11, 

A* = 0.5(K1 (1 - II F;(b;)) + L Kj(II Fk(bZ) - II F;(tJ; ))) (5.10) 
k - ·, 

The main intuition behind this formula is that, in an options model, the synergy buyer saves 
the exercise price when she fails to complete her bundle. Therefore, it is her profit-optimizing 
strategy, in a model with options, to increase her bid with a part of the potential savings on 
the exercise prices of subsequent auctions. 

Lemma 5.3.6 If F1 ( b1 ) follows a uniform distribution, then the lower bound is: 

II 

At = - (bt - 1L<L + [1 - II F1i (bi,) ] (b1,re.s - K1 ))+ 
h= '2 

11 

+ (bi - 'U(L + [1 - II F1i (bi,) ] (b1,m - K1 )) 2 

h= '2 

11 

- 2(bi - ua) [1 - II F1i (bi,) ] (b1, ,·e., - K t) 
11= '2 
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Proof 9 Take the >.1 equation from Theorem 5.3.3. With a uniform distribution, F, ( b1) 
a(bj - ua) and E(bm 1 lbj + >., ~ lnn 1 > bi) = bj + 0.5>.,. So the equation becomes: 

" 
n(bj + >., - ua)( - >., ) = a(bj + >.1 - mi)((b1 ,rr:s - Ki) [ 1 - IT F1, (bi,)]) 

h= 2 

Dil'iding both sides by a and reducing l,j in the last parenthesis gil·es: 

11 

(bj + >., - ua)( - >.1) = (Vi + >.1 - ua)( (b, ,re., - K1) [ 1 - IT F1,(bj,)]) + >.1( - 0.5>.i) 
h= 2 

After re-arranging the terms and mol'ing the lefi -hand side to the right, this yields: 

11 

(bj + >., - ua)(>., + (b1 ,,·r. s - Ki) [ 1 - IT F1, (bi,)]) - 0.5>.f = 0 
h= 2 

The ahm•e equation can be brought to standard, 2nd order polynomial.form in the unknown 
>.,: 

11 

0 = 0.5>.f + >., ( bj - 11<L + ( b1 .,· ie s - K1) [ 1 - IT F,, (bi,)]) 
h= 2 

11 

+ (bj - 11.a)((b1,rc., - K1) [ 1 - IT F1, (bi.)]) 
h= 2 

This polynomial equation can then he solved via the quadratic.formula: 

" 
>.1 = - (bj - ua+ [1 - IT F1,(bi,)](b 1,,-c., - Ki)) 

h = '2 

11 Tl 

± (bj - 'll(t + [1 - n F1i(bi,)] (b1,n:s - Ki)F - 2(bj - ua) [ 1 - n F1,(bi,)] (b1 ,r,:.• - /{i) 
I, ~ I, ~ 

Note that .formally, we the condition mi :S b* :S ub should also he imposed in the above 
equation. Howel'e1; ~f b* falls for the direct sale case falls outside this inten•al (i.e. if 
:S E(1rii~,,k?_ J < Mor :S E(1rit~, ,k?_'2) > ub + (ub - ua)), we know thatthe the lambda <~f 
the seller>.* = 0. so there is 110 point in the seller even cm1sidering offering options. O111side 
this inten•al, it makes no sense to compute an expression .for >.1. 

The next and final step in these proofs should actually involve comparing the equations 
for).. * (from Lemma 5.3.5) and >.1 (from Lemma 5.3.6), such as to derive a condition for 
when >.1 < >. * . We found that gelling a closed form expression for this condition is not 
possihle for these two equations. However, the framework developed ahove is sufficient to 
enahle the seller to solve this condition numerically using a standard solver and, thus, choose 
the optimal level for the exercise price K 1. 
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5.4 Simulation of a market with a single synergy buyer 

This section presents an experimental examination of a market with one synergy buyer. It 
introduces the market entry effects in the synergy buyer's behaviour, as well as the threshold 
effects that may determine which exercise prices the seller chooses for her options. This 
experimental analysis is performed here for a market with one synergy bidder and several 
local bidders, while Seel. 5.6 considers a market with multiple synergy bidders. 

The experimental setting is as follows: we consider a simulation where two goods A 
and B arc auctioned nA and n 8 times respectively. The synergy buyer desires one copy 
of both goods and has zero valuation for the individual goods. That is, each synergy (or 
global) bidder requires exactly one bundle of {A, B}. Note this is somewhat different than 
the setting used in Chapter 4, in which a bundle of the same good was nccdcd. 1 In the setting 
considered in this Section, local bidders only want one good and participate in one auction, 
thus their bids can be modeled as a distribution. 

Furthermore, in order to simplify the analysis of the model, we assume there is a single 
seller who auctions all the goods. This is actually equivalent to studying whether 011 al'erage 
sellers have an incentive to use options. To explain, on any single sequence of auctions 
taken in isolation, the sellers of different items may have highly diverging incentives to use 
options, based on their position in the auction queue. However, in a very large setting, where 
buyers enter the market randomly, it is difficult for any individual seller to strategize about 
her particular place in the sequence (and, furthermore, in most markets she may simply have 
no information to do this). Our goal is to study under which conditions, on average, sellers 
benefit from using options if there are synergy buyers in the market. Also, to somewhat 
reduce the number of test parameters, we further assume that the exercise price is the same 
for all goods of the same type. So the seller needs to determine which exercise price for A 
and which for B maximize her expected profit. 

Note that, typically a seller has a resale value of for the goods that remain unsold, which 
is typically lower that the value at the start of the auction sequence. The reason for this may 
be that there is some time discounting associated with waiting for a sequence of auctions to 
resell her items, or even a listing cost, which is paid per auction (such as in the Ebay case). 
In this paper, we do not explicitly simulate resale, but we use a reservation value, which 
represents the expected resale value the seller expects to get, if she is forced to resell her 
items. 

To summarize, simulations were run in Matlab and had the following parameters: 

1 An intuitive way to think about this setting is as a sequential sale or individual shoes or exactly the same type, 
where A is the left shoe, and B is the right shoe, and each synergy buyer requires exactly one pair. 
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Name Explanation 
n The numher of auctions. 
m ean The mean of price distribution. 
std The standard deviation of price distribution. 
r e.~ Reserve prices. 

V ,S!JII Valuation of synergy huyer for A and B comhined. 
k Number of simulations for each auction run (i.e. how many times 

a se4uence of auctions is repeated for one set of parameters). 

A hasic simulation run is as follows. First, all possible auction sequences are determined 
for the given numher of auctions for A and B. The simulation is then run for all these se
quences, both for a direct sale setting and for a setting where the items arc sold through 
options with given exercise prices. 

For each auction, in each simulation run, there is a set of local bidders. assumed myopic. 
The hids of these local hidders are therefore, assumed to follow a normal price distrihution, 
with the parameters n, 111.1,an, .'itd and r es consisting out of two values: one for good A and 
one for good B. For each simulation run, the synergy hidders(s) are asked to determine their 
profit-maximizing bid for that setting, as descrihed in the next section. The optimization 
required for determining their optimal bid is done using the Matlah function "fminsearch'' 
from the Optimization Toolhox. 

Since there may be considerable variance in the bids of the local hidders (which are 
myopic) each possihle auction sequence is run k times (typically, we had k > 10000). The 
average profit of the seller and the synergy huyer which arc reported here, for hoth the case of 
with and without options, are averages over all these k simulations and also over all possihlc 
auction orders of items A and B in the sequence. 

5.4.1 Synergy buyer's bid strategy 

This section descrihes how the synergy buyer determines her bids in the simulation. In 
order to neutralize the effect that the exact order items arc auctioned in plays on the hidding 
strategy. we add the assumption that the synergy huyer knows the number of remaining 
auctions, but not the order they will he held in. This remaining number of auctions of each 
type is common knowledge (i.e. the synergy bidders can always ohserve how many auctions 
of each type are left hefore they have to leave the market, and so docs the seller). 

The model descrihcd here is for a situation without options. But in order to apply it 
to a situation with options, one merely has to replace the variables: b1 = op1 - K 1 and 
v.,1111 (A , B ) := v.,y11 (A,B) - J(A - Ko . As in the analytical section, we assume a hiddcr 
only wants a complete hundle of { A , B}. Therefore, v,. 1111 (A) = 0 = v.,y11 (B ) = 0. 

Determining the synergy huyer's profit-maximizing bid bi at slate t hasically involves 
solving the Markov Decision Process (MOP), where we select the optimal hid bi at time 
t. subject to the optimal hid bi+i heing selected for the future time point t + I (which in 
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this case, is an auction). We can, however, use the valuation function of the bidding agent to 
significantly reduce the state space of the MOP, as shown below. However, first we introduce 
some notation. 

Let b* be the immediate best response to the state, which depends on four variables: 
ZA, z 0 , X and 11. The variables ZA and Z B arc the number of remaining auctions for A and 
B respectively (including the current auction), so ZA ~ nA , za ~ na . The type of good, 
which is currently sold, is denoted by ft. The set of goods the synergy buyer owns (i .e. the 
endowment) is described by X, which can either be 0, {A} or { B}. If X is { A, B} then the 
synergy buyer is done. Let Q(zA, z8 , X,11, fJi) be the expected profit of the synergy buyer 
when bidding b1. Note that, in these definitions, bt+i and Vi+1 () denote the best available 
bid, respectively best expected value for the next state (as computed by recursion), while 
Ii+ 1 is the type of the next item in the auction sequence. Therefore, using MOP notation, 
the profit-maximizing bid bt is determined as follows: 

(5.11) 

Where the expected profit is determined via: 

Q(z,1, za , X,l, = A, b7+ 1) = FA(bi )( - b, 

+ Vi+1 (z ,1 - 1,213, XU A, b7+d) + (1 - FA (b1))Vi+ 1 (zA - 1, zu, X, b;+ t) 
(5 . 12) 

Q(z,4 ,z13 , X , I1 = B , b1 ) = FB (b, )( - b, 

+ Vi +1 (z,1, z 13 - 1, XU B , b;+i )) + (1 - Fu(bi,))Vi+1 (z,1, Z 13 - 1, X, b7+d 
(5.13) 

Where V() is the value of a state, which simply means the maximum expected profit of that 
state: 

Vi( z ,1, z13, X, b
1

. ) = 11iaxb, Q(zA, Z IJ, X, 1
1

, b
1

) (5. 14) 

Looking at the formula for Q(), it basically says that for the probability of winning the 
auction with her bid, the synergy buyer has to pay a price equal to her hid and the good is 
included in the endowment X of the next state. If she does not win the auction, then the 
value of the current state is equal to the value of the next state. 

As we mentioned before, in computing its optimal bidding strategy used in the experi
mental Section, we assume the synergy buyer does not know whether the next auction will 
be for A or B, she only knows the total numbers of auctions for A and B remaining. We ac
knowledge this is a departure from the formulas in the theoretical analysis, where the exact 
order of the auctions was taken into account to compute the bidding strategies. There are two 
reasons to use this assumption here. The first is that it reduces considerable the slate space 
that needs to be modeled when computed the optimization. But the second is that we also 
lind this choice more realistic if this model is to he applied lo real-life settings. For example, 
when bidding on a part-truck order in a logistic scenario, it is more realistic to assume that 
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a carrier can approximate the numhcr of future opportunities to huy a complementary load, 
but not the exact auction order in which future loads will he offered for auction. 

If we assume the synergy buyer only knows the total numbers of auctions for A and B 
remaining (and not their exact order), then her hidding strategy is based on assuming each 
future auction has an equal prohahility to occur. Therefore, the probability of an auction for 
A occurring next is simply the numhcr of remaining auctions A divided hy the total number 
of remaining auctions. Thus, a weighted average can be used lo determine the value of the 
next auction, while not knowing for which good it will he for. 

Apart from this general framework, we can prune the state space with the cases in which 
we know the synergy huycr's bid is zero: 

bt = argma:r.1,, Q (O, zn, X, B , b1) = 0, with A (/:. X 

1,7 = argrna:r.,,, Q(zA, 0, X, A, b1) = 0, with B ./:. X 

b1 * = ar!Jmn.:r.1, 1 Q( z,1, Z H, X, I1 E X, b1) = 0 

(5.15) 

(S. 16) 

(5.17) 

With the lirsl two cases. the synergy huycr can no longer ohlain her desired hundlc, 
because she docs not own the complementary item and there is no chance left of acquiring 
it. The last equation is for the case when the synergy huycr already has a copy of the type of 
good (and, from her valuation function, she only wants exactly one copy of A and B). The 
corresponding values of these slates arc: 

V(0, zn,X,b7) = 0, if A./:. X 

V( zA, 0, X , b;) = 0, if B (/:. X 

V( zA, z13, {A}, b;) = V(O, ZB, {A},b7) 

V( z;1, zn, {B} , b;) = V( zA, O, {B}, b;) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

The first two equations correspond lo the case when the huycr can no longer get the 
complementary-valued item, therefore the sequence of auctions of the same type has no 
value to her. In hoth these cases bi = 0. The las! two equations arc important, since !hey 
help the mos! to reduce the slate space. Basically, as already mentioned, we assume that a 
synergy hiddcr only wants exactly one hundlc of { A, B}. If she already owns a good of one 
of the two types, she will no longer he interested in the remaining auctions for thal type of 
good. Therefore, the valuation V () of these states is equivalent to a state when no auctions 
are remaining for the type of good she already owns (as she would not take part in those 
anyway). All these techniques help reduce the recursive search. 

To conclude, to determine the synergy huyer's hids in any situation. lhe values of bj and 
V() need to be calculated for the following slates: 

\/zn > 0 Q(0, za,{A},B,b1) 

\/zA > 0 Q(zA, 0, { B}, A, b1) 

\/z ,1 > 0, zo > 0 Q(zA, z13, 0, A, b1) 

\/z,1 > 0,zn > 0 Q(zA,Zn,0, B ,b1) 
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5.4.2 Experimental results: market entry effect for one synergy buyer 

First, we study experimentally the incentives to use options for the sellers and buyers, in 
the case there is just one synergy bidder present in the market. In order to study different 
dimensions of such markets, we considered several combinations of parameter settings. 

The first setting has nA = 2 and n 8 = 2. As mentioned above, the local bidders are 
considered myopic and only bid in one local auction. Therefore, their bids can be modeled 
as a distribution ~ N(lO, 4) for both goods. The goods A and Bare, in this model, of equal 
rarity and attract an equal amount of independent competition during bidding. This choice 
is not random, as having a certain degree of symmetry in the experimental model allows 
us to reduce the number of parameter settings we need lo consider. More specifically, we 
assume the same exercise prices are set for both goods of type A and B. This is a reasonable 
assumption, because A and B are of symmetric value and because bidders do not know in 
advance the exact order goods will be sold in. 

Furthermore, for each good, the seller has a reservation value res = 8, which gives its 
estimate resell value in the case the synergy buyer acquires an option for the item, but fails 
to exercise it. Since, on average, myopic bidders bid have an expected mean of IO for an 
item, 20% is a reasonably safe estimate of a resell value. 

The value of a bundle of { A,B} for the synergy buyer is an important choice, especially in 
relation to the mean expectation /L of the bids placed by single-item bidders. We considered 
two settings: v(A, B ) = 24 (thus 20% more, on average, than local competition) - with 
results shown in Fig. 5.2, and v(A, B) = 21 (which is only 5% more on average than local 
competition) - with results shown in Fig. 5.3. 

Looking at these two figures, some important effect can be observed. First, we mention 
that the seller has an immediately higher expected profit with options compared to direct 
sale. This is because an option is sometimes not exercised and then the seller gets to keep 
the good (for which she has a positive valuation), while the synergy buyer still pays the 
option price. 

There arc two main effects to be observed from Fig. 5.2 and 5.3: 

• First, the synergy buyer in such a market always prefers higher exercise prices (an 
effect clearly seen in both Figs. 5.2 and 5.3). This may be counter-intuitive al first, 
but is a rational expectation. If the option for an item is sold with a higher exercise 
price, then the synergy buyer can bid more aggressively on the option price to get the 
item, since she is "covered" for the loss represented by the exercise price. The myopic 
bidders extract no advantage from being offered the good as an options vs. a direct 
sale, because, if they acquire the option, they would always exercise it regardless. 
Therefore, they will simply lower their bid for the option with the amount represented 
by the exercise price. 

• Second, the expected profit of the seller seems to decrease between intervals if she has 
to sell the option with a higher exercise price. The main reason for this is that there is 
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Figure 5.2: Percentage increase in profit for a model using options wrt. direct sale. for the 
case there is one synergy huyer is present in the market. In the setting, there arc two items of 
type A sold and two items of type 8 . For all 4 items, the hids of the local bidders follow the 
distrihution N( lO, 4), while the valuation of the synergy buyer is v(A, B ) = 24 (thus 20% 
more, on average, than the local hidders). Whal is varied on the horizontal axis is the exercise 
price with which the items are sold (assuming they are set the same for all items, heing of 
equal rarity). Note that the figure is super-imposed: the left-hand side axis refers exclusively 
to the seller, while the right-hand side axis refers exclusively to the synergy bidder. From this 
picture, one can already see the important effect: synergy huyer prefers, on average, higher 
exercise prices, while seller prefers lower ones. Note that there is a sudden increase in profit, 
on the seller side, for the options case with k = f. > 0, wrt. direct auctioning. This is simply 
hecause, with options, the seller gets to keep the item (for which it has a non-residual value), 
rather than the huycr, who disposes of it (as in the direct sale case). 

some chance that she or she would remain with her item unsold (hecause the option 
is not exercised), and thus only extract her reservation value for that item. There is. 
however, an important difference hetween the cases shown in Fig. 5.2 and 5.3, which is 
the participation thresholds (that appear as "peaks" in the picture), where the expected 
profit of the seller seems to "jump" al a new level. These can be explained hy the 
synergy huyer joining the market, as the expected profit becomes non-negative. The 
threshold nature is determined by the discrete nature of the auction sequence, as is 
explained helow. 

Such a participation threshold is illustrated in Fig. 5.3 is the increase in the seller's 
expected profit when the exercise price is set ahove a certain level (/( 2: 2.5, for the settings 
in Fig. 5.3). Such thresholds can he explained as follows. If the synergy huyer currently 
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Figure 5_3: Percentage increase in profit for a model using options wrL direct sale, for the 
case there is one synergy huyer is present in the market. The settings arc exactly the same as 
those is in Fig. 5.2 above: 2 auctions for A and 2 for B, with local, myopic bidders following 
N(lO, 4). However, now the valuation of the synergy buyer is v( A, B ) = 21 (thus only 5% 
more, on average, than the local bidders)_ One can sec, however, that there is an important 
difference by comparison lo Fig. 5-2: the threshold effect in the profit increase for the seller 
when the exercise price/( ~ 2_5_ Intuitively, the reason this effect occurs is the market-entry 
effect on the part of the synergy buyer, who would otherwise stay out for this lower valuation 

owns nothing, then she will only bid on a good if the number of remaining auctions and their 
exercise prices give her a prior expectation of a positive profit Conversely, if the synergy 
buyer is not offered a sequence of option sales from which she derives a positive expected 
profit, she has the incentive lo leave the market altogether. There arc two main factors that 
increase a synergy buyer's expected profit in a sequence of auctions (sold as options): 

• The number of remaining future auctions of the other good, necessary lo complete her 
bundle_ 

• The exercise price of the options (lhal only needs to be paid al the end). This should 
he high enough to cover the risk, given her valuation for the bundle. 

Note that in some market selling (such as the one in Fig_ 5.2), no participation effects 
(ic.c. thresholds) occur, because the value the synergy buyer assigns lo her desired bundle 
is already high enough, so she would participate in the market anyway (i.c_ regardless of 
whether she gets offered options or not), and al any point in the sequence that there is still a 
chance of completing her bundle. 

However, in the valuation settings in Fig. 5.3, the synergy buyer will only bid on a good 
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Figure 5.4: Percentage increase in profit for the case of one synergy huycr, for longer auction 
sequences. The settings in terms of valuations are exactly the same as those is in Fig. 5.3 
ahovc: the synergy huyer has a value v(A, B ) = 21, while single-item hiddcrs hid according 
to N( lO , 4). One change is that now there are 4 auctions available for each type, i.e. 4 
auctions for an item of type A and 4 for B. Notice that now there are multiple thresholds, 
since there arc multiple points when the market entry effect of the synergy buyers appears. 
However, on average, the percentage increases in expected profits for the synergy huycrs arc 
lower, when compared to the direct auctions case. The reason for this is that, with multiple 
future huying opportunities, the exposure prohlems that synergy hidder faces decreases. 

if there are two remaining auctions for the other good. So she places a bid for A if the 
auctions arc [A,B ,B], hut not if they are [A,B]. This is hecause with a single auction for 
B, the risk of ending up with a only a worthless A is too great. But in a market with exercise 
prices of at least 2.5, the risk is reduced and one remaining auction is already enough for the 
synergy buyer to stay in the market. So a higher exercise price enables the synergy huyer 
to stay the market, even if she owns nothing and there are only a few auctions left, which 
increases the seller's expected profit. This increase in participation is heneficial to the seller, 
who thus has an incentive to fix the exercise prices J( A = I( B = 2.5. 

5.5 Settings with longer sequences of auctions and effect of 
auction order 

In the previous Section, we examined a sequence of auctions of a specific length of n ,1 

2, 11-8 = 2. We now look at whether we can ohserve similar effects in the case when the 
numher of opportunities to huy goods A and B increases. With the exception of auction 



Using Priced Options to Solve the Exposure Problem in Sequential Auctions 

0.45 r.======::;--,------,--,---,-------::;::,p 
--e-- s euer 

0.35 

~ 03 
2 
Cl. 

_!; 0.25 

~ 
~ 02 
g 
0 0,15 

01 

3 4 5 6 8 

Position auction of A In the sequence 

159 

Figure 5.5: Influence of the position in an auction queue of an item on the seller's expected 
profit. Settings are the same as in Fig. 5.2, but with one important difference: the rarity of 
the goods is no longer symmetric. There is now only I auction for a good of type A, but 
7 auctions for a good of type B. What is varied along the horizontal axis is the position in 
the auction queue of the sale of the rarer item (of type A). The graph shows the absolute 
difference in profit for a seller of an item of type B and for the synergy buyer (i.e. the 
difference in profit between an options and direct auctions model). Note that, if the rare item 
of type A is sold at the end of the auction sequence, the benefit of selling item B through an 
option increases, because the exposure risk of not acquiring item of type A increases. 

lengths, the parameters are kept the same as in the previous case. First, we keep the relative 
rarity of both goods symmetrical, hut increase the number of auctions available for each to 
4, i.e. n il = UFJ = 4. Results arc shown in Fig. 5.4. 

Basically, there are two main effects to observe here. First, the benefits to the buyer of 
having options mechanism decreases (seen from comparing the percentage increases shown 
in the right-hand vertical axis of Figs. 5.3 and 5.4). The reason for this (as discussed in the 
earlier, risk-based bidding chapter) is that, in sequential auctions, the number of available 
future opportunities plays a big role in how big the exposure problem the synergy buyer 
faces is. If there is less exposure, then the relative benefits of using options becomes smaller 
(although it is still quite considerable). The second effect to be observed from Fig. 5.4 is that 
there are more participation thresholds (denoted by peaks), but they are smaller. The reason 
is that, for a longer sequence of auctions, there are more possible sequences of remaining 
auction combinations. The synergy bidder will join in the bidding in some, but not in others, 
leading to multiple participation thresholds. 

The second problem we look in this subsection at is what happens if the relative fre
quency of the two goods is more asymmetric. We keep the same total number of auctions 
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in the sequence (8), hut the relative frequency is highly asymmetric: 1iA = 1, nn = 7. As 
mentioned, in the previous graphs, results were averaged over all possihle auction orders -
while here, hy contrast, we look at auction orders one hy one. 

For this setting, there are exactly 8 possible auction orders, corresponding to the point 
where the rarer good (type A) can be inserted in the auction queue. What is varied on the 
horizontal axis is this position of the type A good. The reason why we look al whether a 
seller of items of type B would use options is that the exposure of the synergy buyer exists 
for the other good in the sequence. For the single item of type A, the henefils of using options 
are limited, hecausc the synergy buyer has 7 other auctions in which lo acquire the second 
item anyway, hence she has much less of an exposure prohlcm. 

Clearly, we can sec an important effect of the position of the rarer good in the auction 
queue, from the perspective of both parties. If the item of type A is sold at the very beginning 
of the auction sequence, then the synergy bidder has no exposure prohlem left for the rest 
of the sequence, hence there is no incentive lo use options, for either party. However, it is 
al the very end of the auction sequence, the synergy huyer will not know whether she would 
need the item acquired until all auctions end. For this case, the henefits of using options arc 
considcrahly greater. 

5.6 Multiple synergy buyers 

Finally, we consider market settings in which multiple synergy huyers are active simultane
ously. Much of the experimental set-up and parameter choices are the same as descrihcd in 
the ahovc Sections, for the case of one for the single synergy buyer. The only difference is 
that now multiple synergy huyers may enter and leave the market al different times and they 
have different valuations for the comhination of A and R. 

We have lo emphasize that the results from this Section arc still rather preliminary and 
arc hascd on some restrictions on the reasoning capability of the synergy buyers in the mar
ket. Specifically, as in the single-hiddercase, we assume the synergy hidders have some prior 
expectations ahout the closing prices in future auctions and compute their optimal strategy 
wrl. this expectation. In these results, this expectation is assumed the same for all synergy 
hidders, which is a reasonahlc choice in comparing their strategies, hut assuming the se
quence of auctions considered is too short for other synergy buyers to learn ahout existing 
competition and adapt their bids. In a more realistic market, however, synergy hidders could 
he expected to he ahle lo learn and adjust their expectations based on past interactions, as 
well as reason game-theoretically ahout the fact that another synergy bidder may present in 
the market at the same time. At this point, these more sophisticated forms of reasoning arc 
left to future work. 

As in the previous section all simulations of this section have reserve prices of 8 and 
local hidders following ~ N (lO, 2.5). The first two experiments also have two synergy 
huyers 81Jn 1 and syn2 with valuations for hoth goods of 21.5 and 22.5 respectively. The 
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Figure 5.6: Percentage increase in profits for a market with with 2 synergy bidders. There 
arc 3 auctions for A and 3 for B, and for each one the bids from the competition formed by 
local bidders follows the distribution N(lO, 2.5). The valuations of the two synergy bidders 
for a bundle {A,B} arc 21.1 for :;ynl, respectively 22.5 for syn2. The order the agents 
enter the market is described by Fig. 5.8 below (so the two agents do not compete directly 
against each other in this selling). Notice that, in this case, the average profit of .'lyn2 docs 
not decrease with the entry of synl in the market. 

order the synergy bidders enter the market (and the number of auctions they can slay in) are 
given in Figs. 5.8 and 5.8, while results for all settings are shown in Fig. 5.6, respectively 
5.7. In the following, we will discuss these in separate subsections. 

5.6.1 Two synergy buyers interacting indirectly through the exercise 
price level 

In the selling examined here, the two synergy buyers each have nA = 3 and n 8 = 3, without 
the other agent participating in these auctions. An example of such an auction sequence is 
shown in Fig. 5.8. However, these two synergy bidders do interact indirectly as follows. 
Since options arc sold through open auctions based on the option price, the seller has lo fix 
the exercise prices for the whole market (i.e. for all auctions in the sequence). So while 
synergy buyers may not participate in the same auctions, their presence docs influence the 
competition through the exercise prices set by the seller. 

This effect can be seen in Fig. 5.6, in which the seller maximizes her expected profit al 
K = IC1 = KB = 2.4. In this case syn'2 is heller off, because without the presence of syn 1 

she would be offered options with lower exercise prices. But syn 1 is worse off, because if 
she were alone in the market the seller would choose K = 3.2, which gives her a higher 
expected profit. Yet, due lo syn'2, the seller sets I( = 2.4. In this case, due lo the seller's 
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Figure 5.7: Percentage increase in profits for a market with with 2 synergy hiddcrs. The 
selling and valuations arc the same as in Fig. 5.6 ahove. However, the order the agents enter 
the market is now described hy Fig. 5.9 hclow (so the two agents do compete directly for 
the same goods). Notice that, in this case, the average profit of syn2 decreases due to the 
additional competition from synl. 

AAA BBB AAA BBB 

s1'n1 syrf,T 1 
syn2 syn2 

Figure 5.8: An auction sequence for the case shown in Fig 5.6. 

choice of exercise prices, one synergy huyer (syn 1) gains, while syn2 loses. 

5.6.2 Direct synergy buyer competition in the same market 

Next, we considered a selling in which synergy huyers compete directly for some of the 
goods. The entry points for such a selling arc shown in Fig. 5.9, while simulation results are 
given in Fig. 5.7. 

ABABAB 
1' T ._j; 1 syn1 syn1 

syn2 syn2 

Figure 5.9: An auction sequence for the case shown in Fig. 5.7. 
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As can be seen in Figure 5.7, the profit of syn2 drops at 2.5. In previous figures the 
synergy buyers' profits were monotonically increasing in the exercise prices, because they 
then have a smaller loss when they fail to complete their bundle. Hut now this effect cannot 
immediately compensate the extra competition coming from syn1, who participates in the 
same auctions more often after this threshold at 2.5. So, in this case, hoth synergy buyers 
lose from the presence of additional bidders. While one synergy buyer (i.e. syn2 ) should 
benefit because she is offered better (higher) exercise prices than if she were alone in the 
market, this effect cannot immediately compensate the additional competition. 

5.6.3 Larger simulation with random synergy buyers' market entry 

In the final results we report in this Chapter, we conducted a larger scale simulation with 
multiple synergy buyers, which can enter the market randomly, with a certain prohability. 

The experimental setup implies that each sequence of auctions (forming a test case) has 
IO items of each type (i.e. nA = 10 and nB = 10). What differs from previous settings is the 
random entry of synergy buyers. For each auction, there is a 25% chance that a synergy buyer 
will enter the market. If she does, then her valuation is drawn from a uniform distribution 
between 20 and 22 and she will stay in the market for exactly four auctions. To simplify 
matters, the auction sequence is fixed at first selling A, then B, then A etc. so that each 
synergy buyer will face exactly two auctions for an item of type A and two for an item of 
type B. However, the general result of this section is also true for a random auction sequence, 
since the hasic effects remain the same. 

35 
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Figure 5.10: Percentage increase in seller's profits in a larger experimental setting, with 
synergy buyers randomly entering the market. 

As shown in Figure 5.10, the seller's profit now only has one maximum at 5, hecause 
initially each increase in exercise prices causes, with some prohahility, a synergy buyer to 
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participate more often. So each point is a threshold and the profit graph smooths out over 
those many local maxima, corresponding lo a steady increase (on average) of the expected 
profit. This result shows why il can he rational for the seller lo have the same exercise prices 
for all goods of the same type (e.g. the same J( A). In a market with random entry of synergy 
buyers, the seller docs not know which buyers arc participating in any particular auction. 
Her optimal policy is to set her exercise prices which maximize her overall expected profit 
(in this case, J( = 5). 

5. 7 Discussion and further work 

This chapter examined, from a decision-theoretic perspective, the use of priced options as a 
solution to the exposure problem in sequential auctions. We consider a model in which the 
seller is free to fix the exercise price for options on the goods she has lo offer, and then sell 
these options in the open market, through a regular auction mechanism. 

For this selling, we derived analytically, for a market with a synergy buyer and under 
some assumptions, the expressions that provide the hounds on the option prices between 
which both synergy buyers and sellers have an incentive lo use an option contract over direct 
auctions. Next, we performed an experimental analyses of several settings, where either one 
or multiple synergy bidders are active simultaneously in the market. We show that, if the 
exercise price is chosen correctly, selling items through priced options rather than direct sale 
can increase the expected profits of both parties. 

The overall conclusion of our study is that the proposed priced options mechanism can 
considerably reduce the exposure prohlem lhal synergy bidders face when laking part in 
sequential auctions. Furthermore, and most important, both parties in the market have an 
incentive lo prefer and use such a mechanism. We show that in many realistic market sce
narios, sellers can fix the exercise prices al a level that both provides sufficient incentive for 
buyers to lake part in the auctions, as well as cover their risk of remaining with the items 
unsold. 

We stress, however, that sequential auction allocation and bidding is a highly complex 
and still under-researched area, and our study provides just a first decision-theoretic analysis 
for the use of options lo solve this problem. Basically, we provide the analysis and results 
for several fundamental cases, which can serve as a basis for future work on other settings. 
These include more complex market scenarios, as well as more sophisticated reasoning abil
ities on the part of participating synergy bidders and sellers. For example, in a large market, 
synergy bidders could he expected to use learning strategics to adapt lo changing market 
conditions, as well as the presence of other synergy bidders who want similar item combina
tions. However, the sellers of the items could also use learning to choose better levels of the 
exercise prices J( with which to sell the options for their goods. Other possible issues open 
lo future research include: markets where bidders have asymmetric or imperfect informa
tion, more complex preferences over bundles and different altitudes to risk of the involved 
parties. 
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To conclude, sequential auction bidding with complementary valuations is a problem 
that appears in many real-life settings, although no dominant strategies exist and bidders 
face a severe exposure problem. The main intuition of this work is that a simple options 
mechanism, where sellers auction options for their goods (with a pre-set exercise price), 
instead of the goods themselves can go a long way in solving the exposure problem, and can 
be henclicial to both sides of such a market. 

In practical terms, the potential impact of having a working solution to the exposure 
problem in sequential auctions is considerable. For example, in transportation logistics (see 
the study case in Appendix A of this thesis) many loads appear sequentially, over time, 
an a bidding agent has to acquire a combination of these to fill her transportation capacity 
(i.e. truck). In decentralised electricity markets, much of the available electricity supply 
(especially that generated by renewable sources, such as wind or solar energy) comes on line 
with a certain probability. In allocating this intermitent, "green" electricity through a market
based method, options could he a promising solution to deal with the inherent uncertainty. 

Other potential applications include retail electronic commerce (such as discussed in 
the follow-up work of Juda & Parkes [ 121]) or keyword markets in sponsored search (see 
case study in Chapter 7 of this thesis). We are planning to explore some of these potential 
applications in our future work. 
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Chapter 6 

Emergence of Consensus and 
Shared Vocabularies in 
Collaborative Tagging 

6.1 Introduction 

The previous chapters or this thesis presented experimental research relating to modeling 
preferences and in agent-mediated bilateral negotiation and auction settings. This chap
ter is the first of a series of two chapters that takes a different perspective on the issue of 
preference, by looking at how preferences form in large-scale web communities and online 
advertising markets. The methodology used differs in these two chapters: while Chapters 2 -
5 validated their conclusions mostly through computer simulations, this chapter and Chapter 
7 use empirical analysis or large-scale web data, data produced by the actions of many (often 
millions) or actual web users. 

The methods we found most useful to examine such large-scale, decentralized systems 
arc those inspired by complex systems theory [I 1,41, 166]. As we detail later in these two 
chapters, complex systems research aims lo explores how order and structure can emergence 
in a system composed or many autonomous entities acting independently, without a central 
controller (such as a social web community or an online market) . Examining the dynamics 
of economic phenomena using agent-based computational economics (ACE) methods f2 I 8l 
is a prominent example or such an approach. 

This chapter focuses on one class of web systems that exhibits such phenomena and 
which has recently received a lot of interest in the world-wide web community: collahora
tivc tagging. This work resulted after a collaboration, based on an extended stay at the Santa 
Fe Institute, Santa Fe, NM. While it is true that, for tagging systems, one cannot talk or 
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preferences in the economic, utility-based sense, we argue this work is closely related to the 
main topic of this thesis, modeling preferences and decisions in agent-mediated electronic 
markets. Actions such as clicking on a link or choosing a tag can be implicitly seen as ex
pressing a preference, and our goal is to examine the dynamics of this process, as well as the 
information structures that emerge from it. In the next chapter, Chapter 7, we use complex 
systems theoretic methods to empirically explore some important properties of sponsored 
search advertising markets. 

For both chapters, the most important aspect we follow is how a collective consensus 
(defined here in terms of tag, respectively keyword distributions) can emerge from the de
centralized actions of a large number of agents (in this case, users of the system). Further
more, hoth chapters make use of graphical and similarity-based techniques, related to - and 
initially inspired from - the ones developed in Chapter 3 of this thesis. 

6.1.1 Tagging versus Taxonomies on the Web 

The issue of how knowledge engineering on the Web should proceed with the greatest effi
ciency and efficacy is a central concern as the amount of information on the Weh grows. A 
small hut increasingly influential set of weh applications, including the social bookmarking 
site del.ici.ous, Flickr, Furl, Rojo, Connotea, Technorati, and Amazon allow users to tag 
objects with keywords to facilitate retrieval hoth for the acting user and for other users. Sets 
of categories derived based on the tags used to characterize some resource are commonly 
referred to as folksonomies. This approach to organizing on line information is usually con
trasted with taxonomies, including the approach some associate with the Semantic Web. 

There are concrete benefits to the tagging approach. The flexibility of tagging systems 
is thought to he an asset; tagging is considered a categorization process, in contrast to a 
pre-optimized classification process such as expert-generated taxonomies. In defining this 
distinction, [ 11 OJ believes that "categorization divides the world of experience into groups 
or categories whose members share some perceptible similarity within a given context. That 
this context may vary and with it the composition of the category is the very basis for hoth 
the flexibility and the power of cognitive categorization." Classification, on the other hand 
"involves the orderly and systematic assignment of each entity to one and only one class 
within a system of mutually exclusive and non-overlapping classes; it mandates consistent 
application of these principles within the framework of a prescribed ordering of reality" 
[ II 01. 

Other authors argue that tagging enables users to order and share data more efficiently 
than using classification schemes; the free-association process involved in tagging is cog
nitively much more simple than are decisions about finding and matching existing cate
gories [36]. Additionally, proponents of tagging systems show that users of tagging systems 
only need to agree on the general meaning of a tag in order to provide shared value instead 
of agreeing on a specific, detailed taxonomy [ 154]. 

However, a number of problems stem from organizing information through tagging sys-
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lems including ambiguity in the meaning of lags and the use of synonyms which creates 
informational redundancy. Additionally, an important open question concerning the use of 
collaborative lagging to organize mcladata is whether the system becomes stable over time. 
Hy stable, we mean that users have collectively developed some implicit consensus about 
which tags best describe a site, and these tags do not vary much over time. We will as
sume that these lags that best describe a resource will be those that used most often, and 
new users mostly reinforce already-present lags with similar frequencies. Since users of a 
tagging system are not acting under a centralized controlling vocabulary, one might imagine 
that no coherent categorization schemes would emerge al all from collaborative lagging. In 
this case, lagging systems, especially those with an open-ended number of non-expert users 
like dcl.icio.us, would be inherently unstable such that the lags used and their frequency of 
use would be in a constant stale of flux. If this were the case, identifying coherent, sta
ble structures of collective categorization produced by users with respect to a site would be 
difficult or impossible. 

Given the debate over the utility of collaborative lagging systems compared to other 
methods of knowledge engineering on the Web, it is increasingly important lo understand 
whether a coherent and socially navigable method of categorization can emerge from col
laborative lagging systems. This paper will empirically examine a crucial aspect of this 
question: whether lag distributions stabilize over lime and, if so, what type of distributions 
emerge. Since each lag for a given web resource (such as a web page) is repeated a number 
of times by different users, for any given lagged resource there is a distribution or tags and 
their associated frequencies. The collection of all tags and their frequencies ordered by rank 
frequency for a given resource is the tag distribution of that resource. 

The hope among proponents of collaborative lagging systems is that stable lag distri
butions, and thus, possibly, stable categorization schemes, might arise from these systems. 
Again, by stable we do not mean that users stop tagging the resource, but instead that users 
collectively settle on a group of lags that describe the resource well and new users mostly 
reinforce already-present tags with the same frequency as they are represented in the exist
ing distribution. Online lagging systems have a variety of features that are often associated 
with complex systems such as a large number of users and a lack of central coordination. 
These types of systems arc known lo produce a distribution known as a power law over time. 
A crucial feature of some power laws - and one that we also exploit in this work - is that 
they can be produced by scale-free networks. So regardless of how large the system grows, 
the shape of the distribution remains the same and thus stable. Researchers have observed, 
some casually and some more rigorously, that the distribution of lags applied lo particular 
resources in tagging systems follows a power law distribution where there arc a relatively 
small number of lags that are used with great frequency and a great number of tags that 
arc used infrequently [ 154 ]. If this is the case, lag distributions may provide the stability 
necessary lo draw out useful information structures. 

This chapter empirically examines two important questions regarding the structure of 
tagging systems; first, whether lag distributions stabilize over time, and if so, what type of 
distribution emerges and second, whether the resulting structure of lags can be utilized to 
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construct categorizations that provide meaningful information. This works seeks to make 
a contrihution both to the theoretical understanding of the nature of tagging systems and to 
applied problems of information extraction from tagging systems. 

6.1.2 Overview of Related Work 

Existing research on tagging has explored a wide variety of problems, ranging from funda
mental to more practical concerns. In this section, we provide a hroad overview of the types 
of prohlems that interest researchers and practitioners in this area. We then focus on the 
research most relevant to the work presented here, in order to underscore our contribution. 

A numhcr of papers (Halvey & Keane '07 [941, Hearst & Rosner "08 [97], Ryron ct. al. 
·07 [ 132]) examine which tag presentation techniques enable users to find information with 
greatest case and speed. They often put a special emphasis on tag clouds, the most widely 
used presentation technique). Halvcy and Keane [94] provide a systematic evaluation of the 
properties of tag interfaces which have the most effect on the accuracy and speed with which 
users find information. Using a set of 62 test subjects, they show that alphabetization, font 
size and position of the tags play an important role. They also conclude that users scan lists 
and clouds of tags, rather than reading them directly. Byron ct. al. [ 1321 perform a similar 
study. but focused on the field of biomedical information. They compare the results of user 
search based on the PuhMed database with results from a search using tag clouds extracted 
from search summaries returned hy PuhMed. They conclude that a tag cloud interface is 
advantageous in presenting descriptive information, hut it may he less effective in enabling 
users to discover relationships between concepts than full text summaries. 

In more recent work, Hearst and Rosner '08 [97] extend the study of tag clouds by also 
examining the suhjective reactions of the test users to different layouts. They also discuss 
the role that social signaling may play in motivating the use of tag clouds. Another paper 
concerned with visualization is Kaser and Lemire '07 [ 123], who study the performance of 
different visualization algorithms for the 2-dimcnsional tag cloud drawing problem. The al
gorithms proposed are evaluated based on criteria such as minimization of the screen area 
required and computational speed. Compared to our work, this direction of research on tag 
visualization is different in scope, since we arc more concerned with macro-level properties 
of tagging systems (e.g. convergence, emergence of shared vocabularies) that with visualiza
tion and usahility aspects. However, as future work, comparing visualization methods using 
tag correlation graphs (as discussed in Sect. 6.4 of this chapter) with existing approaches 
using tag clouds may prove insightful. 

Boydell and Smyth '06 [281 propose an approach for huilding a community-hased snip
pet index that reflects the expertize and revolving interests of a group of searchers. They 
show how such an index could he used to re-rank the results produced hy an underlying 
search engine. such as to give a higher rank to results that have been frequently selected hy 
memhcrs of the same community in the past. Boydell and Smyth '07 [291 build on the idea 
of using community knowledge, hy proposing a social summarization technique which al
lows the generation of more community-focused and query-sensitive summaries than those 
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returned by standard search engines. While this line of work docs not focus explicitly on tag
ging, it uses the same underlying principle, that of capturing the expertize of a community 
of like-minded searchers to improve search results. 

Another line ol' research is concerned with understanding how individual users perform 
tagging, and assisting them in choosing more useful tags. Sood ct. al. '07 [ 196] propose a 
method to assist the users of a tagging system by suggesting tags potentially useful to other 
users based on existing tag posts. Kelkar and Seligmann '07 [203] propose two measures of 
the value of tags, the intensity and the spread and discuss how these could he used in infor
mation retrieval. Berendt and Hanser '07 [ 15] examine the motivations of users of a tagging 
system and argue that users sec tagging not as a way of adding metadata to resources, hut 
simply as adding "more content". Zollers '07 [235] additionally attempts to characterize the 
motivations or users with data from Amazon.com and Last.rm. She identifies the expres
sion of an opinion, performance (i.e. self-presentation), and online activism as three main 
motivations. Michl ma yr and Cayzcr '07 [ 155] present a method for creating user profiles 
from tagging data and then leveraging them for personalized information access. Using the 
results from a small-scale user study they show that tag co-occurrence information can more 
successfully learn personalized user profiles than can single tag frequencies. 

Other research examines the use of tagging for specific contexts and applications. Hayes 
and Avcsani '07 195] provide a discussion of how tag clustering techniques could he used 
to retrieve information in biogs, while Bateman et. al. '07 [13] describe how using tagging 
in an c-learning system can supplement traditional mctadata-gathcring approaches. Dubinko 
ct. al. [65] consider the problem of visualizing the evolution of tags within the Flickr com
munity. They develop several methods and algorithms for dynamically presenting tags to 
users given a sliding time window. Rattenhury, Good & Naaman '07 [ 182] present a method 
for the automatic extraction of event and place semantics from Flickr tags. [52] develop a 
system for the automatic generation or personalized tags for webpages during browsing. The 
tags/keywords generated are based both on the textual content of the wcbpage being browsed 
and on the data residing on the surfer's desktop. All of these techniques would benefit from a 
method for determining whether a given set of tags has stabilized, such as the one proposed 
in this chapter, in order to present the most stable tags to the user or program. If tags were 
presented before they stabilized, the information presented to the user might be less valuable. 

In a direction of work that hears directly on the larger question of this research, Mika 
'05 [ 156] addresses the problem of extracting taxonomic information from tagging systems 
in the forn1 of Semantic Web ontologies. The chapter extends the traditional model or tax
onomies by incorporating a social dimension, thus establishing an essential connection be
tween tagging and the techniques developed in the Semantic Web arena. However, unlike 
this work, Mika does not study the stabilization or the tag distributions themselves. Ideally, 
one would want to know ir a tag distribution was stable before attempting to extract any 
taxonomic information from it. 

There arc several lines of research which take a perspective closely related to our work. 
Shen and Wu '07 [202] are interested in the structure of a tagging network for dcl.icio.us 
data as we arc in Section 6.4. Unlike in our examples, their graph is unweighted [202] and 
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docs not reflect the information in the tag distribution. They examine the degree distribution 
(the distribution of the number of other nodes each node is connected to) and the clustering 
coefficient (based on a ratio of the total number of edges in a subgraph to the number of 
all possible edges) of this network and find that the network is indeed "scale-free" and has 
the features Watts and Strogatz [229) found to he characteristic of small world networks: 
small average path length and relatively high clustering coefficient. A considerable amount 
of work exploring the structural properties of natural language networks finds similar results 
(Cancho and Sole ·m [40]). 

Another paper that studies the meta-level properties of large folksonomy graphs (that 
appeared concurrently with the conference version of our paper) is Schmitz et. al. '07 [ 1991. 
They provide an thorough, in-depth analysis of the statistical properties of folksonomy net
works, studying, among others: their characteristic path length, their "cliquishness". con
nectedness, as well as the associative behavior of nodes in such networks. However, unlike 
our work, they do not provide an insight into how such folksonomy networks could he used 
for actual information retrieval and visualization, or to build simple information structures 
such as shared vocabularies. 

An early line of research that has attempted to formalize and quantify the underlying 
dynamics of a collaborative tagging systems is Golder and Huberman '06 186], which also 
make use of dcl.ici.ous data. They show the majority of sites reach their peak popularity, 
the highest frequency of tagging in a given time period, within ten days of being saved on 
del.icio.us (67% in their data set), though some sites are "rediscovered" by users (about 
17% in their data set), suggesting stability in most sites hut some degree of "hurstincss" in 
the dynamics that could lead to cyclical patterns of stability characteristic of chaotic sys
tems. Importantly, Golder and Huberman find that the distribution of tags within a given 
site stabilizes over time, usually around one hundred tagging events. They do not, how
ever, examine what type of distribution arises from a stabilized tagging process, nor do they 
present a method for determining the stability of the distribution which we see as central to 
understanding the possible utility of tagging systems. 

In a very recent line of research, Heymann et. al. '08 [IOI] provide a large-scale com
parison between social bookmarking and traditional web search, also using dcl.icio.us data. 
They find that tags used on del.icio.us arc, on the whole accurate, while the class of users 
that use this system is broad, i.e. not restricted to a small subset of users. They also observe, 
however, that a large proportion of the tags assigned to a webpage (or resource) already ap
pear in the title, forward and backward links to that page. Therefore, while tags assigned to 
resources are accurate, their distributions may not be suitable to make a significant impact 
on search performance. This is somewhat in line with our findings: while tags converge 
relatively fast to stable, power law distributions (c.f. Sect. 2), the top of these distributions 
may contain common (or obvious) tags. A solution to this problem (also suggested in I IO I] 
may be a better mechanism for recommending tags. Conceivably, the local "vocabulary ex
traction" methods presented in Sect. 6.5 of this chapter (and adaptations thereof) could he 
used to this end. 

One important result is represented hy Cattuto et. al. '07 [43). which discuss generative 
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models to produce power law distributions for tag correlations. They also take a complex 
systems perspective to tagging and propose a generic model for the behavior of taggers, in 
the form of a Yule-Simon process with memory. However, Cattuto ct. al. do not provide an 
analysis ol"how tag frequencies per website actually converge in time to stable distributions. 
Dcllschaft and Staab '08 [63] proposes a more-parametrized model that accounts for power 
law distributions in tag vocabulary growth and in tag distributions for websites. Overall, we 
sec our work and that ofCattuto ct. al. and Dellschaft and Staab as complementary in scope. 
While they provide a theoretical model of a process which could give rise to power law 
distributions in tagging, we propose using an information-theoretic technique in Section 6.3 
to analyze the convergence of power law distributions in already-existing tagging systems. 
Furthermore, we demonstrate its utility in several applications, such as tag graphs, shared 
vocabularies, as shown in this chapter. 

Yet another important recent direction or work is represented by Sen ct. al. '06 [2001-
Thcy present a user-centric model of tagging that distinguishes between personal tendency 
and community influence in the behavior of individual taggers. Furthermore, they propose 
a method to select tags to be displayed to a user, such as to maximize tag utility, adoption 
and user satisfaction. By contrast to [200], we focus on the aggregate tag distributions per 
resource which, in a large tagging system arc highly unlikely to be personal bookmarks, but 
rather rcllcct the opinion or consensus or the user community. 

Finally, based on the empirical results presented in the WWW'07 conference version 
of this work [93], Mikroyannidis '07 [ 157] argues that Semantic Web and Social Web ap
proaches arc essentially compatible and can co-exist. While we agree with the arguments 
presented by Mikroyannidis [ 157] , we should point out that convergence to stable tag distri
butions docs not, by itself, imply that the converged distributions are directly usable for infor
mation retrieval. The process of constructing proper formal ontologies from folksonomics, 
while perhaps possible under certain conditions, is not a straightforward task. 1 First, one 
would not want to attempt to construct any taxonomy unless one had a reliable method for 
determining whether or not the tagging process had stabilized, such as the one we propose 
in Section 6.3. Also, we view the automated methods presented in Sect. 6.4 and 6.5 of this 
chapter, as fully automated first steps for any more formal taxonomy construction. While 
the shared tag vocabularies (c.f. Sect. 6.5 of this chapter) arc not l"ully-llcdgcd formal Se
mantic Web ontologies, they can also be useful structures for many information retrieval 
applications without any additional formalization. 

6.1.3 The Tripartite Structure of Tagging 

To begin, we review the conceptual model of generic collaborative tagging systems theorized 
by [ I 52, I 56] in order to make predictions about collaborative tagging systems based on 
empirical data and based on generative features of the model. 

There arc three main types of entities that compose any tagging system: 
1 This may require for instance, some decision support in guiding the user, or a more structured design or the 

interface used to input the tags. 



176 Chapter 6 

• The users of the system (people who actually do the tagging) 

• The tags themselves 

• The resources heing tagged (in this case, the wehsites) 

Each of these can be seen as forming separate spaces consisting of sets of nodes, which 
arc linked together hy edges (sec Fig. 6.1 ). The first space, the user space, consists of the 
set of all users of the tagging system, where each node is a user. The second space is the 
tag space, the set of all tags. where a tag corresponds to a term ("music") or neologism 
("toread") in natural language. The third space is the resource space, the set of all resources, 
where usually each resource is a wehsite denoted hy a unique URI.2 A tagging instance can 
he seen as the two edges that links a user to a tag and that tag to a given wehsite or resource. 
Note that a tagging instance can associate a date with its tuple of user, tag(s), and resource . 

., ... - ... 
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' ' ' R2 I 
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USERS TAGS RESOURCES 

(WEBSITES) 

Figure 6.1: Tripartite graph structure of a tagging system. An edge linking a user. a tag and 
a resource (wehsite) represents one tagging instance 

From Figure 6.1, we observe that tags provide the link hetween the users of the system 
and the resources or concepts they search for. 

This analysis reveals a numher of dimensions of tagging that are often under-emphasized. 
In particular. tagging is often a methodology.for in.formation retrieval, much like traditional 
search engines, hut with a numher of key differences. To simplify drastically, with a tradi
tional search engine a user enters a numhcr of tags and then an automatic algorithm lahels 
the resources with some measure of relevance to the tags pre-discovery, displaying relevant 
resources to the user. In contrast, with collahorative tagging a user finds a resource and then 
adds one or more tags to the resource manually, with the system storing the resource and the 
tags post-discovery. When faced with a case of retrieval, an automatic algorithm does not 

2A URI is a "Universal Resource Identifier·· such as h11p:llwww.e.xample.co111 that can return a wchpage when 
accessed. Some tagging hascd systems such as Spurl (h11p:l/w11·11·.sp11rl.11el) store the entire document. not the URI. 
hut most systems such as dcl.icio.us store only the URI. The resource space. in this definition, represents whatever 
is hcing tagged. which may or may not he wchsites per sc. 
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have lo assign lags lo the resource aulomalically, but can follow lhe lags used by the user. 
The difference between lhis and lradilional searching algorithms is lwo-fold: collaborative 
lagging relics on human knowledge, as opposed lo an algorithm, lo directly connect terms lo 
documents before a search begins, and thus relics on lhc collective intelligence of ils human 
users lo pre-filter lhe search results for relevance. When a search is complete and a resource 
of inlercsl is found, collaborative lagging often requires the user lo lag lhe resource in order 
lo slorc lhe result in his or her personal collection. This causes afeedback cycle. These char
acteristics molivale many systems like del.icio.us and il is well-known lhal feedback cycles 
are one ingredient of complex systems [ I I], giving further indication lhal a power law in lhe 
lagging dislribulion might emerge. 

6.1.4 Organization of the chapter 

This chapter is organized as follows. In lhe firsl part oflhe chapter, we examine how lo delccl 
lhc emergence of stable "consensus" dislribulions of lags assigned lo individual resources. 
In Section 6.2 we dcmonslrale a method for empirically examining whether lagging dislri
bulions follows a power law distribution. In Section 6.3 we show how this convergence lo a 
power law distribution can he detected over lime by using lhe Kullback-Leihler divergence. 
We further empirically analyze the lrajcclory of tagging distributions before lhey have sta
bilized, as well as lhc dynamics of lhe "long lail" of tag dislribulions. In lhe second part of 
lhc chapter, we examine lhe applications of these stable power law dislrihulions. In Section 
6.4 we demonslralc how the mosl frequent lags in a distribution can be used in inter-lag 
correlation graphs (or folksonomy graphs) lo charl their relation lo one another. Section 6.5 
shows how these folksonomy graphs can he (aulomalically) partitioned, using communily
based methods, in order lo extract shared lag vocabularies. Finally, Section 6.6 provides 
an independent benchmark lo compare our empirical results from collaborative lagging, by 
solving lhc same problems using a complclcly different dala scl: search engine query logs. 
The chapter concludes wilh a discussion of future work. 

6.2 Detecting Power Laws in Tags 

This section uses data from del.icio.us lo empirically examine whether intuitions regarding 
tagging systems as complex systems exhibiting power law distributions hold. 

6.2.1 Power Law Distributions: Definition 

A power law is a relationship between two scalar quantities ;r, and y of the form: 

y = ex" (6.1) 
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where n and c arc constants characterizing the given power law. Eq. 6.1 can also he written 
as: 

logy = alog x + log e (6.2) 

When written in this form, a fundamental property of power laws hccomcs apparent; 
when plotted in log-log space, power laws arc straight lines. Therefore, the most simple and 
widely used method to check whether a distrihution follows a power law and to deduce its 
parameters is to apply a logarithmic transformation, and then perform linear regression in 
the resulting log-log space. In this chapter we used a more powerful regression method to 
derive n that minimizes the hias in the value of the exponent (sec [ 1661 for the technical 
details). 

The intuitive explanation of power law parameters in the domain of tagging is as follows: 
c represents the numhcroftimcs the most common tag for that wchsite is used, while n gives 
the power law decay parameter for the frequency of tags at suhscqucnt positions. Thus, the 
number of times the tag in position 1' is used (where p = 1..25, since we considered the tags 
in the top 25 positions) can he approximated hy a function of the form: 

C 
Frcqucncy(p) = -

p- " 
(6.3) 

where - n > 0 and c = Frcqucn cy(p = I) is the frequency of the tag in the first position 
in the tag distrihution (thus, it is a constant that is specific for each site/resource). 

6.2.2 Empirical Results for Power Law Regression for Individual Sites 

For this analysis, we used two different data sets. The first data set contained a suhsel of 500 
"Popular" sites from dcl.icio.us that were tagged at least 2000 times (i.e. where we would 
expect a "converged" power law distribution to appear). The second data set considers a 
suhsct of another 500 sites selected randomly from the "Recent" section of dcl.icio.us. Both 
sections arc prominently displayed on the dcl.icio.us site, though "Recent" sites arc those 
tagged within the short time period immediately prior to viewing by the user and "Popular" 
sites arc those which arc heavily tagged in gcncral.3 While the exact algorithms used by 
dcl.icio.us to determine these categories arc unknown, they arc currently the hcsl available 
approximations for random sampling of dcl.icio.us, both of heavily tagged sites and of a 
wider set of sites that may not be heavily tagged. 

The mean number of users who tagged resources in the "Popular" data set was 2074.8 
with a standard deviation of 92.9, while the mean numhcr of users of the "Recent" data set 
was 286.1 with a standard deviation of 18.2. In all cases, the tags in the top 25 positions in 
the distributions have been considered and thus all of our claims refer to these tags. Since 
the tags arc rank-ordered hy frequency and the lop 25 is the subset of tags that arc actually 

-~ All data used in the convergence analysis was collected in the week immediately prior to 19 Nov 2006. 
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available lo del.icio.us users lo examine for each sile, we argue lhal using lhe top 25 lags is 
adequate for this examination. 

Results are presented in Figure 6.2. In all cases, logarithm of base 2 was used in lhe 
log-log lransformalion. 4 

Individual lag distributions lor 500 papular sties (log-log scale) Individual lag dislribulions lor 250 less papular sites (log-log scale) 

0.5 1.5 2 2.5 3 3.5 
Relative posi1ion or a lag(~ scale) 
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Figure 6.2: Fre4uency of lag usage relative lo lag position. For each sile, lhe 25 mosl 
frequently used lags were considered. The plol uses a double logarithmic (log-log) scale. 
The dala is shown for a sel of 500 randomly-selected, heavily lagged sites (lefl) and for a scl 
of 500 randomly-selected, less-heavily lagged siles (right). 

As shown by [166] and others, lhe main characteristic of a power law is its slope pa
rameter a. On a log-log scale, the conslanl parameter c only gives the "vertical shifl" or the 
distribution with respect to lhe y-axis. For each of lhe siles in the data sel, lhe corresponding 
power law function was derived and lhe slopes or each (n parameters) were compared. The 
slopes indicate lhe fundamental characteristic of lhe power laws, as vertical shifts can and 
do vary significantly between different sites. 

Our analysis shows lhal for lhc subset or heavily lagged sites, lhc slope parameters are 
very similar lo one another, wilh an average of n = - 1.22 and a standard deviation ± 0.03. 
Thus, il appears lhal lhe power law decay slope is relatively consislcnl across all sites. This 
is quite remarkable, given lhal these sites were chosen randomly wilh lhe only criteria being 
lhal they were heavily tagged. This pallern where lhe lop lags arc considerably more popular 
than the rest of the tags seems to indicate a fundamental effect of the way tags are dislrihuted 
in individual websites which is independent of lhc conlenl of individual websites. The spc
cilic conlenl of lhe lags themselves can he very different from one website lo lhe other and 

~Note that the hasc of the logarithm docs nut actually appear in the power law equation (c.f. Eq. 6.1 ). but 
because we use empirical and thus possibly noisy data, this choice might introduce errors in the lilting of the 
regression phase. However, we did not !ind signilicant differences from changing the base of the logarithm to 1: or 
JO. 

4.5 
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this obviously depends on the content of the tagged site. 

For the set of less-heavily tagged sites, we found the slopes differed from each other to 
a much greater extent than with the heavily tagged data, with an average n = - 5.06 and 
standard deviation ± 6.10. Clearly, the power law effect is much less pronounced for the 
less-heavily tagged sites ac; opposed to the heavily tagged sites, as the standard deviation 
reveals a much poorer fit of the regression line to the log-log plotted aggregate data. For 
sites with relatively few instances or tagging, the results reveal mostly noise. 

6.2.3 Empirical Results for Power Law Regression Using Relative Fre
quencies 

In the previous section, we applied power law regression techniques to individual sites, using 
the number of hits for a tag in a given position in the distribution. In this section, we exam
ine the aggregate case where we no longer use the raw number of tags (because these arc 
not directly comparable across sites), and instead use the relative frequencies of tags. The 
relative frequency is defined as the ratio between the number of limes a lag in a particular 
position is used for a resource and lhc total number of times that resource is tagged 5. Thus, 
relative frequencies for a given site always sum lo one. These relative frequencies based on 
data from all 500 sites of the "Popular" data set were then averaged. Results arc presented 
in Figure 6.3. 

As before, a power law was derived in the log-log space using least-means squares (LMS) 
regression. This power law was found lo have the slope a = - 1.25. The regression error, 
computed through the LMS method in the normal, not logarithmic space, was found to he 
0.038. Note that the LMS regression error computation only makes sense when converted 
back in the normal space, since in the log-log space exponents arc negative and, furthermore, 
deviations on the y-axis only denote actual error only after the exp:,. function is applied. This 
corresponds to a LMS error rate in the power law regression or 3.8% over the total number 
of tags in the distribution, which is low enough to allow us to conclude that tag distributions 
do follow power laws. 

We note, however, that there is a deviation from a perfect power law in the del.icio.us 
data in the sense that there is a change of slope after the lop seven or eight positions in the 
distribution. This effect is also relatively consistent across the sites in the data set. This 
may be due to the cognitive constraints of the users themselves or an artifact of the way the 
del.icio.us interface is constructed, since that number of lags are offered to the users as a 
suggestion to guide their search process. Nevertheless, given that the LMS regression error 
is rather low, we argue the effect is not strong enough to change the overall conclusion that 
tag distributions follow power laws. 

; To be more precise. the denominator is taken as the total number or times the resource is tagged with a tag from 
the top 25 positions. given available data. 
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Figure 6.3: Average relative fre4uency of lag usage, for the sel of 500 "Popular" sites from 
above. On the y-axis, the logarithm of the relative frequency (probability) is given. (The 
plot uses a double logarithmic (log-log) scale, thus on the y-axis values are negative since 
relative frequencies are less than one.) 

6.3 The Dynamics of Tag Distributions 

In Section 6.2, we provide a method for detecting a power law distribution in the lags of a site 
or collection of sites. In this section, we study another aspect of the problem, namely how the 
shape of these distributions develops in lime from the lagging actions of the individual users. 
First, we examine the how power law distributions form at the top (the first 25 positions) 
of lag distributions for each site. For this, we employ a method from information theory, 
namely the Kullback-Leibler divergence. Second, we study the dynamics of the entire lag 
distributions, including all lags used for a site, and we show that the relative weights of the 
lop and tail of lag distributions converge to stable ratios in the data sets. 

6.3.1 Kullback-Leibler Divergence: Definition 

In probability and information theory, the Kullback-Leiblerdivergence (also known "relative 
entropy" or "information divergence") represents a natural distance measure between two 
probability distributions P and Q (in our case, P and Qare two vectors representing discrete 
probability distributions). Formally, the Kullback-Leibler divergence between P and Q is 
defined as: 

(6.4) 
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The Kull back-Lei bier distance is a non-negative, convex function, i.e. 
D1<1, (P, Q) 2: 0,VP, Q (note that D 10, (P,Q) = 0 iff. P and Q coincide). Also, unlike 
other distance measures it is not symmetric, i.e. in general DK 1, (P, Q) f:- DK 1, (Q, P). 

6.3.2 Application to Tag Dynamics 

We use two complementary ways to detect whether a distribution has converged to a steady 
state using the Kull back-Lei bier divergence: 

• The first is to take the relative entropy between every two consecutive points in time of 
the distribution, where each point in time represents some change in the distribution. 
Again, in our data, tag distributions are based on the rank-ordered tag frequencies for 
the top 25 highest-ranked unique tags for any one website. Each point in time was 
a given month where the tag distribution had changed; months where there was no 
tagging change were not counted as time points. Using this methodology, a tag distri 
bution that was "stable" would show the relative entropy converging to and remaining 
al zero over time. If the Kullhack-Leihler divergence between two consecutive time 
points becomes zero (or close to zero), it suggests that the shape of the distribution has 
stopped evolving. This technique may be most useful when it is completely unknown 
whether or not the tagging of a particular site has stabilized at all. 

• The second method involves taking the relative entropy of the tag distribution for each 
time step with respect to the final tag distribution, the distribution at the time the 
measurement was taken or the last observation in the data, for that site. This method 
is most useful for heavily tagged sites where it is already known or suspected that the 
final distribution has already converged to a power law. 

The two methods are complementary; the first methodology would converge to zero if the 
two consecutive distributions are the same, and thus one could detect whether distributions 
converged if even temporarily. Cyclical patterns of stabilization and destabilization may he 
detected using this first method. The second method assumes that the final time point is the 
stable distribution so this method detects convergence only towards the final distribution. 
If both of these methods produce relative entropies that approach zero, then one can claim 
that the distributions have converged over time to a single distribution, the distribution at the 
final time point. Given our interest in distributions that have converged to power laws, we 
arc actually examining the dynamics of convergence to a power law. 

6.3.3 Empirical Results for Tag Dynamics 

The analysis of the intermediate dynamics of tagging is considerably more involved than the 
analysis of final tag distributions. Because the length of the histories varies widely, there is 
no meaningful way to compute a cumulative measure across all sites as in Section 6.2, so 
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Figure 6.4: A (left). Kullback-Leibler divergence between tag frequency distributions at 
consecutive time steps for 500 "Popular" sites. B (right). Kullback-Leibler divergence of tag 
frequency distribution at each time step with respect to the final distribution. 

our analysis has to consider each resource individually. In Figure 6.4 (A and B), we plot the 
results for the convergence of the 500 "Popular" sites, on the basis that their final distribution 
must have converged to a power law, that their complete tagging history was available from 
the first tagging instances, and that this history was of substantial length. In the data set 
considered, up to 35 time points are available for some sites (which roughly corresponds to 
three years of data, since one time point represents one month). 

There is a clear effect in the dynamics of the above distributions.6 At the beginning of the 
process when the distributions contain only a few tags, there is a high degree of randomness, 
indicated by early data points. However, in most cases this converges relatively quickly to 
a very small value, and then in the final ten steps, to a Kullback-Leibler distance which is 
graphically indistinguishable from zero (with only a few outliers). If the Kullback-Leiblcr 
divergence between two consecutive time points (in Figure 6.4A) or between each step and 
the final one (Figure 6.48) becomes zero or close to zero, it indicates that the shape of 
the distribution has stopped changing. The results here suggest that the power law may 
form relatively early on in the process for most sites and persist throughout. Even if the 
number of tags added by the users increases many-fold, the new tags reinforce the already
formed power law. Interestingly, there is a substantial amount of variation in the initial 
values of the Kullback-Leibler distance prior to the convergence. Future work might explore 
the factors underlying this variation and whether it is a function of the content of the sites or 
of the mechanism behind the tagging of the site. Additionally, convergence to zero occurs at 
approximately the same time period (often within a few months) for these sites. 

''Note that in Figure 6.4, the first two time points were omitted because their distribution involved few tags and 
were thus very highly mndom. 

40 
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The results of the Kullhack-Leihlcr analysis provide a powerful tool for analyzing the dy
namics of tagging distributions. This very well might he the result of the "scale-free·• prop
erly of tagging networks, so that once the tagging of users have reached a certain threshold, 
regardless of how many lags arc added, the distrihution remains slahlc [2021. This method 
can he immensely useful in analyzing real-world lagging systems where the slahility of the 
categorization scheme produced by the lagging needs lo he confirmed. 

6.3.4 Examining the dynamics of the entire tag distribution 

In the previous sections, we focused on the dislrihulions of the tags in the top 25 positions. 
However, heavily lagged or popular resources. such as those considered in our analysis, can 
he lagged several lens of thousands of times each, producing hundreds or even thousands of 
distinct lags. II is true that many of these distinct tags arc simply personal hook marks which 
have no meaning for the other users in the system. However, it is still crucial to understand 
their dynamics and the role they play in lagging, especially with respect to the lop of the tag 
distrihution. Some sources (e.g. Anderson [3]), have argued that the dynamics of long tail s 
arc a fundamental feature of Intcmct-scalc systems. Herc we were particularly interested in 
two questions. First, how does the number of times a site is tagged (including the long tail) 
evolve in time? Second, how docs the relative importance of the head (lop 25 tags) to the 
long tail change as lags are added lo a resource? 

Rcsulls for the same sci of 500 "Popular" sites descrihcd above arc shown in Figure 6.5. 
Note that the lag distrihutions were reconstructed through viewing the lagging history of 
the individual site as available through del.icio.us and collecting the growth of this tagging 
distrihution over lime, thus allowing us lo record the growth of lags outside the 25 most 
popular. 

As seen in Figure 6.5, the total number of limes a site is tagged grows continuously al 
a rate that is specific lo each site and this probably depends on its domain and particular 
context. Though the results arc not shown here due lo space constraints, a similar conclusion 
can he formulated for the numher of distinct tags, given that the number of distinct tags 
varies considerably per site and docs not seem to slahilizc in time. However for virtually all 
of the sites in the data set considered, the proportion of times a lag from the lop 25 positions 
is used relative to the total numhcr of limes that a resource is tagged did slahilizc over lime. 
So, while the total number of lags per resource grows continuously, the relative weight of the 
tags in the head of the lag distrihution compared lo the those in the long tail docs stahilizc 
to a constant ratio. This is an important effect and it represents a significant addition lo our 
analysis of the slahility analysis of the lop 25 positions, since it shows the relative importance 
of the long tail with respect to the head oflhc dislrihution docs eventually stahilizc regardless 
of the growth of tags in the long tail. 
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Figure 6.5: A (left). Cumulative number of times a resource is tagged for each time point. B 
(right). Proportion of limes a lag in the lop 25 spots of the distribution has been used to lag 
a resource lo the total number of times the resource has been lagged with any lag. 

6.4 Constructing Tag Correlation Graphs 

The previous section examines the type of frequency distributions that emerge from the col
lective lagging actions of individual users, as well as the dynamics of this process. This 
section examines the type of information structures that form from these actions, given the 
hypothesized importance of the information value of lags in understanding lagging systems. 
We look al one of the most simple information structures that can he derived through collabo
rative lagging: inter-tag correlation graphs (or, perhaps more simply, "folksonomy graphs"). 
We discuss the methodology used for obtaining such graphs and then illustrate our approach 
through an example domain study. 

6.4.1 Methodology 

The act of tagging resources by different users induces, al the lag level, a simple distance 
measure between any pair of lags. This distance measure captures a degree of co-occurrence 
which we interpret as a similarity metric, between the concepts represented by the two tags. 

The collaborative filtering [ 185, 197] and natural language processing L 151 J literature 
proposes several distance or similarity measures that can be employed for such problems. 
The metric we found most useful for this problem is cosine distance.1 

7This should not be interpreted as a conclusion on our pan that cosine distance is always an optimal choice for 
this prohlem. This issue probahly requires runher research and even larger data sets. 

40 
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Formally, let T ;, Tj represent two random tags. We denote by N(T;) and N(Tj ) respec
tively the number of times each of the tags was used individually to tag all resources, and 
by N (T ;, Tj ) the number of times two tags arc used to tag the same resource. Then the 
similarity between any pair of tags i and j is defined as: 

(6.5) 

In the rest of the chapter, we use the shorthand: sim.;j to denote s'irnilarity(T;, T j) . 

From these similarities we can construct a tag-tag correlation graph or network, where 
the nodes represent the tags themselves weighed by their absolute frequencies, while the 
edges arc weighed with the cosine distance measure. We build a visualization of this weighed 
tag-tag correlation, by using a "spring-embedder" or "spring relaxation" type of algorithm. 
We tested two such algorithms: Kawada-Kawai and Fruchtcrman-Rcingold l I 2J; the two 
graphs included in this chapter arc based on the latter. An analysis of the structural prop
erties of such tag graphs may provide important insights into both how people lag and how 
structure emerges in collaborative tagging. 

6.4.2 Constructing the tag correlation (folksonomy) graphs 

In order to exemplify our approach, we collected the data and constructed visualizations for 
a restricted class of 50 tags, all related to the tag "complexity:' Our goal in this example 
was to examine which sciences the user community of dcl.icio.us secs as most related to 
"complexity" science, a problem which has traditionally elicited some discussion. The visu
alizations were made on Pajck [ 12). The purpose of the visualization was to study whether 
the proposed method retrieves connection between a central lag "complexity" and related 
disciplines. We considered two cases: 

• Only the dependencies between the tag "complexity" and all other tags in the subset 
arc taken into account when building the graph (Fig. 6.6). 

• The weights of all the 1175 possible edges between the 50 lags arc considered (Fig. 
6.7). 
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Figure 6.6: Folksonomy graph, considering only correlations corresponding lo central lag "complex 

Figure6.7: Folksonomy graph, considering all relevant inter-lag correlations 
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In both figures, the size of the nodes is proportional to the absolute frequencies of 
each tag, while the distances arc, roughly speaking, inversely related to the distance mea
sure as returned by the "spring-embedder" algorithm.8 We tested two energy measures for 
the "springs" attached to the edges in the visualization: Kamada-Kawai and Fruchtcrman
Rcingold [ 12]. For lack of space, only the visualization returned by Kamada-Kawai is pre
sented here, since we found it more faithful to the proportions in the data. 

The results from the visualization algorithm match relatively well with the intuitions of 
an expert in this field. Some nodes arc much larger than others which again shows that 
taggers prefer to use general, heavily used tags (e.g. the tag "art" was used 25 times more 
than "chaos"). Tags such as "chaos", "alife", "evolution" or "networks" which correspond to 
topics generally seen as close to complexity science arc close to it. At the other end, the tag 
"art" is a large, distant node from "complexity." This is not so much due to the absence of 
sites discussing aspects of complexity in art as there arc quite a few of such sites, but instead 
due to the fact that they represent only a small proportion of the total sites tagged with "art." 
leading to a large distance measure. 

In Figure 6. 7, the distances to "complexity" change significantly, due to the addition 
of the correlations to all other tags. However, one can observe several clusters emerging 
which match reasonably well with intuitions regarding the way these disciplines should be 
clustered. Thus, in the upper-left comer one can find tags such as "mathematics", "algorith
mics", "optimization", "computation", while immediately below are the disciplines related 
to Al ("neural" [networks], "evolutionary" [algorithms] and the like). The bottom left is 
occupied by tags with biology-related subjects, such as "biology", "life", "genetics", "ecol
ogy" etc, while the right-hand side consists of tags with more "social" disciplines ("markets'', 
"economics", "organization", "society" etc.). Finally, some tags arc both large and central, 
pertaining to all topics ("research", "science", "information"). 

We also observed some tags that arc non-standard English words, although we filtered 
most out as not relevant to this analysis. One example is "complexsystcms" (spelled as one 
word), which was kept as such, although the tags '"'complex" and "system" taken individu
ally arc also present in the set. Perhaps unsurprisingly, the similarity computed between the 
tags "complcxsystems" and "complex" is one of the strongest between any tag pair in this 
set. One implication of this finding is that tag distances could be used to find tags that have 
minor syntactic variance with more well-known tags, such as "complesystems," but which 
cannot simply detected by morphological stemming. 

8For two of the tags. namely "algorithms" and "networks," morphological stemming was employed. So hoth 
ahsolute frequencies and co-dependencies were summed over the singular fonn tag, i.e. "network"" and the plural 
"networks.'' since hoth fonns occur with relatively high frequency. 
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6.5 Identifying tag vocabularies in folksonomies using com
munity detection algorithms 

The previous sections analyzed the temporal dynamics of distribution convergence and stabi
lization in collaborative tagging as well as some information structures, like lag correlation 
(or folksonomy) graphs, that can be created from these lag distributions. In this Section, 
we look at how these folksonomy graphs could be used lo solve an important problem in 
collaborative tagging: identifying shared tag vocabularies. 

The problem considered in this section can be summarized as: given a heterogeneous set 
of tags (which can be represented as a folksonomy graph), how can we partition this set into 
subsets of related tags? In this chapter, we call this problem a "vocabulary identification" 
problem. It is important to note that we use the term "vocabulary" only in a restricted sense, 
i.e. as a collection of related terms, relevant to a specific domain. For instance, a list of 
tropical diseases is a "vocabulary", a list of electronic components in a given electronic 
device is a vocabulary, and a list of specialized terms connected lo a given scientific subfield 
would all he "vocabularies" in our definition. 

We acknowledge that this is a restricted definition: in some applications, especially Se
mantic Wch approaches, we would also like lo know precisely how these terms arc related. 
This type of structural information is difficult lo extract only from tags, given the simple 
structure of folksonomics. Nevertheless, our approach could still prove useful in such appli
cations: for example, one could construct the set of related terms as a first rough step and 
then a human expert (or, perhaps, another [scmi]-aulomatcd method) could be used lo add 
more more detail to the extracted vocabulary set. 

However, there arc many settings in which the fully automated technique presented in 
this chapter could prove very useful. For example, drawing of tag clouds has received signif
icant attention, but how to select the subset of related lags that will he presented in a cloud 
is an open problem. Another potential application is in selecting terms for sponsored search 
auctions. Some keywords (lags) bring a high value to advertisers, and knowing all the re
lated keywords in a category that people can potentially use in search for can be very useful 
information for an advertiser. Conversely, the information regarding subsets of related lags 
could also he useful for the search engine in pricing searches using these tags. 

Note that the complexity-related disciplines data set (already introduced in Sect. 4) is a 
useful tool lo examine this question, since the initial set of lags arc heterogeneous (complex
ity science is, by its very nature, an interdisciplinary field), but there arc natural divisions 
into sub-fields, based on different criteria. This allows easier intuitive interpretation of the 
obtained results (besides the mathematical modularity criteria described below). 

The technique we will use in our approach is based on the so-called "community de
tection" algorithms, developed in the context of complex systems and network analysis the
ory [ 164, 165]. Such techniques have been well studied al a formal level and have been 
used to study large-scale networks in a variety of fields from social analysis (e.g. analysis 
of co-citation networks), analysis of biological nets (e.g. food chains) lo gene interaction 
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networks. [ 165] provide an overview of existing applications of this theory, while [ 164] 
presents a formal analysis of the algorithm class used in this chapter. To the hcst of the 
authors' knowledge, however, this is the first work that studies the application of these tech
niques to tagging systems and folksonomics. In a somewhat related direction of work, [ I 13] 
study the application of community detection techniques to aggregate bidder preferences in 
Ehay auctions. 

6.5.1 Using community detection algorithms to partition tag graphs 

In network analysis theory, a community is defined as a suhsct of nodes that are connected 
more strongly to each other than to the rest of the network. In this interpretation, a commu
nity is related to clusters in the network. If the network analyzed is a social network (i.e. 
vertexes represent people), then "community" has an intuitive interpretation. For example, 
in a social network where people who know each other are connected hy edges, a group of 
friends arc likely to he identified as a community, or people attending the same school may 
form a community. We should stress, however, that the network-theoretic notion of commu
nity is much hroadcr, and is not exclusively applied to people. Some examples [ I 13, 1651 arc 
networks of items on Ebay, physics puhlications on arXiv, or even food webs in hiology. We 
will use a community detection algorithm to identify "vocahularies" within a folksonomy 
graph, identifying "communities" as "vocahularics." 

Community detection: a formal discussion 

Let the network considered he represented a graph G = (V, E), when !VI = n and IE I = rn. 
The community detection prohlem can he fonnalized as a partitioning prohlcm, suhject to 
a constraint. The partitioning algorithm will result in a finite number of explicit partitions, 
based on clusters in the network, that will considered "communities." 

Each v E V must he assigned to exactly one cluster C 1 , C"2 , ... C11 c , where all clusters 
arc disjoint, i.e. Vv E V , v E C;, v E Ci ⇒ i = j. 

Generally speaking, detennining the optimal partition with respect to a given metric is 
intractahlc, as the number of possihlc ways to partition a graph G is very large. [ 164] shows 
there arc more than 211

-
1 ways to form a partition, thus the prohlem is at least exponential 

inn. Furthermore, in many real life applications (including tagging), the optimal numher of 
disjoint clusters n c is generally not known in advance. 

In order to compare which partition is "optimal", the glohal metric used is modularity. 
henceforth denoted by Q. Intuitively, any edge that in a given partition has both ends in the 
same cluster contrihutes to increasing modularity, while any edge that "cuts across" clusters 
has a negative effect on modularity. Formally, let c;i , i, j = l..nc he the fraction of all edges 
in the graph that connect clusters i and j and let a; = ½ LJ...!;ii he the fract.ion of the ends of 
edges in the graph that fall within cluster i (thus, we have 2_, ; a; = L ;,i e;i = 1). 
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The modularity Q of a graph IGI with respect to a partition C is defined as: 

(6.6) 

Informally, so (J is defined as the fraction of edges in the network that fall within a 
partition, minus the expected value of the fraction of edges that would fall within the same 
partition if all edges would he assigned using a uniform, random distribution. These parti
tions are identified as communities by [ 165]. In tagging, each of these partitions is identified 
as a vocabulary. 

As shown in [ 164], if Q = 0, then the chosen partition c shows the same modularity as a 
random division.9 A value of Q closer to I is an indicator of stronger community structure -
in real networks, however, the highest reported value is Q = 0. 75. In practice, [ 164] found 
(based on a wide range of empirical studies) that values of (J above around 0.3 indicate a 
strong community structure for the given network. 

We will return shortly to define the algorithm by which this optimal partition can actually 
he computed, hut first some additional steps are needed to link this formal definition to our 
tagging domain. 

6.5.2 Edge filtering step 

As shown in tag graph construction step above, for our data set the initial inter-tag graph 

contains ( 
5
2
° ) = 1225 pairwise similarities (edges), one for each potential tag pair. Most 

of these dependencies are, however, spurious as they represent just noise in the data, and our 
analysis benefits from using only the top fraction, corresponding to the strongest dependen
cies. 

In this chapter, we make the choice to tilter and use in further analysis only the top m = 
kt1 * n edges, corresponding to the strongest pairwise similarities. Herc, k,1 is a parameter 
that controls the density of the given graph (i.e. how many edges arc there to be considered 
vs. the number of vertexes in the graph). In practice, we take values of kt1 = 1..10, which 
for the tag graph we consider means a number of edges from 500 down to 50. 

6.5.3 Normalized vs. non-normalized edge weights 

The graph community identification literature [ 165] generally considers considers graphs 
consisting of discrete edges (for example, in a social network graph, people either know or 
do not know each other, edges do not usually encode a "degree" of friendship). In our graph, 

'JNote that Q can also take values smaller than 0, which would indicate that the chosen partition is worse than 
expected at mndom. 
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Algorithm 4 GreedyQ Determination: Given a graph G 
returns partition < C,, ... C,,c > 

I. C; = {v;}, Vi = l ,n 
2. 11 c = n 

3. Vi, j, eij initialized as in Eq. 6.7 
4. repeal 
5. < C;,Cj >= argmaxc,,c;(cij +eji - 2a;aj) 
6. D.Q = maxc, ,c; ( C;j + Cji - 2a;aj) 
7. C; = C; LJ Cj, Ci = 0 /lme,"f?e C; and Ci 
8. nc = nc - 1 
9. until D.Q '.S 0 
10.maxQ = Q(C,, .. C11 0 ) 

Chapter6 

(V,E),IVI n,IEI rn 

however, edges represent similarities between pairs of lags (c.f. Eq. 6.5). There arc two 
ways to specify edge weights. 

The non-normalized case assigns each edge that is retained in the graph, after filtering, a 
weight of I. Edges filtered out arc implicitly assigned a weight of zero. 

The normalized case assigns each edge a weight proportional lo the similarity between 
the lags corresponding lo the ends. Formally, using the notations from Eq. 6.5 and 6.6 from 
above, we initialize the values eij as: 

(6.7) 

Where I: 1
.. . . is a normalization factor, which assures that L;

1
- ci;i = 1. 

ij lH1U 11 

6.5.4 The graph partitioning algorithm 

Since we have established our framework, we can now formally define the graph partitioning 
algorithm. As already shown, the numher of possible partitions for this problem is al least 
211

-
1 (e.g. for our 50 tag selling 2ao > 101a). Therefore, lo explore all these partitions 

exhaustively would he clearly unfeasible. The algorithm we use lo determine the optimal 
partition (Alg. 4) is hascd on [ 164], and it falls into the category of "greedy" clustering 
heuristics. 

Informally described, the algorithm runs as follows. Initially, each of the vertexes (in 
our case, the lags) arc assigned lo their own individual cluster. Then, al each iteration of 
the algorithm, two clusters arc selected which, if merged, lead lo the highest increase in the 
modularity Q of the partition. As can he seen from lines 5-6 of Alg. I, because exactly 
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Cluster I Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 
computation markets semantics powcrlaw genetics robustness art 
optimization economics cognition nonlinear biology 
visualization society neural complcxsystcms evolution 

physics community ai dynamics evolutionary 
mathematics organization alifc chaos science 

math ecology artificial emergence 
computational ecosystem life networks 

algorithms environment behavior systems 
information simulation complex 
computing research complexity 

theory 
Tags that increase modularity the most, if eliminated: theory, science, research, simulation, networks. 
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Figure 6.8: Optimal partition in tag clusters (i.e. "communities") of the folksonomy graph, 
when the top 200 edges arc considered. This partition has a Q=0.34. After eliminating the 5 
tags mentioned at the bottom, Q can increase to 0.43. 
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Figure 6.9: Modularity (Q-factor) and number of partitions obtained from applying commu
nity detection algorithms to the scientific disciplines data set 

two clusters arc merged at each step, it is easy to compute this increase in Q as: 6.Q = 
(c;j + Cji - 2a;a j) or 6.Q = 2 * (eij - a ; a j) (the value of c;j being symmetric). The 
algorithm stops when no further increase in Q is possible by further merging. 

Note that it is possible to specify another stopping criteria in Alg. I, line 9, e.g. 1t 1s 
possible to ask the algorithm to return a minimum number of clusters (subsets), by letting 
the algorithm run until nc reaches this minimum value. 
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6.5.5 Graph partitioning: experimental results 

The experimental results from applying Alg. 1 to our data set are shown in Fig. 6.9. In Fig. 
6.8 we present a detailed "snapshot" of the partition ohtained for one of the experimental 
configurations. There arc several interesting features of the results. 

First, it becomes clear that using normalized edge weights produces partitions with 
higher modularity than assigning all the top edges the same weight of 1. This was intu
itively hypothesized by us, since edge weights represent additional information we can use, 
hut it was confirmed experimentally. Second, we are clearly ahle to identify partitions with 
a modularity higher than around 0.3, which exhibit a strong community structure according 
to 1165]. Yet perhaps the most noteworthy feature of the partitions is the rapid increase both 
in the modularity factor Q and in the numhcr of partitions, as the numhcr of edges filtered 
decreases (from left to right, in our figure). 

The filtering decision represents, in fact, a trade-off. Having too many edges in the graph 
may stop us from finding a partition with a reasonable modularity, due to the high volume 
of "noise'' represented hy weaker edges. However, keeping only a small proportion of the 
strongest edges (e.g. 100 or 50 for a 50-tag graph, in our example), may also have disadvan
tages, since we risk throwing away useful information. While a high modularity partition 
can be ohtained this way, the graph may hecomc too "fragmented": arguahly, dividing 50 
tags into 10 or 15 vocabularies may not he a very useful. 

Note that it is difficult to cstahlish a general rule for what a "good" or universally "cor
rect" partition should be in this setting. For example, even the trivial partition that assigns 
each tag to its own individual cluster cannot be rejected as "wrong" hut such a trivial parti
tion would not be considered a useful result for most purposes. In this chapter we generally 
report the partitions found to have the highest modularity for the setting. However, for many 
applications, having a partition with a certain number of clusters, or some average cluster 
size, may he more dcsirahlc. The clustering algorithm propose here (Alg. 1) can he easily 
modified to account for such desiderata, hy changing the stop criteria in line 9. 

Fig. 6.8 shows the solution with the highest modularity Q for a graph with 200 edges, 
in which 7 clusters are identified. This partition assigns tags related to mathematics and 
computer science to Cluster I, tags related to social science and phenomena to Cluster 2, 
complexity-related topics to Cluster 4 etc., while "art'' is assigned to its own individual 
cluster. This matches quite well our intuition, and its modularity Q = 0.34 is ahovc (alhcit 
close) to the theoretical relevance threshold of 0.3. In Section 6.6 we will compare this 
partition (as well as the entire tag graphs constructed in Section 6.4) against an independent 
hcnchmark that addresses the same prohlcm, hut hascd on a completely different data set: 
search engine query logs. However, first we hriclly present a method that can further improve 
the modularity of the retrieved tag graphs. 
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Algorithm 5 GreedyQ Elimination: Given a partition C1 , ... C,.c of graph G 
removes all vertexes v; E V that increase (J 

(V, E ) 

I. repeat 
2. V; = argmaxv, [Q ( .. ,ck \ {v;}, .. ) - Q( .. ,ck,-•)l 
3. D.(J = maXv; [(J( .. , Ck\ {v;} , .. ) - (J ( .. , Ck, .. )] 

where v; E Ck //Ck is the partition of vertex i 
4. until 6:..Q ::; 0 

Modularity ol the optimal partition, as general tags are removed 

-=-100edgos 

-A-, 150edges 

----- 200 odges 
~ 300 edges 

--0-- 400 edges 

0.2~~-~-~-~~-~-~-~~-~ 

D 1 2 3 4 5 6 7 8 9 10 
Number of tags removed from Iha graph, in decreasing order of generality. 

~ 12 ·g 
E 
E 1 
8 

Number ol subsets in the optimal partition, with general tags removed 

-=-100edges 

-A-,150edges 

_..,_ 200adges 

~ 300 edges 

~ 400 edges 

1 2 3 4 5 6 7 8 9 10 
Number of tags removed from the graph, in decreasing order ol genernllty. 

Figure 6.10: Modularity (Q-factors) and number of partitions obtained after gradually elim
inating tags from the data set, such as to increase the modularity. At each step, the tag that 
produced the highest increase in modularity between the initial and resulting partition was 
selected. In these results, all edge weights arc normalized. 

6.5.6 Eliminating tags from resulting partitions to improve modularity 

The analysis in the previous section shows that community detection algorithms were ahlc 
to produce useful partitions, with ahovc-rclcvancc modularity. Still, there are a few general
meaning tags that would fit well into any of the subsets resulting after the partition. These 
tags generally reduce the Q modularity measure significantly, since they increase the inter
cluster edges. Therefore, we hypothesized that the modularity of the resulting partitions 
could he greatly improved hy removing just a few tags from the set under consideration. In 
order to test this hypothesis, we tested another greedy tag elimination algorithm, formally 
defined as Alg. 2. Result graphs arc shown in Fig 6. IO, while in Fig. 6.8 we show the top 5 
tags that, if eliminated, would increase modularity Q from 0.34 to 0.43. 

As seen in Fig. 5, for this data set only 5-6 tags need to he eliminated as eliminating 
more does not lead to a further increases in Q. In the example in Fig. 6.8, we see which 
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these arc, in order of elimination: theory, science, research, simulation, networks. In fact, 
these lags, lhal arc marked for elimination automatically hy Alg. 2, arc exactly those that are 
the most general in meaning and would fit well into any oflhc suhsels. 

Regarding scalahility, it is relatively straightforward lo show lhal holh Alg. I and 2 have 
linear running lime the numher of vertexes n, i.e. in this case, numher of tags considered in 
the initial set. In the case of Alg. I, exactly two clusters of tags are merged at each step, so 
one cluster increases in size hy a minimum of one, until the algorithm terminates. In case of 
Alg. 2, one lag is eliminated per step, until termination. In practice, this scalahility property 
means they are easily applicahle to analyze much larger folksonomy systems. 

To our knowledge, this is the first line of research lo investigate the applicahility of this 
type of algorithms lo lagging, and we can conclude lhal results are very encouraging. We 
leave some aspects open lo further work. For instance, in the current approach, similarity 
distances hclwecn pairs of lags are computed using all the tagging instances in the data set. 
In some applications, it might be useful to first partition the set of users that do the tagging, 
and then consider only the tags assigned hy a certain class of users. For example, for tags 
related to a given scientific licld, expert taggers may come up with a different vocahulary 
partition than novice users. This may require a two-fold application of this algorithm: first 
lo partition and select the set of users, and then the set of tags hased on the most promising 
category of users. 

While these applications of tagging distrihutions have shown promise, one question that 
can he reasonably asked is how well these applications of tagging compare to some hcnch
mark that does not use tagging distrihutions. In the next section we will compare the results 
obtained here from collaborative tagging data against a benchmark case, which uses "clas
sic" search engine query data. 

6.6 Comparison benchmark: automatic construction of key
word vocabularies from search engine query data 

The previous sections of this chapter provide a compelling argument that show that a stable 
categorization scheme can arise from collaborative tagging, and these slahlc tagging dis
tributions can produce vocahularies that can be harnessed in a wide range of applications. 
However, in order lo truly establish the case for tagging, we need a henchmark to compare 
the results extracted from collaborative tagging data to results that can he obtained hy means 
of other web search methods. 

The obvious candidate for finding such a comparison benchmark is to use of large-scale 
query data produced by a search engine. The idea of approximating semantics by using 
search engine data has, in fact, been proposed before, and is usually found in existing lit
erature under the name of "Google distance." [53] were the first to introduce the concept 
of "Google distance" from an information-theoretic standpoint, while other researchers [85J 
have recently proposed using it for tasks such as approximate ontology matching. It is fair 
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Figure 6.1 lCorrelation graph from Microsoft queries, showing only correlations to the term '·compl 

Figure 6.12: Correlation graph obtained from Microsoft query logs, considering all relevant search t 

to assume (although we have no way of knowing this with certainty), that current search en
gines and related applications, such as Google Sets [106], also use text or query log mining 
techniques (as opposed to collaborative tagging) to solve similar problems. 

There are two ways of comparing terms (in this case, keywords) using a search engine. 



198 Chapter6 

One method would be to compare the number of resources that arc retrieved using each of 
the keywords and their combinations. Another method is to use the query log data itself, 
where the co-occurrence of the terms in the same queries vs. their individual frequency is 
the indicator of semantic distance. We employ this latter method as it is more amendable to 
comparison with our work on tagging. In the latter method, the query terms are comparable 
to tags, where instead of basing our folksonomy graphs and vocabulary extraction on tags, 
we used query terms. In general. query log data is considered proprietary and much more 
difficult to obtain than tagging data. We were fortunate to have access to a large-scale data 
set of query log data, from two separate proposals awarded through Microsoft's "Beyond 
Search'' awards. JO In the following we describe our methodology and empirical results. 

6.6.1 Data set and methodology employed 

The data set we used consists of IO 1,000,000 organic search queries, produced from Mi
crosoft search engine Live.com, during a 3-month interval in 2006. Based on this set of 
queries, we computed the bilateral correlation between all pairs from the set of of complex
ity related terms considered in Sect. 6.4 and 6.5 above. The set of terms arc, however. no 
longer treated as tags, but as search kcywords. 11 The correlation between any two keywords 
T ; and TJ is computed using the cosine distance formula in Equation 6.5 from Section 6.4 
above. However, here N (T;, Ti) represents the number of queries in which the keywords 
T; and Tj appear in together, while N (T;) and N (Tj) are the numbers of queries in which 
T;, respectively Ti appear in total (irrespective of other terms in the query), from the 100 
million queries in the data set. 

The rt:sl of the analysis mirrors closely the slt:ps described in Sections 6.4 and 6.5, but 
optimizing the lt:aming parameters which hest fit this data set, in order to give both methods 
a fair chance in the comparison. More specifically, the Pajek visualization of the keyword 
graphs in Figs.6.11 and 6.12 were also built by using a spring-embedder algorithm based on 
the Kamada-Kawai distance, while Fig. 6.13 shows the keyword vocabulary partition that 
maximizes the modularity coefficient Q in the new setting, considering the top 200 edges. 
For clarity, the graph pictures arc depicted in a different color scheme, to clearly show they 
result from entirely different data sets: Figures 6.6 and 6.7 from del.icio.us collaborative 
tagging data, and Figures 6.11 and 6.12 from Microsoft's Live.com query logs. 

6.6.2 Discussion of the results from the query log data and comparison 

When comparing the graphs in Figures 6.6 and 6.11 (i.e. the ones which only depict the re
lations to the central term "complexity'') an important difference can be observed. While the 

10Thc authors wish lo thank Microsoft Research for their kind support in providing this data. 
11 We acknowledge this method has some drawhacks, a~ a few lcnns in the complexily-relatcd sci, such as ··pow

crlaw" and "complcxsystcms'" (spelled a~ one word) or "alifc" (for "artificial life") arc natural to use as tags, hut 
not very natural as search keywords. However. since there arc only 3 such non-word tags. they do not significantly 
affect our analysis. 
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Cluster I Cluster2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 
complexity systems networks algorithms mathematics research 
evolution visualization aI ecology physics quantitative 

evolutionary organization emergence math economics qualitative 
chaos information neural computing art society 

cognition community optimization science 
biology computation simulation 
theory environment dynamics 

behavior nonlinear 
markets computational 
genetics ecosystem 

agent 
Terms left unclassified (i.e. one word clusters): complex, complexsystems, robustness, 

multi-agent, life, artificial, semantics, powerlaw, alife. 

Figure 6.13: Optimal partition into clusters, obtained from the Microsoft query data, when 
the top 200 edges are considered. The resulting partition has a Q=0.536. However, 9 terms 
were assigned to their own cluster, thus basically left unclassified. 

graph in Fig. 6.6, based on collaborative tagging data, shows 48 terms related to complexity, 
the one is Fig. 6.11, based on query log data, shows just 6. The basic reason is that no re
lationship between the term "complexity" and the other 40+ terms can be inferred from the 
query log data. These relationships either do not appear in the query logs or are statistically 
too weak (only hased on a few instances). 

It is important to emphasize here that this result is not an artifact of the cosine similarity 
measure we use. Even ifwe use another, more complex distance measure between keywords, 
such as some suggested in the previous literature l53], we get very similar results. The 
fundamental reason for the sparseness of the resulting graph is the query log data itself docs 
not contain enough relevant information about complexity-related disciplines. For example, 
among the IO 1,000,000 queries, the term complexity appears exactly 138 times, a term such 
as "networks" 1074 times. Important terms such as "cognition" or "semantics" are even 
less common, featuring only 47 and 26 times respectively among more than JOO million 
queries. Therefore, it is fair to conclude that the query log data, while very large in size, is 
quite poor in useful information about the complexity-related sciences domain. As a caveat, 
we do note that more common terms, such as "community" (78,862 times), "information" 
(36,520 times), "art" ( over 52.000), or even "agent" (about 7,000) do appear more frequently, 
but these words have a more general language usage and are not restricted to the scientific 
domain. Therefore, these higher frequencies do not actually prove very useful for identifying 
the relationship of these terms to complexity science, which was our initial target question. 

Turning our attention to the second graph in Fig. 6.12 and the partition in Fig. 6.13, we 
can see that query logs can also produce good results in comparison with tagging, although 
they arc somewhat different from the ones obtained from tagging. For example, if we com-
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pare the partitions ohtained in Fig. 6.8 (resulting from tagging data) and the one in Fig. 6.13 
(from query log data), we see that tagging produces a more precise partition of the disciplines 
into scientific suh-fields. For instance, it is clear from Fig. 6.8 that cluster I corresponds to 
mathematics, optimization and computation, cluster 2 to markets and economics, cluster 5 
to hiology and genetics, cluster 4 to disciplines very related to complexity science and so 
forth. The partition ohtained from query log data in Fig. 6.13, while is still very reason
ahle. reflects perhaps how a general user would classify the disciplines, i.e. organization is 
related to hoth information, systems and community (cluster 2), research is either qualitative 
or quantitative (cluster 6), and the like. There are also some counter-intuitive associations, 
such as putting hiology and markets in the same cluster (numher I). Note that the clustering 
(or modularity) coefficient q is higher in Fig. 6.13 than 6.8, hut this is only hecause there 
are less inter-connections hetween terms in general in the query log data, thus there arc less 
edges to "cut" in the clustering algorithm. 

To conclude, while hoth methods produce rcasonahle results, collahorativc tagging docs 
better, at least for this domain. Tagging data appears to he more rich in information ahout in
terconnections hetween the terms that can he exploited hy the filtering algorithms proposed 
in this chapter. This can prohahly he explained hy the fact the del.icio.us users have more 
expertise and interest in complexity-related topics than general wch searchers. Furthermore, 
they arc prohably more careful in selecting resources to tag and in selecting lahels for them 
that would he useful to other users as well (general weh searchers are known to he "lazy" in 
typing queries. As a caveat, we note that this target domain (i.e. complexity-related disci
plines) is scientific and very specialized. If the target would he more general (for example, 
if we selected a set of terms related to pop-culture), the comparison might lead to different 
results. 

In future work, it may he interesting to study the formation of such vocahularies con
sidering only the opinion (expressed in terms of hookmarks or queries) of a suh-community 
of users, such as the community of expert users employed in a particular field. While this 
should he theoretically possihle for both approaches, in practice, it may he easier to trace 
identities of users with eollahorative tagging. not least due to privacy concerns. People who 
sign up to use a collahorative tagging system are implicitly more willing to share their exper
tise with a group of users. By contrast, web search is a private activity, where tracing users' 
expertise level or identity during search may he undesirahle. 12 

6.7 Conclusions and Future Work 

This work has explored the important question of whether a coherent, stahle way of char
acterizing information can emerge from collahorative tagging systems and has presented 
several novel methods for analyzing data from such systems. 

First, we have shown that tagging distrihutions of heavily tagged resources tend to stahi
lize into power law distrihutions and present a method for detecting power law distrihutions 

12 Although this prohahly happens. to some degree. in current practice. 
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in tagging data. We see the emergence of stable power law distributions as an aspect of 
what may be seen as collective consensus around some shared preferences regarding the the 
categorization or information, consensus driven by lagging behaviors. We have additionally 
presented a method for examining the dynamics and convergence or stable tag distributions 
over lime by the use of Kullback-Leibler divergence measures between distributions at dif
ferent time steps. Also included is an empirical study of the importance of the ''long tail" or 
the lag distributions in the convergence process. 

In the second part of the chapter, we propose a method for constructing and visualizing 
correlation graphs from lags, and showed how they can lend important insights into how a 
community of users sees the relations between a set of terms. We also use a method from net
work theory for partitioning tag correlation graphs that can be used to identify vocabularies 
shared by a community of users. Finally, we show that vocabularies that from collaborative 
tagging data can be significantly richer, at least for some domains, than the ones that can 
be extracted from general search engine query logs. While these methods were empirically 
tested using dcl.icio.us data, the proposed methods are general enough to be applicable to 
other tagging systems. 

This work suggests a number of exciting problems, both theoretical and applied, that 
merit further research. These include examining whether aspects or lagging distributions 
and dynamics arc subject to the inllucnce of particular features or tagging sites, lo human 
cognitive limits, or some mixture of the two. A thorough examination of this aspect would 
represent a significant contribution to work in this area and would be important to many 
practical tagging applications. 

Another important direction of work would be examining the effects of using special
ized sub-communities of users in the study of convergence of tag distributions and resulting 
information structures, rather than the entire user population as in this chapter. As shown 
by [IO I J, del.icio.us is not dominated by a small number of core users, but other tagging sites 
may be. We know relatively lillle about how user concentration might influence the types 
of infom1ation structures that can be derived from tags. Furthermore, the shared vocabulary 
used by a specialized sub-community of users may differ considerably to that of a larger user 
base. 

Based on these results, it seems quite plausible that folksonomics can be fruitfully uti 
lized for a wide category of applications related to organization of information on the web. 
Insights gained by taking collaborative tagging systems seriously as an empirical object of 
study could result in insight into the complexity of the one of the world's must complex 
systems, the World Wide Web. 
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Chapter 7 

The Complex Dynamics of 
Sponsored Search Markets: An 
Empirical Study 

7.1 Introduction 

Sponsored search, the payment by advertisers for clicks on text-only ads displayed alongside 
search engine results, has become an important part of the Web. It promises to revolutionize 
advertising world and represents the main source of revenue for large search engines, such 
as Google, Yahoo! and Microsoft. Nevertheless, issues that arise from sponsored search 
also represent exciting research opportunities, in liclds as diverse as economics, artilicial 
intelligence, computer science and sociology. 

For example, the field of multi-agent systems, researchers have been working for some 
time on topics such as designing automated auction bidding strategics in uncertain and com
petitive environments (Chapters 4 and 5 arc two examples of this type or research, among 
many others, e.g. [ 19, 230]). Another emergent field which studied such topic is agent
based computational economics (ACE), where significant research effort has focused on the 
dynamics of electronic markets through agent-based simulations. One particular topic of 
research for the ACE community is how order and macro-level market structure can emerge 
from the micro-level actions or individual users. However, most existing work has been 
based on simulations, as there arc few sources of large-scale, empirical data from real-world 
automated markets. In this context, empirical data made available from sponsored search 
provides an excellent opportunity to test the assumptions made in such models in a real 
market. 

In this paper, which is based on a large-scale Microsoft sponsored search dataset, we 
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provide such a detailed empirical analysis. To do this, we make use of several techniques 
derived from computational economics, and especially complex systems theory. Complex 
systems analysis (which we hriefly review hclow) has hccn shown lo he an excellent tool for 
analyzing large social, technological and economic systems, including wch systems 141, 9:1. 
166]. 

7.1.1 The data set 

The study provided in this paper is hascd on a large dataset of sponsored search queries. 
ohtaincd from the wchsile Livc.com 1. The search data provided consists of two distinct data 
sets: a set of sponsored search dataset (URLs returned arc allocated lo advertisers, through 
an auction mechanism) and an organic search dataset (standard, unhiased weh search). The 
sponsored search data consists of IO I, I 7 I ,08 I distinct impressions (i.e. single displays of 
advertiser links. corresponding lo one weh query), which in total received 7,822,292 clicks. 
This sponsored dataset was collected for a roughly :I-month period in the autumn of 2007. 
The organic search data sci consists of I 2,2S 1,()68 queries, and was collected in a different 
:I-month interval in 2006 (therefore the two data sets are chronologically disjoint). 

II is important to stress that in the results reported in this paper arc hascd mostly on the 
sponsored search data sct2 . Furthermore, the sponsored search data we had availahle only 
provides partial information. in order lo protect the privacy of Microsoft Live.com customers 
and business partners. For example, we have no information ahout financial issues, such as 
the prices of different keywords, how much different advertisers bid for these keywords, the 
hudgets they allocate etc. Furthermore, while the database provides an anonymizcd identifier 
for each user pcrfom1ing a query, this does not allow us to trace individual users for any 
length of time. 

Nevertheless, one can extract a great deal of useful information from the data. For exam
ple, the identities of the advertisers, for which keyword comhinations their ads were shown 
(i.e. the impressions), for which of these combinations they received a click, the position 
their sponsored link was in when clicked etc. Insights gained from analyzing this informa
tion forms the main topic of this paper. 

7 .2 Complex systems analysis applied to the web and eco
nomics 

Complex systems represents an emerging research discipline, al the intersection of diverse 
fields such as AI, sociology, economics and biology. The main focus of the study in the 
field of complex systems how macro-level dynamics may emerge from individual actions al 

1 This data was kindly provided 10 us hy Microsort research through "Beyond Search" award 
2The only exception is a plot on the distrihution numher or clicks vs. display mnk in Sect. 7.3. included for 

comparison reasons. 
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Figure 7.1: Distribution of clicks received by a URL (link), relative to its position on the 
display, for sponsored and organic search. A(lcft-side, sponsored search dataset): There 
arc up to 8 sponsored advertiser links displayed: 3 on the top of the page, and 5 in a side 
bar. B(right, organic search data): There arc usually 10 positions displayed per page, with 
multiple result pages appearing as plateaus. 

the individual level by agents participating in a system (such as an electronic market). For 
web phenomena, complex systems techniques have been successfully used before lo study 
phenomena such as collaborative lagging [93], viral marketing [ I 41] or the formation of 
online social groups [IO]. 

One of the phenomena that are indicative lo such complex dynamics is the emergence 
of scale-free distributions, such as power laws. The emergence of power laws in such a 
system usually indicates that some sort of complex feedback phenomena (e.g. such as a 
preferential attachment phenomena) is at work. This is usually one of the criteria used for 
describing the system as "complex" [I 1,41]. Research in disciplines such as cconophysics 
and computational economics discusses how such power laws can emerge in large-scale 
economic systems (see [41, 166] for a detailed discussion). 

7.2.1 Power laws: definition 

As a reminder from the previous Chapter, a power law is defined as a relationship between 
two scalar quantities x and y of the form: 

y = ex" logy = u log x + loge (7.1) 

where n and e arc constants characterizing the given power law. 
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Power laws have the important property that when plotted in log-log space, power laws 
appear as straight lines. As shown hy Newman [ 166] and others, the main parameter that 
characterizes a power law is its slope parameter a. (On a log-log scale, the constant param
eter c only gives the "vertical shift" of the distribution with respect to the y-axis.). Vertical 
shift can vary significantly hetween different phenomena measured (in this case, click dis
trihutions), which otherwise follow the same dynamics. Furthermore, since the logarithm 
is applied to hoth sides of the equation, the size of the parameter a docs not depend on the 
hasis chosen for the of the logarithm (although the shifting constant c is affected). In the 
log-log plots shown in this chapter, we have chosen the hasis of the logarithm to be 2, since 
we found graphs with this low hasis the more graphically intuitive. But, in principle, the 
same conclusions should hold if we choose the logarithm hasis to he, e.g. c or IO. 

7 .3 Influence of display rank on clicking behaviour 

The first issue that we studied (for hoth sponsored and organic search data) is how the po
sition that a URL link is displayed in influences its chances or receiving a click. Note that 
this particular issue has received much attention in existing literature [56, 114], as will he 
discussed later. To hrielly explain, Microsoft's Live.com search interface (from which the 
data was collected). is structured as follows: 

• For sponsored search there arc up to 8 available slots (positions) in which sponsored 
URL links can he placed. Three of these positions (ranked as 1-3) appear at the top 
of the page, ahovc the organic search results, hut delimited from those hy a different 
background. In addition, the page can display up to 5 additional links in a side bar at 
the right of the page. 

• The "organic'' search results arc usually returned as IO URL links/page (a user can opt 
to change this setting, hut very few actually do). 

All the sponsored links arc allocated hascd on an auction-like mechanism hctwccn the 
set of interested advertisers (such a display, in any position is called in "impression"). How
ever, the advertisers only pay if their link actually gets clicked - i.e. "pay per click'' model. 
The exact algorithm used by the engine to determine the winners and which advertiser get 
which position is a complex mechanism design prohlem and not all details arc made puhlic. 
However, in general, it depends on such factors as the price the hiddcr is willing to pay per 
click, the relevance of the query to her set of terms, and her past performance in terms of 
"clickthrough rate" (i.e. how often links of that user were clicked in the past, for a given key
word). By contrast, in organic search, returned results arc ranked simply hascd on relevance 
to the user's query. 
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Figure 7.2: A (left-side): Cumulative percentage distribution of the number of clicks ad
vertisers in the market receive, wrt. to their rank position, considering the top 5000 adver
tisers in the market (normal scales). B (right): Log-log scale distributions of the number 
of impressions, respectively number of clicks, received by the top I 0000 advertisers in the 
market. Note that both distributions follow approximately parallel power laws, but the click 
distributions levels off in a "long tail" after the first 4000 advertisers, while the impression 
distribution has a much longer tail (not all appearing in the figure). 

7.3.1 Results on display position bias and interpretation 

Results for the position bias on click distribution arc plotted in Fig. 7.1: part A (lcrt side) 
for sponsored search ant part B (right side) for the organic search. Note that both of these 
arc cumulative distributions: they were obtained by adding the number or clicks for a link 
in each position, irrespective of the exact context of the queries or links that generated them. 
Furthermore, both arc drawn in the log-log space. 

There arc two main conclusions to be drawn from these pictures. For the sponsored 
search results (Fig. 7. I .A). The distribution across the 8 slots seems to resemble a straight 
line, with a slope parameter aprox. a = 2. However, such a conclusion would be too 
simplistic: there is, in fact, a difference between the slope between the first 3 positions (up 
to lo_q23, on the horizontal axis), and the last 5 positions. The slope for the first 3 positions 
is around o:1 = 1.4, while for the last 5 is around a:2 = 2.5. The most likely reason for 
this drop comes from the way the Live.com search interface is designed. The first 3 slots for 
sponsored search links are shown on the top of the page, above the organic search results, 
while the last 5 arc shown in a side bar on the right of the page. 

Fig. 7.1.B corresponds to the same plot for organic search results, the main effect one 
notices is the presence of several levels (thresholds), corresponding to clicks on different 
search pages. We stress that, since this is a log-log plot, the drop in attention between 

14 
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Figure 7.3: Distrihution of advertiser market share, hased on their ordered rank vs. the 
numher of clicks their links receive (log-log scales). The left-hand side plot (part A) gives 
the total number of clicks an advertiser received for all impressions of her links, regardless of 
the position they were in. The right-hand side (part B) gives the number of clicks received, 
hoth in total, hut also when her ads were displayed on a specific position on the page (among 
the 8 ranked slots of the sponsored search interface). 

suhsequent search pages is indeed very large - ahout two orders of magnitude (i.e. the top
ranked link on the second search page is, on average, ahout 65 times less likely to be clicked 
than the last-ranked link on the first page). The distrihution of intra-page clicks, however, at 
least for the first page of results, could he roughly approximated hy a power law of coefficient 
n = 1.25. 

All this raises of course the question: what do these distrihutions mean and what kind 
of user hehaviour could account for the emergence of such distrihutions in sponsored search 
results? First, we should point out that the fact that we find power law distrihutions in this 
context is not completely surprising. Such distributions have been ohserved in many web 
and social phenomena (to give just one example, in collahorative tagging systems, in the 
work hy one of the co-authors of this chapter [93] and others). In fact, any model of "top to 
bottom" probahilistic attention hchaviour, such as a user scanning the list of results from top 
to hottom and leaving the site with a certain prohability by clicking one of them could give 
rise to such a distribution. Such models and their refinements have hccn proposed in previous 
literature [2 I,56, I 14]. Of course, more fine-grained models of user behaviour are needed 
to explaining click behaviour in this context. But for now we leave this issue to further 
research, and we look at the main topic of this chapter which is examining the structure of 
the sponsored search market itself. 
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7.4 Market structure at the advertiser level 

In this Section, we look at how sponsored search markets arc structured, from the perspective 
of the participants (i.e. advertisers that buy search slots for their URLs). More specifically, 
we study how relative market shares arc distributed across link-based advertisers. We note 
that in many markets, an orten cited rule, also informally attributed to Pareto, is that 20% of 
participants in a market (e.g. customers in a marketplace) drive 80% of the activity. Here, 
we call this effect the "market concentration". 

In a sponsored search market, the main "commodity" which produces value for market 
participants (either advertisers and the search engine) is the number of clicks. Therefore, the 
first thing that we plotted (first, using normal, i.e. non-logarithmic axes) is the cumulative 
share of different advertisers (see Fig. 7.2. A. - left side graph). From this graph, one can 
already see that just the top 500 advertisers get roughly 66% (or about two-thirds) or the total 
7.8 million clicks in the available data set3 . 

Since in our data, there are at least I 0000 distinct advertisers (most likely, there are many 
more, but we only considered the top I 0000), this means that a percentage of less than 5% of 
all advertisers have a two-thirds market share. This suggests that sponsored search markets 
are indeed very concentrated, perhaps even more so than "traditional" real-world markets. 

An issue to be discussed here is what this market concentration in terms or received 
clicks means for the concentration in terms of revenue. While it is user clicks represent 
the paid "commodity" in most of today's sponsored search markets, a click may be worth 
more or less, depending on its position (i.e. rank) on the screen and on how popular (i.e. in 
demand) are the search keywords leading to that click. Although we have no data for actual 
monetary revenue, we hypothesize that the market concentration in terms of number or clicks 
represents a good lower bound for the concentration in terms of revenue as well. This is 
because the top advertisers are more likely to get their ads displayed in the top positions, and 
also for the more popular keywords, than advertisers with a low market share. Therefore, 
they probably pay per click at least the average market price, ii' not more. 

7.4.1 Distribution of impressions vs. distribution of clicks for the top 
advertisers 

Next, we studied the detailed distribution of the numbers of impressions (i.e. displayed 
URLs) and clicks on these impressions, for the top 10000 distinct advertisers. Results are 
shown in Fig. 7.2.B. (right-hand side graph), using a log-log plot. 

The main effect that one can see rrom Fig. 7.2.B. is that the distribution or impressions 
and the distribution for clicks received by the advertisers form two approximately parallel, 

3 Noll! that an advcniser was lakcn, following the available data, by the domain URL of the sponsored link. This 
is a reasonahle assumption, in this case. For example, Ebay uses many sponsored links lo different products, each 
relevant for different search terms. However, using this lcchnique, Ehay is taken as one advcniser, regardless of 
how many different items its URLs point to. 
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straight lines in the log-log space (i.e. they arc two power laws of approximately the same 
slope coefficient n). There is one important difference, though, which is the size of the "long 
tail" of the distribution. The distribution of the number of clicks (lower line), levels off after 
about 4000-5000 positions. Basically, in data terms, this means that advertisers beyond the 
top 5000 each receive a negligible number of clicks, at least in the dataset we examined. 
The reason for this may be that their ads almost always appear in the lower display ranks, 
or simply that they bid on a set of rarely used (or highly specialised) search keywords. By 
contrast, the distribution of impressions still continues for many more positions (although 
we only represent the top l0000 distinct advertiser IDs here, as the rest do not play any 
significant role in the click market). 

7.4.2 Distribution of market share per display rank position 

The previous Section examined the power law distributions of the number of clicks each 
advertiser gets in af?gref?ate (i.e. over all display ranks his/her links arc shown in). Herc. we 
look how an advertiser's market share distribution is affected when broken down per display 
rank (an issue we already touched on in Sect. 7.3). 

However, we first make a slight restriction in the number of advertisers we consider. As 
shown in Sect 7.4.1 above, there is a power law distribution in the clicks received by the top 
4000 advertisers, advertisers ranked beyond this position each receive a negligible number 
of clicks. Therefore, in this Section, we restrict our attention to the top 4000 advertisers. 
As these 4000 advertisers receive over 80% of all 7.8 million clicks in the data set (sec Fig. 
7 .2.A), we do not risk loosing much useful information. 

Results arc shown in Fig. 7.3. First, in Fig. 7.3.A. we show again, more clearly, the 
power law distribution of the number of clicks for the top 4000 advertisers. Note that this 
is a "wide" distribution, in the sense that it covers 4000 positions and several orders of 
magnitude. On the right-hand side graph (Fig. 7.3.8), we show the same graph, but now. 
for each advertiser, we also break down the number of clicks received by the position his/her 
sponsored URL was in when it was clicked. 

Surprisingly, perhaps, the smooth power law shape is not followed at the level of the 
display rank - in fact, for the lower levels the variance becomes so great that the distribu
tion breaks down, at the display rank level. We hypothesize the most likely reason for this 
variance is the way each individual advertiser docs the bidding for the preferred keywords at 
different points in time, or the way he specifies the way his keyword budget could be used in 
different periods. For example, some advertisers may have a short-running sale campaign, 
when they will bid aggrcsivcly for the preferred keyword, hence getting the top spot. By 
contrast, others may prefer to have longer-running ads, even if they don't get the top spot 
every time. Some anecdotal evidence from on line marketing suggests that even just the re
peated display of a link of a certain merchant on the screen may count: if a user secs an ad 
repeatedly in his/her attention space, that may establish the brand as more trustworthy. 

In Fig. 7.3.B, by looking the the top 4 advertisers in this dataset, one can already sec that 
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users ranked 2 and 3 utilize a rather different strategy than "the trend" represented by users 
I and 4. While their total number of clicks does follow, approximately the power law, they 
seem to get, proportionally speaking, more clicks on the top-ranked slot on the page than 
the rest. While, in order to preserve the privacy of the data, we cannot mention who these 
companies are, it does seem that users 2 and 3 are actually "aggregators" of advertising 
demand. By this, we mean online advertising agencies or engines (or automated services 
offered by the platform itself) that aggregate demand from different advertisers and do the 
bidding on their behalf. Apparently, this allows them to capture, proportionally, more often 
the top slot for the required keyword. Unfortunately, however, we cannot investigate this 
aspect further, since the dataset provided does not contain any information about bidding, 
budgets or financial information in general. 

In the following and last Section or this chapter, we tum our attention to a somewhat dif
lerent problem: how could we use insights gained rrom analyzing this query data to provide 
a bidding decision support for advertisers taking part in a sponsored search market. 

7.5 Using click data to derive search term recommenda
tions 

The previous Sections of this chapter used complex systems analysis to provide a high-level 
examination of the dynamics of sponsored search markets. In this Section, we look at how 
such query log data could be used to output recommendations to individual advertisers. This 
should lead to answers to questions such as: What kind of keyword combinations look most 
promising to spend one's budget on, such as to attract a maximum number of relevant user 
clicks? 

While the previous analysis of power-law formation was done at a macro-level, in this 
Section we take a more local perspective. That is, we do not consider the set of all possible 
search terms, hut rather a set that is specific to a domain. This is a reasonable model: in 
practice, most advertisers (which are typically on line merchants), are only concerned with a 
restricted set of keywords which are related to what they are actually trying to sell. 

For the analysis in this chapter, we have chosen as a domain 50 keywords related to the 
tourism industry (i.e. online bookings of tickets, travel packages and such). The reason 
for this is that much of this activity is already fast moving online (e.g. a very substantial 
proportion of, for example, flight tickets and hotel reservations are now carried out on line). 
Furthermore - and perhaps more important- there are low barriers or entry and the field is not 
dominated by one major player. This contrasts, for example, other domains, such as the sale 
or lpods and accessories, where Apple Stores can be expected to have a dominant position 
on the clicks in the market. 
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7 .5.1 Deriving distances from co-occurrence in sponsored click logs 

Given a large-scale query log, one of the most useful pieces of information it provides is the 
co-occurrence of words in different queries. Much previous work has ohserved that the fact 
that two search keywords frequently appear together in the same query gives rise to some 
implicit semantic distance hetween them [93]. 

In this chapter, we take a slightly different perspective on this issue, since, in computing 
the distances, we only use those queries which received at least one sponsored search click 
for the text ads (i.e. URLs) displayed alongside the results. We argue this is a suhtle hut very 
important difference from simply using co-occurrence in organic search logs. The fact that 
queries containing some comhination of query words lead to a click on a sponsored URL 
implies not only a purely semantic distance hetween those keywords, more important for an 
advertiser, the fact that users searching on those comhinations of keywords have the possihle 
intention of huying things on line. 

Formally, let N (T;, Tj) denote the numhcr of times two search terms T; and Ti appear 
jointly in the same query, if that query received at least one sponsored search click. Let 
N (T;) and N (Tj ) denote the same numhcr of queries leading to a click, in which terms T;, 
respectively Ti appear in total (i.e. regardless of other terms they co-occur with). Then, the 
cosine similarity distance helwcen terms T ; and Tj can he defined as: 

(7.2) 

7.5.2 Constructing keyword correlation graphs 

The most intuitive way to represent similarity distances is through a keyword correlation 
graph. The results from our suhsct of 50 travel-related terms are shown in Fig. 7.4. In this 
graph. the size of each node (representing one query term) is proportional to the ahsolutc 
frequency of the keyword in all queries in the log. The distances hetwcen the nodes arc 
proportional lo the similarity distance between each pair of terms, computed Eq. 7.2, where 
the whole graph is drawn according to a so called "spring emheddcr"-type algorithm. In 
this type of algorithm, edges can he conceived as "springs", whose strength is indirectly 
proportional to their similarity distance, leading to cluster of edges similar lo each other to 
he shown in the same part of the graph. 

There are several commercial and academic packages available lo draw such complex 
networks. The one we think is most suitahle - and which was used for graph Fig. 7.4 - is 
Pajek (see [ 12] for a description). Note that not all edges are considered in the final graph. 

Even for 50 nodes, there arc ( 
5
2
° ) = 1225 possihle pairwise similarities (edges), one 

for each potential keyword pair. Most of these dependencies arc, however, spurious (they 
represent just noise in the data), and our analysis hcnelits from using only the top fraction, 
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Figure 7.4: Visualization or a search lerm correlation graph, for a sel or search terms related 
lo lhe tourism induslry. Each search lerm is assigned one coloured dol. The size of lhe dols 
gives ils relative wcighl (in total number of clicks received), while the distances between 
lhe dols arc obtained through a spring-embedder lypc algorithm and arc proportional lo the 
co-occurrence of Lhe lwo search lerms in a query. Each dol is marked wilh ils success rale 
(percentage of Lhe lolal number or impressions associated wilh lhal query word lhal received 
a click). 

corresponding to lhc slrongcsl dependencies. In the graph shown in Fig. 7.4, containing 50 
nodes, only the top 150 strongest dependencies were considered in the visualization. 

7.5.3 Graph correlation graphs: results 

There arc several conclusions that can be drawn from the visualization in Fig. 7.4 constructed 
based on the Live.com sponsored search query logs. First, notice that each node was labelled 
not only with the term or keyword it corresponds to, but also with the aggregate click-through 
rate (CTR), specific for that keyword. Basically, this is the percentage of all the queries that 
used the term which generated at least one click to a sponsored search URL displayed with 
that query. 
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Note that these click-through rates may, at a first glance, seem on the low side: in general 
only a few percent of all queries actually lead to a click on an sponsored (i.e. advertiser) link. 
Nevertheless, as a search engine receives millions of queries in a rather short period of time. 
even a 5%- 10% click-through rate can be quite significant. Note that some keywords (such a 
"cheap") have a higher click-through rate than others. The reason for this may be that people 
searching for "cheap" things (e.g. cheap airline tickets, cheap holiday packages, hotel rooms 
etc.) may already have the intention to huy something online, and therefore are more likely 
to !also] click on sponsored links. 

However, the most interesting effect to observe in Fig. 7.4 arc the term clusters that 
emerge in different parts of the graph, from the application of the spring-embedder visual
ization algorithm. For example, the leftmost part of the graph has 4 terms related to weather, 
such as "warm", "tropical" and "exotic". On the top left part of the graph, one can find terms 
such as "entertainment", "nightlife", "party" and "fun", while very bottom part includes re
lated terms as such "climbing", "hiking" and "mountain". The top-right part includes com
mercial terms such as: "ticket", "tickets", "Hight"', "cheap", "last", "minute". The central 
part of the graph includes terms such a "beach"', "sand", "sea", "resort", "ocean"', "island" 
etc. Additionally, pairs of terms one would naturally associate do indeed appear close to
gether, such as "romantic" and "getaway" and "sunset" and "sunrise" and "ocean". 

In the following, we discuss an algorithm that can detect such clusters automatically. 
More precisely, we would like an algorithm that selects combinations of tags that look 
promising in attracting queries and clicks. 

7.5.4 Automatic identification of sets of keywords 

In this Section, we show how keyword graphs could be automatically partitioned into rele
vant keyword clusters. The technique we use for this purpose is the so called "community 
detection" algorithm [ 164], also inspired hy complex systems theory. In network or graph
theoretic terms, a community is defined as a subset of nodes that are connected more strongly 
to each other than to the rest of the network (i.e. a disjoint cluster). If the network analysed is 
a social network (i.e. vertexes arc people), then "community" has an intuitive interpretation. 
However, the network-theoretic notion of community detection algorithm is broader, has 
hccn successfully applied to domains such as networks of items on Ehay [ I 13], publications 
on arXiv, food wchs [ I 641 etc. 

Graph partitioning and community detection algorithm 

The hasic algorithm used to perform the partition is the same as in the Chapter 6 of this 
thesis (and adapted from r I 64]), with the important difference that this time applied to graphs 
constructed hascd on click data. We do not provide again the full formal discussion in this 
chapter, hut basically the same type of considerations, regarding computational efficiency, 
still apply. 
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Cluster I Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9 
beach party package weather getaway diving cruise show last 
luxury entertainment vacation exotic romantic swimming sunrise tickets minute 
hotel nightlife holidays tropical sunset ticket 
island run destination warm cheap 
resort Hawaii deal fli ght 
sun Oahu tour 

mountain offer 
ocean great 
hiking 

climbing 
sea 

sand 
Keywords eliminated lo increase modularity: holiday, holidays, relaxation, trip. 

Figure 7.5: Optimal partition of the set of travel terms in semantic clusters, when the lop 
150 edges arc considered. The partition was obtained hy applying Newman 's automated 
"community detection" algorithm lo the graph from Fig 7.4. This partition has a clustering 
coefficient Q=0.59. 

7 .5.5 Discussion of graph partitioning results 

The results from the graph partitioning algorithm, showing the partition maximises the mod
ularity Q for this selling, is shown in Fig. 7.5. Nole that this is not the only possible way 
lo partition this graph - if one would consider a different number of strongest dependencies 
lo begin with (in this case we selected the lop 150 edges, for 50 keywords), or a different 
slopping criteria, one may gel a somewhat different result. Furthermore, note that some key
words, which were very general and could lit in several clusters (shown below the figure), 
were pruned in order to improve modularity, through a separate algorithm not shown here. 

Still, the partition results shown in Fig. 7.5 match well what our intuition would describe 
as interesting combinations of search terms, for such a selling. There is one large central 
cluster, of terms that all have reasonably strong relations to each other, and a set of small , 
marginal clusters on the side. The large cluster in the middle could be further broken by the 
partition algorithm, but only if we force some other slop criteria than maximum modularity 
(such as a certain number of di stinct clusters). The partition in Fig. 7.5 lits well with what 
can be graphically observed in Fig. 7.4: actually, most of the clusters obtained automatically 
after partition can be identilied on different parts of the graph. This does not have to he a 
one-to-one mapping, however, because in a 2D drawing, the layout of the nodes afler •·spring 
embedding"' may vary considerably and, furthermore, there are keywords which could lit 
well into 2 clusters, and were assigned lo one as that had a slightly higher modularity. 

It is important lo stress that the above partition (and resulting vocabulary) was obtained 
using sponsored search data, rather than organic search one. This is because the purpose of 

visit 
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the resulting vocabulary is to inform the advertisers in this space which keyword combina
tions the users that actually click on sponsored search ads arc more likely to use. This docs 
not necessarily also have to he the most semantically relevant vocabulary (for which one can 
also use organic search data). 

7 .6 Discussion 

7.6.1 Contribution of the chapter & related work 

Our work can be seen as related to several other directions of research. Similar techniques 
to the ones used in this chapter have hccn successfully applied to analyse large-scale col
laborative tagging systems (Halpin ct al.'07 !93]). Other work proposes models to analyse 
other wch phenomena, such as the dynamics of viral marketing Leskovec ct. al. [ I 41] or 
preference networks for Ehay items (Jin ct. al. '07 [ 113]). 

The amount of work which is specifically geared to sponsored search auctions, especially 
empirical studies, has so far hccn rather limited (prohahly not least due to lack of extensive 
datasets in this field). Much of the work that exists looks mostly at user clicking behaviour, 
and in particular the hias introduced hy a link"s display rank on clicking behaviour (such as 
discussed in Sect. 7.3 of this chapter). Prominent examples of this approach arc: Craswcll 
ct al. '08 [56] and Joachims ct al.'05 [114]. 

Another important direction of work uses existing intuitions about user clicking be
haviour to design different allocation mechanisms for this problem - the work of Borgs ct. 
al. '07 [21] is a good example of this approach. By comparison to this work, this direc
tion is much more theoretical and mostly concerned with game-theoretic issues. There has 
also heen recent work that uses Markov models for sponsored search. For example, Hon
sagar and Chcrcpanov [1041 consider the problem of designing optimal bidding strategics 
for advertisers with budget constraints, participating in multi-unit, multi-slot auctions. 

One paper that is very related in scope to ours, since it also provides an empirical study 
of search engine advertising markets is Ghosc and Yang '08 [841- This work takes, however, 
a different perspective on this problem, also due to the different type of data the authors had 
available. By contrast to this chapter, the data that [84] use comes from a single, large-scale 
advertiser. This means they do get access to more detailed information (including financial 
one) and can say more about actual bidding behaviour. By comparison, the data available 
to us for this study docs not contain any detailed financial information, but it docs allow 
us to have a much more global level view of the structure of the whole market (from the 
perspective of the search engine, not just a single advertiser). This provides very important 
insights about the structure of sponsored search markets. 

There exists previous work that has applied similar co-occurrence-based techniques to 
organic search logs or tagging systems [51, 53, 93]. However, our focus in this chapter is 
different: we do not aim to to merely deduce what is the semantic distance between keywords 
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in the general sense, but what kind of combinations of keywords arc financially interesting 
for a sponsored search advertiser lo hid on. This is the reason why the size of the nodes and 
distances computed in Fig. 7.4 arc built using only 4ucrics which lead lo an actual click on a 
sponsored ad. Basically, this is equivalent lo filtering only the "opinion" (expressed through 
4ucrics) of the subset of users that arc likely lo buy something onlinc, rather than all search 
engine users. To our knowledge, this is the first approach lo use sponsored search click data 
in this way. A related recent paper, with a somewhat different focus from ours, is Malckian 
cl. al. '08 [ 150], who propose a method for recommending cflicicnl query rewrites using 
pay-per-click search advertising data. 

7 .6.2 Future work 

This work, being somewhat preliminary, leaves many aspects open lo future research. of 
which we only mention a few possibilities. On such aspect would be is the issue of external
ities: how the presence of links by competing advertisers influences the clickthrough rates 
of other bidders. As the competition is basically on customers' attention space, externalities 
play an important role in the ellicacily of sponsored search impressions. 

Another very interesting topic would he to study the structure of sponsored search mar
kets (in terms of advertiser market share etc.) not only at the global, macro-level, hut at 
the level of individual sets of keywords. In fact, sponsored search can be seen not only as 
one market, as a network of markets, since most advertisers are interested in (and bid on) a 
specific set of keywords related lo what they arc selling. For example, we could apply our 
"community detection" algorithm lo partition not only sets of search keywords, but also sets 
of bidders (advertisers) interested in those keywords. This should allow us lo derive more 
in-depth insights into the structure of sponsored search. 
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Chapter 8 

Conclusions and further work 

This thesis has investigated several aspects concerning modeling of complex preferences in 
agent-mediated electronic markets. The research work can be classified into three main parts: 
electronic negotiation, sequential auction bidding and web applications, each consisting of 
2 chapters. All the problems identified and investigated here are important, open problems, 
and each of the chapters brings a novel contribution to existing literature in the field. 

It is important to note that the work reported in this thesis, although it's inspired by 
practical, applicable problems, aims to have a contribution to the fundamental research in 
this field. This is different from applied, industrial case-based research. While we also 
describe one industrial case study (which also resulted in publications), this is reported in an 
appendix. 

This final chapter aims to give a summary of the main contributions or this thesis to 
literature of the research presented in each of the chapters. Furthermore, we discuss which 
directions we identify as most promising to he explored in future research. We address these 
two issues in separate subsections. 

8.1 Overview of the research contributions per chapter 

The research presented in each of the chapters of this thesis brings a novel contribution to 
the existing literature. In the following, we hriclly summarize the results and contribution of 
each chapter. 

Chapter 2: This chapter shows, in a hilatcral, and partially cooperative negotiation 
framework, how incomplete preference information could he used to improve multi-attribute 
negotiation outcomes. We propose a mechanism through which varying amounts of prefer
ence information (in the form of allrihutc utility weights communicated by the negotiation 
partner) can be used to improve the efficiency of bargaining outcomes. Furthermore, when 
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preference information is not availahlc, we propose a novel "guessing" mechanism to esti
mate these utility weights from the hids of the opponent. While it is true that the results arc 
tailored to the negotiation framework for which they were developed [ I 16-118], at the mo
ment the original puhlication appeared, the results provided an important proof-of-concept 
application ahout the use of incomplete preference information in multi-attribute negotia
tion . In the meantime, the field developed considerably and many authors, either based on 
or partially inspired by our research, continued to huild and develop further models for the 
multi-issue negotiation problem, in e.g. [25, 78, I 03, I 09, I 36, 20 I, 225,233]. 

Chapter 3: This is a more extensive chapter in the thesis, and provides a substantial 
contrihution to the negotiation literature. The chapter studies the prohlcm of modeling hi
lateral negotiations over many interdependent, binary issues or over the composition of a 
large hundlc of items. The issue of non-linear preferences had not been much explored in 
existing literature prior to our research, but was known to he much harder and more compu
tationally expensive. Our work proposed a novel utility graph formalism for modeling agent 
preferences in such negotiations, assuming the non-linearities can he succinctly represented 
in k-additivc form. We show how such utility graphs can he used for efficient opponent 
modeling and for focusing the search for an efficient outcome in the most promising part of 
the complex utility space. 

A second contribution is the method proposed to approximate the structure of a utility 
graph for an anonymous huycr, hascd on collaborative filtering of past negotiation data. This 
provides a link hctwecn the techniques using to model utilities in agent-mediated negotiation 
and the techniques used in social recommendation engines. The comhination of these two 
techniques allows bargaining agents to find an efficient agreements relatively fast, even in a 
high dimensional utility spaces. 

Ideas from this work were used as a source of inspiration hy other authors working on 
complex multi-issue negotiation (especially work that considers non-linear utility functions) 
- sec, among others: [49, 76, I 00, I 02, 136, 137]. 

Chapter 4: This is the first chapter in the thesis to deal with the complex prohlcm of 
hidding in sequential auctions. The basic contribution of this work to the literature was to 
introduce explicit risk profiles when designing bidders' strategics in sequential auctions. We 
analyze, for a category of expectations of future auction prices, the effect that a hiddcr's risk 
aversion profile has on her decision-theoretic optimal bidding policy. 

Our experimental results show that risk-averse agents have. as expected, less chance of 
ending up with an incomplete hundlc and making a loss in any isolated auction sequence. 
However, for a longer time horizon, due to the fact that risk-averse agents participate in 
fewer auction sequences, they make, on average, less expected profit. Furthermore, for some 
market settings (especially those with multiple types of goods), the fact that bidders arc risk 
averse can also decrease auctioneer revenues. 

Chapter 5: The research in this chapter studies the use of priced options to solve the 
prohlcm of exposure to the risk of a loss that bidders with valuation complcmcntaritics face 
in sequential auctions. This problem, although it often appears in practice, is known to he 
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hard, in the sense that bidders have no generally dominant bidding strategy to acquire the 
items they need. Our work builds on and significantly extends an idea first proposed by Juda 
& Parkes [ 120], which proposed a mechanism for assigning free options to buyers, under 
some conditions. 

By comparison to [ 120], in our model, sellers of different items have the choice of ei
ther auctioning their items directly, or through a priced option. Each seller sets an exercise 
price for his/her option and then sell it through an auction protocol. We analyze this model 
theoretically for the case where the competition is formed by local bidders, and derive the 
conditions required for both buyers and sellers lo have an incentive to use the options mech
anism. Furthermore, we also perform an experimental investigation of a market setting in 
which multiple synergy buyers arc active simultaneously. 

Chapter 6: This chapter focuses on user preferences in onlinc social systems, in partic
ular tagging systems. It uses data from the social bookmarking site dcl.icio.us to empirically 
examine the dynamics of collaborative tagging systems and lo study how coherent catego
rization schemes emerge from unsupervised tagging by individual users. First, we study the 
formation of stable distributions in tagging systems, which arc seen as an implicit form of 
"consensus" reached by the users of the system around the tags that best describe a resource. 
We show that final tag frequencies for most resources converge to power law distributions 
and we propose novel methods to examine the dynamics of the process. This convergence 
analysis is performed both for the most utilized tags at the lop, and the so-called "long tail" 
of lag distributions. 

Second, we study the information structures that emerge from collaborative tagging, 
namely tag correlation graphs. We show how community-based network techniques can 
be used to extract simple tag vocabularies from the tag correlation graphs by partitioning 
them into subsets of related lags. Furthermore, we arc also able to show, at least for a spe
cialized domain, that shared vocabularies produced by collaborative tagging arc richer than 
the vocabularies which can be extracted from search engine query logs. Ideas from this 
work were further expanded or served as a partial source of inspiration for a large number 
of subsequent publications on lagging systems, e.g. [2, 17, 18, 35, 50, 62, 98, IO I, I 05, 125, 
143, 170, 177,198,209, 212- 214,234] (among many others). 

Chapter 7: This final chapter uses complex systems techniques (similar to Chapter 7) to 
study the structure and dynamics of onlinc advertising markets. The work presents an empir
ical study based on real data from Microsoft's Live.com, and it complements the simulation
based study of electronic markets described other chapters. Furthermore, like Chapter 6, this 
chapter also uses a complex systems analysis perspective. 

First, we look at how the display rank of a URL link influences its click frequency, 
for both sponsored search and organic search. Then, we study the market structure that 
emerges from these queries, especially the market share distribution of different advertisers. 
We show that both the number of ad impressions and the number of clicks follow power 
law distributions of approximately the same slope gradient. However, we find this result 
docs not hold when studying the same distribution of clicks per rank position, which shows 
considerable variance, due to the way advertisers divide their budget on different keywords. 
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Finally, we provide a method to represent and visualize keywords of interest in graphical 
form, as well as a method to partition these graphs to obtain desirable subsets of search 
terms. 

Appendix A: The work in this appendix resulted from a practical case study, which was 
also used to inform design choices made in other chapters, especially the part that concerns 
bidding in sequential auctions. It describes an agent-hased platform for the allocation of 
loads in distributed transportation logistics, developed hased on an case provided hy Vos 
Logistics Organizing, Nijmegen. The case study around which the simulation was huilt 
involves a set of agents bidding for transportation loads to be distributed from a central depot 
in the Netherlands to different locations across Germany. Our simulation platform supports 
hoth human agents, who can bid through specialized planning and bidding interfaces, as well 
as automated, software agents. The main contribution of this work to the literature is that, 
unlike other platforms proposed in previous literature to test bidding strategies (such as the 
ones developed around the TAC competition [ 192, 230]), it follows a real business scenario 
proposed by Vos. The distribution of order location and sizes follows real-life data, and 
the platform includes realistic planning/hidding constraints (such as return or partial truck 
loads). The fact that the model closely follows a real-life scenarion makes it intuitive to use 
for human transportation planners, and it allows for testing their bidding behaviour against 
automated strategies that could be designed for this particular industrial setting. 

8.2 Further work 

In this section, we provide a discussion of the directions of further work we identify as most 
promising. Some are intuitive extensions of ideas already proposed in different chapters of 
this thesis. others are more involved and would require a more long-term research effort. For 
clarity, the discussion is also done per chapter, but paying special attention to the connections 
that can he identified between the research and techniques presented in different chapters of 
the thesis. 

There are many possible extensions to the bilateral negotiation model presented in Chap
ter 2. As presented here, the model is rather specific, so the conclusions drawn are some
what tailored to this model. Therefore, it would be interesting to make it more generic, or 
to study how the heuristics we propose could work (or could he adapted) for more complex, 
high-dimensional negotiations. Another extension we considered is dealing with other types 
of incomplete preference information for some attributes, rather than a qualitative ordering 
heuristic (e.g. for example, if we consider the colour of the car, then fuzzy logic techniques, 
such as those proposed in [71,204] could he incorporated). One of the main limitations iden
tified for the negotiation model in Chapter 2, i.e. the assumption of linear utility functions 
of bargaining agents using the mechanism, has already been extensively investigated hy our 
work in Chapter 3. Furthern1ore, other very important directions for further work (especially 
the human-machine interaction aspects) have heen researched in subsequent work hy the 
group of my co-author, Catholijn Jonker and collaborators [23- 25, I 02, I 03]. 
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The model proposed Chapter 3 also raises some interesting ideas for possible exten
sions. One of them concerns the class of utility graph structures for which our algorithms 
were designed. The utility graph structures considered in Chapter 3, although we exten
sively investigated several structures, can be classified as "random graphs" [20] (that means, 
on average, two random vertexes have the same chance of connected by an edge). This is a 
standard choice in graph theory. However, recent empirical evidence from large web-based 
phenomena suggests that real web item graphs (e.g. books on Amazon) may have a more 
scale free structure. In scale free graphs, the connectivity of nodes follow highly skewed 
power law distributions (see Chapter 6 of this thesis), where several items are very popu
lar and connected lo many others and others much less so. In this case, the separation and 
learning algorithms discussed in Chapter 3 could he adapted lo be made more efficient for 
scale free structures. Another possibility, inspired by our more empirical work, would be to 
use the community-based graph identification algorithms discussed in Chapters 7 and 8 lo 
first divide the utility graphs into separate subsets (bundles) of items. Such a prior clustering 
into subsets of items (which could then be negotiated on indcpcndcnlly, in parallel threads) 
would probably make the negotiation problem more tractable computationally. 

Finally, a point of further research which, we argue, is worthwhile lo pursue by the 
research community in the field is coming up with some precise benchmark (or set of bench
marks) for the classes of non-linearity in utility functions which would he useful and prac
tically relevant lo study in the context of multi-issue negotiation. There has been, recently, 
an increasing interest in this field, and different papers propose different models, each with 
their own techniques and own approach to the problem. Some examples include: simu
lated annealing, evolutionary techniques, utility graphs, ISO-utility based techniques, even 
eliminating non-linearities, for some settings [ 102, 108, 109, 126, 137, 144, 185, 186]. How
ever, the different choices and underlying assumptions that these models start from makes 
a meaningful comparison difficult. Such a benchmark would not only ease comparison, but 
would also indicate what kind of settings or utility classes would be interesting to study in 
more depth for multi-issue negotiation. In this context, empirical work on any available 
actual e-commerce data from real users could also have an important role lo play - as elec
tronic commerce, broadly defined, is the basic "target domain" indicated by most of these 
techniques. 

Chapter 4, which deals with risk aversion, opens up many follow-up research questions, 
of which Chapter 5 has been one possibility. Especially, in the experimental results, more 
complex utility functions for the risk-averse bidding agents could be considered, as well as 
the presence of several complcmcnlary-valuc bidders in the same market. In such a case, 
there is no dominant bidding strategy in sequential auctions, and the agents would need lo 
dynamically learn and adapt their strategies onlinc, based also on the strategies and risk 
aversion of the competitors. 

Another promising idea would be to combine the option techniques proposed to deal with 
the exposure problem in sequential auctions from Chapter 5, with risk aversion oflhe bidders 
discussed in Chapter 4. This would represent the next, challenging step in addressing the 
problem of reducing the exposure lo risk of loss that agents with complementary valuations 
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face when participating in sequential auctions. We conjecture that it is quite possible that the 
benefits of using options would increase in the case agents forming the market have different 
risk aversion profiles. 

Other than the risk averse aspect, the experimental results in Chapter 5 could also be 
extended in other ways. For example, while we did consider the presence of several synergy 
bidders in the market, those experiments still represent only a "proof of concept" regarding 
the working of the mechanism. In a larger market, especially one in which multiple sellers 
and buyers interact repeatedly, learning may also play a crucial role. In such a market, 
buyers could learn their best bidding strategy, but sellers can also learn what exercise price 
they should fix for their items, such as to obtain maximal expected profit from a sequence 
of auctions. Because our definition of options is very flexible (e.g. direct sale appears as 
a particular case, for J.; = 0), sellers of some types of items may conclude that direct 
auctioning is their best strategy, while the sellers of other items may prefer to use options. 

The tagging work reported in Chapter 6 already underwent several rounds of expansion 
since our initial result, published after the Santa Fe summer school. But tagging is a very 
active research area, and several authors have already taken up ideas from our WWW'07 
conference paper and pursued them further. Dellschaft & Staab [62], for example, propose 
a novel generative model to explain the shape of tag power law distributions, by introduc
ing background user knowledge. Heyman, Koutrika & Garcia-Molina [IO I I perform a more 
systematic comparison of the dynamics of tagging systems vs. standard web search. Other 
papers build more elaborate types of graph to examine information from tagging systems. 
For our own research, one idea we found worth pursuing (if time is available) is more on 
the social aspects of the problem: examining how sub-communities of users form, and how 
the local tag vocabularies for these communities emerge (which may be different from the 
"general" vocabulary of all users). For example, we could use our graph and partitioning 
algorithms to first partition users in sub-communities, and then examining the tag struc
tures each community uses. A possible step in this direction is the work resulting from our 
Dagstuhl paper, which looks at the social dynamics of Flickr groups [ I 01. 

The work on sponsored search reported in Chapter 7 is fairly preliminary, although it 
puts forward some promising ideas. Some aspects we wish to investigate in further work 
could be, for example, how the keyword vocabularies and graphs extracted from sponsored 
search click data compare with those extracted from organic search data, or from collabora
tive tagging. Another important direction is the issue of externalities: how the presence of an 
ad from a certain advertiser influences the number of clicks that ads of competitors receive, 
when displayed side by side. Potentially, such extcrnality effects could also be represented in 
a (directed) graphical form and analysed. Moreover, insights gained from empirical analysis 
of sponsored search data can also be used to inform research on designing automated bidding 
strategies (especially as most ad auctions involve repeated and sequential interactions). For 
example, it could be potentially contribute useful ideas to a new Trading Agent Competition 
that focuses on ad auctions and sponsored search, proposed to start in 2009 [ 119]. 

Finally, there is considerable future work which should be performed regarding the trans
portation logistics platform described in Appendix A. Our work on this case study has now 
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led lo a well-defined platform, which was considered realistic and intuitive for the human 
logistic planners. However, more applied and behavioural type of research could lest their 
oidding behaviour in sequential auctions, based on our tool. Polcnlially, such lcsls could 
evolve nol only human planners, but also intelligent automated bidding heuristics, for which 
the basis were laid in the more lhcorclical chapters of this thesis. These ideas probably in
volve longer term research, which could be done by Vos Logistics itself, or as part of a more 
applied, industrial rcscach project. 

8.3 Concluding remarks 

This thesis has investigated some important issues regarding agent-mediated electronic mar
kets. While the topics investigated in the different chapters arc rather diverse, they made 
some solid contributions lo the literature, as can be seen from the !isl of resulting publica
tions and, for some, also from the list of resulting citations. As we sec il, all topics covered 
here relate lo the crucial issue of efficiently representing preferences in such complex, on line 
settings - and designing efficient algorithms that can model decision making based on these 
preferences. 

Returning lo the opening paragraph of the introduction, il is fair lo say, however, lhal we 
arc still some way off from achieving the vision of fully automated markets, populated by 
fully autonomous agents laking complex decisions on behalf of their users. Nevertheless, 
we hope this thesis convinced the reader lhal, in order lo make this vision closer lo reality, 
having good preferences models is a crucial ingredient, and, furthermore, both lhcorclical, 
simulation-based and empirical approaches arc needed lo gel us closer lo this goal. 
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Appendix A 

A Platform for Auction-Based 
Allocation of Loads in 
Transportation Logistics 

A.1 Introduction 

Different chapters of this thesis presented lhcorclical investigations of the use of automated 
negotiation and auction mechanisms lo allocate resources between sclf-inlcrcsled agents. In 
this appendix, we present the results from a concrete case study performed on the applicabil
ity of such techniques lo an important practical selling: that of transportation logistics. The 
work presented in this appendix can be characterized as applied research, i.e. developing an 
auction platform around a business case study - rather than a fundamental contribution, as 
other chapters of this thesis. To clearly mark this difference, it is included as an appendix , 
rather than a separate chapter. 

Transportation logistics and supply chain management represents a challenging, but po
lcnlially very fruitful area for the application of agent-based electronic market techniques, 
such as auctions. The increasing complexity and shifting structure of modern supply chains, 
as well as increasing competitive pressures in this market has led lo an increasing demand 
and interest for such distributed optimization techniques, involving multiple parties. The 
practical impact of improved allocation which can be achieved through such techniques 
can he significant. For example, in the Netherlands, the average transport pcrfonnance is 
between 40% and 60%. Improving this utilization rate is also the goal of the DEAL (Dis
tributed Engine for Advanced Logistics) project, which groups together several universities 
and large logistics service providers in the Netherlands. The work reported here (and much 
of the research leading lo this thesis) was also carried out in the framework of this project, 
involving two of the main partners, namely CWI, Amsterdam and Vos Logistics Organizing, 
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Nijmegen. 

A.1.1 The multi-party logistics domain 

Several trends have recently produced a significant impact on the area of transportation lo
gistics. One of these is an increase in competition, with the continual entry of new carriers in 
the market pushing down expected profit margins. Another one is the increasing complexity 
and sophistication of modem supply chains. In fact, due to increasing and shifting trade 
patterns, not only transportation chains have hccomc more dynamic, hut also their structure 
has hccomc increasingly complex. 

For example, nowadays it is no longer the case that the company that accepts a trans
portation order also owns the actual capacity (i.e. trucks) to carry it. Often, multinational 
companies with large, regular amounts of cargo lo be delivered prefer lo outsource these 
orders to other companies that undertake to find convenient delivery options, within a set 
of pre-negotiated terms. These intermediary logistic companies then negotiate how to dis
trihute these orders with other smaller companies who have the actual transportation capacity 
(which own the actual trucks and hire the drivers). This can be actually a cheaper option in 
many cases, as smaller transportation companies often do not have the complex cost structure 
that larger companies have [221,222]. 

In standard transportation management literature [221] such distrihuted supply chains 
arc called multi-party logistics. Existing literature [221] identifies several classes of logis
tic provider companies, hased on the type of services they offer. Although there is some 
disagreement ahout the exact usage of the terms, in our approach (and the remainder of this 
appendix) we use the term 3PL company (third-party logistics providers) lo denote those that 
have their own transport capacity (i.e. truck fleet) and plan this own capacity and 4PL com
pany (i.e. fourth-party logistics provider) to denote those companies which "orchestrate" the 
supply chain, i.e. acquire large sets of orders from large shippers and then re-distribute these 
orders among a set of other companies with actual transport capacity. 

A.1.2 Company profile 

Founded in 1944 as a one-truck company, transporting loads between Oss and Nijmegen in 
The Netherlands, Vos Logistics has grown into one of the larger logistics service providers 
in Europe. It has over 3000 trucks, I 0000 trailers and containers, 325 storage silos and 2 
rail service centers. Vos employs 5000 people working at more than 45 locations through
out Europe, while annual turnover approaches I billion euro. The increasing complexity of 
transportation chains has determined Vos Logistics lo offer new solutions to its large corpo
rate customers (shippers), which can now outsource all of their transportation activities to 
Vos. This lets them avoid the problem of finding and negotiating with individual suppliers, 
hilling, following up orders etc. Another advantage of using this outsourcing service for 
large shippers is that Vos Logistics has a much helter knowledge of the transportation mar
ket, so it is better positioned lo find suitable suh-contraclors. Vos Logistics Organizing from 
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Nijmegcn (henceforth abbreviated VLO in this appendix) is a subsidiary of Vos Logistics 
B.V. that was set up in order to handle such complex supply chain orchestration activities. 
Based on the taxonomy above, VLO (the subsidiary) can be seen as a 4PL company, though 
its parent company, Vos Logistics was founded as a 3PL company and does have its own 
trucks. Hence, VLO acts as an intermediary company that acquires large (sets ol) orders 
from suppliers and negotiates the allocation of the orders, the terms of transportation (i.e. 
delivery deadlines, destination) as well as the price at which other carrier companies sub
contract these orders. 

A.1.3 Automating multi-party logistics using agents 

The focus of this work is on automating, through an agent system the second part of the 
market interaction, i.e. the daily outsourcing of transportation orders to carrier companies 
who will actually transport them. The first part, which is actually acquiring these orders from 
large shippers presents less opportunities for automation through a multi-agent system. The 
reason is that these contracts are usually fewer, larger and closed over a longer time horizon 
(e.g. a company based in the US may delegate to Vos Logistics Organizing the delivery of 
the goods imported into Europe over a period of one year). Such large, complex type of 
decisions cannot be yet expected lo be delegated lo software agents. 

However, allocation of orders on a daily basis to different 3PL carriers was identified 
as an area with clear potential to benefit from more automated techniques (our previous 
AAMAS'06 survey paper [2221 examined this potential). This automation would involve 
decision support systems for human planners in the first stage, and next some of the decisions 
could be delegated to software agents. 

A linal note is how the allocation occurs in current practice. In the Vos case, negotiation 
over most orders occurs in a small group of companies who are invited to submit bids for 
different orders as they arrive in the system. In some cases in which no reasonably priced 
offer is made, Vos may also solicit other outside companies and carriers to submit a bid 
(this includes multimodal options, such as rail or waler transportation carriers). However, 
these cases are mostly exceptions (they account for less than 20% of the total value of the 
orders [222]), so most business is conducted in a group of (up to) IO companies that can 
submit bids for a given set of orders. This is the case we are interested in automating through 
the auction platform presented in this appendix. 

A.1.4 Goals of this work 

Over the years, several successful auction platforms have been developed in order to allow 
comparison and evaluation of automated trading strategies to each other. The Trading Agent 
Competition is, perhaps, the most well known example of this (sec [230) for an overview) -
most related to this work being its supply-chain version [ 192]. These platforms arc, however, 
simply not suitable for our basic goal, which is to convince the Vos Logistics Organizing 
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management (and their partner carrier companies) that agent-mediated electronic auctions 
can actually be used in practice to automate their daily outsourcing of transportation orders. 
For this purpose, a custom-based platform was required, modeled around a business case 
which the planners that actually perform these operations daily can easily recognize and use. 

Since the final system is to he used hy logistics planners, such a system should closely 
resemble a real world case, and allow its users to identify the bidding and planning deci
sions to be taken in this platform as decisions they would usually also take in real life. It 
should have an interactive, intuitive interface and, moreover, it should seamlessly integrate 
human agents who take planning and bidding decisions with automated agents implement
ing an algorithmic strategy or heuristic. This point is especially important for acceptance, 
since during operational adoption of such a system, it is not realistic to expect that a com
pany would immediately delegate all market decisions to a piece of software, without being 
confident that such decisions closely model those their human planners would make. To 
summarize, the goals of this project (and corresponding platform) arc: 

• The overall goal of the project is to demonstrate the feasibility of applying such an 
auction system in the day-to-day transportation outsourcing activities of Vos Logistics 
Organizing (VLO), Nijmegen. 

• As a more detailed goal, the platform should allow us to illustrate how different mecha
nism choices, such as allowing flexible pick-up/delivery times or decommitment [216] 
(with or without a penalty) can improve efficiency and participant profits. 

From an AI or agent researcher's point of view, the developed system can also form a 
platform to test different aspects of distributed decision making in logistics auctions, more 
specifically: 

• Testing increasingly complex automated trading strategies. At this stage, some very 
simple strategies have heen developed, whose role is mostly to stabilize the market, 
to make it more realistic. However, more intelligent strategies for this setting can be 
easily added to the existing platform. 

• The demonstrator can also be seen as a platform for analyzing and testing the be
haviour of human planners taking part in such an auction. 

We wish to emphasize that this appendix is not concerned with proving that any partic
ular bidding strategy, mechanism or scheduling method is superior to others. The readers 
can consult work which presents and evaluates such strategies, at a more abstract level, 
in [187,216,217]. Rather, our goal in this project is to build an environment which directly 
models current business practice in transportation logistics (more specifically, a real business 
case provided hy Vos Logistics Organizing, Nijmegen) and in which different analytically
developed strategics can he adapted and tested. 

The rest of this appendix is organized as follows. Sect. A.2 provides a high-level 
overview of our platform and the business case on which it is hased. Sect. A.3 describes 



A Plalfom1 for Auction-Based Allocation of Loads in Transporlalion Logistics 235 

in more delail lhe auclioneer agenl, as well as the auction protocol used. Sect. A.4 describes 
the functionality and behaviour of lhe aulomaled agents that are currently part of lhe pro
posed platform, while Sect A.5 describes lhe human agent inlerface and funclionalily. Sect. 
A.5 also introduces lhe cosl slruclure lhal was used for the agenls and lhe planning assis
lance inlerface lhal was buill to assisl human planners in laking bidding decisions. Sect. A.6 
presenls some (very preliminary) results and impressions from a sludy conducted at Vos Lo
gistics, involving 6 human planners bidding against each other and againsl our agents, while 
Sect. A.7 concludes lhe appendix with a discussion. 

A.2 Overview of the business case and our platform 

The demonstration takes its starting point in a real-world case of how transportation loads 
from a depot south of the Netherlands can be distributed across Germany. In order to preserve 
the privacy of Vos Logistics Organizing, as well as their customers and business partners, 
some parts of the model arc purposely left unspecilied or details have been slightly changed, 
withoul really affecting how realistic our model is. This especially holds for the names of 
the customer companies and some specific details aboul lhe dala used. The main reason 
for this is thal our platform is intended for evaluation nol only by planners employed by 
Vos Logistics, bul also by lhose of some partner companies. The main parts of the problem 
setting can be summarized as: 

• All orders used in the demonstration will be fictive (i.e. randomly generated, not real 
orders), but, in order to assure the platform is realistic, their destination postcodes, 
weights, times of delivery etc. arc based on real-world distributions. 

• All outgoing orders are assumed to be delivered starting from a depot near Maastrichl 
(a town in the south of the Nelherlands), while possible rclum freight (i.e. pick-up) 
orders appear at destinations across Germany. 

• There arc n players playing in the role of the carriers (lhis can vary, we estimated lhat 
in our setting it wil I be up to I 0) and one player in lhe role of VLO (i.e. the auctioneer). 

• Each carrier has k trucks to plan (in our demonstration, in order to allow the players 
to follow all the details simultaneously, we agreed k could be relatively small, e.g. 
A: = 5 .. 10). Each truck has a standard capacity of 26 pallets, where pallets are all 
assumed to have a standard weight of I 000 kg/pallet. 

A.2.1 Generating transportation orders 

A data set of about 4000 orders was supplied by Vos Logistics. corresponding to orders for 
a period of time from a real case. These real orders never actually appear in our simulated 
platform, since that might violate confidentiality agreements between VLO and the shipper 
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company. However, the orders actually appearing in our platform very closely rcscmhlc real 
orders, as follows. 

The German destination (or origin) postcode for each order, which is a two-digit number. 
was generated as follows. The first digit (corresponding to the hroad geographical region), 
was generated at random using the prohahility distrihutions extracted from real data. The 
weight of the order ( expressed in the numhcr of pallets from 1 .. 26), was also generated at 
random, again from a distribution extracted from the data. In general, some order weights 
arc much more common than others and, furthermore, this also varies by delivery region: 
some regions receive larger cargo orders, while for some smaller, more frequent orders arc 
the norm 1. Therefore, the distrihution for generating the weight is also dependent on the 
delivery region (corresponding to the first digit of the postcode). Finally, the second digit 
of the postcode (which corresponds to a specific town within this general postcode region) 
was generated at random, hut 50% of the weight was given to the 2-3 most important second 
digits for the area (usually corresponding to a larger town or population center). 

In order to have a closed loop demonstration, we assume that the carriers also have return 
orders availahlc. The return orders arc, conceptually, offered hy sellers from different areas -
although in our demo they will he sold through the same auction mechanism. Outgoing and 
return orders have asymmetric distributions (60% of all orders arc outgoing and only 40% 
arc return orders). This is also realistic for this husincss scenario, given availahlc data. In 
real life there arc two types of orders: "ON" orders (which must he delivered exactly on their 
target delivery date) and "BY" orders (which arc to he delivered hy a certain deadline date, 
where early delivery is allowed). To simplify the setting, and also allow more competition 
and flexibility in planning in the simulation, at least for now, all orders in our platform will 
he considered "BY" orders. 

Another very important parameter in such a platform is the lead time of an order, which, 
roughly defined, represents the difference in days between the time when an order is to be 
delivered (i.e. the delivery time or deadline) and the time when the order actually appears in 
the platform (is put up for auction). Herc, we also follow a pattern extracted from the real 
data, as dcscrihcd in the following. 

Each order is assigned a random lead-time, produced using a series of adapted, lognormal 
distributions. The peak of these lognormals will he the first acccptahlc lead-time day for the 
order, but with a long tail (sec Fig. I for an illustration). This means that orders that arc 
to he delivered 3, 4 days or even a week after the minimum lead time can appear, albeit 
with exponentially decreasing probability. For example, most orders to be generated with a 
minimum lead time of I arc to be delivered in the next two days. 

The reasons why we need several lognormal distributions is that different types of orders 
have different lead-times (we identified 3 categories, according to the order data supplied). 
Thus. orders that arc to he delivered to postcode regions in the west of Germany (places 
closed to the Dutch border) and whose delivery and return trip can he completed within the 

1 While we cannot give the full details, a statistically weak. but still significant correlation coefficient of T/ = 0.•1 
was found between the delivery area postcode and the size of an order. 



A Platform for Auction-Based Allocation of Loads in Transportation Logistics 237 

same day have, in general, shorter lead-times than orders that require a minimum of two 
days travel (including the return trip). 

A.2.2 Computing prices and costs 

As one would ex peel in any auction platform, the final price for each order will be determined 
by the bidding in the open market. However, in an interactive demonstration, we had to 
build in a mechanism to assure that prices for the orders quickly converge lo actual prices 
(in euro) that human planners would expect lo sec. Fortunately, also in current practice there 
is a mechanism lo assure this. There is a partner company of Vos Logistics (the name of 
which, again, we cannot give for privacy reasons), that can transport orders to any destination 
in Germany. They du provide a standard price scheme which quotes a delivery price for 
any combination of order size (in number of pallets) and German postcode region. It is 
very important to stress that these are maximal prices: in general VLO expects to gel (and 
usually gets) much better delivery prices from their closed group negotiation with the partner 
carriers, otherwise it would be unable lo make a profit. The services of this company are only 
considered if Vos fails lo attract a realistic bid for an order from any of the carriers in their 
closed group (which can sometimes happen, though rather seldom). 

However, having such a set of prices is useful in our system, because it provides a bench
mark of what kind of prices arc realistic. The way we use this information is in designing the 
bidding strategy of our automated agents, whose bidding strategy will depend on this stan
dard prices (an exact description of the functionality of these automated agents is provided 
in Sect. A.4). The point of these agents, in this version of the software, is not lo beat the 
human planners, hut to assure that the competition bids they sec (and implicitly, the bids they 
have tu submit to heat them), are around actual market prices they would encounter in real 
life. Henceforth in this appendix, we will refer to this set of prices as the standard industry 
price table. 

Finally, a word should be said about cost data. We have also obtained and incorporated 
in the cost structure of the bidders, detailed information tables about the exact driving times 
and distances tu any postcode location in Germany, as well as realistic estimations of the 
fixed costs (e.g. driver salaries, truck maintenance) and variable costs per km (including 
driving tax and fuel costs). These were incorporated in the cost structures of the bidders 
when planning their routes (a thorough description is provided in Seel. A.5). 

A.3 Auction protocol and design of the auctioneer agent 

This section describes the main characteristics of the auction protocols used, as well as 
other characteristics of the auctioneer agent. To allow more planning flexibility, but also 
to follow current tendering practices, orders with different lead-times are auctioned with 
slightly different auction protocols, as described below. 
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Delivery deadline ot a random order w.r.t. the day it appears in the system 
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l ead time (days) ot the order 

Figure A. I: Example distrihution of delivery deadlines for orders, in numher of days from 
the present time, for a load with minimum lead time of I. The date when an order appears in 
the system corresponds to the origin. 

A.3.1 Auction set-up 

Loads arc auctioned sequentially (or in 3-5 small hatches distrihutcd throughout the day). 
This resemhles current transportation practice. Often, loads are offered hy different shippers. 
who have different deadlines throughout the day for placing their orders. 

For the current set-up, all auctions arc ascending (i.e. English) auctions, hut adapted to 
heller fit the actual tendering process, as it is currently performed. There arc two main types 
of auctions, differentiated hy the their closing protocol. 

A.3.2 Auctions for loads with a short lead time 

This protocol (more similar to ascending English auctions 2), is applied to orders with deliv
ery deadlines which are I or 2 days away from the current time. The auction is incrementally 
descending (lowest offer wins). After the last offer has been placed, the other hiddcrs arc 
given at least 1/2 hour to respond with a new offer, arter which the auction closes and the 
lowest hiddcr so far is awarded the order. Of course, in our simulated environment 1/2 hour 
is replaced hy 30 seconds to I minute. The actual delay to he used (in number of seconds) 
can be specified by the human user through the interface. Therefore, our auctions have a 
"soft" closing time (deadline), i.e. they are extended for a short time after the last hid is 
received. in order to allow other hidders the chance to respond to this bid. 

~To be more precise. this extending deadline protocol resembles the most to the protocol used by the e-commerce 
site Amazon.com. 
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A.3.3 Auctions for orders with a longer time horizon 

For orders with delivery deadlines over 3 days into the future, the simplified protocol cannot 
be applied, since most bidders do not plan so far in advance. Additionally, some flexibility 
must be added in the simulations, in order for us lo observe the benclits of allowing time 
window relaxation/ the penalty effect for delays. 

Therefore, for such orders we use the following decision procedure. For each order, we 
set a reservation threshold (visible or invisible lo the bidders themselves), which gives area
sonable market cost of the order which a shipper would accept in order to have a commitment 
(without waiting until the last moment to go through the auctions). In our demonstration, the 
threshold could be set as a percentage below the standard industry price table (as described 
above) for this configuration of load and destination postcode. 

When the order appears in the system, all bidders are informed and can make offers. If 
a carrier makes a bid that is higher than the reservation price (i.e. not acceptable), then the 
offer is rejected, the carrier is informed of this and can bid again. A rejected offer (above the 
reservation price) is thus non-binding to either party, i.e. no commitment exists. If any carrier 
makes a bid that is below the reservation threshold, and thus acceptable, then all carriers are 
informed and the auction is moved to the "usual" auction queue (i.e. sold through the auction 
protocol described in Seel. A.3.2). This means, bidders will have sufficient time to respond 
after the lirsl offer is made, otherwise the conlracl is awarded lo the initial bidder. If, by 
2 days before the deadline, no carrier made a bid in the "acceptable" range (i .e. below the 
reservation price), then the load is still auctioned using the "usual" procedure, described in 
Sect. A.3.2. 

This protocol ensures that bidders that wish lo plan in advance arc give the chance lo do 
so, but only if they make a reasonable offer, where by "reasonable" we mean considerably 
below the price that could be expected lo be achieved by waiting closer lo the actual deadline. 
An optional altcmalivc, that could be of interest here, is lo allow the human playing the VLO 
side lo change the acceptable reservation threshold during the game, if lime passes and an 
order docs not appear lo allract enough allcntion and thus risks remaining undelivered. 

Finally, as a future research idea, the reservation threshold could be made dynamic (i.e. 
automatically increasing), according lo a discount function. This function would balance the 
shipper's desire of gelling a belier price for his delivery and the risk of nol gelling his load 
delivered in time, as the deadline approaches. This is relatively easy lo implement in the 
current demonstration tool but, al least for the moment, we prefer lo focus on testing and 
usability studies using the simpler selling. 

A.3.4 Total capacity of loads to be generated per day 

A problem that arises in designing such an agent trading platform is to choose the total 
capacity of orders which should be generated per day. This choice is an important one, 
because ii gives the player an impression of how "compelilivc" the whole scenario feels. In 
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our model, we propose an estimation for this that depends on several parameters: 

• n - numher of participants representing carriers 

• k - numher of trucks/participant ( our case, e.g. k = 5) 

• JJ = 26 - numher of standard pallets/truck 

• H - a coefficient representing the "saturation" of the market. This is an important pa
rameter, which allows us to control the market balance between demand (i.e. coming 
from outstanding orders) and available supply of transportation capacity. 

A rough heuristic evaluation of the capacity of the total capacity of the simulated market 
we consider will he given hy: 

Thus. orders will be generated at random using the above distrihutions, until the total 
capacity reaches the ahove value (after choosing the saturation parameter.<;). This will nec
essarily he only a very rough estimation: because orders are at random and there are time 
window constraints, there is no real way to know what is the true capacity of the market 
- unless we would centrally compute, in advance, the best possible plan for the day for all 
available trucks. This is not really feasible and it's also not required, because in practice not 
all capacity of the trucks of a carrier company is allocated in the "closed group" auction. 
In practice, trucks taking part in such an auction may also acquire loads elsewhere - and 
they only fill up using the current auction. Furthermore, there should he some differentiation 
between the capacities of different players. 

In order to account for this, we could make the following choice: of the total estimated 
market capacity, we consider that i% is filled from other sources ("i" stands for the initial 
fill percentage). Thus, an estimated s * n * k * p * (I - 1A0 ) in total capacity will he filled 
through the auctions, and.<;* n * k * p * 1A0 will he pre-filled, through a heuristic, before the 
auction starts. 

A.3.5 Auctioneer user interface 

A screen shot of the auctioneer interface was omitted due to lack of space 3 , hut we provide a 
hrief description of its functionality helow. Basically, both the order generation and awarding 
of orders (i.e. auction closing process) executed hy the auctioneer platform can he run in two 
possible ways: 

• Automated contml: In automatic order generation, the user only specifies the parame
ters of the generation process (as described ahove) and the arrival rates of orders in the 

3 Intcrfacc pictures may not be entirely uscrul. since all interfaces arc currently in Du1ch. to case understanding 
in a husincss environment. 
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platform. In automatic tendering mode, the auctioneer waits a number of seconds af
ter the last received bid (which the user specifies through the interface) before making 
the decision to award the order. This actually varies based on the order lead-time, as 
described in Sect. A.3.2. Orders with longer lead-times, which remain open for bids 
until a few days before the delivery deadline, are temporarily shown in a different list 
and are moved to the "active bidding" queue two days before expected delivery. 

• Human control: In our interface, a human auctioneer (representing the 4PL company, 
in this case Vos Logistics Organizing) can make, change or correct any of the decisions 
taken by the system (either order generation or tendering of orders). We found this is 
a very useful feature in any live, interactive simulation with several human planners, 
who first are required to get used to the interface ctc. This lets the human auctioneer 
feel firmly in control of the process, even if he chooses to let the software agent take 
some of the decisions on his/her behalf. 

The switch between these modes can be performed dynamically (and on line), by simply 
checking/unchccking a multi-option box. 

A.4 Automated bidders: description and user interface 

The role of the automated bidding agents is to ensure the stability of the market and that 
prices in the demonstrator converge to a realistic level. Therefore, it is enough in a first 
implementation, if the automated agents use a simple, myopic bidding strategy. The bids are 
simply based on a standard industry price table (c.f. Sect. A.2.2), which gives a rate for each 
combination of load/delivery region. 

Since this is an English auction, there are two levels, which arc randomly determined for 
each bidding agent: the level of the initial bid and the reservation level (i.e. the lowest the 
agent will go with his/her bids). Both arc generated al random from normal distributions, 
which arc centered at certain levels above and below those taken from our industry price 
table, as supplied by Vos Logistics. The parameters to be set for automated strategies arc: 

• Percentage of mean mark-up of the initial bid over the industry price table (and the 
corresponding dispersion). 

• Percentage of the reservation price vs. standard industry price table, for that postcode 
region and weight (again, this is the mean of the distribution, and a dispersion is also 
chosen). 

• Concession speed (giving how fast the agent's bids go down from his initial price to 
the reservation price, i.e. frequency of bidding). 

• Number of automated bidders and percentage of orders the automated agents hid on. 
This give the pressure that independent bidders apply on the market. 
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Figure A.2: Basic layout of the planning support window. Each line represents a truck, and 
each colored container a load (sec he low for a description of the symhols on each load). For 
each day, the costs (Ko), prolits (Wi) and total traveling times (TI) are computed by the 
system. Vertical yellow lines represent day houndarics, which can be removed for multi-day 
planning. 
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Figure A.3: Left: A number of pallets constraint violation (maximum admitted, 26 pal
lets/truck), and two possihle solutions (center and right), with loads heing moved to different 
days. 

A.5 The carrier agents: description and user interfaces 

This Section aims to give a technical description of the prohlem faced hy the human carriers 
in our model and the interface available to them in the demonstrator. More precisely, two 
distinct interface windows are availahlc to human carriers: 
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• One for visualizing ongoing auctions for loads and bidding 

• One for planning assistance, in which human planners are given a (stylized) impres
sion of their transportation capacity (i.e. trucks) and can visualize and (automatically) 
determine the way acquired orders lit in their already planned routes, as well as the 
expected costs. 

A.5.1 Transportation model and carrier costs 

The transportation planning problem, is, in itself, a complex one to solve. The bidding 
decisions which the carrier takes are directly dependent on the way the carrier can lit the 
loads he is bidding on in his/her already existing plans (i.e. how well he/she can form 
prolitahle bundles of loads during planning). In tum, this depends on the cost model. Our 
tool does provide planning assistance, by computing the costs for each combination of loads 
considered. In our model, costs of each carrier are of two types: 

• Fixed costs, per day and per truck. These are expressed as a fixed amount (in curo). 

• Variable costs: all these costs are assumed to be proportional to the distance traveled. 
These are expressed as a cost in euro per kilometer traveled. 

Both of these arc set to a realistic level, after discussions with Vos Logistics. The dis
tances within Germany, as well as from Maastricht to/from destination postcodes in Germany 
are computed based on a supplied distance table. This distance table contains, for each pair 
of lirsl two digits of German postcodes, a distance in kms, as we! I as a distance in kms from 
any German postcode to/from Maastrichl. 

Our planning tool enables the carrier to visualize how filled the trucks are al each time 
point, the time windows in which loads can he delivered as well as any violation of con
straints. There are several types of constraints that need to be met in transportation settings. 
First there are obvious capacity constraints: a truck cannot be filled at any one time with 
more than 26 pallets. Second, there is a strict legal constraint about the maximal driving 
time any driver can actually drive per day - in the EU, this is fixed at 9 hours. Any driving 
plan has to satisfy these constraints to be feasible. 

The tool also provides decision support (see below), by computing the length of the route 
for the partial daily plan - and, thus, the costs incurred so far, for each possible bid the human 
planner chooses to make. The length of the route is computed (given the distance table avai t
able), through a simple insertion heuristic. Insertion heuristics arc known lo provide a very 
good approximation of the optimum in small settings - and are known to he computationally 
more efficient than solving the TSP problem with a more advanced method. Thus, at each 
point, the expected profit the agent can make so far can also be computed. 



244 Chapter A 

A.5.2 Penalty for late deliveries 

An issue of relative importance in actual applications is what happens if delivery is (slightly) 
late, compared to the agreed datc4 . In real life, this docs happen to a very small percentage 
of accepted orders, because profit margins in transportation logistics arc tight and carriers 
have to try to make use of all possible bundling options. Given the business of the underlying 
customer company, we have decided not to treat slight delays as a strict, inviolable constraint, 
hut to allow orders to he maximum one day late, against payment of a penalty. There arc two 
ways to model the penalty in our system: 

• Fixed costs/day of delay (e.g. 50- 100 curo for each day the truck is late). 

• Proportional, as a percentage of the total value of the transportation order. 

In our setting, we currently implement a fixed penalty/day of delay - as opposed to a 
penalty which is proportional to the value of the order. This is a realistic model, since any 
delay can be seen as a loss in the reputation of the carrier, regardless of the size or actual 
value of the order. It is up to the bidding carrier if he chooses to incur this penalty in his plan
ning, hut in the current set-up only exceptionally profitahlc planning configurations would 
justify the chosen level of penalty for an order. Future versions of the system could consider 
allowing for differentiated hidding, hascd on the exact date when the order is delivered (an 
option discussed in [222]). 

A.5.3 Information supplied about other carriers during the competi
tion 

An important point to he discussed is what kind of information should he availahlc to human 
hiddcrs (carriers) in the tool, regarding the activity of the other hidding carriers. This repre
sents a trade-off decision, since on one hand we need to model real life and not compromise 
the privacy of competing parties, on the other hand in a dynamic simulation environment, 
agents can he expected to have a reasonable idea about their competition. The following 
choices have been made: 

• Regarding other hids made on existing orders (which the agent is also interested in), 
the agent should he ahle to visualize the amounts of the competing hids for the loads 
he/she is also interested in, hut not the identity of the other hidders. Otherwise said, 
he can sec how far he needs to lower his prices to win, hut not where the competition 
for the orders is coming from. 

• At the end of each day, a "leader hoard" is displayed, giving the gross profits rates 
so far, for all human carriers in the game. We recognize this information ahout the 

4 As already discussed in Sect A.2, early deliveries arc allowed, since we consider all our orders "BY" type of 
orders. 
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competition may not be known in real-life, but it may be important in an interactive, 
game-like simulation scenario for the participants to have a signal of how well they 
are doing, by comparison to their competition. Also, only knowing the profit margins 
does not reveal much (if anything) about the bidding strategy and underlying planning 
of the competing carriers. 

A.5.4 Planning and bidding decision support interface 

The software developed for human carrier agents has two distinct interfaces: the bidding 
and the planning support interfaces. In this appendix we only illustrate (in Fig. A.2) some 
of the features of the planning support interface, as the bidding interface contains relatively 
straightforward lists of orders one which one can place bids. 

The planning interface (see Figs. A.2 and A.3) consists of several horizontal lines, one 
per each truck that the carrier owns. All trips are assumed to be return trips to/from a depot 
in Maastricht, for any postcode address in Germany. These trips can be one-day trips, for 
short-distance orders or two-day trips, for destinations further away (the choice is made by 
simply clicking a yellow vertical bar). 

The interface is a drag-and-drop one, which makes it intuitive and very easy to use. 
Loads are marked in the system hy colored rectangular shapes, marked by two arrows. The 
side arrows represent pick-up, respectively drop-off points, within the schedule of that day. 
Each load is marked with: its load no (L), the 2-digit German postcodes of the source (V) 
and destination(T), number of pallets (P) and time it takes to transport this load (T). The 
total number of pallets and total traveling time arc shown below a black line. Constraint 
violations will automatically be highlighted in red. 

Load symbols can have 3 possible colours: 

• Green: Loads which have been already acquired (and awarded to the carrier) in auction 
and which need to be planned for transportation. 

• Light blue: Loads for which a hid has been placed (thus the agent is bound by the bid 
he made. since bids are binding), but which have not been won yet by the carrier at the 
price he offered. 

• Yellow-bruw11: Loads which are only placed for tentative planning to sec if the plan
ning constraints (total driving time, number of pallets etc.) can still be satisfied given 
already acquired loads, as well as an estimate of expected profits. 

For each truck timeline and day, the system automatically computes the total driving 
time and the number of pallets loaded and automatically signals (by highlighting in red) 
if any constraints are being violated. The most useful feature for deciding the minimum 
bid level is, however, the online computation of the potential profit and loss to he made by 
inserting a load in the current route. This is basically the difference between the current bid 
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made for the load and the cost of the extra travel detour for delivery/picking up that load. 
Empty scheduled already start with a negative profit associated to them, equaling the fixed 
costs per day and truck. 

For loads that have not hccn bid on yet, hut arc tentatively dragged & dropped into the 
schedule, the information about changes in pricing provides very useful information ahout 
what is the minimum hid that can he placed if the carrier decides to acquire that load. 

A.6 Outline of preliminary human bidding results 

A preliminary test of the platform involving 5-6 experienced Vos transportation planners was 
performed at Vos Logistics. In this test, planners were asked to hid against each other and 
against our software agents for loads, and their strategics as well as the profit they made 
with the acquired loads was recorded. Results so far are preliminary, and it was agreed 
that another large-scale test would be performed in the following months, in order to enahlc 
us to extract helter empirical data. However, from the testing performed some preliminary 
conclusions can already he highlighted: 

• First, the hidding and planning support interfaces were considered very helpful and re
alistic hy all the planners involved. Some participants even claimed they were superior 
to the planning system currently hcing used in everyday planning. 

• The presence of automated hidding agents (although they currently only hid hascd on 
a randomly perturbed set of industry prices), is crucial for the stahility of the market 
and the convergence of prices to realistic levels. 

• The profit levels in the simulation do, very roughly, commensurate with the skill of the 
hiddcr. However. in order to ensure that the profit rates actually match current practice, 
the pricing scheme and other system parameters require some further refinement. 

• The planning scenarios considered in the simulation could he expanded to consider 
some other situations appearing in real life (e.g. multiple one-day return trips). 

• Other, more advance functionality could be built into the platform, such as support 
for combinatorial hidding [ 194] or allowing the possihility of dccommitmcnt for loads 
already acquired (a possihility analytically studied hy us in [216]). 

Overall. the planners and managers present were quite impressed with the faithfulness to 
reality of our platform, and it was agreed that a larger test will be conducted, as well as more 
concrete steps to be taken towards operational use of such techniques. 
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A. 7 Discussion 

Transportation logistics represents an important application area for multi-agent systems, 
due lo its inherently distributed and dynamic nature. Several approaches have been pre
sented in recent years lo this problem, some leading to commercially successful, operational 
systems. The LS/AT system, presented in Dorer & Calisli r64J is one of the most well
known systems that uses agent techniques (mostly constraint-reasoning type techniques) for 
dynamic transport optimization. The Magenta system [205] is another such system, which 
explores the use of swarm-based optimization techniques in this selling. 

By contrast to these systems, the emphasis in our approach is not directly on optimization 
of the planning (though that remains, of course, the final goal), but on automating the market 
interaction between several companies in a multi-party logistics negotiation. Our approach 
can be seen as creating a testbed, in which each company or carrier can then apply its own 
optimization and bidding techniques, the performance of these techniques can then he easily 
measured and compared. 

The approach we lake is most similar to the work which proposes different trading plat
forms lo test different aspects of bidding and decision making in electronic markets. There 
arc many such platforms proposed in multi-agent literature, the most well-known being the 
Trading Agent Competition (TAC); the most similar TAC lo our approach is, probably, the 
supply-chain TAC version [ 192]. Of course, our platform may not have all the sophisticated 
features of the TAC platforms, but unlike TAC, the starting point of our work was in the 
applicability of the market selling lo a real business case, rather than scientific curiosity or 
relevance. To the best of our knowledge, it is the first work to describe an agent-mediated 
auction platform that is modeled around a real-life business scenario, where the orders char
acteristics, costs, profit margins clc all resemble those encountered in real life. 

Another important aspect of our platform is the ability lo integrate human bidders and 
automated trading strategies in the same platform. We feel this is crucial for real business 
adoption of agent-mediated electronic market techniques because, al least for some of the 
interacting parties, the human owners will want to remain in control, before delegating any 
linancial decision (e.g. bidding) lo a software agent. In multi-agent literature there arc some 
games specifically developed lo test human decision-making in negotiation and auctions (a 
good example is the Colored Trails game [901), but again our platform has the advantage of 
allowing us lo asses such decisions in a real business environment. 

Finally, somewhat related to our approach is work on designing stock market trading 
platforms lo lest automated bidding strategies (of which PLAT [ 1241 is a well-known exam
ple). While this line of work also uses real linancial order data lo design a realistic market, 
the characteristics of stock markets (i.e. double auction selling) is very different from the 
transportation business case we consider. 

We conclude that, overall, our platform did achieve the scope il was built for: lo con
vince Vos Logistics Organizing that the an agent-based approach is a valid solution for 
their business problem. Nevertheless, there arc still many aspects open for further research. 
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The first would be to conduct a (set ol)larger scale experiments lo get more detailed hu
man bidding data, and to develop belier techniques lo analyze this data. The second is lo 
adapt some of the bidding strategies developed analytically in our more theoretical lines 
of work [ 187,216,217], and lest their performance in this environment, both against other 
strategics and against human planners. 
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Summary 

Multi-agent systems represent an important, emerging area of research at the hordcr hetwecn 
artificial intelligence and distributed systems, on one hand, and economics and game theory 
on the other. Briefly defined, agents are autonomous, pro-active software programs that can 
reason and take decisions on behalf of their human owners. One of the main application 
areas for multi-agent systems is the automation of electronic markets, such as electronic 
negotiation and auction environments. Some important application areas (that have been 
considered, in depth, as part of this thesis) are the automation of complex negotiations in 
onlinc electronic commerce and task allocation between multiple companies in distributed 
logistics. 

This thesis studies several important, open problems in agent-based electronic markets. 
The first of these is how complex preferences and utility functions can be modelled and used 
to design efficient strategies for bilateral negotiation and auction situations. Herc, we distin
guish between two classes of preferences: combinatorial preferences ( over combinations of 
a large number of items or issues) and preferences towards risk (i.e. how risk averse agent is 
when taking decisions in an uncertain environment). The second important aspect we study 
is the strategic reasoning, especially reasoning of agents participating in a sequence of auc
tions with complementarities. For this case, we propose a novel priced options mechanism, 
that can reduce the exposure problem facing hidders participating in such auctions. Finally, 
the third important problem studied in this thesis is how collaboration can emerge in a sys
tem composed of many autonomous, self-interested agents. For this part, we use large scale 
empirical data from two social web applications: collaborative tagging and sponsored search 
markets. 

The contrihutions to the literature, per each chapter, can he summarised as follows. Chap
ter 2 considers the prohlem of modeling hilateral, multi-attribute negotiations in environ
ments with incomplete preference information, but in which the preferences of the negotiat
ing agents can be represented as linearly additive utility functions. We propose an algorithm 
that allows agents to use incomplete preference information in automatic negotiation and 
reach jointly profitable agreements. 

Chapter 3 also considers the prohlem of automated multi-issue or multi-item negotiation, 
but for the case that there arc utility interdependencies hetween items sold, a problem which 
is known to be considerably more challenging than the linearly independent issues case, and 
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for which very few computationally efficient models were known to exist. We propose a 
novel utility graphs formalism and show how it can he used to efficiently encode and learn 
opponent utilities in complex, multi-item negotiations. In an extension of this work, we show 
that the initial, starting structure of such utility graphs can be approximated hy using collah
orative filtering on concluded negotiation data. This provides an important link hctween 
collahorative filtering techniques used in electronic commerce and multi-item negotiation. 

Another important line of work for the thesis (considered in Chapter 4) is designing ef
ficient hidding strategics in sequential auction settings, for risk-averse agents. While the 
problem of designing efficient auction bidding strategies in uncertain, sequential environ
ments was well known, previous literature did not consider how risk aversion affects an 
agent's optimal hidding policy. The motivation for this prohlcm came from the real husincss 
case regarding transportation logistics: in real life, transportation providers are reluctant to 
use hidding strategies that could lead to large losses, even if they maximize their expected 
utility. 

Chapter 5 considers the exposure problem that agents with complementary valuations 
over combinations of goods face when bidding in sequential auctions in which these goods 
arc sold independently. In order to solve this prohlem, we study a more complex market 
mechanism: selling priced options for the goods, instead of the goods themselves. Our work 
builds on and extends the concept of non-priced options proposed by Juda & Parkes, and it 
shows how options could he priced in order to hring the maximum henefit to both buyers and 
sellers participating in such an uncertain market environment. 

The third part of the thesis considers a somewhat different issue: how collahoration and 
social preference form in large systems composed of many self-interested agents. In order 
to do this. we studied two such systems: a large dataset of sponsored search data, provided 
from a project with Microsoft Research, and collahorativc tagging dataset (ohtaincd from 
Del.icio.us/ Yahoo). Chapter 6 looks at the issue of how stahle vocabularies form, in the 
ahscnce of a central controller, in large-scale, collahorative tagging systems. This chapter 
uses techniques first developed in the field of complex systems theory. Chapter 7 uses similar 
complex systems techniques, hut now applied to sponsored search markets. This chapter also 
provides a link to the auction-hased approach, used in the second part of the thesis. 

The dissertation is concluded hy an appendix dcscrihing an industrial case study, which 
investigated the applicahility of some of the techniques descrihed in the more theoretical 
chapters (especially the auction-hased techniques in Chapters 4 and 5) to distrihutcd trans
portation logistics. This work was conducted in collaboration with Vos Logistics Organizing, 
Nijmegcn (VLO). Based on a real-world scenario provided hy VLO, we built a multi-agent 
platform in which transportation orders can he allocated dynamically hetween different com
panies, through a system of dynamic, distributed auctions. 
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Samenvatting 

Multi-agent systemen is een helangrijk opkomend terrein van onderzoek, op het grensvlak 
van kunstmatige intelligentie, gedistrihueerde systemen, de economic en de speltheorie. Kort 
gedelinieerd zijn agenten autonome, pro-actievc software programmas die zclfstandig kun
ncn redcncrcn, en vcrvolgens hcslissingcn kunnen nemen namcns hun mcnselijke eigenarcn. 
Een van de voornaamste toepassingsgehicdcn voor multi-agent systems is het automatiscrcn 
van electronische markten, zoals clcctronische onderhandelingen en vciling-omgcvingen. 
Een hclangrijk tocpassingsgehied, zoals diepgaand wordt hcstudeerd in dit proefschrift, is 
de automatisering van complcxe ondcrhandclingcn in onlinc e-commerce en taakvcrdcling 
tussen mcerderc bedrijvcn in gedistribuecrdc logistick. 

In oil procfschrift zijn een aantal hclangrijkc en open prohlemen in agent-gchasccrdc 
clcctronische markten bestudecrd. Ten ccrstc is hestudeerd hoc complexe prefcrcnties en 
utility-functics kunncn worden gcmodcllccrd en gebruikt om efficiente stratcgien le on
twikkclen voor bilatcralc onderhandclingcn en veilingen. We onderschciden hier twee kl assen 
van prefcrenties: comhinalorische prefcrenties (over combinaties van een groot aantal oh
jcclen or afwcgingen) en risico-prefcrenties (hijvoorhecld hoe risico-mijdend een agent is 
hij hel nemen van beslissingen in een onzckcre omgeving). Ecn lweede belangrijk aspect 
dat we bcstuderen, is dat van strategisch beredencren, en dan met name wanneer agcnlen 
deelnemen aan ecn scric van veilingcn met complementarilcitcn. Voor deze situatic inlro
duceren we ecn nicuw mechanisme gcbaseerd op het prijzen van optics. Dit mechanisme 
reduceert het exposure prohlecm voor deelnemcrs aan dergclijke sequentielc vcilingen. Het 
dcrde bestudeerdc problecm, ten slotte, is hoe samenwerking kan ontstaan in ecn sysleem 
dat bestaat uit vele autonomc en belanghebhende agenlcn. We bestudercn hicr twee grole 
empirischc datasets, afkomstig van twee sociale web applicaties: collahoratieve ''tagging" 
en de markt van sponsored search. 

De bijdragen aan de lileratuur, per hoofdstuk, kunnen als volgt worden samcngevat. 
Hoofdstuk 2 hcschouwl hel prohlcem van hel modelleren van bilatcralc onderhandelingen 
over mcerdere eigcnschappen, in omgevingen met incomplete informatie, maar waarin de 
prcfcrentics van de onderhandelende agenten kunnen worden gereprescnteerd als addilievc 
utility functics. We inlroducercn een algoritme dat het agenten mogclijk maakt om incom
plete informatie tc gcbruiken in automatischc onderhandclingen en zo voor alien prolilabele 
overeenkomstcn te hcreikcn. 
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Hoofdstuk 3 heschouwt ook het probleem van automatische onderhandelingen over meerdere 
eigenschappen of ohjecten, maar voor het geval wanneer er interdependencies hestaan tussen 
de ohjecten. Dit prohleem staat hekend als aanzienlijk complexer dan het lineair onalbanke
lijke geval, en er hestaan zeer weinig computationeel efficiente modellen. We introduceren 
een nieuw formalisme voor utiliteits grafen, en we laten zien hoe dit can worden gehruikt om 
de utilities van cen opponcnent efficient te lercn en tc codcren in complexe onderhandelin-
gen over meerdcre ohjecten. In cen uithreiding op dit wcrk laten we zien dat de initielc toes
tandsstructuur van dergclijke utilititeits grafen kan worden benaderd door gchruik le makcn 
van collahoratief filteren op de gcgcvcns van voorgaande onderhandelingcn. Dezc uithreid-
ing slaat tevcns ccn hrug tusscn encrzijds collahoraticf filtcren in e-commerce toepassingcn. 
en anderzijds hct onderhandelcn over mcerdere ohjecten. 

Ecn andcrc helangrijkc lijn in dit proefschrift, zoals hcschouwd in Hoofdstuk 4, is hct 
ontwcrp van cfficiente biedstrategien in scquentielc veilingcn, spccifiek voor risico-mijdendc 
agenten. Hoewel het prohleem van het ontwerpen van efficiente hiedstratcgicn in onzckerc 
en scqucnticlc ongevingen hekend was in de literatuur, was nict hckend hoe risico-mijdcnde 
prcfcrenties van invloed zijn op de optimalc hicdstrategie van een agent. De motivatie voor 
dit prohlcem kwam uit de transport-logistick husincss case: in de praktijk zijn transporteurs 
terughoudcnd in hct gchruik van hiedstratcgien die mogelijk tot grotc vcrliczen zouden kun
ncn lcidcn, zclfs als deze strategic hun gemiddelde, verwachttc utility maximaliscert. 

In Hoofdstuk 5 heschouwcn we het exposure prohlcem van agentcn die complementairc 
waarderingcn hebhen over combinaties van gocdcren, wanneer dezc agcnten de goedcren 
kunncn vcrkrijgcn in scqucntiele, onafhankclijkc veilingen. Om dit prohlccm op te losscn, 
hcstudcrcn we een meer complex markt-mechanisme: het verkopcn van optics op de goed
ercn, in plaats van de goedcren zelf. Dit werk bouwt voort op, en hreidt uit, hct concept van 
nict-gcprijsde optics van Juda & Parkes, en hct laat zicn hoc optics geprijst moeten worden 
om de waardc te maximaliscrcn voor zowel kopers als verkopers in ecn dergelijke onzekcrc 
marktomgcving. 

Hct derde deel van dit proefschrift hcschouwt een antler aspect van multi-agent systc
men: hoe samenwerking en social prefercntic tot stand komcn in grotc systemcn die hestaan 
uit zclfstandige agenten die uitsluitend handelcn in hun eigcn bclang. Hiertoe hcstudercn 
we twee van dergelijke systemen: een grotc dataset van sponsored search data, vcrkrcgen in 
hct kader van cen project met Microsoft Research, en ecn "collaborative tagging" dataset, 
vcrkregcn van Del.icio.usNahoo. Hoofdstuk 6 hestudeert de vorming van stahiele vocah
ulaircs, in de afwezigheid van ccntrale sturing, in ccn groot collahorativc tagging systeem. 
Dit hoofdstuk gchruikt tcchnickcn oorspronkclijk ontwikkcld in hct veld van de complexe 
systccm theorie. Hoofdstuk 7 gebruik soortgclijke technickcn, maar nu tocgcpast op spon
sored search markten. Dit hoofdstuk vormt zo ook ecn bruk naar de vciling-gehascerde 
bcnadcringcn, zoals gchruikt in hct twecdc dccl van dit proefschrift. 

Dit proefschrift wordt hcsloten met ecn appendix waarin een industriele case studie is 
hcschrcvcn. Hicrin wordt de toepasbaarheid bcstudeerd van cnkcle van de technickcn zoals 
heschrcven in de meer thcoretische hoofdstukken ( en dan met name de veilingtechnickcn van 
Hoofdstuk 4 en 5), in de context van gedistribuecrde transportlogistiek. Dit werk is uitgcvo-
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erd in samenwerking met Vos Logistics Organizing, Nijmegen (VLO). Op basis van een door 
VLO aangereikt real-world scenario hehben we een multi-agent platform gehouwd waarin 
transport order dynamisch kunnen worden gealloceerd tussen verschillende bcdrijven, door 
middcl van ccn systcem van dynamischc en gcdistribucerdc veilingen. 
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