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1. INTRODUCTION

Fast solution techniques for turbulent flow equations argrefit importance in today’s engineering practice.
Most real-life flows are turbulent, be they air or water flowsund vehicles or flow in pipes and channels. So in
design processes for these devices, turbulent flow sinonlétiindispensable and for efficient design, the flow
solvers must be fast. Quasi-steady turbulent flows are lysoeidelled with the steady Reynolds-Averaged
Navier-Stokes (RANS) equations; an efficient way to solvargety of flow problems is multigrid [8, 23, 27].

To obtain the RANS equations, the unsteady turbulent flowd fielaveraged. The result is a set of flow
equations that may have steady solutions. These equatimaic unknown closure terms for the effect of
turbulence, which are modelled approximately with a tuebige model: one or more differential equations
for the turbulent stress. As opposed to the laminar Naviekés equations, these turbulence models contain
source terms, that represent the production and dissipafiturbulence.

Multigrid solution of the RANS equations is not straightf@rd. For the laminar Navier-Stokes equations,
efficient multigrid techniques have been developed whezestbady flow equations are solved directly with a
combination of nonlinear multigrid and Gauss-Seidel stimgf; examples are found in the work of Hemker et
al. [10, 11], of Dick et al. [6, 22], and of Trottenberg et &l, P3]. But due to the source terms in the turbulence
model, the RANS equations cannot be solved with these tqubai Instead, multigrid is usually combined
with a time stepping approach. Either time integration isduas a smoother in the multigrid algorithm or
multigrid is used for the individual time steps in an implitime integrator, that time-marches the unsteady
RANS equations to convergence. In the first category, Mésr|i4, 15] uses Jameson’s multigrid method



with a Runge-Kutta time integration smoother, on unstmextugrids. Liu and Zheng [13] present a finite-
volume method on structured meshes. €4t uses linear multigrid to solve implicit time steps andreases
these time steps as the solution converges. Steelant @2hfdrm an exception: they use damped multigrid
with a line smoother.

In the solution process, the link between the Navier-Stekgsmtions and the turbulence model is important.
In many flow solvers, the turbulence model is considereddiyosoupled to the other flow equations, therefore
it is solved separately: alternately, the flow field is updatéth the turbulence fixed and the turbulence is
updated with the flow fixed. For the flow field step, an existaginar flow solver can be used. However, Liu
and Zheng [13] claim that this technique is inefficient; thegort improved convergence when all equations
are solved together. On the other hand, Steelant et al. BtZ2hg best results with a loosely coupled approach.

In this paper, we show that the steady Reynolds-AveragedeN&iokes equations with Menter’s turbulence
model [17] can be solved with multigrid and Gauss-Seidelatmag, without the need for time stepping, and
that convergence rates can be obtained that are similaetmtst efficient multigrid solvers for laminar flow.
We also explain why a fully coupled solution of the flow fielddatthe turbulence is necessary to obtain this
convergence. Our novel multigrid technique is a combimatibnonlinear line Gauss-Seidel smoothing on the
finest grid and linearised coarse grid corrections. Locahpiag is applied in the initial part of the solution
process; this does not reduce the convergence rate betausetineeded in most of the domain. The nonlinear
smoothing is used to estimate the need for damping.

To get an efficient solution process on the finest grid, a fulltigrid method (i.e., the initial solution on a grid
comes from solutions on coarser grids) is essential. Seoathel accuracy is obtained with defect correction
iteration [3, 9, 23]. Defect correction iteration convesgdowly in terms of the residual, but it improves a
first-order accurate solution to second-order accuracylin a few steps.

The solution technique is applied to a finite-volume dissegion of the incompressible RANS equations
on structured, curved grids. The discretisation is cefitred and combines artificial compressibility convec-
tive fluxes with central diffusive fluxes and finite-diffei@n stencils for the source terms. It is based on the
discretisation presented in [26].

The structure of the paper is as follows. It starts with twinaductory sections: in section 2, a brief overview
is given of the RANS equations and of Menter's one-equatiobuience model. And section 3 introduces the
multigrid method for laminar flows [26], on which the presemiltigrid method is based. Section 4 forms the
heart of the paper: it shows why the RANS equations cannoblved with classical multigrid, it presents a
suitable Gauss-Seidel smoother and it introduces therlimeittigrid algorithm. Furthermore, it explains why
the coupled solution is essential for fast convergences disicussion is valid for general spatial discretisations;
section 5 gives the finite-volume discretisation used inmaumerical tests. In section 6, results from four test
problems show the efficiency of the method for different flamsl the accuracy of the solutions obtained. The
paper ends with a conclusion.

2. TURBULENT FLOW EQUATIONS

This section gives a brief overview of the flow equations usetk, the Reynolds-Averaged Navier-Stokes
(RANS) equations and Menter’s turbulence model [17].

2.1 RANS equations

For the RANS equations, the turbulent flow field is ensembkraged. In the equations for the averaged
flow quantities, the only contribution from the turbulentat remains is a turbulent stress term. Under the
Boussinesq hypothesis, this term can be modelled by singuling a non-constant turbulent viscosity to the
laminar viscosity in the standard Navier-Stokes equations
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In two dimensions, the steady RANS equations for incomjiresfiows are:

() + o () = (v v 2u) (v ) ¢ ),
g w0) 4 5 (p+0%) = 5 (4 vm) (g +02)) + 5 (0 m) 2, @y
0 0

8_x(u)+8_y(v):

Herep is the pressure, divided by the (constant) densitis the laminar kinematic viscosity ang- is the
turbulent viscosity. A1 is not known exactly, it is modelled with an approximate tueémce model.

2.2 Menter’s turbulence model

To approximatevr, one or more equations are added to the system (2.1). Merntebulence model is a
robust and accurate one-equation model, that computesithelent viscosity directly. It is similar to the
Spalart-Allmaras model [21]. In two dimensions, it is givan

6(13'1“’(1,) 8(17Tv) o 8 IjT 817T 8 IjT 817T B
9z + ay —a I/+a E +@ I/+a a—y +P - D. (22)

This is a convection-diffusion-reaction equatiof; and D are source terms modelling the production and
dissipation of turbulence. To get correct behaviour of thelad near walls, the actual- to be used in (2.1) is
scaled:

vp = (l - 6_(%)2> l7T. (23)

A" andk are constants. The boundary conditions #grare straightforward; this is one of the advantages
of Menter's model. On a wallyr = 0 as turbulence dies out near walls. And on inflow boundariesnall
positive value forir is set, usually aboud.01v; if o7 at the inflow is zero, it remains zero throughout the
domain because no turbulence is produced. The solutiontisersitive to the inflows, as long as it is
significantly smaller than the maximuis- [17].

The production and dissipation terms are the heart of theainddhe production term is:

viur. 2 2 2
P22 02) + (y +0a)?, (24)

= C

and the dissipation is:

Dy_.
D = cyc3Dpp tanh < k ) , (2.5)
c3Dpp
with
oo (Ugz + Uyy)? + (Vaz + vyy)? N .
Dk:—a = l/%( yy) ( yy) s DBB = (VTE)Q + (I/Ty)Q. (26)

2 2 2 2
Uz + uy + vz + vy

Dy,_. is the main dissipation term. Equation (2.5) reduce®te: co Dy . when Dy, is small, the limiting
with c3 Dgp is only needed for regions whei®; . is large due to small velocity derivatives. Thg, . in
(2.6) is actually an alternative form that is suggestedpotiused, by Menter. It is slightly more complex than
Menter’s original form, but it can be discretised on a fiverpatencil (see section 5). Both the production
and the dissipation term are invariant under rotation aedpfoduction termP is always positive, while the
dissipation— D is always negative.

The model constants have the valugs= 0.144, ¢y = 1.86 and AT = 13.0. The von Karman constant
k = 0.41. Furthermore¢cs = 7 ando,,, = 1.
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3. MULTIGRID

For laminar flows, multigrid is a well-known and mature sauttechnique [7, 8, 23, 27]. Many different
varieties exist. Here, we briefly introduce the nonlinealtigrid technique and smoother that we have used
before [26], a classical technique similar to the one dbsdiin [6]. This section serves as a basis for the
following section 4, where we discuss the changes to thidimeer multigrid technique that are needed to
solve the RANS equations.

3.1 Grids and discretisation

The method is constructed for a cell-centered finite-volualiseretisation on curvilinear structured meshes. So
the grids consist of quadrilateral cells, that may be naramrgular, and the states in the middles of the cells
are stored. A typical cell is shown in figure 1. The finest gactalledQ k. A set of underlying coarse grids
Q. with 0 < k < K — 1is made by merging 22 blocks of cells in the next finer grid into single cells, so
each cell(2.); ; in grid Q. corresponds to four celléy 1 1)2i(+1),2j(+1) in the next finer grid2; ;. The
RANS operator (2.1) plus the Menter model (2.2) is denoted¥y), ¢ = [u, v, p, or]T. For the following
discussion, we limit ourselves to five-point stencils: fack cell, the state in that cell and in its four neighbours
is used. The discretisation on gHiy); is Fi, the state on that grid ig.

Figure 1: A typical cell, with four neighbours.

3.2 Multigrid algorithm

In the multigrid technique, the high-frequency errors ie thitial solution are removed on the fine gfitk
and the lower-frequency errors on the underlying coarsieisd, - - - Q2x—1. The final problem to be solved
is Fxqx = 0, the general problem on each grid#g qr. = sk, for some source terms,. We call the line
Gauss-Seidel smoothing operafdy, and introduce a finite-volume prolongation operaRfr , that moves a
solution from one cell on gri& — 1 to the four cells on grid that lie in the same location:

(@)2i+1).2(+1) = Poo1(@e-1)ij = (@r—1)i;- (3.1)
In the same way, a restriction operaf®} ' is defined for defectd:

(di—1)i; = Ry ' (di)aics1),2j(r1) = (di)ai2j + (di)ait1,2j+
(di)2i2j+1 + (di)2it1,2j+1. (3.2)

Then the multigrid procedure (for iteratior) is defined recursively as follows. Itis started on the firggit,
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with sg = 0.

gi ™' = recursivefunction NMG(k, g, si)

a; = (M)" qf

if k # 0 then
iy = Ry (Fraf — sp)
Sp1=Fk1q 1 — Wr_18 4
gt = NMG° (k—1,q_, s )

q1 pre-relaxation steps

defect on coarse grid
source term

o MG steps on coarser grid

~ 1 . .

@' =a'+——PF (¢ —qf_,) prolongation of correction
W1

end if

gt = (My)"” g ¢ post-relaxation steps

Our experiments in [26] show that, for the type of flows we ¢des a W-cycle § = 2) is the most efficient.
The scaling parametes_, is usuallyl. But if the defectd; , is very large, it may be impossible to find a
solution toF,_1q;} , = sp_,, becauseF is nonlinear; thers;’_, can be reduced by makingj _, small. The
prolongated correction is unscaled through divisiondjy , .

3.3 Gauss-Seidel smoothing

The multigrid algorithm is combined with alternating linea@s-Seidel relaxation; this is a good smoothing
technique for convection-dominated flows. In each itera8tepn, the solution is updated row by row or
column by column. The statq,?+1 in each line of cells is changed such, that the residual iseahells
becomes zero, given the current state in all other cellss@lstates are the old staiglsin cells that have not
been updated yet and the new, updated stitéé in all other cells. So we solve (for row smoothing, marching
in positivej-direction):

Fi ((‘11:'“)1:,]', (‘1:“)1:—1,]', (q:'-l—l

A similar expression is found for column smoothing. Equat{8.4) is solved with a numerical root finder,
the matrix-vector version of the Newton-Raphson methodrtStith an initial guesgg = (g})i,jeiine, then
define each new stdmas:

Jii—1: (@ iv1g0 (@ )ije1) =0, Vi€ row j. (3.4)

0F:\ !
AR = G — <3—q:> (Fr)ine (angr) - (3.5)

line
On convergence, we sétq,?“)me“ne = gir- The matrixdF;/dq; is block-tridiagonal (a cell has four
neighbours that influence it, but only two are in the line)egoation (3.5) can be solved with a block Thomas
algorithm.
The process can be changed by under / overrelaxation, fredircing a parametey > 0 and choosing:

(g5 i zetne = (a8 jeine +w (ahr — (a)i.jeiine) (3:6)

For nonlinear Gauss-Seidel, underrelaxation<€ 1) is used to keep low-frequency errors stable. We use
w = 0.9 [26].

3.4 Full multigrid

The multigrid solution process is used in a full multigricafinework. We actually start the solution process
on the coarsest grif),, with Gauss-Seidel smoothing only. When a converged swiwn this grid is found,

it is prolongated as an initial solution to the next finer gfigd, where a converged solution is produced with
multigrid on two grids. This process is continued until theefit grid is reached. Full multigrid reduces the
number of iterations needed on the finest grid: these araceglby cheaper iterations on coarser grids.



3.5 Defect correction

Multigrid with standard smoothing is ineffective for thegiion of second-order accurate discretisations. These
can be solved with defect correction: a first-order dissedion Fx with a multigrid solver is used as an
approximate inverse for the second-order discretisafigf,. Before each multigrid cycle, a source term is
computed on grid:

dg = Fx(qg) — Fr2(9g). (3.7)

Then a multigrid cycle is applied t@'K(q}é“) = dj. After this cycle, a new source term is set, then a new
multigrid cycle is started, etc. On convergence, the sofusiatisfiesFr »(gp) = 0.

For defect correction, the residual converges slowly. Boemwthe defect correction is started from a con-
verged first-order accurate solution, then a few defecemion cycles are enough to make the solution second-
order accurate, even if it is not converged. (Theoreticalgcond-order accuracy is reached after one defect
correction cycle [9].) Thus, defect correction can be sexaraiterative improvement for a first-order accurate
solution.

4. SOLUTION OF MENTER'S MODEL
Standard multigrid, as applied to the laminar Navier-Sso&gquations, cannot be used directly for the RANS
equations. This has two reasons. One: because of the saums in the turbulence equation, the flow
equations are no longer positive definite, so the line smiogttioes not converge. And two: the solutions on
the coarse grids do not resemble the solutions on the fineegodgh.

This section gives the solution to these problems. In seatid, the problem with the flow equations is
analysed. An improved smoother is presented in section Al section 4.3 gives a working coarse grid
correction algorithm.

4.1 Source term and negative eigenvalues
Classical relaxation techniques, like line smoothingyombrk when the discretised systeff), is of vector-
positive type [4]. This means that the system has no unstédpgemodes: whefy, is linearised, all eigenvalues
A of the resulting linear system must ha&¢\) > 0. Discretisations of convection-diffusion equationselik
the laminar Navier-Stokes equations, may be vector-pesithis depends on the discretisation. For example,
the artificial compressibility discretisations by Dick ahi$ co-workers [4, 6] are always vector-positive, but
their later AUSM+ based discretisations [19, 25] are not.

In the RANS equations, a more fundamental problem appedrsreT thecontinuoussystem makes it im-
possible to find a discretisation that is always vector{pasi The occurrence of eigenvalues witii\) < 0 is
caused by the source term in the turbulence equation.

4.1.1 Linearised flow equations To study the effect of the source term, we construct a lisedriversion
of the continuous syste. We choose a functio® = [U,V, P, Nz]T and write functions close t@ as
q = Q + ¢'. Substituting this in (2.1) and (2.2) gives a linear opardtdor the small disturbanceg', such
that:

F(Q+4d)~F(Q)+Lq". (4.1)
We find:
28, + Vy, Ua, Bn —2U, 8, ]
—N (2034 + Oyy) —NOgy —(Uy + Vz)0y
Von Ud» +2V8, dy —(Uy + Vi),
—Nzy —N(Ozz + 20yy) —2V, 0y
L= 0, 9, 0 0 . (4.2a)
Nz, Nrd, 0 Uby +V8y — N(Oxa + 8yy)
Py (20285 + (Uy + Va)By)  —Pa((Uy + Va)de + 2V, 8y) ~Ng 85 — Np oy
+D2([]zz + Uyy)(azz + Byy) +D2(sz + Vyy)(azz + 8yy) *Pl + Dl
+D3(Uz8z + Uyay) +D3(Vzaz + Vuau)
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For simplicity, we useéD = ¢ Dy, . instead of equation (2.5) and the low-Reynolds correctamuétion (2.3))
is not used, ser = Dp. This makes no large difference to the system. The symbasili andd,, denote
differentiation operators, the abbreviations are:

N =v+ Ny, (4.2b)

representing the total viscosity, and:

1
Py =c142U2+ V) + (Uy+V,)?2, Pr=c , (4.2¢)
\/ v Y V2U2Z+V2) + Uy + Va)?
2 2
rr rr 1

Dy = 2607 Ut ZyyU)z iI(/Z +T/¥yy) o D2 = 2Nt g

SRR PTY T T (4.20)
D3 = —2¢,N2

U2+ U2+ V24 V2
representing parts of the production and dissipation terms

The operator in the first three rows, first three columns isléimeinar Navier-Stokes operator. We see the
continuity equatior®, v + dyv = 0 in the third row and the momentum equations with convectimh\ascous
diffusion in the first two rows. The fourth row and column atié effect of turbulence: in the fourth column,
we see terms due to the non-constant viscosity; the fouthcantains the turbulence equation, where the
terms are combinations of convection-diffusion effectd aource term contributions.

These combined terms cause zero eigenvalues in the sy$efim{iting case of eigenvalues with(\) < 0),
when they cancel each other out. For example, in the (4,4), tifre convection and the non-constant diffusion
term are comparable, but they have different constantss®tece term also has an important effect on the (4,4)
term. Altogether, situations can arise where the fourtha¢éiqn does not change when the logél changes.

In that case, the operator has a zero eigenvalue. In a fedlist solution, any combination of values fof,

V, Nt and the source term parametd?s P,, Dy, Do, and D3 may appear, so zero eigenvalues are bound
to arise. They appear either by this cancelling of the (&dntor by interaction of the (1-2,4) terms with the
(4,1-2) terms.

One could think that the use of stable discretisations, @winding, can make a discretised version of this
system vector-positive. Unfortunately, that is not truge terms in (4.2) that may cancel each other are part
of totally different parts of the operator. Those partsgltke convection operator and the source term, cannot
be combined, so they cannot be discretised with one stathaitgue. Therefore, even in a discretised system,
situations where the system is not vector-positive canagirbvented.

4.1.2 Determinant To understand the nature of the system, it is useful to stbdydeterminant of (4.2a).
This determinant is:
det(L) = —A[NA — (U9, +V9,)] [NA — (U — Nr,) 0, + (V — Np,) 8) + P, — D]
+(Uy + Vr) (6yy - 8TT) (4-3)
[PQ(U.U + VZ) (ayy - 8zz) + D, ((sz + Vyy) 0z — (Uzz + Uyy) ay) A+ D (Vwaﬂm - Uyayy)] )

where A is the Laplace operatdl,, + J,,. This determinant is much more complex than the one for the
laminar Navier-Stokes operator, given here for comparison

det(Liam) = —A (NA — (U8, + V8,)) . (4.4)

The most noticeable difference is, that the turbulent deiteaint has two separate terms, while the laminar
determinant has only one product of terms. The second teent@nbination of the turbulent viscosity effect
on the momentum equations and the velocity effects in thieutent source term. The operator has zero
eigenvalues whedet(L) = 0. In the laminar case, this happens only when one of the tefrtre@roduct is
zero. In the turbulent case, it happens whenever the twasteancel each other out.



In multigrid, one usually determines the type of the systemrdoking at the highest derivatives in the
determinant. But since this system is singularly perturpeid small), we study the terms with the highest two
derivatives, i.e. those of fifth and sixth order. These are:

det(L) ~ —N?A® + NA®? ((2U — Nz,) 8, + (2V — Nz,) 0,)

Even here, a part of the second term remains. And even thdwegtetmD, containsNZ, itis O(Nr) in a

boundary layer, where, is O(N;l/z). Therefore, its contribution is non-trivial: the sourcentereally has an
effect on the occurrence of zero eigenvalues.

4.1.3 Stability near a solution An interesting property of the system saves us: if the thoé model is
stable, then the operator has no eigenvalues ®{tk) < 0 near a solution of the steady RANS equations. This
can be seen by considering the time-dependent flow equatimhsubstituting a steady solution with a small
disturbance. If any of the eigenvaluesibfvould have a negative real part, then the disturbance waold m
time, so the flow would be unstable. Thus, the existence ddlaessteady solution guarantees that\atiave
R(M\) > 0 near that solution. This is good news, as a properly desigumbdilence model must have stable
steady solutions. It is the task of the turbulence modelghesito guarantee this. Therefore, we may assume
that near a solutiorf, always hast(\) > 0 for all .

Figure 2 gives an example. It shows a part of the eigenvaleetspm for a discretised version of (2.1), (2.2).
In the first figure, the spectrum is given for a state that isf@ay from the converged solution. We see a large
number of eigenvalues with negative real parts. When theif@menverged (figure 2b), all thesehave moved
to the right and crossed the imaginary axis. No eigenvalu#s®{)) < 0 remain.

0.05¢ . . . 0.05¢ .
| | »)fgx%
0.04 0.04 ;
x x *x*x
x X x Hoxnx X X
0.03F . 0.03F xe s X R
o S
“
0.02F o 0.02F %
x - x 3‘;,;&«
0.011 “x * x 0.011 . *
< OF xmc ok xamc % x5 XX x ><><><~i>n(>o<>>u<<>< x % ot soemerc X% % i T xi - xXxx
£ . o = R .
«
-0.01+ . . % -0.01+ X‘{%gi L o
x N x £ %%
-0.02F T -0.02F d %
* x %
x * »x
-0.03F -0.03F KXo
x x X KK X
-0.04F : : : -0.04F W
kg %
005 L L L L L I _005 L L L L L x I
-0.02 0 0.02 0.04 0.06 0.08 -0.02 0 0.02 0.04 0.06 0.08
a) Re(A) b) Re(\)

Figure 2: Detail of the eigenvalue spectrum (leftmost eigdures) for the discretised RANS equations (the
discretisation from section 5, applied to the zero presguaglient boundary layer problem from section 6.2,
on a 3%32 cell grid). Graph (a): state after one line GS sweep, istasith a uniform flow. Graph (b):
converged solution.

Concluding, we have found:

1. that the linearised operatérmay have eigenvalues with(\) < 0, that prevent the convergence of line
Gauss-Seidel,

2. that this isnotthe case for converged solutions,
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3. that the interaction between the turbulent viscosityhie tnomentum equations and the velocity contri-
butions to the source term plays an important role in the Wiehaof the system.

In the following, these findings are used to construct aniefitanultigrid algorithm.

4.2 Improved line smoothing

The previous section showed why normal line smoothing cebaaised to solve the RANS equations. Since
line smoothing works well for the laminar Navier-Stokes afijons, it is tempting to consider separate smooth-
ing of the laminar state variables,(v, andp) and the turbulencér, alternately updating or the laminar
state variables while the other(s) are kept fixed. This teglenworks for time steppers, but not for the more
powerful Gauss-Seidel smoothing. The coupling betweeocitgl andZ in the source term is so strong that
smoothingu andv while keepingir constant may send the state in a wrong direction, increabmgrror. In
some of our experiments, errors increased with a factor T@faye in a single smoothing step! Therefore, it
is essential that all four state variables are smoothedhegeThis section describes how such a smoother is
made stable.

4.2.1 Damped Gauss-SeidelThe alternating line Gauss-Seidel smoothing is stabiliseaidding local damp-
ing. Instead of applying the line smoother&(qx) = 0, we apply it, in each smoothing stepto the system:

Fielgi ™) + alagi ™! = alagy. (4.6)

Applying one Gauss-Seidel step gives an approximate solaii this system. The positive functianmay be
non-constant in space and different for differantl,, for each cell, is a #4 zero matrix with 1 in the (4,4)
position. Thus, we damp only the corrections of the turbuléscosity; equation (4.6) is similar to implicit
time stepping fo@r only. Linearised, it reads:

(L + als) ()" = alu(q)", (4.7)

whereL;, is the linearisation ofF;,.
We see:

1. that, if the damped Gauss-Seidel process convergesnierges taF (qx) = 0,

2. that line smoothing is a good solver for the system (4.®)éflinear operato(L;, + al4) has®(A) >
0, VA,

3. that, since (4.6) resembles an implicit time steppingcedure foror, it is expected to converge to
Fir(gr) = 0 if a stable steady solution exists.

As seen in section 4.1, the first three rows and columns,diorm the laminar Navier-Stokes operator, which
has no eigenvalues witR()\) < 0. Therefore,L; can be made diagonally dominant by increasing the (4,4)
term only; Ly + oI, has noR(\) < 0 eigenvalues when is chosen sufficiently large.

However, it is not necessary — rather, it is wasteful — tossédrge everywhere, all the time. As we have
seen, thék(\) < 0 eigenvalues disappear when the solution process conyagesmping is only needed in
the early stages of the solution. And in most of the flow fielett&inly outside boundary layers and turbulent
wakes, ndrt(\) < 0 eigenvalues appear anyway, so ho damping is needed thieee eit

Therefore, we takex constant in a line. We set for each individual line, for every smoothing step, to the
smallest value that gives positive eigenvalues. Thusptlire a certain cell may be different for successive
horizontal and vertical sweeps. The choicexdf explained below.

4.2.2 Estimatingx  The smallest possible can be estimated, very elegantly, with the Newton-Raphson
algorithm that is used to solve the nonlinear flow equationthée individual lines. Newton-Raphson (NR)

relies on linearisation8.F, /gy of the flow equationg;, in each line to find the roots of these sets of nonlinear
equations. Butif one or more of the eigenvalues of the lisedrflow equations are zero, then the corresponding



10

part of the nonlinear system is dominated by higher-ordierces. In that case, a linearisation is no longer a
good approximation of the nonlinear system, so NR losesuigsltptic convergence. It converges slowly, or not
at all.

Therefore, we choose locally by monitoring the convergence rate of NR for eaclelifcach smoothing
step is started with a low value for, constant in the whole domain. When the NR iteration in adines not
converge fast enough, it is restarted with a largdor that line. This is repeated, if necessary, until a sugfiti
convergence rate for NR is obtained. Then we can be surelthat al, has no eigenvalues close to zero,
that are associated with that line. And, as the eigenvaleas @ lie close together (figure 2), this indicates
that all eigenvalues havig()\) > 0. The advantage of this procedure is, that the convergenbiRdias to be
monitored anyway, to determine when to stop the iteration;astly, complicated estimation of eigenvalues is
needed.

The basis for a definition of sufficiently fast convergenceN® is the residual of the flow equations in the
line, afterl Newton-Raphson steps:

rl = Z \F(ahr) + oLu(gir — (a7 jeine)| - (4.8)

line

When applied to a system without zero eigenvalues, NR igshlbws quadratic convergencé: ~ (r!~1)2.
But in practice, this is seldom obtained, even witlsufficiently large. For high residuals, nonlinear effects
dominate the system behaviour and for very small residuidtle, inaccuracies in the computer code often
prevent convergence below a certain threshold. Thereb@gnga on a test for quadratic convergence is too
restrictive. Instead, we require a specified reductionwithin a fixed number of steps:

/10 < e for somel < Inax. (4.9)

If this criterion is not met for a line, then is increased. If it is, we consider the iteration converged.

The convergence criterion (4.9) is different from the usdiglconvergence criterion (which ends the iteration
whenr! < ¢), for a very good reason. It is expensive to find the smateskactly by trial and error, so each
time when the criterion (4.9) is not met, we increassignificantly (by a factor 10, in our experiments). But in
situations where the criterion @mostmet without increasingy, a very small reduction in the initial residual
0 could mean that the criterion< ¢ is suddenly met without a higher. This leads to many sudden changes
in « for different sweeps in the same line; such ‘jittery’ betwawican prevent convergence of the Gauss-Seidel
smoothing. When the relative convergence criterion (4s9)ded,« is more consistent between successive
sweeps of the same line.

4.2.3 Smoothing algorithm Summarizing, the algorithm for the Gauss-Seidel smoothirane line is:
a = ag initial o
while o < amax
anr = (@F)ijeline initial state
for I =1, lnax

-1
R = AR — (gﬂ + aI4> (Fx + ala)jne (dhr')  NRstep
ak line
if /70 < e end
end for
Q1= Qifactor * O newa
end while

As stated above, this is an estimator for the smaliedtis not exact. But practical experience shows that this
algorithm functions well. We found that suitable valuestfoe parameters (for flows with, v,p = O(1)) are
ag = 1072, amax = 107, agactor = 10, € = 1075, andl ., = 10.
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We remark that in many solution methods for the RANS equatierg. [13, 16], the source term is split in
a positive and a negative part. For each smoothing step erdtap, the positive part (the production) is kept
constant, while the negative part (the dissipation) is tgaitogether with the convective and diffusive fluxes.
This is a kind of damping too, it increases the diagonal damie ofL,. The difference with our algorithm
is, that this damping by source-term splitting is not swétttoff, even when it is no longer needed because the
solution approaches convergence. Therefore, our dampgogitam is more efficient.

4.3 Linear multigrid

Nonlinear multigrid (NMG), as described in section 3.2, sloet work for the RANS equations. In tests, appli-
cation of NMG usually gave worse convergence than GausseBahoothing alone, or even caused divergence
of the solution process. THR(\) < 0 eigenvalues described in the previous two sectionsatéhe cause of
this problem: multigrid has been applied successfully tibfgms with both positive and negative eigenvalues
(see e.g. [23], section A8.5.3 for the solution of the Helttthproblem). Given a good smoother, which we
have, multigrid ought to work. But it does not.

4.3.1 NMG operators fail The problem is, that the coarse grid operatdisdo not resemble the fine grid
operatorFg sufficiently. The source term in Menter’s model is the sméfiedence of two large variables
(production and dissipation), that contain products ohbfast and second spatial derivatives. Thus, small
errors in these derivatives may cause large differencebBdrsburce term; the turbulence model only makes
sense when the grid is fine enough to resolve the interiocttre of a boundary layer well. Therefore, the
model needs a minimum grid resolution to be accurate, tylgiabout 20 cells over the thickness of a boundary
layer. For coarser grids, the solution becomes highly gegendent. An example for a boundary layer flow is
given in figure 3. The solution on the 832 cell grid is accurate (compare with the fine-grid soluiiofigure

7), but the solutions on the coarser grids are a lot worsee i@t the maximum value farr is off by about
30% on the 1616 grid and that this maximum is actually lower than the on¢hen8x 8 grid.

0.015 0.015 0.015

0.01f . . . . . . . . 0.01] 0.01

0.005 0.005 0.005

Figure 3: Grid convergence study for a zero pressure-gnatheundary layer flow aRe = 107. Solutions for
op on an 838 grid (a), 16<16 grid (b), and 3232 grid (c). The cell centres are marked by (The test case
is also described in section 6.2.)

If the solutions on the coarse grids differ from the solusi@m the fine grid, then the operators that produce
these solutions differ too. Therefore, the coarse grid @jpesF;. are not suitable for constructing approximate
inverses forFx and the NMG coarse grid correction does not work. This is cordd by our tests, which
showed that acceptable coarse grid corrections could knaot with NMG, but only when the coarsest grid
used was fine enough to accurately resolve the boundaryslayecoarser grids are used, the convergence
deteriorates. However, for good multigrid convergenceppr smoothing on these coarse grids is essential.

4.3.2 Galerkin operators So, to get proper coarse grid corrections, we use Galerlanseogrid operators.
Instead of restricting the state on the fine grid to the caaggds and constructing coarse grid operators with
these states, we directly restrict the fine grid operatohéocoarse grids. Thus, we can be sure that the coarse
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grid operators resemble the fine grid operator reasonably; vilthe Galerkin operators are found by first
constructing a linearised version of the fine grid operatat ihen restricting this linear operator to the coarse
grids. So we switch from nonlinear to linearised coarse godections. Therefore, we no longer compute
statesg on the coarse grids, but small correctians

The linearised version of the fine grid operatBf is the discretised equivalent of the operafofrom
equation (4.1), i.e. the Jacobian®f :

Ly = ng(q“). (4.10)
dK

For a finite-volume discretisation with a five-point stepa# introduced in section 3, the linear operator in one
cellis:

(Lrur)ij = L3} (uk)ij + L5 (uk)ipay + L3 (uk)i i

+ L % (uk)ic1y + LY H(uk)ij—1, (4.11a)

where
00 _ a(fK)i,j’ LM = O(Fk)i ’ 0 = O(FKk)i; ’ otc. (4.11b)
" 0(gK)i W0 )iv, W0+
So for each cel(Qk); ;, the operatoL i consists of five 44 matrices.
The coarse grid operators then follow from Galerkin’s piirhe:
Ly—1tp—1 = R L PEjup_y. (4.12)

For the prolongation (3.1) and the restriction (3.2), thisams that the coarse grid operafqgr | can be eval-
uated by copying the correctiom, ; in all coarse cell§€;._1); ; to the four fine cell§Q)i(11),25(+1) that
lie in the same location as each coarse cell, then evalutimdine grid operatof;, for this u; and finally
summing the fluxes from each group of four cells. This, in fumeans that the matrices féy,_; are found
by a summation of the matrices iy,: the 20 matrices of the four operators in the fine cells cpwesing
to coarse cel(Q2;_1); ; are summed to form the five matrices(ihx ); ;, such that a matrix for a fine cell is
added to the matrix for that coarse cell in which the fine ¢edl.IFigure 4 demonstrates this.

r-n

L

Figure 4: Construction of a coarse grid linear operator. firfarices in the coarse five-point stencil (—) are
made by summing four fine grid stencils (, - -, —, o).
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4.3.3 LMG algorithm With these coarse grid operators, the linear multigrid athom is constructed. It is
different for the finest level and the coarser levels as dmydperator on the finest grid is nonlinear:

qlnjl = function LM G(q}) :

qr = (Mg)" qp q1 pre-relaxation steps

Ly = 0Fk(ag)/0ax linearisation

sy = RE'Fr(qy) source term
n_,=RE'LRPE | linearised system

ug_; =0 initial solution

uptl = LMGC® (K — 1,u}_q,8%_1,L%_,) MG on coarser grid

= qr + PE_juptt correction

q}é’“ = (Mg)® g g2 post-relaxation steps

upt! = recursivefunction LMGC(k, u, si', L}) :

a = (ME)" u? q1 pre-relaxation steps
if k % 0 then

st =Ry 'Lyap source term

n o =RF'LIPF linearised system

u;_ =0 initial solution

uptl = LMGC (k— 1, w1, 8 1, L)) MG on coarser grid

ap = a + PF_jurt] correction
end if
ul ™t = (M) q> post-relaxation steps

For the smoothing on the coarser grids, we use line GausklSgist like on the fine grid. Only, the Newton-
Raphson iteration is not needed anymore, as the linear flowtEms in a line can be solved exactly in one
step. As for the NMG algorithm, each smoothing sfép consists of both a horizontal and a vertical sweep.
This smoothing is relatively expensive, but it increasesrtbustness of the procedure.

4.3.4 Comments on the algorithmThe change from nonlinear to linear coarse grid correctisnsot that
big. For small residuals, the NMG algorithm from section i3.2Znore or less linear anyway: the computation
of Fro1(gp™)) = Fr—1(gl ) + df | is a matrix-free evaluation of the JacobianBf_, whend} | is
small, i.e. wherFy, 1 (g "!) =~ Fr-1(qf_ ) + Lr—1(g)"; — g_,). And as complex systems like the RANS
equations cannot handle large source terms, the ddféexalwaysmade small by reducing the parameter
whend is large (see e.g. [26]); reducingis equivalent to linearising the coarse grid operators.

The only real difference between the NMG and LMG algorithmthiat the LMG coarse grid operators are
Galerkin operators. According to the literature, Galerperators may cause problems (see e.g. [23], section
5.4). In particular, Galerkin coarse grid operators forvaxtion problems are less diagonally dominant than
the fine grid operator. As a consequence, the convergereéoranultigrid becomes worse when more coarse
grids are added. In our experiments (section 6) this effenbied, but it causes no problems.

The unusual combination of a linear coarse grid correctiigth monlinear smoothing on the finest grid is chosen
for two reasons. First, the nonlinear smoother is robusacis like a ‘safety net’ for the solution process.
It can correct small unphysical solutiongr( < 0, for example) that arise from the coarse grid correction.
Furthermore, it performs well in extreme situations, like tstart of the solution process from a uniform flow,
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where the linear multigrid method is not (yet) effective. dAsecond, we use the damping factofrom the
line smoothing (equation (4.6)) in the coarse grid cormttoo, i.e. we replace (4.10) with:

~ 0(Fk(gk) + alagr)
Li = Sar . (4.13)

As explained in the introduction to this section, this damgpis not really needed for the convergence of
multigrid, but it makes sure that the smoothing on all cogseés is stable (we cannot setwith the aid of
Newton-Raphson on the coarse grids, because the coarsepgridtors are linear). The nonlinear smoothing
on the finest grid is needed to find then equation (4.13): for each cell, we choas@s the minimum of the
a’s for that cell in the horizontal and vertical line sweep.

Concerning the computational costs of the linear multigigbrithm, a single coarse grid correction step takes
less CPU time than a nonlinear one. Computihg, the linearisation ofFx, is cheap because the Jacobian of
Fx in each cell is already being computed for the nonlinearsimeothing. The restriction of the operatdrg
does not take much time either, as it consists of additiofys &md finally, the coarse grid smoothing becomes
faster, because it does not need Newton-Raphson anymoigeaadse the evaluation of the linear operators
is faster than the computation of nonlinear fluxes. If theeBah operators require more iterations to reach
convergence, then the total CPU time may go up a little; thfgethds on the individual problem.

The main increase is in the memory usage. Storing the lisedmperators takes (4 - 4) = 80 reals per
cell, much more than the storage needed for nonlinear mdgltigrhere are two ways to reduce these costs:
one is to restrict the fine grid operatér; to the next coarsest grid while it is being computed. This msea
that storingL i itself is not needed, a significant gain as more than 75% afedl lie in the finest grid. The
other is to store the linearised operators with a low preaisiTheir inverse is not computed exactly anyway, so
double precision accuracy is not needed for fie This may save another 50% — 75% in memory.

4.3.5 Full multigrid As initial condition for the multigrid solution, we usualbhooser very close to zero.
Then we can see two distinct ‘stages’ in the solution prac&ssing the first iterations the boundary layers
develop and the turbulence intensity grows, often with &ia®(10*) or more. Typically, we see the residual
in the turbulence equation increase in this first stage, umeéhe turbulence intensity increases. Then, when
the boundary layers have more or less developed, the rdsidtat to decrease: this is the second stage.
Experiments show that multigrid is only effective in thixead stage.

Therefore, full multigrid (FMG) is essential for our method/e do not start the solution on the finest grid,
but on the coarsest grid on which the boundary layers can b@rately resolved. When the solution on this
grid is computed, it is prolongated as initial solution te thext finer grid where the solution is computed
too. This is continued until the finest grid is reached. Tralksbut the first computations start at the second
stage, with developed boundary layers. The time-consuévglopment of turbulence is only needed on the
coarsest grid.

5. HNITE-VOLUME DISCRETISATION

The multigrid solution technique presented in the previsestions can, in principle, be applied to different

types of discretisations. Therefore, the description ef discretisation for the system (2.1), (2.2) was kept
general. In this section, we discuss the finite volume disation that is used to run the tests in section 6;
fluxes, source terms and the implementation of boundaryitiond are described. The discussion focuses on
those aspects that are specific for the turbulence modelliagh part describes both the first-order accurate
discretisation used with multigrid and the second-ordsciditisation that is solved with defect correction.

As already mentioned in section 3.1, the RANS equations e@eatised on structured curvilinear grids,
with a technique similar to e.g. those used in [6, 11]. The pach, five-point stencil from figure 1 is enough
to discretise most of the first-order accurate operator. tRersecond-order accurate operator, more cells are
needed. The fluxes across the cell faces are discretiseaipdms: the convective and the diffusive fluxes are
computed separately. The convective flux is discretised aritapproximate Riemann solver based on artificial
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compressibility; the diffusive flux is computed with cenuldferences. The turbulent source term forms a third
part, it is discretised with finite differences.

5.1 Convective fluxes

Most turbulent flows have a high Reynolds number. Thus, tiiednce of diffusion in the flow equations is
low in most places. From a numerical perspective, this m#atshe diffusive part cannot be counted upon to
stabilise the solution: we need a discretisation ofdbevectiveluxes that is stable in itself. This is the main
reason for discretising the convective and diffusive flusegarately: thus, we can directly control the stability
of the convective part.

The convective flux function is based on artificial compretisy [2, 24] and comparable to the flux used
in [4, 5, 6]. In the time-dependent RANS equations, an aidifitme derivative is added to the continuity
equation. The resulting hyperbolic system is then disseetiwith an approximate Riemann solver. The time
derivatives are only used to derive this flux.

Our solver is a linearised Osher-type flux function, it cagthe normal velocity and the pressure on the
two sides. The Riemann solution consists of three wavesptessure waves (one running left, one right) and
a contact discontinuity (running left or right):

AN =ju e+ (Bu)t 0 X=uy, A = gus/e 4 (Ju)’ (5.1)

with ¢ a constant. The pressure waves give the sjatat the cell face, as a function of the left stgteand the
right stateg; (with normal velocityu and tangential velocity):

1 — po + p1Ay (w1 — up)

UL = ug + — s
2 A — pord
Pror = pPo Ox( | (5.2)
P1 — Po+ p1Ay (U1 —ug
P1 =Po— porg = ;
2 0 p1A; — po)\oJr
which also defines the wave spe¥t Then the other two state variablesandzr are chosen upwind:
V1 = Vo, ~T%:DTO if u1 >0,
_ . . (5.3)
v1 = vy, 1 = U1 if u1 < 0.

We construct convective fluxes with these state variables.

The stategy andg, atthe cell faces are reconstructed from the states in theargttes. For the second-order
accurate fluxes, a limited upwind scheme is used [10, 11§.Khown that the Minmod limiter is unsuitable for
use with defect correction [9]. Instead, we use the % limiter proposed by Koren [12]. For the first-order
fluxes,qy, andg; are the states in the adjacent cells.

5.2 Diffusive fluxes

On rectangular grids, the first derivatives in the diffusfitexes are discretised with central differences; this
gives a stable discretisation. For our non-rectangulatsgiPeyret control volumes are used. The integral of a
derivative over a control volume around a cell face, as inrédy can be transformed into a boundary integral.
Approximating with an average derivative and average staethe control volume faces, it is found that:

1
1d 8Qd+ + (5.4a)
u Uu u u
%A_d< 12 2(y2 — y1) + us(ya — y2) + 42 5(y5y4)+u7g(y1y5)>,
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L . (5.4b)
u u u u
— (22 — 2) + us(r — 24) + ——— (24 — 25) + wi(ws — 1) |
Aq 2 2
with
Ad’r\“.a i(Al +A2+A4+A5+2(A3+Al)) (54C)

The same equation is used feandor. This discretisation is second-order accurate for sufiityesmooth
grids, so it is used in both the first-order and second-ordeese.

Figure 5: Control volume for diffusive flux discretisation.

Compared with the diffusive fluxes in the laminar incompitglesNavier-Stokes equations, the RANS equa-
tions cause two complications. First, the cross-derieaterms likeu,, (u, in the z-direction flux) do not
cancel, because the viscosity is not constant: the diffusperator is similar to the one for the laminar com-
pressible Navier-Stokes equations. For the discretisatitis means that the diffusion operator requires a
nine-point stencil, even on rectangular grids, as eacmeeltls the states in its four neighbours and in the four
cells on its diagonals. We see that equation (5.4a) redacasentral difference equation iy andu;, but
that equation (5.4b) does not. In the linear multigrid aidpon (section 4.3), this is currently ignored: only
the five-point part of the stencil is restricted. But as theveztion and the source term are discretised on the
five-point stencil only, no convergence problems appearactce.

A second point is the choice of at the cell faces. In the convective fluxés, is chosen upwind (equation
(5.3)), but using this same viscosity in the diffusion opera causes severe instability in the Gauss-Seidel
smoothing. This is caused by the cell faces parallel to tive fidhere a small change in velocity, from positive
to negative or vice versa, causes a discontinuous change iiate viscosity. Using a central approximation,
the average of the two cells next to the cell face, is a pdigjldiut tests showed that this choice sometimes
causes instability too. At this moment, we use fhefrom one of the two cells. Which cell, is determined
in advance and not changed during the computation. We pekigwind cell for faces normal to the flow
direction and the cell closest to the nearest wall for par&ices.

5.3 Turbulent source term
The source term in (2.2) contains first- and second-ordevateres. Furthermore, being a source term, it
cannot be converted to a boundary integral over the celkfagad computing it with the cell face states is not
a good idea: these upwind states can change discontinuaithlgmall changes in the velocity (see section
5.2). Therefore, the source term is approximated with fidifierences based on the cell centre states. On our
curved, non-uniform grids, two adaptations of the standiarte-difference stencils are needed.

First, when the grid is curved, the cell centres of a cell asdeighbours are not in line and the line between
the upper and lower neighbour is not orthogonal to the lirtevben the left and right neighbour. Therefore, we
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fit a local orthogonal axis system to each cell (figure 6) amjgut the cell centre locations on these axes. Then
the derivatives are computed with the cell states in thesggied cell centres. This projection step causes
some errors, but these are of second-order in the grid sthe ifirid is sufficiently smooth. The rotation of the
local axes has no influence, as the source term is invariatgruntation.

Figure 6: Local axes and projected cell centre locationséarrce term computation.

On the orthogonal axes, finite-difference stencils for moiform grids are used. lm-direction, these sten-
cils are:
Ui+l —Uj o Ui —Uj—1
Ujp1 — Uj—1 Tit1—T; Ti—Tg_
= Uy A T2 (5.5)
§(ﬂ7i+1 - mifl)

u.’I: ~ )
Tit1 — Ti—1

With these derivatives known in each cell centre, the soteoms (2.4) and (2.5) can be computed in the
cell centres. The schemes (5.5) are in principle first-oed@urate, but if the grids are smooth, the accuracy
increases to second order. Therefore, this source termetissation is used in both the first-order and the

second-order accurate schemes.

5.4 Boundary conditions

The convective and diffusive operators require differemitdary conditions. The number of convective bound-
ary conditions depends on the type of boundary, while theigldn and the source term requitev, andir

on all boundaries.

On an inflow boundary, Dirichlet conditions are specified forv, andor. These are the same for the
convection and the diffusiom. is not specified, it follows from the convective flux functioi- is set to a small
positive value, typically).01v (see section 2.2). A no-slip wall has Dirichlet conditions,tthereu, v, andir
are all zero.

At a symmetry wall, the normal velocity is zero, while the gential velocity and’z have zero normal
derivatives. Once again, these conditions are the samefmection and diffusion.

Finally, at an outflow boundary, a Dirichlet condition is sffied for the pressure. Convection requires no
boundary conditions for the other three state variablest@diffusion and the source term, weak conditions
are imposed: homogeneous Neumann conditions.

6. TEST CASES

The performance of the multigrid algorithm is assessed foitin test cases. The first is a laminar flow, that is
computed with linear and nonlinear multigrid. After thatrliulent boundary layer flows are computed. The
last two test cases are more complex flows over airfoils.

6.1 Laminar flow
To compare the current linear multigrid algorithm with nioelar multigrid, a laminar flow is computed with
both methods. The test case is the flow in a laminar flat-platettary layer with zero pressure gradient, the
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Reynolds number i®e = 2000. Our grid hasl 28 x 128 cells and is highly stretched ipdirection. Multigrid
computations are done on six grids, the coarsest gridthag cells. For both algorithms, the same Gauss-
Seidel smoothing is used on the fine grid and in both caseslisieestisation is the same first-order accurate
one. The only difference is in the coarse-grid corrections.

Table 1: Laminar boundary layer, iterations, and compaoretime per grid.

Grid Iterations t(s)

NMG LMG | NMG LMG

4 x4 4 4 0.1 0.1
8% 8 5 5 0.1 0.1
16 x 16 5 5 0.5 0.4
32 x 32 5 7 1.5 1.9
64 x 64 6 9 7.7 9.4
128 x 128 7 10 37.3  39.7

Table 1 gives a comparison of the results for the FMG solutimtess. For each grid, from the coarsest
to the finest, the table gives the number of iterations ne¢dedach convergence on that grid (sum of the
residuals< 107). It also lists the computation time needed to get the smiutin that particular grid. The
computations were performed on a 2.2 GHz PC.

The table shows an adverse effect of the Galerkin operasems ¢ection 4.3): on the finer grids, more
iterations are needed for the LMG than for the NMG solutiongeiss. The LMG computation times are higher
too, but they do not increase as fast as the number of itesatibherefore, the LMG coarse grid corrections
are indeed cheaper than the NMG coarse grid correctionsnAll, this laminar test case shows that the LMG
gives similar efficiency as the standard NMG.

6.2 Boundary layers

The first turbulent test cases are two boundary layer flows fteeplates: simple flows that are dominated by
the development of turbulence in the boundary layer. Thase<illustrate the efficiency of linear multigrid
for turbulent flows and compare the performance on coarsdinadgrids.
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Figure 7: Turbulent flat-plate flow aRe = 107, zero pressure gradient. Isoline plots of velodity (a),
turbulent viscosityor - 10° (b), and the velocity profile at = 1 in wall coordinates (- -) compared with
analytical solution (—) (c).

Boundary layer flows The first flow is a boundary layer with no pressure gradiend, Reynolds number of
107 based on the length of the plate. This test case is used ineWepaper [17]. The grid is the same as for
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the laminar boundary layer and multigrid is used with sixdgriResults are given in figure 7. The first figure
gives the velocity profile and the second figure the turbuk&stosityor. We see that this viscosity is (almost)

zero in the far field, then increases in the boundary layerrahdns to zero at the wall. Compared with the
velocity profile, the highest turbulence intensity occuighhin the boundary, where the velocity is close to
1. The last figure gives the velocity profile in wall coordiesit good agreement is found with the theoretical
profiles in the viscous sublayer and the logarithmic layer.
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Figure 8: Turbulent flat-plate flow de = 7.055 - 108, adverse pressure gradient. Isoline plots of veloaity
(a), turbulent viscosity - 105 (b), and the velocity profile at = 0.82 (—) compared with measurements)(
from [20] (c).

Similar results are found for a more difficult flow, a boundéayer with an increasingly adverse pressure
gradient over the plate. This flow was investigated expamtiadgy by Samuel and Joubert[20], it has a Reynolds
number of7.055 - 106 based on the plate length. The grid is the same as for thequetest case. Results in
figure 8 show how the adverse pressure gradient slows dowfiotlie The boundary layer is thicker than in
the previous case and the turbulence intensity is highermparison of a velocity profile with experimental
measurements shows excellent agreement (figure 8c).

Multigrid convergence Figure 9a and 9b give the convergence of the residual dihi@gnultigrid compu-
tation. The finest grid is very fine for a boundary layer gri@§lcells in vertical direction), the flow can be
resolved on most coarse grids too. Therefore, we start th& Ebmputation on the secongl x 8) grid. Here,
the development of the boundary layer, when the residues réd falls, is clearly seen. On all subsequent
grids, the convergence is excellent. The convergence e dot deteriorate much on the finer grids, which
means that the Galerkin operators cause few problems. thdaevergence on the fine grids is faster than in
the preceding laminar case. Also, the convergence is sifoifdboth boundary layers; multigrid performance
does not get worse in adverse-pressure conditions.

For comparison, figure 9¢ shows the convergence when thepzessure-gradient flow is solved with line
Gauss-Seidel alone, on a single grid. This takes 120 iteratn the fine grid, compared to 7 for the multigrid
solution. 40 iterations are needed for the development@btbundary layer. The total CPU time is about 5
times higher than for the multigrid solution.

6.3 NACA 0012 airfoil

A more complex test case than the flat-plate boundary layteislow over a NACA 0012 airfoil. It features
stagnation points, curved walls and the transition from argary layer to a turbulent wake. The angle of
attacka = 0 and the Reynolds number i = 10°. Because the NACA 0012 airfoil is symmetric, the flow is
computed in the upper half of the flow domain only. An H-typ&lds used with 512 cells in-direction and
256 cells iny-direction, the grid is stretched near the airfoil surfand aear the leading and trailing edges. The
problem is used to test multigrid convergence for a morediffiflow and to study the convergence of defect
correction for the second-order accurate discretisation.
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Figure 9: FMG convergence for boundary layer flows under t&yand adverse (b) pressure gradients. Graph
(c) gives single-grid convergence for the same case as (a).
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Figure 10: Flow over a NACA 0012 airfoil (second-order aatersolution, after five DC steps). These plots
show the velocityu| (a), the pressurg (b), and the turbulent viscosityr - 10° (c). For clarity, all plots are
stretched iny-direction.

Flow field The flow around the airfoil is given in figure 10. The velogiipt 10a shows the stagnation point
at the leading edge, the suction area above the airfoil, twigg boundary layer and the transition from the
boundary layer to the wake. The second figure shows the peeasd the last figure the turbulent viscosity.
We see here that the turbulence intensity is very low nealethding edge, it starts to grow where the pressure
gradient becomes adverse. Behind the airfoil, the locaifdhe maximum value for the turbulence gradually
shifts from the centre of the boundary layer to the centrénefirake.

Multigrid convergence The flow is solved with multigrid on six grids; the coarsestidhas 8<16 cells. As
in the boundary layer case, the FMG computation is starteth@second grid. But the NACA 0012 flow has
more different features than the simple boundary layer fl@aest cannot be resolved accurately on thex 38
cell grid. Therefore, multigrid does not work on this grido fietain the full advantage of the FMG algorithm,
the flow is solved with single-grid smoothing on thexXi® grid. From the 32 64 grid on, multigrid is used.
The convergence of the residual is shown in figure 11a. Thebeumf iterations per grid is a little higher
than for the preceding boundary layer flows, but the initsidual on each grid is higher too (because the flow
is more complex), so that is to be expected. Convergencerdueteteriorate much on the finer grids, which
shows once again that the Galerkin operators work correthigre is a little ‘bump’ in the convergence on the
32x64 grid, probably caused by the development of the boundamsrithat is not sufficiently resolved on the
16x32 grid.
For comparison, the single-grid convergence is shown irrdigulb. This convergence is odd: the residual
stays constant for a long time and then suddenly decreabesb&haviour is abnormal for these types of flows,
the usual single-grid convergence plots look like figureBat it does show that there are cases where the FMG
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Figure 11: NACA 0012, convergence of the residual on thexZ8 grid, for multigrid (a), single-grid Gauss-
Seidel (b), and second-order accurate defect correctjon (c

solver can compute flows that cause problems for singleggridothing.

Finally, figure 11c shows the residual for the first 25 defemtrection steps, starting from the first-order
accurate solution on the 25612 grid. In the first five iterations, the residual decreasétile at a relatively
high speed. The asymptotic convergence rate is sloweatitgr to convergence is expensive. Luckily, this is
not needed: a grid convergence study (not shown) proveshbatolution after five defect correction steps is
converged and much more accurate than the first-order soluti

6.4 Supercritical airfolil

The low-Mach flow over a supercritical airfoil was measurgd\takayama [18]. This airfoil is placed at an
angle of attackx = 4°, the Reynolds number it.2 - 105. Computation of this flow is very challenging, as
the flow field has high curvature and strong pressure gragliggdr the trailing edge. In the same location, two
boundary layers of different strength merge to form the wileht wake. The flow is computed on a 26856
cell H-type grid.

0.6

a)

Figure 12: Flow over a supercritical airfoil (second-or@ecurate solution, after five DC steps); velodity
(a), pressure (b), and turbulent viscosity; - 10° (c). Plot (c) is stretched ip-direction, - - -: trailing edge
streamline.

Flow field The most typical feature of the Nakayama wing is the cont@wer side near the trailing edge.
The strong curvature in the flow field there can be seen in thate(figure 12). The plots show the stagnation
point and a strong suction peak near the leading edge, andlerate high pressure region in the hollow below
the trailing edge. The turbulence intensity near the trgikdge is interesting: because of the adverse pressure
gradient above the airfoil, the turbulence intensity ishieigabove than below the airfoil. The two boundary
layers merge, so the turbulence levels have to adapt. Fapper boundary layer, the reduction in turbulence
intensity happens in a thin layer, clearly visible in figuzcl This layer isnot aligned with the flow, it runs
upwards into the flow.
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Figure 13: Supercritical airfoil, first-order accuratedygonvergence study. Solutions fgy (a) and for the
velocity profiles above (b) and below the airfoil (c) are cargd with measurements-{ from [18].

Grid convergence, comparison with experimera grid convergence study is done for the supercriticalglirf
Solutions on three grids are compared with Nakayama'’s éxeertal data [18]. Figure 13 shows results for
the first-order accurate discretisation: velocity profileghree chordwise positions and the pressure coefficient
cp = (P — Po)/(2uk), Where the reference pressyrg = 1 and the reference velocity., = 1 too. The
errors in thec, plot are large: the pressure in the stagnation point is tgh bnd the suction peak is not strong
enough. As a result, the pressure on the upper side of thalagrfnot predicted well. The same is seen in
the velocity contours: especially above the airfoil, thiuson is far from converged, it does not even exhibit
asymptotic first-order convergence yet. A good solutiorhwlite first-order discretisation would require much
finer grids.
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Figure 14: Supercritical airfoil, second-order accuratiel gonvergence study (five defect correction steps).
The plots show the same variables as in figure 13.

The second-order solution, after five DC steps, is much béttee solution on the coarse 844 grid is bad,
but the other two lie almost on top of each other. Tpesolution is excellent: the suction peak is resolved
correctly ande, in the stagnation point is very close to 1. Also, the velogitgfiles show good agreement
with the experiment. Discrepancies are probably due toppecximations made in the turbulence model. The
only place where the solution is not completely convergéd fke wake, but even there the agreement with the
experiment is good.

Multigrid. The Nakayama flow is solved with multigrid on 6 levels, tharsest level is 88 cells. Due to the
difficulty of the flow, the coarsest grid on which a solutiorutibe obtained is the fourth grid of 6464 cells.
There, 6 iterations are done with single-grid Gauss-Sealdevelop the boundary layers, then the multigrid
is started; this can be seen in the multigrid convergencehgt®a. The solution on the fifth and sixth grid is
found with multigrid from the start.

The multigrid convergence on the two finest grids is slowantin the previous problems and it is a bit
‘littery’. There are two possible causes for this. One, tiveod has both an upper and a lower side; to get
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Figure 15: Supercritical airfoil, convergence of the resitbon the 256 256 grid, for multigrid (a), single-grid
Gauss-Seidel (b) and second-order accurate defect doréc).

good smoothing, it was necessary to start the horizontaldmoothing alternately from the lowest line going
up and from the highest line going down. This sometimes calasge residuals near the outer boundaries of
the domain, that have nothing to do with the turbulence mimdelthey appear in laminar flow too.

And two, to get stability near the trailing edge, a small eggthere (a circle with radius 0.01) needs a
higher damping in the coarse-grid corrections. In thatlejrthe« for the coarse grid corrections is set at a
constant high value. This stabilises the computation, tdécreases the convergence a little. This problem
can probably be solved by performing coarse grid correstiith the full nine-point stencils instead of the
five-point stencils, as diffusion is dominant in the highdjesmts near the trailing edge. This is an area for
further study.

At this moment, the multigrid convergence is acceptablan@ared with a single-grid solution (figure 15b),
the computation time is reduced by a factor of about 11.5eEteforrection convergence is slow (figure 15c).
The residual is reduced significantly in the first 10 stepstheen the convergence rate decreases. Still, as figure
14 shows, five defect correction steps is enough to get anmatecsolution.

6.5 Parameter settings

The linear multigrid algorithm from sections 4.2 and 4.3 bame free parameters, that can be tuned if desired.
However, for our numerical experiments, we found that théswot necessary for most parameters: the values
given in section 4 are satisfactory for all problems. Theapaatere, the required relative convergence for the
line smoothing residual, has the strongest influence. Aleweeans, that a higher convergence rate is required
for NR in the lines, which leads to higher values for the dampi. This means better stability, but slower
convergence for the multigrid method. Still= 10~? is used for all our problems, with good results.

The user's most important choice is, on which grid the FMQusoh is started. For a linear coarse grid
correction we can use as many grids as desired, but FMG esgaonlinear solutions on coarse grids. The
problems above show, that the coarsest possible starticiggpends on the problem: for more complex flows,
we need finer starting grids. We found, as a good rule of thuhdi,the starting grid must not have less than
about 8 — 10 cells over the thickness of the expected bourapeys.

7. CONCLUSIONS
We have presented a novel multigrid method for the Reynéidsaged Navier-Stokes equations with Menter’s
turbulence model. The method has two new aspects: a lineasegrid correction with nonlinear smoothing
on the finest grid and an efficient locally damped line Gausgled smoothing. The method is combined with
defect correction to obtain second-order accurate salstio

Standard nonlinear multigrid does not work for the RANS dtuns. This has two reasons. The first is, that
the combination of the non-constant viscosity and the sotaen in the turbulence equation makes it possible
for the system to have unstable eigenmodes, that make Gaidst smoothing impossible. However, in the
neighbourhood of a converged solution, these eigenmodesieestable. Our line Gauss-Seidel smoothing is
stabilised by adding local damping to the turbulence equati each smoothing step, enough to remove the
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unstable eigenmodes. We showed that the amount of dampoegsery can be estimated with the Newton-
Raphson root finder in the individual lines: if NR convergegcgly, then enough damping is used.

The second problem is, that the nonlinear RANS operatoroarse grids do not resemble the operator on
fine grids sufficiently well. This problem is caused by thesstivity of the turbulence source terms to the grid
size on too coarse grids. The problem is solved by switchoraglinearised coarse grid correction with Galerkin
operators. These resemble the fine grid operator reasomedblyand their construction is simple for a finite-
volume discretisation. A disadvantage is the higher memeguirement. The combination with nonlinear
smoothing on the finest grid adds robustness and allows ti@wuiation of the Gauss-Seidel damping factor,
that is used to stabilise the smoothing on the coarse grids to

The multigrid method is combined with a cell-centred finitdume discretisation. Convective fluxes are
constructed with artificial compressibility, diffusive es with central differences. The source terms are com-
puted with finite differences on local orthogonal grids.

Numerical results show that the multigrid convergence iy \god. The convergence rates for a laminar
problem are compared with nonlinear multigrid: they ardtéeliower due to the use of Galerkin operators, but
the effect on the computation times is small, because tleatimethod requires less time per multigrid cycle.
Turbulent flow problems show comparable convergence. Defacection converges very slowly. However,

this is no problem as only a few defect correction steps bairsglution from first- to second-order accuracy.
Results for two airfoil computations confirm this.

Full multigrid is needed for good convergence, becauseitartt boundary layers have to develop first when
the initial condition is a uniform flow. In this initial stageultigrid is of little use. By using full multigrid, this
first stage is only encountered on the coarsest grid.

Finally, comparisons with analytical and experimentaladamnd grid convergence studies showed that the
accuracy of the solutions is good and that the defect coorederation is efficient for the solution of second-
order accurate problems.

Outlook The present method works well. However, there is room f@romements to make the method even
more robust and accurate. For instance, a larger study gfatemneter settings for the multigrid algorithm can
lead to better guidelines for the choice of the parametelso,At is worthwhile to study discretisation effects,
like the choice of the turbulent viscosity at the cell fadest influences the smoothing efficiency. And finally,
it is useful to compare coarse-grid corrections using mioiu stencils with the present method, to see if there
are any differences.

The present method can probably be extended to other tumtilmodels. The current analysis is done for
Menter’s turbulence model, but most one- and two-equatisbulence models consist of the same type of
equations: convection-diffusion equations with similesguction and dissipation terms. Therefore, we expect
that the present method can be used for other RANS turbulerockels too and that it is a useful tool for the
fast solution of these equations.
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