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ABSTRACT
A novel multigrid method for the solution of the steady Reynolds-Averaged Navier-Stokes
equations is presented, that gives convergence speeds similar to laminar-flow multigrid solvers.
The method is applied to Menter's one-equation turbulence model. New aspects of the method
are the combination of nonlinear Gauss-Seidel smoothing on the finest grid with linear coarse
grid corrections, and local damping in the initial stages of the computation, to keep the solution
stable; the damping needed is estimated with the nonlinear smoother. Efficiency on the finest
grid is increased with full multigrid, second-order accuracy is obtained with defect correction.
Tests on boundary layers and airfoil flows show the efficiency of the method.
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1. INTRODUCTION

Fast solution techniques for turbulent flow equations are ofgreat importance in today’s engineering practice.
Most real-life flows are turbulent, be they air or water flows around vehicles or flow in pipes and channels. So in
design processes for these devices, turbulent flow simulation is indispensable and for efficient design, the flow
solvers must be fast. Quasi-steady turbulent flows are usually modelled with the steady Reynolds-Averaged
Navier-Stokes (RANS) equations; an efficient way to solve a variety of flow problems is multigrid [8, 23, 27].

To obtain the RANS equations, the unsteady turbulent flow field is averaged. The result is a set of flow
equations that may have steady solutions. These equations contain unknown closure terms for the effect of
turbulence, which are modelled approximately with a turbulence model: one or more differential equations
for the turbulent stress. As opposed to the laminar Navier-Stokes equations, these turbulence models contain
source terms, that represent the production and dissipation of turbulence.

Multigrid solution of the RANS equations is not straightforward. For the laminar Navier-Stokes equations,
efficient multigrid techniques have been developed where the steady flow equations are solved directly with a
combination of nonlinear multigrid and Gauss-Seidel smoothing; examples are found in the work of Hemker et
al. [10, 11], of Dick et al. [6, 22], and of Trottenberg et al. [7, 23]. But due to the source terms in the turbulence
model, the RANS equations cannot be solved with these techniques. Instead, multigrid is usually combined
with a time stepping approach. Either time integration is used as a smoother in the multigrid algorithm or
multigrid is used for the individual time steps in an implicit time integrator, that time-marches the unsteady
RANS equations to convergence. In the first category, Mavriplis [14, 15] uses Jameson’s multigrid method



2

with a Runge-Kutta time integration smoother, on unstructured grids. Liu and Zheng [13] present a finite-
volume method on structured meshes. Carré [1] uses linear multigrid to solve implicit time steps and increases
these time steps as the solution converges. Steelant et al. [22] form an exception: they use damped multigrid
with a line smoother.

In the solution process, the link between the Navier-Stokesequations and the turbulence model is important.
In many flow solvers, the turbulence model is considered loosely coupled to the other flow equations, therefore
it is solved separately: alternately, the flow field is updated with the turbulence fixed and the turbulence is
updated with the flow fixed. For the flow field step, an existing laminar flow solver can be used. However, Liu
and Zheng [13] claim that this technique is inefficient; theyreport improved convergence when all equations
are solved together. On the other hand, Steelant et al. [22] get the best results with a loosely coupled approach.

In this paper, we show that the steady Reynolds-Averaged Navier-Stokes equations with Menter’s turbulence
model [17] can be solved with multigrid and Gauss-Seidel smoothing, without the need for time stepping, and
that convergence rates can be obtained that are similar to the most efficient multigrid solvers for laminar flow.
We also explain why a fully coupled solution of the flow field and the turbulence is necessary to obtain this
convergence. Our novel multigrid technique is a combination of nonlinear line Gauss-Seidel smoothing on the
finest grid and linearised coarse grid corrections. Local damping is applied in the initial part of the solution
process; this does not reduce the convergence rate because it is not needed in most of the domain. The nonlinear
smoothing is used to estimate the need for damping.

To get an efficient solution process on the finest grid, a full multigrid method (i.e., the initial solution on a grid
comes from solutions on coarser grids) is essential. Second-order accuracy is obtained with defect correction
iteration [3, 9, 23]. Defect correction iteration converges slowly in terms of the residual, but it improves a
first-order accurate solution to second-order accuracy in only a few steps.

The solution technique is applied to a finite-volume discretisation of the incompressible RANS equations
on structured, curved grids. The discretisation is cell-centred and combines artificial compressibility convec-
tive fluxes with central diffusive fluxes and finite-difference stencils for the source terms. It is based on the
discretisation presented in [26].

The structure of the paper is as follows. It starts with two introductory sections: in section 2, a brief overview
is given of the RANS equations and of Menter’s one-equation turbulence model. And section 3 introduces the
multigrid method for laminar flows [26], on which the presentmultigrid method is based. Section 4 forms the
heart of the paper: it shows why the RANS equations cannot be solved with classical multigrid, it presents a
suitable Gauss-Seidel smoother and it introduces the linear multigrid algorithm. Furthermore, it explains why
the coupled solution is essential for fast convergence. This discussion is valid for general spatial discretisations;
section 5 gives the finite-volume discretisation used in ournumerical tests. In section 6, results from four test
problems show the efficiency of the method for different flowsand the accuracy of the solutions obtained. The
paper ends with a conclusion.

2. TURBULENT FLOW EQUATIONS

This section gives a brief overview of the flow equations usedhere, the Reynolds-Averaged Navier-Stokes
(RANS) equations and Menter’s turbulence model [17].

2.1 RANS equations
For the RANS equations, the turbulent flow field is ensemble-averaged. In the equations for the averaged
flow quantities, the only contribution from the turbulence that remains is a turbulent stress term. Under the
Boussinesq hypothesis, this term can be modelled by simply adding a non-constant turbulent viscosity to the
laminar viscosity in the standard Navier-Stokes equations.
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In two dimensions, the steady RANS equations for incompressible flows are:��x �p+ u2�+ ��y (uv) = ��x ((� + �T ) 2ux) + ��y ((� + �T ) (uy + vx)) ;��x (uv) + ��y �p+ v2� = ��x ((� + �T ) (uy + vx)) + ��y ((� + �T ) 2vy) ;��x (u) + ��y (v) = 0: (2.1)

Herep is the pressure, divided by the (constant) density,� is the laminar kinematic viscosity and�T is the
turbulent viscosity. As�T is not known exactly, it is modelled with an approximate turbulence model.

2.2 Menter’s turbulence model
To approximate�T , one or more equations are added to the system (2.1). Menter’s turbulence model is a
robust and accurate one-equation model, that computes the turbulent viscosity directly. It is similar to the
Spalart-Allmaras model [21]. In two dimensions, it is givenby:�(~�Tu)�x + �(~�T v)�y = ��x ��� + ~�T�m� �~�T�x �+ ��y ��� + ~�T�m� �~�T�y �+ P �D: (2.2)

This is a convection-diffusion-reaction equation:P andD are source terms modelling the production and
dissipation of turbulence. To get correct behaviour of the model near walls, the actual�T to be used in (2.1) is
scaled:�T = �1� e�� ~�TA+�� �2� ~�T : (2.3)A+ and� are constants. The boundary conditions for~�T are straightforward; this is one of the advantages
of Menter’s model. On a wall,~�T = 0 as turbulence dies out near walls. And on inflow boundaries, asmall
positive value for~�T is set, usually about0:01�; if ~�T at the inflow is zero, it remains zero throughout the
domain because no turbulence is produced. The solution is not sensitive to the inflow~�T , as long as it is
significantly smaller than the maximum~�T [17].

The production and dissipation terms are the heart of the model. The production term is:P = 
1 � + �T� + ~�T ~�Tq2(u2x + v2y) + (uy + vx)2; (2.4)

and the dissipation is:D = 
2
3DBB tanh� Dk�"
3DBB� ; (2.5)

with Dk�" = ~�2T (uxx + uyy)2 + (vxx + vyy)2u2x + u2y + v2x + v2y ; DBB = (~�Tx)2 + (~�Ty)2: (2.6)Dk�" is the main dissipation term. Equation (2.5) reduces toD � 
2Dk�" whenDk�" is small, the limiting
with 
3DBB is only needed for regions whereDk�" is large due to small velocity derivatives. TheDk�" in
(2.6) is actually an alternative form that is suggested, butnot used, by Menter. It is slightly more complex than
Menter’s original form, but it can be discretised on a five-point stencil (see section 5). Both the production
and the dissipation term are invariant under rotation and the production termP is always positive, while the
dissipation�D is always negative.

The model constants have the values
1 = 0:144, 
2 = 1:86 andA+ = 13:0. The von Karman constant� = 0:41. Furthermore,
3 = 7 and�m = 1.
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3. MULTIGRID

For laminar flows, multigrid is a well-known and mature solution technique [7, 8, 23, 27]. Many different
varieties exist. Here, we briefly introduce the nonlinear multigrid technique and smoother that we have used
before [26], a classical technique similar to the one described in [6]. This section serves as a basis for the
following section 4, where we discuss the changes to this nonlinear multigrid technique that are needed to
solve the RANS equations.

3.1 Grids and discretisation
The method is constructed for a cell-centered finite-volumediscretisation on curvilinear structured meshes. So
the grids consist of quadrilateral cells, that may be non-rectangular, and the states in the middles of the cells
are stored. A typical cell is shown in figure 1. The finest grid is called
K . A set of underlying coarse grids
k with 0 � k � K � 1 is made by merging 2�2 blocks of cells in the next finer grid into single cells, so
each cell(
k)i;j in grid 
k corresponds to four cells(
k+1)2i(+1);2j(+1) in the next finer grid
k+1. The
RANS operator (2.1) plus the Menter model (2.2) is denoted byF(q), q = [u; v; p; ~�T ℄T . For the following
discussion, we limit ourselves to five-point stencils: for each cell, the state in that cell and in its four neighbours
is used. The discretisation on grid
k isFk, the state on that grid isqk.

qi;j qi+1;j
qi;j�1

qi�1;j
qi;j+1

Figure 1: A typical cell, with four neighbours.

3.2 Multigrid algorithm
In the multigrid technique, the high-frequency errors in the initial solution are removed on the fine grid
K
and the lower-frequency errors on the underlying coarser grids
0 � � �
K�1. The final problem to be solved
is FKqK = 0, the general problem on each grid isFkqk = sk, for some source termsk. We call the line
Gauss-Seidel smoothing operatorMk and introduce a finite-volume prolongation operatorP kk�1 that moves a
solution from one cell on gridk � 1 to the four cells on gridk that lie in the same location:(qk)2i(+1);2j(+1) = P kk�1(qk�1)i;j = (qk�1)i;j : (3.1)

In the same way, a restriction operatorRk�1k is defined for defectsd :(dk�1)i;j = Rk�1k (dk)2i(+1);2j(+1) = (dk)2i;2j + (dk)2i+1;2j+ (dk)2i;2j+1 + (dk)2i+1;2j+1: (3.2)

Then the multigrid procedure (for iterationn) is defined recursively as follows. It is started on the finestgrid,
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with sK = 0.qn+1k = recursive function NMG(k; qnk ; snk )~qnk = (Mk)q1 qnk q1 pre-relaxation steps;
if k 6= 0 thendnk�1 = Rk�1k (Fk~qnk � snk ) defect on coarse grid;snk�1 = Fk�1qnk�1 � wnk�1dnk�1 source term;qn+1k�1 = NMG� �k � 1; qnk�1; snk�1� � MG steps on coarser grid;~~qnk = ~qnk + 1wnk�1P kk�1 �qn+1k�1 � qnk�1� prolongation of correction;
end ifqn+1k = (Mk)q2 ~~qnk q2 post-relaxation steps:

Our experiments in [26] show that, for the type of flows we consider, a W-cycle (� = 2) is the most efficient.
The scaling parameterwnk�1 is usually1. But if the defectdnk�1 is very large, it may be impossible to find a
solution toFk�1qnk�1 = snk�1, becauseF is nonlinear; thensnk�1 can be reduced by makingwnk�1 small. The
prolongated correction is unscaled through division bywnk�1.
3.3 Gauss-Seidel smoothing
The multigrid algorithm is combined with alternating line Gauss-Seidel relaxation; this is a good smoothing
technique for convection-dominated flows. In each iteration stepn, the solution is updated row by row or
column by column. The stateqn+1k in each line of cells is changed such, that the residual in those cells
becomes zero, given the current state in all other cells. These states are the old statesqnk in cells that have not
been updated yet and the new, updated statesqn+1k in all other cells. So we solve (for row smoothing, marching
in positivej-direction):Fk �(qn+1k )i;j ; (qn+1k )i�1;j ; (qn+1k )i;j�1; (qn+1k )i+1;j ; (qnk )i;j+1� = 0; 8i 2 row j: (3.4)

A similar expression is found for column smoothing. Equation (3.4) is solved with a numerical root finder,
the matrix-vector version of the Newton-Raphson method. Start with an initial guessq0NR = (qnk )i;j2line, then
define each new stepl as:q l+1NR = q lNR � ��Fk�qk ��1line

(Fk)line
�q lNR

� : (3.5)

On convergence, we set(qn+1k )i;j2line = q lNR. The matrix�Fk=�qk is block-tridiagonal (a cell has four
neighbours that influence it, but only two are in the line), soequation (3.5) can be solved with a block Thomas
algorithm.

The process can be changed by under / overrelaxation, i.e. introducing a parameter! > 0 and choosing:(qn+1k )i;j2line = (qnk )i;j2line + ! �q lNR � (qnk )i;j2line
� : (3.6)

For nonlinear Gauss-Seidel, underrelaxation (! < 1) is used to keep low-frequency errors stable. We use! = 0:9 [26].

3.4 Full multigrid
The multigrid solution process is used in a full multigrid framework. We actually start the solution process
on the coarsest grid
0, with Gauss-Seidel smoothing only. When a converged solution on this grid is found,
it is prolongated as an initial solution to the next finer grid
1, where a converged solution is produced with
multigrid on two grids. This process is continued until the finest grid is reached. Full multigrid reduces the
number of iterations needed on the finest grid: these are replaced by cheaper iterations on coarser grids.
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3.5 Defect correction
Multigrid with standard smoothing is ineffective for the solution of second-order accurate discretisations. These
can be solved with defect correction: a first-order discretisationFK with a multigrid solver is used as an
approximate inverse for the second-order discretisationFK;2. Before each multigrid cycle, a source term is
computed on gridK:dnK = FK(qnK)�FK;2(qnK): (3.7)

Then a multigrid cycle is applied toFK(qn+1K ) = dnK . After this cycle, a new source term is set, then a new
multigrid cycle is started, etc. On convergence, the solution satisfiesFK;2(qnK) = 0.

For defect correction, the residual converges slowly. But when the defect correction is started from a con-
verged first-order accurate solution, then a few defect correction cycles are enough to make the solution second-
order accurate, even if it is not converged. (Theoretically, second-order accuracy is reached after one defect
correction cycle [9].) Thus, defect correction can be seen as an iterative improvement for a first-order accurate
solution.

4. SOLUTION OF MENTER’ S MODEL

Standard multigrid, as applied to the laminar Navier-Stokes equations, cannot be used directly for the RANS
equations. This has two reasons. One: because of the source terms in the turbulence equation, the flow
equations are no longer positive definite, so the line smoothing does not converge. And two: the solutions on
the coarse grids do not resemble the solutions on the fine gridenough.

This section gives the solution to these problems. In section 4.1, the problem with the flow equations is
analysed. An improved smoother is presented in section 4.2.And section 4.3 gives a working coarse grid
correction algorithm.

4.1 Source term and negative eigenvalues
Classical relaxation techniques, like line smoothing, only work when the discretised systemFk is of vector-
positive type [4]. This means that the system has no unstableeigenmodes: whenFk is linearised, all eigenvalues� of the resulting linear system must have<(�) > 0. Discretisations of convection-diffusion equations, like
the laminar Navier-Stokes equations, may be vector-positive; this depends on the discretisation. For example,
the artificial compressibility discretisations by Dick andhis co-workers [4, 6] are always vector-positive, but
their later AUSM+ based discretisations [19, 25] are not.

In the RANS equations, a more fundamental problem appears. There, thecontinuoussystem makes it im-
possible to find a discretisation that is always vector-positive. The occurrence of eigenvalues with<(�) � 0 is
caused by the source term in the turbulence equation.

4.1.1 Linearised flow equations To study the effect of the source term, we construct a linearised version
of the continuous systemF . We choose a functionQ = [U; V; P;NT ℄T and write functions close toQ asq = Q + q 0. Substituting this in (2.1) and (2.2) gives a linear operator L for the small disturbancesq 0, such
that: F(Q + q 0) � F(Q) + Lq 0: (4.1)

We find:

L =
266666666666664

2U�x + V �y U�y �x �2Ux�x�N(2�xx + �yy) �N�xy �(Uy + Vx)�yV �x U�x + 2V �y �y �(Uy + Vx)�x�N�xy �N(�xx + 2�yy) �2Vy�y�x �y 0 0NT �x NT �y 0 U�x + V �y �N(�xx + �yy)�P2(2Ux�x + (Uy + Vx)�y) �P2((Uy + Vx)�x + 2Vy�y) �NT x�x �NT y�y+D2(Uxx + Uyy)(�xx + �yy) +D2(Vxx + Vyy)(�xx + �yy) �P1 +D1+D3(Ux�x + Uy�y) +D3(Vx�x + Vy�y)

377777777777775
: (4.2a)
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For simplicity, we useD = 
2Dk�" instead of equation (2.5) and the low-Reynolds correction (equation (2.3))
is not used, so�T = ~�T . This makes no large difference to the system. The symbols like �x and�xx denote
differentiation operators, the abbreviations are:N = � +NT ; (4.2b)

representing the total viscosity, and:P1 = 
1q2(U2x + V 2y ) + (Uy + Vx)2; P2 = 
1 1p2(U2x + V 2y ) + (Uy + Vx)2 ; (4.2c)

D1 = 2
2NT (Uxx + Uyy)2 + (Vxx + Vyy)2U2x + U2y + V 2x + V 2y ; D2 = 2
2N2T 1U2x + U2y + V 2x + V 2y ;D3 = �2
2N2T 1(U2x + U2y + V 2x + V 2y )2 ; (4.2d)

representing parts of the production and dissipation terms.
The operator in the first three rows, first three columns is thelaminar Navier-Stokes operator. We see the

continuity equation�xu+ �yv = 0 in the third row and the momentum equations with convection and viscous
diffusion in the first two rows. The fourth row and column add the effect of turbulence: in the fourth column,
we see terms due to the non-constant viscosity; the fourth row contains the turbulence equation, where the
terms are combinations of convection-diffusion effects and source term contributions.

These combined terms cause zero eigenvalues in the system (the limiting case of eigenvalues with<(�) � 0),
when they cancel each other out. For example, in the (4,4) term, the convection and the non-constant diffusion
term are comparable, but they have different constants. Thesource term also has an important effect on the (4,4)
term. Altogether, situations can arise where the fourth equation does not change when the local~�0T changes.
In that case, the operator has a zero eigenvalue. In a realistic flow solution, any combination of values forU ,V , NT and the source term parametersP1, P2, D1, D2, andD3 may appear, so zero eigenvalues are bound
to arise. They appear either by this cancelling of the (4,4) term or by interaction of the (1–2,4) terms with the
(4,1–2) terms.

One could think that the use of stable discretisations, e.g.upwinding, can make a discretised version of this
system vector-positive. Unfortunately, that is not true: the terms in (4.2) that may cancel each other are part
of totally different parts of the operator. Those parts, like the convection operator and the source term, cannot
be combined, so they cannot be discretised with one stable technique. Therefore, even in a discretised system,
situations where the system is not vector-positive cannot be prevented.

4.1.2 Determinant To understand the nature of the system, it is useful to study the determinant of (4.2a).
This determinant is:det(L) = �� [N�� (U�x + V �y)℄ �N�� �(U �NTx) �x + �V �NTy� �y�+ P1 �D1�+(Uy + Vx) (�yy � �xx)[P2(Uy + Vx) (�yy � �xx) +D2 ((Vxx + Vyy) �x � (Uxx + Uyy) �y)� +D3 (Vx�xx � Uy�yy)℄ ; (4.3)

where� is the Laplace operator�xx + �yy . This determinant is much more complex than the one for the
laminar Navier-Stokes operator, given here for comparison:det(Llam) = ��(N�� (U�x + V �y)) : (4.4)

The most noticeable difference is, that the turbulent determinant has two separate terms, while the laminar
determinant has only one product of terms. The second term isa combination of the turbulent viscosity effect
on the momentum equations and the velocity effects in the turbulent source term. The operator has zero
eigenvalues whendet(L) = 0. In the laminar case, this happens only when one of the terms of the product is
zero. In the turbulent case, it happens whenever the two terms cancel each other out.
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In multigrid, one usually determines the type of the system by looking at the highest derivatives in the
determinant. But since this system is singularly perturbed(� is small), we study the terms with the highest two
derivatives, i.e. those of fifth and sixth order. These are:det(L) � �N2�3 +N�2 �(2U �NTx) �x + �2V �NTy� �y�+D2(Uy + Vx) (�yyyy � �xxxx) ((Vxx + Vyy) �x � (Uxx + Uyy) �y) : (4.5)

Even here, a part of the second term remains. And even though the termD2 containsN2T , it is O(NT ) in a

boundary layer, whereuy isO(N�1=2T ). Therefore, its contribution is non-trivial: the source term really has an
effect on the occurrence of zero eigenvalues.

4.1.3 Stability near a solution An interesting property of the system saves us: if the turbulence model is
stable, then the operator has no eigenvalues with<(�) � 0 near a solution of the steady RANS equations. This
can be seen by considering the time-dependent flow equationsand substituting a steady solution with a small
disturbance. If any of the eigenvalues ofL would have a negative real part, then the disturbance would grow in
time, so the flow would be unstable. Thus, the existence of a stable steady solution guarantees that all� have<(�) > 0 near that solution. This is good news, as a properly designedturbulence model must have stable
steady solutions. It is the task of the turbulence model designer to guarantee this. Therefore, we may assume
that near a solution,L always has<(�) > 0 for all �.

Figure 2 gives an example. It shows a part of the eigenvalue spectrum for a discretised version of (2.1), (2.2).
In the first figure, the spectrum is given for a state that is faraway from the converged solution. We see a large
number of eigenvalues with negative real parts. When the flowis converged (figure 2b), all these� have moved
to the right and crossed the imaginary axis. No eigenvalues with <(�) � 0 remain.
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Figure 2: Detail of the eigenvalue spectrum (leftmost eigenvalues) for the discretised RANS equations (the
discretisation from section 5, applied to the zero pressure-gradient boundary layer problem from section 6.2,
on a 32�32 cell grid). Graph (a): state after one line GS sweep, starting with a uniform flow. Graph (b):
converged solution.

Concluding, we have found:

1. that the linearised operatorL may have eigenvalues with<(�) � 0, that prevent the convergence of line
Gauss-Seidel,

2. that this isnot the case for converged solutions,
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3. that the interaction between the turbulent viscosity in the momentum equations and the velocity contri-
butions to the source term plays an important role in the behaviour of the system.

In the following, these findings are used to construct an efficient multigrid algorithm.

4.2 Improved line smoothing
The previous section showed why normal line smoothing cannot be used to solve the RANS equations. Since
line smoothing works well for the laminar Navier-Stokes equations, it is tempting to consider separate smooth-
ing of the laminar state variables (u, v, andp) and the turbulence~�T , alternately updating~�T or the laminar
state variables while the other(s) are kept fixed. This technique works for time steppers, but not for the more
powerful Gauss-Seidel smoothing. The coupling between velocity and~�T in the source term is so strong that
smoothingu andv while keeping~�T constant may send the state in a wrong direction, increasingthe error. In
some of our experiments, errors increased with a factor 100 or more in a single smoothing step! Therefore, it
is essential that all four state variables are smoothed together. This section describes how such a smoother is
made stable.

4.2.1 Damped Gauss-SeidelThe alternating line Gauss-Seidel smoothing is stabilisedby adding local damp-
ing. Instead of applying the line smoother toFk(qk) = 0, we apply it, in each smoothing stepn, to the system:Fk(qn+1k ) + �I4qn+1k = �I4qnk : (4.6)

Applying one Gauss-Seidel step gives an approximate solution of this system. The positive function� may be
non-constant in space and different for differentn. I4, for each cell, is a 4�4 zero matrix with 1 in the (4,4)
position. Thus, we damp only the corrections of the turbulent viscosity; equation (4.6) is similar to implicit
time stepping for~�T only. Linearised, it reads:(Lk + �I4) (q 0k)n+1 = �I4(q 0k)n; (4.7)

whereLk is the linearisation ofFk.
We see:

1. that, if the damped Gauss-Seidel process converges, it converges toFk(qk) = 0,

2. that line smoothing is a good solver for the system (4.6) ifthe linear operator(Lk + �I4) has<(�) >0; 8�,

3. that, since (4.6) resembles an implicit time stepping procedure for~�T , it is expected to converge toFk(qk) = 0 if a stable steady solution exists.

As seen in section 4.1, the first three rows and columns ofLk form the laminar Navier-Stokes operator, which
has no eigenvalues with<(�) � 0. Therefore,Lk can be made diagonally dominant by increasing the (4,4)
term only;Lk + �I4 has no<(�) � 0 eigenvalues when� is chosen sufficiently large.

However, it is not necessary — rather, it is wasteful — to set� large everywhere, all the time. As we have
seen, the<(�) � 0 eigenvalues disappear when the solution process converges, so damping is only needed in
the early stages of the solution. And in most of the flow field, certainly outside boundary layers and turbulent
wakes, no<(�) � 0 eigenvalues appear anyway, so no damping is needed there either.

Therefore, we take� constant in a line. We set� for each individual line, for every smoothing step, to the
smallest value that gives positive eigenvalues. Thus, the� in a certain cell may be different for successive
horizontal and vertical sweeps. The choice of� is explained below.

4.2.2 Estimating� The smallest possible� can be estimated, very elegantly, with the Newton-Raphson
algorithm that is used to solve the nonlinear flow equations in the individual lines. Newton-Raphson (NR)
relies on linearisations�Fk=�qk of the flow equationsFk in each line to find the roots of these sets of nonlinear
equations. But if one or more of the eigenvalues of the linearised flow equations are zero, then the corresponding
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part of the nonlinear system is dominated by higher-order effects. In that case, a linearisation is no longer a
good approximation of the nonlinear system, so NR loses its quadratic convergence. It converges slowly, or not
at all.

Therefore, we choose� locally by monitoring the convergence rate of NR for each line. Each smoothing
step is started with a low value for�, constant in the whole domain. When the NR iteration in a linedoes not
converge fast enough, it is restarted with a larger� for that line. This is repeated, if necessary, until a sufficient
convergence rate for NR is obtained. Then we can be sure thatLk + �I4 has no eigenvalues close to zero,
that are associated with that line. And, as the eigenvalues near 0 lie close together (figure 2), this indicates
that all eigenvalues have<(�) > 0. The advantage of this procedure is, that the convergence ofNR has to be
monitored anyway, to determine when to stop the iteration; no costly, complicated estimation of eigenvalues is
needed.

The basis for a definition of sufficiently fast convergence for NR is the residual of the flow equations in the
line, afterl Newton-Raphson steps:rl =X

line

��F(q lNR) + �I4(q lNR � (qnk )i;j2line)�� : (4.8)

When applied to a system without zero eigenvalues, NR ideally shows quadratic convergence:rl � (rl�1)2.
But in practice, this is seldom obtained, even with� sufficiently large. For high residuals, nonlinear effects
dominate the system behaviour and for very small residuals,little inaccuracies in the computer code often
prevent convergence below a certain threshold. Therefore,basing� on a test for quadratic convergence is too
restrictive. Instead, we require a specified reduction inr within a fixed number of steps:rl=r0 < � for somel � lmax: (4.9)

If this criterion is not met for a line, then� is increased. If it is, we consider the iteration converged.
The convergence criterion (4.9) is different from the usualNR convergence criterion (which ends the iteration

whenrl < �), for a very good reason. It is expensive to find the smallest� exactly by trial and error, so each
time when the criterion (4.9) is not met, we increase� significantly (by a factor 10, in our experiments). But in
situations where the criterion isalmostmet without increasing�, a very small reduction in the initial residualr0 could mean that the criterionr < � is suddenly met without a higher�. This leads to many sudden changes
in � for different sweeps in the same line; such ‘jittery’ behaviour can prevent convergence of the Gauss-Seidel
smoothing. When the relative convergence criterion (4.9) is used,� is more consistent between successive
sweeps of the same line.

4.2.3 Smoothing algorithm Summarizing, the algorithm for the Gauss-Seidel smoothingin one line is:� = �0 initial �
while � � �maxq0NR = (qnk )i;j2line initial state

for l = 1; lmaxq lNR = q l�1NR � ��Fk�qk + �I4��1
line

(Fk + �I4)line

�q l�1NR

�
NR step

if rl=r0 < � end

end for� := �factor � � new�
end while

As stated above, this is an estimator for the smallest�, it is not exact. But practical experience shows that this
algorithm functions well. We found that suitable values forthe parameters (for flows withu; v; p = O(1)) are�0 = 10�2, �max = 107, �factor = 10, � = 10�5, andlmax = 10.
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We remark that in many solution methods for the RANS equations, e.g. [13, 16], the source term is split in
a positive and a negative part. For each smoothing step or time step, the positive part (the production) is kept
constant, while the negative part (the dissipation) is updated together with the convective and diffusive fluxes.
This is a kind of damping too, it increases the diagonal dominance ofLk. The difference with our algorithm
is, that this damping by source-term splitting is not switched off, even when it is no longer needed because the
solution approaches convergence. Therefore, our damping algorithm is more efficient.

4.3 Linear multigrid
Nonlinear multigrid (NMG), as described in section 3.2, does not work for the RANS equations. In tests, appli-
cation of NMG usually gave worse convergence than Gauss-Seidel smoothing alone, or even caused divergence
of the solution process. The<(�) � 0 eigenvalues described in the previous two sections arenot the cause of
this problem: multigrid has been applied successfully to problems with both positive and negative eigenvalues
(see e.g. [23], section A8.5.3 for the solution of the Helmholtz problem). Given a good smoother, which we
have, multigrid ought to work. But it does not.

4.3.1 NMG operators fail The problem is, that the coarse grid operatorsFk do not resemble the fine grid
operatorFK sufficiently. The source term in Menter’s model is the small difference of two large variables
(production and dissipation), that contain products of both first and second spatial derivatives. Thus, small
errors in these derivatives may cause large differences in the source term; the turbulence model only makes
sense when the grid is fine enough to resolve the interior structure of a boundary layer well. Therefore, the
model needs a minimum grid resolution to be accurate, typically about 20 cells over the thickness of a boundary
layer. For coarser grids, the solution becomes highly grid-dependent. An example for a boundary layer flow is
given in figure 3. The solution on the 32�32 cell grid is accurate (compare with the fine-grid solutionin figure
7), but the solutions on the coarser grids are a lot worse. Note that the maximum value for~�T is off by about
30% on the 16�16 grid and that this maximum is actually lower than the one onthe 8�8 grid.
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Figure 3: Grid convergence study for a zero pressure-gradient boundary layer flow atRe = 107. Solutions for~�T on an 8�8 grid (a), 16�16 grid (b), and 32�32 grid (c). The cell centres are marked by+. (The test case
is also described in section 6.2.)

If the solutions on the coarse grids differ from the solutions on the fine grid, then the operators that produce
these solutions differ too. Therefore, the coarse grid operatorsFk are not suitable for constructing approximate
inverses forFK and the NMG coarse grid correction does not work. This is confirmed by our tests, which
showed that acceptable coarse grid corrections could be obtained with NMG, but only when the coarsest grid
used was fine enough to accurately resolve the boundary layers. If coarser grids are used, the convergence
deteriorates. However, for good multigrid convergence, proper smoothing on these coarse grids is essential.

4.3.2 Galerkin operators So, to get proper coarse grid corrections, we use Galerkin coarse grid operators.
Instead of restricting the state on the fine grid to the coarser grids and constructing coarse grid operators with
these states, we directly restrict the fine grid operator to the coarse grids. Thus, we can be sure that the coarse
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grid operators resemble the fine grid operator reasonably well. The Galerkin operators are found by first
constructing a linearised version of the fine grid operator and then restricting this linear operator to the coarse
grids. So we switch from nonlinear to linearised coarse gridcorrections. Therefore, we no longer compute
statesq on the coarse grids, but small correctionsu .

The linearised version of the fine grid operatorFK is the discretised equivalent of the operatorL from
equation (4.1), i.e. the Jacobian ofFK :LK = �FK(qK)�qK : (4.10)

For a finite-volume discretisation with a five-point stencil, as introduced in section 3, the linear operator in one
cell is:(LKuK)i;j = L0;0i;j (uK)i;j + L1;0i;j (uK)i+1;j + L0;1i;j (uK)i;j+1+ L�1;0i;j (uK)i�1;j + L0;�1i;j (uK)i;j�1; (4.11a)

whereL0;0i;j = �(FK)i;j�(qK)i;j ; L1;0i;j = �(FK)i;j�(qK)i+1;j ; L0;1i;j = �(FK)i;j�(qK)i;j+1 ; etc. (4.11b)

So for each cell(
K)i;j , the operatorLK consists of five 4�4 matrices.
The coarse grid operators then follow from Galerkin’s principle:Lk�1uk�1 = Rk�1k LkP kk�1uk�1: (4.12)

For the prolongation (3.1) and the restriction (3.2), this means that the coarse grid operatorLk�1 can be eval-
uated by copying the correctionuk�1 in all coarse cells(
k�1)i;j to the four fine cells(
k)2i(+1);2j(+1) that
lie in the same location as each coarse cell, then evaluatingthe fine grid operatorLk for this uk and finally
summing the fluxes from each group of four cells. This, in turn, means that the matrices forLk�1 are found
by a summation of the matrices inLk: the 20 matrices of the four operators in the fine cells corresponding
to coarse cell(
k�1)i;j are summed to form the five matrices in(LK)i;j , such that a matrix for a fine cell is
added to the matrix for that coarse cell in which the fine cell lies. Figure 4 demonstrates this.

Figure 4: Construction of a coarse grid linear operator. Thematrices in the coarse five-point stencil (—) are
made by summing four fine grid stencils (� � � , - -, –,�).
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4.3.3 LMG algorithm With these coarse grid operators, the linear multigrid algorithm is constructed. It is
different for the finest level and the coarser levels as only the operator on the finest grid is nonlinear:qn+1K = function LMG(qnK) :~qnK = (MK)q1 qnK q1 pre-relaxation steps;LnK = �FK(~qnK)=�qK linearisation;snK�1 = RK�1K FK(~qnK) source term;LnK�1 = RK�1K LnKPKK�1 linearised system;unK�1 = 0 initial solution;un+1K�1 = LMGC� �K � 1;unK�1; snK�1; LnK�1� MG on coarser grid;~~qnK = ~qnK + PKK�1un+1K�1 correction;qn+1K = (MK)q2 ~~qnK q2 post-relaxation steps:

un+1k = recursive function LMGC(k;unk ; snk ; Lnk) :~unk = �MLk �q1 unk q1 pre-relaxation steps;
if k 6= 0 thensnk�1 = Rk�1k Lk ~unk source term;Lnk�1 = Rk�1k LnkP kk�1 linearised system;unk�1 = 0 initial solution;un+1k�1 = LMGC� �k � 1;unk�1; snk�1; Lnk�1� MG on coarser grid;~~unk = ~unk + P kk�1un+1k�1 correction;
end ifun+1k = �MLk �q2 ~~unk q2 post-relaxation steps:

For the smoothing on the coarser grids, we use line Gauss-Seidel, just like on the fine grid. Only, the Newton-
Raphson iteration is not needed anymore, as the linear flow equations in a line can be solved exactly in one
step. As for the NMG algorithm, each smoothing stepMk consists of both a horizontal and a vertical sweep.
This smoothing is relatively expensive, but it increases the robustness of the procedure.

4.3.4 Comments on the algorithmThe change from nonlinear to linear coarse grid correctionsis not that
big. For small residuals, the NMG algorithm from section 3.2is more or less linear anyway: the computation
of Fk�1(qn+1k�1 ) = Fk�1(qnk�1) + dnk�1 is a matrix-free evaluation of the Jacobian ofFk�1 whendnk�1 is
small, i.e. whenFk�1(qn+1k�1 ) � Fk�1(qnk�1)+Lk�1(qn+1k�1 � qnk�1). And as complex systems like the RANS
equations cannot handle large source terms, the defectd is alwaysmade small by reducing the parameterw
whend is large (see e.g. [26]); reducingw is equivalent to linearising the coarse grid operators.

The only real difference between the NMG and LMG algorithms is that the LMG coarse grid operators are
Galerkin operators. According to the literature, Galerkinoperators may cause problems (see e.g. [23], section
5.4). In particular, Galerkin coarse grid operators for convection problems are less diagonally dominant than
the fine grid operator. As a consequence, the convergence rate for multigrid becomes worse when more coarse
grids are added. In our experiments (section 6) this effect is noted, but it causes no problems.

The unusual combination of a linear coarse grid correction with nonlinear smoothing on the finest grid is chosen
for two reasons. First, the nonlinear smoother is robust, itacts like a ‘safety net’ for the solution process.
It can correct small unphysical solutions (~�T < 0, for example) that arise from the coarse grid correction.
Furthermore, it performs well in extreme situations, like the start of the solution process from a uniform flow,
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where the linear multigrid method is not (yet) effective. And second, we use the damping factor� from the
line smoothing (equation (4.6)) in the coarse grid correction too, i.e. we replace (4.10) with:LK = � (FK(qK) + �I4qK)�qK : (4.13)

As explained in the introduction to this section, this damping is not really needed for the convergence of
multigrid, but it makes sure that the smoothing on all coarsegrids is stable (we cannot set� with the aid of
Newton-Raphson on the coarse grids, because the coarse gridoperators are linear). The nonlinear smoothing
on the finest grid is needed to find the� in equation (4.13): for each cell, we choose� as the minimum of the�’s for that cell in the horizontal and vertical line sweep.

Concerning the computational costs of the linear multigridalgorithm, a single coarse grid correction step takes
less CPU time than a nonlinear one. ComputingLK , the linearisation ofFK , is cheap because the Jacobian ofFK in each cell is already being computed for the nonlinear linesmoothing. The restriction of the operatorsLk
does not take much time either, as it consists of additions only. And finally, the coarse grid smoothing becomes
faster, because it does not need Newton-Raphson anymore andbecause the evaluation of the linear operators
is faster than the computation of nonlinear fluxes. If the Galerkin operators require more iterations to reach
convergence, then the total CPU time may go up a little; this depends on the individual problem.

The main increase is in the memory usage. Storing the linearised operators takes5 � (4 � 4) = 80 reals per
cell, much more than the storage needed for nonlinear multigrid. There are two ways to reduce these costs:
one is to restrict the fine grid operatorLK to the next coarsest grid while it is being computed. This means
that storingLK itself is not needed, a significant gain as more than 75% of allcells lie in the finest grid. The
other is to store the linearised operators with a low precision. Their inverse is not computed exactly anyway, so
double precision accuracy is not needed for theLk. This may save another 50% – 75% in memory.

4.3.5 Full multigrid As initial condition for the multigrid solution, we usuallychoose~�T very close to zero.
Then we can see two distinct ‘stages’ in the solution process. During the first iterations the boundary layers
develop and the turbulence intensity grows, often with a factorO(104) or more. Typically, we see the residual
in the turbulence equation increase in this first stage, because the turbulence intensity increases. Then, when
the boundary layers have more or less developed, the residuals start to decrease: this is the second stage.
Experiments show that multigrid is only effective in this second stage.

Therefore, full multigrid (FMG) is essential for our method. We do not start the solution on the finest grid,
but on the coarsest grid on which the boundary layers can be accurately resolved. When the solution on this
grid is computed, it is prolongated as initial solution to the next finer grid where the solution is computed
too. This is continued until the finest grid is reached. Thus,all but the first computations start at the second
stage, with developed boundary layers. The time-consumingdevelopment of turbulence is only needed on the
coarsest grid.

5. FINITE-VOLUME DISCRETISATION

The multigrid solution technique presented in the previoussections can, in principle, be applied to different
types of discretisations. Therefore, the description of the discretisation for the system (2.1), (2.2) was kept
general. In this section, we discuss the finite volume discretisation that is used to run the tests in section 6;
fluxes, source terms and the implementation of boundary conditions are described. The discussion focuses on
those aspects that are specific for the turbulence modelling. Each part describes both the first-order accurate
discretisation used with multigrid and the second-order discretisation that is solved with defect correction.

As already mentioned in section 3.1, the RANS equations are discretised on structured curvilinear grids,
with a technique similar to e.g. those used in [6, 11]. The compact, five-point stencil from figure 1 is enough
to discretise most of the first-order accurate operator. Forthe second-order accurate operator, more cells are
needed. The fluxes across the cell faces are discretised in two parts: the convective and the diffusive fluxes are
computed separately. The convective flux is discretised with an approximate Riemann solver based on artificial
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compressibility; the diffusive flux is computed with central differences. The turbulent source term forms a third
part, it is discretised with finite differences.

5.1 Convective fluxes
Most turbulent flows have a high Reynolds number. Thus, the influence of diffusion in the flow equations is
low in most places. From a numerical perspective, this meansthat the diffusive part cannot be counted upon to
stabilise the solution: we need a discretisation of theconvectivefluxes that is stable in itself. This is the main
reason for discretising the convective and diffusive fluxesseparately: thus, we can directly control the stability
of the convective part.

The convective flux function is based on artificial compressibility [2, 24] and comparable to the flux used
in [4, 5, 6]. In the time-dependent RANS equations, an artificial time derivative is added to the continuity
equation. The resulting hyperbolic system is then discretised with an approximate Riemann solver. The time
derivatives are only used to derive this flux.

Our solver is a linearised Osher-type flux function, it couples the normal velocity and the pressure on the
two sides. The Riemann solution consists of three waves: twopressure waves (one running left, one right) and
a contact discontinuity (running left or right):�� = 12u�q
2 + � 12u�2; �0 = u 12 ; �+ = 12u+q
2 + � 12u�2; (5.1)

with 
 a constant. The pressure waves give the stateq 12 at the cell face, as a function of the left stateq0 and the
right stateq1 (with normal velocityu and tangential velocityv):u 12 = u0 + p1 � p0 + �1��1 (u1 � u0)�1��1 � �0�+0 ;p 12 = p0 � �0�+0 p1 � p0 + �1��1 (u1 � u0)�1��1 � �0�+0 ; (5.2)

which also defines the wave speed�0. Then the other two state variablesv and~�T are chosen upwind:v 12 = v0; ~�T 12 = ~�T0 if u 12 � 0;v 12 = v1; ~�T 12 = ~�T1 if u 12 < 0: (5.3)

We construct convective fluxes with these state variables.
The statesq0 andq1 at the cell faces are reconstructed from the states in the cell centres. For the second-order

accurate fluxes, a limited upwind scheme is used [10, 11]. It is known that the Minmod limiter is unsuitable for
use with defect correction [9]. Instead, we use the� = 13 limiter proposed by Koren [12]. For the first-order
fluxes,q0 andq1 are the states in the adjacent cells.

5.2 Diffusive fluxes
On rectangular grids, the first derivatives in the diffusivefluxes are discretised with central differences; this
gives a stable discretisation. For our non-rectangular grids, Peyret control volumes are used. The integral of a
derivative over a control volume around a cell face, as in figure 5, can be transformed into a boundary integral.
Approximating with an average derivative and average states on the control volume faces, it is found that:ux � 1Ad I�
d u dy� 1Ad �u1 + u22 (y2 � y1) + u3(y4 � y2) + u4 + u52 (y5 � y4) + ui(y1 � y5)� ; (5.4a)
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uy � � 1Ad I�
d u dx� 1Ad �u1 + u22 (x1 � x2) + u3(x2 � x4) + u4 + u52 (x4 � x5) + ui(x5 � x1)� ; (5.4b)

with Ad � 14 (A1 +A2 +A4 +A5 + 2 (A3 +Ai)) : (5.4c)

The same equation is used forv and~�T . This discretisation is second-order accurate for sufficiently smooth
grids, so it is used in both the first-order and second-order scheme.

qi
xy q1 q2

q3
q4q5

Figure 5: Control volume for diffusive flux discretisation.

Compared with the diffusive fluxes in the laminar incompressible Navier-Stokes equations, the RANS equa-
tions cause two complications. First, the cross-derivative terms likeuxy (uy in the x-direction flux) do not
cancel, because the viscosity is not constant: the diffusive operator is similar to the one for the laminar com-
pressible Navier-Stokes equations. For the discretisation, this means that the diffusion operator requires a
nine-point stencil, even on rectangular grids, as each cellneeds the states in its four neighbours and in the four
cells on its diagonals. We see that equation (5.4a) reduces to a central difference equation inu3 andui, but
that equation (5.4b) does not. In the linear multigrid algorithm (section 4.3), this is currently ignored: only
the five-point part of the stencil is restricted. But as the convection and the source term are discretised on the
five-point stencil only, no convergence problems appear in practice.

A second point is the choice of~�T at the cell faces. In the convective fluxes,~�T is chosen upwind (equation
(5.3)), but using this same viscosity in the diffusion operators causes severe instability in the Gauss-Seidel
smoothing. This is caused by the cell faces parallel to the flow, where a small change in velocity, from positive
to negative or vice versa, causes a discontinuous change in the face viscosity. Using a central approximation,
the average of the two cells next to the cell face, is a possibility, but tests showed that this choice sometimes
causes instability too. At this moment, we use the~�T from one of the two cells. Which cell, is determined
in advance and not changed during the computation. We pick the upwind cell for faces normal to the flow
direction and the cell closest to the nearest wall for parallel faces.

5.3 Turbulent source term
The source term in (2.2) contains first- and second-order derivatives. Furthermore, being a source term, it
cannot be converted to a boundary integral over the cell faces. And computing it with the cell face states is not
a good idea: these upwind states can change discontinuouslywith small changes in the velocity (see section
5.2). Therefore, the source term is approximated with finitedifferences based on the cell centre states. On our
curved, non-uniform grids, two adaptations of the standardfinite-difference stencils are needed.

First, when the grid is curved, the cell centres of a cell and its neighbours are not in line and the line between
the upper and lower neighbour is not orthogonal to the line between the left and right neighbour. Therefore, we
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fit a local orthogonal axis system to each cell (figure 6) and project the cell centre locations on these axes. Then
the derivatives are computed with the cell states in these projected cell centres. This projection step causes
some errors, but these are of second-order in the grid size ifthe grid is sufficiently smooth. The rotation of the
local axes has no influence, as the source term is invariant under rotation.

Figure 6: Local axes and projected cell centre locations forsource term computation.

On the orthogonal axes, finite-difference stencils for non-uniform grids are used. Inx-direction, these sten-
cils are:ux � ui+1 � ui�1xi+1 � xi�1 ; uxx � ui+1�uixi+1�xi � ui�ui�1xi�xi�112 (xi+1 � xi�1) : (5.5)

With these derivatives known in each cell centre, the sourceterms (2.4) and (2.5) can be computed in the
cell centres. The schemes (5.5) are in principle first-orderaccurate, but if the grids are smooth, the accuracy
increases to second order. Therefore, this source term discretisation is used in both the first-order and the
second-order accurate schemes.

5.4 Boundary conditions
The convective and diffusive operators require different boundary conditions. The number of convective bound-
ary conditions depends on the type of boundary, while the diffusion and the source term requireu, v, and~�T
on all boundaries.

On an inflow boundary, Dirichlet conditions are specified foru, v, and ~�T . These are the same for the
convection and the diffusion.p is not specified, it follows from the convective flux function. ~�T is set to a small
positive value, typically0:01� (see section 2.2). A no-slip wall has Dirichlet conditions too, thereu, v, and~�T
are all zero.

At a symmetry wall, the normal velocity is zero, while the tangential velocity and~�T have zero normal
derivatives. Once again, these conditions are the same for convection and diffusion.

Finally, at an outflow boundary, a Dirichlet condition is specified for the pressure. Convection requires no
boundary conditions for the other three state variables. For the diffusion and the source term, weak conditions
are imposed: homogeneous Neumann conditions.

6. TEST CASES

The performance of the multigrid algorithm is assessed withfour test cases. The first is a laminar flow, that is
computed with linear and nonlinear multigrid. After that, turbulent boundary layer flows are computed. The
last two test cases are more complex flows over airfoils.

6.1 Laminar flow
To compare the current linear multigrid algorithm with nonlinear multigrid, a laminar flow is computed with
both methods. The test case is the flow in a laminar flat-plate boundary layer with zero pressure gradient, the



18

Reynolds number isRe = 2000. Our grid has128� 128 cells and is highly stretched iny-direction. Multigrid
computations are done on six grids, the coarsest grid has4 � 4 cells. For both algorithms, the same Gauss-
Seidel smoothing is used on the fine grid and in both cases, thediscretisation is the same first-order accurate
one. The only difference is in the coarse-grid corrections.

Table 1: Laminar boundary layer, iterations, and computation time per grid.

Grid Iterations t (s)
NMG LMG NMG LMG4� 4 4 4 0:1 0:18� 8 5 5 0:1 0:116� 16 5 5 0:5 0:432� 32 5 7 1:5 1:964� 64 6 9 7:7 9:4128� 128 7 10 37:3 39:7

Table 1 gives a comparison of the results for the FMG solutionprocess. For each grid, from the coarsest
to the finest, the table gives the number of iterations neededto reach convergence on that grid (sum of the
residuals< 10�6). It also lists the computation time needed to get the solution on that particular grid. The
computations were performed on a 2.2 GHz PC.

The table shows an adverse effect of the Galerkin operators (see section 4.3): on the finer grids, more
iterations are needed for the LMG than for the NMG solution process. The LMG computation times are higher
too, but they do not increase as fast as the number of iterations. Therefore, the LMG coarse grid corrections
are indeed cheaper than the NMG coarse grid corrections. Allin all, this laminar test case shows that the LMG
gives similar efficiency as the standard NMG.

6.2 Boundary layers
The first turbulent test cases are two boundary layer flows over flat plates: simple flows that are dominated by
the development of turbulence in the boundary layer. These cases illustrate the efficiency of linear multigrid
for turbulent flows and compare the performance on coarse andfine grids.
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Figure 7: Turbulent flat-plate flow atRe = 107, zero pressure gradient. Isoline plots of velocityju j (a),
turbulent viscosity~�T � 105 (b), and the velocity profile atx = 1 in wall coordinates (� � � ) compared with
analytical solution (—) (c).

Boundary layer flows. The first flow is a boundary layer with no pressure gradient, at a Reynolds number of107 based on the length of the plate. This test case is used in Menter’s paper [17]. The grid is the same as for
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the laminar boundary layer and multigrid is used with six grids. Results are given in figure 7. The first figure
gives the velocity profile and the second figure the turbulentviscosity~�T . We see that this viscosity is (almost)
zero in the far field, then increases in the boundary layer andreturns to zero at the wall. Compared with the
velocity profile, the highest turbulence intensity occurs high in the boundary, where the velocity is close to
1. The last figure gives the velocity profile in wall coordinates; good agreement is found with the theoretical
profiles in the viscous sublayer and the logarithmic layer.
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Figure 8: Turbulent flat-plate flow atRe = 7:055 � 106, adverse pressure gradient. Isoline plots of velocityju j
(a), turbulent viscosity~�T � 105 (b), and the velocity profile atx = 0:82 (—) compared with measurements (+)
from [20] (c).

Similar results are found for a more difficult flow, a boundarylayer with an increasingly adverse pressure
gradient over the plate. This flow was investigated experimentally by Samuel and Joubert [20], it has a Reynolds
number of7:055 � 106 based on the plate length. The grid is the same as for the previous test case. Results in
figure 8 show how the adverse pressure gradient slows down theflow. The boundary layer is thicker than in
the previous case and the turbulence intensity is higher. A comparison of a velocity profile with experimental
measurements shows excellent agreement (figure 8c).

Multigrid convergence. Figure 9a and 9b give the convergence of the residual duringthe multigrid compu-
tation. The finest grid is very fine for a boundary layer grid (128 cells in vertical direction), the flow can be
resolved on most coarse grids too. Therefore, we start the FMG computation on the second (8� 8) grid. Here,
the development of the boundary layer, when the residual rises and falls, is clearly seen. On all subsequent
grids, the convergence is excellent. The convergence rate does not deteriorate much on the finer grids, which
means that the Galerkin operators cause few problems. In fact, convergence on the fine grids is faster than in
the preceding laminar case. Also, the convergence is similar for both boundary layers; multigrid performance
does not get worse in adverse-pressure conditions.

For comparison, figure 9c shows the convergence when the zeropressure-gradient flow is solved with line
Gauss-Seidel alone, on a single grid. This takes 120 iterations on the fine grid, compared to 7 for the multigrid
solution. 40 iterations are needed for the development of the boundary layer. The total CPU time is about 5
times higher than for the multigrid solution.

6.3 NACA 0012 airfoil
A more complex test case than the flat-plate boundary layer isthe flow over a NACA 0012 airfoil. It features
stagnation points, curved walls and the transition from a boundary layer to a turbulent wake. The angle of
attack� = 0 and the Reynolds number isRe = 106. Because the NACA 0012 airfoil is symmetric, the flow is
computed in the upper half of the flow domain only. An H-type grid is used with 512 cells inx-direction and
256 cells iny-direction, the grid is stretched near the airfoil surface and near the leading and trailing edges. The
problem is used to test multigrid convergence for a more difficult flow and to study the convergence of defect
correction for the second-order accurate discretisation.
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Figure 9: FMG convergence for boundary layer flows under zero(a) and adverse (b) pressure gradients. Graph
(c) gives single-grid convergence for the same case as (a).
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Figure 10: Flow over a NACA 0012 airfoil (second-order accurate solution, after five DC steps). These plots
show the velocityju j (a), the pressurep (b), and the turbulent viscosity~�T � 105 (c). For clarity, all plots are
stretched iny-direction.

Flow field. The flow around the airfoil is given in figure 10. The velocityplot 10a shows the stagnation point
at the leading edge, the suction area above the airfoil, the growing boundary layer and the transition from the
boundary layer to the wake. The second figure shows the pressure and the last figure the turbulent viscosity.
We see here that the turbulence intensity is very low near theleading edge, it starts to grow where the pressure
gradient becomes adverse. Behind the airfoil, the locationof the maximum value for the turbulence gradually
shifts from the centre of the boundary layer to the centre of the wake.

Multigrid convergence. The flow is solved with multigrid on six grids; the coarsest grid has 8�16 cells. As
in the boundary layer case, the FMG computation is started onthe second grid. But the NACA 0012 flow has
more different features than the simple boundary layer flows, so it cannot be resolved accurately on the 16�32
cell grid. Therefore, multigrid does not work on this grid. To retain the full advantage of the FMG algorithm,
the flow is solved with single-grid smoothing on the 16�32 grid. From the 32�64 grid on, multigrid is used.

The convergence of the residual is shown in figure 11a. The number of iterations per grid is a little higher
than for the preceding boundary layer flows, but the initial residual on each grid is higher too (because the flow
is more complex), so that is to be expected. Convergence doesnot deteriorate much on the finer grids, which
shows once again that the Galerkin operators work correctly. There is a little ‘bump’ in the convergence on the
32�64 grid, probably caused by the development of the boundary layer that is not sufficiently resolved on the
16�32 grid.

For comparison, the single-grid convergence is shown in figure 11b. This convergence is odd: the residual
stays constant for a long time and then suddenly decreases. This behaviour is abnormal for these types of flows,
the usual single-grid convergence plots look like figure 9c.But it does show that there are cases where the FMG
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Figure 11: NACA 0012, convergence of the residual on the 256�512 grid, for multigrid (a), single-grid Gauss-
Seidel (b), and second-order accurate defect correction (c).

solver can compute flows that cause problems for single-gridsmoothing.
Finally, figure 11c shows the residual for the first 25 defect correction steps, starting from the first-order

accurate solution on the 256�512 grid. In the first five iterations, the residual decreasesa little at a relatively
high speed. The asymptotic convergence rate is slower; iterating to convergence is expensive. Luckily, this is
not needed: a grid convergence study (not shown) proves thatthe solution after five defect correction steps is
converged and much more accurate than the first-order solution.

6.4 Supercritical airfoil
The low-Mach flow over a supercritical airfoil was measured by Nakayama [18]. This airfoil is placed at an
angle of attack� = 4o, the Reynolds number is1:2 � 106. Computation of this flow is very challenging, as
the flow field has high curvature and strong pressure gradients near the trailing edge. In the same location, two
boundary layers of different strength merge to form the turbulent wake. The flow is computed on a 256�256
cell H-type grid.
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Figure 12: Flow over a supercritical airfoil (second-orderaccurate solution, after five DC steps); velocityju j
(a), pressurep (b), and turbulent viscosity~�T � 105 (c). Plot (c) is stretched iny-direction, - - -: trailing edge
streamline.

Flow field. The most typical feature of the Nakayama wing is the concavelower side near the trailing edge.
The strong curvature in the flow field there can be seen in the results (figure 12). The plots show the stagnation
point and a strong suction peak near the leading edge, and a moderate high pressure region in the hollow below
the trailing edge. The turbulence intensity near the trailing edge is interesting: because of the adverse pressure
gradient above the airfoil, the turbulence intensity is higher above than below the airfoil. The two boundary
layers merge, so the turbulence levels have to adapt. For theupper boundary layer, the reduction in turbulence
intensity happens in a thin layer, clearly visible in figure 12c. This layer isnot aligned with the flow, it runs
upwards into the flow.
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Figure 13: Supercritical airfoil, first-order accurate grid convergence study. Solutions for
p (a) and for the
velocity profiles above (b) and below the airfoil (c) are compared with measurements (+) from [18].

Grid convergence, comparison with experiment. A grid convergence study is done for the supercritical airfoil.
Solutions on three grids are compared with Nakayama’s experimental data [18]. Figure 13 shows results for
the first-order accurate discretisation: velocity profilesin three chordwise positions and the pressure coefficient
p = (p� p1)=( 12u21), where the reference pressurep1 = 1 and the reference velocityu1 = 1 too. The
errors in the
p plot are large: the pressure in the stagnation point is too high and the suction peak is not strong
enough. As a result, the pressure on the upper side of the airfoil is not predicted well. The same is seen in
the velocity contours: especially above the airfoil, the solution is far from converged, it does not even exhibit
asymptotic first-order convergence yet. A good solution with the first-order discretisation would require much
finer grids.
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Figure 14: Supercritical airfoil, second-order accurate grid convergence study (five defect correction steps).
The plots show the same variables as in figure 13.

The second-order solution, after five DC steps, is much better. The solution on the coarse 64�64 grid is bad,
but the other two lie almost on top of each other. The
p solution is excellent: the suction peak is resolved
correctly and
p in the stagnation point is very close to 1. Also, the velocityprofiles show good agreement
with the experiment. Discrepancies are probably due to the approximations made in the turbulence model. The
only place where the solution is not completely converged isin the wake, but even there the agreement with the
experiment is good.

Multigrid. The Nakayama flow is solved with multigrid on 6 levels, the coarsest level is 8�8 cells. Due to the
difficulty of the flow, the coarsest grid on which a solution could be obtained is the fourth grid of 64�64 cells.
There, 6 iterations are done with single-grid Gauss-Seidelto develop the boundary layers, then the multigrid
is started; this can be seen in the multigrid convergence graph 15a. The solution on the fifth and sixth grid is
found with multigrid from the start.

The multigrid convergence on the two finest grids is slower than in the previous problems and it is a bit
‘jittery’. There are two possible causes for this. One, the airfoil has both an upper and a lower side; to get
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Figure 15: Supercritical airfoil, convergence of the residual on the 256�256 grid, for multigrid (a), single-grid
Gauss-Seidel (b) and second-order accurate defect correction (c).

good smoothing, it was necessary to start the horizontal line smoothing alternately from the lowest line going
up and from the highest line going down. This sometimes causes large residuals near the outer boundaries of
the domain, that have nothing to do with the turbulence modelling: they appear in laminar flow too.

And two, to get stability near the trailing edge, a small region there (a circle with radius 0.01) needs a
higher damping in the coarse-grid corrections. In that circle, the� for the coarse grid corrections is set at a
constant high value. This stabilises the computation, but it decreases the convergence a little. This problem
can probably be solved by performing coarse grid corrections with the full nine-point stencils instead of the
five-point stencils, as diffusion is dominant in the high gradients near the trailing edge. This is an area for
further study.

At this moment, the multigrid convergence is acceptable. Compared with a single-grid solution (figure 15b),
the computation time is reduced by a factor of about 11.5. Defect-correction convergence is slow (figure 15c).
The residual is reduced significantly in the first 10 steps, but then the convergence rate decreases. Still, as figure
14 shows, five defect correction steps is enough to get an accurate solution.

6.5 Parameter settings
The linear multigrid algorithm from sections 4.2 and 4.3 hassome free parameters, that can be tuned if desired.
However, for our numerical experiments, we found that this was not necessary for most parameters: the values
given in section 4 are satisfactory for all problems. The parameter�, the required relative convergence for the
line smoothing residual, has the strongest influence. A lower � means, that a higher convergence rate is required
for NR in the lines, which leads to higher values for the damping �. This means better stability, but slower
convergence for the multigrid method. Still,� = 10�5 is used for all our problems, with good results.

The user’s most important choice is, on which grid the FMG solution is started. For a linear coarse grid
correction we can use as many grids as desired, but FMG requires nonlinear solutions on coarse grids. The
problems above show, that the coarsest possible starting grid depends on the problem: for more complex flows,
we need finer starting grids. We found, as a good rule of thumb,that the starting grid must not have less than
about 8 – 10 cells over the thickness of the expected boundarylayers.

7. CONCLUSIONS

We have presented a novel multigrid method for the Reynolds-Averaged Navier-Stokes equations with Menter’s
turbulence model. The method has two new aspects: a linear coarse grid correction with nonlinear smoothing
on the finest grid and an efficient locally damped line Gauss-Seidel smoothing. The method is combined with
defect correction to obtain second-order accurate solutions.

Standard nonlinear multigrid does not work for the RANS equations. This has two reasons. The first is, that
the combination of the non-constant viscosity and the source term in the turbulence equation makes it possible
for the system to have unstable eigenmodes, that make Gauss-Seidel smoothing impossible. However, in the
neighbourhood of a converged solution, these eigenmodes become stable. Our line Gauss-Seidel smoothing is
stabilised by adding local damping to the turbulence equation in each smoothing step, enough to remove the



24 Referen
es
unstable eigenmodes. We showed that the amount of damping necessary can be estimated with the Newton-
Raphson root finder in the individual lines: if NR converges quickly, then enough damping is used.

The second problem is, that the nonlinear RANS operators on coarse grids do not resemble the operator on
fine grids sufficiently well. This problem is caused by the sensitivity of the turbulence source terms to the grid
size on too coarse grids. The problem is solved by switching to a linearised coarse grid correction with Galerkin
operators. These resemble the fine grid operator reasonablywell and their construction is simple for a finite-
volume discretisation. A disadvantage is the higher memoryrequirement. The combination with nonlinear
smoothing on the finest grid adds robustness and allows the computation of the Gauss-Seidel damping factor,
that is used to stabilise the smoothing on the coarse grids too.

The multigrid method is combined with a cell-centred finite-volume discretisation. Convective fluxes are
constructed with artificial compressibility, diffusive fluxes with central differences. The source terms are com-
puted with finite differences on local orthogonal grids.

Numerical results show that the multigrid convergence is very good. The convergence rates for a laminar
problem are compared with nonlinear multigrid: they are a little lower due to the use of Galerkin operators, but
the effect on the computation times is small, because the linear method requires less time per multigrid cycle.
Turbulent flow problems show comparable convergence. Defect correction converges very slowly. However,
this is no problem as only a few defect correction steps bringa solution from first- to second-order accuracy.
Results for two airfoil computations confirm this.

Full multigrid is needed for good convergence, because turbulent boundary layers have to develop first when
the initial condition is a uniform flow. In this initial stage, multigrid is of little use. By using full multigrid, this
first stage is only encountered on the coarsest grid.

Finally, comparisons with analytical and experimental data and grid convergence studies showed that the
accuracy of the solutions is good and that the defect correction iteration is efficient for the solution of second-
order accurate problems.

Outlook. The present method works well. However, there is room for improvements to make the method even
more robust and accurate. For instance, a larger study of theparameter settings for the multigrid algorithm can
lead to better guidelines for the choice of the parameters. Also, it is worthwhile to study discretisation effects,
like the choice of the turbulent viscosity at the cell faces that influences the smoothing efficiency. And finally,
it is useful to compare coarse-grid corrections using nine-point stencils with the present method, to see if there
are any differences.

The present method can probably be extended to other turbulence models. The current analysis is done for
Menter’s turbulence model, but most one- and two-equation turbulence models consist of the same type of
equations: convection-diffusion equations with similar production and dissipation terms. Therefore, we expect
that the present method can be used for other RANS turbulencemodels too and that it is a useful tool for the
fast solution of these equations.
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