
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a  

 INformation Systems

Loop-lifted XQuery RPC with deterministic updates
 

Y. Zhang, P.A. Boncz

REPORT INS-E0607 NOVEMBER 2006

Information Systems 

 

 



Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and 
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2006, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681



Loop-lifted XQuery RPC with deterministic updates

ABSTRACT
XRPC is a minimal XQuery extension that enables distributed query execution, combining the
Remote Procedure Call (RPC) paradigm with the existing concept of XQuery functions. By
calling out of a for-loop to multiple destinations, and by calling functions that themselves
perform XRPC calls, complex P2P communication patterns can be achieved. We further
propose the use of SOAP as the protocol for XRPC, which allows seamless integration with web
services and Service Oriented Architectures (SOA). XRPC is implemented in the open source
MonetDB/XQuery system. We show that the technique of loop-lifting, that executes all
expressions inside a for-loop in a single bulk operator -- pervasively applied in
MonetDB/XQuery to obtain efficient relational query plans -- also benefits XRPC. Loop-lifting
enables us to send bulk RPC requests, dramatically reducing the number of SOAP messages,
and thus the performance impact of network latency. The XRPC extension is orthogonal to all
XQuery language features, including the XQuery Update Facility (XUF). The XUF W3C Draft
proposal does not define the order in which multiple update actions to the same node must be
applied. We instead choose to make this order deterministic, and show how distributed updates
can be made deterministic using a small protocol extension.

2000 Mathematics Subject Classification:  68M14 Distributed systems
1998 ACM Computing Classification System: [H.2.4]Query processing
Keywords and Phrases: Distributed Query Processing;XQuery Processing;RPC;SOAP
Note: This work was carried out under project "MultimediaN" - "AmbientDB"





Loop-Lifted XQuery RPC With Deterministic Updates

Ying Zhang
Centrum voor Wiskunde en Informatica

P.O.Box 94079, 1090 GB
Amsterdam, the Netherlands

Y.Zhang@cwi.nl

Peter Boncz
Centrum voor Wiskunde en Informatica

P.O.Box 94079, 1090 GB
Amsterdam, the Netherlands

P.Boncz@cwi.nl

ABSTRACT
XRPC is a minimal XQuery extension that enables distributed query
execution, combining the Remote Procedure Call (RPC) paradigm
with the existing concept of XQuery functions. By calling out of
a for-loop to multiple destinations, and by calling functions that
themselves perform XRPC calls, complex P2P communication pat-
terns can be achieved. We further propose the use of SOAP as the
protocol for XRPC, which allows seamless integration with web
services and Service Oriented Architectures (SOA).
XRPC is implemented in the open sourceMonetDB/XQuery sys-

tem. We show that the technique of loop-lifting, that executes all
expressions inside a for-loop in a single bulk operator – perva-
sively applied in MonetDB/XQuery to obtain efficient relational
query plans – also benefits XRPC. Loop-lifting enables us to send
bulk RPC requests, dramatically reducing the number of SOAP
messages, and thus the performance impact of network latency.
The XRPC extension is orthogonal to all XQuery language fea-

tures, including the XQuery Update Facility (XUF). The XUFW3C
Draft proposal does not define the order in which multiple update
actions to the same node must be applied. We instead choose to
make this order deterministic, and show how distributed updates
can be made deterministic using a small protocol extension.

1. INTRODUCTION
The contributions of this paper are three-fold: (i) the definition

of XRPC, a small and clean language extension for XQuery that
allows simple client-server RPC as well as complex P2P XQuery
group communications and is based on the SOAP protocol, thus
integrating seamlessly with (Web) Service Oriented Architectures,
(ii) the idea to exploit the query translation technique of loop-lifting
to optimize network communications, by performing many func-
tion calls in a single RPC (Bulk RPC). This brings the benefits of
set-at-a-time database processing to the realm of RPC and by do-
ing so dramatically reduces the impact of network latency on dis-
tributed query performance, (iii) the definition of deterministic se-
mantics for the XQuery Update Facility [5] and a SOAP protocol
extension that allows to guarantee deterministic semantics when
calling user defined updating functions over XRPC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

XRPC Language Extension The current W3C XQuery language
only provides a data shipping model for querying XML documents
distributed on the Internet. The built-in function fn:doc() fetches
an XML document from a remote peer to the local server, where it
subsequently can be queried. The recently published W3C work-
ing draft of XQuery Update Facility (XUF) introduces the built-
in function fn:put() for remote storage of an updated document,
which again implies data shipping.
There have been various proposals to equip XQuery with func-

tion shipping style distributed querying abilities [19, 21, 22], and
we consider our XRPC proposal an incremental development of
these, with specific advantages concerning optimizability and sim-
plicity. Considering simplicity, XRPC adds RPC to XQuery in the
most direct way, adding a destination URI to the XQuery equiva-
lent of a procedure call (i.e. function application). XRPC is op-
timizable in that it makes explicit the input data (parameters) of a
remote query and its result type through the function signature, rou-
tinely identified during query parsing in existing XQuery systems.
Also, functions can be defined in XQuery modules, and compiled
separately in advance, making it easy to do query plan caching and
thus accelerate distributed query processing.
On a lower level, our XRPC proposal also encompasses an –

again natural – choice for SOAP (i.e. XML messages) over HTTP,
as the underlying network protocol. XML is ideal for distributed
environments (think of character encoding hassles, byte ordering),
XQuery engines are perfectly equipped to process XML messages,
and an XML-based message protocol makes it trivial to support
passing values of any type from the XQuery Data Model [8].
We made a conscious choice for by-value 1 parameter passing,

as by reference semantics would make it very complicated to or-
thogonally support XPath/XQuery on parameters or results of RPC
calls (think of calling parent::* on an XML node type parameter,
passed by reference – it would require additional implicit commu-
nication).

Loop-Lifted Optimizations We implemented XRPC in the open
source MonetDB/XQuery system [3]. It consists of the Pathfinder
compiler [12] that translates XQuery expressions into relational
query plans, on top of the MonetDB relational execution engine.
The essence of the compilation technique employed by Pathfinder
is loop-lifting, which translates XPath/XQuery expression inside
for-loops into single bulk relational query plans. Loop-liftingmakes
MonetDB/XQuery inherently different (and often faster) than those
XQuery interpreters that tend to strictly follow the for-loop order
syntactically suggested by a query. Bulk plans have the ability to
change the order of execution when advantageous, yet we note that
MonetDB/XQuery fully supports XQuery node and sequence order

1Only the subtree rooted at a node parameter is sent.



in the final query result. Also, relational database engines are tuned
to execute bulk query plans efficiently.
In case of XRPC, loop-lifting turned out to enable a SOAP pro-

tocol optimization to send requests for a sequence of (many) RPC
calls in a single message exchange. This optimization dramatically
reduces the quantity of request/response messages sent and thus the
impact of network latency on query performance.

Deterministic Updates The current draft proposal for the XQuery
Update Facility leaves it undetermined how to handle multiple up-
dates to the same node. For example, if we have an XML document
<a> named "a", then its value after the update

for $n in (<b/>,<c/>)
return do insert $n as first into doc("a")

may be both <a><b/><c/></a> and <a><c/><b/></a>. In
MonetDB/XQuery, we choose to implement the XUF deterministi-
cally, by respecting the for-loop order (respectively the sequence
construction order) in which the multiple update statements occur
in the query (in the above case yielding <a><c/><b/></a>).
The question we address here is how to achieve deterministic

semantics in distributed updates using our loop-lifted RPC tech-
nique. Note that XRPC is fully orthogonal to XQuery, thus it is al-
lowed to call user-defined updating functions over XRPC. Updating
functions can contain for-loops and sequence constructors, which
might again make (multiple) other XRPC updating function calls
to other peers. Thus, distributed update queries generally involve a
group of peers and within a single query the same peer may even
be involved multiple times, potentially through different function
call sequences. Our loop-lifting approach to XRPC (“bulk” RPC
requests) changes the order in which RPC function calls are evalu-
ated. This means that the order in which updates must be applied
may differ from the order in which the XRPC function calls were
received. To address this issue, we formulate an extension to our
bulk SOAP XRPC protocol that allows keeping track of determin-
istic update order, while conserving the performance advantages of
loop-lifted RPC.

1.1 Outline
This paper is organized as follows. In Section 2 we shortly give

a definition of the XRPC language extension, including the SOAP
sub-protocol it uses. Section 3 explains the concept of loop-lifting,
and how this influenced the implementation and performance of
XRPC in MonetDB/XQuery. In Section 4 we turn our attention to
the interaction between XRPC and the XQuery Update Facility, and
define a deterministic distributed update semantics. We describe an
extension to our SOAP protocol and a proof that this protocol con-
forms to the deterministic update semantics. Finally, we discuss
related work in Section 5 before outlining our conclusions and fu-
ture work in Section 6.

2. THE XRPC LANGUAGE EXTENSION
We (i) describe the XRPC syntax extension and give examples,

(ii) define the SOAP message format underlying XRPC, and (iii)
define the formal semantics of XRPC calls.

2.1 XRPC syntax
The XRPC syntax for remote function application is:

execute at Expr { FunApp ( ParamList ) }

where Expr is an XQuery xs:string expression that specifies the
URI of the peer on which FunApp is to be executed. Here we

restrict the function application FunApp to user-defined functions
that are defined in a module. Thus, the defining parameters of an
XRPC call are: (i) a module URI, (ii) a function name, and (iii) the
actual parameters (passed by value). The module URI is the one
bound to the namespace identifier in the function application. Just
like a import module statement, the module URI may be supple-
mented by a so-called "at" hint, which also is a URI.
We chose to exclude calling built-in functions over XRPC, since

remote execution of local parameters does not provide any func-
tional benefit over local execution. We also exclude remote appli-
cation of user-defined functions specified inside the query (rather
than in a module). This latter restriction simplifies the issue of
how to transport the query definition from caller to callee, as it al-
lows the XQuery system implementing XRPC to re-use the existing
mechanism for function resolution from imported modules.
For a precise syntax definition, we show the rules of the XQuery

1.0 grammar that were changed:

PrimaryExpr ::= ...| FunctionCall | XRPCCall | ...

XRPCCall ::= "execute at" "{" ExprSing "}" "{" FunctionCall "}"
FunctionCall::= QName "(" (ExprSingle("," ExprSingle)*)? ")"

Example As a running example, we will assume a set of XQuery
database systems (peers) that each store a movie database docu-
ment "filmDB.xml" with contents similar to:

<filmDB>
<film><filmName>The Rock</filmName>

<actorName>Sean Connery</actorName></film>
<film><filmName>Goldfinger</filmName>

<actorName>Sean Connery</actorName></film>
<film><filmName>Green Card</filmName>

<actorName>Gerard Depardieu</actorName></film>
</filmDB>

We assume an XQuery module film.xq stored at x.org, that de-
fines a function filmsByActor():

module namespace film="filmdb";
declare function film:filmsByActor($actor as xs:string) as node()*
{ doc("filmDB.xml")//filmName[../actorName=$actor] };

We can execute this function on remote peer "y.org" to get a se-
quence of films in which Sean Connery plays in the remote film
database:

import module namespace film="filmdb" at "http://x.org/film.xq";
<films>
{ execute at {"xrpc://y.org"} {film:filmsByActor("Sean Connery")} }
</films>

We introduce here a new xrpc network protocol, accepted in the
destination URI of execute at. The generic form of such URIs
is:

xrpc://< host > [ : port ] [/[ path ] ]

The xrpc:// indicates the network protocol. The second part, <
host > [: port], indicates the remote peer. The third part, [/[path]],
is an optional local path at the remote peer.
The above example yields:

<films>
<filmName>The Rock</filmName>
<filmName>Goldfinger</filmName>

</films>

More Examples. A more elaborate example demonstrates the pos-
sibility of multiple remote function calls to a peer:



import module namespace film="filmdb" at "http://x.org/film.xq";
<films>
{ for $actor in ("Julie Andrews", "Sean Connery")

let $dst := "xrpc://y.org"
return
execute at { $dst } { film:filmsByActor($actor) } }

</films>

and to make it a bit more complex, we could do multiple function
calls to multiple remote peers:

import module namespace film="filmdb" at "http://x.org/film.xq";
<films>
{ for $actor in ("Julie Andrews", "Sean Connery")

for $dst in ("xrpc://y.org", "xrpc://z.org")
return
execute at { $dst } { film:filmsByActor($actor) } }

</films>

Complex communication patterns may be programmed with XRPC,
especially if recursive functions are used:

module namespace film="filmdb";
declare function
film:recursiveActor($destinations as xs:string*,

$actor as xs:string) as node()
{
let $cnt := fn:count($destinations)
let $pos := ($cnt / 2) cast as xs:integer
let $dsts1 := fn:subsequence($destinations, 1, $pos)
let $dsts2 := fn:subsequence($destinations, $pos+1)
let $peer1 := $destinations[1]
let $peer2 := $destinations[$pos]
return
(if ($cnt > 1)
then execute at {$peer1} {film:recursiveActor($dsts1, $actor)}
else (),

doc("filmDB.xml")//filmName[../actorName=$actor],
if ($cnt > 2)
then execute at {$peer2} {film:recursiveActor($dsts2, $actor)}
else ())

};

The above executes the RPC on a set of destination peers, uniting
all results, and does so by constructing an binary spanning tree of
recursive RPC calls.

2.2 SOAP XRPC Message Format
SOAP (Simple Object Access Protocol) is the XML-based mes-

sage format used for web services [17], and we propose the use
of SOAP messages over HTTP as the network protocol underlying
XRPC. SOAP web service interactions usually follow a RPC (re-
quest/response) pattern, though the SOAP protocol is much richer
and allows multi-hop communications, and highly configurable er-
ror handling. For the simple RPC use of SOAP over HTTP, a sub-
protocol called “SOAP RPC” is in common use [14]. SOAP RPC
is oriented towards binding with programming languages such as
C++ and Java, and specifies parameter marshalling of a certain
number of simple (atomic) data types, and also allows passing ar-
rays and structs of such data-types. However, its supported atomic
data types do not match directly those of the XQuery Data Model
(XDM) [8], and the support for arrays and structs is not relevant
in XRPC, where there rather is a need for supporting arbitrary-
shaped XML nodes as parameters as well as sequences of hetero-
geneously typed items. This is the reason, why our SOAP XRPC
message format, while supporting the general SOAP standard over
HTTP with the purpose of RPC, implements a new parameter pass-
ing sub-format (SOAP XRPC �= SOAP RPC). The most often used
form of SOAP RPC is called rpc/encoded, while our SOAP XRPC
protocol belongs to the family of document/literal. It was shown
in [6] that rpc/encoded in general is significantly slower than doc-
ument/literal, and suffers from scalability problems when the mes-
sage size increases.

XRPC Request Message. SOAP messages consist of an envelope,
with a (possibly empty) header and a body. Inside the body, we de-
fine a request that specifies a module URI module, an (optional)
at-hint location and a function name method. The actual parame-
ters of a single function call are enclosed by a call element. Each
individual parameter consists of a sequence element, that contains
zero or more values.
Below we show the SOAP XRPC request message for the first

example query, that looks for films with Sean Connery:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:request module="filmdb" location="http://x.org/film.xq"

method="filmsByActor">
<xrpc:call>
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>
</env:Body>

</env:Envelope>

Atomic values are represented with xrpc:atomic-value, and
are annotated with their (simple) XML Schema Type in the xsi:type
attribute. Thus, the heterogeneously typed sequence consisting on
an integer 2 and double 3.1 would become:

<xrpc:sequence>
<xrpc:atomic-value xsi:type="xs:integer">2</xrpc:atomic-value>
<xrpc:atomic-value xsi:type="xs:double">3.1</xrpc:atomic-value>

</xrpc:sequence>

XML nodes are passed by value, enclosed by an xrpc:element
element:2

<xrpc:sequence>
<xrpc:element><filmName>The Rock</filmName></xrpc:element>
<xrpc:element><filmName>Goldfinger</filmName></xrpc:element>

</xrpc:sequence>

Similarly, the XML Schema XRPC.xsd3 defines enclosing el-
ements for document, attribute, text, processing instruction, and
comment nodes. Document nodes are represented in the SOAP
message as a xrpc:document element that contains the serialized
document root. Text, comment and processing instruction nodes
are serialized textually inside the respective elements xrpc:text,
xrpc:comment and xrpc:processing-instruction. Attribute
nodes are serialized inside the xrpc:attribute element:

<xrpc:attribute x="y"/>

XRPC fully supports the XQuery Data Model, a requirement for
making it an orthogonal language feature. This implies XRPC also
supports passing of values of user-defined XML Schema types, in-
cluding the ability to validate SOAP messages. XQuery already
allows importing XML Schema files that contain such definitions.
Values of user-defined types are enclosed in SOAP messages by
xrpc:element elements, with a xsi:type attribute annotating their
type. The XQuery system implementing XRPC should include a
xmlns namespace definition as well as a xsi:schemaLocation

2Note that white space inside the element node does matter.
3See http://monetdb.cwi.nl/XQuery/XRPC.xsd



declaration inside the Envelope element when values of such im-
ported element types occur in the SOAP message.

XRPC Response Messages follow the same principles, e.g.:

<?xml version="1.0" encoding="utf-8"?>
<env:Envelope xmlns:xrpc="http://monetdb.cwi.nl/XQuery"
xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd">
<env:Body>
<xrpc:response module="filmdb" method="filmsByActor">
<xrpc:sequence>
<xrpc:element><filmName>The Rock</filmName></xrpc:element>
<xrpc:element><filmName>Goldfinger</filmName></xrpc:element>

</xrpc:sequence>
</xrpc:response>

</env:Body>
</env:Envelope>

Inside the body is now a xrpc:response element that contains
the result sequence of the remote function call.

XRPC Error Message. Whenever an XRPC server discovers an
error during the processing of an XRPC request, it immediately
stops execution and sends back an XRPC error message, using the
format of the SOAP Fault message ([17], [13]). For example, the
following SOAP Fault message indicates that a required module
could not be loaded (we show only the env:Fault element):

<env:Fault>
<env:Code><env:Value>env:Sender</env:Value></env:Code>
<env:Reason>
<env:Text xml:lang="en">could not load module!</env:Text>

</env:Reason>
</env:Fault>

Outlook. Our discussion of SOAPXRPCmessage is not fully done
yet. In the next subsection, we will extend the format with support
for isolation. Then in Section 3.2 we describe the Bulk RPC fea-
ture, that allows a single message to request multiple function calls.
Finally, in Section 4.1 we describe a small extension to include tag
attributes in call elements that allows to keep track of a determin-
istic distributed update order.

2.3 XRPC Formal Semantics
In defining the semantics of XRPC, we take care to attach proper

database semantics to the concept of RPC, to ensure that all RPCs
being done on behalf of a single query see a consistent distributed
database image and commit atomically. It is known that full serial-
izability in distributed queries can come at a high cost, and there-
fore we also define certain less strict isolation levels that still may
be useful to certain applications.
We use the following notation and terms:

– P denotes a set of peer identifiers. We use the peer identifier p0
to denote the local peer, on which a particular query is started. All
other peers pi ∈ P are remote peers. In practice, a peer identifier is
a URI from the http protocol, that identifies a host and (optionally)
a port number.

– F denotes a set of XRPC function applications. An XRPC call f
is an updating XRPC call ( f ∈ Fu), if it calls an updating function;
otherwise, it is a non-updating XRPC call ( f ∈ Fr). Thus F ≡
Fu∪Fr. If the evaluation of an XRPC call f requires evaluation of
other XRPC call(s), we term f a nested XRPC call.

– M denotes a set of XQuery modules. A module consists of a
number of function definitions d f . Each XRPC call f must corre-
spond to a definition d f from some module mf ∈ M .

– An XRPC query is an XQuery query q which contains at least
one XRPC call f ∈ Fq, where Fq denotes the set of all function
calls performed during execution of q. We call a query in which
only one, non-nested XRPC call appears a simple XRPC query. An
XRPC query q is an updating XRPC query, if it contains at least
one update command or a call to an updating (XRPC) function.

– Each query operates in a dynamic context. The XQuery 1.0 For-
mal Semantics [7] defines that each expression is normalized to a
core expression, which then is defined by a semantic judgement
dynEnv � Expr ⇒ val The semantic judgement specifies that in
the dynamic context dynEnv, the expression Expr evaluates to the
value val, where val is an instance of the XQuery Data Model
(XDM). For now, we simplify the dynamic environment to a data-
base state db (i.e. the documents and their contents stored in the
XML database): dynEnv� db@p. The dynEnv.docValue from the
XQuery Formal Semantics [7] corresponds to db used here. To
indicate a context at a particular peer p, we write db@p.

Basic read-only XRPC is defined by extending the XQuery 1.0
semantic judgements with a new rule RFr

:

sendp0→pi request(m, fr ,ParamList)
db@pi � fr(ParamList) ⇒ val, db@pi

sendpi→p0 reply(val)
db@p0 � fr(ParamList)@pi ⇒ val, db@p0

(RFr
)

This rule states that in the dynamic context, evaluation of the
read-only XRPC call fr(ParamList)@pi starts with sending the re-
quest (m, fr,ParamList) to peer pi. Here, m is the module URI
(plus at-hint) in which function fr is defined, and ParamList is a
list of actual parameters. The function fr is then evaluated as a nor-
mal local function in the dynamic context dynEnv@pi , that consists
of the database state (db@pi) of the remote peer pi at the time the
request arrived at pi. The evaluation yields the value val, which is
sent back to the local peer p0. Hence, the final result of the XRPC
call at p0 is val.
Note that neither the local database state db@p0 nor the remote

database state db@pi were modified by the evaluation of a read-
only XRPC function. The function evaluation result val is a tran-
sient value, which only exists in the runtime environment at both
p0 and pi. Also note that this definition inductively relies on the
XQuery Formal Semantics to evaluate f locally at pi, and thus may
trigger the evaluation of additional XRPCs if these happen to be
present in body of f .

Repeatable Reads. The general pattern of XRPC function applica-
tions generated by a query is a tree, as each XRPC call may again
perform more XRPC calls. This happens when a query contains
multiple XRPC function applications, or when such a function ap-
plication occurs inside a for-loop. In the below diagram, the arrow
‘→’ should be read as “XRPC call”:

q@p0︷ ︸︸ ︷
↙ ↓ ↘

f1@p1 . . . fi@pi↙ ↓↘ ↙ ↓↘
f j@p j . . . fk@pk fl@pl . . . fm@pm
...

...
...

...
...

...

The peers p0, p1, · · · , pi, p j, · · · , pk, · · · , pl , · · · , pm are not nec-
essarily unique: some peer pi (or in fact many such peers) may
occur multiple times in this tree. When considering rule RFr

, the
dynamic environment dynEnv@pi containing the current database



Operator Semantics
————– ————————————————————
σa select all rows with column a= true
πa1:b1,...,an:bn project columns b1, . . . ,bn and possibly rename

columns bi to ai (no duplicate removal)
δ duplicate elimination
.∪ disjoint union
�a=b equi-join
sorta1 ,...,an sorting
ρb:〈a1,...,an〉/p row numbering (DENSE RANK SQL:1999)
ab literal table

Table 1: Relational Algebra Generated By Pathfinder

state db@pi may thus be seen multiple times during query evalu-
ation. In between those multiple function evaluations, other trans-
actions may update the database and change db@pi. Thus, those
different XRPC calls to the same remote peer pi from the same
query q may see different database states. This will not be accept-
able for some applications and therefore, we deem it worthwhile
to define repeatable read isolation for queries that perform XRPC
calls. For this purpose, we formulate a similar-looking rule R′

Fr
,

where we tag the database states with a query identifier: dbq@pi.

sendp0→pi request(q,m, fr ,ParamList)
dbq@pi � fr(ParamList) ⇒ val, dbq@pi

sendpi→p0 reply()
dbq@p0 � fr(ParamList)@pi ⇒ val, dbq@p0

(R′
Fr

)

This specifies the database state at peer pi to remain in the same
state dbq@pi during all XRPCs belong to the same query q. This
dbq@pi is the state of the database at the time when the first XRPC
request belonging to q arrived at pi. Observe that a unique query
identifier q is now passed as an extra parameter in the XRPC re-
quest, such that a peer can recognize which XRPC calls belong
to the same query. Clearly, XRPC with repeatable reads requires
more resources to implement, as some database isolation mecha-
nism (of choice) will have to be applied. The transaction mech-
anism of MonetDB/XQuery, for example, uses snapshot isolation
based on shadow paging, which keeps copies of modified pages
around.
A quite common reason why a peer is called multiple times in

the same query is when an XRPC call appears inside a for-loop.
In Section 3 we describe how loop-lifting helps avoid these costly
isolation measures in case of simple XRPC queries (i.e. those that
contain only one non-nested function application).

SOAP XRPC Extension: Isolation. Repeatable reads surface in
our protocol by the introduction of an optional queryID child ele-
ment to the xrpc:request element. It contains host and timestamp
attributes that state on which host and at what point in time the
query started initially, and a timeout attribute that specifies a local
number of seconds during which to conserve the isolated database
state. Note that the timeout is relative, it is a number of seconds
– this mitigates problems caused by different peers having wrong
system clock settings or using different time zones. When the time-
out passes, the isolated database state can be discarded, freeing
up system resources. However, the local XRPC handler should
still remember expired queryIDs, such that it can give errors on
XRPC requests that arrive too late. The purpose of sending the
timestamp of the originating host is to ease the administration of
expired queryIDs, as per host only the latest timestamp needs to be
retained, and can be restricted to some sane time interval.

Updating XRPC calls. The XRPC language extension is fully or-

thogonal to all XQuery features, and thus one can also make XRPC
calls to user-defined updating functions, as defined by the XQuery
Update Facility (XUF). The XUF syntax ensures that if a user-
defined function contains one updating function, it must itself be an
updating function. XQuery updates (and thus updating functions)
determine which nodes to change (and how), purely based on the
database state before the update, and produce a pending update list
Δ. While in reality updating queries and updating functions always
return the empty sequence and the creation of Δ happens on-the-
side, we let them return this Δ directly (to simplify our rules).

sendp0→pi request(m, fw,ParamList)
db@pi � fw(ParamList) ⇒ Δ f ,db@pi
db@pi � commit(db@pi,Δ f ) ⇒ db′@pi

sendpi→p0 reply()
db@p0 � fw(ParamList)@pi ⇒ (),db@p0

(RFu
)

Above rule RFu
states that update functions commit the remote

database state db@pi immediately. While easy to implement, this
rule allows lost updates and non-atomic distributed commits to hap-
pen and does not guarantee repeatable reads.

Updates with Isolation. Peers handling multiple XRPC calls for
a query q must not only keep track of the database state dbq, but
also of the pending update list Δq. Thus, the dynamic context with
updates can be represented by a tuple: dynEnvu � (dbq,Δq). When
a peer starts to participate in query q, its pending update list Δq = /0
(i.e. empty). Each updating XRPC call received by peer pi for
query q adds update actions to the list of the remote peer:

sendp0→pi request(q,m, fw,ParamList)
(dbq@pi,Δq@pi) � fw(ParamList) ⇒ Δ fw , dbq@pi

dbq@pi � mergeUpdates(Δq@pi,Δ fw) ⇒ Δ′
q@pi, dbq@pi

sendpi→p0reply()
(dbq@p0,Δq@p0) � fw(ParamList)@pi ⇒ (), dbq@p0

(R′
Fu

)

The translation of isolated updating XRPC calls is depicted in
the inference rule R′

Fu
above. The rule states that at pi, the up-

date actions that are caused locally by f are merged (with the XUF
function upd:mergeUpdates) with the pending update list Δq@pi
that pi keeps for query q. Like rule RF′

r
, this rule again provides

for proper isolation by keeping the database state dbq@pi constant
throughout the query. Note that the XQuery system needs to im-
plement a distributed commit protocol in order to achieve atomic
commit. Any distributed commit algorithm developed for relational
databases (such as 2-phase commit) can be used for this ([20],
[11]).

3. LOOP-LIFTED XRPC
We implemented XRPC in MonetDB/XQuery, an efficient yet

purely relational XML database system [3]. It consists of the Mon-
etDB relational database back-end, and thePathfinder compiler [12],
that translates XQuery into relational algebra as front-end.
The XRPC module contains an ultra-light HTTP daemon imple-

mentation [16] that runs a request handler (the XRPC server), and
contains a message sender API (the XRPC client). We also had to
add support for the execute at syntax to the Pathfinder XQuery
compiler, and change its code generator to generate stub code that
invokes the new message sender API.
The stub code uses the message sender API to generate a SOAP

message from actual function parameters. This process reuses the
normal sequence serializationmechanism inMonetDB/XQuery. The



mapp1
iteriterp1
1 1
3 2

mapp2
iteriterp2
2 1
4 2

reqp1
iterp1 item
1 "Julie Andrews"
2 "Sean Connery"

reqp2
iterp2 item
1 "Julie Andrews"
2 "Sean Connery"

=⇒

=⇒

msgp1
iterp1 pos item
2 1 "The Rock"
2 2 "Goldfinger"

msgp2
iterp2 pos item
1 1 "Sound Of Music"

map back⇒

map back⇒

resp1
iterpos item
3 1 "The Rock"
3 2 "Goldfinger"

resp2
iterpos item
2 1 "Sound Of Music"

.∪iter(resp1 ,resp2 )
=⇒

result
iterpos item
2 1 "Sound Of Music"
3 1 "The Rock"
3 2 "Goldfinger"

Figure 1: Relational Processing of Bulk RPC (Multiple Destinations Example)

message sender API sends the XML message using HTTP POST
and waits for a result message. The result message is subsequently
shredded into a relational table, the way all XML documents are
shredded in MonetDB/XQuery. The stub code retrieves atomic val-
ues from the SOAP document nodes; node-typed values just refer
to the nodes in the newly shredded SOAP document.
The request handler, on the other side, behaves similarly. It lis-

tens for SOAP requests and shreds incoming messages into a tem-
porary relational table, from which the parameter values are ex-
tracted. As MonetDB/XQuery is a relational system, XQuery val-
ues are all represented as (temporary) relational tables. The mod-
ule function specified in the SOAP request is then executed locally
with these parameter tables, producing a result table. The request
handler then builds a response message in which this result table
is serialized into XML, using the normal MonetDB/XQuery serial-
ization mechanism onto the network socket.
Thus, as we re-used the shredding and serialization functional-

ity already in MonetDB/XQuery, as well as an off-the-shelve open
source HTTP daemon [16], implementation was limited to a small
parser extension, and stub code generation.

3.1 Relational XQuery And Loop-Lifting
The Pathfinder compiler [12] translates XPath/XQuery expres-

sions into bulk query plans formulated in the vanilla relational alge-
bra, depicted in Table 1. All operators are well-known, except per-
haps the row numbering operator ρ, which is similar to the SQL:1999
operator DENSE RANK: ρb:〈a1,...,an〉/p(q) assigns each tuple in q a
rank (i.e. number), which is saved in column b. The constraint for
the enumeration is the implicit order or q by the columns a1, . . . ,an.
Numbers consecutively ascend from 1 in each partition defined by
the optional grouping column p.

positem
1 x1
2 x2
...

...
n xn

Representing sequences as tables. The evaluation
of any XQuery expression yields an ordered sequence
of n ≥ 0 items xi, denoted (x1,x2, . . . ,xn). Mon-
etDB/XQuery is a relational system, thus sequences are
represented as tables, with schema positem. Since rela-
tions have (unordered) set-semantics, sequence order must be ex-
plicitly maintained using a pos column. In the XQuery data model,
a single item x and the singleton sequence (x) are identical. Item x
is represented as a single row table containing the tuple 〈1,x〉. The
empty sequence () maps into the empty table.

Loop-lifting. Each XQuery is translated bottom-up into a single
relational algebra plan consisting only of the classical relational
operations (select, project, join, etc); that is, the XQuery concept
of nested for-loops is fully removed and a single bulk (=efficient
and optimizable) execution plan is created.

s0

⎧⎨
⎩

for $x in (10,20)

s1

{
return for $y in (100,200)

s2
{
let $z := ($x,$y)
return $z

Q1

The result of an XQuery
at each step of bottom-
up compilation is a
relational plan that yields
the result sequence for each nested iteration, all stored together. To
make this possible, these intermediate tables have three columns:

iterpositem, where iter is a logical iteration number, as shown in
the tables below. For each scope, we keep a loop relation that holds
all iters.4 If we focus on the execution state in the innermost it-
eration body (marked as scope s2) of Q1, there will be three such
tables that represent the live variables $x, $y and $z respectively.

loop
iter
1
2
3
4

x
iterpositem
1 1 10
2 1 10
3 1 20
4 1 20

y
iterpositem
1 1 100
2 1 200
3 1 100
4 1 200

z
iterpositem
1 1 10
1 2 100
2 1 10
2 2 200
3 1 20
3 2 100
4 1 20
4 2 200

As we can see from the
iter columns, there are
four iterations in scope s2
(numbered from 1 to 4)
and as expected, $x takes
the value 10 in the first two
iterations and the value 20
in the second two itera-
tions. Similarly, $y takes the value 100 in the odd iterations and
the value 200 in the even ones. Finally, $z is a sequence of two
values in all four iterations (consisting of the value of $x followed
by the value of $y).

3.2 Bulk RPC
Our earlier example query:

import module namespace film="filmdb" at "http://x.org/film.xq";
for $actor in ("Julie Andrews", "Sean Connery")
let $dst := "xrpc://y.org"
return execute at { $dst } { film:filmsByActor($actor) } }

actor
iterpos item
1 1 ”JulieAndrews”
2 1 ”SeanConnery”

dst
iterpos item
1 1 ”http : //y.org/”
2 1 ”http : //y.org/”

contains a function application in-
side a for-loop. Inside this loop, the
variables $dst and $actor yield re-
lational tables shown left. Thus, the
value of $dst is the same in both
iterations of the for-loop, whereas
$actor takes on values "Julie
Andrews" in the first and "Sean Connery" in the second iteration.

XRPC SOAP Extension: Bulk RPC. The loop-lifted processing
model of MonetDB/XQuery thus collects in a single table all XRPC
function parameters needed by a remote function call, nested in
one or more for-loops. This is exploited in XRPC SOAP by al-
lowing Bulk RPC, in which a single XRPC message to the desti-
nation peer requests to perform multiple function calls. Each call
is represented by an individual xrpc:call child element of the
xrpc:request. Such a Bulk RPC also returns multiple results in
the xrpc:response (one xrpc:sequence sequence for each call).
From the shredded XRPC response message, it is quite straightfor-
ward to obtain the iter|pos|item table that represents an XDM
result value for each iteration. Note that Bulk RPC exactly fits
in the existing loop-lifted processing model of MonetDB/XQuery:
without execute at, the local function translation mechanism al-
ready produced such a iter|pos|item table.
We show the xrpc:request part of the SOAP message in our

Bulk RPC example, which contains two calls:

4The loop relation allows to keep track of empty sequence values,
encoded by the absence of tuples in the expression representation.



iterpositem result ⇐ .∪iter(resp)
∀p ∈ δ(dst.item),∀1 ≤ i≤ n :

iteriterp mapp = πiter,iterp (ρiterp (σitem=p(dst)))
iterppositem reqip = πiterp ,pos,item(ρpos(�iter=iter (mapp, parami)))
iterppositem msgp = f (req1p, · · · ,reqnp)@p
iterpositem resp = πiter,pos,item(�iterp=iterp (msgp,mapp))

execute at iterpositem { dst }
{ f (iterpositem param1, · · · , iterpositem paramn) }⇒ iterpositem result

Figure 2: Relational Translation of XRPC

<xrpc:request module="filmdb" uri="http://x.org/film.xq"
method="filmsByActor">

<xrpc:call> <!-- first call -->
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Julie Andrews</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>
<xrpc:call> <!-- second call -->
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>

In the previous example the execute at expression $dst hap-
pened to be constant, such that all loop-lifted function calls had
the same destination peer, and could be handled by the single Bulk
RPC request above.
Let us now consider our other previous example:

import module namespace film="filmdb" at "http://x.org/film.xq";
for $actor in ("Julie Andrews", "Sean Connery")
for $dst in ("xrpc://y.org", "xrpc://z.org")
return execute at { $dst } { film:filmsByActor($actor) }

actor
iterpos item
1 1 ”JulieAndrews”
2 1 ”JulieAndrews”
3 1 ”SeanConnery”
4 1 ”SeanConnery”

dst
iterpos item
1 1 ”http : //y.org/”
2 1 ”http : //z.org/”
3 1 ”http : //y.org/”
4 1 ”http : //z.org/”

We now have an inner for-loop with
four iterations, but $dst takes on two
different values, identifying peers y.org
and z.org, in respective the odd and
even iterations. The general rule to
translate a loop-lifted XRPC call is
shown in Figure 2 and Figure 1 shows
the intermediate steps taken. The sys-
tem establishes a list of unique peers,
and for each p extracts from each pa-

rameter iter|pos|item those iteration (tuples) that invoke the
function on p. The resulting request tables (reqp) are used to gen-
erate a Bulk RPC to p. Observe that using ρ a new iterp column is
created, and a mapping table (mapp) that maps old to new iteration
numbers. The mapping table is then again used to map the new
iteration numbers back into old ones, and all result tables (resp) are
united with a (merge-)union on the iter column, to guarantee the
correct order of the result.

Parallel & Out-Of-Order. The XRPC execution in Figure 1 per-
forms two Bulk RPC calls. The first call processes both values of
$actor on y.org, and then a second call performs the same task
on z.org. It is important to observe that this order of processing
is different than what is suggested by the query (i.e. first Julie An-
drews on both, then Sean Connery on both). If a loop-lifted XRPC
function application has multiple destination peers, in fact Mon-
etDB/XQuery improves performance by dispatching all Bulk RPC
requests in parallel, which makes the exact order in which peers
execute the query unpredictable.5

5Note that after all parallel results are collected, the merge-union
on iter guarantees that the result is in the correct order.

The out-of-order processing effects of loop-lifting are thus more
easily explained by a single-destination (hence non-parallel) query:

import module namespace film="filmdb" at "http://x.org/film.xq";
for $name in ("Julie", "Sean")
let $connery := concat($name, " ", "Connery")
let $andrews := concat($name, " ", "Andrews")
return (execute at {"xrpc://y.org"} {film:filmsByActor($connery)},

execute at {"xrpc://y.org"} {film:filmsByActor($andrews)})

Here, only the peer y.org is involved twice within the same
query due to sequence construction. In the first Bulk RPC call, it
will look for films by two actors with surname Connery, resp. sur-
name Andrews in the second RPC. The intuitive order suggested
by the query would be to look for actors by the name Julie first, and
those named Sean second. This change of order in a peer that is vis-
ited multiple times has consequences for the semantics of updating
functions called over XRPC (see Section 4).
The above is also a good example of a query that needs isola-

tion, because it handles two RPC requests inside the same query.
While in this particular case, those two requests could potentially
be combined, this is much harder if two different functions would
be executed, or downright impossible if the parameters of one de-
pend on the outcome of the other. Certain classes of queries, such
as those that contain only a single non-nested XRPC call, can be
easily identified at compile time to send at most one XRPC request
to each destination peer. For such queries, we can use the cheaper
XRPC mechanism without queryID (see Section 2.3), while still
guaranteeing repeatable reads.
Note that without Bulk RPC, the costly isolation mechanism

would be required for any XRPC that performs more than a single
XRPC call. Thanks to Bulk RPC, many queries have to send just a
single message to each peer, thus not only reducing the number of
network I/Os, but also lessening the overhead of isolation.

3.3 Experimental Evaluation
We conducted some simple and preliminary experiments to eval-

uate the performance of SOAP XRPC in MonetDB/XQuery. The
test setup consisted of two 2GHz Athlon64 Linux machines con-
nected on 100Mb/s ethernet. We defined a module with a trivial
user defined function, that adds two integer parameters:

module namespace test="test";
declare function add($a as xs:integer, $b as xs:integer) as xs:integer
{ return $a + $b };

For each measurement, we executed the following function hun-
dred times (the average elapsed time is reported):

import module namespace test="test" at "http://x.org/test.xq";
for $i in (1 to $x)
return execute at { "xrpc://y.org" } { test:add(20,22) }

While inMonetDB/XQuery loop-lifting of XRPC calls (i.e. Bulk
RPC) is the default, we also implemented a single RPC at-a-time
mechanism for comparison. The left half of Table 2 shows the ex-
periment where we compare performance of Bulk RPC with single
RPC at-a-time, while varying the number of loop iterations $x. It
shows that performance is identical at $x=1, such that we can con-
clude that the overhead of Bulk RPC is small. At $x=1000, there is
an enormous difference, mostly caused by network communication
cost. This is easily explained as the single RPC at-a-time experi-
ment involves performing 1000 times more synchronous RPCs.

Function Cache. XQuery Modules have the advantage that they
may be pre-loaded and cached, and our choice to let XRPC use
modules as the query transport mechanism also opens the possibil-
ity to reap performance profit from module pre-processing.



Normal Function Cache
$x=1 $x=1000 $x=1 $x=1000

one-at-a-time 163 68542 35 34979
bulk 172 534 35 400

Table 2: XRPC Performance On Addition Test (msec)

The feature of prepared queries is well-known for a RDBMS,
allowing a parametrized query plan to be parsed and optimized off-
line, such that an application can quickly enter actual parameters
in the prepared plan and execute it. The ODBC and JDBC APIs
export this functionality of relational databases using a program-
ming language binding. MonetDB/XQuery has a mechanism for
supporting prepared queries that does not need specific API sup-
port. Exploiting the fact that a prepared query is in essence a func-
tion with parameters, MonetDB/XQuery caches all query plans for
(loop-lifted) function calls, for functions defined in XQuery Mod-
ules. Queries that just load a module and call a function in it with
constant values as parameter, are detected by a pre-parser. The pre-
parser then extracts the function parameters, and feeds them into
a cached query plan. In MonetDB/XQuery, queries on small data
sets can be accelerated ten-fold by this mechanism [3].
This same function cache mechanism is used by the SOAPXRPC

request handler to handle all XRPC requests. This means that in
MonetDB/XQuery a SOAP XRPC request usually does not need
query parsing and optimization, just execution. The right half of
Table 2 shows the impact of enabling the function cache: we see
the processing time go down, improving both the single- and many-
iteration Bulk RPC experiments. Thanks to the function cache, we
can achieve a minimum RPC latency of 35 msec – which is not
stellar when compared with environments like .NET ([10, 18]), but
still respectable for an XML database system.

4. DETERMINISTIC XRPC UPDATES
The W3C working draft of the XUF [5] does not determine the

ordering among newly inserted nodes if those nodes are inserted
into the same target node using the same kind of insert expression
(into or as first/last or into before/after). The working
draft specifies that this ordering is implementation-dependent.

Definition Of Deterministic Updates. The motivation in Mon-
etDB/XQuery to exercise our liberty to implement the XUF de-
terministically, is simply that order matters in XML. The solution
chosen is that if the XUF working draft leaves the ordering of up-
dates actions undetermined, we respect the order in the pending up-
date list. The XUF working draft specifies how this list is built up
incrementally. For two XQuery language constructs, namely for-
loops and sequence construction, the working draft states that two
pending update must be merged with the upd:mergeUpdates()
internal function. The XUF leaves the working of this function
unspecified, and our solution is to implement it with concatena-
tion. Thus, each new pending update sublist (second parameter
of upd:mergeUpdates() is appended to the existing list (its first
parameter). Note that this definition of update order is “intuitive”
in that it respects the for-loop iteration order, as well as sequence
construction order. Our rules Fu and F′

u further lead to synchronous
function all semantics when updating functions are called over XRPC.

The Challenge. Now that the MonetDB/XQuery implementation
of XUF cares about the update order, our challenge is to extend this
care to distributed updates. In the end of Section 3.2, we showed
an example query that executed two Bulk RPCs on the same peer,
and discussed how our loop-lifting technique causes the function
to be evaluated out of the intuitive order (this intuitive order is also

followed by the XUF to build the pending update list). The be-
low query is the updating equivalent of that previous example, now
using a hypothetical updating function appendLog, that appends
entries to a log:

import module namespace film="filmdb" at "http://x.org/film.xq";
for $name in ("Julie", "Sean")
let $connery := concat($name, " ", "Connery")
let $andrews := concat($name, " ", "Andrews")
return (execute at {"xrpc://y.org"} {film:appendLog($connery)},

execute at {"xrpc://y.org"} {film:appendLog($andrews)})

Our deterministic XUF requires us to write first two Julie entries
in the log, followed by two Sean entries. The loop-lifting, however,
will process the two Connery invocations first, followed by the two
Andrews. In this section, we describe an extension to the SOAP
XRPC message format that allows to re-order the pending update
list at commit time such that the correct update order is followed.

4.1 Order-Correct Update Tags
We start by characterizing the update actions a on behalf of query

q that may be found in the pending update lists Δq@p at the vari-
ous peers p. Second, we define a conceptual Distributed Pending
Update Table (DPUT), that holds all 〈p,a〉 combinations in the re-
quired order. Then, we define an additional third T column for
the DPUT that holds a tag, and explain how these tag values are
constructed. We show that this T column will always appear in
sorted order, given that the DPUT contains the required output or-
der. From this, we can then conclude that if each peer orders its
local Δq@p on T just before commit, it will apply the update ac-
tions in the correct order. As a last step we show how the tags are
constructed during query execution and passed between peers using
a small (and final) extension to the SOAP XRPC message protocol.

Update Actions. There are four groups of updating primitives de-
scribed in [5]:

– insert expressions ∈ {upd:insertBefore, upd:insertAfter,
upd:insertIntoAsFirst, upd:insertIntoAsLast, upd:insertInto,
upd:insertAttributes}.
– delete expressions ∈ {upd:delete}.
– rename expressions ∈ {upd:rename}.
– replace expressions∈ {upd:replace-Node, upd:replaceValue,
upd:replaceElementContent}.
For our purposes here, we abstract from these different groups and
consider them as single update actions, denoted As. We denote A
the set of all update actions. Composite update actions, denoted
Ac, are calls to an updating function, which itself can perform one
or more update actions ∈ A . We have A ≡ As∪Ac.

Distributed Pending Update Table. Imagine that all update ac-
tions caused in a distributed update query are put in the correct
deterministic update order, and attach to this global list Δ an ad-
ditional peer column P . The resulting table PA we call the Dis-
tributed Pending Update Table (DPUT). We should stress that this
is a conceptual table only, we do not propose to materialize such a
table in any way.
In Section 2.3 we described that when an updating XRPC query

is started with isolation (i.e. following the semantics defined by
F′

u), each peer p keeps an isolated environment 〈dbq@p,Δq@p〉
around. Each XRPC function application fi(Params)@p causes a
sub-list f idi@p of pending update actions (just denoted Δ f in rules
Fu and F′

u) that is merged into the overall list Δq@p. We stress
that f idi@p is just a conceptual list (not an implementation data
structure) that represent the update actions caused at peer p by a
single function call. The local list of pending updates at query site
p0 is denoted qid@p0 here.



qid@p0
P A
p1 f id1
p0 a1
p0 a2
p0 a3
p0 a4
p0 a5
p2 f id2
p0 a6
p0 a7
p0 a8
p0 a9
p0 a10
p1 f id3

point to
�

replace

point to
�

replace

point to
�

replace

f id1@p1
P A
p1 a1
p1 f id4
p1 a2

f id2@p2
P A
p2 a1
p5 f id5
p2 a2

f id3@p1
P A
p1 a3
p1 a4

point to
�

replace

point to
�

replace

f id4@p1
P A
p1 a5
p1 a6

f id5@p5
P A
p5 a1

merge Δ
=⇒

DPUTq
P A
p1 a1
p1 a5
p1 a6
p1 a2
p0 a1
p0 a2
p0 a3
p0 a4
p0 a5
p2 a1
p5 a1
p2 a2
p0 a6
p0 a7
p0 a8
p0 a9
p0 a10
p1 a3
p1 a4

Figure 3: The conceptual Distributed Pending Update Table

COROLLARY 1. Iteratively substituting each 〈px, f idy〉 in qid@p0
by sub-list f idy@px, yields the DPUT in required order.

Figure 3 shows qid@p0 and all f idi@p j caused by a single
query, and the DPUT derived from those (the right-most table). In
the lists, values ai indicate single update actions, while the values
f idi points to another pending update sub-list, that represents all
update actions caused by the called function f idi at the peer in col-
umn P . The iterative substitution of the sub-lists in DPUT achieves
the required synchronous semantics for remote function calls, as it
inserts all update actions (recursively) caused by a function call in
the DPUT at the point where the remote function was applied.

Body and Tags. The XUF restricts the locations in a query where
update actions can be done. We abstract from the full XQuery syn-
tax using the body concept, to define these places. body refers to
the body of an updating XRPC query or the body of an updating
XRPC function. The body grammar is shown below:

body ::= UpdateAction |
"for" ... "return" body |
body ("," body)*

A body can contain an expression in one of the three types, (i)
an update action (possibly a XRPC updating function), (ii) a for
expression which in turn contains a body in its return clause, or
(iii) a sequence of one or more bodys.
The tags in column T of the DPUT are concatenations of num-

bers, separated by a dot. We initialize tpre f ix = 1 for executions
done locally on behalf of the initiating query. The query body
mimicks the parse tree of the query, which is then “executed” re-
cursively as follows (starting with b=root and tb = /0) to generate
all tags:

• if b is a sequence constructor, we process all sequence ex-
pressions s1, · · · ,sn while assigning tsi = tb.i.

• if b is a for-loop with iterations 1 ≤ i≤ n, we process each
iteration of the body f with t f = tb.i.

• if b is an updating action, we put tag= tpre f ix.tb in column T
for all update actions it inserts in the pending update list.

• if b is an updating XRPC function, we also insert tag as an
attribute of the xrpc:call in the XRPC request. The up-
dating function body is executed remotely with initialization
tpre f ix = tag.

Figure 4 shows how the tags are constructed from the body of
our example update query. The initial tpre f ix is 1. The for-loop
with two iterations introduces the second number, 1 for the first

iter1, iter2︷ ︸︸ ︷
for $s in ("str1", "str2")
return (

seq1
⎧⎩ execute at {p1} { updFun1($s) },

seq2
⎧⎩ execute at {p1} { updFun1($s) }

)

P A T
p1 updFun1(str1) 1.1.1
p1 updFun1(str1) 1.1.2
p1 updFun1(str2) 1.2.1
p1 updFun1(str2) 1.2.2

Figure 4: The Body of the Example Query and its DPUT

Δq@p1

P A T f id1@p1
“xrpc://y.org” appendLog(“Julie Connery”) 1.1.1
“xrpc://y.org” appendLog(“Sean Connery”) 1.2.1

P A T f id2@p1
“xrpc://y.org” appendLog(“Julie Andrews”) 1.1.2
“xrpc://y.org” appendLog(“Sean Andrews”) 1.2.2

⇓ sortT (Δq@p1)

P A T
“xrpc://y.org” appendLog(“Julie Connery”) 1.1.1
“xrpc://y.org” appendLog(“Julie Andrews”) 1.1.2
“xrpc://y.org” appendLog(“Sean Connery”) 1.2.1
“xrpc://y.org” appendLog(“Sean Andrews”) 1.2.2

Figure 5: The pending update list Δq@p1 was created by two
XRPC calls executed after each other. Sorting those at commit
time on T achieves deterministic update order.

iteration, and 2 for the second. Inside the loop body we find a
sequence constructor, introducing a third number in the tag. Inside
this sequence constructor, the update actions are found and tagged.
Note that the tag construction algorithm respects the for-loop

and sequence construction order just like XUF pending update list
construction. Also, the tags generated by remote function applica-
tions are prefixed by the current tag and therefore must be bigger
than all previous and smaller than all following locally generated
tags, which mimics synchronous XRPC semantics. Therefore:

COROLLARY 2. Column T in DPUT is ordered by definition.

One should remember that the DPUT is only a concept used to
define the required order, and there is no single place where we
can afford to bring together the entire merged pending update list
– each peer only has local information. But, if we could attach the
correct tag values to the (partial) pending update lists Δq@p at each
peer p in a T column, then we can achieve correct update order by
(stable) sorting the Δq@p on T locally at each peer at commit time.

XRPC SOAP Extension: Tag Attributes. The tags are only con-
structed on demand, just before executing a Bulk RPC request. In
local execution, the iter columns maintained byMonetDB/XQuery
for loop-lifting correspond with the iteration numbers in the tags.
Thus by obtaining all iter numbers from the current scope through
to the root level (by joining with so-called map relations [12]), the
tags can be constructed whenever an update action needs to be ex-
ecuted. For sequence construction, these numbers are available in
the Pathfinder XQuery Core parse tree, and can be inserted in the
generated query plan. The tags are always prefixed by tpre f ix, stored
as a loop-lifted expression. The reconstructed tags are included as
attributes in the xrpc:call elements in the Bulk SOAP XRPC re-
quest message. The remote peer uses this tag then as prefix for
generating further tag numbers, as described before (i.e. as the
loop-lifted tpre f ix expression).
Below we show the first XRPC request message triggered by the

RPC call in our example query, which leads to tags 1.1.1 and 1.2.1
(i.e. tpre f ix.iter{1,2}.seq1):

<xrpc:request module="filmdb" uri="http://x.org/film.xq"
method="appendLog">

<queryID host="x.org" timestamp="32414232" timeout="180"/>
<xrpc:call tag="1.1.1"> (: first call :)
<xrpc:sequence>



<xrpc:atomic-value
xsi:type="xs:string">Julie Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>
<xrpc:call tag="1.2.1"> (: second call :)
<xrpc:sequence>
<xrpc:atomic-value
xsi:type="xs:string">Sean Connery</xrpc:atomic-value>

</xrpc:sequence>
</xrpc:call>

</xrpc:request>

The second function application leads to a similar XRPC request
(logging actors with surname Andrews this time), with call tags
1.1.2 and 1.2.2 (not shown). Figure 5 shows the pending update
list Δq@p1 at peer p1 (y.org) including the extra column T . It
depicts the situation at commit time. Both both XRPC requests
have been executed successfully, and produced pending update sub-
lists f id1@p1 and f id2@p1, which were concatenated in Δq@p1
as both executed with isolation semantics F′

u (note that the XRPC
Request above includes the queryID element). Sorting the pending
update list on T achieves the desired deterministic update order.

5. RELATED WORK
Among others, our work is closely related to XQueryD [21]. The

syntax of XRPC is based on that of XQueryD, but in a more re-
stricted form, namely, instead of executing an arbitrary query at a
remote peer, XRPC only allows execution of predefined module
functions. The XQueryD approach requires a runtime rewriter to
scan the XQuery expressions in the execute statement for vari-
ables and substitute the variables with the current runtime values.
Such a rewriter is not needed in XRPC, since the binding of the pa-
rameters of an XRPC function application is done by the compiler
as if it was a normal function application. Unlike XRPC, XQueryD
does not explicitly address its underlying communication protocol.
In Active XML ([2], [1]), calls to service functions are embedded

in XML documents. The evaluation of a service call sc results in an
XML fragment, which is inserted into the original XML document
as a sibling of the service call. Similar to nested XRPC calls, the
resulting XML fragment of a service call can again contain service
calls. AXML differs with XRPC mostly in the execution model.
AXML uses a lazy evaluation model, which means that a service
call will not be evaluated unless the data is required, while XPRC
put the emphasis on bulk operation to speed up the evaluation of
RPC calls. AXML defines that the AXML documents are dynamic
documents, which means that evaluating the same service call mul-
tiple times can possibly return different results. This is another
major difference between AXML and XRPC, because XRPC uses
the Repeatable-Read isolation level.
Galax Yoo-Hoo! [19] is related to our work in the sense that web

services are accessed using remote procedure calls and SOAP mes-
sages are used as the communication protocol. Yoo-Hoo! differs
with XRPCmainly in the implementation of the stub. In the former
system, the generated stub is a user-defined function in XQuery.
The stub builds the SOAP request message using XQuery’s ele-
ment construction, which is then passed to a new function support-
ing SOAP calls. The parameters are copied into the SOAP message
and this approach results in one more intermediate step of element
reconstruction, comparing with XRPC. Bulk operation is not sup-
ported by Yoo-Hoo!. Another major difference is that the SOAP
RPC implementation of Galax Yoo-Hoo [19] is based on an equiv-
alent of the http post method, but supports only one destination
URI for each imported web services module, namely, the one to
which the web service is bound.
DXQ [22] is a specification of a Distributed XML-Query (DXQ)

network. A DXQ-Network consists of one or more XDQs (XML-

Query Distributor) and XDPs (XML-Document Provider). A DXQ-
client can send XQuery queries to an XDQ for distributed execu-
tion. The XDQ is responsible for disseminating a request to all
registered XDPs, gathering results from the XDPs and sending all
results back to the client. The main part of DXQ is an HTTP-
like protocol for the communication between the components in a
DXQ-network. DXQ is thus more a communication system than an
XQuery execution system, in the sense that it does not specify how
the XQuery queries are processed. Instead of inventing a new com-
munication protocol, XRPC chooses SOAP as underlying transport
protocol because of its interoperability and its seamless integra-
tion with the (Web) Service Oriented Architectures. Another bene-
fit of using SOAP is that applications can even directly communi-
cate with XRPC servers by generating XRPC request messages in
SOAP format without running an XRPC client.
In the area of distributed query processing and transactions, much

prior research has been done. There have been several surveys on
these topics, such as [15], [23] and parts of the book of [20]. Dis-
tributed XRPC updates with isolation (rule F′

u) need a distributed
commit protocol, for which any of the Two-Phase commit pro-
tocol [20], the Paxos Commit algorithm [11] and the distributed
Sagas [9] could be used.

6. CONCLUSION
In this paper, we presented XRPC, a minimal XQuery extension

that enables distributed query execution.6 We first gave a formal
definition of the syntax and the semantics of XRPC, including the
semantics of distributed update queries, that follow from the use of
XQuery Updating Functions over XRPC. Part of our proposal is the
SOAP XRPC message protocol, that allows to seamlessly integrate
our approach with web service architectures. SOAP XRPC sup-
ports the concept of Bulk RPC; the execution of multiple function
calls in a single message exchange. We have shown that the loop-
lifting technique, pervasively applied in our MonetDB/XQuery sys-
tem for the translation of XQuery expressions to relational algebra
can easily generate such Bulk RPC Requests. A small experimen-
tal section demonstrated that Bulk RPC strongly improves perfor-
mance of queries that execute XRPC calls inside for-loops. Fi-
nally, we defined a deterministic update semantics for the XQuery
Update Facility, and showed how the SOAP XRPC can be extended
to guarantee deterministic order in distributed update scenarios.
Short term future work includes extensive performance testing,

such that we can assess the scalability when large XML payloads
are involved, and an increasing number of peers. On the longer
term, we regard the implementation of XRPC inMonetDB/ XQuery
a major step towards our AmbientDB [4] architecture, that aims to
create versatile P2P data management technology.

7. REFERENCES
[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo.

Dynamic xml documents with distribution and replication. In
SIGMOD Conf., pages 527–538, 2003.

[2] S. Abiteboul, I. Manolescu, and E. Taropa. A framework for
distributed xml data management. In Intl. Conf. on Extending
Database Technology, pages 1049–1058, 2006.

[3] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In SIGMOD, June 2006.

[4] P. Boncz and C. Treijtel. AmbientDB: relational query processing in
a P2P network. In International Workshop on Databases,
Information Systems, and P2P Computing (DBISP2P),
(LNCS/LNAI), Springer-Verlag, Berlin, Germany, September 2003.

6XRPC will be available in the next open-source release of Mon-
etDB/XQuery, scheduled for December 2006.



[5] D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility.
W3C Working Draft 11 July 2006, July 2006.
http://www.w3.org/TR/2006/WD-xqupdate-20060711.

[6] F. Cohen. Discover SOAP encoding’s impact on web service
performance, March 2003. http://www-
128.ibm.com/developerworks/webservices/library/ws-soapenc.

[7] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3C Candidate Recommendation 8 June 2006, June
2006. http://www.w3.org/TR/2006/CR-xquery-semantics-20060608.

[8] M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh.
XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Candidate
Recommendation 11 July 2006, July 2006.
http://www.w3.org/TR/2006/CR-xpath-datamodel-20060711.

[9] H. Garcia-Molina and K. Salem. Sagas. In SIGMOD Conf., pages
249–259, New York, NY, USA, 1987. ACM Press.

[10] M. Govindaraju, A. Slominski, K. Chiu, P. Liu, R. van Engelen, and
M. J. Lewis. Toward Characterizing the Performance of SOAP
Toolkits. In GRID ’04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (GRID’04), pages
365–372, Washington, DC, USA, 2004. IEEE Computer Society.

[11] J. Gray and L. Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems, 31(1):133–160, 2006.

[12] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In VLDB,
pages 252–263, September 2004.

[13] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.
Nielsen. SOAP Version 1.2 Part 1: Messaging Framework. W3C
Recommendation 24 June 2003, June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-20030624.

[14] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F.
Nielsen. SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation
24 June 2003, June 2003.
http://www.w3.org/TR/2003/REC-soap12-part2-20030624.

[15] D. Kossmann. The state of the art in distributed query processing.
ACM Computing Surveys, 32(4):422–469, 2000.

[16] S. Lyubka. SHTTPD: Simple HTTPD. http://shttpd.sourceforge.net.
[17] N. Mitra. SOAP Version 1.2 Part 0: Primer. W3C Recommendation

24 June 2003, June 2003.
[18] A. Ng, S. Chen, and P. Greenfield. An Evaluation of Contemporary

Commercial SOAP Implementation. In AWSA, pages 64–71, April
2004.

[19] N. Onose and J. Siméon. XQuery at Your Web Service. In WWW,
pages 603–611, 2004.

[20] M. T. Özsu and P. Valduriez. Principles of distributed database
systems (2nd ed.). Prentice-Hall, Inc., NJ, USA, 1999.

[21] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery. In
IIWeb, pages 116–121, September 2004.

[22] C. Thiemann, M. Schlenker, and T. Severiens. Proposed Specification
of a Distributed XML-Query Network. CoRR, cs.DC/0309022, 2003.

[23] C. Yu and C. Chang. Distributed query processing. ACM Computing
Surveys, 16(4):399–433, 1984.



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Shift: move down by 42.52 points
     Normalise (advanced option): 'improved'
      

        
     32
            
       D:20061102144837
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     1
     0
     Full
     1106
     333
    
     Fixed
     Down
     42.5197
     0.0000
            
                
         Both
         3
         AllDoc
         100
              

       CurrentAVDoc
          

     Uniform
     14.1732
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0c
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 qi2base





