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ABSTRACT

In this work a multilevel optimization strategy based on manifold-mapping combined with
multiquadric interpolation for the coarse model construction is presented. In the proposed
approach the coarse model is obtained by interpolating the fine model using multiquadrics in a
small number of points. As the algorithms iterates, the response surface model is improved by
enriching the set of interpolation points. This approach allows to accurately solve the TEAM
Workshop Problem 25 using as little as 33 finite element simulations. Furthermore is allows a
robust sizing optimization of a cylindrical voice-coil actuator with seven design variables. Further
analysis is required to gain a better understand of the role that the initial coarse model accuracy
plays the convergence of the algorithm. The proposed allows to carry out such analysis by
varying the number of points included in the initial response surface model. The effect of the
trust-region stabilization in the presence of manifolds of equivalent solutions is also a topic of
further investigations.
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Abstract

Purpose - In this work a multilevel optimization strategy based on
manifold-mapping combined with multiquadric interpolation for the coarse
model construction is presented.
Design/methodology/approach - In the proposed approach the coarse
model is obtained by interpolating the fine model using multiquadrics in
a small number of points. As the algorithms iterates, the response surface
model is improved by enriching the set of interpolation points.
Findings - This approach allows to accurately solve the TEAM Workshop
Problem 25 using as little as 33 finite element simulations. Furthermore
is allows a robust sizing optimization of a cylindrical voice-coil actuator
with seven design variables.
Research limitations/implications - Further analysis is required to
gain a better understand of the role that the initial coarse model accu-
racy plays the convergence of the algorithm. The proposed allows to carry
out such analysis by varying the number of points included in the initial
response surface model. The effect of the trust-region stabilization in the
presence of manifolds of equivalent solutions is also a topic of further in-
vestigations.
Originality /value - Unlike the closely related space-mapping algorithm,
the manifold-mapping algorithm is guaranteed to converge to an fine
model optimal solution. By combining it with multiquadric response sur-
face models, we extend its applicability to problems for which other kinds
of coarse model such as lumped parameter approximations for instance
are tedious or impossible to construct.
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1 Introduction

The space-mapping technique [1] allows to speed up computationally expensive
simulation-based optimization procedures through the use of approximate mod-
els. In the space-mapping literature the so-called fine and coarse models are
conceived as mappings from the design space to the space of model responses.
The key element is the space-mapping function. It reparametrises the coarse
model domain in such a way to minimize the discrepancy between the fine and
coarse model responses. The composition of the space-mapping function and the
coarse model defines a surrogate for the fine model. Instead of solving the fine
model optimization problem directly, space-mapping solves the surrogate opti-
mization problem through a sequence of approximations of the space-mapping
function. In turn this sequence defines a sequence of coarse model optimization
problems whose solutions converge by definition to the space-mapping solution.
The computational efficiency of this approach stems from the fact that it takes
less fine model evaluations for the sequences mentioned afore to converge than
it takes to solve the fine model optimization problem. The drawback is that
the the space-mapping solution does not necessarily coincide with fine model
optimum.

In the manifold-mapping technique [5], the surrogate model is constructed
in such a way that in a neighbourhood of the fine model optimum, the surrogate
model response closely resembles its fine model counterpart. This guarantees
that the solutions of the surrogate and fine model optimization problem do coin-
cide. The space-mapping function is replaced by the so-called manifold-mapping
function. The latter is an affine transformation between tangent manifolds of
the coarse and fine model image spaces. Manifold-mapping is computationally
as efficient as space-mapping.

Optimization problems encountered in engineering practise are often ill-
posed and this adversely affects the convergence of optimization procedures.
To overcome this problem, some kind of stabilization is required. In this work
we will make use of a trust-region strategy [8] that prevents the difference in
the successive manifold-mapping iterands from becoming too large.

The efficiency of manifold-mapping critically hinges on the the balance be-
tween quality and computational cost of the coarse model. In this paper we
advocate the use of response surface coarse models. A fairly common two-stage
approach in applying such models is the following. An initial response surface
model is build and optimized using a global optimizer. In a second stage points
in regions of the design space in which a minimum is found is added to the
response surface model. In this approach the choice of the points to add to
the response surface is entirely based upon heuristics. In combining manifold-
mapping with a response surface methodology we distinguish the following four
advantages. Firstly, it alleviates the burden of having to construct accurate
response surface models. Secondly, the response surface can be adaptively im-
proved during the manifold-mapping iterative process by enriching the set of
interpolation points with points for which manifold-mapping computes the fine
model response. This iterative model refinement requires negligible computa-
tional cost. Thirdly, the number and location of the initial interpolation points
can in principle be varied to investigate what kind of coarse model accuracy is
required for a particular application. And finally, the use of response surface
models offers a gateway to applied manifold-mapping optimization to problems



for which other kinds of coarse model such as lumped parameter approximations
for instance are tedious or impossible to construct.

This paper is organized as follows: In Section 2 we introduce the space-
mapping technique. In Section 3 we give the details of the response surface con-
struction using multiquadrics. In Section 4 we explain the manifold-mapping al-
gorithm and its combined use with response surface coarse models. In Section 5
we give evidence of the performance of the proposed strategy by means of two
design problems: the TEAM Workshop Problem 25 and the sizing optimization
of a cylindrical voice-coil actuator.

2 The Space-Mapping Technique

Let us consider an optimization problem with design variables x in the design
space X € X C R"™ and specifications y € R™. The accurate behavior of
electromechanical devices is often studied using models that have large com-
putational costs, e.g., finite element models. In space-mapping terminology [1]
these models are called fine models. The fine model response is denoted by
f(x) € R™. The problem we set out to solve in this paper can be stated as

find x} € X such that x} = arzgg)l(in lIf(z) —yIl, (1)

where argmin denotes the argument of the minimum. Space-mapping needs a
second, possibly less accurate but computationally cheaper model, called coarse
model. The coarse models are assumed to be defined over the same design
space X. Their response is denoted by c(x) € R™. The auxiliary optimization
problem can be formulated as

find x} € X such that x} = argmin ||c(z) — y]||. (2)
zeX

The space-mapping function p : X — X maps the design variable x with cor-
responding fine model response f(x) to the design variable p(x) that minimizes
the fine and coarse model discrepancy, i.e.

x = p(x) = argmin [je(z) — £(x)], 3)
FAS
This function allows to defined the surrogate c(p(x)) for f(x). The space-
mapping solution is defined through the use of this surrogate as follows

find x},, € X such that x},, = argmin ||c(p(z)) — y| . (4)
zeX

In practise (4) is solved iteratively by replacing p(x) by an sequence of ap-
proximation {px(x)}r>1 converging to p(x) for k& — oo yielding a sequence of
iterands {Xg sm}r>1 converging to x} .. Typically p(x) is expanded in a first
order Taylor series and Broyden’s method is employed to update the gradient
Vp(x) from iteration k to k+1. The space-mapping technique thus replaces the
fine model optimization problem (1) by the surrogate problem (4) and solves
the latter by the following sequence of coarse model optimization problems

find xg sm € X such that x s, = argmin ||c(px(2z)) —y||, (5)
zeX



each requiring a fine model evaluation to compute pg(x). However, we have
that

Xom # X (6)
unless additional assumptions on p(x) (and thus indirectly on the coarse model)
are imposed.

3 Response Surface Modelling

Response surface models have been known for a long time and a well-established
theory exists [2, 10]. Originally developed for optimization based on real exper-
iments, they were extended to simulation-based optimization later on. These
models are build by interpolating the fine model in a discrete set of sampling
points. The two main aspects of response surface modelling are the choice of
interpolating functions and of the sample points [4, 9, 3].

In this work the response surface coarse model is constructed by interpolating
the fine model f(x) in a uniform N-point sampling of the design space X using
multiquadrics. Assume first that m = 1. The multiquadric ¢;(x), j =1,..., N,
centered on the point x; € X is defined as

9;(x) = /Il x = %; | +h, (7)

where the parameter h (called the shift-parameter) allows to control the curva-
ture of g;(x). It is chosen by the relationship h = (Z;VZI Ix;]|)/(K N), where
K is an arbitrary constant, here set equal to 50 in accordance with [3]. The
interpolating coarse model ¢(x) can then be expressed as

o) = D" oy (). ®

The coefficients «; are the solution of the linear system of equations

Qa=F, (9)
where Q is the matrix of interpolation functions evaluated in the interpola-
tion points Q;; = ¢;(x;), & = (a1,as,...,an) the vector of coefficients and

F = (f(x1),f(x2),...,f(xn)) the vector of the fine model evaluated in the
interpolation points respectively. The extension of this discussion to m > 1 is
straightforward. For a giving sampling of X, the linear system (9) can be solved
prior to the coarse model optimization iterative procedure.

The versatility of multiquadratic interpolation in representing complex iso-
surfaces on the cost-function was shown in e.g. [3].

4 Adaptive Manifold-Mapping
4.1 The Manifold-Mapping Technique

The manifold-mapping technique [5] exploits coarse model information and de-
fines a surrogate optimization problem whose solution, unlike in (6), does coin-
cide with . The key ingredient is the manifold-mapping function between the



coarse and fine model image spaces ¢(X) C R™ and f(X) C R™. This function
S : ¢(X) — f(X) maps the point c(x}) to f(x}) and the tangent space of c(X)
at x} to the tangent space of f(X) at x}. It allows to define the surrogate model
S(c(x)) and the manifold-mapping solution as follows

find x;,,,, € X such that x},,,, = argmin ||S(c(z)) — y||. (10)
zeX

The manifold-mapping function S(x) is approximated by a sequence {S(x)}x>1
yielding a sequence of iterands {Xx mm }x>1 converging to x}, .. The individual
iterands are defined by coarse model optimization

find xj, ,,,,, € X such that x¢ ;mm = argmin ||Si(c(z)) — || - (11)
zeX

At each iteration k, the construction of Sy requires the singular value decompo-
sition of the matrices AC}y and AFy, of size m x min(k,n) whose columns span
the coarse and fine model tangent space in the current iterand, respectively.
Denoting these singular value decompositions by

ACk = Ug,c Zp,e Vieo and A Fi = Uy, Sk g Vig g+ (12)
we introduce the updated objective yj as

Yk = c(xk) = |ACk A Fl+ (I - Uk UL)| (Ex) - ¥), (13)

where superscript ! denotes the pseudo-inverse. With this notation, the problem
(11) can shown be to be asymptotically equivalent to

find xj, ,,,,,, € X such that xi mm = argmin ||(c(z) — y&|| (14)
zeX

By construction
Xpym = T - (15)

mm

In [6] it was shown how an inaccurate course model delivers a speedup with a
factor between 4 and 5 for a design problem for a cylindrical voice-coil actuator
with two design variables. Due to the ill-posedness of the problem, it is neces-
sary to incorporate a regularization strategy to obtain similar results in higher
dimensions. Such a regularization strategy is discussed in the next subsection.

4.2 Trust-Region Strategy for Manifold-Mapping

A bad conditioning of the matrix AFy in (13) may result in an arbitrary large
step size X; — Xx—1. To prevent manifold-mapping from taking such steps, a
trust-region stabilization was devised in [8]. In this approach, a Levenberg-
Marquardt-type regularization simultaneously counteracts the undesired effect
of small AFy, singular values. Iterations with a too large increase of the cost-
function are rejected. The use of this trust-region approach typically requires
more than one fine model evaluation per manifold-mapping iteration.



4.3 Adaptive Improvement of the Coarse Model

During the manifold-mapping iteration, the points x; for with the algorithm
evaluates f(xj) can be added to set of response surface interpolation points.
By doing so, the response surface is adaptively improved. Each time the set of
interpolation points is enriched, the linear system (9) has to be solved for the
coefficients . This can be done prior to entering the coarse model iterative
optimization procedure and at computational cost much smaller than required
for a fine model evaluation.

5 Numerical Results

In this section the performance of the proposed optimization strategy is demon-
strated on two problems: the well-documented TEAM Workshop Problem 25
[13, 12] and the first of two cylindrical voice-coil actuator design problems in-
troduced in [6, 7].

The goal of the TEAM problem 25 is to optimize the shape of ferromagnetic
die molds in such a way obtain a magnetic flux in the cavity as radial and as
close to .35 T as possible. The design space X C R* is a hypercube defined by
bound constraints on the design variables. The fine model consists of a finite
element discretization of the perpendicular current vector potential formulation,
using isoparametric second order Lagrangian elements on unstructured meshes
of triangles. Two adaptive refinement steps result in a discrete problem with
between 10000 and 12500 triangles and between 20000 and 25000 degrees of free-
dom, depending on the design parameters. The fine model response f(x) € R2?
and specifications y € R?® represent the computed and the specified magnetic
flux components B, and B, computed at 10 points in the cavity respectively.

The goal of the voice-coil actuator problem is to find the size of different
components of the actuator, in such a way as to obtain a magnetic force on the
coil over the 5 mm stroke as constant and as close to 24 N as possible. The space
X C R7 is defined by bound and additional linear inequality constraints that
ensure that the coil positions remain feasible. The fine model is a finite element
discretization of the azimuthal current vector potential formulation. A single
adaptive refinement step results in a problem with between 5000 and 10000
triangles and between 11000 and 18000 degrees of freedom depending on the
design variables and the position of the coil. The fine model response f(x) € R®
gives the computed magnetic force on the coil in 9 coil positions.

In both problems, the initial response surface coarse model is constructed
by an uniform sampling of X. For each design variables, the interval from lower
to upper bound is subdivided into an equidistant grid of four intervals. As
interpolation points the Cartesian product of the first or third interior node
on each axis is chosen, resulting e.g. in problems with four design variables in
16 interpolation points in total. This coarse model will be referred to as the
2 X 2 X 2 X 2 coarse model later on. Analogously, the coarse model with the
second interior point along each axis added to the set of interpolation points
will be abbreviated as the 3 x 3 X 3 X 3 coarse model. In the voice-coil actuator
problem the response surface is constructed for 9 positions of the coil.

The bulk of the coarse model computational cost involves solving the linear
system (9) for a and is small compared with a finite element analysis. This



allows a stochastic algorithm to be used for a coarse model optimization (11).
For this purpose we use differential evolution [11]. We set the parameters in
our code used such that at each manifold-mapping iteration, the coarse model
optimizer requires a total of 1250 and 5000 function evaluations in the four and
seven dimensional problems, respectively.

In our numerical test we give evidence of both the stability and efficiency of
our approach and we point out which algorithmic components are responsible for
this efficiency. As our algorithm contains a stochastic component, we’ve chosen
to report on 50 consecutive runs of the algorithm under the same conditions
and to compare the minimal cost-function values and the number of fine-model
evaluations of these runs.

5.1 TEAM Workshop Problem 25: Die Mold Press

In the TEAM 25 problem, we run 50 times 20 iterations of two variants of
manifold-mapping without trust-region stabilization. Without this stabiliza-
tion, each manifold-mapping iteration requires only one fine model evaluation.
As however the convergence of the algorithm is in general non-monotone, the
minimal cost-function value in a single run of 20 iterations can be found in less
than 20 fine model evaluations. Taking into account that the cost function (cfr.
[12]) carries the unit of the square of the magnetic flux (T?), our results can
be summarized as follows. Without adaptive coarse model refinement, the algo-
rithm finds on average a minimal cost-function value || f(x%,,,) -y ||= 5.5¢-3 T>
with a standard deviation of 2.1e-3 T2. The adaptive refinement has a enormous
impact on both quality and the variation of the solution found. On average the
minimal cost-function drops by a factor of 20 to || f(x%,,,) — ¥ ||= 2.7e-4 T?
and the standard deviation by a factor of 25 to 8.6e-5T2. Once the initial
coarse model has been constructed, the adaptive manifold-mapping algorithm
finds such high quality solutions using on the average only seventeen fine model
evaluations! In total the algorithm requires on the average 33 finite element
simulations to solve the problem.

A detail of the optimal geometry and flux distribution are shown in Figure 1.

5.2 Cylindrical Voice Coil Actuator

To solve the voice-coil actuator problem, we adopt a progressive approach on
the number of design variables. By this we mean that we initially seek an
optimal solution by varying the first and the first two design variables only,
keeping all other values fixed at their initial value. In a second and third stage
we gradually increase the complexity of the problem by letting the first four
and all seven variables to come into play, respectively. This approach offers
the straightforward stability test on the algorithm of verifying that the cost
function decreases as expected as more degrees of freedom are introduced. In the
following summarise the numerical results for the three afore mentioned stages.
As fine model we consider a finite element model with a linear ferromagnetic
core.
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Figure 1: Detail of the optimal geometry and flux distribution for the TEAM 25
problem.



5.2.1 Results for one and two design variables

In [6] the following two results were shown. Using z; as single design variable,
the minimum cost-function value equals || f(x%,,) — ¥ ||= 6.5e-2. Using z;
and z, as design variables, the cost-function contour plot shows that the 1D-
optimum lies in a long and steep valley of points with approximately the same
cost-function value.

5.2.2 Results for four design variables

For the problem with four design variables, we run 50 times 40 iterations of
manifold-mapping with adaptive coarse model refinement and without trust-
region on an 2 X 2 X 2 x 2 initial coarse model. On average the minimal cost-
function value found is equal to | f(x},,,) — ¥ ||= 1.6e-2, with a standard
deviation of 3.7e-4. Having build the initial coarse model, adaptive manifold
mapping finds these solutions using on average 37 finite element simulations.
The fact that the 4D-optimum is significantly better than its 2D counterpart
provides an indication for the stability of the algorithm.

5.2.3 Results for seven design variables

Numerical tests indicated that an initial coarse model with 2 points along each
axis was not sufficiently accurate to solve the seven-dimensional problem. We
therefore resorted to both a finer initial coarse model and a trust-region stabi-
lization of the algorithm. We run 50 times 50 iterations of manifold-mapping
with adaptive coarse model refinement on an 2 X 2 X 2 X 2 X 3 X 3 X 3 coarse
model. The average cost function reduces by more than a factor two compared
with the four-dimensional results and is equal to || f(x},,,) — ¥ ||= 6.3e-3 with
a standard deviation of 2.1e-3. The trust-region stabilization makes the algo-
rithm more expensive per iteration and in this experiment an average of 166
finite element simulation per run are required.

A seven-dimensional optimal geometry and the force-displacements curves
corresponding to 2D, 4D and 7D optimal configurations are given in Figure 2.

6 Conclusions

In this work the ability of manifold-mapping of exploiting coarse model infor-
mation to speed up the convergence of expensive optimization procedures was
combined with versatility of multiquadratic interpolation of representing the
cost-function isosurfaces. We showed the efficiency of the adaptive manifold-
mapping algorithm in solving the TEAM Workshop Problem 25 using as little
as 33 finite element simulations and its the robustness in the progressive sizing
optimization of a cylindrical voice-coil actuator. The strategy proposed opens
perspectives to solve more challenging electromagnetic optimization problems.
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