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STABILITY OF PARALLEL QUEUEING SYSTEMS
WITH COUPLED SERVICE RATES

By SEM BORST, MATTHIEU JONCKHEERE®, AND LASSE LESKELA™
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and
Eindhoven University of Technology

This paper considers a parallel system of queues fed by indepen-
dent arrival streams, where the service rate of each queue depends
on the number of customers in all of the queues. Necessary and suffi-
cient conditions for the stability of the system are derived, based on
stochastic monotonicity and marginal drift properties of multiclass
birth and death processes. These conditions yield a sharp character-
ization of stability for systems, where the service rate of each queue
is decreasing in the number of customers in other queues, and has
uniform limits as the queue lengths tend to infinity. The results are
illustrated with applications where the stability region may be non-
convex.

1. Introduction. We consider a parallel system of queues fed by inde-
pendent arrival streams, where the service rate of each queue depends on
the number of customers in all of the queues. This type of model is natural
for manufacturing systems where a server is capable to process other queues
when its own buffer is empty, or for cellular radio networks, where the avail-
able transmission rate for customers in a particular cell is decreasing in the
number of customers in the neighboring cells [2]. Another imporant category
of applications consists of processor sharing models, where several customer
classes simultaneously use one or more servers, whose rate allocations and
total processing rates may depend on the number of customers in each of the
classes [3]. For example, in wireless data networks employing channel-aware
scheduling, the total service rate available to all customers can be increasing
in the total number of customers, due to multiuser diversity [11].

Stability is arguably the most fundamental property of a queueing sys-
tem, and provides a crude yet useful first-order benchmark of the system
performance. A general framework for analyzing stochastic stability con-
sists of Foster—Lyapunov criteria, which are based on finding a suitable test
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function having a positive or negative mean drift in almost all states of
the state space [7, 14]. In the context of multiclass queueing systems with
coupled servers, these techniques have been succesfully applied to systems
with utility-based service allocations [22]. Fluid limit analysis is another
powerful method for finding necessary and sufficient stability conditions for
a wide class of multiclass queueing networks with work-conserving service
disciplines [5, 13].

The stability analysis of multiclass queueing systems with general state-
dependent service rates is difficult, because there is no systematic way of
finding test functions satisfying the Foster—Lyapunov criteria, and the fluid
limit techniques are often restricted to systems of work-conserving servers
with fixed total rate. An alternative means for deriving stability conditions
is to study whether the system of interest is stochastically comparable to
a simpler system that is easier to analyze. This approach was first used
in the multiclass queueing context by Rao and Ephremides [16] and Sz-
pankowski [19], and later refined by Szpankowski [20], to characterize the
stability of buffered random access systems.

In this paper we provide an extension of the above ideas (tentatively dis-
cussed in [8]), by deriving marginal drift criteria for multiclass birth and
death processes that allow us to analyze the stability of a broad class of
parallel queueing systems. Moreover, we present conditions for partial sta-
bility, where only some of the queues are stable, and give a sharp stability
characterization for systems, where the service rate of each queue is decreas-
ing in the number of customers in other queues, and has uniform limits as
the queue lengths tend to infinity. For systems of at most three queues,
where the service rates only depend on whether the queues are empty or
not, our results yield as special cases stability characterizations that have
earlier been found using transform methods [4, 6] and the ergodic theory of
deflected random walks [7].

The paper is organized as follows. Section 2 describes the model details
and discusses a notion of stability that is convenient for the subsequent
analysis. Section 3 presents a key coupling result and marginal drift criteria
for the stability of multiclass birth and death processes, while the main
results regarding the stability of queueing systems are given in Section 4,
in decreasing level of generality. Section 5 illustrates the results with two
applications, and Section 6 concludes the paper.
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2. Model description.

2.1. Parallel queueing system with coupled service rates. We consider a
parallel system of N queues, where each queue ¢ is fed by an independent
Poisson arrival process of rate \;, and served at rate ¢;(Xi,...,Xxn) that
depends on the number of customers X in each of the queues j =1,..., N.
We assume that all customers require independent exponentially distributed
amounts of service with unit mean, and that the system has unlimited buffer
space to accommodate customers. The scheduling at each queue can be
first-come first-served, processor sharing, random order of service, or any
discipline that does not depend on the service requirements.

Under these assumptions we can model X = (X7, ..., Xxy) as a continuous-
time Markov process on Z% , with transitions  —  +e; occurring at rate \;
and transitions x — x — e; > 0 at rate ¢;(x), where e; denotes the i-th unit
vector in ZY . We assume that the allocation function ¢ = (¢1,...,¢n) is
bounded, which guarantees that the process X is nonexplosive. Hence we
may assume that X and all other stochastic processes treated in the sequel
have paths in the space D = D(RJF,Zf ) of right-continuous functions from
Ry to Ziy with finite left limits. Recall that a stochastic process with paths
in D can be viewed as a random element on the measurable space (D, D),
where D denotes the Borel o-algebra generated by the standard Skorokhod
topology [9].

Observe that this model also covers scenarios where the service require-
ments of customers at queue i are exponentially distributed with parameter

pi # 1, via replacing ¢;(z) by pigi().

2.2. Stability notions. A stochastic process X taking values in a count-
able space S and having paths in D(R;,.S) is said to be stable, if for any
€ > 0 there exists a finite set K such that

(2.1) P(X(t) ¢ K) <e forallt,

and otherwise X is said to be unstable. Further, the process X is called
transient, if X (t) — oo almost surely, that is, for any finite set K,

P(U N{X(@®) ¢ K}) =1

s>0t>s

An alternative way to express (2.1) is to say that the family of distributions
{PoX(t)"1}i>0 is tight. Observe that an irreducible Markov process is sta-
ble if and only if it is positive recurrent [9, Theorem 12.25]. The following
proposition illustrates an intuitively clear relation between transience and
instability.
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PROPOSITION 1. Any transient stochastic process X having paths in
D(Ry, S) is unstable.

PRrROOF. If X is transient, then for any finite set K there exists an s such
that P(Ne>s{X(t) ¢ K}) > 1/2. Hence, sup, P(X(t) ¢ K) > 1/2 for all
finite K, so X cannot be stable. O

In most applications it is natural to assume that the Markov process
describing the system is irreducible, in which case stability is equivalent to
the existence of a unique stationary distribution. In Section 4, where the
service rates of the original system are modified in various ways, it may
happen that some of the modified Markov processes are not irreducible.
This is why we need the following result to guarantee the existence of a
stationary distribution for a stable multiclass birth and death process under
slightly weaker than usual assumptions on the reachability of states. We
denote by X|[z] the version of a Markov process X started in state z.

PROPOSITION 2. Let X be a N -class birth and death process with strictly
positive birth rates \; and bounded death rates ¢;(x). Then the following are
equivalent:

(i) X|x] is stable for some initial state x.
(ii) X|z] is stable for all initial states x.
(i43) X has a unique stationary distribution m supported on a set C such
that P(X(t) € -) = m in total variation for all initial states x, and
X|[x] is irreducible and positive recurrent for any x € C.

Moreover, X is unstable if and only if X (t) — oo in probability, regardless
of the initial state.

PROOF. See Appendix A.2. O

The following stability characterization of vector-valued stochastic pro-
cesses is well-known. Because the proof is short, we give it here for com-
pleteness.

PROPOSITION 3. A stochastic process X = (X1,...,Xn) taking values
i a countable space S1 X -+ X Sy is stable if and only if X; is stable for
each 1.

PROOF. First assume that X is stable. Given € > 0, let us fix a finite set K
such that sup; P(X (t) ¢ K) < ¢, and choose a finite rectangle K; x --- x Ky
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that contains K. Then for any ¢ and all ¢, P(X;(t) ¢ K;) < P(X(¢) ¢ K),
so it follows that X; is stable.

For the reverse direction, it suffices to observe that for an arbitrary finite
SetK=K1X---XKN,P(X(t)¢K)§ZiP(Xi¢Ki). O

3. Multiclass birth and death processes.

3.1. Stochastic comparison. When X and Y are random elements taking
values in a partially ordered measurable space, we denote X < Y and say
that X is stochastically less than Y, if E f(X) < E f(Y) for all positive
increasing measurable functions. We use the terms increasing and positive
in the wide sense, so that a function f is increasing, if f(z) < f(y) for all
z <y, and positive if f(z) > 0 for all x. Moreover, we denote X =4 Y, if
the distributions of X and Y are equal.

Let us endow the spaces Zf and D(R_F,Zf ) with the usual coordinate-
wise partial orders, so that x <y in Ziv if and only if x; < y; for all 4; and
z <yin D(Ry,ZY) if and only if z;(t) < y;(t) for all i and ¢. Recall that by
Strassen’n theorem [10, Theorem 1], the stochastic processes X and Y having
paths in D(]RjL,ZﬂY ) satisfy X <g Y if and only if there exist processes X
and Y defined on a common probability space such that X =4 X , Y =4 Y,
and X;(t) < Y;i(t) for all i and ¢ almost surely. The following result indicates
a fundamental relation between stochastic ordering and stability.

PROPOSITION 4. Let X and Y be stochastic processes with paths in
D(R;,ZY) and assume that X < Y.

(i) If X is transient, then so is Y.
(ii) If Y is stable, then so is X.

PROOF. The first claim is a direct consequence of Strassen’s theorem,
while the second follows directly from the definition of stability, because
P(|X(t)| > r) <P(|Y(¢)| > r) for all r and ¢. O

A Markov process having paths in D(Ry,ZY ) is called a multiclass birth
and death process, if its transitions are given by

x— x+e; atrate \;j(z),
T+ x —e; atrate ¢;(x)1(z; > 0),

where \;(z) and ¢;(z) are some positive functions on Z%, called the class-
1 birth rates and death rates, respectively. The following lemma, which is
proved using a direct coupling construction, gives a sufficient condition for
the comparability of two multiclass birth and death processes.
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LEMMA 1. Let X = (X1,...,X1) and Y = (Y1,...,Ys) be multiclass
birth and death processes such that X has birth rates \;(z) and death rates
¢i(x), and Y has birth rates n;(y) and death rates ¢;(y). Assume that for
alli =1,...,1NJ, and oll x € Zfr and y € Zi such that x; = y; and

(xly"wxf/\J) < (y17-"7y1/\J)7

(3.1) Ai(z) < ni(y),
(3.2) ¢i(z) > Yi(y).

Then for all x € Zfr and y € Zi such that (z1,...,2175) < (Y1,---,YIAT),
(Xa[z], .., Xiag[z]) <ss (Y1[y], - - -, Yiaglyl),

where X[x] and Y [y] are versions of X andY started in x and y, respectively.

PROOF. Let (X,Y) be the Markov process with paths in D(R, , U), where
U={(z,y) € Z xZ] : (z1,...,2177) < (1, ---,yIas)}, having the upward
transitions

(z,y) — (z+ €,7) at rate \;(x), i <INJ, z; <y,
(z,y) = (z,y + &) at rate m;(y), 1< IANJ, z; <y,
(z,y) — (z+ e,y +e) at rate A\i(z), 1<INJ, zi =1y,
(z,y) — (z,y +e;) at rate n;(y) — A\i(x), 1<IANJ, z; =y,
(z,y) — (z + €;,9) at rate \;(x), i>1INJ,
(z,y) — (z,y + &) at rate 7;(y), i>1INJ,
and the downward transitions
(z,y) = (z —ei,y) at rate ¢;(x), 1<IANJ, 0<uz; <y,
(z,9) — (z,y — &) at rate ¥;(y), 1 <INJ, 0<2; <y,
(z,y) = (z —ei,y —€;) at rate ¥;(y), i<IANJ, 0<z; =y,
(z,y) = (z —ei,y) at rate ¢i(z) —i(y), i<IAJ, 0<z;i=1y;,
(z,9) — (z — e, ) at rate ¢;(z), i>1INJ,
(z,y) — (z,y — &) at rate ¥;(y), 1>1TNJ.

In light of (3.1) and (3.2), we see that all transition rates described above
are positive. Moreover, because each of the transitions are mappings from U
into U, we can be assured that the process (X' , f’) exists.

By studying the marginals of the transition rates, we see that both X and
Y are Markov, and that their intensity matrices coincide with those of X
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and Y, respectively. Hence, for all z and y such that (z,y) € U, we have
constructed versions of X[z] and Y[y] on a common probability space such
that (X1[z](t),..., Xias[z](t)) < (Maly](2), ..., Yias[y](t)) for all ¢ almost
surely. O

3.2. Marginal drift conditions. In this section we develop necessary and
sufficient conditions for the stability of a multiclass birth and death process,
given that its all coordinate processes except one are known to be stable. The
following proposition extends the classical Neuts’ mean drift condition [15],
see also Tweedie [21]. The proof follows closely the principles in Section 19
of Meyn and Tweedie [14].

PROPOSITION 5. Let X = (X1,...,Xnt1) be an (n + 1)-class birth and
death process with strictly positive birth rates \; and bounded death rates
¢i(x) such that ¢i(x) = ¢i(x1,...,2n) only depends on the first n input
arguments for all i =1,...,n. Assume that:

(i) The Markov process X™ = (X1, ..., X,,) is stable and has the stationary
distribution .
(i) The birth rate of X, 11 satisfies the condition

it < 3 {limint 6ua 07 a7
zneZl

Then the process X = (X™, X 41) is stable.
In particular, if pni+1(z) = dnt1(zn+1) only depends on x,11, then

Ant1 < liminf ¢(zp41)

Tyt1—>00
is sufficient for the stability of X", regardless of the initial state.

To prove the above proposition, we use the following lemma:

LEMMA 2. Let (X,Y) be a stochastic process with values in S X Z,

where S is countable. Assume that

(i) X; — m weakly for some probability distribution © on S,
(ii) Y; — oo in probability.

Then for all bounded f,

(3.3) limsupE f(X;,Y:) < Z {li?i)s;ip f(:v,y)} m(z).

t—o0



8 S.C. BORST, M. JONCKHEERE, L. LESKELA

PROOF. Assume first that S is finite, and let f(z) = limsup,_, ., f(z,9).
Then for any € > 0 there exists an r such that f(z,y) < f(z) + € for all =
and all y > r. It follows that

E f(X,,Y;) <E(f(X;) +e)1(Y: > r) + Ef(X;, Y)1(Y; < r)
=Ef(X;) +e+E[f(Xs,Y:) — f(Xs) —€]L(Yz < 7)
<Ef(Xy) +e+2||fl|P(Y: <),

where ||f|| = sup,, |f(z,y)|- By letting ¢ — oo and recalling that e is
arbitrary, we see that the claim holds for a finite set S.

If S is countably infinite, then for any finite set K, the claim holds for the
function fx(z,y) = f(z,y)1(z € K). Hence, because fx(z) = f(z)l(z €
K), we get

t—o0

limsupE f(X;,Y:) < Zf(w) m(x) + 2|| f]|7 (K°).

Thus the claim follows, because we can make 7(K°¢) arbitrarily small by
choosing K large enough. O

PROOF OF PROPOSITION 5. Let us define V(z) = z,,4+1 and denote the
mean drift of V' with respect to X by

AV(:L‘) = Ant1 — (f)n+1(l‘)1(1}n+1 > 0)

Let us also define Viy(z) = V(z)1(zny1 < M) for M > 0. Then by Kol-
mogorov’s forward equation [9, Theorem 19.6] we have

/O "By AV (X(s)) ds = Ba Var (X (1)) — Vi ().

Because V)y — V and AVyy — AV pointwise as M — oo, and because
[|AVa|| < X+ ||¢]|, we see by applying dominated convergence on the left-
hand side, and monotone convergence on the right, that

t
/ E, AV(X(s)) ds = B, V(X(8)) — V().
0
Because V is positive, this implies that

t
limsup ¢! / E, AV (X(s))ds >0,
t—o0 0

and consequently,
limsupE, AV (X(t)) > 0.

t—o0
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Now assume that the process X is unstable. Then Proposition 2 im-
plies that X (¢) — oo in probability. Because X™ is stable, it follows that
Xn+1(t) — oo in probability, and we may conclude by virtue of Lemma 2
that

> {)\ — liminf ¢(:cn,:cn+1)} 7(z™) > limsup E; AV (X (¢)) > 0.

Tn+1—700 t—o0
n
TN ELY
O

To prove the following converse of Proposition 5, we make the additional
assumption that ¢, only depends on the first n input arguments. Hence
(X™, Xp+1) is a Markov additive process, where the state space of the modu-
lating process X" is countably infinite. For Markov additive processes where
the modulating process only takes on finitely many values, the following kind
of result is well-known [1, Proposition XI.2.11].

PROPOSITION 6. Let X = (X1,...,Xn+1) be an (n + 1)-class birth and
death process with strictly positive birth rates \; and bounded death rates
¢i(x) such that ¢i(z) = ¢i(x1,...,2,) only depends on the first n input
arguments for allt=1,...,n+ 1. Assume that:

(i) The Markov process X™ = (X1, ..., Xy,) is stable and has the stationary

distribution m.
(i) The birth rate of X, y1 satisfies the condition

A1 > Y bppr(z) w(z™).
T"ELY

Then the process Xp11 s transient, regardless of the initial state.

PROOF. Let us define the free process (X", XTJ: +1) as the Markov process
with values in Z% x Z, so that X™ = (X1,...,X,) is as before, and con-

ditional on X™, X,]: 11 is a birth and death process on Z with birth rates
An+1 and time-varying death rates ¢,41(X™(¢)). Note first that conditional
on X", the process Xf: 41 can be represented as a difference of two inde-
pendent Poisson processes with intensity functions A,11 and ¢n4+1(X(2)),
respectively. Hence, by conditioning on X™, we find that

BulX/ 1 (8) = XLa(0) = Bu [ Do = asa (X" ()] ds.

The above equation together with the strong Markov property shows that

B4 MO = X s XLa0) = [ D — g (X7(5))) s
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is a martingale. Moreover, by conditioning on X again, one may verify that

E, M(t / Dott + bn1 (X7(5))] ds < vngr + [ dnia Dt

This shows that (1 +¢) !M(t) is a supermartingale that converges to zero
in L?. Hence, (1 + t)~'M(t) converges almost surely to zero as t — oo
[18, Theorem 69.1]. On the other hand, by the ergodic theorem for positive
recurrent Markov processes [9, Theorem 20.21],

t_l/ Pn+1(X"(s)) ds — Z Ont1(z™) w(z™)  a.s.
Hence, by dividing both sides of (3.4) by t and taking ¢ — oo, we see that
regardless of the initial state, XT]: 4+1(t) = oo almost surely
Finally, observe that whenever (X", X,;1) and (X", X, +1) are started in

the same initial state, X,4+1 can be represented in terms of X 41 via the
Skorokhod map [17, Theorem D.1]

Xnp1(t) = n+1(t)+sup[ > IO

Because X,J: 41(t) = oo almost surely, it follows that X, is transient. [J
4. Stability results for queueing systems.

4.1. General service allocations. Let us turn our attention back to the
queueing system described in Section 2.1, so from now on X = (Xy,...,Xn)
describes the queue lenghts of the system, and ¢;(z) is the service rate for
queue i. The following result gives stability conditions valid for an arbitary
bounded service allocation ¢ = (¢1,...,dn). Although these conditions are
not sharp in general, they may provide useful inner and outer bounds for
stability regions of complex systems that are not easy to analyze exactly.

THEOREM 1. Let X = (X1,...,XnN) be the queue length process of the
system with strictly positive arrival rates \; and bounded service rates ¢;(x).
Then, regardless of the initial state, the process X; is stable if

(4.1) Ai <11m1nf mf gbz( ),

—00 Zj ]
and transient, if

(4.2) Ai > limsup sup ¢;(z).

Ti—00  x Al

In particular, X is stable if (4.1) holds for all 3.
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PROOF. Assume that (4.1) holds for some i. By relabeling the queues if
necessary, we may assume without loss of generality that ¢ = 1. Let Y7 be the
one-class birth and death process with constant birth rate A\; and death rates
P1(z1) = infy, | zy d1(z). Because A < liminfy, o0 ¥1(z1), it then follows
from Proposition 5 that Y7 is stable, regardless of the initial state. Moreover,
because ¢1(z) > 91(x1) for all z, it follows from Lemma 1 that X[z] <g
Yi[z1] for any initial state . Hence, X;[z] is stable by Proposition 4.

Analogously, if (4.2) holds, then it again suffices to consider ¢ = 1. In
that case, we let Z1 to be the one-class birth and death process with birth
rate A\; and death rates x1(z1) = sup,, ., #1(z) + €, where € > 0 is such
that A1 — € is strictly larger than the right-hand side of (4.2). Then Z; is
irreducible and A; > limsup,, .., x1(x1), so it follows from the classical
theory of ordinary birth and death processes [1, Proposition II1.2.1] that Z;
is transient. Applying Lemma 1 once more, we see that Z;[x;] <g X|[z] for
any z € ZY . Hence, X1[z] is transient by Proposition 4.

Finally, if we assume that that (4.1) holds for all 7, then all X;[z] are stable,
regardless of the initial state z, hence X is stable by Proposition 3. O

4.2. Partially decreasing service allocations. For the service allocation ¢,
the following notion of monotonicity is fundamental in comparing multiclass
birth and death processes. A function ¢ = (¢1,...,¢nN) from Zﬁ into ]Rf is
said to be partially decreasing if for all 7,

(4.3) odi(x) > ¢i(y) for all x <y such that x; = y;.

Note that a function ¢ = (¢1,...,¢n) is partially decreasing, if each of the
coordinate functions ¢; is decreasing. Moreover, any function ¢ = (¢1, ..., dn)
such that ¢; only depends on x;, is partially decreasing. Recall also that
a continuous-time Markov process X is said to be monotone, if the map
x — Ey f(X}) is increasing for all ¢ and for any bounded increasing func-
tion f. Using a result of Massey [12, Theorem 5.2], it can be checked that a
multiclass birth and death process X with constant birth rates and bounded
state-dependent death rates ¢; is monotone if and only if ¢ is partially de-
creasing.

We define Y™ as the n-class birth and death process with birth rates \;
and death rates £"¢; given by the lower partial limits

(4.4) éi(x1,...,2,) = lim inf ¢i(z1,...,zN).

T—00 Tp41,--TN>T

The process Y™ may intuitively be viewed as a partially saturated version
of the queue length process X = (Xji,...,Xn), where servers 1,...,n are
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allocated the asymptotically worst-case service rates as X,+1,..., Xn tend
to infinity. We also define
(4.5) LI, ) = ) ¢i(w) 7" (),
zeZi
if Y™ has a unique stationary distribution 7", and set L(A1,...,Ap;9) =

0 otherwise. Thus, the quantity L?(A1,...,An;¢) can be interpreted as a
worst-case average service rate dedicated to queue ¢ in a partially saturated

system where the numbers of customers in queues n + 1,..., N tend to
infinity. For notational convenience, we define L?(\q, ..., \n; @) = £0¢; for
n = 0.

THEOREM 2. Let X = (X1,...,XnN) be the queue length process of the
system with strictly positive arrival rates \; and a bounded partially decreas-

ing service allocation ¢ = (¢p1,...,¢N). Assume that there exists an n such
that

(4.6) Ai < LY, him1; )

for allt=1,...,n. Then the processes X1,...,X, are stable, regardless of

the initial state.

Before proving Theorem 2, we establish some auxiliary results, the latter
of which will also be used in Section 4.3.

LEMMA 3. Let 1 <n < N. Then for all i and all z,

En_lgﬁi(wb ooy Tp—1) < liminf £"¢;(z1,...,Zn).

Tp—>00
PRrROOF. Fix an z € Z" and denote o = E"*1¢i(:c1, ...y Tn—1)- Then for
any € > 0 there exists an r such that
a—e< inf  @i(z1,.. -, Tn-1,Yn,- -, YUN)-
Yny YN >

Hence, it follows that for all y, > r and for all s > r,

a—€e< inf &i(ZT1y oy T—1,Yny - - YN)
Yn+1,-YN>T

< inf Gi(T1, .-, Tn—1,Yn,y-- -, YN)-
yn+1,...yNZS
By taking s — oo, it follows that a—e < £"¢;(z1,. .., Tn-1,yn) forall y, > r,
so the claim follows because € is arbitrary.
O
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LEMMA 4. Assume that the function ¢ = (¢1,...,¢n) is bounded and
partially decreasing, and assume that \; are strictly positive and satisfy in-

equalities (4.6) for i = 1,...,n. Then the n-class birth and death process
Y™ = (Y], ...,Y?) with birth rates A\; and death rates £"¢; is stable.

PROOF. To prove the claim for n = 1, let us assume that Ay < £0¢.
Then Y is a one-class birth and death process with birth rate A; and state-
dependent death rates £'¢;(x1). The stability of Y7 follows from Proposi-
tion 5, because by Lemma 3,

A < ¢ < lim_énfﬂlqﬁl(wl).
T1—00

To proceed by induction, suppose that the claim is true for n — 1, and
assume that the inequalities (4.6) hold for i = 1,...,n. Then Y™~ ! is stable
by the induction assumption, and Proposition 2 shows that Y™~ ! has a
unique stationary distribution 7"~ 1. Let Z™ = (Z},...,Z"?) be the n-class
birth and death process with birth rates A\; and death rates

Enil¢xxlv..,$n_1% 1 < n,

(1, .., Tpn), T=mn.

Yi(x1,..., ) = {

This choice of rates implies that the marginal process (Z7,...,2Z7 ;) is
Markov and coincides with Y"~!. Now observe that the condition A\, <
L' 1(\1,..., A\ 1; ¢) is equivalent to

An < Z () T (2, ),

n—1
w€Z+

so using Lemma 3, we see that

An < Z {liminflpn(xl,...,xnl,xn)}wn_l(wl,...,xnl).

zEanl Ty —>00
+

Hence, Proposition 5 shows that Z" is stable.

Because ¢ is partially decreasing, we have " 1¢;(x1,..., 2, 1) < ¢i(z)
for all i < n, and thus "~ 1¢;(z1,...,2n 1) < £¢i(x1,...,T,) for all i < n.
In particular, it follows that ¢;(z) < £"¢;(z) for all z and all ¢ < n. Further,
because ("¢ is also partially decreasing, it follows that £"¢;(z) > v;(y) for
all z and y in Z7 such that x < y and z; = y;. Thus, Lemma 1 implies
that Y™ < Z™, whenever Y™ and Z" are started in the same initial state.
Hence, Y™ is stable by Proposition 4. ]
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PROOF OF THEOREM 2. Assuming the inequalities (4.6) are valid for i =
1,...,n, we see using Lemma 4 that Y™ is stable. Moreover, ¢;(z1,...,zn) >
r¢i(z1,...,z,) forall i <n and all z € Zﬂ\rf , because ¢ is partially decreas-
ing. Because £"¢ is also partially decreasing, it follows that ¢;(x) > £"¢;(y)
for all x € Zﬂ\_f and y € Z such that (z1,...,7,) < (y1,...,¥n) and z; = y;.
Hence, Lemma 1 shows that (Xi[z],...,X,[z]) <& (Y{*[y],-..,Y[y]) for
all initial states z € ZY and y € Z7 such that (z1,...,2n) < (y1,---,Yn)-
Proposition 4 thus implies that (Xi[z],..., Xy[z]) is stable. O

4.3. Partially decreasing service allocations with uniform limits. In the
following we restrict ourselves to queueing systems where the service alloca-
tion ¢ = (¢1, ..., dn) is such that each coordinate function ¢; has a uniform
limit as some of the input variables tend to infinity. More precisely, we say
that a function f : Zf — R has uniform limits at infinity, if the following
conditions hold:

(i) There exists a constant f° such that

sup If(z) — f°] =0, asr— oo
m€Z£:z‘1 e

(ii) For any n =1,..., N — 1 and any permutation o on {1,..., N}, there
exists a function f™° :7Z7} — R such that as r — oo,

sup |f($) - fn70(xa(1)7 s 7$a(n))| — 0.

wGZ_IiY:a:a(n_H) yes@a (N) >T

We will next show that the class of functions having uniform limits at
infinity is rich enough to be of interest. For example, assume that the allo-
cation function ¢ is of the form

¢i(z) = gi(zi)h(z)

where g; has a limit at infinity and h is decreasing. Then g; obviously has
uniform limits at infinity, and hence the same applies for ¢; using the result
below.

PROPOSITION 7. Let f and g be bounded functions on Zf .

(i) If f is positive and decreasing, then it has uniform limits at infinity.
(i3) If f and g have uniform limits at infinity, then so do the functions

f+gand fg.

PROOF. See Appendix A.3. O
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If ¢ has uniform limits, then the partial lower limits "¢ defined in (4.4)
become true limits in the sense that

d(z1,...,zN) = L@(z1,...,Tp)
uniformly over x1,...,Zn, as min(zp41,...,TN) — 00.

THEOREM 3. Let X = (X1,...,XnN) be the queue length process of the
system with strictly positive arrival rates \; and a partially decreasing service
allocation ¢ = (¢P1,...,¢N) having uniform limits at infinity. Assume that
there is an index n such that

(4.7) N < LY, s 9) for all i < n,
(4.8) Ai > LY (A1, A @) for all i > n.
Then the process (Xpn+1,---,XnN) is unstable, regardless of the initial state.

PROOF. Given € > 0, let Y™ be the n-class birth and death process with
birth rates \; and death rates £"¢;(x1,...,%,) +¢, and let Y = Y™0. Then
Y™ is stable by Lemma 4. Further, because £"¢ is partially decreasing, it
follows by Lemma 1 that Y™¢ < Y™, whenever Y™ and Y are started in
the same state. Hence, Lemma 4 implies that Y™* is stable for all € > 0, and
moreover ¢ <g 7", where 7€ and 7™ denote the stationary distributions
of Y™€ and Y, respectively. In particular, the family {7™¢}.5¢ is tight, and
so by Lemma 6, 7™¢ — 7™ weakly, as ¢ — 0. Because ¢ is bounded, it follows
that for all 2,

11_1)1(1) Z hi(z) ™ (z) = L} (M1, ..., An; @).

wEZi
Hence, by (4.8), we can choose an € > 0 such that

(4.9) Ai > Z oi(x)7™(x) for all ¢ > n.

zeZﬁ

Let Z be the N-class birth and death process with birth rates A; and death
rates ¢;(z1,...,xN) = "pi(z1,. .., 2n)+e. Then (Z1,. .., Z,) is Markov and
coincides with Y™ as defined above. Moreover, inequality (4.9) implies that
for all ¢ > n, the mean drift of Z; is strictly positive, so Proposition 6 implies
that Z; is transient for each 7 > n.

Next, observe that because ¢; has uniform limits, it follows that there
exists an rg such that 1;(z) > ¢;(z) for all ¢ = 1,..., N and for all z such
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that ©p41,...,28 > 70. Let us choose an r > rg and define A, to be the
complement of the set

BT={$€Z_’JYZJ:n+1,...,IIIN>’I’},

Because each of the processes Z,+1,..., 4y is transient, it follows that we
can choose an x € B, such that

(4.10) P, (74,(Z) = 00) > 0,

where 74,(Z) = inf{t > 0: Z(t) € A, } denotes the hitting time of Z into A,.
Because ¢ is partially decreasing, it follows that 1;(x) > ¢;(y) for all z and y
in B, such that ¢ < y and x; = y;. Using a similar coupling construction as in
Lemma 1, it is then straightforward to verify that 74, (Z[z]) <g 7a,(X[z])
for all x € B,. Hence using (4.10) we may conclude that there exists an
x € B, such that

(4.11) P.(74,(X) = o0) > 0.

We now assume that X is stable and derive a contradiction. Using Propo-
sition 2, we know that there exists a set C such that X|[z] is irreducible and
positive recurrent for all x € C. Let us now choose an r > 7y such that
C N A, is nonempty. Using Lemma 7 and standard properties of irreducible
Markov processes [9, Proposition 8.13], we then know that the hitting time
of X[z] into CN A, is finite almost surely for all z, which contradicts (4.11).
Hence, X must be unstable. In particular, because (X1, ..., X}) is stable, it
follows from Proposition 3 that (X,+1,...,Xx) is unstable. O

We are now ready to present our main theorem. For any permutation o
on {1, ceey N}, we define )\g = )‘o(i) and (ﬁf(.’l}) = ¢U(2’)($0.—1(1), ‘e 7$U—1(N)).
The vector A\? and the function ¢? will then correspond to the system where
queues are relabeled according to o. Denote

Sn(¢) = {X € 0,00V : X < LIM (A, M 139) Vi=1,..., N},
where L Y (A1,...,\i—1;¢) are given by (4.5), and define

(4.12) S(#) =U{r € (0,00)" : 37 € Sn(¢)},

o

where the union is taken over all permutations on {1,...,N}.
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THEOREM 4. Assume ¢ = (¢1,...,PnN) is partially decreasing and has
uniform limits at infinity. Then the set S(P) defined by (4.12) is open, and
the queue length process X = (X1,...,Xn) of the system with arrival rates
A = (A1,...,AN) and service allocation ¢ is stable for all A € S(¢), and
unstable for all A outside the closure of S(¢).

Note that it is not possible to characterize the stability of the system
for arrival rate vectors belonging to the boundary of S(¢) without more
detailed information on the allocation function ¢. Consider for example the
one-server system where ¢q(z1) = (1+1/x1)® for some o > 0. Then S(¢) =
{A1: A1 < 1}, and the system with A\; = 1 is positive recurrent if « > 1 and
null recurrent otherwise [1, Section III.2].

LEMMA 5. Let ¢ = (¢1,...,0n) be bounded and partially decreasing.
Then for alln =1,...,N, the set

Sn(9) = {X € (0,000 : X <LI7'(A1,. ., Aic139) Vi=1,...,n}
is open, and the function f™ = (fF,..., f*) on (0,00)" defined by
(4.13) PO, AN) = L O, A1 6)
is continuous on Sp—1(¢@).

PROOF. First observe that the function f!, being a constant, is continu-
ous on the open set Sy(¢) = (0,00)". To proceed by induction, let us next
assume that S,_1(¢) is open and f" is continuous in S,_1(¢) for some n.
To show that S,(¢) is open, assume that S, (¢) is nonempty, and choose a
vector A € S, (¢). Then

(4.14) An < L MM, Anm15 8).

Moreover, because Sp(¢) C Sn—1(¢), it follows that f™ is continuous at A, so
in particular the map n — L*1(n1,...,mn—1; #) is continuous at A. This im-
plies that (4.14) remains valid in some open neighborhood B) of A. Further,
because S,_1(¢) is open, there is another open neighborhood Bj of A such
that B} C Sp_1(¢). It follows that By N B} C Sn(¢), so we may conclude
that Sy, (¢) is open.

To complete the induction, we next prove the continuity of f**! on S, (¢),
under the assumptions that S, (¢) is open and f™ is continuous on S,_1(¢).
If A € S,(¢), then f™ is continuous at A, because Sy, (¢) C S,,—1(¢). Because
the first n coordinate functions of f**1 coincide with f™, it is sufficient to
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prove that the function n — L, (71, ...,7n; @) is continuous at A. Thus, let
Ak be a sequence converging to A. Because S, (¢) is open, we may assume
without loss of generality that there exists a vector X' € S, (¢) such that
Af < X for all k. Let Y be the n-class birth and death process with birth
rates \; and death rates £"¢;(z), i = 1,...,n, and let Y* and Y’ be the
corresponding processes with A replaced by A\* and X, respectively. Then by
Lemma 4, all of the processes Y, Y*, and Y’ are stable, so we denote their
stationary distributions by m, 7*, and #’, respectively. Moreover, becauce
"¢ is partially decreasing, Lemma 1 shows that 7% < =’ for all k, so the
family {wk}k>0 is tight. Hence, we can apply Lemma 6 to see that 7% — 7
weakly, so it follows from the boundedness of ¢ that L7 ;(AF,..., Ak; ¢) —

y 'ny

L7 1(M,--., An; ¢). This shows that f™™! is continuous at A. O

PROOF OF THEOREM 4. First, let us note that by using Lemma 5 and
relabeling the classes if necessary, we see that the set {\: A\ € Sy(¢7)} is
open for all 0. Hence, the set S(¢) is open. Moreover, by again relabeling
the classes if necessary, we find using Theorem 2 that A € §(¢) implies the
stability of the queueing system.

To study the instability of the system, let us define analogously to (4.12)
the set

= U{)\ € (0,00)V: X7 € UN(¢U)}7

where the union is taken over all permutations on {1,..., N}, and Un(9) is
defined as the set of A € (0,00)" such that the inequalities (4.7) and (4.8)
are valid for some n € {0,..., N — 1}. Then by first relabeling the classes if
necessary, and then using Theorem 3, we see that the system is instable for
all A € U(9).

It remains to show the instability of the system under the the assumption
that A belongs to the complement of the closure of S(¢) in (0,00)", which
we denote by ext(S). We prove this by showing that for each A € ext(S)
there exists a A € U(¢) such that A < X and then applying Proposition 4.

Let X € ext(S). Given a permutation o, let us define n(\, o) as the largest
integer n such that

(4.15) A < LYY, A5 ¢%) for all i < n.
Because A\ ¢ S(¢), we know that n()\,0) < N for each o, and
(4.16) A > LY, A5 ¢7)  for i =n(),0).

Let D be the set of o for which (4.16) is strict, and assume o € D. Then
by Lemma 5 we see that the function

(417) O A = (L) LT T A1 ¢)
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is continuous in a neighborhood of (A],...,A?_;). Thus we can choose an
€s € (0,min; ;) such that the inequalities (4.15) remain valid and the in-
equality (4.16) remains strict when X is replaced by A such that [|A—\|| < €,

On the other hand, if o ¢ D, then again by the continuity of the function
in (4.17), there exists an €, € (0,min; A;) such that the inequalities (4.15)
remain valid when ) is replaced by X such that ||[A — \|| < €,. Moreover, if
we let A = A —re for some 7 € (0, ¢,), then it can be checked using Lemma 1
that L 1(Ag,...,\2_1;¢%) < L Y(A],...,X%_1;¢7), because the function
o= 1(;5” is partially decreasing, and in particular, £~ '¢Z is decreasing. Thus
we see that for n =n(\, o),

A< X =L NN, A9 15 ¢9)
<Ln 1( 1y~ n 1’¢a)

Let € = min, €, and choose a small enough r € (0, €) such that A = A —re
belongs to ext(S). Then it follows from the above observations that for all o,

X < LYY, ~;-11;<z6") i <n(\0),
N ALY, A g5 99), i =n(\0).
Hence, either 5\" L~ 1( ,...,~Z_1;¢") for all o and all n = n(\, o),
which implies that A € U(¢); or else,
(4.18) n(A, o) >n(\ o) for all o,
and A2 < LY (Ag,..., 2 _1;¢7) for at least some o and n = n()\, o), which

implies that (4.18) holds strictly for at least one o.

Assuming \* € ext(S) \U(¢), we can apply the above procedure to A* to
find a A\**1 € ext(S) such that A*T! < M\*_ and so that either \**1 € (),
or else

(4.19) n(A* ) > n(A\k o) for all o,

where (4.19) holds strictly for at least one o. The sequence \* started in
Al = X must hit U(¢) for some k, because otherwise n(\*,0) = N + 1
eventually for some k and some o, which would imply that \* € S(¢).
Hence, \* € U for some k, and A* < . Now by Proposition 4, it follows
that the system is unstable. O
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5. Applications.

5.1. Three weakly coupled servers. Consider a system of three servers
where the service rates at each queue only depend on whether the other
queues are empty or not, so that for all ¢ # j # k,

aj, x; =0, =0,
¢,(x) =14 Qij, Tj> 0, T = 0,
1, z; >0, - > 0.

Let us assume a; > a;; > 1, so that ¢ = (41, ¢2, ¢3) is partially decreasing.

Theorem 4 shows that the stability region is a union of six regions corre-
sponding to the six possible permutations of the queues. The first of these
regions corresponding to the identity permutation is the set of (A1, A2, A3)
such that

A< 1,
A2 < A1 +ag3(l — A1),

A3 < azmoo + az1mio + az2mo1 + i1,
where

moo = P(Y1 =0,Y2 = 0),
o1 = P(Y1 =0,Y, > 0)
(Y1 > 0,Y = 0),
(Y1>0,Ys > 0),

o0 =P
=P

and Y = (Y1,Y3) is a random vector distributed according to the stationary
number of customers in queues 1 and 2 given that the length of queue 3 is
infinite, which is well-defined when inequalities (5.1) and (5.2) hold. To the
best of our knowledge, there are no closed-form expressions available for the
probabilities g, mo1, 710, 711, SO they must be evaluated using numerically.

The above result coincides with the stability characterization derived ear-
lier by Fayolle, Malyshev, and Menshikov using Foster—Lyapunov criteria for
deflected random walks in Z3 [7, Theorem 4.4.4].

5.2. Two interfering wireless base stations with channel-aware scheduling.
We will now turn our attention to a system of two queues served at the state-
dependent rates

di(x) = gi(x:)hi(z),
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where g; is a bounded increasing function on Z,, and h; is a decreasing
function on Zﬁ_. This particular form of allocation function arises as a model
for two interfering wireless base stations operating according to a channel-
aware scheduling discipline, where the functions h; model the interference
between the base stations, and the functions g; represent the scheduling gain,
which increases in the number of customers due to multiuser diversity [11].
Denote

g; = lim_gi(zi),

T;—00
hf = lim sup hi(z),
’ T—)OOII’IQI)ZT Z( )
hl(z;) = limsup hi(z), j #1,
l‘j-}OO

and let
hz >\'w¢ th xz xz .7 7é 1,

where 7 is the probability dlstrlbutlon (¢ is a normalization constant) given
by
ﬂi(m~)—cﬁ Ai j#i
=IO}
The stability region can now be described using Theorem 4 as the set of
(A1, A2) such that either

At <gihi and X < gshy(Mi,9),
or Ay < gshy and A\ < gihi()e, 9).

Figure 1 represents the full and partial stability regions of the system,
where the scheduling gains are given by

(5.4) gi(z;) = min(3,log(1 + z;)),
and the interference functions are of the form

The area S is the set of arrival rates such that both queues are stable,
while the areas S; correspond to the set of arrival rates so that only queue
1 is stable, and U/ is the set of arrival rates where both queues are unstable.
Figure 2 illustrates the corresponding stability regions when g; are as in (5.4)
and

1

(5.6) hi(zj) = &— ta)

J#i.
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F1G 1. Stability regions for interference functions of the form (5.5) with v = 0.05 (left)
and v = 2.0 (right).
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F1G 2. Stability regions for interference functions of the form (5.6) with v = 0.4 (left) and
v = 2.0 (right).

6. Conclusion. We provided sufficient and necessary conditions for the
stability of a parallel queueing system with coupled service rates, and showed
that these conditions are sharp when the service rate at each queue is de-
creasing in the number of customers in other queues, and has uniform limits
as the queue lengths tend to infinity. Moreover, we presented conditions for
partial stability, where only some of the queues are stable. The most general
stability conditions, although not sharp, may yield useful inner and outer
bounds for the stability region of systems that are too complex to charac-
terize exactly. An interesting and important direction for future research
is to study whether the given results extend to the case where the service
allocation does not have uniform limits, and the service times distributions
are nonexponential.
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APPENDIX

A.1. Small perturbations of transition rates.

LEMMA 6. Let X and X™ be continuous-time Markov processes on a
countable state space having transition rates q(x,y) and ¢"(z,y), and unique
stationary distributions w and ©", respectively. Assume that

(i) ¢"(z,y) — q(z,y) as n — oo for all x and y,
(ii) the set {x: q"(x,y) # 0 for some n} is finite for all y,
(111) {m"}n>0 is a tight family of probability measures.

Then ©"(x) — 7w(z) for all x.

PROOF. Let us assume that 7™(z) does not converge to m(z) for some z.
Then there exists an € > 0 and a subsequence Z, C Z, such that |7"(z) —
7(z)| > € for all n € Z!, . Because {Wn}nez; is tight, there exists a further
subsequence Z/| C Z!, such that 7™ converges weakly to a probability mea-
sure 7 as n — oo along Z/| [9, Proposition 5.21]. Observe that for all y and

for all n,
an(w)q"(w,y) =0.

By virtue of (ii), we can take n — oo along Z on both sides of the above
equation, and bring the limit inside the sum, which shows that

> & (z)q(z,y) = 0.

T
Because we assumed the stationary distribution of X to be unique, it follows
that 7 = 7, and hence 7" — m weakly along Z/ . This is a contradiction,
because |7"(2) — m(2z)| > € for all n € ZI, . O

A.2. Stable multiclass birth and death processes with strictly
positive birth rates.

LEMMA 7. Let X be a N -class birth and death process with birth rates \;
and bounded death rates ¢;(x), and assume that A; > 0 for all i. Then the
hitting time of X into an arbitrary increasing set A is almost surely finite,
regardless of the initial state.

PROOF. Let A be an increasing set. Then re € A for some positive in-
teger r, where e = (1,...,1) € Zﬁ. Let X be the discrete-time jump chain
of X, with X (n) being the value of X at its n-th jump. Then for all z,

A~ >\z
Po(X(1)=a+e€) = YA+ Zj:a;j>0 bj(x)’
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and because X can reach A from any state z by taking r upward jumps into
all coordinate directions, we see that P, (X (r") € A) > §, where

min; \; "N
5= H) > 0.
(Zﬁ\j + N||¢l|

By induction, it then follows that for all z and all M,
P, (X(mrV)¢ AVm =1,...,M) < (1—-68)M.

Thus, by taking M — oo, we may conclude that P, (74 < co) = 1, which is
equivalent to P,(74 < 00) = 1. O

PROOF OF PROPOSITION 2. We prove that (i) = (i¢) = (¢i7), the reverse
direction being clear. Let us denote x — y if the process X started in z can
reach y, and let C(z) = {y : * — y and y — z} be the communicating
class associated with x. Recall that a set C is said to be absorbing if z — y
implies y € C for all x € C. Observe first that because all birth rates of X
are strictly positive, it follows that for all z and y,

(A.1) <y = z—y.

From (A.1) we see that all absorbing sets are increasing. Moreover, if a
communicating class C is increasing, and if x — y for some x € C, then
there exists a z such that z < z and y < z. Hence, y — z by (A.1) and z € C,
because C' is increasing. Because C is a communicating class, it follows that
y € C. We may thus conclude that any communicating class C is absorbing
if and only if it is increasing.

We next show that X has a unique absorbing communicating class. As-
sume first that all communicating classes are nonabsorbing. Then none of
the communicating classes C(z) is increasing, and Lemma 7 implies that
P, (T¢(z)e < 00) for all z. Because Py(7¢() = o0) = 1 for all y ¢ C, it
follows that with probability one, X eventually leaves any finite set without
ever returning, regardless of the initial state. Thus, X (¢) — oo almost surely,
which contradicts the assumption that X started in some initial state, say
20, is stable. Hence, X must have at least one absorbing communicating
class. To see that there is no more than one such class, it suffices to ob-
serve that if C(z) and C(y) are disjoint sets, then not both of them can be
increasing.

Now let C be the unique absorbing communicating class of X, and assume
that X|[z] is unstable for all z € C. Then for any finite set K and any
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0 < s <t it follows that
(A.2)
Po(X(t) € K,7¢ <s) = Z Poo(X(s) =z,7c < s)Pz(X(t - s) € K),
zeC

because X (s) belongs to the absorbing set C on the event {7¢ < s}. Hence,
by dominated convergence, lim; , Pyo(X(t) € K,7¢ < s) = 0 for all s.
Furthermore, because

Po(X(t) € K) <Pgo(rc > s) +Pyo(X(t) € K,7¢ < s),

and because 7¢ is finite almost surely, we see by taking first ¢ — oo and then
s — oo that P, (X(t) € K) — 0, which contradicts the stability of X[z°].
Hence, we may conclude that X[y] is stable for some y € C. Moreover,
because P, (X (1) = y) > 0 for all z, we see that for all finite sets K,

limsup P, (X (¢t +1) € K) > limsup P, (X (1) = y) Py(X(¢t) € K) > 0,

t—o0 t—o0

so X|[z] is stable for all initial states z € Z¥ .

Finally, let X¢ be the Markov process on the state space C with the same
transition rates as X in C. Then X© is irreducible and stable, regardless
of the initial state. Hence, it follows [0, Theorem 12.25] that X is positive
recurrent, and thus has a unique stationary distribution 7¢ on C' such that
the distribution of X¢(t) converges to 7¢ in total variation. By defining
7(B) = 7°(BNC), it follows that 7 is stationary for the unrestricted version
of X, and because P, (7¢c < oo) for all z, one can verify using (A.2) that
the distribution of X (¢) converges to 7 in total variation, regardless of the
initial state.

Having proved the equivalence of (i)—(iii), let now assume that X[z] is
unstable for all z and show that X (¢) — oo in probability regardless of
the initial state. We saw above that if all communicating classes of X are
nonabsorbing, then X (¢) is transient, so let us assume that X has the unique
absorbing class C. Then X[z] is irreducible and positive recurrent for all
x € C, so it follows from standard theory [9, Theorem 12.25] that for any
finite set A, the function ha(z,t) = P,(X(t) € A) tends to zero as t — oo
for all x € C. Denoting the hitting time of X into C' by 7¢, the strong
Markov property implies that for all x,

P,(X(t) € A)=P(X(t) € A,7c <t)+P(X(t) € A,7¢ > 1)
=E; ha(X(10),t — 10)1(1c < t) + P (X (¢) € A, 70 > t).
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Because P(7¢ < 00) = 1, it then follows from dominated convergence that
the right-hand side in the above equality converges to zero as ¢ — oo. Thus,
X (t) — oo in probability.

To see that X (¢) — oo implies the instability of X, let us assume that X
is stable. Then by choosing a finite set A such that w(A4) > 0, we see that
P.(X(t) € A) > 0 for large ¢. This contradicts the fact that X(¢) — oo in
probability, so X must be unstable. O

A.3. Uniform limits of monotone functions.

PROOF OF PROPOSITION 7. (i) We show that when f is decreasing in all
its input variables, the uniform limits of f are given by

f° = inf f(z),

4 = inf .
f (wa(l)a 7:Bcr(n)) Za("+11)1,1.--,$6(N) f(xh ’ .’EN)
Observe first that given € > 0, there exists y such that |f(y) — f° < e.
Hence, by defining » = max(y1,...,yn), it follows from the monotonicity
of f that
(A.3) sup  [f(z) = fO] <e

ZT:T1,..., LN >T

This shows that the assertion holds for N = 1.

To proceed by induction, let us assume that the claim holds for all positive
decreasing functions on Zf ~1. Let f be a positive and decreasing function
on Zf , let € > 0, and choose a permutation o. By symmetry, we assume
without loss of generality that o is the identity permutation, and denote
f* = f™°. Using (A.3), we can first choose an 7o such that |f(z) — f°| <
€/2 when x1,...,xx > 79. Then by the monotonicity of f, it follows that
lf*(z1,-..,2,) — f°| < ¢/2 for all x1,...,2z, > rg. Thus,

(A4) |f(x)—f"(w1,...,a:n)| Se

for all x such that z1,...,zny > r0.
Let us next choose an i € {1,...,n} and y; € {0,...,r0}. Then the
function

(1, -y i1, Tit1y-- - EN) = f(T1, ooy Ti1, Yiy Titly - -y TN)

is decreasing on Zﬂ\_f ~1. Hence, by the induction assumption we can choose
a number 7;(y;) such that

|f(z)— inf f(z)]<e

Tn41y-- LN
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for all z such that z; = y; and zp41,...,28 > 7(yi). In particular, by
defining r; = max(r;(0),...,7(ro)), it follows that

(A.5) [f(z) = f* (@1, zn)| <€
for all z such that z; < rg and z,41,...,2N8 > r;. Finally, by defining
r = max(ro,1,...,Tn), We see by combining (A.4) and (A.5) that

sup |f(.’]3)—fn($17,$n)| 567

mGZf:mn+1,...,mN>r

which completes the induction step.
(ii) To see that fg has uniform limits at infinity, it suffices to note that
for any n and any o (omitting the arguments of the functions),

[fg — 791 < Iflllg — g™ + llglllf — f*1,

and the same obviously holds for f0 and ¢° in place of f™? and g™°. Hence,
the claim for fg follows by taking the supremum over z € Zf such that

Ty(nt1)s- -1 To(N) > T on both sides of the above inequality, and then let-
ting r tend to infinity. The proof for f + g is analogous. O
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