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Abstract� For a positive integer n� regular An�crystals are edge�colored
directed graphs� with n colors� related to integrable highest weight mod�
ules over the quantum algebra Uq�sln���� Based on Stembridge�s local
axioms for regular simply�laced crystals and a structural characterization
of regular A��crystals in ��	� we introduce a new combinatorial construc�
tion� the so�called crossing model� and prove that this model generates
precisely the set of regular An�crystals� Using it� we obtain a series of re�
sults which signi
cantly clarify the structure and demonstrate important
ingredients of such crystals K� In particular� we reveal in K a canonical
subgraph called the skeleton and a canonical n�dimensional lattice � of
vertices and explain an interrelation of these objects� Also we show that
there are exactly j�jmaximal �connected� An���subcrystal K

� with colors
�� � � � � n � � �where neighboring colors do not commute� and that each
K � intersects � at exactly one element� and similarly for the maximal
subcrystals with colors �� � � � � n�
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� Introduction

Kashiwara ��� �	 introduced the notion of a �general� crystal� It is a certain edge�

colored directed graph �digraph�� with n colors� in which each connected monochro�

matic subgraph is a simple 
nite path and interrelations of the lengths of such paths

for pairs of di�erent colors depend on coe�cients of an n� n Cartan matrix M �this

matrix is said to describe the type of the crystal�� The central role in the theory of

Kashiwara is played by the crystals of representations� these are associated to inte�

grable highest weight modules �representations� of the quantum enveloping algebra
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related to M � There are several realizations of such crystals for a variety of Cartan

matrices� e�g�� Littelmann�s Path Model ���� ��	� �For important particular cases� see

also ��� �� ��	��

Recently Stembridge ���	 pointed out a list of �local� graph�theoretic axioms de
n�

ing the regular simply�laced crystals� These concern the class of simply�laced Cartan

matrices� i�e�� matrices M having coe�cients mii � � and mij � mji � f����g for

i �� j� Relying on the Path Model� Stembridge established a relationship between rep�

resentations for the corresponding quantum algebras Uq�g� in this case and regular

simply�laced crystals K that have a zero�indegree vertex� Such a vertex s� if exists� is

unique� and K is shown to be determined by the tuple c � �c�� � � � � cn� of the lenghts

of maximal monochromatic paths P�� � � � � Pn beginning at s� where n is the number

of colors and Pi concerns color i� So in this case �and when the Cartan matrix is


xed� K may be denoted by K�c�� The main theorem in ���	 says that K�c� exists

for any tuple c �Zn
� and is just the crystal graph of the irreducible Uq�g��module of

highest weight
P

i
ci�i� where �i is i�th fundamental weight�

This paper is devoted to a combinatorial study of regular simply�laced crystals of

An�type� or regular An�crystals� for brevity we throughout call them RAN�crystals�

In this case the algebra g is sln�� and the o��diagonal coe�cients mij of the Cartan

matrix are equal to �� if ji� jj � �� and � otherwise�

In our previous paper ��	 we described the combinatorial structure of regular

A��crystals K and demonstrated additional combinatorial and polyhedral properties

of these crystals and their extensions� It turned out that the structure is rather

transparent
 K always has a zero�indegree vertex� and therefore� K � K�c�� c��

for some c�� c� � Z�� and it can be produced by use of a certain operation �� of

replicating and gluing together from the crystals K�c�� �� and K��� c��� The latter

crystals are of simple form and are viewed as triangular parts of square grids� We

refer to �� as the diagonal�product operation and write K � K�c�� �� �� K��� c��� �It

fact� K is the largest component of the tensor product of K�c�� �� and K��� c����

When n � �� the structure of a RAN�crystal becomes much more sophisticated�

even for n � �� To explore this structure� in this paper we introduce a certain

combinatorial construction� called the crossing model� �Another sort of crossing model

is constructed in ��	 to describe the structure of regular B��crystals� i�e�� those related

to the algebra Uq�so� � sp���� The crossing model consists of three parts
 �i� a 
nite

digraph G� called the support�graph� depending only on the number n of colors� �ii� a

set F of feasible functions on the vertices of G� depending on parameters c�� � � � � cn �
Z�� and �iii� n families E�� � � � � En of transformations f �� f � of feasible functions� �In

fact� the crossing model can be obtained by a certain decomposition of the Gelfand�
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Tsetlin pattern model ��	��

Our main working theorem asserts that the n�colored digraph �F � E� � � � � � En�
is isomorphic to the RAN�crystal K�c�� � � � � cn�� We also show that any RAN�crystal

has a zero�indegree vertex� Therefore� the crossing model produces precisely the set

of RAN�crystals� or crystals of representations for Uq�sln���� Our construction and

proofs rely on Stembridge�s local axioms and combinatorial arguments and do not

appeal explicitly to powerful tools� such as the Path Model�

Then we take advantages from the description of RAN�crystals via the crossing

model� The support�graph G consists of n pairwise disjoint subgraphs G�� � � � � Gn�

They have the important property that the restrictions of F and E� � � � � � En to

each Gi produces the particular n�colored crystal with parameters c�i � ci and c�j � �

for j �� i� we denote it by K i�ci�� �This is the crystal graph of the representation of

Uq�sln��� with highest weight ci�i�� Using this property� we show that the crystalK �

K�c�� � � � � cn� contains a canonical subgraph K � isomorphic to the graph obtained

from crystals K��c��� � � � �Kn�cn� by use of an n�dimensional analog of the diagonal�

product operation �� � We call K � the skeleton of K� it coincides with the whole

crystal K when n � � �and is typically smaller when n 	 ���

The feasible functions that are constant within each subgraph Gi �i � �� � � � � n�

are of most interest to us� We refer to the subset � of vertices v of the crystal K

that are determined by these functions as the principal lattice in it �each v one�to�one

corresponds to an integer tuple �a�� � � � � an� with � 
 ai 
 ci�� It turns out that there

are exactly j�j maximal �connected� subcrystal of K with colors �� � � � � n � � and

each of them intersects � at exactly one vertex� A similar property takes place for

� and the maximal subcrystals with colors �� � � � � n� �In ��	 we precisely describe the

structure of regular A��crystals� In this case we are able to characterize� for any two

vertices u� v � �� the intersection of the maximal subcrystal with colors ��� containing

u and the maximal subcrystal with colors ��� containing v��

The crossing model enables us to demonstrate some other properties of RAN�

crystals� as well� Also using it� one can derive in
nite analogs of RAN�crystals� in

which some or all maximal monochromatic paths are in
nite �this generalizes the

construction of in
nite A��crystals in ��	��

This paper is organized as follows� Section � states Stembridge�s axioms �in a

slightly di�erent form� for RAN�crystals and exhibits some known properties of crys�

tals� Section � gives a brief review of results on A��crystals from ��	� Also� relying

on a structural characterization of regular A��crystals� we explain in this section that

any RAN�crystal has a zero�indegree vertex �Corollary ����� The crossing model is

described in Section � �concerning the support�graph and feasible functions� and Sec�
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tion � �concerning transformations of feasible functions�� The equivalence between

the objects generated by the crossing model and the RAN�crystals is proved in Sec�

tion � �Theorem ����� Section � introduces the principal lattice and the skeleton of a

RAN�crystal and explains a relation between these objects� In
nite analogs of RAN�

crystals and their properties are discussed in Section �� The concluding Section �

proves the above�mentioned relation between the principal lattice and �n����colored

subcrystals and calculates the parameters and multiplicities for these subcrystals �in

Proposition ��� and Remark ���

� The de�nition and some properties of RAN�crystals

Throughout� by an n�colored digraph we mean a �
nite or in
nite� directed graph

K � �V �K�� E�K�� with vertex set V �K� and with edge set E�K� partitioned into

n subsets E�� � � � � En� We say that an edge in Ei has color i and for brevity call

it an i�edge� Stembridge ���	 pointed out local graph�theoretic axioms that precisely

characterize the set of regular simply�laced crystals among suchK� The RAN�crystals

K �which form a subclass of regular simply�laced crystals� are de
ned by axioms

�A����A�� below� we give the list of axioms in a slightly di�erent� but equivalent�

form compared with ���	� W�l�o�g�� we assume that K is �weakly� connected� i�e�� it

is not representable as the disjoint union of two nonempty digraphs�

The 
rst axiom concerns the structure of monochromatic subgraphs �V�Ei��

�A�� For i � �� � � � � n� each maximal connected subgraph �component� of �V�Ei� is

a simple �nite path� i�e�� a sequence of the form �v�� e�� v�� � � � � ek� vk�� where

v�� v�� � � � � vk are distinct vertices and each ei is an edge from vi�� to vi�

In particular� for each i� each vertex has at most one incoming i�edge and at most

one outgoing i�edge� and therefore� one can associate to the set Ei partial inversible

operator Fi acting on vertices
 �u� v� is an i�edge if and only if Fi is applicable

to u and Fi�u� � v� Since K is connected� one can use the operator notation to

express any vertex via another one� For example� the expression F��
� F �

�F��v� �where

F��
p stands for the partial operator inverse to Fp� determines the vertex w obtained

from a vertex v by traversing ��edge �v� v��� followed by traversing ��edges �v�� u� and

�u� u��� followed by traversing ��edge �w� u�� in backward direction� Emphasize that

every time we use such an operator expression in what follows� this automatically

indicates that all involved edges do exist in K�

For convenience� we refer to a maximal monochromatic path with color i on the

edges as an i�line� The i�line passing through a given vertex v �possibly consisting of
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the only vertex v� is denoted by Pi�v�� its part from the 
rst vertex to v by P in
i �v��

and its part from v to the last vertex by P out
i �v�� The lengths of P in

i �v� and of P out
i �v�

�i�e�� the numbers of edges in these paths� are denoted by ti�v� and hi�v�� respectively�

Axioms �A����A�� tell us about interrelations of di�erent colors i� j� Taken to�

gether� they are equivalent to saying that each component of the digraph �V �K�� Ei�
Ej� forms a regular A��crystal when colors i� j are neighboring� i�e�� ji � jj � �� and

forms a regular A� �A��crystal �the Cartesian product of two paths� otherwise�

The second axiom �which is of standard form for regular crystals� indicates pos�

sible changes of the head and tail part lengths of j�lines when one traverses an edge

of another color i� these changes depend on the Cartan matrix�

�A�� For any two colors i �� j and for any edge �u� v� with color i� one holds tj�v� 

tj�u� and hj�v� 	 hj�u�� Furthermore� the value �tj�v�� tj�u����hj�u��hj�v��

is equal to the coe�cient mij in the Cartan matrix M �

This can be rewritten in a more convenient form� as follows�

��� When ji� jj � �� each i�line P contains a vertex r satisfying the following

property
 for any edge �u� v� in P in
i �r�� one holds tj�v� � tj�u�� � and hj�v� �

hj�u�� and for any edge �u�� v�� in P out
i �r�� one holds tj�v�� � tj�u�� and hj�v�� �

hj�u�� � �� When ji � jj 	 �� for any edge �u� v� with color i� one holds

tj�v� � tj�u� and hj�v� � hj�u��

Such a vertex r �which is unique� is called the critical vertex for P� i� j� In light of

�A��� it is convenient to assign to each i�edge e label �i�j�e� taking value � if e occurs

in the corresponding i�line before the critical vertex� and � otherwise� Emphasize

that the critical vertex �and therefore� edge labels� on an i�line P depends on j�

because the critical vertex on P with respect to the other color j� neighboring to i

�i�e�� fj� j�g � fi� �� i� �g for i �� �� n� may be di�erent�

The third axiom describes situations when for neighboring i� j� the operators

Fi� Fj� as well as and their inverse ones� commute�

�A�� Let ji � jj � �� �a� If a vertex u has outgoing i�edge �u� v� and outgoing j�

edge �u� v�� and if �i�j�u� v� � �� then �j�i�u� v�� � � and FiFj�u� � FjFi�u��

Symmetrically
 �b� if a vertex v has incoming i�edge �u� v� and incoming j�edge

�u�� v� and if �i�j�u� v� � �� then �j�i�u�� v� � � and F��
i F��

j �v� � F��
j F��

j �v��

�See the picture��
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Note that for each �square� u� v� v�� w� where v � Fi�u�� v� � Fj�u� and w �

Fj�v� � Fi�v��� the trivial relations hj�u� � h�v�� � � and hj�v� � hj�w� � � imply

that the opposite edge �u� v� and �v�� w� have equal labels �i�j� similarly �j�i�u� v�� �

�j�i�v�w�� A simple but important consequence of �A�� is that for neighboring i� j�

if v is the critical vertex on an i�line w�r�t� color j� then v is also the critical vertex

on the j�line passing through v w�r�t� color i� i�e�� we can speak of common critical

vertices for the pair fi� jg� �Indeed� if a vertex v has incoming i�edge �u� v� with

�i�j�u� v� � � and outgoing j�edge �v�w�� then we have hj�u� � hj�v� 	 �� and hence

u has outgoing j�edge �u� v��� By �A��� w � Fi�v
�� and �j�i�u� v

�� � �� the latter

implies �j�i�v�w� � �� Symmetrically� if v has outgoing i�edge e with �i�j�e� � � and

incoming j�edge e�� then �j�i�e�� � ���

The fourth axiom points out situations when for neighboring i� j� the operators

Fi� Fj and their inverse ones �remotely commute� �one says that they satisfy the

Verma relation of length ���

�A�� Let ji� jj � �� �i� If a vertex u has outgoing edges with color i and color j and

if each edge is labeled � �w�r�t� the other color�� then FiF
�
j Fi�u� � FjF

�
i Fj�u��

Symmetrically
 �ii� if v has incoming edges with color i and color j and if both

are labeled �� then F��
i �F��

j ��F��
i �v� � F��

j �F��
i ��F��

j �v�� �See the picture��
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One can show that the labels w�r�t� i� j of all involved edges are determined

uniquely� just as indicated in the above picture �where the circles indicate the critical

vertices��

The 
nal axiom says that the operators Fi� Fj� as well as their inverse ones� always

commute for non�neighboring colors i� j�
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�A�� Let ji � jj 	 �� If a vertex v has outgoing i�edge and outgoing j�edge� then

FiFj�u� � FjFi�u�� Symmetrically
 if v has incoming i�edge and incoming

j�edge� then F��
i F��

j �v� � F��
j F��

j �v��

From �A�� and �A�� it easily follows that for ji� jj 	 �� each component of the

��colored subgraph �V �K�� Ei � Ej� is the Cartesian product of a path with color i

and a path with color j� i�e�� it is viewed as a rectangular grid�

Next we review some known properties of RAN�crystals�

A vertex v of a 
nite or in
nite digraph G is called the source �resp� sink� if

any inclusion�wise maximal path begins �resp� ends� at v� in particular� v has zero

indegree �resp� zero outdegree�� When such a vertex exists� we say that G has source

�resp� has sink�� The importance of simply�laced crystals with source is emphasized

by a result of Stembridge in ���	� in the An case it reads as follows


��� For any n�tuple c � �c�� � � � � cn� of nonnegative integers� there exists precisely

one RAN�crystal K with source s such that hi�s� � ci for i � �� � � � � n� This K

is the crystal graph of the irreducible Uq�sln����module of highest weight c�

�Hereinafter we prefer to denote n�tuples in bold�� We say that c is the tuple of

parameters of such a K and denote K by K�c�� If we reverse the edges of K while

preserving their colors� we again obtain a RAN�crystal �since �A����A�� remain valid

for it�� It is called dual of K and denoted by K��

Another useful property� indicated in ���	 for simply�laced crystals with a nonsin�

gular Cartan matrix� is easy�

��� A RAN�crystal K is graded for each color i� which means that for any cycle

ignoring the orientation of edges� the number of i�edges in one direction is equal

to the number of i�edges in the other direction� In particular� K is acyclic and

has no parallel edges�

�Indeed� associate to each vertex v the n�vector wt�v� whose j�th entry is equal to

hj�v�� tj�v�� j � �� � � � � n� Then for each i�edge �u� v�� the di�erence wt�u�� wt�v�

coincides with the i�th row vector mi of the Cartan matrix M � in view of axiom

�A�� and the obvious equality hi�u� � ti�u� � hi�v� � ti�v� � �� So under the map

wt 
 V �K�� R
n� the edges of each color i correspond to parallel translations of one

and the same vectormi� and now ��� follows from the fact that the vectorsm�� � � � �mn

are linearly independent��

In general a regular simply�laced crystal need not have source and�or sink� it may

be in
nite and may contain directed cycles� One simple result on regular simply�laced
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crystals in ���	 remains valid for more general digraphs� in particular� for a larger class

of crystals of representations�

Proposition ��� Let G be an �uncolored� connected and graded digraph with the

following property ���� for any vertex v and any edges e� e� entering v� there exist two

paths from some vertex w to v such that one path contains e and the other contains e��

Then either G has source or all maximal paths in G are in�nite in backward direction�

�A similar assertion concerns sinks and in
nite paths in forward direction� Also for

any RAN�crystal� condition ��� in the proposition follows from axioms �A����A����

Proof Suppose this is not so� Then� since G is connected and acyclic �as it is graded��

there exists a vertex v and two paths P�P � ending at v such that P begins at a zero�

indegree vertex s� while P � is either in
nite in backward direction or begins at a

zero�indegree vertex di�erent from s� Let such v� P� P � be chosen so that the length

jP j of P is minimum� Then the last edges e � �u� v� and e� � �u�� v� of P and P ��

respectively� are di�erent� By ���� there is a vertex w� a path Q from w to v containing

e and a path Q� from w to v containing e�� Extend Q to a maximal path Q ending at

v� Three cases are possible
 �i� Q is in
nite in backward direction� �ii� Q begins at

a �zero�indegree� vertex di�erent from s� and �iii� Q begins at s� In cases �i���ii�� we

come to a contradiction with the minimality of P by taking the vertex u and the part

of P from s to u� And in case �iii�� there is a path Q
�
from s to v that contains e��

Since G is graded� jQ�j � jP j� Then we again get a contradiction with the minimality

of P by taking u� and the part of Q
�
from s to u��

�The fact that G is graded is important� Indeed� let the vertices of G be s and

ui� vi for all integer i 	 �� and let the edges be �s� u�� and �ui� ui���� �vi��� vi�� �ui� vi�

for all i� This G satis
es ���� the vertex s has zero indegree� and the path on the

vertices vi is in
nite in backward direction� One can also construct a locally 
nite

graph satisfying ��� and having many zero�indegree vertices��

Our crossing model will generate n�colored graphs satisfying axioms �A����A���

moreover� it generates one RAN�crystal with source for each parameter tuple c � Zn
��

In light of ��� and Proposition ���� a reasonable question is whether every RAN�

crystal has source and sink �or� equivalently� is 
nite�� The question will be answered

a�rmatively in the next section� thus implying that the crossing model gives the

whole set of RAN�crystals�

As a consequence of the crossing model� we will also observe the following anti�

symmetrical property of a RAN�crystal K
 if we reverse the numeration of colors

�regarding each color i as n� i��� in the dual crystal K�� then the resulting crystal
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is isomorphic to K� In other words� hi�sK� � tn�i���sK� for i � �� � � � � n� where sK
and sK are the source and sink of K� respectively�

Finally� recall that a Gelfand�Tsetlin pattern ��	� or a GT�pattern for short� is a

triangular arrayX � �xij���j�i�n of integers satisfying xij 	 xi���j� xi���j�� for all i� j�

Given a weakly decreasing n�tuple a � �a� 	 � � � 	 an� of nonnegative integers� one

says thatX is bounded by a if aj 	 xn�j 	 aj�� for j � �� � � � � n� letting an�� 
� �� It is

known that GT�patterns� as well as the corresponding semi�standard Young tableaux�

are closely related to crystals of representations for Uq�sln��� �cf� ��� �� �� ��	�� More

precisely�

��� for any c � Zn
�� there is a bijection between the vertex set of the RAN�

crystal K�c� and the set of GT�patterns bounded by the n�tuple c�� de
ned by

c�j 
�
Pn

k	j ck for j � �� � � � � n�

As mentioned in the Introduction� there is a correspondence between GT�patterns

and feasible functions in the crossing model� it will be exposed in Proposition ����

� Properties of A��crystals

In this section we give a brief review of certain results from ��	� important for us later

on� for the simplest case n � �� namely� for regular A��crystals� or RA��crystals for

short� They describe the combinatorial structure �formation� of such crystals and

demonstrate some additional properties�

A RA��crystal K is de
ned by axioms �A����A�� with fi� jg � f�� �g �since

�A�� becomes redundant�� It turns out that these crystals can be produced from

elementary ��colored crystals by use of a certain operation of replicating and gluing

together� This operation can be introduced for arbitrary 
nite or in
nite graphs as

follows�

Consider graphs G � �V�E� and H � �V �� E �� with distinguished vertex subsets

S 
 V and T 
 V �� Take jT j disjoint copies of G� denoted as Gt �t � T �� and jSj
disjoint copies of H� denoted as Hs �s � S�� We glue these copies together in the

following way
 for each s � S and each t � T � the vertex s in Gt is identi
ed with the

vertex t in Hs� The resulting graph� consisting of jV jjT j � jV �jjSj � jSjjT j vertices
and jEjjT j� jE�jjSj edges� is denoted by �G�S� �� �H�T ��

In our special case the role of G and H is played by ��colored digraphs R and L

viewed as triangular parts of square grids� More precisely� R depends on a parameter

c� �Z� and its vertices v correspond to the integer points �i� j� in the plane such that

�



� 
 j 
 i 
 c�� The vertices v of L� depending on a parameter c� � Z�� correspond
to the integer points �i� j� such that � 
 i 
 j 
 c�� We say that v has the coordinates

�i� j� in the sail� The edges with color � in these digraphs correspond to all possible

pairs ��i� j�� �i� �� j��� and the edges with color � to the pairs ��i� j�� �i� j � ���� We

call R the right sail of size c�� and L the left sail of size c��

It is easy to check that R satis
es axioms �A����A�� and is just the crys�

tal K�c�� ��� and that the set of critical vertices in R coincides with the diagonal

DR � f�i� i� 
 i � �� � � � � c�g� Similarly� L � K��� c��� and the set of critical vertices

in it coincides with the diagonal DL � f�i� i� 
 i � �� � � � � c�g� These diagonals are

just taken as the distinguished subsets in these digraphs� The vertices in DR �DL�

are ordered in a natural way� according to which �i� i� is referred as the i�th critical

vertex in R �L��

We refer to the digraph obtained by use of operation �� in this case as the

diagonal�product of R and L� and for brevity write R �� L� omitting the distinguished

subsets� The edge colors in the resulting graph are inherited from R and L� Using

the above numeration in the diagonals� we may speak of p�th right sail in R �� L�

denoted by Rp� Here � 
 p 
 c�� and Rp is the copy of R corresponding to the vertex

�p� p� of L� In a similar way� one de
nes q�th left sail Lq in R �� L for q � �� � � � � c��

The common vertex of Rp and Lq is denoted by vp�q�

One can check that R �� L has source and sink and satis
es axioms �A����A���

Moreover� it is exactly the crystal K�c�� �The order of entries in c here is di�erent

from that in ��	 but this is not important�� The critical vertices in it are just vp�q
for all p� q� the source is v��� and the sink is vc��c� � The case c� � � and c� � � is

illustrated in the picture� here the critical vertices are indicated by circles� ��edges by

horizontal arrows� and ��edges by vertical arrows�
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It is shown that the above construction gives all RA��crystals�

��



Theorem ��� ��	 Any RA��crystal K is representable as K�a� �� �� K��� b� for some

a� b �Z��

So K is 
nite� and the set of RA��crystals is exactly fK�c� 
 c �Z��g�
A useful consequence of the above construction is that the vertices v of K one�to�

one correspond to the quadruples ���� ��� 	�� 	�� of integers such that

��� �i� � 
 �� 
 �� 
 c�� �ii� � 
 	� 
 	� 
 c�� and �iii� at least one of the

equalities �� � �� and 	� � 	� takes place�

and each i�edge �i � �� �� corresponds to the increase by � of one of �i� 	i� subject to

maintaining ����

Under this correspondence� if 	� � 	� then v occurs in the right sail with number

	� and has the coordinates ���� ��� in it� while if �� � �� then v occurs in the left

sail with number �� and has the coordinates �	�� 	��� In particular� a critical vertex

vp�q corresponds to �q� q� p� p��

Remark �� The representation of the vertices of K as the above quadruples satis�

fying ��� gives rise to constructing the crossing model for the simplest case n � ��

as we explain in the next section� A more general numerical representation �which is

beyond our consideration in this paper� does not impose condition �iii� in ���� In this

case the admissible transformations of quadruples ���� ��� 	�� 	�� �giving the edges of

a digraph on the quadruples� are assigned as follows� For � 
� minf������ 	��	�g�
we choose one of ��� ��� 	�� 	� and increase it by � unless this increase violates �i� or

�ii� in ��� or changes �� One can see that the resulting digraph Q is the disjoint union

of ��minfc�� c�g RA��crystals� namely�K�c���� c���� for � � �� � � � �minfc�� c�g
�one can check that Q is the tensor product of crystals �sails� K�c�� �� and K��� c����

One more useful result in ��	 is the following�

Proposition ��� Part �ii� of axiom �A	� for RAN�crystals is redundant� Further�

more� axiom �A	� itself follows from �A
���A�� if we add the condition that each

component of �V�Ei � Ej� with ji� jj � � has exactly one zero�indegree vertex�

Finally� consider an arbitrary RAN�crystal K� For a color i� let Hi denote the

operator on V �K� that brings a vertex v to the end vertex of the path Pi�v�� i�e��

Hi�v� � F
hi
v�
i �v� �letting F �

i � id�� We observe that

��� for neighboring colors i� j and a vertex v� if hi�v� � � then the vertex

w � HiHj�v� satis
es hi�w� � hj�w� � ��

��



Indeed� the RA��subcrystal with colors i� j in K that contains v is K�ci� cj� for

some ci� cj � Z�� Represent v as quadruple q � ��i� �j� 	i� 	j� in ��� �with �i� j� in

place of ������� Then hi�q� � � implies �i � ci and 	i � 	j� One can see that applying

Hj to q results in the quadruple q� � �ci� ci� 	i� cj� and applying Hi to q� results in

�ci� ci� cj� cj�� This gives ����

Using ���� we can show the following important property of RAN�crystals�

Proposition ��� Any RAN�crystal K has a zero�outdegree vertex�

Proof For a vertex u� let p�u� be the maximum integer p such that hi�u� � � for i �

�� � � � � p� �� Assuming p�u� 
 n��� we claim that the vertex w � H�H� � � �Hp
u��u�

satis
es p�w� � p�u�� whence the result will immediatelly follow� �In other words�

by applying the operator HnHn�� � � �H� to an arbitrary vertex� where H i stands for

H�H� � � �Hi� we get a zero�outdegree vertex��

Indeed� let p � p�u�� For the vertex vp 
� Hp�u�� we have hp�vp� � � and

hi�vp� � hi�u� for all i �� p � �� p � � �since colors p� i commute�� while hp���vp�

may di�er from hp���u�� So hi�vp� � � for i � �� � � � � p � �� p� Similarly� the vertex

vp�� 
� Hp���vp� satis
es hp���vp��� � � and hi�vp��� � hi�vp� for all i �� p � �� p�

Moreover� applying ��� to v � u� i � p � � and j � p� we obtain hp�vp��� � �� So

hi�vp��� � � for i � �� � � � � p � �� p � �� p� On the next step� in a similar fashion one

shows that vp�� 
� Hp���vp��� satis
es hi�vp��� � � for all i � f�� � � � � pg n fp � �g�
and so on� Then the 
nal vertex v� 
� H� � � �Hp�u� in the process has the property

hi�v�� � � for i � �� � � � � p� as required in the claim�

Also K has a zero�indegree vertex �since Proposition ��� can be applied to the

dual crystal K��� This together with ��� and Proposition ��� gives the following�

Corollary ��� Every RAN�crystal K is �nite and has source and sink� Therefore�

K � K�c� for some c �Zn
��

� Description of the crossing model

As mentioned in the Introduction� the crossing model Mn for crystals with n colors

consists of three ingredients
 �i� a certain digraph G � �V �G�� E�G� depending only

on the number n of colors� called the support�graph �the structural part of M�� �ii� a

certain set F � F�c� of nonnegative integer�valued functions on V �G�� called feasible

functions� depending on an n�tuple of parameters c � Zn
� �the numerical part�� and

�iii� n partial operators acting on F � calledmoves �the operator part�� �The set F will

��



correspond to the vertex set of the crystal with the parameters c� and the moves to

the edges of this crystal�� Parts �i� and �ii� are described in this section� and part �iii�

in the next one� To avoid a possible mess when both a crystal and the support�graph

are considered simultaneously� we will refer to a vertex of the latter graph as a node�

To explain the idea� we 
rst consider the simplest case n � � and a ��colored

crystal K � K�c�� The model M� is constructed by relying on encoding ��� of the

vertices of K �moves in this model will be de
ned as in a general case�� The support�

graph G is formed by two disjoint edges �u�� u�� and �w�� w�� �which are related to the

elementary crystals� or sails� K�c�� �� and K��� c���� A feasible function f on V �G�

takes values f�u�� � ��� f�u�� � ��� f�w�� � 	�� f�w�� � 	� for �i� 	i as in ���� So

the direction of each edge e of G indicates the corresponding inequality to be imposed

on the values of any feasible function f on the end nodes of e� and each f one�to�one

corresponds to a vertex of K� The model is illustrated on the picture
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Note that each admissible quadruple ���� ��� 	�� 	�� generates the GT�pattern X

of size � �see the end of Section ��� de
ned by x�� 
� �� � 	�� x�� 
� 	� � c� and

x�� 
� �� �see the picture�� This pattern is bounded by c� � �c� � c�� c���

c� � 	� ��

�� � 	�

Next we start describing the model for an arbitrary n� The �simplest� case of an

n�colored crystal K � K�c� arises when all entries in c � �c�� � � � � cn� are zero except

for one entry ck� In this case we say that K is the k�th base crystal of size ck and

denote it by Kk
n�ck��

���� The support�graph of Mn� This digraph G is formed as the disjoint union

of digraphs Gk � Gk
n that we construct as the support�graphs for base crystals Kk

n�

Each Gk is viewed as a square grid of size k � � by n � k� More precisely� the node

set of Gk consists of the nodes

��� vki �j�� where j runs from � to n � k � �� and i runs from j to j � k � ��

and its edges are all possible pairs of the form

��� �vki �j�� v
k
i���j � ��� or �vki �j�� v

k
i���j���

��



To obtain a visualization more convenient for further use� we take vectors � �

��p�����p���� and 
 � ��� �� in the plane and dispose each vertex vki �j� at the

point �i� �����j� ��
� For example� when n � �� the graphs G�� G�� G� are viewed

as
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�where the topmost node vk���� is disposed every time at the origin ��� ���� and when

n � �� the graphs G�� G�� G�� G� are viewed as
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Under this visualization� �the image of� Gk looks like a rhombic grid �unless

k � �� n�� with edges oriented from left to right� and we will refer to its interior faces

as �little� rhombi� It has source at the leftmost node vkk���� denoted by leftk� and sink

at the rightmost node vkn�k���n � k � ��� denoted by rightk� Each node v � vki �j�

has at most four incident edges� namely� �vki���j � ��� v�� �vki���j�� v�� �v� v
k
i���j���

�v� vki���j����� and when such edges do exist� we refer to them as the NW�� SW�� NE��

and SE�edges for v� and denote by eNW�v�� eSW�v�� eNE�v�� and eSE�v�� respectively�

To avoid overlapping edges in the visualization of the whole support�graph G� we

slightly shift each Gk to the right� by adding to �the images of all nodes of� Gk the

vector �k�� �� for a small real � � �� Here is how G is viewed for n � �
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and for n � �


��



b

b

b

b

�
�
�
�
��
�
�
�
�
��
�
�
�
�
��

b

b

b

b

b

b

�
�
�
�
��

Q
Q
Q
Q
Qs�

�
�
�
��

�
�
�
�
��

Q
Q
Q
Q
Qs�

�
�
�
��

Q
Q
Q
Q
Qsb

b

b

b

b

b

�
�
�
�
��

Q
Q
Q
Q
Qs�

�
�
�
��

Q
Q
Q
Q
Qs

Q
Q
Q
Q
Qs

�
�
�
�
��

Q
Q
Q
Q
Qs

b

b

b

b

Q
Q
Q
Q
Qs
Q
Q
Q
Q
Qs
Q
Q
Q
Q
Qs

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

In these pictures each group of �related� nodes is surrounded by an oval�

It is formed by the nodes vki �j� with the same i and the same j� namely� by

vi�j��i �j�� � � � � vn�j��i �j�� we denote this group by Vi�j� and call it a multinode of

G� Sometimes we will refer to usual nodes of G as ordinary ones� Under the above

visualization� for each i � �� � � � � n� the multinodes Vi���� � � � � Vi�i� occur in the same

horizontal line� forming the i�th level of G� the direction from left to right in this level

determines the order on the multinodes Vi�j� by increasing j� and the order on the

ordinary nodes vki �j� in each Vi�j� by increasing k�

���� Weights of nodes� We consider nonnegative integer�valued functions f on

V �G� and refer to the value f�v� as the weight of a node v� As mentioned above�

the numerical part ofMn consists of a certain set F of such functions� called feasible

ones� this set depends on the parameter�tuple c� A feasible function f is de
ned by

three conditions� The 
rst condition requires f be weakly decreasing on the edges �the

monotonicity condition�� and the second one requires f be bounded by the parameters

�the boundary condition�


��� f�u� 	 f�v� for each edge e � �u� v� of G�

���� f�vki �j�� 
 ck for each node vki �j��

�In light of ���� condition ���� can be replaced by f�leftk� 
 ck for k � �� � � � � n��

To state the third condition� consider a multinode Vi�j� in a level i 
 n� It is

formed by nodes vpi �j�� � � � � v
q
i �j� �in this order� for some � 
 p 
 q 
 n� A node

v � vki �j� is connected with nodes of level i � � by the incoming edge eSW�v� when

p 
 k 
 q and by the outgoing edge eSE�v� when p 
 k 
 q� Let us say that these

edges form the roof at v� The roof consists of the single edge eSW�v� for the 
rst node

v �k � p�� and of the single edge eSE�v� for the last node v �k � q��

For a function f on V �G� and an edge �u� v�� denote the di�erence f�u��f�u� by

�f�u� v�� and say that this edge is tight if �f�u� v� � �� Then the 
nal condition on

f to be feasible is


��



���� for each multinode Vi�j� with i 
 n� there exists a node v in it such that the

edge eSE�u� is tight for all nodes u � Vi�j� preceeding v� while the edge eSW�u��

is tight for all nodes u� succeeding v�

We say that such a v satis
es the switch condition� There may be several such nodes

in Vi�j� �then they go in succession� and the �rst node v � vki �j� among them �i�e��

with k minimum� is called the switch�node in Vi�j�� �We shall see later that the

forward moves in the model� related to acting the operators Fi� handle just switch�

nodes� while the backward moves� related to acting F��
i � use last nodes satisfying the

switch condition�� We illustrate ���� on the picture where tight edges are drawn bold

and only one node� marked by a circle� satisfy the switch condition�
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So a weight function f is feasible if it satis
es ���������

That the feasible functions one�to�one correspond to the vertices of the crystal

K�c� can be shown by two methods� A direct proof of the assertion that F along

with the moves obeys axioms �A����A�� will be given in Section �� Another way is

to show a correspondence to GT�patterns and use property ���� For p� q � f�� � � � � ng
with p 
 q� let c�p 
 q	 denote cp � � � �� cq� As before� c�j stands for c�j 
 n	�

Proposition ��� For � 
 j 
 i 
 n� de�ne

xi�j� 
� f i�j� � c�� 
 i� j	�����

where f i�j� denotes the sum of values of f on all nodes in Vi�j�� This gives a bijection

between the set of feasible functions f and the set of GT�patterns X � �xi�j�� of size

n bounded by c��

�Note that this can also be regarded as an alternative proof of property ���� via

the crossing model��

Proof For a weight function f satisfying ��� and ���� �but not necessarily ������

de
ne X by ����� Each multinode Vn�j� in the bottom level consists of the single

node v � vn�j��n �j�� and we have � 
 f�v� 
 cn�j�� �since v is in Gn�j���� Therefore�

xn�j� is between c�� 
 n� j	 and c�� 
 n � j � �	�

��



The inequality xi�j� 	 xi���j��� is implied by non�increasing f on the edges from

Vi�j� to Vi���j � �� and by the fact that the term in ���� concerning c is the same

for �i� j� and �i��� j���� The inequality xi���j� 	 xi�j� follows from non�increasing

f on the edges from Vi���j� to Vi�j� and from the inequality ci�j�� 	 f�vi�j��i �j���

Thus� X is a GT�pattern bounded by c��

Conversely� let X be a GT�pattern bounded by c�� We construct the desired f

step by step� starting from the bottom level� For each node v � vn�j��n �j� �forming

Vn�j��� we de
ne f�v� 
� xn�j� � c�� 
 n � j	� This value is nonnegative� and ����

holds for i � n�

Now consider a multinode Vi�j� with i 
 n� assuming that f is already de
ned

for all levels below i and satis
es �������� for the nodes in these levels and the edges

between them� We show that f can be properly extended to the nodes in Vi�j� and

that such an extension is unique� Consider an intermediate node v in Vi�j� �existing

when i 
 n � ��� Its roof consists of two edges� say� �u� v�� �v�w�� The weights of u

and w �already de
ned� satisfy f�u� 	 f�w� �since v� u� v are contained in a rhombus

of some base subgraph� and therefore� f�u� 	 f�v�� 	 f�w�� where v� is the node of

this rhombus in the level i���� The maximum possible weight of v not violating ���

is f�u�� while the minimum possible weight is f�w�� In its turn� the roof of the 
rst

node v in Vi�j� consists only of the edge eSE�v� � �v�w�� and the maximum possible

weight of v is ci�j�� �since v�w belong to Gi�j���� while the minimum one is f�w��

And the roof of the last node v in Vi�j� consists of the edge eSW�v� � �u� v�� the

maximum possible weight of v is f�u�� and the minimum one is zero�

Thus� the maximumassignment of weights in all nodes of Vi�j�� would give f i�j� �

f i���j� � ci�j��� implying xi�j� 
 f i�j� � c�� 
 i � j	� in view of xi�j� 
 xi���j� �

f i���j��c�� 
 i�j��	� And the minimum assignment would give f i�j� � f i���j����

implying xi�j� 	 f i�j�� c�� 
 i� j	� in view of xi�j� 	 xi���j��� � f i���j���� c�� 


i � j	� Therefore� starting with the maximum assignment� and decreasing step by

step the weights of nodes in Vi�j� according to the order there� one can always correct

the weights so as to satisfy ���� and ����� while maintaining ��� and ����� Moreover�

���� implies that such weights within Vi�j� are determined uniquely� Eventually� after

handling leve� �� we obtain the desired function f on V �G��

� Moves in the model

So far� we have dealt with the case of nonnegative upper bounds �parameters�

c�� � � � � cn and zero lower bounds� i�e�� for any feasible function f � the weight f�v�

of each node v of a k�th base subgraph lies between � and ck� However� it is advan�

��



tageous to extend the setting� by admitting nonzero lower bounds �e�g�� for purposes

of Section � where the model is extended to produce crystals with possible in
nite

monochromatic paths��

Formally
 for c�d �Zn with c 	 d� we de
ne a feasible function to be an integer

function f on V �G� satisfying ���� ���� and the relation

dk 
 f�vki �j�� 
 ck for all k� i� j�����

instead of ����� The set of feasible functions for �c�d� is denoted by F�c�d�� Clearly
the numerical part of the model remains equivalent when for any k� we add a constant

to both ck and dk and accordingly add this constant to any weight function for Gk� In

particular� F�c�d� is isomorphic to F�c� d���� and when d � �� F�c�d� coincides
with F�c� as above�

Now we start describing the desired transformations of functions in F�c�d�� or
moves �that will correspond to edges of the crystal K�c� d��� Each transformation

is performed only within one level i� in which case it is called an i�move� We need

some additional de
nitions� notation and construction�

First of all� to simplify our description and technical details later� we extend each

Gk by adding extra nodes and edges� More precisely� in the extended digraph G
k
�

the node set consists of elements vki �j� for �i� j� � ��� �� and for all i� j such that

� 
 i� j 
 n � � and j 
 i � �� except for �i� j� � �n � �� ��� The edge set of

G
k
consists of all possible pairs of the form �vki �j�� v

k
i���j�� or �v

k
i �j�� v

k
i���j � ��� �as

before�� An instance is illustrates in the picture� here n � �� k � �� and the thick

lines indicate the edges of the original graph�
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The disjoint union of these G
k
gives the extended support�graph G� It possesses the

property that the original multinodes becomes balanced� in the sense that for the set

J of index pairs �i� j� satisfying � 
 j 
 i 
 n� the extended multinodes V i�j� contain

the same number n of nodes �these are v�i �j�� � � � � v
n
i �j��� Also each node v � vki �j�

of G with �i� j� � J has exactly four incident edges� namely� eNW�v�� eSW�v�� eNE�v��

and eSE�v��

��



Each feasible function on V �G� is extended to the extra nodes v � vki �j� in a

natural way
 we put f�v� 
� ck if there is a path from v to Gk �one may say that

v lies on the left from Gk�� and f�v� 
� dk otherwise �when v lies on the right from

Gk�� In particular� each edge of G not incident with a node of G is tight� One can

see that such an extension maintains conditions �������� everywhere� moreover� for

any �i� j� � J � the sets of nodes satisfying the switch condition in Vi�j� and in V i�j�

are equal�

Given a feasible function f on V �G� and a node v � vki �j�� de
ne

��v� 
� �f�eNW�v�� and ��v� 
� �f�eSE�v���

when the corresponding NW� or SE�edge exists in G �i�e�� � 
 j 
 i�� in the former

case and � 
 j 
 i in the latter case�� We call these the upper slack and the lower

slack at v� respectively� Using these� we de
ne the upper slack �i�j� and the lower

slack �i�j� at a multinode V i�j� by

�i�j� 
�
Xn

k	�
��vki �j�� and �i�j� 
�

Xn

k	�
��vki �j������

�the former when j � �� � � � � i� �� and the latter when j � �� � � � � i�� Note that

�i��� 	 �i��� for i � �� � � � � n����

�since f�vki������ � f�vki ���� � ck and f�vki ���� 
 f�vki������ for all k�� Also �i�i��� �

��

To de
ne the move from f in a level i � f�� � � � � ng� we 
rst recursively reduce

slacks �i���� �i��� by the following rule


���� choose some � 
 j� 
 j 
 i such that �i�j� � �� �i�j�� � �� and �i�q� �

�i�q� � � for all j� 
 q 
 j� and then subtract from each of �i�j� and �i�j �� their

minimum�

Let e�i�j� �j � �� � � � � i� �� and e�i�j� �j � �� � � � � i� denote the numbers obtained

upon termination of this cancellation process� called the residual upper and lower

slacks at Vi�j�� respectively� It is not di�cult to realise that the residual slacks do

not depend on the order of reducing the current slacks in the process� also ����

implies e�i��� � �� �The value e�i�j� can be determined directly as follows� Take

� 
 p 
 j minimizing
Pj

q	p�� �i�q� �
Pj��

q	p �i�q�� and denote this minimum by ��

Then e�i�j� � maxf�� �g� The values e�i�j� are determined in a similar way�� The

residual slacks are integers and there exists j � f�� � � � � ig such that

e�i��� � � � � � e�i�j � �� � � and e�i�j � �� � � � � � e�i�i� � ������

��



Take the minimum j satisfying ���� �if there are many�� If e�i�j� � �� then we say

that Vi�j� is the active multinode in level i �otherwise e�i��� � � � � � e�i�i� � ���

Themoving operator �i in level i is applicable when the active multinode Vi�j� does

exist� and its action is simple
 it increases by one the value of f on the switch�node

in Vi�j�� preserving f on all other nodes of G�

We have to show that �i is well�de
ned�

Proposition ��� The function f � 
� �i�f� is feasible�

Proof We have to check validity of ��� and ���� for f � �then ���� for the restriction

of f � to V �G� would follow automatically�� Below� when speaking of switch�nodes or

using extressions with ��e�� ��e�� we always mean the corresponding objects for f � Let

X � Vi�j� be the active multinode for f and i� and v the switch�node in it� We will

use the simple observation that

���� if z�� u�� v�� w� are� respectively� the left� upper� right and lower nodes of a little

rhombus� then �f�z�� u�� � �f�u�� v�� � �f�z�� w�� � ��w�� v��� in particular�

��v��� ��z�� � �f�w�� v�� ��f�z�� u���

Suppose �f ��e� 
 � for some edge e� This is possible only if �f�e� � � and e

enters v� i�e�� e is eNW�v� or eSW�v��

�a� Let e � eSW� If v is not the 
rst node in X� then �f�e� � � �otherwise the

switch�node in X would occur before v�� So v is the 
rst node� Then the SW�edges of

all nodes in X are tight for f � by ����� In view of ����� this implies �i�j� 
 �i�j � ���

which is impossible since e�i�j� � ��

�b� Now let e � eNW�v�� The beginning node of e belongs to the multinode Vi���j�
��� Consider the nodes v�� � � � � vn in X �in this order� and the rhombi ��� � � � � �n

containing them as right nodes� respectively� Let zk� uk� wk denote� respectively� the

left� upper and lower nodes in �k� So z�� � � � � zn are the elements of Vi�j���� u�� � � � � un
are the elements of Vi���j � ��� and w�� � � � � wn are the elements of Vi���j�� and they

follow in this order in these multinodes� Let v � vp and let uq be the switch�node in

Vi���j � ��� By ����� the edges �wk� vk� for k � p � �� � � � � n and the edges �uk
�

� vk
�

�

for k� � �� � � � � q � � are tight for f � This gives

��vk� 
 ��zk� for k � �� � � � � q � � and for k � p � �� � � � � n�

�For k � p � � this follows from ������ Also the tightness of e gives ��vp� 
 ��zp��

Suppose q 
 p� Then up occurs in Vi���j��� after the switch�node uq� and therefore�

��



�zp� up� is tight for f � We have �f�zp� up���f�up� vp� � �� which implies the tightness

for f of all edges in �p� Then �f�eSW�v�� � �� contrary to shown in �a�� Thus� q 	 p�

implying ��vk� 
 ��zk� for all k� and therefore� �i�j� 
 �i�j�� a contradiction�

So� ��� for f � is proven� Since �f ��e� 
 �f�e� for all SW� and SE�edges e of

nodes in Vi���j � ��� ���� is valid for f � and this multinode� Also ���� is� obviously�

valid for f � and Vi�j�� It remains to examine the multinode Y � Vi���j� since for

the edge e � eNE�v�� which is the SW�edge for the corresponding node u in Y � the

value �f ��e� becomes greater than �f�e�� If e is not tight for f or if the last node u�

in Y satisfying the switch condition for f does not occur before u� then ���� follows

automatically�

Suppose �f�e� � � and u� occurs before u� We show that this is not the case by

arguing in a way close to �b�� For k � �� � � � � n� let zk� uk� vk� wk denote� respectively�

the left� upper� right and lower nodes of the rhombus whose upper node �namely�

uk� is contained in Y � Then v � zp and u� � uq for some p� q with q 
 p� The fact

that both v� u� satisfy the switch condition for f �in their multinodes�� together with

q 
 p� implies that for each k � �� � � � � n� at least one of �f�zk� uk� and ��zk� wk� is

zero� This gives �cf� �����


��zk� 
 ��vk� for all k�

Moreover� this inequality is strict for k � q� Indeed� we have �f�zq� wq� � � and

�f�uq� vq� � � �otherwise the node in Y next to u would satisfy the switch condition

for f as well� but u� is the last of such nodes�� So we obtain �i�j� 
 �i�j � ��� But�

in view of e�i�j� � � and e�i�j�� � � for j � � �� � � � � j � �� this implies e�i�j� � � and

e�i�j � �� � �� and therefore� the active multinode in level i should occur after Vi�j��

a contradiction�

This completes the proof of the proposition�

In conclusion of this section we discuss one more important aspect�

Backward moves� Besides the above description of partial operators �i increasing

functions in F�c�d�� we can describe explicitly the corresponding decreasing opera�

tors� which make backward moves� For i � �� � � � � n� such an operator �i acts on a

feasible function f as follows �as before� we prefer to deal with extended functions

on V �G��� We take the �rst multinode Vi�j� �with j minimum� in level i for which
e�i�j� � �� the operator does not act when e�i�j� � � for all j� In view of �����

� 
 j 
 n takes place� In this multinode� called active in backward direction� we

take the last node v possessing the switch condition in ����� called the switch�node in

backward direction� Then the action of �i consists in decreasing the weight f�v� by

��



one� preserving the weights of all other nodes of G�

Proposition ��� The function f � 
� �i�f� is feasible� Moreover� �i is applicable to

f �� and �i�f
�� � f �

Proof One can prove this by arguing in a similar spirit as in the proof of Proposi�

tion ���� Instead� we can directly apply that proposition to the reversed model� This

is based on a simple observation� as follows�

For a node v � V �G�� de
ne ��v� 
� �f�eNE�v�� and ��v� 
� �f�eSW�v��� when

such an NE� or SW�edge exists in G� The alternative upper and lower slacks at a

multinode Vi�j� are de
ned to be� respectively� the sum of numbers ��v� and the sum

of numbers ��v� for the nodes v in this miltinode �the former is de
ned for j � �� � � � � i�

and the latter for j � �� � � � � i � ��� Compare ����� Considering the little rhombus

containing nodes u � vki �j � �� and v � vki �j�� we have ��v� � ��u� � ��v� � ��u�

�cf� ������ This gives

�i�j�� �i�j � �� � �i�j�� �i�j � �������

The reversed model Mr is obtained by reversing the edges of G� by replacing the

upper bound c by �d� and by replacing the lower bound d by �c �one may think that

we now read the original model from right to left�� Accordingly� a feasible function f

inM is replaced by f r 
� �f � One can see that f r is feasible forM r and that the last

node satisfying the switch condition for f in an original multinode Vi�j� turns into the

switch�node for f r in the corresponding multinode V r
i �j

�� in M r� Also �ri �j
�� � �i�j�

and �ri �j
�� � �i�j� �where �r� �r stand for �� � in the reversed model�� In view of �����

the cancellation process �see ����� with f r in the level i of M r will give e�ri �j�� � e�i�j�
and e�ri �j�� � �i�j� for all j�

These observations enable us to conclude that the function �f r�� obtained by the

forward move from f r in M r generates the function f � � �i�f� in M � Therefore�

f � is feasible� To see the second part of the proposition� let v be the node of the

active multinode Vi�j� where f decreases �by one� to produce f �� The edge eSW�v� is

non�tight for f �� which implies that v is the unique node in Vi�j� satisfying the switch

condition for f �� and therefore� v becomes the switch�node there� Also decreasing f

by one at v results in increasing ��v�� and one can see that the residual slack e�i�j�
for f � is greater by one compared with f � This and ���� imply that Vi�j� is just the

active multinode for f � in the level i� Hence the forward move from f � increases it by

one at v� and we obtain ���f� � f � as required�

Clearly both operators �i and �i are injective� Also the �double reversed� model

coincides with the original one� and therefore� Proposition ��� implies that �i�i�f� � f

��



for each f to which �i is applicable� So � and � are inverse to each other and we may

denote �i by �
��
i �

� The relation of the model to RAN�crystals

We have seen that the feasible functions in the model one�to�one correspond to the

vertices of a crystal� by using the GT�pattern model for the latter� see Proposition ����

In this section we directly verify that the set F of these functions along with the set

of �forward� moves satis
es axioms �A����A��� and therefore� does constitute a RAN�

crystal� One may assume that the lower bounds are zero� i�e�� F � F�c� for c � Zn
��

When the operator �i is applicable to an f � F � we say that f and f � 
� �i�f� are

connected by the directed edge �f� f �� with color i� the set of these edges is denoted

by Ei� This produces the n�colored digraph K�c� � �F � E� in which E is partitioned

into the color classes E�� � � � � En� So we are going to show the following�

Theorem 	�� K�c� is a RAN�crystal�

Proof As before� it is more convenient to operate with the extended support�graph G

and regard the functions in F as being properly extended to the nodes in V �G��V �G��
Axiom �A�� immediately follows from properties of operators �i and �i� Next we

observe the following� For f � F and a color i� if Vi�j� is the active multinode� then

the action of �i decreases e�i�j� by �� increases e�i�j� by �� and does not change the

residual slacks e� and e� for the other multinodes in level i� This easily follows from ����

and the fact that under increasing f by � at the switch�node v in Vi�j�� ��v� decreases

by � and ��v� increases by �� Similarly� if Vi�j�� is the active multinode in backward

direction� then �i decreases e�i�j �� by �� increases e�i�j �� by �� and preserves the residual

slacks for the other multinodes in level i� This implies

hi�f� �
Xi

j	�
e�i�j� and ti�f� �

Xi

j	�

e�i�j������

regarding f as a vertex of K�
If i� i� are two colors with ji� i�j 	 �� then any changes of f in level i do not a�ect

the numbers ��v� and ��v� for nodes v in level i�� So hi��f� � hi��f �� and ti��f� � ti��f ��

for f � � �i�f�� as required in �A�� for non�neighboring colors� Validity of axiom �A��

is immediate as well�

In order to verify axioms �A����A�� and �especially� �A�� for neighboring colors

we need a more careful analysis of the behavior of residual slacks� The following

interpretation for the cancellation process �see ����� is of help�

��



For f � F and a 
xed level i��� we may think of V �j� as a box where ��j� white balls

and ��j� black balls are contained �we omit the subindex i�� hereinafter�� There is a set

C of couples� each involving one black ball b from a box V �j� and one white ball w from

a box V �j �� such that j 
 j� �each ball occurs in at most one couple�� We associate

with a couple �b� w� the integer interval �j�b�� j�w�	� where j�q� denotes the number

of the box containing q� The set I of these intervals �with possible multiplicities�

is required to form an interval family� which means that there are no two intervals

��� 		� ���� 	�	 such that � 
 �� 
 	 
 	� �i�e�� no crossing pairs�� In particular� the

set of maximal intervals in I� not counting multiplicities� forms a linear order in a

natural way� Also it is required that
 �i� C is maximal� in the sense that there are no

uncoupled� or free� a black ball b and a white ball w such that j�b� 
 j�w�� and �ii�

no free ball lies in the interior of an interval in I�
It is easy to realize that such a C exists and unique� up to recombining couples

with equal intervals� We denote the set of free white �free black� balls byW �resp� B�

and call �C�W�B� the arrangement for the given collection of black and white balls�

Furthermore� for each j� the number of free white balls �free black balls� in V �j� is

precisely e��j� �resp� e��j���
Let p denote the maximal number j�w� among w � W �letting p � �� ifW � ���

and q the minimal number j�b� among b � B �letting q �� if B � ��� Then p 
 q�

One can see that if some black ball b is removed� then the arrangement changes as

follows �we indicate only the changes important for us��

���� If b is free� it is simply deleted from B� And if b is coupled and occurs in

a maximal interval 
 � ��� 		� then
 �a� if 	 
 q then one of the previously

coupled white balls w with j�w� � 	 becomes free �and 
 is replaced by a

maximal interval ��� 	�	 for some j�b� 
 	� 
 	�� and �b� if q 
 	 �and therefore�

q 
 ��� then one free black ball b� whose number j�b�� is maximal provided that

j�b�� 
 � becomes coupled and generates the maximal interval �j�b��� 		�

On the other hand� when a new white ball w is added� the changes are as follows�

���� In case j�w� 
 q
 �a� if j�w� is in the interior of some maximal interval

��� 		� then w becomes coupled and one previously coupled white ball w� with

j�w�� � 	 becomes free� �b� otherwise w is simply added to W � And in case

j�w� � q
 �c� w becomes coupled and one free black ball b with j�b� maximum

provided that j�b� 
 j�w� becomes coupled as well�

Using this interpretation� we now check axioms �A����A�� for neighboring levels

�viz� colors� i and i� � in the model� Here for f � F in question� the number of the
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active multinode �the active multinode in backward direction� in level i is denoted

by p � p�f� �resp� q � q�f��� and p� � p��f� and q� � q��f� stand for the analogous

numbers in level i � � �as before� using the sign �� or � if such a multinode does

not exist��

Veri
cation of �A��� When �i applies to f �at Vi�p��� the value �i���p��� decreases
by �� �Recall that for v � Vi�j� and �u� v� � eNW�v�� u belongs to Vi���j����� In the

above interpretation� this means that one black ball is removed from the arrangement

for level i � �� Then ���� implies that in case p � � 
 q�� the sum of values e�i���j�
�equal to hi���f�� increases by �� while all e�i���j� preserve� And if p � � 	 q�� then

the sum of values e�i���j� �equal to ti���f�� decreases by �� while all e�i���j� preserve�
Also in the former case� we obtain p�f �� 
 p�f� and q��f �� � q��f�� where f � 
� �i�f��

and therefore� the next application of �i will fall in the former case as well �further

increasing hi���� Next� when �i�� applies to f � we observe from ���� that
 in case

p� 
 q � �� the sum of e�i�j� increases by one� while all e�i�j� preserve� and in case

p� 	 q� the sum of e�i�j� decreases by one� while all e�i�j� preserve� Also in the former

case� p��f �� 
 p��f� and q�f �� � q�f�� where f � 
� �i���f�� so the next application of

�i�� increases hi as well�

Veri
cation of �A��� This is also easy� Let f � 
� �i�f� and f �� 
� �i���f�� Suppose

�f� f �� has label �� Then p� � 	 q� and p��f �� � p��f� �see the previous veri
cation��

Moreover� the switch�node u in Vi���p�� for f remains the switch�node for f �� �Indeed�

since p� 
 p� �� the slacks of the SW�edges of all nodes in Vi���p�� preserve� and the

slacks of their SE�edges do not increase�� In its turn� p� 
 p� � 
 q � � implies that

�f� f ��� has label �� as required in the axiom� Also neither the active multinode in

level i nor the switch�node v in it can change when �i�� applies to f � Thus� both

�i���i and �i�i�� increase the original function f by � on the same elements u� v� A

veri
cation of the relation �i���i�f� � �i�i���f� in the case when �f� f ��� has label �

is similar�

Veri
cation of �A��� This is somewhat more involved� Assuming that both �i and

�i�� are applicable to a feasible function f � de
ne f� 
� �i�f� and g� 
� �i���f��

and let both �f� f�� and �f� g�� have label �� Then p � � 
 q� and p� � � 
 q �where

p � p�f�� and similarly for q� p�� q���

Since ��f� f�� � �� we have hi���f�� � hi���f� � � 	 �� Therefore� we can

de
ne f� 
� �i���f�� and f� 
� �i���f��� Similarly� we can de
ne g� 
� �i�g�� and

g� 
� �i�g��� Our aim is to show that �i is applicable to f�� that �i�� is applicable to

g�� and that �i�f�� � �i���g��� Two cases are possible
 p� 
 p � � and p� 	 p�

��



Let p� 
 p��� For k � �� �� �� we denote p�fk�� q�fk�� p��fk�� q��fk� by pk� qk� p�k� q
�
k�

respectively� similar numbers for gk are denoted by pk� qk� p
�
k� q

�
k� We use the above in�

terpretation and associate to each current function f � the corresponding arrangement

�C � C�f ���W � W �f ��� B � B�f ��� in level i and the corresponding arrangement

�C � � C ��f ���W � �W ��f ��� B � � B��f ��� in level i� ��

Since e�i�p� � �� there is a white ball w � W �f� with j�w� � p� In view of

p � � 
 q�� w corresponds to a coupled black ball b� with j�b�� � p � � in level i� ��

let ���� 	�	 be the maximal interval for C ��f� that contains b�� Then p � � 
 	� 
 q��

We also de
ne the number 	 as follows
 if the point p� � � lies in the interior of

some maximal interval �e�� e		 for C�f�� put 	 
� e	� otherwise put 	 
� p� � �� �The

meaning of 	 is that� in view of p� � � 
 q� if a new white ball w with j�w� � p� � �

is added in level i� then the arrangement in this level changes so that there appears

a free ball w� with j�w�� � 	� see ������ Appealing to the interpretation� we can

precisely characterize the changes of e�i� e�i�e�i��� e�i�� when the above transformations

of our functions are ful
lled�

�i� The transformation f � f� decreases e�i�p� by � and increases e�i�p� by �� Also

e�i���	�� becomes equal to �� cf� �����a��

In particular� p�� � 	�� i�e�� Vi���	�� becomes the active multinode in level i� ��

�ii� The transformation f� � f� reduces e�i���	�� to � and increases e�i���	�� by ��

Also e�i�r� decreases by � for some r 	 p � q�� cf� �����c��

This gives p�� � p� and q� 	 p and preserves all intervals for C that lie before p�

�iii� The transformation f� � f� decreases e�i���p�� by � and makes e�i���p�� be
equal to �� Also e�i�	� increases by �� cf� �����a���b��

The latter property implies p� � � 
 	 
 p� 
 p� Then �i is applicable to f��

de
ne f� 
� �i�f��� �Furthermore� one can see that Vi�p�� is the active multinode in

level i for the function �i�i���f� as well��

Thus� the combined transformation �i�i���i���i consecutively increases f by �

in the switch�nodes v�� v�� v�� v� of Vi�p�� Vi���	��� Vi���p��� Vi�p��� respectively� where

each switch�node is de
ned for the current function at the moment of the correspond�

ing transformation� �Note that p� and 	� are di�erent� while p and p� may coincide��

Next we consider the other chain of transformations�

�iv� The transformation f � g� decreases e�i���p�� by � and increases e�i���p�� by
�� Also e�i�	� increases by ��

From �����a���b� it follows that 	 
 p� implying p� � p�

��



�v� The transformation g� � g� decreases e�i�p� by � and increases e�i�p� by �� Alsoe�i���p�� reduces to ��
Moreover� �����b� implies the following important property ���
 �p�� 	�	 becomes a

maximal interval in the new arrangement in level i��� Also �as mentioned after �iii��

p� coincides with p��

�vi� The transformation g� � g� decreases e�i�p�� by � and increases e�i�p�� by ��

Also� in view of p� � � 
 p� 
 p� the interval �p�� 	�	 in level i � � �see ��� above� is
destroyed and e�i���	�� becomes equal to �� cf� �����a��

So p�� � 	� and we can apply �i�� to g�� let g� 
� �i���g��� We assert that g� � f��

To see this� notice that the combined transformation �i���i�i�i�� increases the

initial f within the same multinodes as those in the transformation �i�i���i���i�

namely� Vi���p��� Vi�p�� Vi�p� � p��� Vi���	�� �but now the order is di�erent�� Let

v�� v�� v�� v� be the switch�nodes in these multinodes� respectively� at the moment of

the corresponding transformations� Since no change in level i� � a�ects the slacks of

SW� and SE�edges in level i� we have v� � v� and v� � v�� Also p� � � 
 	� p implies

that the transformations in level i do not decrease the slacks of the SE�edges of nodes

in Vi���p�� and do not change the slacks of their SW�edges� whence v� � v��

It remains to check that v� � v�� Let u be the switch�node in Vi���	 �� �
 X for

the initial function f � We have p 
 	�� Therefore� the increase at v� � v� can change

the switch�node inX only if p � 	� and if the end u� of the edge eNE�v�� succeedes u in

the ordering on X� If this is the case� then under each of the transformations f � f�
and g� � g� �concerning Vi�p�� the switch�node u in X is replaced by u�� Besides

these� there is only one transformation in level i that preceedes the transformation

within X� namely� g� � g�� We know that p� 
 p and that if p� � p then v� coincides

with or preceedes v� �taking into account that the transformation g� � g� concerning

Vi�p� was applied earlier�� This easily implies that g� � g� can never change the

switch�node in X� Thus� v� � v��

The case p� 	 p is examined in a similar fashion� and we leave it to the reader�

Finally� due to Proposition ���� verifying the second part of axiom �A�� �concern�

ing the operators ���i and ���i��� is not necessary�

This completes the proof of Theorem ����

Remark �� In light of the second claim in Proposition ���� instead of the tiresome

veri
cation of axiom �A�� in the above proof� one may attempt to show that a maximal

connected subgraph with colors i and i � � in K has only one zero�indegree vertex�

However� no direct method to show this is known to us�

��



Clearly the source of the crystal K�c� is the identically zero function f� on V �G��

and the sink is the function fc taking the constant value ck within each subgraph Gk�

k � �� � � � � n� In particular� this implies that

���� the distance �viz� the number of edges of a path� from the source to the sink�

or the length of K�c�� is equal to Pn

k	� ckjV �Gk�j� or Pn

k	� ckk�n� k � ���

Also one can see that for the source function f� and a level i� one has e�i��� � ci and

e�i�j� � � for j � �� � � � � i �moreover
 starting from f�� each application of �i increases

the weight of vii��� by � until the weight becomes ci�� So hi�f�� � ci for each color i�

This means that K�c� is the crystal K�c�� and now the result due to Stembridge ���	

that there exists exactly one RAN�crystal with source having a prescribed n�tuple c

of parameters �see ���� and Corollary ��� enable us to conclude with the following�

Theorem 	�� The crossing model Mn generates precisely the set of regular An�

crystals�

	 Principal lattice and skeleton

In this section we apply the crossing model to establish certain structural properties

of RAN�crystals� We consider the initial setting for the crossing model� i�e�� when the

upper bounds are nonnegative integers and the lower bounds are zeros� So we deal

with a tuple c � �c�� � � � � cn� � Zn
� of parameters� the set F � F�c� of feasible func�

tions in the model� and the crystalK � K�c� � �V�E�� As before� G � �V �G�� E�G��

is the support�graph� Gk � �V �Gk�� E�Gk� is k�th base subgraph �component� in G�

Kk � Kk
n�ck� is k�th base crystal of size ck� and Fi is i�th partial operator on V � The

latter corresponds to the partial operator �i on F � Also we will use the following

notation


v�f� denotes the vertex of K corresponding to a feasible function f �

f� � f� � � � � � fn� where fk 
 V �Gk� � Z�i � �� � � � � n�� denotes the function on

V �G� coinciding with fk within each Gk�

vk�fk� denotes the vertex of Kk corresponding to a feasible function fk on V �Gk��

Cka denotes the function on V �Gk� taking a constant value a �Z�
Among the variety of feasible functions� certain functions are of most interest to

us� These are functions f of the form C�a� � � � � � Cnan� where each ak is an integer

satisfying � 
 ak 
 ck� Such an f is feasible �since all edges of G are tight� and

we call it a principal function and denote by f �a	� where a � �a�� � � � � an�� The
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corresponding vertex v�f� is called a principal vertex of the crystal� and denoted by

v�a	� In particular� the source and sink of K are the principal vertices v��	 and v�c	�

respectively� So there are �c� � �� � � � � � �cn � �� principal vertices� and the set of

these is denoted by � � ��c� and called the principal lattice inK �it can be identi
ed

with the box in the lattice Zn formed by the points a with � 
 a 
 c��

Besides� we consider certain 
�relaxations of principal functions� We use notation

a
�k� for an �n � ���tuple of integers ai where the index i ranges �� � � � � k � �� k �

�� � � � � n� For a 
xed a
�k� satisfying �
�k� 
 a
�k� 
 c
�k�� de
ne F �a
�k�	 to be the

set of all feasible functions f � f� � � � � � fn on V �G� such that f i � C iai for i �� k�

In other words� the non�
xed part fk of f is any feasible function for Gk� �The latter

is an arbitrary nonnegative integer function g on V �Gk� bounded from above by ck
and satisfying the monotonicity condition g�u� 	 g�v� for each edge �u� v� � E�Gk��

Since the switch condition becomes redundant for Gk taken separately� just all these

functions g generate the vertices v of Kk
 v � vk�g���

Let K�a
�k�	 denote the subgraph of K induced by the set of vertices v�f� for all

f � F �a
�k�	� For any f � F �a
�k�	� all edges in the subgraphs Gi with i �� k are tight�

Also each multinode X of G contains at most one node of Gk� These facts imply that

the moves from f do not depend on the entries of a
�k�� except for possible moves that

transform f within leftmost multinodes Vi��� not intersecting G
k �i�e�� with i �� k��

This leads to the following important property�

Proposition 
�� For any nonnegative a
�k� 
 c
�k�� the subgraph K�a
�k�	 is iso�

morphic to the base crystal Kk�ck��

The union C of these subgraphs K�a
�k�	 for all a
�k� 
 c
�k� and all k constitutes

the object that we call the skeleton of K� Each K�a
�k�	 contains ck � � principal

vertices v�a��� namely� a�i � ai for i �� k and a�k ranges the interval ��� � � � � ck	 of

integers� The corresponding set of ck � � vertices in the base crystal Kk�ck� is called

the axis in it and denoted by Sk � Sk�ck�� �In case n � �� ��	 uses the name �diagonal�

rather than �axis���

The theorem below asserts that the skeleton of K�c� is obtained from the base

crystals Kk�ck� by use of a construction which is a natural generalization of the

diagonal�product construction for RA��crystals �see Theorem ���� to the case of n

colors�

Again �like for n � �� we can describe such a construction for arbitrary �disjoint�

graphs H�� � � � �Hn in which subsets S�� � � � � Sn of vertices �respectively� are distin�

guished� Let V be the collection of all n�element sets containing exactly one vertex

from each Si� For k � �� � � � � n� let V
�k� be the collection of all �n � ���element
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sets containing exactly one vertex from each Si with i �� k� For each k� take jV
�k�j
copies of Hk� each being indexed as Hk

q for q � V
�k�� We glue these copies together

by identifying� for each q � fv�� � � � � vng � V �where vk � Sk�� the copies of ver�

tices vk in Hk
qnfvkg

� i � �� � � � � n� into one vertex� The resulting graph is denoted by

�H�� S�� �� � � � �� �Hn� Sn�� or by �� ��Hk� Sk� 
 k � �� � � � � n� �clearly the order of

original graphs here is not important��

In our case the role of each Hk is played by the base crystal Kk� and the axis

Sk is taken as the distinguished subset� We call �� ��Kk� Sk� 
 k � �� � � � � n� the

axis�product of these base crystals and denote it by A�c�� this is an n�colored digraph

where the edge colors are inherited from the base crystals� A princinal vertex in A�c�
is de
ned to be a vertex obtained by gluing together vertices from axes of graphs Kk�

So the principal vertices of A�c� one�to�one correspond to the principal functions in

the model� or to the n�tuples a � Zn
� with a 
 c� Also each vertex of a copy of Kk

involved in A�c� is associated� in a natural way� with a feasible function f which is

constant within each Gi with i �� k�

Summing up the above explanations� we come to the following�

Theorem 
�� K�c� contains an induced subgraph K � isomorphic to

A�c� � �� ��Kk
n�ck�� S

k� 
 k � �� � � � � n� �respecting edge colors�� Moreover�

K � is determined uniquely and its vertices correspond to the feasible functions

f� � � � � � fk for �G� c� such that each f i is a constant function on V �Gi�� except for

possibly one function fk� which is an arbitrary feasible function for �Gk� ck��

Here the uniqueness can be shown as follows� The length of a path in K from the

source v��	 to the sink v�c	 is equal to
Pn

k	� ckjV �Gk�j� �see ������ So is the length

of a path from the source to the sink in A�c� as well� Therefore �since K is graded��

the source of K � must be at v��	 and the sink of K � must be at v�c	� Now it is easy

to realize that K � is reconstructed in K in a unique way�

Next� for two principal vertices v�a	 and v�b	� let us say that the latter is the k�th

successor of the former if bk � ak�� and ai � bi for all i �� k� One can see that every

possible transformation of the function f �a	 into f �b	 �by use of forward moves in the

model� consists of a sequence of jV �Gk�j moves� and the corresponding sequence of

nodes where the current function changes forms a linear order on V �Gk� �agreeable

with the poset structure of Gk�� In other words� this is an ordering �u�� � � � � ud� of

the nodes of Gk such that for each p � �� � � � � d� the set Up � fu�� � � � � upg is an ideal

in Gk� Each Up determines the function gp on V �Gk� taking the value ak � � within

Up� and ak on the rest� Let q�p� denote the number of the level in Gk that contains

up� and let fp denote the function on V �G� formed from f by replacing Ckak by gp�

��



One can check that fp coincides with the function obtained from fp�� by the move

in level q�p� of G �which just increases the weight of up by one�� Thus� we have the

following�

Proposition 
�� For k � �� � � � � n and a principal vertex v of K� if the k�th successor

w of v exists� then each paths from v to w one�to�one corresponds to a linear order

�u�� � � � � ud� �d � jV �Gk�j� for Gk� Under this correspondence� the node w can be

expressed as Fq
d� � � �Fq
���v�� where q�p� is the level number for up�

So we can associate with each k � �� � � � � n the set FS�k� of strings q�d� � � � q���
as above� which is invariant for all principal vertices having the k�th successor� We

refer to such a string as a fundamental one� For example� FS�k� contains the string

wn�k�� � � �w�w�� where wi is i�i� �� � � � �i� k � ���

Example� Let n � �� Since the subgraph G� forms a path� there is only one

fundamental string for k � �� namely� ���� Similarly� FS��� consists of a unique

string� namely� ���� The set FS��� for the subgraph �rhombus� G� consists already

of two strings
 ���� and �����


 Shifting the bounds and in�nite crystals

So far� we have dealt with crystals having a 
nite set of vertices� or 
nite crystals�

However� by use of the crossing model one can generate in
nite analogs of RAN�

crystals� in which some or all maximal monochromatic paths are in
nite� �In
nite

analogs of RA��crystals were introduced in ��	�� �Crystals� of this sort� which are

interesting in their own right� 
nd applications to modi
ed quantized enveloping

algebras ��	 and also help in studying and better understanding the formation of


nite crystals �e�g�� they are of extensive use in ��	�� The largest �crystal� obtained

in this way possesses the property that it contains all other �
nite and in
nite� ones

as intervals of a special form�

We start with 
nite RAN�crystals and consider the model with tuples c�d � Zn

of upper and lower bounds� c 	 d� This gives the crystal K�c � d�� also denoted by

K�c�d�� Let c��d� �Zn be such that c� 	 c and d� 
 d� Clearly

���� any feasible function f for �c�d� is feasible for �c��d�� as well�

This associates to each vertex v�f� of K � K�c�d� the corresponding vertex of

the crystal K � � K�c��d��� yielding an injective map � 
 V �K�� V �K ��� Comparing
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the residual slacks e�i�j� and e�i�j� for the function f in the model with the bounds

c�d and the residual slacks e��i�j� and e��i�j� for f in the model with the bounds c��d��

one can see that

e��i��� � e�i��� � c�i � ci and e��i�j� � e�i�j� for j � �� � � � � i�����

e��i�i� � e�i�i� � di � d�i and e��i�j�� � e�i�j�� for j � � �� � � � � i� ��

Moreover� for each multinode� the switch�nodes concerning f in both models are

the same� and similarly for the switch�nodes in backward direction� Also the situation

when an active multinode Vi�j� for f� c��d� is not active for f� c�d can arise only if

j � �� the switch�node in Vi�j� is vii���� and f�vii���� � ci� and symmetrically for the

activemultinodes in backward direction� These observations show that � is extendable

to the edges of K� and moreover� we have the following�

Proposition ��� The image of K � K�c�d� by � is a subcrystal of K � � K�c��d��

isomorphic to K� and any path in K � connecting vertices of ��K� is entirely contained

in ��K�� Therefore� ��K� is the interval Int���sK�� ��sK�� of K
�� where sK and sK

are the source and sink of K� respectively�

Here for vertices u� v in an �acyclic� digraph� the interval Int�u� v� is the subgraph

formed by the vertices and edges lying on paths from u to v� Since sK � v�d	 and

sK � v�c	 �using notation from Section ��� we obtain that

���� K�c�d� is isomorphic to the interval of K�c� � d�� between the principal

vertices v�d� d�	 and v�c� d�	 in the latter�

Now we are ready to introduce the above�mentioned �in
nite crystals�� They

arise when we admit in
nite bounds in the model� i�e�� consider c � �Z� f�g�n and

d � �Z� f��g�n with c 	 d� More strictly
 for a variable M � Z� and each color

i� de
ne cMi to be ci if ci 
�� and maxfM�dig otherwise� and de
ne dMi to be di if

di � ��� and minf�M� cig otherwise� When M grows� there appears a sequence of


nite crystals K�cM �dM �� each containing the previous crystal K�cM���dM��� as an

interval� by Proposition ���� At in
nity we obtain the desired �well�de
ned� �in
nite

crystal� K�c�d� �when c or�and d is not 
nite��

Some trivial consequences of this construction are as follows� The largest �in
nite

crystal�� denoted by K�
��� arises when ci � � and di � �� for all i� Among the

variety of �crystals� constructed as above� K�
�� is determined by the property that

any monochromatic path is fully in
nite� i�e�� in
nite in both forward and backward

directions� Equivalently
 the principal lattice of K�
�� is formed by the vertices v�a	

for all a �Zn� Also this crystal has the following property


��



���� each maximal connected subgraph �component� with colors i� i� is the Carte�

sian product of the fully in
nite i�path and i��path if ji � i�j 	 �� and is the

largest in
nite RA��crystal if ji� i�j � ��

Here� following ��	� the largest in
nite RA��crystal is de
ned to be the diagonal�

product of fully in
nite right and left sails �in the former� the vertices are the pairs

�p� q� � Z� with p 	 q� and in the latter� the pairs �p� q� with p 
 q� the edges are

de
ned as in Section ���

Taking corresponding 
nite or �in
nite� intervals in K�
��� one can obtain any


nite or �in
nite� crystal K�c�d��

Remark �� At the 
rst glance� it may seem likely that K�
�� is the unique graph

possessing property ����� This is so for the graphs generated by the crossing model

�and for the case n � � as well�� However� already for n � � one can construct

several non�isomorphic graphs satisfying ����� Four such graphs are demonstrated

in ��	� they admit embeddings in lattices Z��Z��Z��Z�� respectively� with each edge

being a parallel translation of a unit base vector�

� Subcrystals with n� � colors in K�c


In this section we demonstrate one more application of the crossing model� For

a subset J � f�� � � � � ng of colors� let K�J� denote the set of maximal connected

subgraphs of K � K�c� whose edges have colors from J � i�e�� the components of the

graph �V���Ei 
 i � J��� When the colors in J go in succession� i�e�� J is an interval

of ��� � � � � n�� each member K � of K�J� is a regular AjJ j�crystal� �When J has a

gap� K � becomes the Cartesian product of several regular crystals� For example� for

J � f�� �g� K � is the Cartesian product of two paths� with color � and with color ��

or a regular A� �A��crystal��

We are interested in the case when J is either f�� � � � � n��g or f�� � � � � ng� denoting
K�J� by K
�n� in the former case� and by K
��� in the latter case� In other words�

K
�n� �resp� K
���� is the set of �n � ���crystals arising when the edges with color n

�resp� color �� are removed from K�

ConsiderK � � K
�n� and let F�K �� denote the set of feasible functions correspond�

ing to the vertices of K �� Since K � is connected� any f � F�K �� can be obtained from

any other f � � F�K �� by a series of forward and backward moves in levels �� � � � � n���

So all functions in F�K �� have equal tuples of values within level n of G� This level

consists of nodes v�n�n�� v
�
n�n � ��� � � � � vnn��� �from right to left�� and we denote the

n�tuple �f�v�n�n��� � � � � f�v
n
n������ where f � F�K ��� by a�K ��� Thus� we have the
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following property
 each subcrystal K � � K
�n� contains at most one principal vertex

v of K� in which case v � v�a	 for a � a�K ��� �On the other hand� the members of

K
�n� cover all principal vertices of K��

Similarly� forK �� � K
��� and for the set F�K ��� of feasible functions corresponding

to the vertices of K ��� the tuple a�K ��� 
� �f�v������� � � � � f�v
n
� ����� �where the nodes

follow from left to right in level �� is the same for all f � F�K ���� So each subcrystal

K �� � K
��� contains at most one principal vertex of K as well �and the members of

K
��� cover all principal vertices of K��

We show a sharper property�

Proposition ��� Each subcrystal in K
�n� contains precisely one principal vertex of

K�c�� and similarly for the subcrystals in K
���� In particular� jK
�n�j � jK
���j �
�c� � ��� � � �� �cn � ���

�This property need not hold when an �n � ���element subset J of colors di�ers

from f�� � � � � n� �g and f�� � � � � ng��
Proof LetK � � K
�n� and let a � �a�� � � � � an� stand for a�K ��� Consider an arbitrary

function f � F�K ��� We show that the principal function f �a	 can be reached from f

by a series of forward moves �in levels �� n�� followed by a series of backward moves�

whence the desired inclusion f �a	 � F�K �� will follow�

To show this� let F� be the set of functions f � � F�K �� that can be obtained

by �a series of� forward moves from f and such that f ��vkk���� � f�vkk���� �
 bk for

k � �� � � � � n� Take a maximal function f� in F�� We assert that

���� the SW�edges of all nodes in G �where such an edge exists� are tight for f��

Suppose this is not so for some node� and among such nodes choose a node v �

vki �j� with i minimum� Acting as in Section �� extend G to the graph G and extend f�
to the corresponding function f� on V �G� by setting the upper bound b and the lower

bound � �then f� satis
es both the monotonicity condition and the switch condition

at each multinode and its values within each subgraph Gk lie between � and bk��

Consider an arbitrary node v� � vk
�

i �j
�� with � 
 j � 
 n in level i and take the

rhombus � containing v� as the right node� let z�� u�� w� be the left� upper and lower

nodes of �� respectively� Then �f��z
�� u�� � � �this is obvious when j � � � and follows

from the minimality of i when j � � �� in view of �z�� u�� � eSW�u���� This implies

��v�� 	 ��z�� �where these numbers concern the bound b�� cf� ����� Moreover� this

inequality is strict when v� � v �since �w�� v�� � eSW�v�� and eSW�v� is not tight��

��



These observations imply e�i�j� � �� where e� concerns the bound b� So level i

contains an active multinode� and therefore� f� can be increased by a forward move

in this level� This move remains applicable when the bound changes to c� cf� �����

Thus� f� is not maximal� and this contradiction proves �����

From ���� it follows that for each k� all edges of the path in Gk from the bottom�

most node vkn�n� k � �� to the sink rightk are tight for f�� Hence f�right
k� � ak�

Now we apply backward moves from f� in levels �� n� Let F� be the set of functions

f � � F�K �� that can be obtained by such moves and such that f ��rightk� � ak for

k � �� � � � � n� Let f� be a minimal function in F � Arguing in a similar fashion� one

shows that

���� the NW�edges of all nodes in G �where such an edge exists� are tight for f��

Now ���� implies that f� is constant within each Gk� i�e�� f� � f �a	� as required�

To show the second part of the proposition concerningK
���� we can simply renum�

ber the colors� by counting color i as n�i��� and apply the model for this numeration�

Clearly the set of principal vertices preserves under this renumbering� and now the

result for K
��� follows from that for K
�n��

Remark �� Renumbering the colors as above causes the �turn�over� of the original

model� so that level i turns into level n�i��� �Note that the model is not maintained

by this transformation since the switch condition ���� is imposed on SW� and SE�edges

of nodes� but not on NW� and NW�ones�� A feasible function f in the original model

corresponds to a feasible function f � in the new model� so that f and f � determine

the same vertex of the crystal� It seems to be a nontrivial task to explicitly express

f � via f �for n � � an explicit piece�wise linear relation is pointed out in ��	��

We denote the subcrystal in K
�n� �K
���� containing a principal vertex v�a	 by

K
�n��a	 �resp� K
����a	�� One can compute the parameters of K � � K
�n��a	 and

indicate some other features of it� Its source and sink correspond to the minimal

funstion fmin�K �� and the maximum function fmax�K �� in F�K ��� respectively� One

can see that in each Gk� fmin�K �� takes value � on all nodes� except for those on the

path from the source leftk to the bottommost node vkn�n � k � �� where the value

is identically ak� And fmax�K �� takes value ck on all nodes� except for those on the

path from vkn�n � k � �� to the sink rightk where the value is ak� Symmetrically


the source and sink of a subcrystal K �� � K
����a	 correspond to the minimal and

maximum functions in F�K ���� respectively� and in each Gk� the former takes value �

on all nodes� except for those on the path from leftk to the topmost node vk���� where

the value is ak� while the latter takes value ck on all nodes� except for those on the

��



path from vk���� to rightk where the value is ak�

Proposition ��� K
�n��a	 is isomorphic to the crystalKn���q� with colors �� � � � � n�
�� where qi � ci�ai�ai�� for each i� In its turn� K
����a	 is isomorphic to the crystal

Kn���q�� with colors �� � � � � n� where q�i � ci � ai � ai���

Proof One can check that for fmin�K
�n��a	�� the active multinode in a level i is the


rst multinode Vi��� and the switch�node in it is the second node v � vi��i ��� �unless

ai�� � ��� The operator �i can be applied ai�� times to this node� making the edge

eSW�v� tight� after which the switch�node becomes the 
rst node vii��� and �i can be

applied ci � ai times to it� As to fmin�K
����a	�� the active multinode in a level i is

the second multinode Vi��� and the switch�node in it is the 
rst node v� � vi��i ���

�unless ai�� � ��� Then �i can be applied ai�� times to this node� making eNW�v��

tight� after which the active miltinode becomes Vi��� and �i can be applied ci� ai to

the switch�node v�i ���� A veri
cation is left to the reader�

Remark �� This proposition implies that the set of parameter�tuples q of crystals

in K
�n� is formed by the integer points of a polytope in Rn��� Note also that for

corresponding tuples q and a� the numbers a�� � � � � an�� are determined by q and an�

namely
 ai � c�i 
 n� �	� q�i 
 n� �	 � an for i 
 n� This enables us to compute the

number ��q� of crystals in K
�n� having a prescribed parameter�tuple q
 it is equal to

the number of an �Zfor which � 
 ai 
 ci holds for all i � �� � � � � n� �One can express

��q� as the di�erence between minfcn� q�i 
 n� �	� c�i�� 
 n� �	 
 i � �� � � � � n� �g
and maxf�� q�i 
 n� �	� c�i 
 n� �	 
 i � �� � � � � n� �g� In particular� ci � � for some

i implies that all crystals in K
�n� are di�erent�� This gives the branching rule for

decomposing an irreducible sln���module into the sum of irreducible sln�modules�

Next� using the crossing model� one can easily compute the lengths of maximal

monochromatic paths inK
�n��a	 �or inK
����a	� that go through the principal vertex

v�a	 of K �the length concerning color i expresses the �i�width� of the subcrystal at

this vertex��

A more di�cult question is how the subcrystals K
�n��a	 and K
����b	 intersect

depending on tuples a and b� One can show �a proof is omitted here� that such

subcrystals are disjoint if ai �� bi for all i� An exhaustive analysis of these intersections

is given in ��	 for n � �� which results in a complete description of the structure of

RA��crystals�

Finally� we can associate with a RAN�crystal K�c� a �hierarchy of lattices�� as

follows� At the top level we put the lattice � of principal vertices of the whole crystal�

Each principal vertex v�a	 gives rise to two lattices� namely� the principal lattices of

��



the �upper� and �lower� �n � ���colored subcrystals K
�n��a	 and K
����a	� These

lattices� for all � 
 a 
 c� constitute the second level in the hierarchy� The third level

arises when one considers the principal lattices of the �upper� and �lower� �n � ���

colored subcrystals in the subcrystals related to the second level� and so on� Repeated

members� if any� can be ignored� Then the bottom level is formed by the lattices of

critical vertices of ��colored subcrystals �with neighboring colors�� and we also can

attach to them the corresponding right and left sails as described in Section �� This

formalism might be of use if we were able to tell more about pairwise intersections of

��colored subcrystals at the bottom level�
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