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1. INTRODUCTION

State space explosion is still the main problem in the area of model checking. Model checking has proved to be
very useful in lots of cases, but just as easily one can find system models which yield enormous state spaces,
that is, if they can in practice be generated at all. Abstracting away from unnecessary details can sometimes
simplify the model and shrink the state space, but one cannot do this at leisure as it should still be possible to
verify the desired properties. Another possibility is to use better tools, faster computers with more memory, or
move to a distributed setting. But even then, there are very real limits to what can be achieved.

Over the years a number of techniques have emerged to prune, while generating, parts of the state space
that are not (or do not seem) promising given the task at hand. Some of these techniques, such as partial
order reduction algorithms [5], guarantee that no essential information is lost after pruning. Alternatively, this
paper focuses mainly on heuristic pruning methods which heavily reduce the generation time and memory
consumption but generate only an approximation to the state space. The idea is that a user-supplied heuristic
function guides the generation algorithm such that ideally only relevant parts of the state space are actually
explored. This is, in fact, at odds with the core idea of model checking when studying qualitative properties of
systems, i.e. to exhaustively search the complete state space to find any corner case bug. However, heuristic
pruning techniques can very well target performance analysis problems as approximate answers are usually
sufficient when using model checking in quantitative analyses of systems (see, e.g., [3]). A comparison between
the two types of pruning can thus not fairly be made since different problems allow different techniques.

In this paper, we investigate how beam search can be integrated into the state space generation setting. Beam
search (BS) is a heuristic method for combinatorial optimisation problems, which has extensively been studied
in artificial intelligence and operations research [7, 10, 15, 25, 19, 22, 30]. BS is similar to breadth-first search
as it progresses level by level, but it does not explore all the encountered states. At each level, all the states
are evaluated using a heuristic cost (or priority) function but only a fixed number of them is selected for further
examination. This aggressive pruning heavily decreases the generation time, but may in general miss essential
parts of the state space for the problem at hand, since wrong decisions can be made while pruning. Therefore,
BS has so far been mainly used in searching trees with a high density of goal nodes. Scheduling problems, for
instance, have been perfect targets for using BS as their goal is to optimally schedule a certain number of jobs
and resources, while near-optimal schedules, which densely populate the search space, are in practice good
enough, see e.g. [7, 10, 25, 22, 30].

The idea of using BS in state space generation tightly relates to directed model checking (DMC) [8], where

heuristics are used to guide the state space exploration when checking qualitative properties. However, we
mainly aim for checking quantitative properties, where approximate results are often sufficient. This singles
out our work from the existing DMC techniques.
Contributions  We motivate and thoroughly discuss adapting the BS techniques to deal with arbitrary struc-
tures of state spaces. By this, we stretch the idea of DMC to the field of quantitative analysis. Next, we extend
the classic BS in two directions. First, we propose flexible BS, which, broadly speaking, does not stick to a fixed
number of states to be selected at each search level. This partially mitigates the problem of determining this
exact fixed number in advance. Second, we introduce the notion of synchronised BS, which aims at separating
the heuristic pruning phase from the underlying exploration strategy. Possible combinations of these variants
create a spectrum of search algorithms that, as will be described, encompasses some known search techniques
such as A* search and partial order reduction algorithms.

These beam searches have all been implemented in the uCRL [12] state space generation toolset [2]. Exper-

imental results on comparing this toolset with SPIN in scheduling are also reported.
Structure of the paper ~ Section 2 introduces some preliminary notions. The classic BS is described in sec-
tion 3. Section 4 deals with the adaptation of two existing variants of BS to the state space generation setting.
There we also propose our extensions to the BS algorithms. Related issues such as memory management and
selecting heuristic functions are also discussed there. In section 5, we describe how our framework encom-
passes A* search and a partial order reduction algorithm for security protocols. Section 6 presents comparisons
between an implementation of these techniques in the uCRL toolset with a SPIN implementation of depth-first
branch-and-bound. Section 7 presents our related work and section 8 concludes the paper.



2. PRELIMINARIES
In this section the definition of a labelled transition system and some related notations are recalled. Then
breadth-first state space generation is described.

2.1 Labelled transition systems

A Labelled Transition System (LTS) is a tuple (Z,so,Act, Tr), where X is a set of states, So € Z is the initial
state, Act is a finite set of action labels and Tr C X x Act x S is the transition relation. A transition (s,a,s’) € Tr,
denoted s -2+ ¢/, indicates that the system can move from state s to s’ by performing action a. In the rest of the
paper, unless explicitly stated, we consider finite LTSs, i.e. LTSs with a finite set of states.

A state s’ is called reachable from state s iff s —* s, where —* is the reflexive transitive closure of -2+ for
any a € Act. When checking a reachability property, one searches for any s such that so —* sand s € o, where
o C X is aset of goal states.

The set of enabled transitions in state s is defined as en(s) = {t € Tr| 3s’ € 2, a € Act. t = s -2+ s'}. For
T C Tr, we define nx(s,T) = {s' € 2| Ja€ Act. s 255 € T}.

2.2 Breadth-first state space generation

A state space generation (SSG) algorithm is normally provided with a specification as input and produces the
state space that is described by that specification as output. A breadth-first SSG algorithm starts from the initial
state of the specification, names it Sp, and runs algorithm 1. This algorithm is guaranteed to terminate when
generating finite LTSs. Here, we confine to show the traversal strategy and abstract away from generating the
output (file); memory management issues are discussed in a separate section.

Algorithm 1 Breadth-first state space generation

Current := {so}

Expanded :=0

Next :=0

while Current\ Expanded # 0 do
for all s € Current\ Expanded do

Next := NextU nx(s, explore(s))

end for
Expanded := Expanded U Current
Current := Next
Next :=0

end while

In algorithm 1, explore : £ — £(Tr), where & is the powerset constructor, is the function that provides
the interface between the SSG algorithm and the underlying specification. For a state s, explore(s) is the set
of transitions which originate from s, i.e. explore(s) = en(s) 1. The sets Current and Next denote the set of
states of the current and the next level, respectively. The set Expanded contains the set of states that have been
expanded.

3. BEAM SEARCH

Beam search (BS) [23, 17] is a heuristic search algorithm for combinatorial optimisation problems, which was
originally used for speech recognition [15] and image understanding [19]. Later on, this technique has been
applied to scheduling problems, for example in systems designed for complex job shop 2 environments [10,

1The function name explore is redundantly used here to highlight the relation between the SSG algorithm and the underlying specifi ca-
tion.

2The job shop problem is the classic scheduling problem in the literature. In its most basic form, we have a fi nite set M of resources,
and a number of jobs Ji,...,Jy which compete in using the resources in a specifi ¢ order and for some time. The problem is to allocate the
resources such that al the jobs are fi nished in minimal time.



23, 25, 22]. Since then new variants of BS, such as filtered BS [23, 24] and recovery BS [7, 27], have been
introduced.

BS is similar to breadth-first search as it progresses level by level. At each level of the search tree (in
section 4 we extend BS to handle cycles), it uses a heuristic evaluation function to estimate the promise of
encountered nodes 3, while the goal is to find a path from the initial state (initial node of the tree) to a leaf node
that possesses the minimal evaluation value among all the leafs. In each level, only the 8 most promising nodes
are selected for further examination and the other nodes are permanently discarded. The beam width parameter
B is fixed to a value before searching starts. Because of this aggressive pruning the generation time is a linear
function of 3 and is thus heavily decreased. However, since wrong decisions can be made while pruning, BS is
neither complete, i.e. is not guaranteed to find a solution when there is one, nor optimal, i.e. does not guarantee
finding an optimal solution. To limit the possibility of wrong decisions one can increase the beam width, at the
cost of increasing the required computational effort and memory usage.

Two types of evaluation functions have traditionally been used for BS [23]: priority evaluation functions and
total cost evaluation functions, which lead to the priority and detailed BS variants, respectively. In priority
BS at each node the evaluation function calculates a priority for each successor node and selects based on
those priorities. At the root of the search tree, up to 3 most promising successors (i.e. those with the highest
priorities) are selected, while in each subsequent level only one successor with the highest priority is selected
per examined node. Below we quote the basic idea of traditional priority BS from [26]. In this algorithm (and
similarly in traditional detailed BS), sp is the root of the search tree and all leafs are assumed to be located at
the same level.

1 SetB=0,C=0
e Branch sy generating children
e Perform priority evaluation of each child node
o Select min{3,number of children} best child nodes, add them to B

2. For each nodein B:
e Branch node generating children
e Perform priority evaluation of each child node
o Select best child node, add it to C
3. SetB=C;SetC=0
4. Stopping Condition: if al nodesin B are leaf, select node with lowest total cost and stop, otherwise go to step 2.

In detailed BS at each node the evaluation function calculates an estimate of the total cost of the best schedule
that can be found continuing from the partial schedule represented by the node. At each level up to 3 most
promising nodes (i.e. those with the lowest total cost values) are selected regardless of who their parent nodes
are. If there are more than 3 nodes that receive the best evaluation value, a selection is made based on other
criteria, e.g. the order of encountering the nodes (see section 4.4 for other possibilities). Clearly, when 3 — oo,
detailed BS behaves as exhaustive breadth-first search. The following algorithm represents traditional detailed
BS [26].

1 SetC=0,B={s0}
2. For each nodein B:
e Branch node generating children
e Perform detailed evaluation of each child node
o Select min{8,number of children} best child nodes, add them to C

3. Set B =0; Select min{3,|C|} best nodesin C, add themto B; SetC=0
4. Stopping Condition: if al nodesin B are leaf, select node with lowest total cost and stop, otherwise go to step 2.

3In this section we use the most common terminology when referring to BS, i.e. we reason about nodes and edges, as opposed to states
and transitions. This emphasises that we adapt the BS techniques to a different setting.



In comparison, priority evaluation functions have a local view of the problem, since they only consider the
next job to be scheduled, while total cost evaluation functions have a more global view, taking the complete
schedule into account. In general, total-cost evaluation functions are computationally more expensive than
priority evaluation functions, but often provide more accurate heuristics because of their global view [23].

4. ADAPTING BEAM SEARCH FOR STATE SPACE GENERATION

4.1 Motivation

BS is typically applied on highly structured search trees, which contain all possible order-
ings of a given number of jobs, e.g. see [16, 27]. Such a search tree starts with n jobs to
be scheduled, which means that the root of the tree has n outgoing transitions. Every node
has exactly n — k outgoing transitions, where k is the level in the tree where the node ap- xXBS | BBS
pears. State spaces, however, supposedly contain information on all possible behaviours
of a system. Therefore, they may contain cycles and have more complex structures than SxBS | SFxBS
the well-structured search trees usually subjected to BS. This necessitates modifying the
BS techniques to deal with arbitrary structures of state spaces. Moreover, the BS algo-
rithms search for a particular state in the search space, while in (and after) generating state
spaces one might desire to study a property beyond simple reachability (see section 5 on
partial order reduction as an instance of extended BS). We therefore extend BS to a state
space generation setting, as opposed to its traditional setting that focuses only on search-
ing. The notion of a particular “goal” (c.f. 3) is thus removed from the adapted BS (see section 4.6 for possible
optimisations when restricting BS to verify reachability properties). This along with the necessary machinery
for handling cycles raise memory management issues in BS, to which we will return in section 4.6.

Below, we first revisit priority and detailed BS for SSG. Next, we propose two variants of BS which have,
in our case studies, proved essential for handling large state spaces. Flexible BS mitigates the problem of
determining a sufficiently large beam width, while synchronised BS separates the pruning phase from the
exploration strategy.

Figure 1 shows the spectrum of the variants that are described in the following sections. There, DBS and
PBS correspond to the traditional detailed and priority beam searches, respectively, extended to deal with
arbitrary state spaces (sections 4.2 and 4.3). The F and S prefixes refer to the flexible and synchronised variants
respectively (sections 4.4 and 4.5).

Figure 1: BS spec-
trum, x € {D, P}

4.2 Priority beam search for state space generation
Below we motivate and describe the changes that we have made to the traditional priority BS to deal with SSG.
PBS is shown in algorithm 2. There, the function priority : Act — Z provides the priority of actions, as
opposed to states 4. We motivate this deviation by noting that jobs in the BS terminology correspond more
naturally with actions in LTSs. Moreover, since PBS focuses on generating an approximate state space rather
than looking for a particular goal, no total cost function is in general needed (and provided). The set Buffer
temporarily keeps seemingly promising transitions. The function prio.;, : £(Tr) — Z returns the lowest
priority of the actions of a given set of transitions. We define prio,;,(0) = —. The function getprio,;, :
Z(Tr) — Tr, given a set of transitions, returns one of the transitions having an action with the lowest priority.
Note that the stopping condition of the traditional priority BS algorithm of section 3 is represented here by
condition Current \ Expanded # 0 of the while loop, which does not assume that all leafs occur in the same
level (this, moreover, avoids cycles). The algorithm terminates when it has explored all the states in its beam.
In priority BS, originally, up to 3 children of the root are selected. The resulting beam of width (3 is then
maintained by sprouting only one child per node in subsequent levels. In state spaces, however, the root has
typically much less outgoing transitions than the average branching factor of the state space. Fixing the beam
width at such an early stage is therefore not reasonable. Selecting all transitions at each levels until 3 or more
transitions are found in a single level would be an option. However, if this number drastically exceeds f3, it
would not be clear which transitions should be pruned away. To mitigate this problem, instead of 3, algorithm 2

“4In general, priority can also depend on states: priority : = — Act — Z. In this paper, we stick to fi xed priorities, which resembles the
dispatch scheduling strategy in Al terminology [23], and |eave the more general case to the future work.



is provided with the pair (a,l), where a,l € IN and a' = B. The idea is that the algorithm uses the priority
function to prune non-promising states from the very first level, but in two phases: before reaching nearly 8
states in a single level it consider the most promising a transitions for further expansion, but after that, it sticks
to the original one child per node rule.

Algorithm 2 Priority BS for state space generation

Current := {so}
Expanded :=0
Next := 0
Buffer := 0
level :=0
limit := a
whileCurrent \ Expanded # 0 do

for all s € Current\ Expanded do

for all s—2+s' € explore(s) do
if priority(a) > prio;,(Buffer) then
if |Buffer| = limit then
Buffer := Buffer \ {getprio,,,(Buffer)}

end if
Buffer := Bufferu {s—2+s'}
end if
end for
Next := NextU nx(s, Buffer)
Buffer := 0
end for

Expanded := Expanded U Current
Current := Next
Next :=0
level .= level +1
if level =1 then
limit:=1
end if
end while

4.3 Detailed beam search for state space generation

The original idea of detailed BS does not need to change much to fit into the SSG setting except for when
handling cycles. When exploring a cyclic LTS, to guarantee the termination of the algorithm, it is necessary
to store the set of explored states (in the set Expanded in algorithms 1 and 2) to avoid exploring a state more
than once. However, if a state is reached via a path with a lower cost, the state has to be re-examined. This is
because the estimated total cost of each state depends on the cost to reach that state from the root. Thus a state
(and subsequently its successors) may more competently qualify for further explorations if it is reached via a
lower cost path. This is further detailed below.

We observe that the average running time of the traditional detailed BS algorithm of section 3 can be reduced
if the order of exploration and evaluation is reversed. The merit of this reversal is that, since the number of
nodes to be evaluated is a priori known in each level, evaluation of the states of a level containing no more than
B3 states can altogether be avoided °. Besides that, to reduce the space complexity of the traditional detailed BS
algorithm of section 3, while evaluating, only the 3 most promising states up to then can be kept in a set and
the rest can be discarded (note that 32 states are stored in the algorithm of section 3).

5Actually the evaluation of the heuristic estimation part, which is computationally the most expensive phase, is the part that is avoided.
See algorithm 3 for details.



Algorithm 3 shows detailed BS after the mentioned optimisations. The total cost evaluation function is
called f : £ — IN. This function is decomposed into f(s) = g(s) 4+ h(s). The g(s) function represents the cost
taken to reach s from the root of the tree, which is defined as g(s) = g(s') + cost(a) if s' —2+s. The function
cost : Act — IN assigns weights to actions that can, for instance, denote the time needed to perform different
jobs in a scheduling problem. These weights are fixed before searching starts. Since the range of cost is non-
negative numbers, if s —* s’ then g(s') > g(s). Therefore, the values of g never decreases along a path. The
h(s) function is an estimation of the cost it would take to efficiently complete the schedule continuing from s.
The f function is called monotonic iff s —* s’ then f(s) < f(s). The function get fax : 2 (Z) — Z, given a set
of states, returns one of the states that has the highest f value. The sets Current, Next and Expanded contain
pairs of states and corresponding g values, i.e. (s,s.g). Here unify(X) and update(X,Y) are defined as follows:
unify(X) = {(s,9) € X| vg'.(s,9') € X = g < g’} and update(X,Y) = {(s,9) € X| -3¢’ <g. (s,g) € Y }. Note
that a state will be revisited only if it is reached via a path with a lower cost than the g cost assigned to it. This
algorithm obviously behaves as breadth-first search when 3 — co.

Algorithm 3 Detailed BS for state space generation

Sp.g=0

Current := {(s0,50.0) }
Next:=0

Expanded :=0

while Current #£ 0 do
while |Current| > 3 do
Current := Current \ {get fruax(Current) }
end while
for all s € Current do
for all s—2+s' € explore(s) do
s'.g :=s.g+cost(a)
Next := NextU {(s',s".9)}
end for
end for
Expanded := unify(Expanded U Current)
Current := update(unify(Next), Expanded)
Next := 0
end while

4.4 Flexible beam search

A major issue that still remains unaddressed in the BS adaptations of sections 4.2 and 4.3 is how equally
competent candidates are pruned. Actions in LTSs can have several parameters. The same action can thus
appear multiple times as an outgoing transition of a given state, each time having different parameter values,
possibly leading to equally competent states. This potentially leads to situations where, during selection, a large
number of transitions or states have equal evaluations (for some examples see [30]). In such cases, a selection
has to be made among these equally competent candidates if they happen to be (one of) the most promising
transitions or among the [3-best states. These selections are beyond the influence of the evaluation (or priority)
function and can undesirably make the algorithm non-deterministic. We, therefore, propose two variants of BS
that we call flexible detailed and flexible priority beam searches, in which the beam width can change during
state space generation.

In flexible detailed BS, at each level, up to 3 most promising states are selected plus any other state which is
as competent as the worst member of these 3 states. This achieves closure on the worst (i.e. highest) total cost
value being selected. Similarly, in flexible priority BS, in the first | levels (see section 4.2), at each state, up to
a most promising outgoing transitions are selected plus any transition which has the same priority as the least
competent member of these a transitions. At the | + 1" level and onwards, at each state, all the transitions with



the same priority as the most promising transition of that particular state are selected (i.e. a = 1). Note that in
FPBS, if the beam width is increased, it never returns to the intended 3, while it can be readjusted to 8 in each
level of FDBS.

4.5 Synchronised beam search

As is described in section 3, the classic BS algorithms were tailored for the breadth-first exploration strategy.
Below, we explain a way to do BS on top of best-first [20] exploration algorithms. Broadly speaking, we
separate the exploration strategy from the pruning phase, so that the exploration is guided with a (possibly
different) heuristic function. This is particularly useful when checking reachability properties on-the-fly.

Below, we inductively describe G-synchronised xBS, where G : £ — IN is the function that guides the ex-
ploration and x € {D,P,FD,FP} (denoting the four BS variants described previously). Let $; denote the set of
states to be explored at round i. We partition this set into equivalence classes co,---, Cnh, Where n € IN, such
that S = coU---Ucpand Vs € §i. s € Cj <= G(s) = j. The pruning algorithm xBS is subsequently applied
only on ¢, where ¢y #0 A Vj < k. ¢c; =0. According to the pruning algorithm (which can possibly employ
an evaluation function different © from G), some of the successors of ¢y are selected, constituting the set S.
The next round starts with §j.1 = SUS; \ ck. Modular implementation of synchronised BS variants can thus
be conceived: a second algorithm takes care of distributing states over the equivalence classes, before pruning
takes place (see appendix | for SDBS in pseudo-code). Using any constant function as G would clearly result
in BS with breadth-first exploration strategy.

To mention a practically interesting candidate for G, we temporarily deviate from our general setting. Con-
sider the problem of finding a path of minimal cost that leads to a particular action in a state space. This problem
arises, for instance, in finding minimal time schedules (see, e.g., [30]). As another application, if for every ac-
tion the cost function is set to 1, this problem corresponds to finding the minimal length trail when verifying
a reachability property. Recall that the total cost function in DBS can be decomposed into f(s) = g(s) +h(s),
where g(s) is the cost of the trace leading from the root to s. If G(s) = g(s) in G-synchronised DBS, once a
goal state (or a complete schedule) is found, searching can safely terminate. This is because in a goal state
s, f(s) = g(s) and since the algorithm always follows paths with minimal g (remember that g is monotonic),
state s is reached before another state s’ iff g(s) < g(s’). Note that here no state is re-explored, because states
with minimal g are taken first and thus a state can be reached again only via paths with higher costs (c.f.
section 4.3). Both g-synchronised DBS and g-synchronised PBS have been used in solving timed scheduling
problems in [30], where minimal-time traces to a particular action label are searched for. The same pruning
algorithm can be used to search for other kinds of traces, such as a shortest trace or a shortest minimal-time
trace.

4.6 Memory management

Memory management is a challenging issue in SSG. Although BS reduces memory usage due to cutting away
parts of the state space, still explored states need to be accessed to guarantee the termination of the exploration
in case of cyclic LTSs. Keeping the whole set of visited states in the memory is usually susceptible to early state
space explosion. This can be counter-measured by taking into account specific characteristics of the problem at
hand and the properties that are to be checked. Below we discuss some possible optimisations when applying
BS:

e When aiming at a reachability property (such as reachability of a goal state, checking invariants and
hunting deadlock states), checking the property can easily be embedded in the exploration algorithm, so
that once a state satisfying the desired property is reached the search terminates and the witness trace is
reported (see, e.g., section 4.5). This however cannot be extended to arbitrary properties.

o If there are no cycles in the state space, there is in principle no need to check whether a state has already
been visited. Therefore, only the states from the current level need to be kept and the rest can be removed

8Using different functions for guiding exploration and pruning in principle alows dealing with multi-priced optimisation problems,
cf. [1].
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from memory 7, i.e. flushed to high latency media such as disks. Prominent examples of systems with
acyclic LTSs are large classes of scheduling problems, which has been a traditional target of BS, and
most security protocols (see section 5).

o If in DBS variants each state has a unique g cost associated to it, e.g. denoting a notion of progress, since
g is monotonic, there cannot be any transition from states with higher g to the states with lower g values:
g(s) < g(s') = s A*s'. Consequently, states with costs strictly lower than the cost of the states to be
processed can be removed from memory. This resembles sweep-line state exploration [4].

e In G-synchronised BS variants with monotonic G function, bit-state hashing [13] can be used to reduce
the memory usage. This technique is however inherently incomplete, i.e. may miss exploring parts of
the state space, and in particular when used in BS there is the possibility of ignoring a previously visited
state when it is reached via a path with a lower cost. We observe that in G-synchronised BS variants with
monotonic G, if a visited state is reached again, it will be reached via a more costly path, eliminating the
mentioned problem. Note that the approach still remains an approximation to BS and can therefore be
seen as a trade-off between memory usage and having a tight grip on pruning.

4.7 Heuristic functions and selecting the beam width

Effectiveness of BS hinges on selecting good heuristic functions. Heuristic functions, as George Polya put
in 1945, are meant “to discover the solution to the present problem” [18], and thus heavily depend on the
problem being solved. Heuristics constitute a whole separate body of research and, here, we only refer to a
few case studies on using heuristics in pruning state spaces: Some heuristic functions for pruning search spaces
of typical job-shop scheduling problems are presented in [23, 28]. Similarly, [16] and [30] present detailed
discussions on pruning heuristics when dealing with the scheduling problem of a wafer stepper machine and a
chemical analyser, respectively.

Selecting the beam width 3 is another challenge in using BS. The beam width intuitively calibrates the
time/memory usage of the algorithm on one hand and the accuracy of the results on the other hand. Therefore,
in practice the time/memory limits of a particular experiment determine 3. However, to reduce the possibility
of surprises, such as getting astonishingly better results with 8 = 101 than with 3 = 100, we recommend using
flexible BS variants. This, however, comes at the price of losing a tight grip on the memory consumption (see
also section 4.4). For more discussions on selecting 3 and its relation to the quality of answer we refer to [23].

5. CONNECTIONS TO OTHER SEARCH ALGORITHMS
Having described the BS spectrum of figure 1, we observe that some existing search techniques fit neatly in
there. We here briefly discuss some of these connections to other search algorithms. This can particularly be
interesting in practice where one looks for umbrella theories and tools to cover as many existing techniques as
possible to ease their use and interoperability.

First, we observe that the basic Al search algorithm A* [20] can be seen as an instance of SFDBS, the bottom
right corner of the spectrum of figure 1.

Lemma 1. Given a monotonic total cost function f, f-synchronised flexible detailed beam search, with 3 > 0,
behaves as A*.

Proof. See appendix I. O

Second, uniform cost search [20] can be seen as an instance of SDBS, the bottom left corner of the spectrum.
(The claim is fairly obvious, hence we omit the proof.)

Lemma 2. When 3 — oo, g-synchronised detailed BS behaves as uniform cost search.

Third, we note that the partial order reduction (POR) algorithm of [6] for security protocols can be seen
as an instance of FPBS. The main principle of POR is to exploit the commutativity of concurrently executed

7In this case, some states may be revisited, hence undesirably increasing the search time.



11

transitions in order to generate only a sufficient fraction of the state space by exploring a subset of enabled
transitions ample(s) C en(s) at each state s. This resembles priority BS since at each state, based on the
suitability of the enabled transitions, some of the successors are pruned away while generating. However, in
contrast to priority BS, no essential information is lost in POR as the ample set is selected such that a certain
class of desired properties is preserved. We refer to [5] for a general introduction to POR. Here we observe
that the POR algorithm of [6] partly behaves as FPBS and partly as PBS. Due to space constraints, we refer to
appendix Il for a translation from this algorithm to our pruning framework.

6. EXPERIMENTAL RESULTS

In this section we report our experimental results & on solving the Cannibals and missionaries problem [14].
The problem can informally be described as follows °: C missionaries and C cannibals stand on the left bank
of a river that they wish to cross. There is a boat available which can ferry up to B people across. The goal
is to find a schedule for ferrying all the cannibals and all the missionaries safely across, i.e. never on a shore
on in the boat the cannibals outnumber the missionaries. We use a uCRL implementation of BS and a SpPIN
implementation of the depth-first branch-and-bound algorithm to solve this problem. Below, we describe the
used techniques and discuss the results, shown in table 1. These experiments have been performed on a single
machine with a 64 bit Athlon 2.2 GHz CPU and 1 GB RAM, running SUSE Linux 9.2.

In uCRL we first applied the minimal cost search (that is an implementation of uniform cost search of
lemma 2, detailed in [30]), denoted MCS in table 1. Second, we used g-SFDBS with h(s) = C(s) + M(s) +
({C(s) # M(s)).(2 x C)) as the heuristic part of DBS, where C(s) and M(s) are the numbers of cannibals and
missionaries on the left bank in state s, respectively, and (C(s) # M(s)) is a Boolean expression returning 1
if C(s) # M(s), and 0 otherwise. The intuition behind this heuristic is that, first, we want to minimise C(s)
and M(s), hence the first part of the function. Second, we support having an equal number of cannibals and
missionaries on the left bank as an easy way to avoid deadlock states where C(s) > M(s). The second part
of the function puts an extra penalty on states where these numbers are not equal. Our experiments showed
that in practice there so many unsuccessful termination states in the model that some deadlock avoidance in
the heuristic function is unavoidable. In these experiments, BS proved to be applicable using a fairly stable
(flexible) beam width of 20, which partially shows the suitability of the heuristic used.

In our SPIN experiments we followed the technique of [21]. The idea is that the LTL formula that is checked
is modified during verification to reflect the best solution found so far. This can effectively implement a branch-
and-bound mechanism, denoted DFS BnB Prop in table 1, in SPIN. In these experiments the LTL property is
o(gq > U), where q denotes the total cost of a path and U denotes an upper bound on this cost that is set by
the user. In the standard DFS, U is fixed during the search, while in the BnB search a C-code in the model
updates U to the best (lowest) upper bound found in the search. The search through a trace stops only when
either the property does not hold or a deadlock state is found. In the latter case, we have slightly adjusted
the technique of [21] to deal with unsuccessful terminations. Hence, the current best cost is updated only on
successful terminations. Contrary to the results of [21], here the DFS BnB technique does not prune much,
compared to standard DFS. This can be due to the differences in the nature of the problems that studied. We
believe that in our case there are many more possible schedules with very long traces, in comparison with TSP
analysed in [21].

As a final note, the numbers of states of the uCRL experiments in table 1 are not meant to be compared
with the corresponding numbers in the SPIN experiments, since the tools seem to count states in completely
different ways. The numbers can however be used to reason about different techniques of each particular tool.

7. RELATED WORK

In the related literature on BS, the emphasis is typically put on how BS is useful for obtaining a solution to
a specific problem and no general modelling framework is presented, for instance [16, 26]. Reusing their
implementation of BS on other case studies is therefore not straightforward. We provide a general framework,

8Seehttp: //www.cwi.nl/~wijs/TIPSy for acomplete report.
9See, €., http://en.wikipedia.org/wiki/Missionaries_and_cannibals_problem.
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Table 1: Experimental results. n.s.: No solution exists [14]; o.0.t.: out of time (set to 12 hours); o.0.m.; out of memory
(set to 900 MB)

Problem Result HCRL MCS UCRL g-SFDBS SPIN DFS SPiN DFS BnB Prop.
(C,B) T # States Time T | B ‘ # States | Time # States | Time # States | Time
(32 18 147 00:03.80 18 3 142 00:03.73 28,535 00:00.32 26,062 00:00.29
(20,3 n.s. 396 00:03.94 n.s. 10 396 00:03.90 76,432 00:00.42 76,432 00:00.41
(20,4) 44 1,378 00:04.38 46 10 1,129 00:04.42 253,815 00:01.60 251,400 00:01.53
(20,4 104 2,537 00:05.32 106 10 2,191 00:05.38 445,801 00:02.66 408,053 00:02.34
(50,10) 142 25,868 00:11.22 148 10 8,035 00:08.47 3,703,900 00:27.33 3,472,070 00:23.69
(50,20) 116 90,355 00:20.15 120 15 17,361 00:11.45 | 12,647,000 | 02:05.25 | 12,060,300 | 01:49.59
(100,10) 292 49,141 00:19.65 296 10 16,274 00:14.46 14,709,600 | 02:49.32 13,849,300 | 02:23.34
(100,30) 222 366,608 01:05.79 228 15 61,380 00:32.06 0.0.m. 0.0.m. 0.0.m. 0.0.m.
(300,10) 892 143,549 01:01.94 896 10 49,514 00:48.47 0.0.m. o.0.m. o0.0.m. 0.0.m.
(300,30) 680 1,008,436 04:10.72 684 15 205,556 02:30.11 0.0.m. 0.0.m. 0.0.m. 0.0.m.
(500,50) 1,076 4,365,536 21:40.52 1,080 | 20 685,293 10:33.28 0.0.m. 0.0.m. o.o.m. 0.0.m.
(500,100) 1,036 17,248,979 | 77:16.36 | 1,040 | 20 | 1,170,242 16:47.10 0.0.m. 0.0.m. 0.0.m. 0.0.m.
(1000,50) 2,160 8,551,996 70:00.14 | 2,168 | 20 1,397,100 37:02.03 0.0.m. 0.0.m. o.o.m. 0.0.m.
(1000,250) 0.0t 0.0.t. 0.0t. 2,032 | 20 | 5,317,561 | 240:22.11 0.0.m. 0.0m. 0.0.m. 0.0.m.

based on an expressive specification language, instead of case-based tools. The expressive language allows
describing complex systems and various problem restrictions, e.g. see [30].

The depth-first branch-and-bound technique used for scheduling in SPIN [21] can at best be compared with
g-SFDBS, since both searches avoid exhaustively searching the state space. These however achieve their goals
very differently, one bounding in the depth of the state space, the other in the breadth. Moreover, the branch-
and-bound guarantees finding optimal solutions, while g-SFDBS uses heuristics and does therefore not make
this guarantee. See section 6 for more details.

Concerning scheduling using UPPAAL, quite some research has been done, leading to the UPPAAL CORA
tool. In several papers by Behrmann et al. (see [1] and references therein), linearly priced timed automata
are introduced as an extension of timed automata with prices on both transitions and locations. They deal with
reachability analysis using the standard branch-and-bound algorithm. A number of basic exploration techniques
can be used for branching, and bounding is done based on heuristics.

Our work is also related to the body of research on DMC. Using A* [9] and using genetic algorithms to
guide the search [11] are among notable works in this field. DMC uses heuristics to guide the search in finding
a counter-example to a functional property (belonging to LTL in [9, 11]) with a minimal exploration of the
state space. In contrast, we generate an approximation to the state space on which an arbitrary property can
be checked afterwards (the result would of course not be exact, hence being useful mainly in quantitative
analyses). Nonetheless, there are strong similarities as well: As is described in section 4.5, A* search can be
seen as an instantiation of BS. Genetic algorithms have been used in [11] to guide the search toward a goal
state when hunting deadlocks and checking assertions. This approach is similar to ours as the algorithm is in
general not guaranteed to explore the whole state space.

8. CONCLUSIONS

In this paper, we extended and made available an existing search technique to be used for system verification
and our case studies indeed showed the usefulness and flexibility of the method. We observed that BS can be
tuned to encompass some other (heuristic) search algorithms, thus providing a generic method, paving the path
towards a more compact, yet flexible, state space generation framework.

Future work  BS can in principle deal with infinite state spaces given that the heuristic function does not
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cut away all finite solutions. The termination condition then needs to adapt as well. This however has yet to
be investigated. We are currently working on a distributed implementation of the BS variants proposed in this
paper (see [29] for its theoretical setting) .
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Appendix |
Beam search versus A* search

In this section we establish an equality between an instance of BS and A* search. For a description of A* search
we refer to [9, 20]. We refer to algorithm 4 for synchronised detailed beam search in pseudo-code.

Lemma 1. Given a monotonic total cost function f, f-synchronised flexible detailed beam search, with 8 > 0,
behaves as A*.

Proof. In this proof, f-synchronised flexible detailed beam search, with 3 > 0, is called F* search, to save
some space.

First, to observe that A* and F* are very similar in spirit, assume that f is increasing (as a special case of
being monotonic), i.e. s — s’ = f(s) < f(s'). The major difference between A* and F* is that in F* all the
states of Current set with the minimal f are collected in c;, for some i, and all expanded in one go (i.e. nothing
is pruned, since the search is flexible and the members of c; all have the same f value), while in A* they are
expanded one by one. However, if f is increasing, all the children of these states (with minimal f) will have
an f value higher than their parents. Therefore, A* will do exactly what F* does, i.e. it will first explore the
members of ¢; before considering any other state. Below, we describe the case where f is monotonic, but not
necessarily increasing.

We present an inductive proof. Clearly at the root of the search graph these algorithms behave the same.
Now assume that up to n' round they are equivalent. Below we prove that they exhibit the same behaviour in
the n+ 1" round.

Let c© be the class of states that have the minimal f in Current . The set of states expanded by A* before
considering the elements of Current\ c® can be characterised as ¢ = {4 Is € c®. s =* s’ A f(s') = f(s)}.
The set of states expanded by F*, before incorporating the result back into Current, is clearly c®. As described
earlier, if f is strictly increasing, then ¢ = € and thus A* and F* behave similarly. Let c* = {s'| 3s€ c®,a €
Act. s—23s' A f(s') = f(s)}. Note that c* # 0 only if f is monotonic but not strictly increasing. Observe that
in F*, ¢! C unify(NextU Current), c.f. algorithm 4. This is because

| Clearly, ¢! C Next.

[l Current is rewritten with Current\ c® before this unification step. Therefore, when unifying, Vs € ¢,s' €
Current. s=5' — s.g <s'.g.

The set ¢t \ ¢, if non-empty, will thus be selected and expanded in the next round of F*. Note that in both F*
(due to update) and A*, ctNc? is not re-explored. Let ¢/ = {s'| Is e cI~t,a € Act. s 258’ A f(s') = f(s)}
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Algorithm 4 Synchronised detailed BS for state space generation

Sp.g=0
Current := {(s0,50.0) }
Next:=0
Expanded :=0
while Current £ 0 do
i=-1
found :=F
while found = F do
i=i+1
ci :={{(s,s.9) € Current| G(s) =i}
if ci # 0 then
found :=T
Current := Current\ ¢;
end if
end while
while|ci| > B do
Ci ;=i \ {get frax(Ci)}
end while
for all s € ¢c; do
for all s—25 5 € explore(s) do
s'.g :=s.g+cost(a)
Next := NextU {(s',s".9)}
end for
end for
Expanded := unify(Expanded U c¢;)
Current := update(unify(NextU Current), Expanded)
Next := 0
end while

for j > 0. The argument above can be repeated to show that while ¢!\ (Ux—o....,j—1¢¥) # 0, this set will be
the the set that is expanded by F* before the elements of Current\ c® are considered. Noting that ¢ = Luzock

completes the proof.

O
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Appendix Il
Partial order reduction as BS

In this section, we describe an implementation of the POR algorithm of [6] based on the priority BS frame-
work. This is a POR algorithm tailored for verifying reachability properties of security protocols, such as
authentication and key distribution protocols [6].

We model a security protocol as an asynchronous composition of a finite number of acyclic deterministic
named processes. These processes model roles of honest participants of the protocol. We consider the Dolev-
Yao (DY) model (see [6]) as the attacker, which is also modelled as a process.

Processes communicate by sending and receiving messages. A message is a pair m = (p,c), where p is
the identity of the intended receiver process and c is the content of the message. We let Msg be the set of all
messages that can be communicated. (For a formalisation of Msg see, e.g., [6].) To model the DY intruder,
which has complete control over communication media, we assume it plays the role of the communication
media. All messages are thus channelled through the intruder. To send or receive a message m, a participant
p performs the actions send(p,m) or recv(p,m), respectively. Even though process p sends the message m
with the intention that it should be received by process g, i.e. m = (g, c¢), it is in fact the intruder that receives
the message from p, and it is from the intruder that q can receive m. The communication between participants
of a protocol, via the DY intruder, is thus asynchronous and a participant has no guarantee about the origin of
the messages it receives. Apart from send and recv, all other actions of processes are assumed internal, i.e.
not communicating with the intruder. These are symbolic actions which typically denote security claims of
protocol participants and no semantics is associated with them. An internal action is called invisible if it does
not appear in the property being verified. Else, it is called visible.

In [6] it is observed that the knowledge of the DY intruder is non-decreasing and with more knowledge
more states are reachable for the intruder. Intuitively it means that when verifying reachability properties send
actions can be prioritised over other actions. This is the heart of the POR algorithm proposed in [6]. The set of
transitions to explore at each state s, i.e. ample(s), is chosen in [6] as the following:

e If en(s) contains (a transition with) an invisible internal action, then ample(s) is a singleton containing
an arbitrary invisible action picked from en(s).

e Suppose en(s) does not contain an invisible internal action, but does contain a send action. In this case
ample(s) is an arbitrary send action picked from en(s).

¢ If en(s) does not contain an invisible action or a send action, ample(s) = en(s).
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To specify the requirements of security protocols, in [6], a first order logic where quantifiers range over
protocol participants, augmented with past time modal operator is considered. Their POR algorithm is shown
to preserve formula of this logic.

Although Clarke et al. embed this reduction into a depth-first search algorithm, one can equally modify the
breadth-first SSG of algorithm 1 so that at each state s only the members of ample(s) are explored. Below we
describe how this algorithm can be implemented in the priority beam search framework of section 4.2. We
consider a protocol P comprising a finite set of honest processes, denoted P. The set of actions available to
these processes is denoted Act. As honest processes communicate only via the intruder, Act can be divided into
the following disjoint sets *:

Ao: The set of visible internal actions v(p,m), for some p € P and m € Msg.
Az1: The set of invisible internal actions i(p,m), for some p € P and m € Msg.
Az: The set of send(p,m) actions, for some p € P and m € Msg.

Agz: The set of recv(p, m) actions, for some p € P and m € Msg.

We define A; : 2(Tr) — 2(Tr), for i € {0,1,2,3}, such that A;(T) = {s—2+s' € T| a € A;}. Four priority
levels are assigned to these classes of actions: po to A0, p1 to Al, etc. Now, at each state s, if Aj(en(s)) # 0,
then ample(s) = t, where t is an arbitrary member of A;(en(s)). Else, if Ax(en(s)) # 0, then ample(s) =t,
where t is an arbitrary member of Ay(en(s)). If both these conditions fail to hold, then ample(s) = en(s). The
priority BS algorithm of section 4.2 is adapted to algorithm 5 to implement this POR algorithm.

Algorithm 5 Priority BS adapted for the POR algorithm of [6]

Current := {so}
Next := 0
while Current £ 0 do
for all s € Current do
T1 = {s-2+ 5 € explore(s)| priority(a) = p1}
if Ty # 0 then
Selectanyt € Ty
Next := NextUnx(s,{t}) /I PBSwith =1
elseif Ty = 0 then
T, = {s-2+s' € explore(s)| priority(a) = p2}
if T2 # 0 then
Selectt € T»
Next := NextUnx(s,{t}) /IPBSwith g =1
eseif T1UTo =0 then
Next := NextU nx(s,explore(s)) // FPBS with 8 >0
end if
end if
end for
Current := Next
Next := 0
end while

1These action labels do not need to be fixed and in our implementation are provided to the algorithm as an input. However, for the sake
of simplicity, wefix these labels here.



