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Abstract

This paper contains a study of a simple multirate scheme, consisting of the 6-
method with one level of temporal local refinement. Issues of interest are local
accuracy, propagation of interpolation errors and stability. The theoretical results
are illustrated by numerical experiments, including results for more levels of
refinement with automatic partitioning.
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1 Introduction

For large, stiff systems of ordinary differential equations (ODEs), some components
may show a more active behaviour than others. To solve such problems multirate time
stepping schemes can be efficient. A multirate procedure with automatic partitioning
and step size control was introduced and tested in [12]. In this paper some theoretical
issues are studied for a simplified situation. For this purpose we will consider the
#-method with one level of temporal refinement.

The systems of ODEs with given initial values in R™ are written as

w'(t) = F(t,w(t)), w(0) = wp . (1.1)

The numerical approximations to the exact ODE solution at the global time levels
t, = nt will be denoted by w,. For the step from t,_; to t,, we first compute
a tentative approximation at the new time level. For those components for which an
error estimator indicates that smaller steps would be needed, the computation is redone
with halved step size %T. The result with the coarser time step will furnish data for
this refined step by interpolation at the intermediate time level ¢,,_;,5 = %(tn_l +1t,).
This procedure then can be continued recursively with further refinements, but for the
analysis here only the most simple case with one level of refinement will be considered.

We study this case to obtain a better understanding of more general multirate
schemes. Particular attention will be given to the build-up of local errors which will
be composed of discretization errors of the #-method and interpolation errors. For
simplicity we consider the #-method with a fixed global time step 7. The component
set where the (halved) local time steps are taken is given by a diagonal projection J,
with diagonal entries zero or one, where an entry one indicates that the component
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will be refined. Such J could be determined by some error estimator as in [12]; it then
will vary from step to step, so in general J = J,,.
Summarizing, the scheme reads as follows: first we take the tentative global step

Wy, = Wpo1+ (1= 7F(tn_1,wn_1) + OTF (tn,Wp), (1.2a)

from which we also obtain an approximation w,_,» at the intermediate time level
tn_1/2 by interpolation. Then we compute the local updates

W,_1 = ann_l + (If Jn)wn_la
2 2 ) 2 ) (12b)
annfé = Jn (wn,l + 5(]- - G)TF(tnflawnfl) + §0TF(tnfé7wn7%)) ’
Wy = ann + (I - Jn)wn )
) ) (1.2c)
Inwn = Jp (W1 + 5(1L = O)TF(t,_1,w,_1) + 307F (tn, wy)) -

The #-method is considered here as basic method since it represents the most simple
Runge-Kutta method (and also linear multistep method). For stiff systems the cases
0 = 1 (trapezoidal rule) and 6 = 1 (backward Euler) are of practical interest; for non-
stiff systems we can also consider § = 0 (forward Euler). It is assumed in the following
that 0 < 6 < 1. For the interpolation we shall primarily consider linear interpolation

(I = Jn)@,_y = (I = Jn)(5wn—1 + 5Wn) . (1.3)

However, we will see that this may affect the accuracy in case § = %, and therefore
the quadratic interpolation formula

(I = Jn)@,y = (I = Jn) (Fwn—1+ §Wn + 37F(tn1,wn-1)) (1.4)

will be considered as well.

For this simple multirate scheme a detailed description of the error propagations
will be derived for linear systems that may be stiff. Compared to the non-stiff case,
it is not only stability that needs careful consideration, but also local discretization
errors can be affected by stiffness. For example, it will be seen that for stiff systems
the linear interpolation may give an O(72) contribution to the local error, whereas this
contribution will always be O(73) for non-stiff systems.

Even though the multirate scheme considered in this paper is quite simple, the
stability analysis will turn out to be complicated. Some pertinent properties for general
linear systems can be derived, but to obtain detailed results we will also have to study
linear test problems in R?.

Related stability results can be found in [4, 8, 13] for multirate schemes with a
so-called compound step, where approximations (I —J)w, and Jw,_;/, are computed
simultaneously. The above multirate approach (but then with more levels of refinement
and with a two-stage Rosenbrock method as basic integrator) was considered in [12]. In
this approach there is some overhead, because Jw,, will not be directly used anymore.
However, by computing the whole approximation w,, the structure of the implicit
relations remains the same as for the corresponding single-rate scheme. Moreover, by
using an embedded method, it is then relatively easy to make an automatic partitioning
J, based on local error estimations. For a detailed discussion and implementation
issues we refer to [12]; some additional test results are presented in Section 5 of the
present paper.

The contents of this paper is as follows. In Section 2 error recursions are derived
that show how the global discretization errors for the multirate scheme are build



up. Bounds for the local discretization errors are obtained in Section 3. Stability
and contractivity properties of the multirate scheme are discussed in Section 4. In
Section 5 some numerical test results are presented, both for the dual-rate scheme
used for the theoretical investigation and for an automatic multirate scheme, based
on the trapezoidal rule, with local error estimation and variable time steps. Finally,
Section 6 contains conclusions.

2 Error propagations

2.1 Preliminaries

For the analysis it will be assumed that the problem (1.1) is linear with constant
coefficients,
w'(t) = Aw(t) + g(t) (2.1)

with an m x m matrix A = (a;;). In fact, to study the local truncation errors,
the restriction to the linear constant-coefficient case is not necessary, but it gives a
convenient compact notation. On the other hand, to obtain stability results we will
also consider even more simple problems where m = 2.

For multirate schemes the aim is to have errors in active components of the same
size as in components with larger timescales and less activity. Therefore the maximum
norm is a natural norm to consider for analysis purposes. Stability of the multirate
scheme will be considered under the assumption

ai+ Y lai] <0 for i=1,...,m. (2.2)
i

In terms of logarithmic matrix norms this means p.,(A) < 0. It is well known, see
[5, 7] for instance, that we then have || exp(tA)||cc < 1 for all ¢ > 0, showing that
initial perturbations are not amplified in the ODE system (2.1) itself.

Let in the following Z = 7 A. Furthermore, we denote the stability function of the
f-method by R(z) = (1 + (1 — 6)z)/(1 — 0z). The corresponding matrix function is
given by

R(Z)=I-62)"'I+(1-0)2) (2.3)

where I is the identity matrix.
Let e, = w(t,) — w, be the global discretization error at time ¢,. These global
errors will satisfy a recursion of the form

en = Snen_1+dy, . (2.4)

This error recursion describes the amplification of existing errors, through S,,, and the
appearance of new errors d,, during the step from ¢,, 1 to t,. These d,, are called the
local discretization errors. The scheme is called consistent of order p if ||d, || < CTPT!.
To have convergence of order p, that is, ||e,|| < C7P for all n, we will also need suitable
bounds on the norms of (products of) the matrices Sy.

2.2 Error recursions

In this section recursions are derived for the global discretization errors e,. The errors
of the intermediate approximations are denoted in the same way as €, = w(t,) — W,
and e, 1/2 = w(tn+1/2) — Wp41/2- The linear and quadratic interpolation formulas
are covered by

(I = Jn)@, 1 = (I = Jp)(3Wn-1+ 30 + 37(Wn—1 = Wn +TF(tn_1,wn-1))) (2.5)



with v = 0 for linear interpolation and v = 1 for the quadratic case.

Inserting exact solution values into the scheme (1.2) gives residual errors in the
various stages of the scheme, which are easily found by Taylor expansion. Subtraction

of (1.2) then leads to the following error relations

€n = en1+(1—0)Zen 1+ 0Z%, + pon ,
ent = Jn (en-1+2(1—0)Zep 1 + %ﬁZenf, + p1,n)
+(I-J, )( en—1+ en + %’Y(enq —e,+ Zep—1) + an) ,
en = Ju(e enit3 2(1—0)Ze,_ 1+ 50Zen + pan) + (I — Jn)en,
where the p; ,, are local, residual errors caused by the underlying #-method,
pon = (5 O)72u"(t,_y) — & (t,_y) + O(H),
prn = (2 —0)rw"(t n-1) —15(5 — 9)T3w'"(tn_%) +0(1%),
pom = (3 —0)r (1,

and

on = 37— VP2 (b, 1) — " (b, ) + O(Y)

is a residual error due to interpolation.
In the first stage of the scheme, with global step size 7, we thus obtain

en = R(Z)en 1+ T —0Z) " pon-
At the first refined time level it follows that

eumy = (1= 300,2) 7 (Ju(T + 5(1=0)2) + (I - J)Q)ena

(- 160,2)"" (anl,n + (= Ju)(on+ (3 — 30U - 9Z)‘lpo,n))
with interpolation matrix

Q=3i+1iRZ)+iv(I+Z-R(2)).

(2.6a)

(2.7a)
(2.7b)

(2.7¢)

(2.10)

(2.11)

For the global discretization errors of the total scheme this finally leads to the error

recursion (2.4) with amplification matrix
Sp = (I %aJnZ)*l(JnR(%JnZ)J (I+1(1-6)2)
W R(EILZ)I — J)Q+ (I — Jn)R(Z)) ,
and local discretization error
dp = (I-10J,2) (JnR(%JnZ) (Jnprn + (I = Jo)on) + Jupam

F (T4 (5= AV TRGTZ) (I~ 1)~ 60Z) *poyn)

(2.12)

(2.13)



3 Local discretization errors

It is clear from (2.7), (2.8) that o, = O(7%) if y = 1 and p;,, = O(r%) if § = . In
other cases we only have O(72) bounds. Here the constants in the O(79) estimates
are not affected by stiffness; they only depend on the smoothness of the solution. To
derive similar bounds for the local discretization errors it will be assumed that

IRrA)]lo < C, I = 57004) Mo < C, (3.1)

with C' > 1 a fixed constant. These assumptions are taken such that both cases § = 0
and 6 > 0 are covered. In fact, if § > 0 then (3.1) will be a consequence of (2.2), with
C independent of 7, but for § = 0 it will impose a restriction on the step size.

Theorem 3.1 Let 0 < 6 < 1 and assume (3.1) holds. If 6 = 5 and v = 1, then
lldnlloo = O(3). Otherwise, we have ||d,||. = O(T%).

Proof. For § > 0 assumption (3.1) implies
IR(3Tn2) |00 <0711 = 0) + 0 H[(I = 3002) Moo <071 (1-0+C),

(I = 02) Moo = [I(1 = O)I + OR(Z)[loc <1 -6 +06C,
whereas for § = 0, that is, R(z) = 1 + z, we will have
[R(53InZ)lloc = (I = 5n) + 3Ju(I + Z)|loc < 1+ 3C.

Since [|pj,nlloe = [0 —3]O(7?) +O(73 ) and [|oy]|c0 = |Y—1|O(72) + O(73), the required
bounds thus follow from the local error expression (2.13). O

If 6 # % this result cannot be improved in general, since the §-method itself is then
first-order consistent. The interesting question is whether we can have consistency of

order two for § = 1 with linear interpolation (v = 0). The next result shows that will

be valid if the coupling from the slow towards the more active components is bounded,
|Jn A = Ju) oo < K (3.2)
with a moderate constant K. This will hold in particular for non-stiff problems.

Theorem 3.2 Let § = %, v = 0, and suppose that (3.1), (5.2) hold. Then we have
the local error bound ||d,||e = O(73).

Proof. Since
JoR(ATZ)I - Jp) = Jo(I+ (I - 100,2) 110,2)(I - J,),
it follows that
RGBT 2N = Ju)lloe < 31nlT = 367,2) Mol Ju Z(1 = Ju) oo < SCET.
Expression (2.13) thus leads directly to the proof. |

In case 6§ = % and v = 0, but (3.2) is not satisfied with a moderate constant K,
then the order of consistency will be less than two in general. For stiff systems, the
order of convergence can be larger than the order of consistency, due to damping and
cancellation effects (similar to [7, LemmalI.2.3] for Runge-Kutta methods), but we will
see in Section 5 that for a simple example (semi-discrete heat equation) the scheme
will not converge with order two.



4 Stability and contractivity

4.1 Contractivity with linear interpolation

Consider one step of (1.2) with J,, = diag(J;;). We denote by Z; = {i : J;; = 0} the
index set where the step is not refined, and likewise Z, = {i : J;; = 1} stands for the
index set where we do refine the step. For the multirate scheme we consider the time
step restrictions

1—0)ray;| <1 forieZy,
{l( )7 aiil 1 (1)

|(1—9)7'a“~| <2 foriel,.

Theorem 4.1 Consider (2.12) with 0 < 6 <1 and v = 0. Assume (2.2) and (4.1)
are valid. Then ||Sp||co < 1.

Proof. From assumption (2.2) and the unconditional contractivity of the backward
Euler method, see [6, 7] for instance, it follows that

I0=62) Yl <1, (I - 20Ju2) Y < 1. (42)
Moreover, the time step restriction (4.1) implies
I =TI +(1 =02 <1, I+ 301-6)Z)]lec < 1.
We can write S, as
Sn = (I-160J,2)" (Jn(I +11-0)2)T + (I - Jn)R(Z)> ,
T, = (I 10J,2)" (Jn(I +11-0)2)+ (I - Jn)Q) ,

where Q = %(I + R(Z)) for linear interpolation, see (2.10)—(2.12).
First consider the term

(I-J)R(Z)=(T-J,)I—-02)""(I+(1-6)2).
Because (I —6Z) ! and (I + (1 — #)Z) commute we have
(T = T R(D)loe < T = J)(T+ (1= )2l T~ 02) o <1,

and consequently also
(I = Jn)Qlloe < 1.

Using the fact that ||J, U + (I — J,)V||eo < 1 for any two matrices U,V € R™*™
with |[Ulleo < 1, ||[V|leo < 1, it now easily follows that ||T,]| < 1 and subsequently
[[Snlloo < 1. O

The above conditions (4.1) for having ||Sp|lcc < 1 are sharp, as is seen from the
following simple 3 x 3 example.

Example 4.2 Consider

2 -2 0 1 0 0
A= o0 -1-1), J=[o0 o0 0
0 0 0 00 0



Then both restrictions in (4.1) reduce to
(1-0)r <1.

With e = (1,1,1)7, it follows by some calculations that the second component of S e
is given by

1-(1-0)r
S =-14+2—
(Se)2 + 1467
It is now easily seen that ||S||oc > 1 whenever (4.1) is not satisfied. O

So for the backward Euler case, § = 1, we will have unconditional contractivity;
see [11] for a related (nonlinear) result for a backward Euler scheme with a compound
step. Also for = 0 (forward Euler) the result of Theorem 4.1 is entirely satisfactorys;
in fact, necessity of (4.1) is then already clear for diagonal matrices A. However, for
0= % (trapezoidal rule), the time step conditions in (4.1) are very strict. After all,
the trapezoidal rule itself is A-stable.

The strict time steps for the trapezoidal rule are to some extent due to the insistence
on contractivity, ||S, || < 1, rather than stability, where it is merely required that the
error growth is moderate. From a practical point of view, having

||SnSn_1 e Sgsluoo S M for alln Z 1 (43)

with some moderate constant M would be a sufficient stability condition. However,
we will see below that for a standard linear example, arising from the heat equation,
this will not be satisfied for the trapezoidal rule with linear interpolation if the step
size 7 is too large. This is due to the multirate procedure. The trapezoidal rule itself
is stable in the maximum norm for this example (see e.g. [2]), and in the discrete
Lo-norm it will even be contractive (see e.g. [5, 7]). The same heat equation example
will also show that with quadratic interpolation stability can even be lost for 6 = 1.

4.2 Stability for fixed partitioning and non-stiff couplings

Consider J, = J fixed. Since the time step is also assumed to be constant, the
amplification matrix S will then no longer depend on n either, so the stability condition
(4.3) becomes the power boundedness condition |[S™"|| < M. In the following we
mostly restrict our attention to # > 0 and linear interpolation, v = 0. Some remarks
on quadratic interpolation are given near the end of this section.

For fixed J it can be assumed without loss of generality that

An A12> (O >
< Az Ago I (44)
This block partitioning can always be achieved by an index permutation. The same
partitioning will be used for
Z =1Zij| = [t Aij], R(Z)=[R(Z)y], Q=IQi], S5=I[5]

Further we denote Usy = (I — %HZgz)_l for brevity. Then it is found by some calcu-
lations that the blocks of S are given by

Su=R(Z)1, Si2=R(2)2,
So1 = %(1 — 0)U22R(%222)221 + %U222221Q11 + %9U22221R(Z)11 ) (4.5)
Sag = R(%Zn)z + %U222221Q12 + %9U22221R(Z)12-



The actual form of the blocks R(Z);; is somewhat complicated for general non-
commuting A;;, but if A is upper or lower block-triangular we obtain more simple
expressions. Stability for those cases is considered under the following assumption on
the diagonal blocks:

|1R(TA11)" |0 < Kary', ||R(%7-A22)2”||00 < Kory forn>1, (4.6)

with Kl,Kz >0and 0 < ry,re < 1.

Theorem 4.3 Assume 6 > 0, v =0, (2.2), (4.6), and let r = min(ry,rs). Further-
more, assume that either Aoy =0 or A3 = 0. Then there is a K > 0 such that

1S |so < Ker forn>1.

Jj=0

Proof. We present the proof for the lower block-diagonal case A;3 = 0. The proof for
As1 = 0 is easier because most of the terms in (4.5) then cancel.
If A12 = 07 we find that R(Z)12 = Q12 =0 and R(Z)11 = R(le), which gives

S12 =0, Su = R(Zn1), Sa2 = R(3Z22)*.

Moreover, from S5 = 0, it follows that

ST )
St = n gn-j i-1 ogn |7
Zj:l Sy 7521511 7 S35

and hence

n
» -
15" lo < 11S1illoo + [1S21llo0 Y 1552 7 loclIST; oo + 155300

Jj=1

It remains to show that ||S21 || is bounded. Let U = [U;;] = (I — 16JZ)~!. Then
Uy, is as above and Uy = %0U22Z21 in this lower block-diagonal case. Moreover, as
seen in (4.2), assumption (2.2) implies ||U]|oo < 1, and consequently also |Uszq||co < 1,
[U22]]co < 1. Tt thus follows that

0—1 1
L U7 -

g 22ém + 9
can be bounded as well for § > 0. The same applies for the other terms in the
expression (4.5) for Sa1, where we note that Q11 = (I + R(Z11)) because of the linear
interpolation. O

U22R(%Zz2)221 = Uss Zo1

If r < 1 the theorem provides a stability result with ||S™||. < K/(1 —r) for all
n > 1. If » = 1 it merely demonstrates weak stability ||S™|| < Kn where a linear
error growth is possible.

The above result for lower or upper block triangular matrices can be extended to
non-stiff couplings by a perturbation argument, where we assume that A is not too
far from a simpler matrix A for which stability with the corresponding amplification
matrix S is known,

A=Al <L, [|S"|eo <M foralln>1. (4.7)

Then stability of the scheme with the original amplification matrix S can be concluded
on finite time intervals 0 < ¢,, < T.



Theorem 4.4 Suppose § > 0, v = 0. Further assume that ps(A) < 0 and (4.7).
Then there exist C > 0 and 7, > 0 (depending only on ~, L, M ) such that

I1S™lco < M exp(CMt,) whenever 7 < 7.

Proof. Tt is to be shown that ||S —S||o, < C7. Then the result follows from a standard
perturbation argument; see for example [9, p.58]. The estimate on S — S requires
some care.

We can decompose S as

S=VJI+i(1-0)2) + VI-J)Q + W, (4.8)
where
V = (I-30JZ)""JR(3JZ), W = (I-3%0J2)""(I1-J)R(Z). (4.9)
For S we consider the same form based on Z. Then
S—8§5 =1[v —~1~/]J + 11— ?)[V -V)Jz + - 0)I~/~J[Z — 7] (4.10)
+V-VII-D)Q + VI - I)Q Q] + W —W].

Let us first consider R(Z) — R(Z). We have
R(Z) - R(Z)=(I-02)"Y(Z - Z)I—02)7!,
(I—02)" = (I-0(I—-602)"(Z-2)) ' (I-02)"".
Since oo (A) < 0 we know that ||[(I — 6Z) "||oe < 1. This leads to!

1

T1-02) Y < ——
I =62)" oo < 7= »

= L
IR(2) - R(Z)| < =57 < 2L

— 0Lt

provided that 7 < 1/(20L). The same applies to the perturbations for R(1JZ). If we
take 7, = 1/(46L) then these bounds are valid uniformly for 7 € (0, 7.].

The most difficult term to estimate in (4.10) is [V —V]J Z, because Z is not bounded
by the assumptions. Denoting as before U = (I — %GJZ)’I, we have

V-V =[U-UlJR(LJZ)+UJ[R(LIZ) - R(3TZ)],
and hence
WV -V]JZ = L9U0J(Z - ZWUJR(JZ)IZ + LUJUJZ - Z)UJZ.
Now, by noticing that
UJR(YJZ)JZ = %UJZ + %UZJZ

and using the bounds for ||U]|e and |UJZ||s for 7 < 7, it follows that ||[V = V]J Z|w
can be bounded by C7. Estimation of the remaining terms in (4.10) proceeds in a
similar way using the above estimates. |

The above perturbation result can be combined with Theorem 4.4 to obtain a
stability result for non-stiff couplings, where either ||A21||co OF ||A12]|00 is bounded by
a moderate constant.

INote that || X|| < 1 implies that ||(I — XY)~ || < (1 — ||Y])~ L




Remark 4.5 For 6 = 0 similar results can be derived if the assumptions p(Z) <0
Or [oo (Z ) < 0 are replaced by appropriate boundedness assumptions. Results for § > 0
with quadratic interpolation require additional assumptions that are not satisfied in
general for stiff systems. For example, in the proof of Theorem 4.3, an explicit Z1;
terms then appears in Q11 in which case additional assumptions are needed to bound
the term U222Z21Z11. For Theorem 4.4 it is similar. We will see in the next section
that the stability properties of the multirate scheme are very poor indeed if quadratic

interpolation is used, even if § = 1. O

4.3 Asymptotic stability for 2 x 2 test equations

In this section we present some detailed results on stability of the scheme (1.2) for the
linear test equation (2.1) with real 2 x 2 matrices

_ [ @11 a1z (00
am(mom), o (00), o

a a1
k=1 pg=-t22 (4.12)
Q22 11022

We denote

By assumption (2.2) we have £ > 0 and || < 1. We can regard k as a measure for
the stiffness of the system, and 3 gives the amount of coupling between the fast and
slow part of the equation. For this two-dimensional test equation we will consider
asymptotic stability whereby it is required that the eigenvalues of the amplification
matrix S are bounded by one in modulus. Similar stability considerations for 2 x 2
systems are found in [3, 4, 8, 10, 13, 14] for multirate schemes with a compound step.
The elements of the 2 x 2 amplification matrix S will depend on the four parameters
zij = Tag;, 1 < 1,5 < 2. However, the eigenvalues of S, which depend only on the
determinant and trace of S, can be written as functions of three parameters: x, 8 and
z92. This can be seen by elaborating (4.5) for this 2 x 2 case. Instead of 223 < 0 we
will use the quantity
o= 1+ %(1—9)222

4.13
1-— %0222 ( )

which is bounded for 299 < 0 and 6 > %

The domains of asymptotic stability, where the spectral radius of S is bounded by
one, are shown in the Figures 1-3 for 6 = %, 1 and linear or quadratic interpolation.
We present these domains in the (a, 3)-plane for three values of k = 107, j = 0,1, 2.
Notice that o« € [-1,1] if § = £ and a € [0,1] if # = 1. Generally the asymptotic
stability domains are decreasing when & is increased.

From Figure 1 it is seen that the combination of the trapezoidal rule and linear
interpolation will be stable if 8 > 0, whereas for 3 < 0 the domain of instability

=1 k=10 « =100
1 1 1
0.5 - 0.5 - 0.5 -
@ 0 - 0 - 0
-0.5 - -0.5 ﬁ -0.5 \
- -1 -
-0.5 [¢] 0.5 -0.5 0 0.5 -0.5 o] 0.5
a a a

Figure 1: Asymptotic stability domains (gray areas) for the trapezoidal rule with linear
interpolation, x = 1,10, 100.
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Figure 2: Asymptotic stability domains (gray areas) for the trapezoidal rule with quadratic
interpolation, x = 1,10, 100.
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Figure 3: Asymptotic stability domains (gray areas) for backward Euler with quadratic
interpolation, k = 1,10, 100.

increases when k gets large. For the trapezoidal rule with quadratic interpolation, the
scheme becomes unstable for large k, unless 8 = 0. For both quadratic and linear
interpolation, the limit case Kk — 0, with «, [ fixed, gives stability of the scheme
because then both z95 and z5; tend to zero as well.

As we already saw in Theorem 4.1, using the backward Euler method as underlying
time integration method, the scheme will be stable with linear interpolation. However,
as seen in Figure 3, the combination of backward Euler and quadratic interpolation is
no longer stable when s becomes large. Of course, in terms of accuracy it is for the
backward Euler method not necessary to use quadratic interpolation, but the observed
instability is of interest anyway.

Remark 4.6 Stability conditions based on eigenvalues of S are rather weak. If we
have spectral radius p(S) < 1, then it is known that S™ — 0 as n — oo, but this does
not guarantee that max,>¢ ||S™||c is bounded by a moderate number because the
bound may depend on 7 and A. If p(S) = 1 is allowed, then even polynomial growth
may occur. In our opinion, (4.11) is primarily a useful test equation for showing
instability of certain schemes, such as the schemes with quadratic interpolation in this
paper. Demonstrating stability for (4.11) in some suitable norm is somewhat less
relevant, because for an m-dimensional system with partitioning (4.4), the blocks A;;
may have complex eigenvalues, and, moreover, they will not commute in general. O

5 Numerical experiments

5.1 A linear parabolic example

As a test model we consider the parabolic equation
ut + auy = dug, —cu+ g(z,t), (5.1a)

for0 <t <T =04, -1 < z <1, with initial- and boundary conditions

u(z,0) =0, u(0,t) =0, u(1,t) =0. (5.1b)
The constants and source term are taken as
a=10, d=1, c¢=10*, g(z,t)=10%cos(3nz)"" sin(rt). (5.1¢c)
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Figure 4: Solution for the parabolic test problem (5.1) at intermediate times ¢ = 0.1, 0.2, 0.3
and the final time ¢ = T' = 0.4 (thick line).

The solution at the end time 7" = 0.4 is illustrated in Figure 4.

Semi-discretization with second-order differences on a uniform spatial grid with m
points and mesh width h = 2/(m + 1), leads to an ODE system of the form (2.1). We
use for this test m = 400, and the temporal refinements are taken for the components
corresponding to spatial grid points z; € [—0.2,0.2]. (Spatial grid refinements are not
considered here; we use the semi-discrete system just as an ODE example.)

Table 1 shows the discrete Lo-errors (scaled Euclidian norm) at ¢t = T with respect
to a time-accurate ODE solution; the maximum errors were quite similar. The results
are given for linear interpolation with the backward Euler method (f = 1) and the
implicit trapezoidal rule (6 = %), both with uniform, non-refined time steps 7 = T/N
and with locally refined steps 7/2 on part of the spatial domain.

Table 1: Relative Le-errors at t = T versus N for the parabolic test problem. Results for the

non-refined #-method, 6 = 1, %, and for the scheme with one level of refinement and linear
interpolation on the spatial region —0.2 < z; < 0.2.

N 10 20 40 80 160
=1, non-ref. | 1.57-1072 | 7.96-10"* | 4.00-10"% | 2.00-10"* | 1.00-10"*
=1, y= 1.21-1072 | 5.93-10°* | 2.86-10°* | 1.37-10°* | 6.55-10°

= 3, non-ref. | 1.81-107* | 3.76-107° | 8.12-1077 | 2.03-10"" | 5.07-10®
=1, y=0 |417-107* | 474-107° | 1.49-10°° | 4.85-10°° | 1.58-10"°

The refinement region —0.2 < z; < 0.2 was only chosen for test purposes; it is
clear from Figure 4 that it is not a very good choice. Considering this fact, the results
for 8 = 1 are satisfactory. However, for § = % the errors with the local refinements are
much larger than those for the non-refined scheme. This loss of accuracy is due to the
linear interpolation, which lowers the order of consistency in this example.

Quadratic interpolation did give very large errors due to instabilities in this test,
both for § = 1 (with errors in the range 102—10'¢) and # = } (errors in the range
107—10°1). In view of the unfavourable results that were found already for the 2 x 2
example in the previous section, this is not surprising anymore.
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5.2 The inverter chain problem

As a second test example we consider the inverter chain problem from [1]. The model
for m inverters consists of the equations

{ Wi (t) = Upp — wi(t) — Tg(uim(t), wi(t)), (5.23)
w(t) = Usp — wi(t) = Tg(wj 1(8),wi(t)),  j=2,...,m, '
where , )

g(u,v) = (max(u — Uthres, 0)) — (max(u — v — Usnres, 0)) . (5.2b)

The coefficient YT serves as stiffness parameter. We solve the problem for a chain of
m = 100 inverters with T = 100, Ugnres = 1 and U,p, = 5. The initial condition is

w;(0) = 6.247-107> for j even, w;(0) =5 for j odd. (5.2¢)

The input signal is given by

t—5 for 5<t<10,
5 for 10<t <15,

Uin (t) = 2.5(17 —¢t) for 15 <t <17, (5.2d)
0 otherwise.

An illustration for some even components of the solution is given in Figure 5.

w2 w52 w100

o
o 15 30 45

Figure 5: Solution components ws(t), wsz(t), wioo(t) (0 < t < T') for the inverter chain test
problem (5.2).

This problem is solved using the self-adjusting multirate time stepping strategy
introduced in [12]. Given a global time step At,, = t,, — t,_1, we compute a first, ten-
tative approximation at the new time level for all components. For those components
for which the error estimator indicates that smaller steps are needed, the computation
is redone with %Atn. The refinement is continued recursively with local steps 27! At,,,
until the error estimator is below a prescribed tolerance for all components. For details
on the selection of the time step and number of refinement levels we refer to [12].

As the basic time integration method we use a linearized version of the trapezoidal
rule,

Wy = Wp_1 + %T(F(tn,l,wn,l) + F(tn,wn_1) + A(w, — wn,l)) (5.3)

where A = %F (tn,wn_1). With this linearized trapezoidal rule nonlinear algebraic
systems are avoided. To estimate the error of a step we compare the result with a
step using the forward Euler method. It should be noted that the ¢, argument is
retained in the linearization (5.3). This done because the solution of this inverter
chain problem has very steep temporal gradients, which are induced by earlier changes
in the input function w,. Further linearization, replacing F(t,,w, 1) in (5.3) by
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F(tn—1,wn_1) + T%F(tn_l, wn—1), would give larger errors in this problem, because
the forward Euler method also only uses information from time level ¢,,_1, so changes
over the interval [t,_1,t,] are then felt too late by the error estimator.

In Table 2 the maximal errors over all components and all times ¢,, (measured with
respect to an accurate reference solution) are presented for several tolerances with the
single-rate scheme (without local temporal refinements) and the multirate strategy.
The results are given for linear interpolation at the coupling interface; quadratic inter-
polation gave similar results, without instabilities, in this example. As a measure for
the amount of work we consider the total number of components at which solutions
are computed over the complete integration interval [0, 7T]; this is proportional to the
number of scalar function evaluations (5.2b).

Table 2: Absolute, maximal errors and work amount with different tolerances for the inverter
chain problem.

Single-rate Multirate

Tol error work error work
-107* | 4.66-102 1532100 | 5.01-1072 466746
.107% | 7.70-10°8 3350900 | 8.77-10% | 1000702
-107% | 3.83-10°° 4716000 | 3.94-10"3 | 1408974
2107% | 7.07-107% | 10475200 | 7.75-10"% | 3073492

= Ot = Ot

It is seen from the table that for the prescribed tolerances we get roughly a factor 3
of improvement in work with the multirate scheme, compared to the standard single-
rate method, whereas for each given tolerance the errors of the multirate scheme are
of the same size as those of the single-rate scheme.

So for this test problem the multirate scheme with the (linearized) trapezoidal rule
works well. There is no instability when using quadratic interpolation and there is
no reduction in accuracy due to linear interpolation. It should be noted that this
example is only mildly stiff, in contrast to the semi-discrete parabolic system in the
first example.

6 Conclusions

To obtain a better understanding of general multirate schemes, a simple scheme was
studied in this paper, with the #-method as basic time integration method and with
one level of refinement.

As seen from the local error bounds for the trapezoidal rule with linear interpolation
(0 = %, v = 0), stiffness may lead to an order reduction where we obtain a lower order
of consistency than for non-stiff problems.

A proper stability analysis is very difficult in general, even for the simple multirate
scheme studied here. Detailed (numerical) results for very simple 2 x 2 cases are helpful
to better understand possible instabilities for the schemes.

In spite of the lack of definitive theoretical results, multirate schemes can be effi-
cient for problems with different levels of activities in the various components. The
automatic partitioning strategy derived and tested in [12] (used in this paper for the
inverter chain test problem with a linearized trapezoidal rule) provides in many cases
of practical interest a significant speed-up compared to the corresponding single-rate
scheme.
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Finally we note that for higher-order Runge-Kutta or Rosenbrock schemes the class
of possible interpolation formulas is larger than for the simple -method considered in
this paper, because then also internal stage values are available. For example, for the
two-stage Rosenbrock method used in [12] preliminary tests have shown that there are
interpolations of second-order consistency which are stable for the stiff test problems
that were considered in this paper. Extensions to methods of order larger than two
are currently under investigation.
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