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Abstract

Through Laplace transforms, we study the extremes of a continuous-time Markov-additive pro-
cess with one-sided jumps and a finite-state background Markovian state-space, jointly with the
epoch at which the extreme is ‘attained’. For this, we investigate discrete-time Markov-additive pro-
cesses and use an embedding to relate these to the continuous-time setting. The resulting Laplace
transforms are given in terms of two matrices, which can be determined either through solving a
nonlinear matrix equation or through a spectral method.

Our results on extremes are first applied to determine the steady-state buffer-content distribution
of several single-station queueing systems. We show that our framework comprises many models
dealt with earlier, but, importantly, it also enables us to derive various new results. At the same time,
our setup offers interesting insights into the connectionsbetween the approaches developed so far,
including matrix-analytic techniques, martingale methods, the rate-conservation approach, and the
occupation-measure method.

Then we turn to networks of fluid queues, and show how the results on single queues can be used
to find the Laplace transform of the steady-state buffer-content vector; it has a matrix quasi-product
form. Fluid-driven priority systems also have this property.

1 Introduction.

A classical result, playing a pivotal role in applied probability, is what could be called the ‘generalized
Pollaczek-Khinchine formula’: withX the supremum of a spectrally positive Lévy processX (i.e., a

Lévy process with no negative jumps) and withF
X

the epoch at which this supremum is (first) ‘attained’,
under the assumption of a negative driftEX(1) < 0,

Ee−αF
X
−βX = −EX(1)

β − Φ−X (α)

ψ−X (β) − α
, (1)

for α, β ≥ 0 with ψ−X(β) 6= α; see for instance [12, Thm VII.4]. In this formula,ψ−X(β) :=
log Ee−βX(1) is the Laplace exponent of−X, andΦ−X is its inverse (which exists sinceψ−X increases
on [0,∞)). Exploiting an equality in law betweenX and the the steady-state buffer content in an M/G/1
queue (the buffer-content process can be thought of as beingobtained fromX by Skorokhod reflection
at 0), Equation (1) also provides us with the Laplace-transform of the steady-state buffer content in the
system—note that by takingα = 0 and assuming that the Lévy process is of compound-Poisson type,
we retrieve the classical Pollaczek-Khinchine formula. This explains why the above framework is one
of the cornerstones of queueing theory, but also of application domains where key performance measure
can be expressed in terms of extremes, such as risk theory andmathematical finance.

There are several directions in which one could extend (1). This paper addresses two such extensions.
(A) In the first place, our paper covers a generalization in which X corresponds to a spectrally positive
Markov-additive process; such a process can be thought of as a Markov-modulated Lévyprocess (with
additional jumps at transitions of the background process). (B) In the second place, motivated by the
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aforementioned relationship between fluid queues and extremes, we extend these results tonetworksof
fluid queues. Specifically, the contributions of this paper are the following:

A. One of the motivations for the present paper is to find an analog of (1) for spectrally positive
Markov-additive processes with finitely many background states. The quantityΦ−X(α) becomes
a matrix in the Markov-additive setting, and it is a key challenge to describe this matrix in the
current general setting. The present paper is the first to achieve this goal in full generality through
novel insights relying on a spectral method, which is complemented by a corresponding formula
for the infimum ofX.

The derivation of our results relies on Wiener-Hopf theory for an embedded process, in conjunc-
tion with a ladder height analysis as in Feller [20, Ch. XII].Perhaps for historic reasons, the
Wiener-Hopf technique is sometimes regarded as a complex-analysis tool from which probabilis-
tic insight cannot be obtained. However, inspired by the work of Kennedy [26], we are able
to give appealinginterpretationsof all our results in terms of a last-passage process. Our ap-
proach to Markov-additive processes is essentially different from Asmussen’s occupation-measure
method [5], the martingale method of Asmussen and Kella [8],and the rate-conservation method
of Miyazawa [32].

On the technical level, two steps are crucial. In the first place, we convert our continuous-time
process to a discrete-time Markov-additive process by using an embedding. The maximum of the
original, continuous-time process coincides with the maximum of the embedded process. In the
special case of continuous Markov-additive processes, this idea has been applied by Asmussen [4].
However, by using this embedding we lose information on the epoch at which the extreme is ‘at-
tained’, and we therefore also apply a second idea: we imposea step-dependent killing mechanism
through which we keep track of the ‘time’ that passes in the continuous-time process between em-
bedding epochs. The resulting procedure enables us to find the counterpart of (1). We remark that
the killing technique is an alternative to other approachesthat have been proposed for fluid-flow
models [1, 3, 10].

Our results for discrete-time processes are of independentinterest; they unify and extend (parts
of) Section 1.12 and Chapter 5 of Prabhu [38]. We exemplify this by analyzing a ramification of
a queueing system with Markov-modulated ON/OFF input introduced by Cohen [16]; although
this input doesnot fall into the framework of Markov-additive processes, we can still analyze its
buffer-content distribution using our results on discrete-time processes. As a further application,
we show that our approach may also be useful when the number ofbackground states isinfinite;
a specific contribution of our work is a procedure to determine the steady-state distribution of the
M/M/∞-driven fluid queue.

B. A second motivation for this paper was a procedure, developed by Dȩbickiet al. [17] for Lévy-
driven tandem queueing systems, which expresses the Laplace transform of thejoint buffer-content
distribution in terms of the corresponding Laplace transform (1) for a single queue. Our main
contribution here is that we show how this translation can beperformed in a Markov-additive
setting, by converting the counterpart of (1) to the Laplacetransform of the buffer-content vector
in tandem networks with Markov-additive input. This part ofour work extends [17, 25], which
focus on tandem networks with Lévy input, and [23], in whichtraffic is fed into the network at
deterministic rates (determined by the state of the background process).

Although we give matrix equations for all matrices that playan important role in the theory, it is
still an interesting and challenging issue to devise efficient algorithms for numerically calculating these
matrices. Therefore, our work could accelerate the development of such new numerical methods. We
find this indispensable for a successful application of the theory.

This paper is organized as follows. First, in Section 2, we start with the analysis of the extremes of a
discrete-time Markov-additive process. The insights thatwe obtain are then applied to continuous-time
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Markov-additive processes in Section 3. Section 4 casts ourresults on extremes into the setting of single-
station queues, and some examples are given in Section 5. In Section 6 we show how these results on
single queues can be used to determine the Laplace transformof the steady-state buffer-content vector in
tandem fluid networks, and we conclude the paper with some extensions of our theory (Section 7).

2 A discrete-time process and its extremes.

This section introduces the discrete-time three-dimensional process(S, T, J) = {(Sn, Tn, Jn) : n ≥ 0}.
Although this process may look quite specific at first sight, we show in Sections 4–7 that it is highly
versatile: it can be used to study the steady-state buffer content (in conjunction with the steady-state age
of the busy period) for a broad class of queueing systems, including networks and priority queues.

2.1 Definitions and assumptions.

The discrete-time process(S, T, J) takes values inR × R+ × I, whereI is a finite set withN+ + N−

elements. We writeI+ for the firstN+ elements (which we call ‘+-points’, as made clear below), and
I− for the lastN− elements (which we call ‘−-points’). The componentJ is interpreted as a ‘random
environment’. We suppose that(S, T, J) is defined on some measurable space(Ω,F).

Of primary interest is the minimumS and the maximumS of the processS. After settingFS :=

inf{n ≥ 0 : Sn = infk≥0 Sk} andF
S

:= inf{n ≥ 0 : Sn = supk≥0 Sk}, these are defined asS := SFS

andS := S
F

S respectively. The processT is interpreted as the ‘real’ time that passes between the

(discrete) time epochs; it cannot decrease. Therefore, it is also of interest to studyT := TFS , T := T
F

S ,

J := JF S andJ := J
F

S . The aim of this section is to fully characterize the joint distributions of the

triplet (S, T , J) if S drifts to+∞, and(S, T , J) if S drifts to−∞, under a measure specified below.
Let P be a probability measure on(Ω,F) (with corresponding integration operatorE) such that

(S, T, J) is a (discrete-time) Markov process onR × R+ × I underP with transition kernel given by

p((s, t, j), (s + dv, t+ dw, k)) =

{
pJ

jkP
(
U jk ∈ dv, σjk ∈ dw

)
if j ∈ I+, k ∈ I;

pJ
jkP

(
−Dj ∈ dv, τ j ∈ dw

)
if j ∈ I−, k ∈ I,

where theσjk, U jk, τ j,Dj are random variables on(Ω,F). ThepJ
jk constitute the Markov transition

matrixP J of J underP, assumed to be irreducible. The unique stationary distribution of J is written
asπJ . We also assume that theP-distributions of the vectors{(σjk, U jk) : j ∈ I+, k ∈ I} and
{(τ j ,Dj) : j ∈ I−} are concentrated on[0,∞)2 and[0,∞) × (0,∞), respectively. The lettersU and
D stand for ‘up’ and ‘down’. TheU jk and−Dj can be interpreted as ‘jump sizes’, whereas theσjk and
τ j reflect ‘sojourn times’. Note thatP(σjk = 0), P(U jk = 0), andP(τ j = 0) are allowed to be strictly
positive.

Fork ∈ I, we writePk for the law of(S, T, J) givenS0 = T0 = 0 andJ0 = k. To avoid trivialities,
we suppose throughout that bothN− andN+ are nonzero, and that not all of theU jk are degenerate at
zero. The following assumption is crucial in our analysis.

Assumption 2.1 For anyj ∈ I−, there exists someλα
j > 0, µα

j ∈ (0, 1] such that

Ee−ατ j−βDj

= µα
j

λα
j

λα
j + β

, α, β ≥ 0,

whereµ0
j = 1.

Assumption 2.1 can be thought of as (a generalized version of) a memoryless property for the dis-
tribution of the jump sizes and sojourn times in the−-points. We suppose that this assumption holds
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throughout this section. Motivation for the specific form of the above assumption canbe found in Sec-
tion 3.2.

In many of the proofs in this section, an important role is played by a family of probability measures
{Pα : α ≥ 0} on (Ω,F). We let theP

α-distribution ofU jk be defined in terms ofP throughP
α(U jk ∈

dv) = E[e−ασjk
;U jk ∈ dv]; this distribution is thus potentially defective. Similarly, we setPα(Dj ∈

dv) = E[e−ατ j
;Dj ∈ dv]. Furthermore, we let(S, J) be a discrete-time Markov process underP

α with
transition kernel

pα((s, j), (s+ dv, k)) =

{
pJ

jkP
α(U jk ∈ dv) if j ∈ I+, k ∈ I;

pJ
jkP

α(−Dj ∈ dv) if j ∈ I−, k ∈ I.

TheP
α-law for whichS0 = 0 andJ0 = k is denoted byPα

k .
We note that{(Sn, Jn) : n ≥ 0} is a discrete-timeMarkov-additive processunder each of the

measuresPk, P
α
k for k ∈ I andα ≥ 0. As a result, the powerful Wiener-Hopf factorization for these

processes is available. More details can be found in Arjas and Speed [2] and Asmussen [6, Sec. XI.2.2f].
As an aside, we mention that(S, T ) can be interpreted as a two-dimensional additive componentunder
Pk; we do not use this.

In order to use the Wiener-Hopf technique, we need some more notation related totime-reversion.
Let us therefore introduce the time-reversed transition probabilities

p̂J
jk =

πJ(k)

πJ(j)
pJ

kj,

constituting the transition matrix̂P J ; hereπJ(k) denotes thek-th element ofπJ . Let P̂ be a probability
measure on(Ω,F) (with expectation operator̂E) such that(S, T, J) is a Markov process with transition
kernel

p̂((s, t, j), (s + dv, t+ dw, k)) =

{
p̂J

jkP
(
Ukj ∈ dv, σkj ∈ dw

)
if j ∈ I, k ∈ I+;

p̂J
jkP

(
−Dk ∈ dv, τk ∈ dw

)
if j ∈ I, k ∈ I−.

It is instructive to compare this ‘time-reversed’ kernel with the kernelp defined above. ThêP-law for
whichS0 = T0 = 0 andJ0 = k is denoted bŷPk.

Finally, we also define the probability measuresP̂
α by requiring that(S, J) is a Markov process with

transition kernel

p̂α((s, j), (s+ dv, k)) =

{
p̂J

jkP
α(Ukj ∈ dv) if j ∈ I, k ∈ I+;

p̂J
jkP

α(−Dk ∈ dv) if j ∈ I, k ∈ I−,

andP̂
α
k is defined as thêPα-law of this process givenS0 = 0 andJ0 = k.

2.2 Notation.

We now introduce some convenient matrix notation. It is our aim to present a set of notation rules that
we follow throughout the paper, as opposed to defining all vectors and matrices individually.

We start with our conventions for matrices. We defineA++,A−+,A+−,A−− for a given(I × I)-
matrixA through itsblock form

A ≡

(
A++ A+−

A−+ A−−

)
,

so that, for instance,A++ is an(I+×I+)-matrix. An example is the(I×I)-identity matrix, denoted by
I, which consists of the blocksI++, 0+−, 0−+, andI−− in self-evident notation. The diagonal matrix
with the vectorv on its diagonal is written asdiag(v). For example,I = diag(1), where1 stands for
theI-vector with ones. The vector with elements{λα

j : j ∈ I} is written asvec(λα), anddiag(λα) is

4



shorthand fordiag(vec(λα)). We also writediag (λα/(λα + iβ)) for the (I− × I−)-diagonal matrix
with element(j, j) equal toλα

j /(λ
α
j + iβ). Moreover, we write

#A := diag (πJ)−1A′ diag (πJ) , (2)

where ‘′’ denotes matrix transpose. In conjunction with block notation, # has priority over block nota-
tion: #A++ is the(+,+)-block of #A.

The second set of notation rules shows how vectors and matrices are built from probabilities and
expectations involving a background process with values inI. The resulting matrices or vectors are
distinguished by writingP andE instead ofP andE, respectively, and by omitting indices. For instance,
we set

E [S1;J1] := {Ej [S1;J1 = k] : j, k ∈ I} ,

and thej-th element of the vectorES1 is EjS1. Similarly, thej-th element of the vectorP (S1 > 0)
is Pj(S1 > 0). A matrix involvingP or E can be partitioned into four blocks as described before, in
which case a subscript ‘−’ or ‘ +’ below P or E indicates therow of the matrix block, and a ‘∈+’ or
‘∈−’ after the background process indicates thecolumn. For instance, the matrixE [S1;J1] consists of
four blocks, which we write asE+ [S1;J1 ∈+],E+ [S1;J1 ∈−],E− [S1;J1 ∈+], andE− [S1;J1 ∈−].
The first row consists of two blocks and can be written asE+ [S1;J1]. Matrices such aŝE± [S1;J1] are
defined analogously, but withEj replaced bŷEj. Similar conventions apply to vectors, which should
always be interpreted as column vectors: the restriction ofthe vectorES1 to I+ (or I−) is written as
E+S1 (or E−S1). Note that we have the relationE+S1 = E+ [S1;J1]1 = E+ [S1;J1 ∈+]1+ +
E+ [S1;J1 ∈−]1−, where1+ and1− stand for theI+-vector andI−-vector with ones, respectively.
TheI-vector with zeroes is written as0, and consists of0+ and0−.

We now give examples of the above conventions for some quantities that play an important role in
this paper. We set forα ≥ 0, β ∈ R

Fjk(α, β) :=

{
pJ

jkEe−ασjk+iβUjk

if j ∈ I+, k ∈ I;

pJ
jkEe−ατ j−iβDj

if j ∈ I−, k ∈ I.

This defines not only the matrix-transform of the transitionkernelF (α, β) := {Fjk(α, β) : j, k ∈ I},
but also its four block matrices. Note that Assumption 2.1 specifies the structure ofF−+(α, β) =
E−

[
e−αT1+iβS1 ;J1 ∈+

]
andF−−(α, β) = E−

[
e−αT1+iβS1 ;J1 ∈−

]
. The time-reversed counterpart

is written asF̂ (α, β), i.e., F̂ (α, β) := #F (α, β). Note that in particularP̂ J = #P J . The iden-
tity #F̂ (α, β) = F (α, β) is frequently used in the sequel. Givenj ∈ I+, we writeFjk(α, i∞) for

limβ→∞ Fjk(α, iβ) = pJ
jkE[e−ασjk

;U jk = 0], thereby also definingF+−(α, i∞) andF++(α, i∞).

2.3 The ladder heights ofS.

The goal of this subsection is to characterize thePk-distribution of(S, T, J) at the first strict ascending
ladder epoch ofS and at its first strict descending ladder epoch. We do not impose conditions on the drift
of S yet.

The first strict ascending ladder epoch and the first weak descending ladder epoch ofS are defined
as

τ+ = inf{n ≥ 1 : Sn > 0}, τ− = inf{n ≥ 1 : Sn ≤ 0}.

Its first strict descending ladder epoch, for which the weak inequality is replaced by a strict inequality, is
denoted bỹτ−.
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The distribution of (Sτ+ , Tτ+ , Jτ+).

In order to facilitate the investigation of the ascending ladder structure of(S, T, J), we first prove a
useful lemma related toτ−. For notational convenience, we define the matrixP̂ α = {P̂α

jk : j, k ∈ I} as

P̂ α := Ê
[
e−αTτ

− ;Jτ−

]
.

This matrix admits a block form as described in Section 2.2. Ageneral remark is that, when integrating
a defective random variable, we only carry out the integration over the set where the random variable is
both finite and well-defined: in the above definition ofP̂ α, it is tacitly assumed thatτ− <∞.

Lemma 2.1 Suppose that Assumption 2.1 holds. Forα ≥ 0, β ∈ R, we have

#Ê
[
e−αTτ

−
+iβSτ

− ;Jτ−

]
=

(
F++(α, i∞) F+−(α, i∞)

diag
(

λα

λα+iβ

)
#P̂ α

−+ diag
(

λα

λα+iβ

)
#P̂ α

−−

)

Proof. After recalling thatτ− is aweakladder epoch, it is immediate that forα ≥ 0, j ∈ I, k ∈ I+,

Êj

[
e−αTτ

−
+iβSτ

− ;Jτ− = k
]

= p̂J
jkE

[
e−ασkj

;Ukj = 0
]

= F̂jk(α, i∞).

Hence, it remains to calculate

Ê
[
e−αTτ

−
+iβSτ

− ;Jτ− ∈−
]

= Êα
[
eiβSτ

− ;Jτ− ∈−
]
.

To find an expression for this quantity, we directly apply theidea of Lemma VIII.5.1 of Asmussen [6],
as follows. Evidently, forj ∈ I, k ∈ I−, we have

P̂
α
j

(
Sτ− < −x, Jτ− = k

)
=

∞∑

n=1

P̂
α
j

(
Sτ− < −x, τ− = n, Jτ− = k

)
.

Conditioning onSn−1 and using Assumption 2.1, we see that the summands equal

Ê
α
j

[
µα

ke
−λα

k
(x+Sn−1); τ− > n− 1, Jτ− = k

]
= e−λα

k
x
Ê

α
j

[
µα

ke
−λα

k
Sn−1 ; τ− > n− 1, Jτ− = k

]
,

since the value of then-th increment should (in absolute terms) be larger thanx + Sn−1. Importantly,
this is exponential inx, so that we obtain

Ê
α
j

[
eiβSτ

− ;Jτ− = k
]

=
λα

k

λα
k + iβ

∞∑

n=1

Ê
α
j

[
µα

ke
−λα

k
Sn−1 ; τ− > n− 1, Jτ− = k

]
.

The latter sum is calculated by insertingβ = 0 into this identity. �

The above lemma requires knowledge of (submatrices of)#P̂ α. The following proposition gives a
fixed-point equation for these matrices, so that they can be found numerically. WriteF α

++(dx) for the
measure-valued(I+ × I+)-matrix with element(j, k) equal topJ

jkP
α(U jk ∈ dx) for j, k ∈ I+, and

defineF α
+−(dx) similarly.

Proposition 2.1 For α ≥ 0, we have

#P̂ α
−− = diag (µα)P J

−− +

∫

(0,∞)
e

#Q̂α
−−

x #P̂ α
−+(I++ − F++(α, i∞))−1F α

+−(dx),

#P̂ α
−+ = diag (µα)P J

−+ +

∫

(0,∞)
e

#Q̂α
−−

x #P̂ α
−+(I++ − F++(α, i∞))−1F α

++(dx),

where integration should be understood as componentwise integration, and#Q̂α
−− is specified by

#Q̂α
−− = −

[
I−− − #P̂ α

−+ (I++ − F++(α, i∞))−1 F+−(α, i∞) − #P̂ α
−−

]
diag (λα) .
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Proof. Write τ−(x) := inf{n > 0 : Sn ≤ −x} for x ≥ 0. For j ∈ I andk ∈ I−, we have by the
Markov property

P̂α
jk ≡ P̂

α
j (Jτ− = k) = p̂J

jkµ
α
k +

∑

ℓ∈I+

p̂J
jℓ

∫

(0,∞)
P

α(U ℓj ∈ dx)P̂α
ℓ (Jτ−(x) = k).

Note that the integration interval forU ℓj is (0,∞), because ifU ℓj were 0, thenJτ− would be inI+. The
claims follow after showing that

P̂
α
ℓ (Jτ−(x) = k) =

∑

m∈I+

F̂ℓm(α, i∞)Pα
m(Jτ−(x) = k) +

∑

j∈I−

P̂
α
ℓ (Jτ− = j)

[
eQ̂

α
−−

x
]
jk
,

where

Q̂α
−− = −diag (λα)

[
I−− − F̂−+(α, i∞)

(
I++ − F̂++(α, i∞)

)−1
P̂ α

+− − P̂ α
−−

]
.

To this end, note thatτ−(x) is nondecreasing inx. Thefirst-passageprocess{Jτ−(x) : x ≥ 0} given

Jτ− = j is a (defective) Markov process underP̂
α
ℓ with values inI−, cf. Assumption 2.1. It suffices to

prove thatQ̂α
−− is its intensity matrix. For ease we first concentrate on the case for which the distributions

of theU jℓ do not have an atom at zero. After an exponentially distributed time with parameterλα
j , the

first-passage process then jumps to a−-pointk ∈ I− with probability P̂α
jk (wherej = k is allowed). For

the general case whereU jℓ may have an atom at zero, we have to take into account the pathsin which
S stays at the same level for a while before enteringk ∈ I−. This procedure leads to the given intensity
matrix. �

Our next result is a nonlinear system for the matrixKα
−−, where

Kα
−− := diag(λα) #Q̂α

−−diag(λα)−1. (3)

SinceQ̂α
−− is the intensity matrix of the first-passage (Markov) process of the time-reversed process as

detailed in the proof of Proposition 2.1,Kα
−− is the intensity matrix for the last-passage process of the

original process. To state the nonlinear system, we define for β ∈ R,

F+	−(α, β) := (I++ − F++(α, β))−1 F+−(α, β),

andF α
+	−(dx) is the measure for whichβ 7→ F+	−(α, β) is the characteristic function. These notions

relate to the increment in the ‘vertical direction’, when starting in a+-point, until the epoch that a−-point
is reached. For simplicity we only prove uniqueness ifS drifts to+∞ or−∞. We write

H+ =

{
{β ∈ C : ℜ(β) > 0} if limn→∞ Sn = +∞;
{β ∈ C : ℜ(β) ≥ 0} if limn→∞ Sn = −∞.

(4)

Corollary 2.1 For α ≥ 0, the matrixKα
−− solves the nonlinear system

Kα
−− + diag(λα)

(
I−− − diag(µα)P J

−−

)
−

∫

[0,∞)
eK

α
−−

xdiag(µαλα)P J
−+F

α
+	−(dx) = 0−−.

The solution is unique within the class of matrices with eigenvalues inH+.

Proof. The idea of the proof is to slightly modify the process without changing the (time-reversed) first-
passage process (and thusKα

−−). Indeed, interpret subsequent+-points as a single+-point; one then
obtains a different discrete-time process, withF+−(α, β) replaced byF+	−(α, β). Importantly, for this
‘new’ J we have thatP J

++ = 0++, so that#P̂ α
−+ = diag(µα)P J

−+ by Proposition 2.1. The formula for
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#Q̂α
−− in this proposition then immediately leads to the desired matrix equation forKα

−−. The proof of
uniqueness is deferred to the appendix, see Corollary A.1. �

It is interesting to observe that, according to Corollary 2.1 and its proof, we may ‘lump’ subsequent
+-points and assume without loss of generality thatP J

++ = 0++ in order to calculateKα
−−. This

lumping can also be used to compute#P̂ α
+− and #P̂ α

−− with Proposition 2.1, butonly for α = 0.

There are several ways to extract algorithms for determining #P̂ α
+−,

#P̂ α
−−, andKα

−− from Propo-
sition 2.1 and Corollary 2.1. For instance, Corollary 2.1 can be interpreted as a fixed-point equation
Kα

−− = ϕ(Kα
−−) for some matrix-functionϕ. This suggests to fix an initial matrixKα,0

−−, and then use
the recursionKα,n+1

−− = ϕ(Kα,n
−−) to characterize a sequence of matrices that converges toKα

−−. We
refer to Asmussen [5, Sec. VI.2], Miyazawa [32, Sec. 3], or Takada [42, Sec. 4] for further details on this
technique. One difficulty that needs to be overcome is the calculation of matrix exponentials, see [34]
for a survey of available methods. It is not our aim to devise fast algorithms for computing the matrix
Kα

−−, and we shall therefore not address these algorithmic properties here. An alternative method for

determiningKα
−− (and thus#P̂ α

+− and #P̂ α
−−) is discussed in Appendix A.

The next proposition characterizes thePk-distribution of(Sτ+ , Tτ+ , Jτ+). The main ingredient is the
celebrated Wiener-Hopf factorization.

Proposition 2.2 For α ≥ 0, β ∈ R with (α, β) 6= 0, we have

E
[
e−αTτ++iβSτ+ ;Jτ+

]
= I −

(
I − #Ê

[
e−αTτ

−
+iβSτ

− ;Jτ−

])−1
(I − F (α, β)),

where nonsingularity is implicit.

Proof. Write Ĝ(α, β) := Ê[e−αTτ
−

+iβSτ
− ;Jτ− ]. The statement is the Wiener-Hopf factorization (e.g.,

[6, Thm. XI.2.12]) for the Markov-additive processS under the measurePα, providedI − #Ĝ is non-
singular. This requirement is equivalent to nonsingularity of I − Ĝ.

To see that this matrix is nonsingular, we exploit the fact that Ĝjk is the transform of a nonlattice
distribution forj ∈ I, k ∈ I−. Therefore, we have|Ĝjk(α, β)| < P̂ 0

jk for (α, β) 6= (0, 0), see, e.g.,

Theorem 6.4.7 of Chung [14]. As a result,I − Ĝ is a strictly diagonally dominant matrix:

∑

k∈I

∣∣∣Ĝjk(α, β)
∣∣∣ <

∑

k∈I+

p̂J
jkP(Ukj = 0) +

∑

k∈I−

P̂ 0
jk ≤ 1,

where the last inequality follows from the fact thatSτ− has a (possibly defective) distribution, see
Lemma 2.1. �

The distribution of (Sτ̃− , Tτ̃− , Jτ̃−).

We now turn to our second aim of this subsection, the characterization of the distribution of(Sτ̃− , Tτ̃− , Jτ̃−).
This turns out to be simpler than the analysis of(Sτ+ , Tτ+ , Jτ+); particularly, Wiener-Hopf techniques
are not required here. We omit all proofs, since similar arguments apply as before.

In the context of strict decreasing ladder heights, a prominent role is played by the matrix

P α
+− := E+[e−αTτ̃

− ;S1 > 0, Jτ̃−−1 ∈−].

The indices in this expression should be compared to those inthe definition ofP̂ α. We also set

P α
+	− := (I++ − F++(α, i∞))−1 [P α

+−diag(µα)−1 + F+−(α, i∞)
]
.
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The analog of Lemma 2.1 follows immediately from these definitions: forα ≥ 0, β ∈ R, we have

E
[
e−αTτ̃

−
+iβSτ̃

− ;Jτ̃−

]
=


 P α

+	−diag
(

µαλα

λα+iβ

)
P J
−+ P α

+	−diag
(

µαλα

λα+iβ

)
P J
−−

diag
(

µαλα

λα+iβ

)
P J
−+ diag

(
µαλα

λα+iβ

)
P J
−−


 .

We continue with a result in the spirit of Proposition 2.1, which can be proved along the same lines.

Proposition 2.3 For α ≥ 0, we have

P α
+− =

∫

(0,∞)
F α

++(dx)P α
+	−e

Qα
−−

xdiag(µα) +

∫

(0,∞)
F α

+−(dx)eQ
α
−−

xdiag(µα),

whereQα
−− is specified by

Qα
−− = −diag (λα)

[
I−− − diag(µα)P J

−− − diag(µα)P J
−+P

α
+	−

]
.

We next turn to the analog of Corollary 2.1, which can be proven along the same lines. When
inspecting the differences between the two corollaries, wefirst note that they are remarkably similar.
Whereas theKα

−−-matrices are always thefirst matrices in each of the terms, theQα
−−-matrices always

appearlast. In Appendix A, we show that this has a specific reason. The claimed uniqueness follows
from Corollary A.1.

Corollary 2.2 For α ≥ 0, the matrixQα
−− solves the nonlinear system

Qα
−− + diag(λα)

[
I−− − diag(µα)P J

−− −

∫

[0,∞)
diag(µα)P J

−+F
α
+	−(dx)eQ

α
−−

x

]
= 0−−.

The solution is unique within the class of matrices with eigenvalues inH+.

2.4 The distribution of (S, T , J).

In this section, we studyS (jointly with T , J), assuming thatS drifts to −∞. In fact, throughout this
subsection, we suppose thatπ′

JES1 < 0. We remark that, with the only exception of Lemma 2.3, all the
results also hold under the weaker assumption thatS drifts to−∞. Our main tools are the ladder-height
results obtained in the previous subsection.

The following theorem expresses the transform of(S, T , J) in terms of the matrix characterized in
Lemma 2.1 and the (still unknown) vectorP (S = 0). Observe that the matrices#P̂ α

−− and #P̂ α
−+

required in Lemma 2.1 can be found with Proposition 2.1.

Theorem 2.1 For α ≥ 0, β ∈ R with (α, β) 6= (0, 0), we have

E
[
e−αT+iβS;J

]
= (I − F (α, β))−1

(
I − #Ê

[
e−αTτ

−
+iβSτ

− ;Jτ−

])
diag

(
P (S = 0)

)
.

Proof. By the Markov property, we have forα ≥ 0 with (α, β) 6= (0, 0), β ∈ R,

E
[
e−αT+iβS ;J

]
=

(
I −E

[
e−αTτ++iβSτ+ ;Jτ+

])−1
diag (P (τ+ = ∞))

= (I − F (α, β))−1
(
I − #Ê

[
e−αTτ

−
+iβSτ

− ;Jτ−

])
diag

(
P (S = 0)

)
,

where the second equality follows from Proposition 2.2. Thenonsingularity ofI−F (α, β) follows from
(strict) diagonal dominance, cf. the proof of Proposition 2.2. �
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There is a direct, insightful interpretation of Theorem 2.1in terms of a last-passage process, which
is used on several occasions in this paper, inspired by Kennedy’s interpretation [26] of the Wiener-Hopf
factorization. First note that the theorem states thatE[e−αT+iβS ;J ] equals

∞∑

n=0

F n(α, β)diag(P (S = 0)) −

∞∑

k=0

F k(α, β) #Ê
[
e−αTτ

−
+iβSτ

− ;Jτ−

]
diag(P (S = 0)). (5)

Clearly, then-th summand in the first term can be interpreted as the transform of (Sn, Tn, Jn) on the event
{supm≥n Sm = Sn}. If the maximum is attained atTn, this is preciselyE[e−αT+iβS ;J ]. However, if
this is not the case, we have to subtract the contribution dueto the fact that there is anℓ < n for which
Sℓ ≥ Sn. In that case, writeSn = Sk + (Sn − Sk), wherek = sup{ℓ < n : Sℓ ≥ Sn}, so thatn
is now a so-calledlast-passageepoch for the process with(k, Sk) as the origin. Lookingbackwardin
time, starting from(n, Sn), k is a first weak descending ladder epoch. The argument is completed by
exploiting the Markov property. Partitioning with respectto the last-passage epoch is sometimes called
the Beneš-method [11].

It is insightful to give the complete argument forα = 0 in formulas. The terms that need to be
subtracted (because the maximum occurred earlier) are

∞∑

n=0

E
[
eiβSn ;∀m ≥ n : Sm ≤ Sn,∃m < n : Sm ≥ Sn, Jn

]

=
∞∑

k=0

∞∑

n=k+1

E

[
eiβSk+iβ(Sn−Sk); sup

m≥n

Sm = Sn, Sk ≥ Sn, sup
k<ℓ<n

Sℓ < Sn, Jn

]
,

where the equality is justified by the fact that the events aredisjoint as a result of the partitioning with
respect to the last-passage epoch. Now note that the double sum is indeed the second sum in (5) for
α = 0.

Theorem 2.1 implies that, to computeE[e−αT+iβS ], only the determination of the vectorP (S = 0)
is left. Before giving results onP (S = 0), however, we first discuss some consequences of Theorem 2.1.
Let us define forα, β ≥ 0,

D−−(α, β) := βI−− − diag(λα)
[
I−− − diag(µα)P J

−−

− diag(µα)P J
−+ (I++ − F++(α, iβ))−1F+−(α, iβ)

]
.

It is instructive to derive the following result with the above interpretation of Theorem 2.1: consider the
discrete-time process only at−-points.

Corollary 2.3 For α, β ≥ 0 withD−−(α, β) nonsingular, we have

E−

[
e−αT−βS ;J ∈−

]

= D−−(α, β)−1

[
βI−− − diag (λα)

(
I−− − diag (µα)P J

−+

× (I++ − F++(α, iβ))−1 F+−(α, i∞) − #P̂ α
−−

)]
diag

(
P−(S = 0)

)
.

Proof. The claim (with characteristic functions instead of Laplace transforms) follows from(I −
F (α, β))−1

−+ = (I − F (α, β))−1
−−F−+(α, β)(I++ − F (α, β))−1 and some elementary linear algebra.

Since all characteristic functions involved are well-defined whenβ is replaced byiβ, we obtain the
claim. �
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If P J
++ = 0++, using the second matrix equation of Proposition 2.1, the claim in this corollary can

be reformulated in the following interesting form:

E−

[
e−αT−βS;J ∈−

]
= D−−(α, β)−1

[
βI−− +Kα

−−

]
diag

(
P−(S = 0)

)
. (6)

Our next aim is to findP (S = 0). The following lemma gives two matrix equations that must be
satisfied byP (S = 0).

Lemma 2.2 P (S = 0) satisfies the system

P+(S = 0) = F++(0, i∞)P+(S = 0) + F+−(0, i∞)P−(S = 0),

P−(S = 0) = #P̂ 0
−+P+(S = 0) + #P̂ 0

−−P−(S = 0).

Proof. The claim follows upon right-multiplication of the statement in Theorem 2.1 by1 and choosing
α = β = 0. �

The two equations in the lemma can be described as follows. The first equation considersP+(S = 0)
by conditioning on the first step(S1, J1) and using the Markov property;J1 can both be a+-point or
a −-point, butS1 cannot strictly increase. The interpretation of the secondequation is slightly more
complicated, and follows from arguments reminiscent of theinterpretation of Theorem 2.1. Again, the
idea is to partition with respect to the last-passage epochℓ := inf{n : Sn = supm≥n Sm}, which is
either a+-point or a−-point. On the event{S = 0}, starting from(ℓ, Sℓ) and looking backward in
time, zero is a first descending ladder epoch. On the other hand, looking forward in time from(ℓ, Sℓ),
the process cannot have a strict ascending ladder epoch. Note thatℓ fails to be a stopping time.

We briefly pause our analysis ofP (S = 0) to record the following Pollaczek-Khinchine type formula
for S.

Corollary 2.4 For β > 0 withD−−(0, β) nonsingular, we have

E−e
−βS = βD−−(0, β)−1P−(S = 0).

Proof. The corollary is a consequence of Corollary 2.3 and Lemma 2.2. �

We now investigate to what extend the system of equations in Lemma 2.2 determinesP (S = 0).
First, sinceI++ − F++(0, i∞) is always nonsingular by assumption, the first formula showsthat it
suffices to findP−(S = 0) instead of the larger vectorP (S = 0). Unfortunately, the whole system of
equations in Lemma 2.2 isalwayssingular. More precisely, using (3) and Proposition 2.1, wereadily
obtain that

K0
−−P−(S = 0) = 0−. (7)

The following proposition shows that this determinesP−(S = 0) (and thereforeP (S = 0)) up to a
constant.

Proposition 2.4 The matrixK0
−− has the following properties:

1. zero is a simple eigenvalue ofK0
−−, and the otherN− − 1 eigenvalues have strictly negative real

parts, and

2. if N− > 1, then diag(λ0)−1πJ(−) and P−(S = 0) are left and right eigenvectors ofK0
−−

respectively, corresponding to the eigenvalue zero.
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Proof. For the first property, it suffices to consider the matrixQ̂0
−−, which is similar toK0

−−. The matrix

Q̂0
−− inherits its irreducibility fromP J , and since it is an intensity matrix of a (nondefective) Markov

process, the assertion follows from standard Perron-Frobenius theory.
The ‘right eigenvector’ part of the second claim follows from (7), and the ‘left eigenvector’ part

translates tôQ0
−−1− = 0−. �

Proposition 2.4 shows that one more equation is needed to fully specifyP−(S = 0), and this equation
is given in the following lemma. Letπ− be the uniqueI−-probability vector satisfying

π′
−diag(λ0)

(
P J
−− + P J

−+

(
I++ − P J

++

)−1
P J

+−

)
= π′

−diag(λ0); (8)

in fact,π− is proportional todiag(λ0)−1πJ(−).

Lemma 2.3 We have

π′
−P−(S = 0) = 1 − π′

−diag(λ0)P J
−+

(
I++ − P J

++

)−1
E+S1.

This equation is independent of theN− − 1 independent linear equations stemming from (7).

Proof. The idea is to premultiply the expression forP−(S = 0) in Corollary 2.4 byπ′
−, to divide both

sides byβ, and then letβ → 0. By definition ofπ−, this immediately yields thatπ′
−P−(S > 0) equals

lim
β→0

1

β
π′
−diag

(
λ0
)
P J
−+

[(
I++ −P J

++

)−1
P J

+− − (I++ − F++(0, iβ))−1F+−(0, iβ)
]
E−e

−βS .

It is not hard to see that this equalsπ′
−diag

(
λ0
)
P J
−+E+Sγ− , whereγ− := inf{n ≥ 1 : Jn ∈ I−}. To

computeE+Sγ− , we condition on the first step to see that the first claim follows:

E+Sγ− = E+S1 + P J
++E+Sγ− ,

The independence of the otherN− − 1 equations is a consequence of the fact that

π′
−diag(λ0)P J

−+

(
I++ − P J

++

)−1
E+S1 < 1,

due to the stability constraintπ′
JES1 < 0. �

2.5 The distribution of (S, T , J).

In this subsection, we suppose thatπ′
JES1 > 0, so thatS drifts to +∞. We are interested in the

minimum ofS and related quantities.
To interpret the result, it is important to note that the matrix βI−− −Qα

−− is always nonsingular for
β ≥ 0, sinceQα

−− is a defective intensity matrix.

Theorem 2.2 For α, β ≥ 0, we haveJ ∈ I+ and

E
[
e−αT+βS;J ∈+

]
=

[(
I++

0−+

)
+

(
P α

+	−

I−−

)
(βI−− −Qα

−−)−1diag (µαλα)P J
−+

]

× diag
(
1+ − P 0

+	−1−

)
.

In particular, for j ∈ I andk ∈ I+, we have the matrix-exponential form

Pj(S < x;J = k) =
(
1 − e′kP

0
+	−1−

)
e′j

(
P 0

+	−

I−−

)
e−Q

0
−−

xdiag(λ0)P J
−+ek,

wherex ≤ 0.
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Proof. The Markov property shows that forα, β ≥ 0,

E+

[
e−αT+βS ;J ∈+

]
= P α

+	−E−

[
e−αT+βS;J ∈+

]
+ diag(P+(S = 0))

and

E−

[
e−αT+βS;J ∈+

]
= diag

(
µαλα

λα + β

)
P J
−+E+

[
e−αT+βS ;J ∈+

]

+ diag

(
µαλα

λα + β

)
P J
−−E−

[
e−αT+βS ;J ∈+

]
.

Substitution of the first equation in the second yields, withthe expression forQα
−− in Proposition 2.3,

E−

[
e−αT+βS ;J ∈+

]
=
(
βI−− −Qα

−−

)−1
diag (µαλα)P J

−+diag(P+(S = 0)).

The proof is finished after observing thatP+(S = 0) = 1+ −P 0
+	−1−. Note that this vector is nonzero

as a result of the drift condition. �

3 Markov-additive processes and their extremes.

In this section, we study the extremes of a continuous-time Markov-additive processX with nonnegative
jumps and finitely many background states. Loosely speaking, such a process is characterized by a
number of Lévy processes (with nonnegative jumps)Z1, . . . , ZN and a continuous-time Markov process
with state space{1, . . . , N}; X behaves asZj when the Markov process is in statej. Our goal is to
find the Laplace transform of the maximum and minimum ofX, jointly with the epoch at which they are
attained and the state of the Markov process at that moment.

We first give a precise definition of the process under study (Section 3.1). Section 3.2 introduces
an embedded processthat falls in the framework of Section 2, so that the maximum of the embedded
process equals the maximumX of the original process. This embedding facilitates the computation
of the desired transform, see Section 3.3. For the minimum, asimilar procedure can be followed; the
analysis ofX may be found in Section 3.4.

3.1 Definitions and assumptions.

A continuous-time Markov-additive process{(X(t), I(t)) : t ≥ 0} is defined on some probability
space(Ω′,F ′,P) and has càdlàg paths with values in(R, {1, . . . , N}). We only define Markov-additive
processes with nonnegative jumps and a finite number of background states, but we refer to the classical
papers [2, 15, 36] for the construction and properties of general Markov-additive processes.

UnderP, {I(t) : t ≥ 0} is a (finite-state) continuous-time Markovian background process, which
stays in statej for an exponentially(qj ) distributed amount of time, and then jumps according to some
transition matrixPI . We allow I to jump to thesamestate. We assume thatI is irreducible, so that
there is a unique stationary distributionπI (i.e., π′

I diag(q)PI = π′
I diag(q)). While I(t) = j, the

processX(t) behaves underP as a spectrally positive (i.e., without negative jumps) Lévy processZj,
with Laplace exponent

ψ−Zj(β) := log E exp(−βZj(1)) =
1

2
σ2

jβ
2 − cjβ −

∫

(0,∞)

(
1 − e−βy − βy1(0,1)(y)

)
Πj(dy),

where theLévy measureΠj is such that
∫
(0,∞)(1 ∧ y2)Πj(dy) < ∞, and alsocj ∈ R andβ, σj ≥ 0. In

particular,X(0) = 0. The reason for writingψ−Zj instead ofψZj is that we try to follow the notation
of Bertoin [12, Ch. VII] as closely as possible. Letψ−Z(β) be the vector with elementsψ−Zj(β),
j = 1, . . . , N .

13



We need some further notation related toψ−Zj , wherej is such that the sample paths ofZj are
not monotone. Then we haveψ−Zj(β) → ∞ asβ → ∞. Moreover, by Hölder’s inequality,ψ−Zj is
strictly convex. LetΦ−Zj(0) be the largest solution of the equationψ−Zj(β) = 0, and defineΦ−Zj

(the ‘inverse’ ofψ−Zj ) as the unique increasing functionΦ−Zj : [0,∞) → [Φ−Zj(0),∞) such that
ψ−Zj(Φ−Zj(β)) = β for β > 0.

When the background processI jumps fromj to k, the processX jumps according to some distribu-
tionHjk on [0,∞). The matrix of the Laplace transforms corresponding to these ‘environmental jumps’
is written asH, i.e., element(j, k) of the matrixH(β) equals

∫
[0,∞) e

−βxHjk(dx).
In the spirit of Section 2.2, we use the matrix notation

E

[
e−βX(t); I(t)

]
:=
{

Ej

[
e−βX(t); I(t) = k

]
: j, k = 1, . . . , N

}
,

and similarly for other quantities thanX(t). We draw attention on the difference betweenE, the matrix
version of the ‘continuous-time’ meanE corresponding toP, andE, the matrix version of the ‘discrete-
time’ meanE corresponding toP.

Using this matrix notation, the definition of(X, I) entails thatE
[
e−βX(t); I(t)

]
is given byetψ−X(β),

where
ψ−X(β) = diag(ψ−Z(β)) − diag(q)

(
I − PI ◦H(β)

)
, (9)

with ◦ denoting componentwise (Hadamard) matrix multiplication. Note that for instance Asmussen [6]
uses a slightly different (yet equivalent) representation, but ours is more convenient in the context of this
paper. The representation in (9) can be proven along the lines of the proof of Proposition XI.2.2 in [6],
by setting up a differential equation forEj [e

−βX(t); I(t) = k].
Each of the statesj = 1, . . . , N can be classified as follows. Ifσj = 0 andcj ≥ 0, we call j a

subordinator state. Special cases arezero-drift states(σj = cj = 0 andΠj ≡ 0), compound Poisson
states(σj = cj = 0, Πj(R+) ∈ (0,∞)), andstrict subordinator states1 (all other subordinator states). If
σj = 0, cj < 0, andΠj(R+) ∈ (0,∞), we callj anegative-drift compound Poisson state. We say thatj
is anegative-driftstate ifσj = 0, cj < 0, andΠj ≡ 0. The other states are calledBrownian states; these
are characterized by eitherσj > 0 or cj < 0, Πj(R+) = ∞. Therefore, ifj is a Brownian state, it is not
necessary thatZj contains a Brownian component, but the terminology is convenient.

There is no one-to-one correspondence betweenψ−X and tuples(ψ−Z , q,P
I ,H). For instance,

consider the situation thatZj corresponds to the sum of a Brownian motion and a compound Poisson
process. Then one could equivalently do as if there are environmental jumps at the jump epochs of the
Poisson process; by also adapting the transition matrix, one obtains an alternative description of the same
stochastic process.

Consequently, sinceI is allowed to make self-transitions, without loss of generality we can assume
that there are neither compound Poisson states nor negative-drift compound Poisson states. Indeed,
these states can be replaced by zero-drift or negative-drift states, provided theHjj andqj are changed
appropriately. Throughout, we suppose that there is at least one negative-drift state or Brownian state
after this simplification (ifX drifts to−∞, then this is a consequence of the spectral positivity).

The above observations allow a partitioning of the states1, . . . , N of the background process into

(i) the strict subordinator states, labeled ‘s’;

(ii) the zero-drift states, labeled ‘z’;

(iii) the negative-drift states, labeled ‘n’; and

(iv) the Brownian states, labeled ‘B’.

1It is customary in the literature to use the termstrict subordinatorfor a subordinator with an infinite lifetime; here, it stands
for a strictly increasing subordinator.
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In the following, wealwaysassume that the state space{1, . . . , N} of I is partitioned in the orders–
z–n–B. This allows us to use block matrix notation as in Section 2.2. Sometimes, it is unnecessary to
distinguish betweens- andz-states, and it is therefore convenient to refer tos- andz-states ass-states.
If we use thiss-notation in block matrices, we suppose that the order iss–z. Similarly, we refer ton-
andB-states as∼-states, again preserving the order.

We also need another probability measure on(Ω′,F ′), denoted bŷP. UnderP̂, (X, I) is a Markov-
additive process with Laplace exponent

ψ̂−X(β) := diag(πI)
−1ψ′

−X(β)diag(πI). (10)

That is, working with(X, I) underP̂ amounts to working with thetime-reversedMarkov-additive pro-
cess under the measureP, and vice versa.

We define

X(t) := sup{X(s) : 0 ≤ s ≤ t},

F
X

(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)},

X(t) := inf{X(s) : 0 ≤ s ≤ t},

FX(t) := inf{s < t : X(s) = X(t) orX(s−) = X(t)}.

We also setI(t) := I(F
X

(t)) andI(t) = lims↑FX(t) I(s). It is our aim to study these quantities as

t → ∞, in which case we omit the time index. We study the jointP-distributions of(X,F
X
, I) (in

Section 3.3) and(X,FX , I) (in Section 3.4). We rely extensively on two fundamental properties of
Lévy processes, which we recall in the next subsection.

3.2 Intermezzo on Ĺevy processes.

In this intermezzo, we consider a Lévy processZ (i.e., there is no background process) with killing at an
exponentially distributed epoch. We leteq denote the killing epoch with mean1/q, and suppose that it is
independent ofZ. We also suppose that the process does not have negative jumps, that its paths are not
monotone, and that it is not a compound Poisson process. Notethat, in the terminology of the previous
subsection, Lévy processes arising from ‘Brownian states’ satisfy this property. Moreover, the inverse
Φ−Z of the Laplace exponent is then well-defined.

We start with two observations that actually hold in greatergenerality, see for instance [12, Ch. VI].

The quantitiesZ,F
Z
, Z, andFZ are defined similarly as forX. First, we have the interesting identities:

for α, β ≥ 0,

Ee−αF Z (eq)+βZ(eq) = Ee−αF Z (eq)
Ee−βZ(eq+α),

Ee
−α
(
eq−F

Z
(eq)

)
−β(Z(eq)−Z(eq))

= Ee
−α
(
eq−F

Z
(eq)

)

Ee−β(Z(eq+α)−Z(eq+α)),

which can be deduced from Equation (VI.1) in conjunction with Lemma II.2 and Proposition VI.4 of
Bertoin [12].

Moreover, due to Theorem VI.5(i) of [12], there are two ways of decomposing(eq, Z(eq)) into two
independentvectors:

1. • a vector(σ,U) := (F
Z
(eq), Z(eq)) related to the process till timeF

Z
(eq), and

• an independentsecond vector(τ,−D) := (eq − F
Z
(eq), Z(eq) − Z(eq)) related to the

process betweenF
Z
(eq) andeq.

2. • a vector(FZ(eq), Z(eq)) related to the process till timeFZ(eq) (this vector has the same
distribution as(τ,−D)), and
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• an independentsecond vector(eq − FZ(eq), Z(eq) − Z(eq)) related to the process between
timeFZ(eq) andeq (this vector has the same distribution as(σ,U)).

For applications of thissplitting at the maximum (or minimum), we refer to [17, 19] and references
therein. In the special case of no jumps, Asmussen [4] exploits this property in the context of Markov-
additive processes.

Due to the assumptions thatZ is spectrally positive and that its paths are not monotone,Z(eq+α) −
Z(eq+α) has an exponential distribution; see Theorem VII.4 of [12].In that case, the joint transforms
of the ‘upward’ part(σ,U) and ‘downward’ part(τ,−D) are known: forα, β ≥ 0, (α, β) 6= (0, 0), we
have

Ee−ατ−βD =
Φ−Z(q)

Φ−Z(q + α) + β
,

and if furthermoreβ 6= Φ−Z(q + α),

Ee−ασ−βU =
q (Φ−Z(q + α) − β)

Φ−Z(q) (q + α− ψ−Z(β))
. (11)

Here,ψ−Z is the Laplace exponent of−Z as defined in the previous subsection. The crucial observation
is that(τ,D) satisfies Assumption 2.1 withλα = Φ−Z(q + α) andµα = Φ−Z(q)/Φ−Z(q + α). This
property facilitates the application of the results of Section 2 in the context of continuous-time Markov-
additive processes, as we demonstrate in the next subsection.

3.3 The distribution of (X, F
X

, I).

We have collected all the necessary prerequisites to present an embedding that allows us to characterize

the distribution of(X,F
X
, I). It is our aim to apply the analysis of Section 2 to the embedded process,

and to reformulate the results in terms of the characteristics of the processX as defined in Section 3.1.
Throughout this subsection, we suppose thatπ′

IEX(1) < 0, but, as in Section 2, the majority of our
results only requires the weaker assumption thatX drifts to−∞ almost surely. This holds in particular
for our main result, Theorem 3.1.

To find the distribution of(X,F
X
, I), we do not monitor the full process(X, I), but we record time

and position at ‘special’ epochs only. Fors-states andn-states, these epochs are chosen as follows.

• The start of a sojourn time in ans-state or ann-state gives rise tos-pointsandn-pointsrespectively.
Note that, by right-continuity of the sample paths, the value of X at these epochs includes the
displacement due to a possible environmental jump.

• We also record the value ofX right beforethe end of the sojourn times ins-states andn-states.
The environmental jump at that epoch is nowexcluded.

ForB-states, we record the value ofX at three epochs.

• The first is the start of a sojourn time in these states. The resulting points are calledB-points.

• The second is the epoch for which the maximum within the sojourn time is attained. These points
are calledA-points.

• Finally, as for the other states, we record the valueright beforethe end of the sojourn time.

Note that we have thus constructed a discrete-time stochastic process fromX that still contains all in-
formation on the maximum ofX. We call this process theembedded process. Importantly, as a result
of the independence discussed in Section 3.2, the embedded process fits into the framework of Section 2
when the space-component of the embedded points is recordedin S and the time-component inT . The
embedding is illustrated in Figure 1; in the realization ofX, a negative-drift compound Poisson state has
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Figure 1: The left-hand diagram represents the processX with its embedding points, along with thestate
labels. The discrete-time embedded processS is given in the right-hand diagram, along with thepoint
labels.

been replaced by a negative-drift state with environmentaljumps and self-transitions. Note that some of
the embedding points remain unlabeled, since we do not need to refer to these points. As an aside, we
remark that the above embedding differs from an embedding recently introduced by Asmussenet al. [7]
for special Markov-additive processes.

Motivated by this embedding, we refer ton-points andA-points as−-points (as from these points the
process moves down), in accordance with the terminology of Section 2.2. The order isn − A. Observe
that wealwaysincorporate environmental-jump points into the embedded process, even if there are no
jumps with probability one. The value of the process is then simply left unchanged.

Application of this labeling shows that we have

λα :=

(
vec
(

qn+α
−cn

)

vec(Φ−Z(qB + α))

)
, µα :=


 vec

(
qn

qn+α

)

vec
(

Φ−Z(qB)
Φ−Z(qB+α)

)

 . (12)

The notation in (12) should be interpreted as follows. First, qn is the block vector ofq corresponding to
n-points; similarlycn is the block vector of the drift vectorc corresponding ton. Then(qn+α)/(−cn) is
the vector with elementj equal to(qn,j + α)/(−cn,j). The vectorqB is defined analogously toqn. With
k = 1, . . . , N being the index of thej-thB-state, thej-th element ofΦ−Z(qB + α) is Φ−Zk(qB,j + α).
The notation used in the definition ofµα should be read in a similar fashion.

It is our aim to find a characterization of(X,F
X
, I) which can be regarded as the analog of Corol-

lary 2.3. In principle, its Laplace transform can be deduced from the above embedding and the results of
Section 2. However, this leads to results in terms of the embedded process as opposed to the continuous-
time processX. It is our primary goal to obtain results in terms ofX, and for this we need some further
definitions related to displacements of the processX. Forα, β ≥ 0, we set

Fs	M(α, β) :=
(
αIss −ψ−Xss(β)

)−1
diag(qs)P

I
sM ◦ HsM(β),

whereψ−Xss is the(s, s)-block in the matrixψ−X and ‘M’ can be replaced by any of the blockss,
z, n, orB. The matricesFs	M(α, β) andFz	M(α, β) are defined similarly, withs replaced bys and
z respectively. It is convenient to abbreviaten-states andB-states as∼-states, and to impose the order
n−B in block matrices. Therefore, in particular,Fs	∼ characterizes the displacement in time and space
when we start in ans-state and stay ins-states until the background process jumps to a∼-state. The
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change in the position due to the latter environmental jump is included, but the environmental jump into
the firsts-state is not. This jump appears in the following definitions: we set forα, β ≥ 0,

F↑s	M(α, β) := PI
∼s ◦H∼s(β)Fs	M(α, β) + PI

∼M ◦H∼M(β),

where agains, z, n, or B can be substituted for ‘M’. The first term should be interpreted as zero if
there are nos-states. The measure-valued matricesFα

↑s	M
(dx) are defined similarly as in Section 2.3.

Importantly, we have now definedF↑s	∼
(α, β), which corresponds to the displacement in time and space

between theendof a sojourn time in a∼-state and thebeginningof a sojourn time in the next∼-state,
including both environmental jumps.

In analogy with the discrete case, the (Markovian) last-passage process ofX plays a key role in our
analysis. This process takes values in∼-states. It follows from the analysis in Section 2 that one can
associate a matrixKα

−− to the embedded process. Let us define

Kα
∼∼ := diag

(
q∼
µαλα

)
Kα

−−diag

(
q∼
µαλα

)−1

. (13)

The matrixKα
∼∼ plays a pivotal role in the remainder. It is therefore desirable to have a representation

for Kα
∼∼ in terms of the characteristics ofX, much like Corollary 2.1. This is presented in the next

proposition, whose proof relies on the spectral analysis ofAppendix A.

Proposition 3.1 For α ≥ 0, the matrixKα
∼∼ solves the nonlinear system

αI−− = (Kα
∼∼)2 diag

(
σ2
∼

2

)
+ Kα

∼∼diag(c∼)

−

∫

(0,∞)

(
I−− − eK

α
∼∼

y + Kα
∼∼y1(0,1)(y)

)
diag(Π∼(dy))

− diag(q∼) +

∫

[0,∞)
eK

α
∼∼

y diag(q∼)Fα
↑s	∼

(dy).

The solution is unique within the class of matrices with eigenvalues in the closed right complex halfplane.

Proof. Construct a ‘censored embedded’ process by monitoring the above discrete-time embedded pro-
cess only on−-points and the points immediately thereafter (from which there is a nonnegative jump).
In the notation of Section 2, we then haveN+ = N−, F++(α, β) = 0++, andF−−(α, β) = 0−−, while

F+−(α, β) = F↑s	∼
(α,−iβ)diag

(
E∼e

−αF
Z

(eq)+iβZ(eq)
)
,

F−+(α, β) = diag

(
µαλα

λα + iβ

)
.

Using the fact thatβI−− − diag(λα) equals

diag

(
µαλα

q∼

)
× [diag(ψ−Z∼∼(β)) − diag(q∼) − αI−−] diag

(
E∼e

−αF
Z

(eq)−βZ(eq)
)
, (14)

we readily find thatD−− from Section 2.4 is given by

D−−(α, β) = diag

(
µαλα

q∼

)[
diag(ψ−Z∼∼(β)) − diag(q∼)

(
I−− − F↑s	∼

(α, β)
)
− αI−−

]

× diag
(
E∼e

−αF
Z

(eq)−βZ(eq)
)
.
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The factorization identity (26) can therefore be rewrittenas

diag(ψ−Z∼∼(β)) − diag(q∼)
(
I−− − F↑s	∼

(α, β)
)
− αI−− = [βI−− + Kα

∼∼]M ′
−−(α, β), (15)

for some matrixM ′
−−(α, β) which is nonsingular ifℜ(β) ≥ 0. This factorization identity is the basis

of the ‘spectral’ approach advanced in Appendix A. Using (15), the reasoning in Appendix A can be
repeated verbatim to characterizeKα

∼∼ as the solution to the stated nonlinear system. In fact, the claim
follows from Corollary A.1 and its proof. �

If one recalls the representation of the Laplace exponent ofX in (9), the above nonlinear system
can be regarded as a matrix version of the equationα = ψ−Z(Φ−Z(α)). A spectral analysis reveals the
connection with this fixed-point equation, as detailed in the Appendix A. In fact, the appendix outlines
how a spectral analysis can also be used to findKα

∼∼ numerically, thereby complementing the discussion
in Section 4 of Asmussen and Kella [8].

Compared to Section 2, it is somewhat more involved to work with last-passage matrices in the gen-
eral Markov-additive setting, due to the presence of subordinator states and Brownian states. Therefore,
to formulate our next result, we set

Kα
−z :=

∫

(0,∞)
eK

α
∼∼

xdiag(q∼)Fα
↑s	z(dx)

and
Kα

−− := Kα
∼∼ −

(
Kα

−zFz	n(α,∞)diag(−cn)−1 0−B

)
.

In these definitions, we use the subindices ‘−z’ and ‘−−’ to indicate matrix dimensions, andnot to refer
to an embedding. We also define theα-independent matrices

Kzz := −diag(qz)
[
Izz − PI

zz ◦ Hzz(∞)
]
, Kzn := diag(qz)P

I
zn ◦Hzn(∞)diag(−cn)−1,

andKzA := 0zB . We remark that these matrices cannot be interpreted as intensity matrices related to
the last-passage process.

The following theorem is the main result of this subsection.It is the matrix version of (1), and should
be compared with (6). The presence of the matrixψ−X(β) − αI is anticipated in view of the Wiener-
Hopf factorization for general continuous-time Markov-additive processes by Kaspi [22, Thm. 3.28], but
our assumption of nonnegative jumps allows us to obtain a more explicit result.

Theorem 3.1 For α, β ≥ 0 with (ψ−X(β) − αI) nonsingular, we have

E

[
e−αF

X
−βX ; I

]

= (ψ−X(β) − αI)−1




0ss 0sz 0s−

0zs Kzz − αIzz Kz−

0−s Kα
−z βI−− + Kα

−−


 diag




0s

vz

v−


 ,

where the vectorsvz andv− are characterized in Lemma 3.1 below.

Proof. Define
C(α, β) := diag

(
Ee−αeq+iβZ(eq)

)
PI ◦ H(−iβ),

so that
(I −C(α, β))−1 = [αI −ψ−X(−iβ)]−1 diag(q + α− ψ−Z(−iβ)). (16)

First suppose thatI is a Brownian state. We need to show that

EM

[
e−αF

X
+iβX ; I ∈ B

]
= (ψ−X(−iβ) − αI)−1

M∼ [−iβI−B + Kα
∼B ] diag (vB) , (17)
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wherevB = vec(qB/Φ−Z(qB)) ◦ PA(S = 0) is given in terms of the embedded process, and ‘M’ can
be any of the background states. Since there is always a strictly positive jump between aB-point and
anA-point, we can use (6) by considering the embedded process only on −-points. This shows that the
left-hand side of (17) equals

(I −C(α, β))−1
M∼diag

(
E∼e

−αF
Z

(eq)+iβZ(eq)
)

diag(λα + iβ)−1[−iβI−B +Kα
−A]diag(PA(S = 0)).

We stress thatKα
−A refers to the embedded process. Some algebra in conjunctionwith (11), (13), and

(16) shows that (17) holds.
Next suppose thatI is a negative-drift state. We follow the reasoning used earlier, when deriving

Theorem 2.1 with Kennedy’s Wiener-Hopf interpretation. The maximumS∗ of the embedded process
should be in ann-point, after some number of steps, sayk∗. After k∗, the process should never exceed
S∗. We next subtract a term to compensate paths for whichk∗ is astrict last-passage epoch, so we use
Kα

−n instead ofKα
∼n. In analogy with the caseI ∈ B, this leads to the term

[αI −ψ−X(β)]−1
M∼ [βI−n + Kα

∼n] diag (vn) ,

wherevn = vec(−cn)◦Pn(S = 0). Finally, we also need to subtract the contribution of pathsfor which
there is az-point without environmental jump right beforek∗. It is readily seen that this contribution is
[αI −ψ−X(β)]−1

Mz Kzndiag(vn).
A similar term also plays a role whenI is a zero-drift state, which we study next. Setvz = Pz(S =

0). The ‘base’ term is− [αI −ψ−X(β)]−1
Mz [αIzz + diag(qz)]diag(vz), and the term to be subtracted to

correct forz points right beforek∗ now becomes[ψ−X(β) − αI]−1
Mz diag(qz)P

I
zz ◦ Hzz(∞)diag(vz).

Using the definition ofKα
−z, we readily find that the term corresponding tok∗ being astrict last-passage

epoch is[αI −ψ−X(β)]−1
M∼ Kα

−z diag(vz). �

We now show that the vectorsvz andv− can be found (up to a constant) as in Section 2.4. Indeed,
the following lemma casts Lemma 2.2 and Proposition 2.4 intothe general Markov-additive setting.

Lemma 3.1 The vectorsvz andv− have the following properties:

1. vz = −K−1
zz Kz−v−, and

2. if there is more than one∼-state, thenv− is a right eigenvector ofK0
∼∼ with corresponding

eigenvalue zero.

Proof. Sincevz = Pz(S = 0) andvn = vec(−cn) ◦ Pn(S = 0), application of Lemma 2.2 to the
discrete-time embedded process yields

vz = PI
zz ◦ Hzz(∞)vz + PI

zn ◦Hzn(∞)diag(−1/cn)vn,

which is readily rewritten asvz = −K−1
zz Kznvn, and this is the first assertion.

For the second claim, we obtainKα
−−P−(S = 0) = 0− by applying Proposition 2.4 to the embedded

process. Then we use (13) andv− = diag(q∼/λ
0)P−(S = 0). �

Next we formulate a result in the same spirit as Corollary 2.4, which immediately follows from
Theorem 3.1 and Lemma 3.1. It is the Markov-additive versionof (1) for α = 0. A closely related
formula has been obtained by Asmussen and Kella [8, Eq. (4.1)], who phrase their result in terms of the
reflected process and a local-time vector. The precise relationship between the two formulas is further
investigated in Section 4.2.

Corollary 3.1 For β > 0 withψ−X(β) nonsingular, we have

Ee−βX = βψ−X(β)−1

(
0s

v−

)
.
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The vectorv− is determined by Lemma 3.1 and the next normalization lemma,which is an analog
of Lemma 2.3. Note that this lemma corrects Equation (4.2) in[8].

Lemma 3.2 We have
−π′

IEX(1) = πI(∼)′v−.

Proof. SinceπI satisfiesπ′
I diag(q)PI = π′

I diag(q), Corollary 3.1 shows that forβ > 0,

1

β
π′

I

[
diag(ψ−Z(β)) − diag(q)

(
PI − PI ◦ H(β)

)]
Ee−βX = πI(∼)′v−.

Now let β → 0 to obtain that−π′
I

[
EZ(1) + diag(q)PI ◦

∫
xH(dx)

]
= πI(∼)′v−. Using Corol-

lary XI.2.9(b) and (the second equality in) Corollary XI.2.5 of Asmussen [6], it is not hard to see that the
left-hand side equals−π′

IEX(1). �

3.4 The distribution of (X, FX , I).

In this subsection, we study the minimum ofX if it drifts to +∞. More specifically, we establish the
analogs of Proposition 3.1 and Theorem 3.1. We supposethroughout this subsectionthatπ′

IEX(1) > 0.
As before, we do not monitor the full process(X, I), but we only record fors-states andn-states the

time and position at the start (leading tos-points andn-points, respectively) and immediately before the
end of the sojourn time, and forB-states in addition the minimum within the sojourn times (leading to
A-points). Note that the embedding is different from the one used in the previous subsection. In fact, in
view of the conventions in Section 2.2, the−-points are labeled differently:n-points andB-points are
now−-points. Since the underlying processX is the same as in the previous subsection, we continue to
refer ton-states andB-states (i.e., for the processX) as∼-states, and we still use the sameF-quantities
since these do not depend on the embedding.

For fixedα ≥ 0, a matrixQα
∼∼, related to the first-passage process for the embedded process,

plays a similar role asKα
∼∼ in the previous subsection. The characterization ofQα

∼∼ given in the next
proposition is the analog of Proposition 3.1.

Proposition 3.2 For α ≥ 0, the matrixQα
∼∼ solves the nonlinear system

αI−− = diag

(
σ2
∼

2

)
(Qα

∼∼)2 + diag(c∼)Qα
∼∼

−

∫

(0,∞)
diag(Π∼(dy))

(
I−− − eQ

α
∼∼

y + Qα
∼∼y1(0,1)(y)

)

− diag(q∼)

[
I−− −

∫

[0,∞)
Fα
↑s	∼

(dy)eQ
α
∼∼

y

]
.

The solution is unique within the class of matrices with eigenvalues in the open right complex halfplane.

Proof. The proof is similar to the proof of Proposition 3.1. Again weintroduce a censored embedded
process by only monitoring the embedded process on−-points and the points immediately thereafter.
Note that this results in a different censored embedded process than in the previous subsection, since the
underlying embedded processes differ. In the notation of Section 2, the censored embedded process has
N+ = N−, F++(α, β) = 0++, andF−−(α, β) = 0−−, while forα, β ≥ 0,

F+−(α, β) = diag
(
E∼e

−αF
Z

(eq)+iβZ(eq)
) [

PI
∼s ◦ H∼s(−iβ)Fs	∼(α,−iβ) + PI

∼∼ ◦ H∼∼(−iβ)
]
,

F−+(α, β) = diag

(
µαλα

λα + iβ

)
.
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For fixedα ≥ 0, the first-passage process for the embedded process is a (defective) Markov process, and
we writeQα

∼∼ for its intensity matrix.
In conjunction with (14), given the current embedding,D−− from Section 2.4 can be written as

D−−(α, β) = diag(u−)
[
diag(ψ−Z∼∼(β)) − diag(q∼)

(
I−− − F↑s	∼

(α, β)
)
− αI−−

]
,

for some (known) vectoru−. Factorization identity (27) can thus be rewritten as

diag(ψ−Z∼∼(β)) − diag(q∼)
(
I−− − F↑s	∼

(α, β)
)
− αI−− = N ′

−−(α, β) [βI−− + Qα
∼∼] ,

for some matrixN ′
−−(α, β) which is nonsingular ifℜ(β) ≥ 0. This factorization is the Markov-additive

anolog of (27), which is the starting point for the spectral analysis forQα
−− in Appendix A. The argu-

ments leading to Corollary A.1 and its proof can be repeated here. �

The preceding proposition generalizes the results in Section 5.3 of Miyazawa and Takada [33] and
Proposition 2(i) of Pistorius [37]. In comparison with Proposition 3.1, we note that the place of the
matricesQα

∼∼ andexp (Qα
∼∼x) is different: instead of premultiplied, they are now postmultiplied. This

is in line with the correspondence between Corollaries 2.1 and 2.2.

We need some further notation to give the Laplace transform of (X,FX , I). We define the measure
Fα

ss	∼
(dx) through its Laplace transform

Fss	∼(α, β) := diag
(
Ese

−αeq+iβZ(eq)
) [

PI
ss ◦ Hss(−iβ)Fs	∼(α, β) + PI

s∼ ◦Hs∼(−iβ)
]
,

and set

P̃α
s∼ =

∫

(0,∞)
Fα

ss	∼
(dx)eQ

α
∼∼

x. (18)

Our next result is the main result of this subsection.

Theorem 3.2 For α, β ≥ 0, we have

E

[
e−αF X+βX ; I

]
= diag




1s − P̃0
s∼1−

1z − Fz	∼(0,∞)1− − Fz	s(0,∞)P̃0
s∼1−

0−




+




P̃α
s∼

Fz	s(α,∞)P̃α
s∼ + Fz	∼(α,∞)
I−−


 (βI−− − Qα

∼∼)−1

× diag(µαλα)
(

0−s −diag(diag(λ0)−1Q0
∼∼1−)

)
.

Proof. Consider the censored embedding introduced in the proof of Proposition 3.2. It is readily seen
that

E∼

[
e−αF X+βX ; I ∈∼

]
= E−

[
e−αT+βS ;J ∈+

]
,

and the latter is readily found with Theorem 2.2. The other claims follow along the lines of the proof of
Theorem 2.2. �

We conclude this section with a relationship betweenQα
∼∼ andK̂

α

∼∼, which can be regarded as the
analog of (3). The matrix̂K

α

∼∼ is defined asKα
∼∼, but with the dynamics of the Markov-additive process

specified by the time-reversed Laplace exponentψ̂−X instead ofψ−X . The next lemma formalizes
the intuition that the last-passage matrices under the measure P̂ are closely related to the first-passage
matrices under the measureP.
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Lemma 3.3 For α ≥ 0, we have

Qα
∼∼ = diag (πI(∼))−1

[
K̂

α

∼∼

]′
diag(πI(∼)). (19)

Proof. First we note that, since their proofs rely on the appendix, to apply Propositions 3.1 and 3.2
we do not need thatX drifts to−∞ or +∞, respectively. The matrix̂K

α

∼∼ satisfies the system given
in Proposition 3.1, but withFα

↑s	∼
(dx) replaced by its time-reversed counterpartF̂α

↑s	∼
(dx). Using

F̂↑s	∼
(α, β) = diag (πI(∼))−1

F′
↑s	∼

(α, β)diag (πI(∼)) , the matrix on the right-hand side of (19) is

seen to satisfy the same matrix equation asQα
∼∼ given in Proposition 3.2. Uniqueness of its solution

proves the claim. �

4 The fluid queue: theory.

In this section, we use the theory developed in the previous sections to analyze a singlefluid queue. We
stress that our treatment of the single fluid queue is of crucial importance for understanding the network
results of Section 6. In a fluid queue, work (fluid) arrives at astorage facility, where it is gradually
drained; if the input temporarily exceeds the output capacity, then work can be stored in a buffer.

More precisely, the system dynamics of the fluid queue are as follows. Let{(A(t), I(t)) : t ≥ 0}
be a continuous-time stochastic process, defined on some measurable space, such that for anyt ≥ 0,
A(t) is the amount of work offered to the system in the interval[0, t] and I(t) is the state of some
background process at timet. The buffer can be interpreted as afluid reservoir, to which input is offered
according to theinput processA. The buffer is drained at a constant rater, i.e., a tap at the bottom of
the fluid reservoir releases fluid at rater as long as the buffer is nonempty. After the fluid is processed,
it immediately leaves the system. Throughout, we suppose that the buffer capacity is unlimited.

We writeW (t) for the amount of fluid in the buffer at timet, and call this thebuffer content. The
buffer-content process is also known as a (stochastic)storage process. A busy periodstarts when the
buffer becomes nonempty (i.e., the buffer content becomes positive). Theage of the busy periodat time
t, written asB(t), indicates how long ago a busy period started; in a formula, this means that

B(t) := t− sup{s ≤ t : W (s) = 0}.

It is our aim to study the distribution of(W (t), B(t), I(t)) in steady-state, i.e., ast → ∞, for a number
of different input processes. We abbreviateW (∞),B(∞), andI(∞) asW ,B, andI respectively; their
existence follows from assumptions that we impose later on.

4.1 Markov-modulated ON/OFF input.

Suppose that the input process corresponds to a single source that is driven by a background processI
that switches betweenN states. The transitions of the background process are governed by an irreducible
Markov chainJ , defined through the transition probability matrixP J := {pJ

jk : j, k = 1, . . . , N}; the
sojourn times in the each of theN states are specified below. Suppose thatJ and all other random objects
in this subsection are defined on the probability space(Ω,F ,P).

If the background process is in statej for j = 1, . . . , N − 1, it feeds work into the reservoir at a con-
stant rateRj < r. Since the fluid level decreases during these periods, we call the corresponding states
OFF-states. The lengths of the sojourn times in these states are all mutually independent. Moreover, the
sojourn time in OFF-statej is exponentially distributed with parameterqj .

If the source is in stateN , the so-calledON-state, the source generates work according to a generic
stochastic process{AON(t) : t ≥ 0}. In order to ensure that the buffer content does not decrease
(strictly) while the source emits fluid, we suppose thatAON(t) ≥ rt for any t ≥ 0 almost surely. The
ON-period is terminated after some period distributed as the generic random variableT (k) > 0 (‘killing
time’), independent ofAON. After this ON-period,I always makes a transition to an OFF-state (i.e.,J
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has no self-transitions in stateN ). We suppose thatET (k) <∞. In principle, the probability distribution
governing the transitions to OFF-states may depend on (the whole trajectory of)AON andT (k), but we
suppose for simplicity that this is not the case. The ON-periods are mutually independent, and also
independent of the OFF-periods.

To characterize the distribution of(W,B, I), we use an embedding and the theory from Section 2.
Let T (k)∗ be distributed as the elapsed time that the source is ON, if weobserve the system in steady
state in an ON-state. That is, it has the integrated-tail distribution

P(T (k)∗ > y) =
1

ET (k)

∫ ∞

y

P(T (k) > x)dx,

wherey ≥ 0. We also need the expected sojourn timebetweenON-states,EVOFF. Standard formulas
for moments of phase-type distributions show that

EVOFF = P J
N−

(
I−− − P J

−−

)−1
vec

(
1

q−

)
,

where the beginnings of the OFF-sojourn times and ON-sojourn times are labeled as−-points and+-
points respectively, as in Section 2. The quantityEVOFF plays an important role for the probabilitypk

that the source is in statek when the system is in steady state. We find that

pk =
EVOFF

EVOFF + ET (k)

πJ(k)

πJ(−)′vec(qk/q−)
, k = 1, . . . , N − 1; pN =

ET (k)

(EVOFF + ET (k))
. (20)

The stability condition of this model is

EAON(T (k))

EVOFF + ET (k)
+R′

−p− < r.

We write P̂ J = {p̂J
jk : j, k = 1, . . . , N} for the time-reversed transition matrix of the Markov

processJ , and we definêP such that(S, T, J) has the transition kernel

p̂((s, t, j), (s+dv, t+dw, k)) =

{
p̂J

jkP (U ∈ dv, σ ∈ dw) j = N and k = 1, . . . , N ;

p̂J
jkP

(
−Dj ∈ dv, τ j ∈ dw

)
j = 1, . . . , N − 1 and k = 1, . . . , N,

with

Ee−ασ−βU = E

[
e−αT (k)−β[AON(k)−rT (k)]

]
, Ee−ατ j−βDj

=
qj

qj + α+ β(r −Rj)
.

We next express the distribution of(W,B, I) in terms of the distribution of(S, T ).

Proposition 4.1 For k = 1, . . . , N − 1, ω, β ≥ 0, we have

E

[
e−ωW−βB; I = k

]
= pkÊke

−ωS−βT ,

and

E

[
e−ωW−βB; I = N

]
= pNE

[
e−(β−ωr)T (k)∗−ωAON(T (k)∗)

]
P̂ J

N−Ê−e
−ωS−βT .

Proof. The proof relies elements from regenerative-processes theory, cf. the construction used in Theo-
rem 4 in Kella and Whitt [24]. We here specialize to justW ; the proof of the stated result, which also
covers the age of the busy periodB as well as the state of the background processI, works analogously.
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• The classical Reich formula states that, denotingW (t) := −Â(−t) − rt,

W
d
= sup

t≥0
W (t),

with Â(−t) being the work generated in the interval[−t, 0], where the system started in steady state
at time−∞. This entails that the maximum value attained by the processW (t) = −Â(−t) − rt
needs to be analyzed; realize that increasingt corresponds to lookingbackwardin time.

• To analyzesupt≥0 W (t), the state of the background process at time zero is sampled from p (as
determined in (20)). Two possibilities arise: the background process is in the ON-stateN , or in
one of the OFF-states1, . . . , N − 1:

E[e−ωW ] = pNEN

[
exp

(
−ω sup

t≥0
W (t)

)]
+

N−1∑

k=1

pkEk

[
exp

(
−ω sup

t≥0
W (t)

)]
.

– The initial state isN . Using the argumentation of [24], it is seen that the background process
stays in this state for a period that has the integrated-taildistribution ofT (k); the increment
of W (t) is distributed asAON(T (k)∗) − rT (k)∗ (which is nonnegative, asN is ON-state).
The next state, sayj (which is necessarily an OFF-state), is sampled using the time-reversed
transition probabilitiesP̂ J

N−. It is readily seen that the supremum ofW (t) overt ≥ 0 equals

AON(T (k)∗) − rT (k)∗ increased by

sup
t>T (k)∗

−Â(−t) − rt+ Â(−T (k)∗) + rT (k)∗, (21)

where the ‘initial’ state (that is, the state at time−T (k)∗) of the background process isj.
Then realize that (21) is distributed assupt≥0 W (t), but now started inj rather thanN .

– The initial state isk = 1, . . . , N − 1. It stays in this initial state for a period that has
the integrated-tail distribution ofτk, which is again exponential with parameterqk; as a
consequence we could do as if the background process had justjumped tok at time zero.
The supremum ofW (t) overt ≥ 0 can thus immediately be expressed in terms of the time-
reversed embedded process.

The stated follows by combining the above findings. �

Expressions for thêEke
−ωS−βT in Proposition 4.1 fork = 1, . . . , N−1 can be found with the theory

of Section 2. Hence, in order to use the above theorem, it remains to find an expression for the transform
of (T (k)∗, AON(k∗)); from Scheinhardt and Zwart [41] we have

E

[
e−αT (k)∗−βAON(T (k)∗)

]
=

1

Ek
E

[∫ T (k)

0
e−αt−βAON(t)dt

]
. (22)

When specialized to the distribution ofW and using (22), Proposition 4.1 reduces to

Ee−ωW =

(
p′− +

pN

ET (k)
E

[∫ T (k)

0
e−ω[AON(t)−rt]dt

]
P̂ J

N−

)
Ê−e

−ωS .

In Boxmaet al. [13], a similar expression has been interpreted as a decomposition ofW in terms of a
clearing process and an independent dam process.
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Figure 2: A realization ofW .

4.2 Markov-additive input.

In this subsection, we suppose that there is an irreducible Markov processI such that(A, I) is a Markov-
additive process on some probability space(Ω′,F ′,P). We defineX(t) := A(t) − rt, thefree process.
Clearly,(X, I) is a Markov-additive process as well. Even though Proposition 4.2 below holds in much
greater generality, we suppose throughout thatX does not have negative jumps. Consequently, this
subsection relies extensively on Theorem 3.1. We do not analyze the spectrally negative case, but it
could be analyzed with Theorem 3.2; further details can be found in Miyazawa and Takada [33].

In Figure 2, we have plotted a possible realization of the processW . Note that in this diagram there
are Brownian states, subordinator states, and negative-drift states.

We now establish the precise relationship between the buffer-content process and extremes of the
free process, which follows from the reasoning in Section II.3 and Section VI.7 of Asmussen [5]; see
also Section 4 of Miyazawa and Takada [33]. Again,(B(0),W (0), I(0) does not have influence on the
behavior of(B(t),W (t), I(t)) ast → ∞, a property that is intuitively clear. The result follows bythe
same arguments as those used for Markov-modulated ON/OFF input, but no ‘residual’ (or ‘clearing-
model’) quantities are needed since the sojourn times ofI are exponential. We writêPk for the law of
the Markov-additive process(X, I) with I(0) = k and Laplace exponent̂ψ−X defined in (10).

Proposition 4.2 Suppose thatπ′
IEX(1) < 0. Then(W,B) is a finite random vector, and for anyω, β ≥

0, k = 1, . . . , N , we have

E

[
e−ωW−βB; I = k

]
= πI(k)Êke

−βF
X
−ωX .

We now work out the preceding proposition for the distribution of(W, I), since the resulting formula
is particularly appealing. Corollary 3.1 shows that forω ≥ 0, providedψ̂−X(ω) is nonsingular,

diag(πI)Êe
−ωX = ωdiag(πI)ψ̂

−1
−X(ω)

(
0s

v̂−

)
= ω

[
ψ′

−X(ω)
]−1

(
0s

u−

)
,

where we setu− := πI(∼) ◦ v̂− (recall that∼-states stand forn-states andB-states). The vector̂v−
is defined in the same way as the vectorv−-vector, but withP replaced bŷP. With Proposition 4.2, this
leads immediately to the identity

E
[
e−ωW ; I

]
= ω

(
0′

s u′
−

)
ψ−X(ω)−1 (23)

for ω ≥ 0 with ψ−X(ω) nonsingular. This formula is Equation (4.1) of Asmussen andKella [8], who in-
terpretu− in terms of local times. The following observation, however, is new. By combining Lemma 3.3
with Lemma 3.1, it readily follows thatu− must be a left eigenvector ofQ0

∼∼ (corresponding to the sim-
ple eigenvalue zero); this uniquely determinesu− up to a constant. This constant can be found by writing
down the formula forEe−ωW from (23), using1 = PI1, and lettingω → 0 in the resulting expression.

Motivated by Proposition 4.2, we next characterize theP̂-distribution of(X,F
X
, I) (the last compo-

nent is not required here, but it is needed in Section 6). To avoid the introduction of yet more matrices,
we suppose that there are no zero-drift states. The following result then follows immediately from The-
orem 3.1 and Lemma 3.3.
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Corollary 4.1 Suppose thatπ′
IEX(1) < 0 and that there are no zero-drift states. We then have for

α, β ≥ 0,

(
ψ′

−X(β) − αI
)

diag(πI)Ê
[
e−αF

X
−βX ; I

]
=

(
0ss 0s−

0−s

(
βI−− + [Qα

∼∼]′
)

diag(u−)

)
.

In conclusion, ifX is spectrally positive, the matrixQα
∼∼ plays a similar role for the steady-state

buffer-content process as the matrixKα
∼∼ for the maximum of the free process.

5 The single queue: examples.

Many known models can be incorporated into the framework of the preceding section. To emphasize the
versatility of our framework, we now give some examples. Importantly, the matrices that appear in these
examples also play fundamental roles in a network setting; see Section 6.

The BMAP/GI/1 queue.

The BMAP/GI/1 queue is a generalization of the classical M/GI/1 queue. Here BMAP is shorthand for
batch Markovian arrival process. Special cases include the MMPP/GI/1 queue, where MMPP stands for
Markov modulated Poisson process, and the PH/GI/1 queue, where PH stands forphase-type renewal
process. For further special cases, we refer to Latouche and Ramaswami [30, Sec. 3.5]. The BMAP/GI/1
queue has been studied in detail by Lucantoni [31], and it is our present aim to relate his results to ours.
This is particularly relevant since our notation does not always agree with the standard notation in the
matrix-analytic literature as used in [31]. We stress that none of the results presented here are new.

The virtual waiting time in a BMAP/GI/1 queue is defined as thebuffer content in a fluid queue
with special Markov-additive input; we describe this below. More precisely, as observed by Tzenovaet
al. [44], the BMAP/GI/1 queue can be viewed as a fluid-flow model with jumps (fluid-flow models are
discussed below).

In a BMAP/GI/1 queue, the arrival process is governed by a Markovian background processI that
can takeN < ∞ values. The sojourn time ofI in statej has an exponential distribution with parameter
qj . At the end of a sojourn time in statej, with probabilityp(n)

jk , n ≥ 0 customers arrive (that all bring in
a generic amount of workU > 0) and a transition ofI to statek occurs. These transition probabilities
satisfy

∑∞
n=0

∑N
k=1 p

(n)
jk = 1 for j = 1, . . . , N . We writeH for the distribution ofU , and the stationary

distribution ofI is denoted byπI as usual.
Let us now define the free processX such that(X, I) becomes a Markov-additive process, so that

the setting of Section 4.2 can be used. Since the amount of work in the system decreases at unit rate, it
readily follows that the Laplace exponent ofX is given by

ψ−X(β) = βI − diag(q)

(
I −

∞∑

n=0

P (n)
[
Ee−βU

]n
)
, (24)

whereP (n) is the matrix with elementsp(n)
jk . We suppose that the system is stable, i.e.,π′

IEX(1) < 0.
It is an immediate consequence of Proposition 4.2 and the remarks thereafter that

Ee−ωW = ωu′
−ψ

−1
−X(ω)1,

for ω ≥ 0 with ψ−X(ω) nonsingular. This formula, in the present context due to Ramaswami, is
Equation (45) in [31]. In the matrix-analytic literature, it is customary to use the notationy0 for u−.
Note that we have shown in Section 4.2 thatu′

−Q0
∼∼ = 0′

−.
This motivates the investigation of the matrixQα

∼∼ for α ≥ 0. Upon setting

Gα :=

∫

[0,∞)
eQ

α
∼∼

xH(dx), (25)
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we have by Proposition 3.2,

Qα
∼∼ + αI = −diag(q)

(
I −

∞∑

n=0

P (n) [Gα]n

)
.

Substitution of this expression in (25) leads to a fixed-point system forGα:

Gα =

∫

[0,∞)
e−αxe−diag(q)(I−

∑
∞

n=0P
(n)[Gα]n)xH(dx),

which is the matrix version of Takacs’ fixed-point equation if P (1) is the only nonzero matrix in the
sequence{P (n) : n ≥ 0}. Based on this formula, Lucantoni [31] gives an algorithm that serves as an
efficient alternative for Neuts’ approach to M/GI/1-type queueing systems [35]. Importantly, it is not
necessary to computeQ0

∼∼ in order to findu−: the definition ofG0 in (25) shows thatu− is necessarily
proportional to the unique probability vectorg satisfyingg′G0 = g′. The normalizing constant is found
as in Section 4.2.

Fluid-flow models.

A fluid-flow model is a fluid queue with a special type of Markov-additive input: the free processX is
neither allowed to have jumps nor Brownian states. They constitute undoubtedly the most well-studied
fluid queues; we do not attempt to give a full bibliography, but refer to [4, 28, 40] for more details.

Recently, there has been some interest in deriving the Laplace transform of the busy period in fluid-
flow models [1, 10]; see also [3] for an earlier contribution.It is our present aim to show how our
general theory reproduces some of the most important busy-period results. Thus, the results below are
well-known. We remark that we allow states with zero drifts.

Even though fluid models are special Markov-additive processes, we shall work within the framework
of Section 2 to derive formulas that are familiar from the fluid-flow literature. To facilitate the use of
our discrete-time results, we use an embedding that recordsthe time and position at thebeginningof
a sojourn time of the underlying background processI. In self-evident notation, we partition the state
space into+-points,0-points, and−-points. The intensity matrix ofI is written asQI ; this also defines
QI

++, for instance.
Let Ψα

+− be the matrix with the transforms of the busy-period lengths. That is, ifcj > 0 andck < 0,
then the element(j, k) of this matrix is the Laplace transform of the length of the first positive excursion
of X on the event that it ends this excursion in statek. In other words, it corresponds to the amount of
time thatX spends above zero on the event that it starts in statej and it first hits zero in statek.

Let us use the notationvec(c+) and vec(c−) for the vector of strictly positive and strictly negative
drifts respectively. We also setµα

± := diag(q±/(q± + α)), λα
± := diag((q± + α)/c±), and

Tα
±± := ±diag

(
1

c±

)[
QI

±± − αI±± − QI
±0(Q

I
00 − αI00)

−1QI
0±

]
,

Tα
±∓ := ±diag

(
1

c±

)[
QI

±∓ − QI
±0(Q

I
00 − αI00)

−1QI
0∓

]
.

Note that, in the notation of Section 2, we are interested inΨα
+− = P α

+−diag(1/µα). As in the proof
of Corollary 2.1, we consider a sequence of+- and0-points as a single+-point, so thatF+−(α, β) =
(βI++ − Tα

++)−1Tα
+−. Then Proposition 2.3 immediately yields that

Ψα
+− =

∫

(0,∞)
eT

α
++xTα

+−e
Qα

∼∼
xdx,

whereQα
∼∼ = Tα

−− + Tα
−+Ψα

+−. Since the eigenvalues ofTα
++ have a strictly negative real part and

those ofQα
∼∼ have a nonpositive real part, the integral in the above representation forΨα

+− converges.
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This implies the identity (see Beanet al. [9] for references)

Tα
++Ψα

+− + Ψα
+−Qα

∼∼ = −Tα
+−.

After some rearranging and substitution ofQα
∼∼, we obtain the matrix equation

Tα
+− + Ψα

+−Tα
−+Ψα

+− + Tα
++Ψα

+− + Ψα
+−Tα

−− = 0+−,

which is Theorem 1 of Beanet al. [10] and, forα = 0, Theorem 2 of Rogers [40]. Note that no drift
condition was imposed to derive this equation.

Importantly, the theory of Section 4.2 shows that the matrixQα
∼∼ is a key quantity for fluid-flow

models. For instance, under a stability assumption, a left eigenvector ofQ0
∼∼ (corresponding to the

simple eigenvalue zero) appears in the representation ofW as a phase-type distribution. The matrix
Qα

∼∼ plays a prominent role in many system characteristics of fluid queues, see also Section 7.

M/M/ ∞-driven fluid queues.

Although it was assumed that the state space of the background process be finite, we now give an example
with a countably infinite state space (that, to the best of ourknowledge, was not solved so far) that still
fits into our framework. The model is a fluid-flow model, but we show that we can translate it in terms
of the queue with Markov-modulated ON/OFF input of Section 4.1.

Consider the following queueing model. A buffer is emptied at a constant service rater, and jobs
arrive according to a Poisson process (with rateλ). They stay active for an exponentially distributed
period of time (without loss of generality, we set its mean equal to 1); while active they feed work into
the buffer at unit rate. Notice that the number of (active) jobs in the system follows an M/M/∞-model,
therefore it has a Poisson distribution with meanλ; denotepk := e−λλk/k!. This leads to the stability
conditionλ < r.

The buffer level increases when the number of active jobs exceedsr, whereas the buffer is drained
(or remains empty) when the number of jobs is belowr. LetX(t) denote the free process at timet as
before, and letN(t) the number of active flows at timet. For ease we assume thatr 6∈ N; r− := ⌊r⌋ and
r+ := ⌈r⌉. Define forℓ ≥ ⌈r⌉

σℓ := inf{t ≥ 0 : N(t) = r− | N(0) = ℓ}, Uℓ := X(σℓ).

An explicit formula forξℓ(α, β) := E[e−ασℓ−βUℓ ] is provided by Preater [39].
Due to exponentiality and reversibility properties, we have that the steady-state buffer contentW

is distributed assupt≥0X(t). To study this supremum, it suffices to consider an embedding. One
embedding could be the position of the free process at epochsjobs arrive and leave, but this has drawback
that the dimension of the background process is (countably)infinite. Evidently, we could alternatively
opt for the ‘sparser’ embedding that lumps together the statesr+, r+ +1, . . . into stater+; the supremum
of the embedded process coincides with the supremum of the full free process. Then the sojourn time in
statek = 0, . . . , r− is exponential with parameterλ+k, whereas the Laplace transform of the time spend
in r+, jointly with the net amount of work generated, isξr+(α, β). With qj := λ+ j, it is easy to verify
that corresponding discrete-time Markov chain on{0, . . . , r+} has the following transition probabilities:
pJ

j,j+1 = λ/qj , if j = 0, . . . , r−; pJ
j,j−1 = j/qj , if j = 1, . . . , r−; pJ

r+,r−
= 1; pJ

jk = 0, otherwise.
DefineP such that(S, T, J) has the transition kernel

p((s, t, j), (s+dv, t+dw, k)) =

{
pJ

jkP (U ∈ dv, σ ∈ dw) if j = r+ andk = 0, . . . , r+;

pJ
jkP

(
−Dj ∈ dv, τ j ∈ dw

)
if j = 0, . . . , r− andk = 0, . . . , r+,

with
Ee−ασ−βU = Ee−ασr+−βUr+ = ξr+(α, β), Ee−ατ j−βDj

=
qj

qj + α+ β(r − j)
.
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A procedure analogous to that for Markov-modulated ON/OFF input now yields fork = 0, . . . , r−
andω, β ≥ 0,

E

[
e−ωW−βB; I = k

]
= pkEke

−ωS−βT ,

and

E

[
e−ωW−βB; I = r+

]
=




∞∑

k=r+

pkξk(α, β)


Er−e

−ωS−βT .

6 Tandem networks with Markov-additive input.

One of the simplest networks is a tandem network, in whichn fluid reservoirs are lined up in series.
In this section, we extend the analysis of single stations tothese tandem fluid networks. The results we
obtain are new. Our analysis shows that we can immediately use the results on the joint distribution of the
buffer content and the age of the busy period for the single queue, as found in Section 4. The reasoning
below also shows that tandems with Markov-modulated ON/OFFinput [41] can be analyzed analogously
to tandems with Markov-additive input [23]; we here only present the analysis for Markov-additive input.

Even though our framework offers an appealing approach to such networks, we do not strive for the
greatest possible generality. Instead, we only give the main ideas without proofs, since the results can be
proven along the lines of [17]. Several extensions are discussed in the next section.

In our model queuej is drained at raterj as long as there is content in bufferj. After fluid is released
from queuej, it immediately flows to queuej + 1, unlessj = n; then it leaves the system. We suppose
that the input to the first queue is governed by the same Markov-additive process(A, I) as in Section 4.2,
i.e., its input processA is spectrally positive. Furthermore, we suppose for simplicity thatI has no zero-
drift states and that there is no external input to queues2, . . . , n. To avoid ‘invisible’ stations, we impose
the conditionr1 > . . . > rn.

We defineWj(t) as the content in bufferj at timet, and letW (t) be the vector of buffer contents.
The evolution of the processW is completely determined byA and the initial buffer-content vector
W (0). Formally, this can be made precise by using Skorokhod reflection mappings; see for instance
[17]. It is our aim to study the steady-state vector of buffercontents in this network, which we denote
byW := W (∞). The inclusion of the ages of the busy periods raises no additional difficulties, but we
focus here on the simplest possible situation.

We define forj = 1, . . . , n,Xj(t) := A(t)−rjt andX(t) = (X1(t), . . . ,Xn(t))′. Note that(X, I)
is a multidimensional Markov-additive process onR

n × {1, . . . , N} underP. We also set

Xj := sup
t≥0

Xj(t), F
X
j := inf{t ≥ 0 : Xj(t) = Xj(∞) or Xj(t−) = Xj(∞)},

andIj := I(F
X
j ). Throughout, we suppose thatπ′

IEXn(1) < 0, so that each component ofX drifts to
−∞.

Our analysis consists of three steps. First, the queueing problem is formulated in terms of free
processes. The splitting technique of Section 3.2 can be used, in a different form, to characterize the
extremes of these free processes. This is reminiscent of theanalysis of Lévy-driven fluid networks in
[17]. The final step converts the results back to the queueingsetting.

We start by giving the analog of Proposition 4.2, thereby establishing the connection between fluid
networks and extremes ofX. It can be proven along the lines of Proposition 5.2 in [17]. Note that the
distribution ofW = W (∞) is independent ofW (0) andI(0).

Proposition 6.1 The vectorW is finite, and for anyω ∈ R
n
+, we have

E

[
e−〈ω,W〉; I = k

]
= πI(k)Êk

[
e−

∑n−1
i=1 (ωi−ωi+1)Xi−ωnXn ; In

]
1.
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We use splitting to calculate the transform in this expression. In [17], splitting is distinguished from
splitting from the left, but this is irrelevant for the arguments and the results. Modulo this remark, the
following lemma can be proven along the lines of Lemma 2.1 of [17].

Lemma 6.1 For anyj, {(X(t), I(t)) : 0 ≤ t ≤ F
X
j } and{(X(F

X
j +t)−X(F

X
j ), I(F

X
j +t)) : t ≥ 0}

are P̂-conditionally independent givenI(F
X
j ).

With this proposition at our disposal, the joint distribution of F
X

:= (F
X
1 , . . . , F

X
n ) andX :=

(X1, . . . ,Xn) can be derived in only a few lines. The key element in this analysis is the observation

F
X
1 ≤ . . . ≤ F

X
n . In the following theorem, we give the resulting Laplace transform; in the terminology

of [17], this transform has aquasi-product form. The proof requires only minor modifications in com-
parison with the proof of Theorem 3.1 of [17], and is therefore omitted. We emphasize that the product
is taken from1 to n− 1; the order is important, since the matrices do not commute.

Corollary 6.1 We have forβ ∈ R
n
+,

Ê

[
e−〈β,X〉; In ∈∼

]
= Ê

[
e−[

∑n
k=2(r1−rk)βk]F

X
1 −[

∑n
k=1 βk]X1; I1 ∈∼

]

×

n−1∏

j=1

{(
Ê∼

[
e−[

∑n
k=j+1(rj−rk)βk]F

X
j −[

∑n
k=j+1 βk]Xj ; Ij ∈∼

])−1

× Ê∼

[
e−[

∑n
k=j+2(rj+1−rk)βk]F

X
j+1−[

∑n
k=j+1 βk]Xj+1 ; Ij+1 ∈∼

]}
,

whenever the appropriate matrices are nonsingular.

Corollary 6.1 expresses the transform of theP̂-distribution of (X , In) in terms of the marginals
(Xj , Ij) for j = 1, . . . , n. Importantly, the transforms of these marginals can be found with Corol-
lary 4.1. As a final step, we therefore cast the results back into the queueing setting. For notational
convenience, we define

ηj(ω) :=
n∑

ℓ=j+1

(rℓ−1 − rℓ)ωℓ,

so that we obtain the main result of this section, which is a generalization of (23). The simplicity of the
expression for the Laplace transform is remarkable, especially in view of the transform-free solution of
Kroese and Scheinhardt [27] for the two-station fluid-flow tandem with a two-dimensional background
state space. The matrixQ(j)

∼∼(α) appearing in the following theorem is defined as theQα
∼∼-matrix

arising from the processXj .

Theorem 6.1 For ω ∈ R
n
+, we have

E

[
e−〈ω,W〉; I

]

=

(
0′

s ωn

[
un
−

]′ n−1∏

j=1

{[
ωj+1I−− + Q(j)

∼∼(ηj(ω))
]−1 [

ωjI−− + Q(j)
∼∼(ηj(ω))

]} )

× (ψ−X1(ω1) − η1(ω)I)−1 ,

whenever the appropriate matrices are nonsingular.

Importantly, this theorem shows that the joint buffer-content distribution for a fluid network can
immediately be established fromknownresults about the single (fluid) queue discussed in Section 5.
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For instance, Lucantoni’s algorithm for the BMAP/GI/1 immediately yieldsQ(j)
∼∼(·), and similarly for

algorithms that efficiently solve the matrix-quadratic equation in fluid-flow models.
Specializing Theorem 6.1 to the marginal distribution ofWn for n > 1, we obtain the interesting

formula

E
[
e−ωWn ; I ∈∼

]
=

[
un
−

]′

rn − rn−1

[
ωI−− + Q(n−1)

∼∼ ((rn−1 − rn)ω)
]−1

Q(n−1)
∼∼ ((rn−1 − rn)ω),

which should be compared with Theorem 3.2 of [18] or Corollary 6.2(i) of [17].

7 Extensions.

In the course of writing this paper, we have bypassed severalinteresting questions. It is the aim of this
section to sketch how some additional features can be incorporated into our framework. These features
are mainly inspired by models that have been recently studied in the literature.

Markov-additive processes under exponential killing.

The approach taken in this paper can also be used to characterize the distributions of(X(t), F
X

(t), I(t))

and(X(t), F
X

(t), I(t)) for anyt ≥ 0. By taking Laplace transforms with respect to time, this amounts

to investigating(X(eλ), F
X

(eλ), I(eλ)) and(X(eλ), F
X

(eλ), I(eλ)) for someλ > 0. The resulting
identities can be viewed as the analog of (11) ifX is spectrally positive.

The vector(X(eλ), I(eλ)) plays a role in a number of problems in applied probability. First, it
completely specifies the solution to the one-sided exit problem [29]. We remark that, if there are no
subordinator states, the nonnegative matrix−(Kλ

∼∼)−1 plays a prominent role in this solution; it can
be interpreted as a local-time matrix. Moreover, the distribution of (X(eλ), I(eλ)) also immediately
specifies the transient behavior of a queue with Markov-additive input, see [1] for a special case.

Ramifications of the tandem network in Section 6; priority systems.

In Section 6, there are no external inputs to the stations2, . . . , n of a tandem fluid network. As long as
these external inputs are increasing subordinators, i.e.,if they do not depend on the state of the back-
ground processI, our reasoning immediately carries over to this more general setting.

Kella [23] doesallow for a dependence of this external input (or the drain rates) on the background
state, and we now outline how our framework should be modifiedto be able to derive expressions under
this assumption. In terms of the one-dimensional Markov-additive processX of Section 3, it is not

sufficient to studyF
X

(jointly with (X, I)), but knowledge is required about the amount of time spent

in each of the statestill time F
X

.
The last-passage (or Wiener-Hopf) approach that we have used in this paper can still be applied,

but the matricesKα
∼∼ now depend on avector vec(α) instead of a single value. An expression such

asψ−X(β) − αI in Theorem 3.1 then changes toψ−X(β) − diag(α). However, the reasoning essen-
tially requires no further new ideas. As for tandem networks, the only remaining assumption is that the

components ofF
X

are ordered (note that a similar assumption is needed in [23]).
Recently, there has been an interest in fluid-driven priority systems [43, 45]. These systems are

closely related tandem queues with external inputs and equal drain rates. Although equal drain rates
are not covered in Section 6, the techniques still apply. Indeed, if the external inputs are nondecreasing
processes (with the first station as the only possible exception, see for instance [17]), the components

of F
X

are ordered. In particular, our theory can be used to analyzepriority fluid systems with Markov-
additive input.
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Phase-type jumps in the opposite direction.

All Markov-additive processes in this paper have one-sidedjumps. Given the tractability of Lévy pro-
cesses with general jumps in one direction and phase-type jumps in the other direction [19], it seems
plausible that results can be obtained within the Markov-additive setting under the same assumptions.
Indeed, an embedded process can be introduced and the theoryof Section 2 can be applied.

A The spectral method for the matricesKα
−− andQα

−−.

Corollaries 2.1 and 2.2 give two non-linear matrix equations that must be satisfied byKα
−− andQα

−−.
This appendix describes and analyzes an alternative methodto find these two matrices. To our knowl-
edge, the resulting approach is novel.

Exactly the same approach can be taken in the context of the Markov-additive matricesKα
∼∼ and

Qα
∼∼, but we here focus on the discrete-time framework of Section2. Throughout, we fix someα ≥ 0

and we suppose thatS drifts to+∞ or−∞.
As observed in the body of this paper, subsequent+-points may be ‘lumped’ in order to calculate the

matricesKα
−− andQα

−−. Therefore, if we replaceF+−(α, β) by F+	−(α, β), we may assume without
loss of generality thatP J

++ = 0++. The reasoning that led to (6) shows thatD−−(0, β) then factorizes
into two matrices:

D−−(α, β) =
(
βI−− +Kα

−−

) (
I−− −E−

[
e−αTτ+−βSτ+ ;Jτ+ ∈−

])
. (26)

This equation can be regarded as afactorization identity, and is the starting point of the spectral method.
When inspecting the two matrices enclosed by round bracketson the right-hand side, we note that the
first matrix has singularities in the right complex halfplane and the second matrix in the left complex
halfplane. For similar factorizations in a discrete-stateframework, we refer to Zhaoet al. [46].

A similar factorization can be given forQα
−−: the first-passage matrixQα

−− of the original process

can be expressed in terms of the last-passage matrixK̂α
−− of the time-reversed process through

K̂α
−− = diag(λα) #Qα

−−diag(λα)−1,

cf. (3). An analysis along the lines of Section 2 yields the factorization identity

diag(λα) #D−−(α, β)diag(λα)−1 = (βI−− + K̂α
−−)N(α, β),

whereN(α, β) is anN− × N−-matrix with singularities in the left complex halfplane. This yields a
second factorization identity:

D−−(α, β) = diag(λα) #N(α, β)diag(λα)−1(βI−− +Qα
−−). (27)

The spectral method uses (26) or (27) to constructKα
−− andQα

−− from their eigenvalues and eigen-
vectors. We explain the key ideas by discussing the following proposition, which is a special case of
Theorem A.1 below. It immediately follows from (26) and (27), see also Section 5 of Asmussen [4] for
related results. Recall the notationH+ from (4).

Proposition A.1 For anyν ∈ H+, the following are equivalent:

(i) −ν is an eigenvalue ofQα
−−,

(ii) −ν is an eigenvalue ofKα
−−, and

(iii) zero is an eigenvalue ofD−−(α, ν).

Moreover, the geometric multiplicities of these eigenvalues coincide.
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Proposition A.1 indicates why the recursions in Corollaries 2.1 and 2.2 are necessarily matrix ver-
sions of the equationD−−(α, β) = 0−−. Indeed, suppose that(−ν, ℓ) is a left eigenpair forKα

−−, so
that ℓ′Kα

−− = −νℓ′. Since thenℓ′eK
α
−−

x = e−νxℓ′, it follows from the recursion forKα
−− in Corol-

lary 2.1 thatℓ′D−−(α, ν) = 0′
−. The same reasoning goes through for the recursion in Corollary 2.2,

but one then has to work with the right eigenpair.
If Kα

−− orQα
−− is diagonalizable, Proposition A.1 shows that its eigenvalues and eigenvectors (and

hence the matrix itself) can be determined by studying singularities ofβ 7→D−−(α, β), i.e., the values of
β for which this matrix is singular. Several relatively explicit results can then be derived, see Kella [23].
However, ifKα

−− is not diagonalizable, Proposition A.1 shows that it isimpossibleto find enough
pairs (−νj , ℓj) with the above properties. To resolve this, one might guess that thegeneralizedleft
eigenvectors ofD−−(α, νj) can be used to constructKα

−−. It is the contribution of this appendix to
show that this approach does not work, and to show how this canbe resolved. In particular, we provide
answers to the questions raised in Section 4 of Asmussen and Kella [8] in the continuous-time Markov-
additive context.

Proposition A.1 has implications for the locations of the singularities ofD−−(α, β) in H+. First,
sinceKα

−− andQα
−− are real matrices, these singularities must come in conjugate pairs. Moreover, as

a result of Proposition 2.4, if zero is a singularity it is simple and the real parts of the other singularities
are strictly positive. In fact, all nonzero singularities must be in the open disc with radius and center
maxj λ

α
j . Forα = 0 and limn Sn = −∞, this claim has recently been proven with different methods

by Tzenovaet al. [44]. In [44], it is also shown thatβ 7→ detD−−(0, β) has exactlyN− zeroes inH+

(counting multiplicities).

If S drifts to−∞, Proposition A.1 can sometimes be used to find the vectorP−(S = 0) studied in
Section 2.4. Indeed, in view of Lemma 2.3,P−(S = 0) can be found if one hasN−−1 linear independent
vectorsℓ1, . . . , ℓN−−1 orthogonal toP−(S = 0). To determine the vectorsℓj , one determines a root
νj ∈ H+ of the equationdetD−−(0, β) = 0, and identifies theℓj with a left eigenvector ofD−−(0, νj)
corresponding to the eigenvalue zero. By Corollary 2.4 we then haveℓ′jP−(S = 0) = 0. Proposition A.1
shows that enough independent vectors can be found only ifK0

−− (orQ0
−−) is diagonalizable.

As an aside, we mention that Gailet al. [21] present a method (in the context of a discrete-state
model) for determining the vectorP−(S = 0) if S drifts to−∞, and that they also call this a ‘spectral
method’. Cast into the present setting, they show thatadjD−−(0, β)P−(S = 0) must vanish to the
order at leastr at β = ν if ν 6= 0 is a singularity ofD−−(0, ν) with algebraic multiplicityr. Here
adjD−−(0, β) denotes the adjoint matrix ofD−−(0, β), i.e., the transpose of the matrix formed by
taking the cofactor of each element ofD−−(0, β).

It is the aim of the remainder of the appendix to find a suitableform of the spectral method with
whichKα

−− andQα
−− canalwaysbe constructed, not only in the diagonalizable case. IfS drifts to−∞

andα = 0, the procedure also gives exactlyN− − 1 vectors orthogonal toP−(S = 0).
It is most insightful to present the procedure in an algorithmic form:

• Locate the singularities ofD−−(α, β) in H+ (if limn Sn = −∞ andα = 0, thenβ = 0 is such a
singularity).

• For every nonzero singularityν, find as many independent vectorsℓ with ℓ′D−−(α, ν) = 0′
− as

possible (iflimn Sn = −∞ andα = 0, thenπ− is such a vector forν = 0, see (8)).

• This results ins pairs(−νj , ℓj), for somes ≤ N−, j = 1, . . . , s (theνj need not be distinct). If
s = N−, then stop;Kα

−− is diagonalizable.

• Suppose thatKα
−− is not diagonalizable. Iflimn Sn = +∞ or α > 0, execute the following

subroutine for eachj = 1, . . . , s. If limn Sn = −∞ andα = 0, setds = 1 andℓ(1)s = π−, and
execute the following subroutine for eachj = 1, . . . , s− 1:
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– Setp := 1 and writeℓ(1)j := ℓj .

– If possible, find a vectorℓ, independent ofℓ(1)j , . . . , ℓ
(p)
j , such that

ℓ′D−−(α, νj) = ℓ
(p)′

j −

p∑

q=1

∫

[0,∞)

xq

q!
e−νjxℓ

(p−q+1)′

j diag(µαλα)P J
−+F

α
+	−(dx).

– If the previous step was successful, setℓ
(p+1)
j := ℓ, p = p+ 1, and repeat the previous step.

If it was unsuccessful, setdj := p and stop the subroutine.

The following theorem shows that this algorithm yieldsKα
−− for α ≥ 0, in addition toP−(S = 0)

if S drifts to −∞. The matrixQα
−− can be found in a similar fashion, using (27) as a starting point.

For notational convenience, we only write down the nonzero elements of the matrices. Note that the
Jj-matrices are Jordan blocks.

Theorem A.1 For α ≥ 0, the matrixKα
−− is constructed as follows:

Kα
−− =



L1
...
Ls




−1

J1

. . .
Js






L1
...
Ls


 , (28)

where the(dj × dj)-matricesJj and(dj ×N−)-matricesLj are defined as

Jj :=




−νj

1 −νj

.. . . . .
1 −νj


 , Lj =




ℓ
(1)′

j
...

ℓ
(dj )′

j


 .

Moreover, if limn Sn = −∞ and α = 0, then the rows ofL1, . . . ,Ls−1 constitute exactlyN− − 1
independent vectors orthogonal toP−(S = 0).

Proof. If suffices to prove the first claim, since the second claim immediately follows from (7). For
convenience, we denote the second matrix between round brackets in (26) byM(α, β).

To prove the theorem, writeKα
−− in the Jordan formL−1

−−J−−L−−, cf. (28). If limn Sn = −∞
andα = 0, we know that zero is a simple eigenvalue and that its corresponding left eigenvector isπ−,
cf. Proposition 2.4. Factorization identity (26) shows that

adj (βI−− + J−−)L−−D−−(α, β) = det (βI−− + J−−)L−−M(α, β). (29)

Now observe thatβI−− + J−− is a block-diagonal matrix, and that for (square) block matricesA and
B of arbitrary size,

adj

(
A 0

0 B

)
=

(
detB adjA 0

0 detA adjB

)
.

This shows that (29) is equivalent to thes systems

adj (βIdjdj
+ Jj)LjD−−(α, β) = (β − νj)

djLjM(α, β). (30)

If α = 0, the equation forj = s plays no role and is redundant. In the rest of the proof, we consider this
system for fixedj and suppress the subscriptsj.
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It remains to show that our algorithm constructs the matrixL (≡ Lj). First observe that (30) is
equivalent to thed equations

n∑

p=1

(−1)p−1

(β − ν)n−p
ℓ(p)′D−−(α, β) = (β − ν)ℓ(n)′M(α, β), (31)

for n = 1, . . . , d andβ ≥ 0. For notational convenience, we set

D
(q)
−−(α, ν) :=

∫

[0,∞)

xq

q!
e−νxdiag(µαλα)P J

−+F
α
+	−(dx).

We now prove:
Claim A. Let 1 ≤ k ≤ d. If (31) holds forn = 1, . . . , k andβ ≥ 0, thenℓ(1)

′

D−−(α, β) = 0′
− and

ℓ(n)′D−−(α, ν) = ℓ(n−1)′ −
n−1∑

q=1

ℓ(q)
′

D
(n−q)
−− (α, ν) (32)

for n = 2, . . . , k.
To see that Claim A is true fork = 2, setn = 1 in (31) and letβ → ν to obtainℓ(1)

′

D−−(α, ν) =
0−. Using (31) forn = 2, we see that

ℓ(2)
′

D−−(α, β) −
1

β − ν
ℓ(1)

′

[D−−(α, β) −D−−(α, ν)] = (β − ν)ℓ(2)
′

M(α, β).

Upon lettingβ → ν, we see (with dominated convergence andℜ(ν) > 0) that ℓ(2)
′

D−−(α, ν) =

ℓ(1)
′

− ℓ(1)
′

D
(1)
−−(α, ν).

Suppose that Claim A holds for somek; by induction it suffices to show that it also holds fork + 1.
For this, first multiply thek − 1 equations in (32) by(−1)n−1(β − ν)n−k−1, and substitute them in
Equation (31) forn = k + 1 such that termsD−−(α, β) − D−−(α, ν) appear everywhere; also use
ℓ(1)

′

D−−(α, ν) = 0′
−. After some algebra, one then obtains

(β − ν)ℓ(k+1)′M(α, β) = (−1)kℓ(k+1)′D−−(α, β) +
(−1)k−1

β − ν
ℓ(k)′ [D−−(α, β) −D−−(α, ν)]

+

k−1∑

n=1

(−1)n−1

(β − ν)k−n+1
ℓ(n)′

[
D−−(α, β) −D−−(α, ν) − (β − ν)I−−

−

k−n∑

q=1

(−(β − ν))qD
(q)
−−(α, ν)

]
.

Upon lettingβ → ν, this leads to (32) forn = k + 1.
To finish the proof of the theorem, we also show that:
Claim B. Let ℓ(1), . . . , ℓ(m) satisfy (31). If there exists some vectorℓ, independent ofℓ(1), . . . , ℓ(m),

with the property that

ℓ′D−−(α, ν) = ℓ(m)′ −
m∑

q=1

ℓ(q)
′

D
(m−q+1)
−− (α, ν), (33)

thend ≥ m+ 1 and (31) holds forn = m+ 1 andℓ(m+1) = ℓ.
To show that Claim B holds, we suppose thatd = m and work towards a contradiction. The assump-

tion d = m implies that, for any vectorv independent ofℓ(1), . . . , ℓ(m), v′Kα
−− 6= −νv′ + ℓ(m)′ . By

definition ofM(α, β), this implies that for anyβ ≥ 0,

v′D−−(α, β) + (ν − β)v′M(α, β) 6= ℓ(m)′M(α, β).
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Using a similar argument as in the proof of Claim A, it can be seen thatℓ(m)′M(α, ν) equals the right-
hand side of (33); this relies on the assumption that theℓ(·) satisfy (31). A contradiction arises upon
settingv = ℓ and lettingβ → ν in the last display. �

Two elements of the preceding proof deserve special attention. First, we emphasize the appealing
form of the factorization (26); we encounter similar forms in the body of the paper. Another interesting
point is the connection between the system (32) and the nonlinear matrix equation of Corollary 2.1. We
use this connection to prove the following.

Corollary A.1 The matrix equations in Corollaries 2.1 and 2.2 have a uniquesolution within the class
of matrices with eigenvalues inH+.

Proof. It suffices to prove the claim for Corollary 2.1, as the other follows similarly. Rewrite the system

(32) and the equationℓ(1)
′

j D−−(α, νj) = 0′
− as

0dj− = −JjLj −Lj diag(λα) +Lj diag(µαλα)P J
−−

+

dj−1∑

k=0

e−νjxx
k

k!

(
νjIdjdj

+ Jj

)k
Lj diag(µαλα)P J

−+F
α
+−(dx), (34)

for j = 1, . . . , s.
In the proof Theorem A.1, we showed that there is somes such that (34) holds for a uniquedj

and unique matricesJj andLj. The matricesJj have eigenvalues inH+ and the matricesLj have
independent rows (uniqueness holds up to multiplication bya constant). We now argue that a solution
to (34) immediately gives a solution to the equation in Corollary 2.1. To see this, stack thes matrix
equations of (34) into a single system, premultiply byL−1

−−, note that

dj−1∑

k=0

e−νjxx
k

k!

(
νjIdjdj

+ Jj

)k
= eJjx,

and use (28). The argument can also be reversed: given a solution to the equation in Corollary 2.1 with
all its eigenvalues inH+, the ‘building blocks’ for the Jordan form must solve (34). �
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[12] J. Bertoin,Lévy processes, Cambridge University Press, Cambridge, 1996.
[13] O. J. Boxma, O. Kella, and D. Perry,An intermittent fluid system with exponential on-times and semi-Markov input rates,

Probab. Engrg. Inform. Sci.15 (2001), 189–198.
[14] K. L. Chung,A course in probability theory, third ed., Academic Press, San Diego, 2001.
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