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1 Introduction

In image segmentation, often Markov random field models are employed in which neigh-
bouring (blocks) of pixels have a similar texture [11]. Generally, the number of different
textures is unknown. To overcome this problem, a number of Bayesian approaches have
been suggested in which the unknown number is treated as a random variable. See for
example [4, 7].

A practical problem with such approaches is that most Markov random field den-
sities are known only up to a normalising constant. When updating the number of
labels in a Monte Carlo method, the normalising constants do not cancel out and have
to be approximated. A more fundamental problem is that the interaction structure
may change dramatically if two labels are pooled together, in other words, the class
of Markov random fields is not closed under merging labels, making them unnatural
models in an unsupervised image segmentation algorithm. In contrast, we show that
the class of Markov connected component models [10] is closed under the above men-
tioned operation, and hence may provide more natural prior distributions for image
segmentation with an unknown number of different textures.
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The plan of this note is as follows. First we review some random field theory in
Section 2, the main Section 3 studies the effect on the interaction structure of changes
in the number of labels and compares the results to their counterparts in a continuous
point process set-up [2, 9]. The paper closes with a short discussion.

2 Markov and connected component fields

Let S = (s1, . . . , sm) be a collection of sites, for example a rectangle of raster points in
Z

2, and assume there is a symmetric, reflexive relation ∼ on S. In a graph theoretical
interpretation, the sites are the vertices, and an edge is drawn between s and r, s 6= r,
if and only if s ∼ r. Each site is assigned a label, or colour, from the set Λ = {1, . . . , q},
q ≥ 2, at random according to some probability distribution. The labels are nominal,
so any convenient set of q distinct numbers may be used. The induced random field is
denoted by X = (X1, . . . , Xm) with Xi indicating the label at si.

There is a close connection between the notion of a random field and the physics
concept of a Gibbs state. Recall that X is a Gibbs state with interaction potentials
{VA : A ⊆ S}, if

P (X1 = x1, . . . , Xm = xm) =
1

Z
exp

[

∑

A⊆S

VA(x1, . . . , xm)

]

(1)

for VA : ΛS → R such that V∅(·) ≡ 0 and VA(·) depends only on the sites in A. The
potential V is normalised with respect to the label ℓ ∈ Λ if xa = ℓ for some a ∈ A
implies VA(x1, . . . , xm) = 0. In fact, any random field with strictly positive probability
mass function is a Gibbs state with respect to the ℓ-canonical potential

VA(x1, . . . , xm) =
∑

B⊆A

(−1)|A\B| log P (xB)

where xB
s = xs for s ∈ B and a prefixed value ℓ ∈ Λ otherwise. This is the unique

normalised solution with respect to label ℓ. See [5] for proofs and further details. From
now on, we shall assume that P (·) is strictly positive so that conditional distributions
are well-defined, and use the equivalent Gibbs state formulation ad libitum.

A random field X with probability mass function P (·) is said to be Markov with
respect to ∼ if for all i = 1, . . . , m the conditional probability mass function

P (Xi = xi | Xj = xj , j 6= i) = P (Xi = xi | Xj = xj , sj ∼ si, j 6= i) (2)

depends only on xi and the labels at those sites sj, j 6= i, that share an edge with si

[5, 11]. The collection ∂(si) of such sites is called the neighbourhood of the ith site; the
conditional distributions in (2) are known as the local characteristics.
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To characterise Markov random fields, we need the following definition. A clique is
a subset C ⊆ S for which s ∼ t for all s, t ∈ C. Note that singletons and the empty set
∅ are cliques. Write C for the class of all cliques in S. Then, the Hammersley–Clifford
theorem [3] states that X is a Markov random field if and only if its probability mass
function can be written as

P (X1 = x1, . . . , Xm = xm) =
∏

C∈C

ϕC(xc, c ∈ C) (3)

for some interaction functions ϕC : ΛC → R
+ defined for each clique C ∈ C. Equation

(3) amounts to saying that X is a Gibbs state with interaction potentials VC(·) =
log ϕC(·) for non-empty C.

The Markov connected component fields proposed by Møller and Waagepetersen
[10] are defined by a factorisation of the form

P (X1 = x1, . . . , Xm = xm) =
1

Z

∏

K∈K(x)

Ψ(K, l(xK)) (4)

where the product ranges over the maximal ∼-connected components of identically
labelled sites in x = xS = (x1, . . . , xm), l(xK) denotes the common label in the compo-
nent xK = (xk, k ∈ K), and Ψ(·, ·) is a positive function on K×Λ, the product space of
all ∼-connected components and the label set. In general, a local dependence definition
does not exist, except when one of the colours may be regarded as background.

It is important to observe that the two classes are not comparable in the sense that
neither class is contained in the other, see [10] for further details.

2.1 Example: the Potts model

Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive relation on S
and Λ = {1, . . . , q}, q ≥ 2, a finite set of labels. Then the Potts model is a ΛS-valued
random variable with joint probability mass function

π(x1, . . . , xm) =
1

Z
exp



−β
∑

si∼sj ,i<j

1 {xi 6= xj}



 . (5)

The parameter β ∈ R is known as the reciprocal temperature, Z is the normalising
constant that ensures

∑

x∈ΛS π(x) = 1. The special case q = 2 is known as the Ising
model . Thus, (5) is of the form (1) with VC(xi, xj) = −β 1 {xi 6= xj} for the two-point
set C = {si, sj} with si ∼ sj , and VA ≡ 0 otherwise.

The Potts model (5) has local characteristics given by

P (Xi = ℓ | Xj = xj , j 6= i)

P (Xi = 1 | Xj = xj , j 6= i)
=

exp
[

−β
∑

si∼sj
1 {xj 6= ℓ}

]

exp
[

−β
∑

si∼sj
1 {xj 6= 1}

]
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for any ℓ ∈ Λ and xj ∈ Λ, j 6= i ∈ {1, . . . , m}. We conclude that X is Markov
with respect to ∼ for all q. If β > 0, majority voting amongst the neighbours of
the site of interest determines which label has the highest conditional probability
(ferromagnetic case); for β < 0, the label disagreeing with most of the neighbours’
is most likely (anti-ferromagnetic case). The interaction functions are ϕ∅ = 1/Z,
ϕC(xi, xj) = exp [−β 1 {xi 6= xj}] for cliques C = {si, sj} that consist of a pair of
neighbours si ∼ sj, and ϕC ≡ 1 otherwise.

Since

π(x1, . . . , xm) =
1

Z
exp



−
β

2

∑

K∈K(x)

∑

si∈K

|{sj 6∈ K : si ∼ sj}|



 ,

the Potts model is also a Markov connected component field with respect to ∼.

3 Merging of labels

Chin and Baddeley [2] proved that the class of Markov connected component point
processes [1] is closed under independent superposition. The purpose of the present
paper is to show that the same is true for Markov connected component fields under
merging of labels.

Theorem 1. Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive
relation on S and Λ = {1, . . . , q}, q ≥ 2, a finite set of labels. Let X be a q-colour
Markov connected component field (4) with respect to ∼ and define the random field Y
with values in {0, . . . , q − 2} by

Yi = Xi 1 {Xi ≤ q − 2}

for i = 1, . . . , m. Then Y is a (q − 1)-colour Markov connected component field with
respect to ∼.

Proof: Fix y = (y1, . . . , ym) ∈ {0, . . . , q − 2}S. For x ∈ Ωy := {x ∈ ΛS : yi =
xi 1 {xi ≤ q − 2} , i = 1, . . . , m} and j ∈ Λ, write Kj(x) for the set of maximal con-
nected components in x labelled j. Note that the maximal j-labelled connected compo-
nents in x and y are identical for j = 1, . . . , q−2, and that each (q−1)- or q-component
is part of a single maximal 0-component in y. Denote the family of these 0-components
by K0(y). Now, the probability mass function of Y is given by

πY (y) =
∑

x∈Ωy

π(x) =
1

Z

q−2
∏

j=1

∏

K∈Kj(y)

Ψ(K, j)×
∏

K∈K0(y)







∑

x∈{q−1,q}K

q
∏

j=q−1

∏

L∈Kj(x)

Ψ(L, j)
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which proves the claim. �

Note that the normalisation constant Z involved in πY is the same as that in π, the
probability mass function of X.

The factorisation in the proof above should be compared to that for point processes,
see [2] or [8, p. 73].

A similar result does not hold for Markov random fields. Here the situation is more
complicated, reflecting the state of affairs for Markov point processes with respect to
superposition [8, 9].

Example 1. Consider the Potts model X introduced in Section 2.1, and, for i =
1, . . . , m, set Yi = Xi1 {Xi ≤ q − 2}. Then the probability mass function of Y equals

πY (y) =
∑

x∈Ωy

1

Z
exp



−β
∑

si∼sj ,i<j

1 {xi 6= xj}



 =
1

Z
exp



−β
∑

si∼sj ,i<j

1 {yi 6= yj}





×
∏

K∈K0(y)







∑

x∈{q−1,q}K

exp



−β
∑

si∼sj in K,i<j

1 {xi 6= xj}











. (6)

Thus, (6) is proportional to the product of the probability mass functions of a Potts
model with q − 1 colours and a Markov connected component field on the maximal 0-
components collected in K0(y). Realisations of X and Y with q = 5 are shown in the
two left-most panels of Figure 1.

Figure 1: Realisation of a Potts model with q = 5 labels, the first order neighbour
relation si ∼ sj ⇔ ||si − sj || ≤ 1, and interaction parameter β = 1 (left-most panel)
after merging two labels successively (other panels).

We conclude that merging two labels in a Potts model yields a Markov connected
component field with respect to the underlying relation ∼. One might wonder whether
Y is Markov with respect to ∼. This is not the case, as can be seen from the following
counterexample.
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Counterexample 1. Consider the following configuration with sites indexed in row
major order and first order neighbour relation si ∼ sj ⇔ ||si − sj|| ≤ 1, i = 1, . . . , 4

0 ?

0/1 0

Let X be a Potts model with q = 3 and β = 1, and merge labels 2 and 3 into a single
label 0 to obtain the random field Y . We are interested in the marginal distribution
of Y at the top right site given its neighbours are assigned value 0. Straightforward
computations yield P (Y2 = 1; Y1 = Y3 = Y4 = 0) = 2e−2(1 + e−1)2/Z = P (Y1 = Y2 =
Y4 = 0; Y3 = 1). Also P (Y1 = Y2 = Y3 = Y4 = 0) = (2 + 2e−4 + 12e−2)/Z, and
P (Y1 = Y4 = 0; Y2 = Y3 = 1) = 4e−4/Z. We obtain

P (Y2 = 1 | Y1 = Y3 = Y4 = 0) =
e−2(1 + e−1)2

1 + 7e−2 + 2e−3 + 2e−4
,

respectively

P (Y2 = 1 | Y1 = Y4 = 0; Y3 = 1) =
2e−2

1 + 2e−1 + 3e−2
.

Hence Y is not first-order Markov.

In the above counterexample, the neighbours of the pixel of interest were labelled
0. To see why, consider any q-colour Markov random field X with respect to some
relation ∼, and focus (without loss of generality) on the site s1. Let (y2, . . . , ym) be a
configuration on the remaining sites such that the labels fall in {1, . . . , q − 2} on the
neighbourhood ∂(s1) of s1. Define Y as in Theorem 1. Then for ℓ ∈ {1, . . . , q − 2},

P (Y1 = ℓ, Yj = yj, j 6= 1) =
∑

x∈Ωy

P (X1 = l, Xj = xj , j 6= 1)

=
∑

x∈Ωy

P (X1 = ℓ | Xj = xj , sj ∈ ∂(s1))P (Xj = xj , j 6= 1)

= P (Y1 = ℓ | Yj = yj, sj ∈ ∂(s1))P (Yj = yj, j 6= 1)

where as before Ωy = {x ∈ ΛS : yi = xi 1 {xi ≤ q − 2}}. Hence

P (Y1 = ℓ | Yj = yj, j 6= 1) = P (Y1 = ℓ | Yj = yj, sj ∈ ∂(s1))

for any ℓ 6= 0. Since probabilities add to unity, also

P (Y1 = 0 | Yj = yj, j 6= 1) = P (Y1 = 0 | Yj = yj, sj ∈ ∂(s1)).

For homogeneous models such as the Potts model in Counterexample 1, a single
neighbour of the pixel of interest may be set to zero without affecting the relation (2)
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for Y . A similar phenomenon may is observed for Markov point processes, that are
invariant under independent superposition up to second order [8, p. 59-61].

Next, we turn our attention to the class of random fields that are both Markov and
connected component Markov, characterised by Møller and Waagepetersen [10] by a
factorisation of the probability mass function as follows:

π(x1, . . . , xm) =
1

Z

∏

K∈K(x)

∏

∅6=C∈C,C⊆K

Φ(C, l(xK)). (7)

For instance for the Potts model introduced in Subsection 5, for C = {c} with c ∈ K,
Φ(C, l(xK)) = exp

[

−β

2
|{sj 6∈ K : c ∼ sj}|

]

with Φ ≡ 1 otherwise.

We have the following corollary to Theorem 1.

Corollary 1. Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive
relation on S and Λ = {1, . . . , q}, q ≥ 2, a finite set of labels. Let X be a q-colour
Markov connected component field with respect to ∼ with a probability mass function
given by (7) and define the random field Y with values in {0, . . . , q − 2} by

Yi = Xi 1 {Xi ≤ q − 2}

for i = 1, . . . , m. Then Y is a (q − 1)-colour Markov connected component field with
respect to ∼ with

Ψ(K, 0) =
∑

x∈{q−1,q}K

q
∏

j=q−1

∏

L∈Kj(x)

∏

∅6=C∈C,C⊆L

Φ(C, j).

In general, Y is not a Markov random field, see Counterexample 1).

For any Markov random field, the following result holds true.

Theorem 2. Let S = (s1, . . . , sm) be a finite set of sites, ∼ a symmetric, reflexive re-
lation on S and Λ = {1, . . . , q}, q > 2, a finite set of labels. Let X be a Markov random
field (3) with respect to ∼ and define the random field Y with values in {0, . . . , q − 2}
by

Yi = Xi 1 {Xi ≤ q − 2}

for i = 1, . . . , m. Then Y has probability mass function πY (y) given by

∏

C∋C⊆(∪K0(y))c

ϕC(yc, c ∈ C)
∏

K∈K0(y)







∑

x∈{q−1,q}K

∏

C∋C∩K 6=∅

ϕC(xc, c ∈ C ∩ K; yd, d ∈ C \ K)







.
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Proof: Fix y = (y1, . . . , ym) ∈ {0, . . . , q − 2}S, and write Ωy := {x ∈ ΛS : yi =
xi 1 {xi ≤ q − 2} , i = 1, . . . , m}. Then the probability mass function of Y is given by

πY (y) =
∑

x∈Ωy

π(x) =
∏

C∋C⊂(∪K0)c

ϕC(yc, c ∈ C) ×

×
∑

x∈{q−1,q}K0(y)

∏

C∋C∩K0(y)6=∅

ϕC(xc, c ∈ C ∩ K0(y); yd, d ∈ C \ K0(y)).

The key observation is that if yi = 0 = yj and si ∼ sj then si and sj must belong
to the same maximal 0-component in y, so no clique can contain points from disjoint
K, L ∈ K0(y). Consequently, πY is as claimed. �

We conclude that Y is not necessarily a Markov connected component field. A
counterexample is the Geman and Reynolds field [6]. More precisely, let S = {s1, s2}
consist of two related sites, and take q = 6. Define a random field X by its probability
mass function π(x1, x2) ∝ exp [1/(|x1 − x2| + 1)] . Then clearly X is a Markov random
field with

φS(x1, x2) = exp [1/(|x1 − x2| + 1)] ,

φs1(x1) = φs2(x2) = 1, and the interaction function of the empty set equal to the
normalising constant. However, by arguments similar to those in [10, Ex. A2], the
density of Y does not factorise over the maximal connected components.

4 Conclusion

In this paper, we considered the effect of merging labels on the interaction structure
of random fields. It was shown that the class of Markov connected component fields
is closed under the merge operation, and explicit expressions were derived for the
component potentials. We then proved that the class of Markov random fields is not
closed under the merge operation, indeed the resulting random field may not satisfy
the Markov connected component condition.

Our results suggest that models such as those proposed in [10] are natural prior
distributions for image segmentation with an unknown number of different textures.
Except for trivial cases, Monte Carlo methods will be needed so that the practitioner
must be able to jump between X and Y . Given Y = y, there are many valid choices
to assign label q or q − 1 to the zero-components of y, for example picking them
independently and uniformly. Alternatively, and more naturally, one could sample
from the conditional distribution P (X = x | Y = y) = π(x)1{x ∈ Ωy}/πY (y). For a
Markov connected component field,

P (X = x | Y = y) =
∏

K∈K0(y)

{
∏q

j=q−1

∏

K∈Kj(x) Ψ(K, j)
∑

z∈{q−1,q}K

∏q

j=q−1

∏

L∈Kj(z)
Ψ(L, j)

}

(8)
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by the proof of Theorem 1, so the x-labels in different maximal 0-components of y

are assigned independently. Switching between labels this way is amenable to Gibbs
sampling [5, 11] and involves no ratio of normalising constants. Instead, a sample from
(8) is required. Since single texture components tend be small compared to the image
size, and only two labels have to be considered, such label assignment is quite feasible.
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