Equivalent Semantic Models
for a Distributed Dataspace Architecture

Jozef Hoorman1,2 and Jaco van de Pol2

1 University of Nijmegen, Nijmegen, The Netherlands
hooman@cs.kun.nl
http://www.cs.kun.nl/~hooman/

2 CWI, Amsterdam, The Netherlands
Jaco.van.de.Pol@cwi.nl
http://www.cwi.nl/~vdpol/

Abstract. The general aim of our work is to support formal reasoning
about components on top of the distributed dataspace architecture
Spice. To investigate the basic properties of Spice and to support com-
positional verification, we have defined a denotational semantics for a
basic Spice-like language. To increase the confidence in this semantics,
also an operational semantics has been defined which is shown to be
equivalent to the denotational one using the theorem prover PVS. A ver-
ification framework based on the denotational semantics is applied to an
example of top-down development and transparent replication.

1 Introduction

The general aim of our work is to support the development of complex applications on top of industrial software architectures by means of formal methods. As a particular example, we consider in this paper components on top of the
software architecture Spice [Bos93,BdJ97] which has been devised at Thales Nederland (previously called Hollandse Signaalapparaten). It is used to build
large and complex embedded systems such as command and control systems,
process control systems, and air traffic management systems.

The main goal of Spice is to provide a coordination mechanism between
loosely-coupled heterogeneous components. In typical Spice-applications it is
essential to deal with large data streams from sensors, such as radars. Hence
Spice should support real-time and high-bandwidth distribution of data. An-
other aim is to support fault-tolerance, e.g., it should be possible to replicate
components transparently, i.e. without affecting the overall system behaviour.

Spice is data-oriented, with distributed local databases based on keys. It
uses the publish-subscribe paradigm to get loosely-coupled data producers and
consumers. An important design decision is to have minimal overhead for data
management, allowing a fast and cheap implementation that indeed allows huge
data streams. For instance, Spice has no standard built-in mechanisms to ensure
global consistency or global synchronization. If needed, this can be constructed
for particular data types on top of the Spice primitives. Note that this is quite

F.S. de Boer et al. (Eds.): FMCO 2002, LNCS 2852, pp. 182–201, 2003.
\textcopyright Springer-Verlag Berlin Heidelberg 2003
different from Linda [Gel85] and JavaSpaces [FHA99], which have a central data storage. The latter also has a transaction mechanism to handle distributed access.

Our aim is to reason about components of the distributed dataspace architecture Splice in a compositional way. This means that we want to deduce properties of the parallel composition of Splice-components using only the specifications of the externally visible behaviour of these components. Compositionality supports verification of development steps during the development process.

Many examples in the literature show that it is convenient to specify components using explicit assumptions about the environment. Concerning Splice, in [HH02] we propose a framework with an explicit assumption about the quality of data streams published by environment and a similar commitment of the component about its produced data. When putting components in parallel, assumptions can be discharged if they are guaranteed by other components. Reasoning with assumption/commitment [MC81] or rely/guarantee [Jon83] pairs, however, easily leads to unsound reasoning. There is a danger of circular reasoning, two components which mutually discharge each others assumptions, leading to incorrect conclusions. Hence it is important to prove the soundness of the verification techniques. Correctness of compositional verification rules is usually based on a denotational semantics which assigns a meaning to compound constructs based on the meaning of its constituents. Earlier work on the verification of Splice-systems [HvdP02] was based on a complex semantics with environment actions and its correctness was not obvious.

In this paper we define a denotational semantics for a simple Splice-like language which is more convenient as a basis for compositional reasoning using assumptions about the environment. It is, however, far from trivial that this semantics captures the intuitive understanding of the Splice architecture. Hence, we also provide a more intuitive operational semantics and prove formally that it is equivalent to the denotational one. Moreover, we show by a small example of transparent replication how the denotational framework can be used to support verification.

Both versions of the semantics have been formulated in the language of the interactive theorem prover PVS [OSRSC01]. The equivalence result has been checked completely using PVS. Also the example application (transparent replication) has been verified in detail using PVS.

Related to our semantic study is earlier work on the semantics of Splice-like languages such as a transition system semantics for a basic language of write and read statements (without query) [BKBdJ98] and a comparison of semantic choices using an operational semantics [BKBdJ98,BKZ99]. In previous work on a denotational semantics for Splice [BHdJ00] the semantics of local storages is not very convenient for compositional verification; it is based on process identifiers and a partial order of read and write events with complex global conditions.

New in this paper is an operational semantics that deals with local time stamps and their use for updating local databases. We define an equivalent denotational semantics which includes assumptions about the environment of a
component. Moreover, we show that this denotational semantics forms the basis of a formal framework for specifying and verifying Splice applications.

This paper is structured as follows. Section 2 contains a brief informal explanation of Splice. In Sect. 3 we present a formal syntax of the Splice primitives considered in this paper. The operational and denotational semantics of this language are defined in Sect. 4 and Sect. 5, respectively. The main outline of the equivalence proof can be found in Sect. 6. A framework for specification and verification is described in Sect. 7 and applied to an example with top-down design and transparent replication in Sect. 8. Finally, Sect. 9 contains a number of concluding remarks.

2 Informal Splice Introduction

The Splice architecture provides a coordination mechanism for concurrent components. Producers and consumers of data are decoupled. They need not know each other, and communicate indirectly via the Splice primitives; basically read- and write-operations on a distributed dataspace. This type of anonymous communication between components is strongly related to coordination languages such as Linda [Gei85] and JavaSpaces [FHA99]. These languages, however, have a single shared dataspace, whereas in Splice each component has its own dataspace, see Fig. 1. Communication between components takes place by means of local agents. A data producer writes data records to the other dataspaces via its agent. A data consumer uses its agent to subscribe to the required types of data; only data which matches this subscription is stored. Data items may be delayed and re-ordered and sometimes may even get lost. It is possible to associate certain quality-of-service policies with data delivery and data storage. For instance, for a particular data type, delivery maybe guaranteed (each item is delivered at least once) or best effort (zero or more times). Data storage can be volatile, transient, or persistent.
Each data item within Splice has a unique sort, specifying the fields the sort consists of and defining the key fields [BdJ97]. In each local dataspace, at most one data item is present for each key. Basically, a newly received data item overwrites the current item with the same key (if any). To avoid that old data items overwrite newer information (recall that data may be delayed and re-ordered), data records include a time stamp field. A time stamp of a data item is obtained from the local clock of the data producer when the item is published. At the local storage of the consumer, data items are only overwritten if their time stamp is smaller than that of a newly arrived item (with the same key). This overwriting technique reduces memory requirements and allows a decoupling of frequencies between producers and consumers. It also reduces the number of updates to be performed on the dataspace, as not all received records get stored. The timestamps improve the quality of the data stored, as no record can be overwritten by older data.

To program components on top of Splice, a Splice API can be called within conventional programming languages such as C and Java. Splice provides, for instance, constructs for retrieving (reading) data from the local dataspace, and for publishing (writing) data. Read actions contain a query on the dataspace, selecting data items that satisfy certain criteria. Data has a life-cycle attribute, such as "read", "unread", "new", and "update", which may be used for additional filtering.

3 Syntax of a Simple Splice-Like Language

In this section we define the formal syntax of a very simple Splice-like language. We have embedded the basic Splice primitives in a minimal programming language to be able to highlight the essential features and to prove equivalences between various semantic definitions in a formal way. In Sect. 7.1 we show that it is easy to extend the language with, e.g. if-then-else and loop constructs. Life-cycle attributes are not included in the current version, because we detected some problems with the informal definition (as mentioned in Sect. 9).

We consider only one sort. Let Data be some data domain, with a set KeyData of key data and a function key: Data → KeyData. Assume a given type LocalTime to represent values of local clocks (in our PVS representation we choose the natural numbers).

The type DataItems of time-stamped data items, consists of records with two fields: dat of type Data and ts of type LocalTime. A record of type DataItems can be written as (dat := ..., ts := ...), following the PVS notation. Hence, for di ∈ DataItems, we have dat(di) ∈ Data and ts(di) ∈ LocalTime. The function key is extended to DataItems by key(di) = key(dat(di)).

Let SVars be a set of variables ranging over sets of elements from DataItems. A data expression e yields an element from Data (dependent on the current value of the program variables). Henceforth we typically use the following variables ranging over the types mentioned above:
- d, d_0, d_1, \ldots over Data
- $lt, l_t, lt_0, lt_1, \ldots$ over LocalTime
- $dati, dati_0, dati_1, \ldots$ over DataItems
- $diset, diset_0, diset_1, \ldots$ over sets of DataItems
- $x, x_0, x_1, \ldots, y, y_0, y_1, \ldots$ over $SVars$

A query $q \subseteq \mathcal{P}(\text{diset})$ specifies sets of (time-stamped) data items (it may depend on program variables). A few examples:

- $q_1 = \{\text{diset} \mid \text{for all } dati \in \text{diset: } ts(dati) > 100\}$
- $q_2 = \{\text{diset} \mid \text{for all } dati \in \text{diset: } dati(dati) \neq 0\}$
- $q_2 = \{\text{diset} \mid \text{diset} \neq \emptyset \text{ and } \text{diset} \neq x\}$

For simplicity, we do not give the syntax of data expressions and queries h
The syntax of our programming language is given in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Syntax Programming Language.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential program $S ::= \text{Write}(e) \mid \text{Read}(x, q) \mid S_1 ; S_2$</td>
</tr>
<tr>
<td>Process $P ::= S \mid P_1 ; P_2$</td>
</tr>
</tbody>
</table>

Informally, the statements of this language have the following meaning:

- $\text{Write}(e)$ publishes the data item with value e (in the current state) and current time stamp (from the local clock).
 We model best effort delivery; a data item arrives 0 or more times at e
 process, where it might be used to update the local storage if there is
 current value with the same key which has a larger or equal time stamp
- $\text{Read}(x, q)$ assigns to x some set of data items from local storage that satisfy
 query q (if there are several sets satisfying q, the choice is non-deterministic).
 For instance, for query q_1 above, we assign to x a set of data items t local storage
 such that each data item has time stamp greater than 100; there are no such items in local storage, x becomes the empty set. Note that
 read statement may be blocking, depending on the query.
- $S_1 ; S_2$: sequential composition of sequential programs S_1 and S_2.
- $P_1 \parallel P_2$: parallel composition of processes. A process is a sequential program
 or a parallel composition of processes.

As a very simple example, consider a few producers and consumers of flight data. Let $Data$ be a record with two fields: flightnr (a string, e.g. $KL309$) and pos a position in some form, here a natural number for simplicity. The flight number is the key, that is, $\text{key}(dati) = \text{flightnr}(dati)$. Consider a producer:

flight data
\[P_1 = \text{Write}(\#\text{flight_nr := KL567, pos := 1#}) ; \\
 \text{Write}(\#\text{flight_nr := LU321, pos := 6#}) ; \\
 \text{Write}(\#\text{flight_nr := KL567, pos := 2#}) ; \\
 \text{Write}(\#\text{flight_nr := KL567, pos := 3#}) \]

and two consumers:
\[C_1 = \text{Read}(x_1, \text{true}) ; \text{Read}(y_1, q_1) ; \text{Read}(x_1, q_1) \\
C_2 = \text{Read}(x_2, q_1) ; \text{Read}(y_2, q_2) \]
whose queries are specified as follows:
\[q_1 = \{ \text{diset} | \text{diset} \neq \emptyset \text{ and for all } \text{dati} \in \text{diset : flight_nr(dati) = KL567} \} \]
\[q_2 = \{ \text{diset} | \text{diset} \neq \emptyset \text{ and for all } \text{dati} \in \text{diset : flight_nr(dati) = KL567 and for all } \text{dati}_1 \in x_2 : t_\text{s(dati)} > t_\text{s(dati}_1) \} \]

Consider the process \(P_1 \parallel C_1 \parallel C_2 \) and assume there are no other producers of data. Note that the producer does not specify the local time stamp explicitly; this is added implicitly. Recall that the items produced by \(P_1 \) may arrive at a different order at the consumers, and they may arrive several times.

Variable \(x_1 \) may be empty (if no data item has been delivered yet – note that this read is not blocking) or a set with one or two elements, at most one for each flight number. For instance, it may contain position number 3 for \(KL567 \). Variable \(y_1 \) will be a singleton, since the local storage contains at most one item with flight number \(KL567 \) and the second read is blocking (the query requires a non-empty set). If there is a position for \(KL567 \) in \(x_1 \), then the position in \(y_1 \) will be greater or equal (lower values are produced earlier, hence a smaller local clock value, and thus they cannot overwrite greater values). Similarly for \(x_1 \), where the position is greater or equal than the one in \(y_1 \). It is possible that \(x_1 = y_1 \). For consumer \(C_2 \) the second read action requires a newer time stamp, hence we always have \(y_2 \neq x_2 \) and the position in \(y_2 \) is at least 2.

4 Operational Semantics

We define an operational semantics for a process \(S_1 \parallel ... \parallel S_n \) of the syntax of Sect. 3, where the \(S_i \) are sequential programs. We first define an operational status of a sequential process (Def. 1) and a configuration (Def. 3) which represents the state of affairs during operational execution of a process. Next computation steps are defined (Def. 5), leading to the operational semantics (Def. 6).

Let \(\text{Data_Bases} \) be the type consisting of sets of data items with at most one item for each key, i.e.
\[\text{Data_Bases} = \{ \text{diset} \subseteq \text{Data_Items} | \text{for all dati}_1, \text{dati}_2 \in \text{diset:} \}
\]
\[\text{key} (\text{dati}_1) = \text{key} (\text{dati}_2) \rightarrow \text{dati}_1 = \text{dati}_2 \]

Definition 1 (Operational Status). An operational status of a sequential process, denoted \(\text{os}, \text{os}_0, \text{os}_1, \ldots \), is a record with three fields, \(\text{st}, \text{clock} \) and \(\text{db} \):

- \(\text{st : SVars} \rightarrow \text{p(Data_Items)} \), represents the local state, assigning to each variable a set of data items;
- \(\text{clock} \in \text{Local_Time} \), the value of the local clock;
\(db \in DataBases \), the local database, a set of data items (at most one for each key) representing local storage.

Definition 2 (Variant). The variant of local state \(st \) with respect to variable \(x \in SVars \) and value \(diset \subseteq DataItems \), denoted

\[
 st[x := diset],
\]

is defined as \((st[x := diset])(y) = \begin{cases} diset & \text{if } y = x \\ st(y) & \text{if } y \neq x \end{cases} \)

Similarly, the variant of a record \(r \) with fields \(f_1 \ldots f_m \) is defined by

\[
 r[f := v](f_i) = \begin{cases} v & \text{if } f_i = f \\ f_i(r') & \text{if } f_i \neq f \end{cases}
\]

Produced data items are sent to an underlying network. Here this is represented by \(N \), a set of data items, i.e. \(N \subseteq DataItems \). Note that we do not use a multiset, although a particular item might be produced several times. The use of a set is justified by the fact that data items may always be delivered more than once and hence are never deleted from \(N \).

Definition 3 (Configuration). The state of affairs of a process \(S_1 \parallel \ldots \parallel S_n \) during execution is represented by a configuration:

\[
 \langle (S'_1, os_1), \ldots, (S'_n, os_n), N \rangle
\]

It denotes for each sequential process \(S_i \), the status \(os_i \) and the remaining part \(S'_i \) that still has to be executed, and the current contents \(N \) of the network. For convenience, we introduce the empty statement \(E \) indicating that the process has terminated.

An execution of \(S_1 \parallel \ldots \parallel S_n \) is represented by sequence of configurations

\[
 C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow \ldots
\]

where \(C_i = \langle (S'_i, E, os_1), \ldots, (S'_n, E, os_n), \emptyset \rangle \) with, for all \(i \), \(db(os_i) = \emptyset \).

The idea is that each step in the sequence \(C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow \ldots \) represents the execution of an atomic action by some process \(i \). We define the update of a database.

Definition 4 (Update Database). The update of database \(db \) using a new database \(db_1 \), denoted \(UPDATE_Db(db, db_1) \) is defined by

\[
 dati \in UPDATE_Db(db, db_1) \text{ iff }
\]

- either \(dati \in db \) and for all \(dati_1 \in db_1 \) with \(key(dati_1) = key(dati) \) we have \(ts(dati_1) \leq ts(dati) \),
- or \(dati \in db \) and for all \(dati_0 \in db \) with \(key(dati_0) = key(dati) \) we have \(ts(dati_0) < ts(dati) \).

Computation steps are defined formally as follows.

Definition 5 (Computation Step). We have a step of process \(i \), i.e.,

\[
 \langle (S_1, os_1), \ldots, (S_i, os_i), \ldots, (S_n, os_n), N \rangle \rightarrow \langle (S_1, os_1), \ldots, (S'_i, os'_i), \ldots, (S_n, os_n), N' \rangle
\]

iff one of the following clauses holds:

- (Update) \(S_i \neq E \) and \(S'_i = S_i \), \(N' = N \), \(st(os'_i) = st(os_i) \), \(clock(os'_i) = clock(os_i) \), and there exists a database \(db_1 \subseteq N \) that is used to update
\(db(os_i)\) such that an element of \(db\) is added if its key is not yet present
and, otherwise, it replaces an element of \(db(os_i)\) with the same key if its
local time-stamp is strictly greater. Formally, using Def. 4, there exists a
database \(db' \subseteq N\) such that \(db(os'_i) = UpdateDb(db(os_i), db'_i)\).
For simplicity, we did not change the local clock (it is not needed), but
alternatively we might require \(clock(os'_i) \geq clock(os_i)\).
Note that the network has not been changed, since data items might be
used several times for an update (modeling the fact that an item might be
delivered by the network several times).

Write \(S_i = \text{Write}(e); S'_i, st(os'_i) = st(os_i), db(os'_i) = db(os_i), clock(os'_i) >
clock(os_i),\) and \(N' = N \cup \{(v, clock(os_i))\}\) where \(v\) is the value of \(e\) in the
current state.

Note that, given a syntax of expressions, it would be easy to define the values
of expressions and queries in the current status (see, e.g. \[dRdBH^01]\]).

Read \(S_i = \text{Read}(x, q); S'_i, N' = N, db(os'_i) = db(os_i), clock(os'_i) = clock(os_i),\) and
there exists a set of data items \(diset \subseteq db(os_i)\) satisfying query \(q\) and
such that \(st(os'_i) = st(os_i)[x := diset]\), i.e. assigning \(diset\) to \(x\).

For two configurations \(C_1\) and \(C_2\), define \(C_1 \longrightarrow^k C_2\), for \(k \in \mathbb{N}\), by \(C_1 \longrightarrow^0 C_1\)
and \(C_1 \longrightarrow^{k+1} C_2\) iff there exists a configuration \(C\) such that \(C_1 \longrightarrow^k C\) and
\(C \longrightarrow C_2\). Define \(C_1 \longrightarrow^* C_2\) iff there exists a \(k \in \mathbb{N}\) such that \(C_1 \longrightarrow^k C_2\).

Typically, the operational semantics yields some abstraction of the execution
sequence, depending on what is observable. Here we postulate that only the set
of produced data items in the last configuration of an execution sequence is
(externally) observable.

Definition 6 (Operational Semantics). The operational semantics of a pro-
gram \(S_1 \parallel \ldots \parallel S_n\), given an initial operational status \(os_0\), is defined by
\[O(S_1 \parallel \ldots \parallel S_n)(os_0) = \{ N \subseteq DataItems | \]
\[((S_1; E, os_0), \ldots, (S_n; E, os_n), \emptyset) \longrightarrow^* ((E, os_1), \ldots, (E, os_n), N), \]

with \(db(os_0) = \emptyset\) \}

Thus the operational semantics of a program yields a set of sets of produced data
items, where each set of produced data items represents a possible execution of
the program.

Example 1. Let 0 be the query specifying that the value 0 should be read, simi-
larly for 1. Observe that, for any \(os_0\),
\[O(\text{Read}(x, 0); \text{Write}(1)) \parallel (\text{Read}(x, 1); \text{Write}(0))(os_0) = \emptyset.\]

5 Denotational Semantics

We define the denotational semantics of a program, given an initial status, i.e. the
state of affairs when execution starts. To support our aim to reason with
assumptions about the items produced by the environment, such assumptions are
included in the status. The semantics yields a set of statuses, each representing a possible execution of the program.

To achieve compositionality and to describe a process in isolation, it is quite common that information has to be added to the status to express relations with the environment explicitly. Here we add, e.g., the set of written data items and the set of items that are assumed to be produced by the environment.

Moreover, we need a way to represent causality between the written items. As shown below, this is needed to assign a correct meaning to the program \((\text{Read}(x, 0); \text{Write}(1)) \parallel (\text{Read}(x, 1); \text{Write}(0)) \). Here this is achieved by the use of conceptual logical clocks that are added to the status of each process. They are updated similarly to Lamport's logical clocks [Lam78], which ensures that there exists a global, total order on the produced items.

Let \(\text{Time} \) be the domain of logical clock values, here we use the natural numbers. We add a logical clock value to the data items produced. Type \(\text{ExtDataItems} \), with typical variables \(\text{edi}_i, \text{edi}_0, \text{edi}_1, \ldots \), consists of records with two fields:

- \(\text{di} \) of type \(\text{DataItems} \), and
- \(\text{tm} \) of type \(\text{Time} \).

Field \(\text{tm} \) represents the logical moment of publication. It can be used to construct a global partial order on the produced data items that reflects causality.

Field selector \(\text{di} \) is extended to remove the logical clock values from a set of extended data items. For a set \(\text{ediset} \subseteq \text{ExtDataItems} \) define \(\text{di}(\text{ediset}) = \{ \text{di}(\text{edi}) \mid \text{edi} \in \text{ediset} \} \).

A status, typically denoted by \(s, s_0, s_1, \ldots \), representing the current state of affairs of a program, is a record with six fields. In addition to the three fields of the operational status:

- \(\text{st} : \text{SVars} \rightarrow \wp(\text{DataItems}) \), the local state (values of variables);
- \(\text{clock} \in \text{LocalTime} \), the value of the local clock;
- \(\text{db} \in \text{DataBases} \), the local database (a set of data items, unique per key);

we have three new fields:

- \(\text{time} \in \text{Time} \), the logical clock, to represent causality;
- \(\text{ownw} \subseteq \text{ExtDataItems} \), the set of extended data items written by the program itself in the past;
- \(\text{envw} \subseteq \text{ExtDataItems} \), the set of extended data items written by the environment of the program; this is an assumption about all items produced (including present and future).

Below we define a meaning function \(\mathcal{M} \) for programs by induction on their structure. The possible behaviour of a program \(\text{prog} \), i.e. a set of statuses, is defined by \(\mathcal{M}(\text{prog})(s_0) \), where \(s_0 \) is the initial status at the start of program execution. Note that this includes an assumption about all data items that have been or will be produced by the environment. The semantics will be such that if \(s \in \mathcal{M}(\text{prog})(s_0) \) then
- ownw(s) equals the union of ownw(s0) and the items written by prog.
- envw(s) = envw(s0); the field envw is only used by prog to update its local storage. Although all items are available initially, constraints on logical clocks prevent the use of items “too early”.

Next we define M(prog) by induction on the structure of prog.

Write. In the semantics of the write statement the published item, extended with the current value of the local clock, is added to the ownw field. The local clock is increased to ensure that subsequent written items get a later time stamp. In a similar way, a logical clock value has been added.

\[
M(\text{Write}(e))(s_0) = \\
\{ s \mid \text{clock}(s) > \text{clock}(s_0), \text{time}(s) > \text{time}(s_0), \\
\text{ownw}(s) = \text{ownw}(s_0) \cup \{ (#\text{di} := \text{dati}, \text{tm} := \text{time}(s)\#), \text{where} \\
\text{dati} = (#\text{dat} := v, ts := \text{clock}(s_0)\#), \text{with} v \text{ the value of } e \text{ in } s_0, \\
\text{and } s \text{ equals } s_0 \text{ for the other fields (st, db and envw) } \}
\]

Read. To define the meaning of a read statement, we first introduce an auxiliary Update function which may update the local database with data items written (by the process itself or by its environment), using UpdateDb of Def. 4.

\[
\text{Update}(s_0) = \\
\{ s \mid \text{there exists an } \text{ediset} \subseteq \text{ownw}(s_0) \cup \text{envw}(s_0) \\
\text{and a database } db_1 \subseteq di(\text{ediset}), \text{ such that} \\
\text{db}(s) = \text{UpdateDb}(db(s_0), db_1), \\
\text{time}(s) \geq \text{time}(s_0), \\
\text{for all } e \in \text{ediset}, \text{ we have } tm(e) < \text{time}(s), \text{ and} \\
\text{s equals } s_0 \text{ for the other fields (st, clock, ownw and envw) } \}
\]

Then the read statement Read(x, q) first updates the local storage and next assigns to x a set of data items that satisfies the query q.

\[
M(\text{Read}(x, q))(s_0) = \\
\{ s \mid \text{exists } s_1 \in \text{Update}(s_0) \text{ and diset} \subseteq db(s_1) \text{ such that} \\
\text{diset satisfies query } q \text{ and } st(s) = st(s_1)[x := \text{diset}], \text{ and} \\
\text{s equals } s_1 \text{ for the other fields (clock, db, time, ownw and envw) } \}
\]

Note that we only represent terminating executions; blocking has not been modeled explicitly.

Sequential Composition. Since we only model terminating executions, the meaning of the sequential composition S1; S2 is defined by applying the meaning of S2 to any status that results from executing S1. In Sect. 7.1 we show how this can be extended to deal with non-terminating programs.

\[
M(S_1; S_2)(s_0) = \\
\{ s \mid \exists s_1 \in M(S_1)(s_0) \land s \in M(S_2)(s_1) \}
\]

Parallel Composition. To define parallel composition, let init(s0) be the condition \(db(s_0) = \emptyset \land ownw(s_0) = \emptyset \). Moreover, we use \(s + \text{ediset} \) to add a set
$ediset \subseteq ExtDataItems$ to the environment writes of s, i.e. $envw(s + ediset) = envw(s) \cup ediset$ and all other fields of s remain the same.

In the semantics of $P_1 \parallel P_2$, starting in initial status s_0, the main observation is that $envw(s_0)$ contains only the data items produced outside $P_1 \parallel P_2$. Hence the semantic function for P_1 is applied to s_0 where we add the items written by P_2 to the environment writes. Similarly for P_2. Then parallel composition is defined as follows:

$$M(P_1 \parallel P_2)(s_0) =$$

$$\{ s \mid \text{init}(s_0) \text{ and there exist } s_1 \text{ and } s_2 \text{ with }$$
$$s_1 \in M(P_1)(s_0 + ownw(s_2)),$$
$$s_2 \in M(P_2)(s_0 + ownw(s_1)),$$
$$ownw(s) = ownw(s_1) \cup ownw(s_2), \hspace{1em} envw(s) = envw(s_0) \}$$

Example 2. Consider again the program of Example 1:

$$(\text{Read}(x, 0); \text{Write}(1)) \parallel (\text{Read}(x, 1); \text{Write}(0))$$

Without using logical clocks, the semantics of parallel composition would allow for this program a status where $envw = \emptyset$ and $ownw$ contains 0 and 1 (each component produces the item required by the other one). This, however, does not correspond to the operational semantics which yields the empty set. In the current version of the semantics, we can indeed show that, for any s_0 $M((\text{Read}(x, 0); \text{Write}(1)) \parallel (\text{Read}(x, 1); \text{Write}(0)))(s_0) = \emptyset$.

6 Equivalence of Denotational and Operational Semantics

In this section we first define what it means that the operational and the denotational semantics of Sect. 4 and 5, resp., are equivalent. Next we give an outline of how we proved this equivalence formally.

Note that equivalence is far from trivial, since there a number of prominent differences:

- The operational semantics allows updates of the local database at any point in time, whereas in the denotational semantics we minimized the number of updates to keep verification simple, allowing it only once, immediately before reading items.
- The parallel composition of the denotational semantics is defined by a few recursive equations and it is not clear whether this indeed corresponds to operational execution.
- The denotational semantics has additional fields in a status and the read statement contains an additional check on logical clock values.
- The underlying network is modeled in different ways.

Equivalence is based on what is externally observable, i.e. two semantics functions are equivalent if they assign the same observable behaviour to any program. For the denotational semantics, we choose the same notion of observable behaviour as has been used in the operational semantics, namely the set of published data items. For a set D of denotational statuses, define the observations
Equivalent Semantic Models for a Distributed Dataspaces Architecture

by $Obs(D) = \{ di(ownw(s)) \mid s \in D \}$. Define for an n-tuple (s_1, \ldots, s_n) of state
$\delta T = \{ \text{Obs}(s_1, \ldots, s_n) \mid (s_1, \ldots, s_n) \in T \}$. To relate the operational and the denotational semantics, we use a function Ext to extend an operational status to a status of the denotational semantics; $Ext(os)$ copies the fields st, $clock$, and db of os and it sets the fields $time$ to 0 and $ownw$ and $ownw$ to \emptyset. This leads to the main theorem.

Theorem 1. $\mathcal{O}(S_1 \parallel \ldots \parallel S_n)(os) = \text{Obs}(\mathcal{M}(S_1 \parallel (S_2 \parallel \ldots \parallel S_n))(Ext(os)))$

We give an outline of the proof that has been checked completely using the interactive theorem prover PVS. Below we only give the main steps, for instance, ignoring details about initial conditions. The proof uses three intermediate versions of the semantics and corresponding lemma's:

- \mathcal{M}' which is the same as \mathcal{M} except that also the write-statement is preceded by an update action.

Lemma 1. $\text{Obs}(\mathcal{M}(S_1 \parallel (S_2 \parallel \ldots \parallel S_n))(Ext(os))) = \text{Obs}(\mathcal{M}'(S_1 \parallel (S_2 \parallel \ldots \parallel S_n))(Ext(os)))$

Note that \mathcal{M} and \mathcal{M}' are defined for the parallel composition of two processes. But we derive a similar formulation for n processes:

Lemma 2. $\text{Obs}(\mathcal{M}'(S_1 \parallel (S_2 \parallel \ldots \parallel S_n))(Ext(os))) = \text{Obs}\{\{s_1, \ldots, s_n\} \mid \text{init}(Ext(os)) \wedge \text{envw}(Ext(os)) = \emptyset \wedge$ and
for all $i, 1 \leq i \leq n, s_i \in \mathcal{M}'(S_i)(Ext(os)[envw := \cup_{j \neq i} ownw(s_j)])\}$

- $\mathcal{O}D$ which extends the operational semantics \mathcal{O} to the status of the denotational semantics (adding $time$, $ownw$ and $envw$). Moreover, the network N is removed. This is achieved by defining the atomic steps of a single sequential process as $(s, s) \rightarrow ediset (s', s')$, where $ediset$ represents the set of items written in the step (a singleton if S starts with a write statement, the empty set otherwise). This also includes update steps, similar to the update inside a read statement of the denotational semantics, so including a condition of the values of logical clocks.

Based on this step relation for one process, we have a step of n parallel processes, denoted $\langle (S_1, s_1), \ldots, (S_n, s_n) \rangle \rightarrow \langle (S'_1, s'_1), \ldots, (S'_n, s'_n) \rangle$, if there exists an i with $(S_i, s_i) \rightarrow ediset (S'_i, s'_i)$, and for all $j \neq i$, $S'_j = S_j$ and $s'_j = s_j + ediset$. This leads to the following semantics for n processes:

$\mathcal{O}D(S_1 \parallel \ldots \parallel S_n)(s_0) = \{ \langle s_1, \ldots, s_n \rangle \mid \text{init}(s_0) \wedge$ \langle (S_1, E, s_0), \ldots, (S_n, E, s_0) \rangle \rightarrow* \langle (E, s_1), \ldots, (E, s_n) \rangle \}$

Lemma 3. $\mathcal{O}(S_1 \parallel \ldots \parallel S_n)(os) = \text{Obs}(\mathcal{O}D(S_1 \parallel \ldots \parallel S_n)(Ext(os))$ for sequential programs S.

- \mathcal{OS} which extends the operational semantics of a sequential process to the status of the denotational semantics, using the relation $(s, s) \rightarrow* ediset (s', s')$ mentioned above.

Lemma 4. $\mathcal{O}S(S) = \mathcal{M}'(S)$, for sequential programs S.

Now, by the lemmas 1, 2, 3, and 4, theorem 1 reduces to the following lemma.

Lemma 5. \(\text{Ob} \mathcal{OD}(S_1 \| \ldots \| S_n)(\text{Ext(os)}) = \text{Ob}((s_1, \ldots, s_n) \mid \text{init}(\text{Ext(os)}), \text{envw}(\text{Ext(os)}) = \emptyset \) and for all \(i, 1 \leq i \leq n, s_i \in \text{OS}(S_i)(\text{Ext(os)}[\text{envw} := \cup j \neq i \text{ownw}(s_j)]) \)

\[\]

Proof. We give the main ideas of the proof, showing that the sets are contained in each other.

\(\subseteq \) Suppose \((s_1, \ldots, s_n) \in \text{OD}(S_1 \| \ldots \| S_n)(\text{Ext(os)}) \), that is,\(((S_1; E, \text{Ext(os)}), \ldots, (S_n; E, \text{Ext(os)})) \rightarrow^* ((E, s_1), \ldots, (E, s_n)) \).
We have proved by induction on the number of steps in the execution sequence that this implies, for all \(i, 1 \leq i \leq n, (S_i; E, \text{Ext(os)}[\text{envw} := \cup j \neq i \text{ownw}(s_j)]) \rightarrow_{\text{edisct}_i} \ldots \rightarrow_{\text{edisct}_n} (E, s_i) \),

that is, \(s_i \in \text{OS}(S_i)(\text{Ext(os)}[\text{envw} := \cup j \neq i \text{ownw}(s_j)]) \).

\(\supseteq \) Assume, for all \(i, 1 \leq i \leq n \) that \(s_i \in \text{OS}(S_i)(\text{Ext(os)}[\text{envw} := \cup j \neq i \text{ownw}(s_j)]) \).
Thus we have an operation execution
\((S_i; E, \text{Ext(os)}[\text{envw} := \cup j \neq i \text{ownw}(s_j)]) \rightarrow_{\text{edisct}_i} \ldots \rightarrow_{\text{edisct}_n} (E, s_i) \)
for each of the sequential processes. We have to show,\(((S_1; E, \text{Ext(os)}), \ldots, (S_n; E, \text{Ext(os)})) \rightarrow^* ((E, s_1), \ldots, (E, s_n)) \), i.e., we have to show that these sequential executions can be merged into a global execution sequence for the parallel program.

Basically, this is done by induction on the total number of steps in all sequential executions. The global execution sequence is constructed by selecting for each step the process with the lowest logical time after its next possible step. This construction is far from trivial, since the local, sequential executions start with all available environment writes, whereas in the global execution a process can only use what has been produced up to the current moment. However, the constraints on the logical clocks (that have been included in this extended operational semantics), ensure that only items produced before its current logical time are used. Formally, this is captured by the property that if\((S, s + \text{ediset}) \rightarrow_{\text{edisct}_i} (S', s') \) (representing a step of a local process) and for all \(\text{edi} \in \text{ediset}, \text{tm}(\text{edi}) \geq \text{time}(s') \) then \((S, s) \rightarrow_{\text{edisct}_i} (S', s'\text{[envw} := \text{envw}(s)]) \), (i.e. it can be used in the global sequence). Since we execute the process with the earliest logical time, we can also show that all items produced later cannot have a smaller logical time stamp.

\[\square \]

7 Verification Framework

In this section we provide a framework that can be used to specify and verify processes, as shown in Sect. 8. First, in Sect. 7.1, the programming language is extended with a number of useful constructs. Section 7.2 contains the main specification and verification constructs.

7.1 Language Extensions

To deal with some more interesting examples, the simple programming language of Sect. 3 is extended with an assignment, if-then-else construct, and infinite
loops. Accordingly, the denotational semantics of Sect. 5 is extended. Since infinite loops introduce non-terminating computations, we add one field to the status:

- \(\text{term} \in \{ \text{true}, \text{false} \} \): indicates termination of the process; if it is false all subsequent statements are ignored.

Henceforth, we assume that \(s_0 \) is such that \(\text{term}(s_0) = \text{true} \), i.e. after \(s_0 \) we can still execute subsequent statements.

The definition of sequential composition has to be adapted, since it is possible that the first process does not terminate and thus prohibits execution of the second process.

\[
\mathcal{M}(S_1 ; S_2)(s_0) = \\
\{ s | s \in \mathcal{M}(S_1)(s_0) \wedge \neg \text{term}(s) \} \cup \\
\{ s | \text{there exists an } s_1 \text{ with } s_1 \in \mathcal{M}(S_1)(s_0) \wedge \text{term}(s_1) \wedge s \in \mathcal{M}(S_2)(s_1) \}
\]

The meaning of the skip statement can be defined easily.

\[
\mathcal{M}(\text{skip})(s_0) = \{ s_0 \}
\]

Similarly we can easily define \(x := e \) where \(x \in \text{Vars} \) and \(e \) an expression yielding a set of data items. We also add variables that range over data items and define assignments for such variables. Next we define an if-then-else statement, where \(b \) is a boolean expression.

\[
\mathcal{M}(\text{if } b \text{ then } S_1 \text{ else } S_2 \text{ fi})(s_0) = \\
\{ s | \text{if } b \text{ is true in } st(s_0) \text{ then } s \in \mathcal{M}(S_1)(s_0) \text{ else } s \in \mathcal{M}(S_2)(s_0) \}
\]

Finally, we define an infinite loop by means of an infinite sequence of statuses \(s_0, s_1, s_2, \ldots \), where \(s_i \) is the result of executing the loop body \(i \) times, provided all these executions terminate. Otherwise the \(\text{term} \)-field of \(s_i \) is false. The written items are collected by taking the union of the produced items in each execution of the body. Note that only the own and environment writes are relevant.

\[
\mathcal{M}(\text{do } S \text{ od})(s_0) = \\
\{ s | \text{there exists a sequence } s_0, s_1, s_2, \ldots \text{ such that for all } i, \\
\text{if } \text{term}(s_i) \text{ then } s_{i+1} \in \mathcal{M}(S)(s_i) \text{ else } \text{term}(s_{i+1}) = \text{false}, \text{ and} \\
\text{ownw}(s) = \bigcup_{i(\text{term}(s_i))} \text{ownw}(s_{i+1}) \text{ and } \text{enw}(s) = \text{enw}(s_0) \}
\]

7.2 Specification and Verification

To obtain a convenient specification and verification framework, we define a mixed formalism in which one can freely mix programs and specifications, based on earlier work [Hoo94].

Specifications are part of the program syntax; let \(p, p_0, p_1, \ldots, q, q_0, q_1, \ldots \) be assertions, that is, predicates over statuses. A specification is a "program" of the form \(\text{Spec}(p, q) \) with the following meaning.

\[
\mathcal{M}(\text{Spec}(p, q))(s_0) = \\
\{ s | (p(s_0) \text{ implies } q(s)) \text{ and } \text{enw}(s) = \text{enw}(s_0) \}
\]
Next we define a refinement relation \Rightarrow between programs (which now may include specifications).

Definition 7 (Refinement). For any two programs P_1, P_2, we define $P_1 \Rightarrow P_2$ iff for all s_0, we have $M(P_1)(s_0) \subseteq M(P_2)(s_0)$.

Note that it is easy to prove that the refinement relation is reflexive and transitive. We have the usual consequence rule.

Lemma 6 (Consequence). If $p \rightarrow p_0$ and $q_0 \rightarrow q$ then $Spec(p_0, q_0) \Rightarrow Spec(p, q)$.

Based on the denotational semantics for Splice, we checked in PVS the soundness of a number of proof rules for programming constructs. For instance, for sequential composition we have a composition rule and a monotonicity rule which allows refinements in a sequential context.

Lemma 7 (Sequential Composition). $(Spec(p, r); Spec(r, q)) \Rightarrow Spec(p, q)$.

Lemma 8 (Monotonicity of Sequential Composition). If $P_3 \Rightarrow P_1$ and $P_4 \Rightarrow P_2$ then $(P_3 ; P_4) \Rightarrow (P_1 ; P_2)$.

The reasoning about parallel composition in PVS mainly uses the semantics directly. We only have a monotonicity rule, which forms the basis of stepwise refinement of components.

Lemma 9 (Monotonicity of Parallel Composition). If $P_3 \Rightarrow P_1$ and $P_4 \Rightarrow P_2$ then $(P_3 \parallel P_4) \Rightarrow (P_1 \parallel P_2)$.

8 Verification Example

To illustrate our reasoning framework, we first show top-down development of a typical application consisting of a producer, a transformer, and a consumer in Sect. 8.1. Next, in Sect. 8.2, we consider transparent replication. The general question is whether we can replace a single process by two, or more, copies of the same process without having to change the environment. So, given the monotonicity rules mentioned above, we look for sufficient conditions for having $P \parallel P \Rightarrow P$. We investigate this for the concrete case study developed in Sect. 8.1.

8.1 Top-Down Development

Here we consider a concrete and simple case study, which is prototypical for the application area, with the following processes:

- **Producer**: provides monotonically increasing data (here simply natural numbers) with name $SensData$.
- **Transformer**: assuming it gets increasing $SensData$ items, it provides monotonically increasing data with name $Intern$.
- **Consumer**: assuming the environment provides increasing data with name $\text{\textasciitilde er}$, it produces monotonically increasing $Display$ items.
To formalize this, we define the following types and functions:

- \(DataName = \{SensData, Intern, Display\} \), with typical variable \(dn \).
- \(DataVal = \mathbb{N} \).
- \(Data \) is a type of records with two fields: \(name \) of type \(DataName \) and \(val \) of type \(DataVal \). Let \(dvar \) be a variable of type \(Data\).
- \(KeyData = DataName \) and \(key(dvar) = name(dvar) \).

To formulate the specifications, first a few preliminary definitions are needed, where \(uset \) is a set of extended data items:

- \(NameOwnw(dn)(s) = \forall edi \in ownw(s) : name(edi) = dn \)
- \(SensData(uset) = \{edi | edi \in uset \land name(edi) = SensData\} \)

Similarly, we have \(Intern(uset) \) and \(Display(uset) \).

- \(Increasing(uset) = \forall edi1 \in uset, edi2 \in uset : (val(edi1) < val(edi2) \leftrightarrow ts(edi1) < ts(edi2)) \)

Let \(pre \) be an assertion expressing that \(db = \emptyset, ownw = \emptyset \), and all variables ranging over sets of data items are initialized to the empty set. It is used as a precondition for the processes.

The top-level specification of the overall system is defined as follows.

\[
postTopLevel(s) = envw(s) = \emptyset \rightarrow Increasing(Display(ownw(s)))
\]

\[
TopLevel = Spec(pre, postTopLevel)
\]

We implement this top-level specification by the parallel composition of the three processes mentioned above: \(Producer \parallel Transformer \parallel Consumer \)

We first specify the processes, without considering their implementation, and show that these specifications lead to the top-level specification.

The producer writes an increasing sequence of sensor data.

\[
postProd(s) = NameOwnw(SensData)(s) \land Increasing(ownw(s))
\]

\[
Prod = Spec(pre, postProd)
\]

The consumer should produce an increasing sequence of \(Display \) data, assuming the environment provides increasing internal values.

\[
postCons = NameOwnw(Display)(s) \land Increasing(Intern(envw(s))) \rightarrow Increasing(Display(ownw(s)))
\]

\[
Cons = Spec(pre, postCons)
\]

To connect producer and consumer, we specify the transformer as follows.

\[
postTrans = NameOwnw(Intern)(s) \land Increasing(SensData(envw(s))) \rightarrow Increasing(Intern(ownw(s)))
\]

\[
Trans = Spec(pre, postTrans)
\]

We have proved in PVS that this leads to a correct refinement of the top-level specification.
Theorem 2. \((Prod \parallel (Trans \parallel Cons)) \Rightarrow TopLevel\)

Next we consider the implementation of the three components. Let \(d\) be a variable ranging over \(Data\), whereas \(dset\) and \(old\) are variables ranging over sets of data items.

\[
Producer = d := (#name := SensData, val := 0\#);
\begin{align*}
&\text{Do Write}(d); \quad d := (#name := SensData, val := val(d) + 1\#) \quad \text{Od}
\end{align*}
\]

Note that the producer writes all natural numbers, which is not required by the specification. Also note that subscribers to data with name \(SensData\) will usually read only a (increasing) subsequence of these items. We have proved in PVS that this is indeed a correct refinement.

Lemma 10. \(Producer \Rightarrow Prod\)

Similarly we provide a program for the transformer and show that it is a correct implementation. Let \(q(dn, old)\) be the query that specifies a set of data items with name \(dn\) and local time stamp different from those in variable \(old\) (which is initially empty). The set is allowed to be empty, to avoid blocking computations; otherwise it will be a singleton with a new, unread, item. The item that has been read is transformed using a function \(Tr(dn, dset)\) which, for simplicity, just changes the name of the record of the item in \(dset\) into \(dn\).

\[
Transformer = \text{Do } Read(dset, q(SensData, old));
\begin{align*}
&\quad\quad\text{If } dset \neq \emptyset \\
&\quad\quad\quad\quad\text{Then Write}(Tr(\text{Intern}, dset)); \quad old := dset \\
&\quad\quad\quad\quad\text{Else Skip Fi} \quad \text{Od}
\end{align*}
\]

Lemma 11. \(Transformer \Rightarrow Trans\)

Similarly for the consumer. For simplicity, we used the same name transformation, which makes it possible to derive the correctness of transformer and consumer from a single proof that was parameterized by the name of the data sort.

\[
Consumer = \text{Do } Read(dset, q(\text{Intern}, old));
\begin{align*}
&\quad\quad\text{If } dset \neq \emptyset \\
&\quad\quad\quad\quad\text{Then Write}(Tr(\text{Display}, dset)); \quad old := dset \\
&\quad\quad\quad\quad\text{Else Skip Fi} \quad \text{Od}
\end{align*}
\]

Lemma 12. \(Consumer \Rightarrow Cons\)

Finally observe that top-level theorem 2 and the lemmas 10, 11, and 12 for the components lead by the monotonicity property (lemma 9) to

\[(Producer \parallel (Transformer \parallel Consumer)) \Rightarrow TopLevel\]

8.2 Transparent Replication

While investigating transparent replication, we observed that the current version of the transformer specification is not suitable. The next lemma expresses that we cannot replicate the transformer in a transparent way.
Lemma 13. \(\neg((\text{Trans} || \text{Trans}) \Rightarrow \text{Trans}) \)

The lemma has been proved by a concrete counter example in PVS. The basic idea is that the two transformers each have increasing output, but because they may write this output at different moment - the local time stamps in these sequences might be different and hence merging these output streams need not lead to an increasing sequence.

The main problem is that the items produced get their local time stamp from the local clock when the item is written. This need not be related to the temporal validity of the data. Hence we propose an alternative specification for the transformer where the local time stamp is just copied from the incoming data item (as we will see later, this also requires a modified write statement).

\[
\text{MaintainTs}(s) = \forall edi \in ownw(s) : \exists ed_1 \in envw(s) : ts(edi) = ts(ed_1) \land name(ed_1) = SensData \land val(edi) = val(ed_1)
\]

\[
\text{postTransNew} = \text{NameOwnw(Intern)} \land \text{MaintainTs}
\]

\[
\text{TransNew} = \text{Spec}(\text{pre}, \text{postTransNew})
\]

This indeed refines the transformer specification:

Lemma 14. \(\text{TransNew} \Rightarrow \text{Trans} \)

Moreover, this specification can indeed be replicated.

Lemma 15 (Transformer Replication).
\(\text{TransNew} || \text{TransNew} \Rightarrow \text{TransNew} \)

Hence we have (by theorem 2, lemma 14 and monotonicity):

\((\text{Prod} || (\text{TransNew} || \text{Cons})) \Rightarrow \text{TopLevel} \)

and by lemma 15 and monotonicity:

\((\text{Prod} || ((\text{TransNew} || \text{TransNew}) || \text{Cons})) \Rightarrow \text{TopLevel} \)

It remains to implement \(\text{TransNew} \). Important part of this specification is that it just copies the local time stamp (the \(ts \)-field). This, however, cannot be implemented with the current write statement, since it always use the current value of the local clock as its time stamp (the \(ts \) field is set to \(\text{clock}(s_0) \)). Therefore we introduce a new write statement \(\text{Write}(e, t_{\text{exp}}) \) which has an additional parameter, a time expression \(t_{\text{exp}} \), which specifies the \(ts \) value, i.e. in the semantics of this extended write statement the \(ts \)-field in the data item gets the value of \(t_{\text{exp}} \).

Query \(Q_{\text{trans}} \) specifies a set of data items that is either empty or a singleton containing an item with name \(SensData \). Expression \(\text{MkIntern}(dset) \) changes the name of the item in \(dset \) to \(Intern \) and copies it value. Now the write statement has a time expression \(Ts(dset) \) which just yields the \(ts \)-field of the data item in \(dset \).

\[
\text{NewTransformer} = \text{Do} \ \text{Read}(dset, Q_{\text{trans}}) ;
\]

\[
\text{If} \ dset \neq \emptyset
\]

\[
\text{Then} \ \text{Write}(\text{MkIntern}(dset), Ts(dset))
\]

\[
\text{Else} \ \text{Skip Fi 0d}
\]

Lemma 16. \(\text{NewTransformer} \Rightarrow \text{TransNew} \)
So, finally, we have $(\text{Producer} || (\text{NewTransformer} || \text{Consumer})) \Rightarrow \text{TopLevel}$ and $(\text{Producer} || ((\text{NewTransformer} || \text{NewTransformer}) || \text{Consumer})) \Rightarrow \text{TopLevel}$.

9 Concluding Remarks

We have defined a new denotational semantics for the main primitives of the industrial software architecture Splice. This architecture is data-oriented and based on local storages of data items. Communication between components is anonymous, based on the publish-subscribe paradigm.

New is especially the modeling of time stamps, based on local clocks, and the update mechanism of local storages based on these time stamps. Moreover, the denotational semantics supports convenient compositional verification, based on assumptions about the data items produced by the environment of a component. Causality between data items is represented by logical time stamps. To simplify verification, we minimized the number of updates of the local storages and tried a short, but non-trivial, formulation of parallel composition.

To increase the confidence in this denotational semantics, we also formulated a rather straightforward operational semantics. Using the interactive theorem prover PVS, we formally showed that the operational semantics is equivalent to the denotational one. The proof revealed a number of errors in earlier versions of the semantics, e.g. concerning the precise interpretation of logical time stamps representing causality.

As a side-effect, the proof resulted in a number of useful properties. Classical ones, such as associativity of sequential and parallel composition, but also more Splice-oriented properties such as idempotence of updates. We also observed that the current definition of the notion of a lifecycle in Splice breaks idempotence of updates. Since it indicates a conceptual error in the definition, we have removed the lifecycle from the current formalization.

A topic of current work concerns the equivalence classes induced by the semantics, i.e. which programs obtain the same semantics? The question is whether the denotational semantics is fully abstract with respect to the operational one, that is, does it only distinguish those programs that are observably different in some context?

We have shown how the semantics can be used as a basis for a formal framework for specification and compositional verification. The study of transparent replication clarified the use of local time stamps and led to an improvement of the write primitive. In future work we intend to investigate the use of clock synchronization.

References

