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Backpressure-based control protocols: design and
computational aspects

ABSTRACT

Congestion control in packet-based networks is often realized by feedback protocols Al in this
paper we assess their performance under a back-pressure mechanism that has been proposed
and standardized for Ethernet metropolitan networks. In such a mechanism the service rate of
an upstream queue is reduced when the downstream queue is congested, in order to protect
the downstream queue. We study a Markovian model that captures the essentials of the
protocol, but at the same time allows for numerical analysis. We first derive explicit results for
the stability condition of the model (which turns out to be rather nontrivial). Then we present
rough (that is, logarithmic) estimates of the probability of buffer overflow in the second queue,
which are subsequentially used when devising an efficient simulation procedure based on
importance sampling. We conclude the paper by presenting a number of numerical results, and
some general design guidelines.

2000 Mathematics Subject Classification: 60K25
Keywords and Phrases: backpressure, tandem queue, importance sampling, rare events
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Abstract—Congestion control in packet-based networks is often rough characteristics are known, see e.g. [13]. The present
realized by feedback protocols — in this paper we assess their paper presents performance evaluation techniques that enable
performance under a back-pressure mechanism that has been numerical analysis, and in addition we present a number of

proposed and standardized for Ethernet metropolitan networks. . . N
In such a mechanism the service rate of an upstream queue is Insights that are useful when designing such a backpressure

reduced when the downstream queue is congested, in order to SyStem.

protect the downstream queue. We study a Markovian model that  \jore specifically, our contributions are the following:
captures the essentials of the protocol, but at the same time allows ] - N
for numerical analysis. We first derive explicit results for the A. We determine the stability condition of the backpressure-

stability condition of the model (which turns out to be rather non-  pased model. In other words, we find a condition on the arrival
trivial). Then we present rough (that is, logarithmic) estimates rate service rates, and threshold value such that the queue does

of the probability of buffer overflow in the second queue, which . - - e -
are subsequentially used when devising an efficient simulation not systematically fill. This condition is rather surprising (and

procedure based on importance sampling. We conclude the paper Very different from the commony’< 1 conditions’).

by presenting a number of numerical results, and some general B, Main performance metrics are the (end-to-end) delay,
design guidelines. the throughput, and the probability of overflow in the sec-
ond queue (as that was the queue that was intended to be
protected). From a computational point of view, the latter

A variety of protocols has been proposed for purposes wfetric is the most challenging. It is noted that it is not
congestion control in packet networks. A well-known mechatraightforward to estimate this probability through simulation,
nism israndom early detectigras proposed in e.g. [4], which because of the rare event involved. We propose an advanced
has been intensively studied. There packets are randorsisnulation algorithm, that manages to reliably estimate the
dropped when the buffer content exceeds some threshold,psobability of interest (which is the probability of overflow
as to notify the user about incipient congestion. in the downstream queue before the system becomes empty,

Similar feedback-based mechanisms have been propostaiting off from any given state) in a reasonable amount
and standardized for congestion control in Ethernet metropadif time. This simulation procedure is based on importance
tan networks. The backpressure scheme defined in IEE@mpling (IS). The method borrows elements from algorithms
802.3x [11], is intended to provide flow control on a hopdeveloped earlier for related (tandem) systems [2], [7].
by-hop basis. For ease restricting ourselves to a two-nodeThe main idea behind IS is to simulate a system under
network (but the principle applies to networks of any sizef new probability measure which guarantees more frequent
it works roughly as follows. Traffic enters the first queueccurrence of the rare event of interest. To obtain an unbiased
(‘upstream queue’), and after being served it is routed toestimate, the output of the simulations is corrected by so-
second queue (‘downstream queue’), where it is served agalled likelihood ratios. The challenge is to construct a ‘good’
leaves the network. When the buffer content of the downstreareaw measure. An often-used notion in this respect is that
gueue, however, exceeds some threshold, the service ratefaasymptotic efficiency (or: asymptotic optimality) which
the first queue is reduced, so as to protect the downstreassentially means that the variance of the estimator behaves
gueue — the upstream queue resumes serving at its orgiapproximately as the square of its first moment. When this is
rate when the buffer content of the downstream queue is beloat the case, the estimator may even have infinite variance.
the threshold again. We refer to [5] for more background on IS.

It is clear that it is of crucial importance to find simple, In more detail, the contribution is that we present a simple
yet adequate design rules that determine suitable values dod efficient IS implementation for simulating the overflow
the buffer thresholds and service rates. A problem, howevprpbability in the slow-down model. On the one hand it is as
is that there are hardly any explicit results known for modetasy to implement as the scheme in [2], or even as that in
of this type. Even under Markovian assumptions, the buff€f], but on the other hand it performs comparably in terms
content distribution cannot be given in closed form — jugif computational demand. On the other hand it allows any

I. INTRODUCTION



given starting state, while extensive numerical experimentatisubstantially more involved than the usual< 1 conditions’.
shows that if inherits the efficiency properties of [9]. In th®efine = py/ps andy™ = pf /po.
analysis it turns out that three regimes (in terms of the decayTheorem 2.1:Case |:ij < po. The network is stable if
rates of the queues) need to be distinguished. m m

queves) 9 (1= ™) (1= o) + (1L - )

C. The last part of the paper is devoted to a study of the A< (1T—m) (1=t + (1 — )
performance aspects of our system. More particularly, we _ _

quantify the effect of the value of the threshold. It clearip@se Ilu{ > p2. The network is stable ik < y».

affects the mean end-to-end delay as well as the overflow Proof: It is obvious thatA < u; is necessary, but not
probability of the downstream queue, and it is not ckegriori  sufficient for stability. We deal with both cases separately.

what value is optimal. Therefore we construct a cost functiqpgse |5Mf < us. The proof relies on techniques from the

(including both performance metrics), and use it to develaReory of Quasi-Birth-and-Death (QBD) processes [6]; we aim

a procedure that is capable of finding the optimal thresholg prove the positive recurrence of the discrete-time process

value. The numerical values for the overflow probability arg);. From now on we will treat); as a discrete-time QBD

obtained by using the IS algorithm mentioned under item Byith @, ; and@-_; being the level and the phase, respectively;
This paper is structured as follows. The next section conote that this is not a ‘standard QBD’, as the number of phases

tains a model description, the stability result, and backgrouiglinfinite.

on IS. In Section lll we propose an IS scheme, and argueWe now introduce some QBD related notation. Dé§, M;

why it has attractive efficiency properties. In Section NandM; be(n+1)x(n+1) dimensional matrices, with being

we demonstrate how to develop procedures for setting the number of phases (either finite or infinitd), represents

parameter values (focusing on the value of the threshol@)) increase in level (new job arrives to the system), no

and we provide supporting numerical results. We conclude éhange in level (job leaves the system) aild an decrease

Section V. in level (job is forwarded from the first queue to the second
one); the precise definitions of these matrices were given in

Il. MODEL AND PRELIMINARIES [13] for our model. [6, Thm. 7.2.3] now states that if the

A. Model and Stability number of phases finite, then the QBD is positive recurrent

if aMye < aMse, where the vectorx is the solution to
In this section we describe the system, which is is a serlesM 0. with M = My + M, + M, e is an all-1 vector
- Y . 0 1 2 .

of two stations (or:queue} in detail. Jobs enter the system Application of this result (which is not legitimate in our

at éheﬁupztrgam queléeth(as a messor:j %rc;cetshs \g'th)")ﬁt case, due to the infinite number of phases!) would yield that
and after being served they are forwarded to the downstre QBD s positive recurrent if

gueue; after service in this second queue, they leave the
network. Service times at the second station are exponenti%: i i "
with parametey:, all the time, but the service speed at the first 2 *0% (A=) + Z o™ (W) A — i) <0, (1)
gueue depends on the content of the second queue. Norme&éﬁf,o =
service times at the first station are exponential with parame¥éf€re ; ,
. . . . oy’ <m

w1, but if the number of jobs in the second queue is larger o; = { Qo™ ()M, i > m ;
than some prespecified threshold — the so-calledslow- T
down threshold- then the service times are exponential with 4 oo ' -t
parameten:;, whereu; < u;. When the system ‘stabilizes’ Qo = (Z P P™ Z(iﬂ*)""”) ,
and the number of jobs in the second queue is again strictly i
below the slow-down threshold, the rate of the first statidilom which the first statement of the theorem would follow.
returns to its original valug: . There is a counterpart of [6, Thm. 7.2.3] thddesdeal with

For convenience we choose the parameters suchMthat an infinite number of phases, though: [12, Thm. 5] states that
w1+ = 1, without loss of generality (in fact, we ‘rescale outhe QBD with infinite number of phases is positive recurrent
time unit’), and hence + i} + us < 1. As in [9], we assume if aMye < aMse provided thatM = M, + M,. Here M is
(as an approximation) the waiting rooms at both stations &m infinite-dimensional matrix that describes the behavior of
be infinitely large. We define the discrete-time joint queuehe phase-process of the QBD at leOgkee again [13] for its
length procesg); = (Q1,;, Q2,;), whereQ; ; is the number of precise form. The conditiod] = M; + M, effectively means
jobs at node after thej-th transition. We define the possiblethat the phase process in lewkls the same as for any other
jump directions of the procesQ; via vectorsv, = (1,0), level. Obviously, this requirement fails in our case. In order
v1 = (—1,1) andv, = (0, —1) with corresponding jump ratesto be able to apply [12, Thm. 5] we modify the QB®); in
A, 1 (or uf) and iz (where it is noted that,, is impossible order to satisfy the condition conditiahl = M, + Mo:
if queuek is empty — then take, = (0,0) instead).

A first question is under what condition this process is v1 =(0,1), when@,; =0,
stable — clearly for design purposes such a criterion is where the other transition vectors remain unchanged. Now we
crucial importance. Interestingly, the resulting criterion isan conclude that this modified process is stable if (1) holds.

i=m



An elementary inspection yields that the cycle time (i.e., tHeigure 1): fork =1, 2,
number of transitions it takes the discrete-time process to reach

the origin) of the modified QBD istochastically largetthan P(Xj41 = X;|X; € 0\ 0F) = puk, )
the cycle time of the original QBD, and hence stability of the P(X;11 = X;|X; €0]) = puf /O + pf + pa).
original QBD is implied by the stability of the modified QBD.

Case Il: ys < pf. Here we cannot apply the reasoning T2 O

mentioned above since the distributiopndoes not exist when /

w2 < p . However, in this case, stability can be proven rather 1

straightforwardly. Clearly, the expected cycle length in this orF + A

case can be bounded from above by the expected cycle length \ ul} @ 99

for m = 0 (due to elementary coupling arguments). The fio /

latter value is finite, since it corresponds to the mean busy g,
cycle length of the two-node Jackson tandem with parameters

(A, i, p2), which is stable undek < s < p. [ ] /“‘1¥2‘ @

We remark that somewnhat related results for the slow-down ! A 42

system with dinite second buffer were reported in [13, Thm. qr’

15]. Also, interestingly, the slow-down system can be stable M2

even whem > ! The intuition behind this is as follows. H1 A /
Consider the case when both > 47 and the condition 0
in Theorem 2.1 hold true. The content of the first queue
typically increases when the number of jobs in the secondrig. 1. State space and transition structure for the scaled pracgss
gueue is aboven. However, it stays finite because the content

of the second queue tends to decrease and the system returh&ext, we introduce the stopping time;, which is the first
to its normal state in which the number of jobs in the firdime that the procesX; hits levell, starting from states =
queue tends to decrease. It is also worthwhile to mention thaf, s2), without visits to the origin: withX, = s,

when the slow down thresholg: is 0 or co, the criterion ) )

mentioned above reduces to the standard stability condition”s = inf{k : Xj € 0., X; # 0 for j=1,....k =1}, (3)
for the ordinary two-node Jackson tandem network.

o)

2 Z1

and we define, = oo if X; hits the origin beforé).. We let
I(A%) be the indicator of the evertr§;, < oo} for the scaled
B. State Space and System Dynamics sample path(X;,j = 0,... : Xo = s). Thus we can write

the probability of our interest as
In Section Il we focus on estimating the probability of

reaching some high leveB in the second queue before pp = EI(A}) =P(r5 < o0). 4
it returns to the origin, starting from any given state; this .

subsection describes a number of notions that are useful er1 g{\sled;"::uﬁg‘;toﬁ:ﬁ?ﬁ;ﬂ%gg;lgr\zﬁg'l'??wér};c;ughbigige
this goal in mind. From now on we let the thresheldscale ' 9 g€,

ineaty wih 1 that 1,1 = 41 or somed < (0.1 %12 a1 of e evert e vl erfrs e o use
terms of the scaled proce$X, X2) = (Q1/B,Q2/B), we d :

analyze the probability that its second coordinate attains t§gctlon I”.We chus on importance sampling, which we wil
value 1 before reaching the origin. Note that an advantagenocfW describe briefly.

this scaling is that, in order to analyze this probability,
may use the state spafte co) x [0, 1] (for any value ofB!).

We introduce the following subsets of the state space, with 10 €Stimatépy, IS generates samples under a new prob-
z = (21, 22): ability measureQ, with respect to whichP is absolutely

continuous. The probability3, can, in self-evident notation,

W, Background on Importance Sampling

Di={z:21>0,0<z3<0}, 5 :={(a1,0): 2, >0}, Now alternatively be expressed as
Dt :={x:21>0,0 <y <1}, 0p:={(x1,0): 21 >0} s Q
0 S 7 ) =5 p} = E[I] = E9[LI], 5
8{ = {(0,%2) X9 € [97 1)}7 ae = {((Eh 1) LT 2 0}, B [ ] [ ] ( )
01 = {(0,z2) : z2 > 0}. where[ is an indicator function and is the likelihood ratio

of a realization (‘path’)w:
The full state space i® U D*, whereD := D U g U (0; \ qP
07)U &y and D* := DT U9, U I U dy. Recall that the L=—(w). (6)
transitionvy, is impossible when queue is empty, i.e., when dQ
X, € O,. We modify the process\; to deal with this by After n replications we obtain a family of observations
allowing ‘self-loop transitions’ in the following way (see also(L;, I;),i = 1,...,n and are able to construct the unbiased



estimator ofpy; by n-! ~Zf=1 L;I;. We conclude this subsec-
tion by recalling that an IS scheme (corresponding to measure
Q) is said to beasymptotically efficienif

log EQ[L21]
I g EO[LT] = ()
If the probability of {A%} decays exponentially irB, i.e.,
B~ llogp$ tends (for B large) to some value irf—oo,0),
then, due to (5) an@@[L21] = E[LI], (7) simplifies to

6 1—-6
lim sup E logE[LI] <2 hm 1= logpfg. (8) 0 onf+a (1-6) ar T a7 11

1
B—oo

Fig. 2. Partition ofD U D+ whenpus < pf < p1.
IIl. | MPORTANCE SAMPLING

. - and ,
In [9] we have developed an asymptotically efficient 1S- A\ Ftine) <01 ine) +(ine)
VeIOR / . I —7 (1 i )
based method for estimating;, but this has, from a practical A+ o M+ame> ¥ L+(|.ne) Aot 4
point of view, important drawbacks: the new measure is state- ey )+ ! 2 10
A Mo >\,U1 K2 (10)

dependent, and needs to be recomputed at every transition
(amounting to jointly solving two cubic equations), thus
severely limiting the efficiency gain. In this section we present
a new measure that is still state-dependent, but its computatiwith the condition

)\+(Ilne) S u+(llne) and ILL+(||ne) > M;(Iine)
)\Jr(nne)7 N1+(Iin9)a u2+(|ine) > 0

is substantially less demanding, as it requires just a few cubic (ine) Y (ine) +(ine) _y +(ine)

i ; . (line) A Hq A
equations to be solved. As we will see, the speed-up of this" := s; — m(e —53) = m(l —0).
new scheme is still substantial. ! H2 H1 Ha (11)

We give a detailed description of the IS scheme for the can be verified that this amounts to solving two coupled
caseug < pi < p; for the other cases (i.euf < p2 < p1  cubic equations. The superscripts (line) and +(line) indicate
and u < pu1 < pg), we just present the results. Throughouthat the solution is in fact the optimal change of measure to
this section we fix the starting stateand assume it is situatedreach the staté), 1) following a concatenation of two straight
below the slow-down threshold, i.e..c D, which is evidently |ine starting ins, with intersection in(x™, 6).
the most interesting case. Now we can define the (overall) optimal new measures
A. IS Scheme for Caseus < u < ui. At first recall below and above the slow-down threshold, which depend only

from [9] the most probable path to overflow and the pair § n the starting state. The new measure below the slow-down

new measures), i1, fi2) and (AT, i, id) that will ensure threshold, as given through\, s, ji2), is

that any sample path will follow the optimal trajectory with (2, f11, A) if s € Ay,
high probability. To this end we assign a ‘cost’ to any (X, /i, jio) = ¢ (A", uf™ 14") if s € Ay, (12)
path, minimizing which we obtain the optimal trajectory and (A 1, f12) if s€ As.

corresponding new measure, see [9]. To ease the expositign .
on the new measures we divide the state space as it ove the slow-down threshold the new measure, given

s
shown in Figure 2, wherey := (u1 — po)/(u1 — A\) and through (A, i, i3 ), is

af = (pf — p2)/(pf — A). This figure also provides some (p2, 15 \) if se A,
examples of the most probable overflow trajectories. We are (5\+7 m; ﬁ;r) — (AHtne), M;rwne»’ M;rwne») if s€ Ay,
particularly interested in the partition of the bottom part of (A, i p2) if s € As.
the state space, i.e., iy, A, and As. The new measures for (13)

s € AU Az are not difficult, as we will see in (17). However,Now, let us definey®(z) to be the residual cost of moving
to find the optimal new measure ferc A, one first needs to from statex to . along the path to overflow that startedsn
jointly solve

$(x) 1= Vi) + 73 (s, 0) ?f x € @7 (14)
) line, " ) ’ ’YS(.’I:) |f S D-’—7
)\(Ilne) (Ilne) + (0 )—51 ( (line) _ ’ugne))
\(ine) + M(Ilne) 4 u(hn@) i pun I + Lo ( ) with
)\(Ime) (Ime),u(lme) _ A/ll,UQ 9 N 5\ /12 B
ine ine ine ine 4 = — — 1 — — (0 — 1 s if D
A < 0% and 4" > 14 71 () (¢1 — &%) log + — (0 — 2) og - e

/\(nne), N(llinE)v ug”e) >0 (15)



being the minimal cost of the bottom part of the path twhereM (z) and M (z) are normalization functions, and the

overflow and pi(z) areweights cf. [2], [3], given by
A+ oT _ _29%(xy,20) =8
vo(x) :== —x1 log — — (1 — 22) log u—2, if z € D" (16) pi(z) = N(z)-e € )
)\ M2 72'y5(zl,%‘logHT2)—5
being the minimal cost of the top part of the optimal path to pa(z) = N(z)-e o 2 ’ (20)
overflow; the optimal crossing state*, ) is as follows p3(x) = N(z)- o =
max (0,51 — a1(f — s2)) if s € Ay, Here N(x) is a normalization function and ande are small
K= q K if s €Ay, (17) positive numbers. We mention again that this measure is, albeit
s1— (0 —s2)/on if s € As. state-dependent, of low computational complexity, as it does

not require to solve cubic systems for any point along the

gﬁlth (excepts). There are interesting relations between this
new measure, and the scheme proposed in [2].

Note that (X, i1, fi2), (AT, T, 43) and k* (given by (12),
(13) and (17) respectively) are fixed, i.e., they only depend
the fixed initial states, and not on the current state(as was
the case in [9]). It is also important to note thés), the total B. IS Scheme for Casg:” < p2 < 1. Here we present the IS
cost of moving from the starting stateto the exit boundary scheme for the case whgzaﬁL < p2 < py. At first we provide
d., equals the decay rate pf;, i.e., B~! -logp$, — —~°(s), the pair of new measures\, ju1, fi2) and (A", fif, id ) under
see Theorem 3.2 in [9]. which virtually any sample path follows the most probable
Notice that the functiomy®(x) is piecewise-linear inz, trajectory with high probability. The bottom part of the state
since the new tilde-measure, i.€), ji1, fi) and(A*, i, iy ), spaceD is divided in subspace®; as depicted in Fig. 3,
depends only on the fixed initial stateand not on the current whereay := (2 — i) /(12 — A) anday has been introduced
statez. This is the main difference with the new measurt the previous subsection, cf. [9]. The new measure below
studied in [9], where we used the optimal new measure for, (X, fi1, fi2), is as follows:
each current state with its costy*(x). Therefore a pair of

cubic equations (corresponding to (9)—(11) witheplaced by (A, fin, fiz) = E/;(?’f“ﬁ;u)\?’ ) :; z E g;’ 1)
z) had to be solved foeachstatez in the sample path. In our e 0 Ni /12)7 27 c B3’
current approach, computation of the new measure requires s ’
the solution of (9)—(11) just once. whereas above: we have

Itis known, e.g. from our previous research [7], that the new ( Mf ¥ /@’ pezt), if s € By
measures ), i1, fi2) and (AT, if, i3 ), which make a sample  (\*, i, if) = (/\+(uzne) i (ing L) if s By
path ‘on average’ follow the optimal trajectory to the rare set, O, #2,7#1’)7 ’ "t se Bg:
is not necessarily asymptotically efficient; this is due to the (22)

possibility of several visits to the horizontal axis, which inflatgyhere »* is the solution (unique irf0, 1)) to
the likelihood ratio, cf. [1], [10]. In order to resolve this, we

first introduce the ‘hat'-measur@\, /i1, /i) and (At 45, i) N N At
as in [3], to be used when the current state is on or near the Aty +pp(l—27) =2 o+ (23)
horizontal axis, through _ ) _ )

. - . B The optimal crossing stat@:*, ¢) is now given by

+ N/t T

(A A/A, p2) and (AT, " A/AT, g ). (18) 0 if sc By,
The main idea behind it is to make the likelihood ratios of KX = K if s € By, (24)
the loops around the horizontal axis not greater thafby s1— (0 —s2)/ay if s € Bs.
ensuringyi; = pi2). The function+*(z) is defined by (14) with (15), (16) and

Having introduced the ‘tilde-measure’ and the ‘hat 24). The total cost of the path®

' (s) again is the decay
measure’, we are now ready to define the measuyige o, e B1.logpl — —(s), see [9, Thm. 3.2]

(M), i (2), fiz(z)), of which we will prove asymptotic ef- +o naw state-dependent measut&ér), fi: (x), fi(x)) and
ficiency, and which is a combination of the two measures + 5 T are aiven b 1;) wh,ere the ‘hat'-
defined above and the original measure: T (@), 7 (2), s () g y (19),

measures and the weighig(x) are defined by (18) and (20),

M) = M1 AP2APs M (), if ze D, respectively.
p(x) = R pdt M(z), if ze€ D, C. IS Scheme for Casea:; < u1 < po. This case is the most
fo(w) = bt b2 ph? M (), if e D, difficult case. We partition the state space as in Fig. 4. To see
- < < , : — whether a starting state belongs toC; or Cs, one needs to
+ — e )\ TP p + +
/_\+($) - (1\3 ():3 2(/\)+3M (@), ff re ? ’ jointly solve (9)—(11). Therns belongs toC; if and only if
il (@) = () ()" () M (), if @ e DY, f(s) <0, where
fis (z) = (fi)" (f13)7 (n2)* M*(2), i z € DT,

(19)  f(s)=0log52 + (9 1)logg —s1log KL —7(s),
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Fig. 3. Partition ofD U D+ whenul < pa < p1.
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Fig. 4. Partition ofD U Dt whenpu < p1 < pa.

with ¢ being the solution (unique if0, i \/u?)) to

(25)

see also [7], [9]. The constan{8 and 3, are solutions to
f(0,s2) = 0 and f(s1,0) = 0 respectively;as := (u2 —

1)/ (2 = A).

o At first let us assume that € Cy U C3. Then we define
the new measure below the slow-down threshold

pipaq® 4 pa(pa — A — pi — p2)g + Auf =0,

(A(Ime)’ Iu(l\ine)7 M(2Ime)) 7
(A, piz, 1),

if s € Cy,

if se Cs, (26)

(5\3 ﬁlu ,&/2) = {
and above it

5 R R )\-Hune)7 -&-(\inE)7 -H\inE)7
Gt i) ={ (et

(Aa n2, /-[1’_)7
The optimal crossing statg:*, 6) is now given by

R if s € Cs,
T si— (00— s2)/an  if s€Cs.

The functiony*(z) is again defined by (14) with (15),
(16) and (28). The total costs of the patff(s), is the

if s € Oy,

if se Cs,
(27)

(28)

and (\* (), & (z), i3 (z)) are given by (19), where the
‘hat’-measures and the weights(x) are defined by (18)
and (20), respectively.

« Let us now proceed to the case= ;. In this case the

optimal new measure below the slow-down threshold at
the k-th transition is

(A, i, fiz) = (29)
(11, Mig<rey + p2l g7y, P2l pary + Mg>rey),

where7* := min{k : X;, € C3 and X, = 0}; see also
the optimal trajectory that starts ifi;, Figure 4. Above
it the new measure is defined by

(5\+7ﬂ1~_7ﬂ;) = (/’Lla )\UT/Q.UMQPJQ)a (30)

wheregq is defined by (25).

It is important, that the residual cost of the bottom part
of the path to overflow, namely; (), for this case is
different from the one defined by (15). Here it is

X _
~i(x) = flog B2 _ (1 — k*)log — + a2 log —M, (31)
A A 5

where
= 1= 0) (A —qud)/ (M — Prape).  (32)

For this casey;(z) is defined by (16), and*(x) again

by (14) with (31), (16) and (32). As before(s) is

the decay rate op3, i.e., B~! - logpy — —7°(s).

The new state-dependent measuf®ér), fi; (z), fiz(z))
and (AT (), i (x), fig (x)) are given by (19), where the
‘hat’-measures and the weightg(x) are defined by (18)
and (20) respectively.

For convenience we summarize the resulting IS scheme for

the different cases.

o Whenpsy < uf < pp one needs to
1. define the ‘primary’ new measures (12) and (13);
2. define ‘hat’-measures (18);
3. define weightg;(x) by (20) based on (14)—(17);
4. apply (19).

o When uf < pus < pi, the same procedure |is
followed, only replacing the ‘primary’ new mea-
sures (12) and (13) by (21) and (22) in step 1; and
(17) by (24) in step 3.

o Whenp <y < pg ands € Cy U Cs, we follow
the same algorithm, only with the ‘primary’ new
measure replaced by (26) and (27) in step 1;|and
using (28) instead of (17) in step 3.

e Whenpu! < pu1 < pp ands € Cp, again the
same procedure is followed, this time replacing |the
‘primary’ new measure by that in (29) and (30);
we also replace (15) by (31) and (17) by (32) in
step 3.

In [9] we proved asymptotic efficiency of the fully state-

decay rate ofpy, i.e,, B~ - logpy — —v°(s), see dependent IS scheme, i.e., when the ‘primary’ new measure

[9, Thm. 3.2]. The new measurés\(z), fi; (), fiz(x))

was dependent on the current state. Analyzing the simplified



(A g1, p2) = (0.1,0.7,0.15,0.2)

IS scheme (19) we have to deal with the additional compli-

: . o B st.-ind., [7] st.-dep., [2] current
cation that the discontinuity of*(z) around the slow-down 20 | 149-10 7 | 2.63-10 ° | 3.54.10 °
threshold, see e.g., (14)—(16), (12) and (13). We do conjecture, 50 | 2.06-10"% | 7.87-107° | 8.00-10~°

100 | 2.75-107% | 19.71-107% | 17.01-1073

(\, w1, 7, p2) = (0.3,0.36,0.32, 0.34)

20 [ 0.92-1073 5.30 - 10~ 6.00 - 10~ %

50 | 12.50-107% | 8.40-10"% | 11.00-1073
IV. COMPUTATIONAL ASPECTS ANDDESIGNISSUES 100 | 39.69-1072 | 12.20-1072 | 11.00- 1073

In this section we first study the efficiency gain achieved TABLE Il
by applylng |S (I’ather than m Simulation), and then we COMPARISON OF RELATIVE ERRORS FOR THREES SCHEMES
address a number of design issues.

In Table | we present simulation results for four differenaumber of runs to b&0° and compared the relative errors, see
parameter settings using the new measure defined in (IBgble Il. Here,s = (0,0), 6 = 0.8, and in the state-dependent
Instead of performing a fixed number of simulation runs sug¢hemes = 0.03/v/B and§ = —eloge. As can be expected,
as in much of the IS literature, we simulated until the relativieoth state-dependent schemes provide good estimates (in terms
error of the estimator reached some prespecified value, Wf. the relative errors), but the performance of the state-
102 for the first three cases arid- 10~2 for the last one. independent scheme strongly depends on the parameters.

In the table we present 95% confidence intervalspfpr the  We now demonstrate techniques that enable selection of a
number of needed replications (# runs), the used machig@per value for the slowdown threshold = 6B. A first
time in seconds, and the number of ‘succesful’ replications ¢aveatis the following. It is natural to expect that smaller
succ.), i.e. the number of runs that resulted in buffer overflow. will provide better protection of the second node and
We compare three values of the overflow leglthe value consequently smaller probability of overflow (with being
of 6 was taken to bef = —zeloge ande = 0.001, as in the origin), but this is not always the case. Indeed, numerical
[8]. We fixed the starting state at the origin, since this is experiments show that, starting th= 1, decreasing leads
the most natural choice from a practical perspective. Clearfy, 3 reduction oﬁgéB However, continuing to decrease the
probability of interest will start tdncrease The same holds
for the stationaryprobability of the procesX, with the slow-
down threshold), to be above level, denoted byr?(B), see
Figs. 5 and 6. In these graphs we plottet( B) againstd
for parameterg\, u1, i, p2) = (0.3,0.36,0.32,0.34), with
overflow levelsB = 20 and B = 50.

though, that the scheme is asymptotic efficient; for specific
cases we proved this in [8].

(M pa, py, pe) = (0.1,0.7,0.15,0.2),

Py # succ. # runs time
20 3.79-10" " £7.44-107° 15,576 28,332 0.4
50 | 1.28-107'¢ 4+ 252.1071% | 33,542 58,332
100 | 3.54-107%2+6.95-107%4 | 56,982 | 109,992 8
O\, w1, gy, p2) = (0.3,0.36,0.32,0.34), RE =0.01
20 5.63-1072 £1.11-10" % 39, 496 91, 596 2
50 1.19-1073+2.33.107° 99,567 | 241,332 18
100 | 1.63-107%+3.21-10"% 128,864 | 320,120 | 49
O\, w1, p), p2) = (0.3,0.36,0.35,0.34), RE =0.01
20 5.86-10 2 +1.44-10 17 32,283 76, 169 2
50 1.42-1073 +£2.79-107° 61,034 | 152,283 12
100 | 2.64-10"¢4+5.18.10"8 113,527 | 279,196 | 47 RHE

O\, w1, py, p2) = (0.25,0.35,0.28,0.4), RE =0.05 g

RE =0.01

N

20 1.11-100%+1.09-107° 45,685 83,436 2 ops
50 | 3.43-10"'' +3.36-10"12 79,901 | 148,256 7 0o
100 | 5.72-10722 +5.60- 10723 | 235,502 | 439,006 | 42 0 0z as 05 08 i

TABLE |

SIMULATION RESULTS FORA = 0.8

the IS scheme provides fast and reliable estimates. In some
cases, especially whe8 grows large, the running times may
be sensitive to the choice ef and 6. In Table | we used
relatively ‘good’e andd. For instance, choosing= 0.01 will

lead to almosB00% increment in the number of replications

in the last line of the first part of Table I, i.e., for the case
when (X, pu1, i, p2) = (0.1,0.7,0.15,0.2) and B = 100.

We also performed a few straightforward simulations (i.e.,
without IS) for comparison, using the same relative error of
10~2. For the parameter settings of the first part of Table |
with B = 20, this took 4521 secondstf - 10° runs). In the
settings of the second part of Table | with= 50 it took 118
seconds£107 runs).

Fig. 5. 7%(20) againstd

00018
00016
00014
00012

0001
0,0008

0,0006

Fig. 6. 7%(50) againstd

For the case of ‘shifting bottlenecks’, i.g: < us < p1,

we now provide an explanation for the non-monotone behavior
To enable comparison with the state-independent schemeinz?(B). Clearly, 7°(B) has decay ratélogps + (1 —

[7] and the state-dependent scheme in [2], we also fixed thelog 2T, for 6 € (0,1] and =T from (23), see Section lII;



po is defined as\/us. However, wherp = 0 the decay rate

is justlog po, as the queue is then an ordinary tandem queue
(without backpressure); in [7] it was shown thdt < p,. This
shows that the decay rate is discontinuou8 i 0, explaining
that7°(B) > 7" (B) (for B large).

The above type of justification for the observed non-
monotonicity is valid only for the case thaf™ < us < p.
Another explanation for the decreasing naturerdtB) for
small ¢ is in the ‘specific’ behavior of theX; around the
origin. More precisely, consider the procekg with starting
states = (0,1), and compare threshold levefs = 0 and
6 = 1/B. In the latter case, the first server operates at full

Fig. 8. Utility function agains® for B = 50

V. CONCLUSION

speed only when the second queue is empty. It is not difficultin this paper we analyzed a backpressure-based control

to see that the probability of transitiofi,0) — (0,1) is

mechanism. We first determined its (non-trivial) stability con-

higher whery = 1/B; and the probability of the ‘terminating’ dition. Then we focused on efficient 1S-based simulation
transition (0,1) — (0,0) is u2/(A + p2), which does not techniques for estimating the probability of overflow in the
depend ond. This means that the probability of overflowdownstream queue (which outperforms methods [9] developed
starting from the originp, is higher wher = 0 than when earlier). It is noted that several aspects, which are not captured
¢ = 1/B, even though we have ‘more slow-down’ in thepy the notion of asymptotic efficiency, play a crucial role in as-
first case. One can generalize this type of arguments for t&ssing the performance of this type of simulation techniques:
other states around the origin and the other values @hese jt matters for instance very much whether a new measure

arguments, unlike the ones based on decay rates, hold forraljuires computation of new transition rates ‘on the fly’, or

parameter values.

whether these can be precomputed. These issues have been

We now demonstrate how to develop procedures for ofken into account in the present paper. We then demonstrated
timally choosing the value of the slow-down threshold. Therow the evaluation techniques developed in this paper help in
primary role of the backpressure mechanism is to control thgnhing the design parameters involved, specifically focusing on
probability of some undesirable event, viz. overflow in thegelecting an appropriate value for the slow-down threshold.

second buffer (expressed in termsygf). However, introduc-
ing server slow-down has a negative side effect: the expected

sojourn time of a job decreases with In order to find an [

optimal value off, one could, for given coefficient and g3,

minimize the following (dis-)utility function (2]
U(G,B) = —O[log_lp% + ﬂS(G,B), [3]

where S(6, B) is the mean sojourn time of a jola; is the
penalty for overflow and3 is the cost for each job being in [4]
the system per unit time; we assumés the origin. Thea  [g]
and 3 should be chosen by the service provider, and should
reflect the Service Level Agreement (SLA) as agreed upon.[g

We present plots of the utility functions(6,20) and

u(6,50), with o = 10 andg = 3, for a system with parameters 7
(A, p1, i, pe) = (0.3,0.36,0.32,0.34) in Figures 7 and 8 o
respectively. (8]
. [9]
. [10]
13:2 / [11]
[12]

Fig. 7. Utility function agains® for B = 20
[13]

We observe that the optimal points are located close to the
minimum of 7% (B), see Figures 5 and 6, as one may expect.
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