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Abstract—Congestion control in packet-based networks is often
realized by feedback protocols – in this paper we assess their
performance under a back-pressure mechanism that has been
proposed and standardized for Ethernet metropolitan networks.
In such a mechanism the service rate of an upstream queue is
reduced when the downstream queue is congested, in order to
protect the downstream queue. We study a Markovian model that
captures the essentials of the protocol, but at the same time allows
for numerical analysis. We first derive explicit results for the
stability condition of the model (which turns out to be rather non-
trivial). Then we present rough (that is, logarithmic) estimates
of the probability of buffer overflow in the second queue, which
are subsequentially used when devising an efficient simulation
procedure based on importance sampling. We conclude the paper
by presenting a number of numerical results, and some general
design guidelines.

I. I NTRODUCTION

A variety of protocols has been proposed for purposes of
congestion control in packet networks. A well-known mecha-
nism israndom early detection, as proposed in e.g. [4], which
has been intensively studied. There packets are randomly
dropped when the buffer content exceeds some threshold, so
as to notify the user about incipient congestion.

Similar feedback-based mechanisms have been proposed
and standardized for congestion control in Ethernet metropoli-
tan networks. The backpressure scheme defined in IEEE
802.3x [11], is intended to provide flow control on a hop-
by-hop basis. For ease restricting ourselves to a two-node
network (but the principle applies to networks of any size),
it works roughly as follows. Traffic enters the first queue
(‘upstream queue’), and after being served it is routed to a
second queue (‘downstream queue’), where it is served and
leaves the network. When the buffer content of the downstream
queue, however, exceeds some threshold, the service rate at
the first queue is reduced, so as to protect the downstream
queue — the upstream queue resumes serving at its orginal
rate when the buffer content of the downstream queue is below
the threshold again.

It is clear that it is of crucial importance to find simple,
yet adequate design rules that determine suitable values for
the buffer thresholds and service rates. A problem, however,
is that there are hardly any explicit results known for models
of this type. Even under Markovian assumptions, the buffer
content distribution cannot be given in closed form – just

rough characteristics are known, see e.g. [13]. The present
paper presents performance evaluation techniques that enable
numerical analysis, and in addition we present a number of
insights that are useful when designing such a backpressure
system.

More specifically, our contributions are the following:

A. We determine the stability condition of the backpressure-
based model. In other words, we find a condition on the arrival
rate, service rates, and threshold value such that the queue does
not systematically fill. This condition is rather surprising (and
very different from the common ‘% < 1 conditions’).

B. Main performance metrics are the (end-to-end) delay,
the throughput, and the probability of overflow in the sec-
ond queue (as that was the queue that was intended to be
protected). From a computational point of view, the latter
metric is the most challenging. It is noted that it is not
straightforward to estimate this probability through simulation,
because of the rare event involved. We propose an advanced
simulation algorithm, that manages to reliably estimate the
probability of interest (which is the probability of overflow
in the downstream queue before the system becomes empty,
starting off from any given state) in a reasonable amount
of time. This simulation procedure is based on importance
sampling (IS). The method borrows elements from algorithms
developed earlier for related (tandem) systems [2], [7].

The main idea behind IS is to simulate a system under
a new probability measure which guarantees more frequent
occurrence of the rare event of interest. To obtain an unbiased
estimate, the output of the simulations is corrected by so-
called likelihood ratios. The challenge is to construct a ‘good’
new measure. An often-used notion in this respect is that
of asymptotic efficiency (or: asymptotic optimality) which
essentially means that the variance of the estimator behaves
approximately as the square of its first moment. When this is
not the case, the estimator may even have infinite variance.
We refer to [5] for more background on IS.

In more detail, the contribution is that we present a simple
and efficient IS implementation for simulating the overflow
probability in the slow-down model. On the one hand it is as
easy to implement as the scheme in [2], or even as that in
[7], but on the other hand it performs comparably in terms
of computational demand. On the other hand it allows any



given starting state, while extensive numerical experimentation
shows that if inherits the efficiency properties of [9]. In the
analysis it turns out that three regimes (in terms of the decay
rates of the queues) need to be distinguished.

C. The last part of the paper is devoted to a study of the
performance aspects of our system. More particularly, we
quantify the effect of the value of the threshold. It clearly
affects the mean end-to-end delay as well as the overflow
probability of the downstream queue, and it is not cleara priori
what value is optimal. Therefore we construct a cost function
(including both performance metrics), and use it to develop
a procedure that is capable of finding the optimal threshold
value. The numerical values for the overflow probability are
obtained by using the IS algorithm mentioned under item B.

This paper is structured as follows. The next section con-
tains a model description, the stability result, and background
on IS. In Section III we propose an IS scheme, and argue
why it has attractive efficiency properties. In Section IV
we demonstrate how to develop procedures for setting the
parameter values (focusing on the value of the threshold),
and we provide supporting numerical results. We conclude in
Section V.

II. M ODEL AND PRELIMINARIES

A. Model and Stability

In this section we describe the system, which is is a series
of two stations (or:queues), in detail. Jobs enter the system
at the upstream queue (as a Poisson process with rateλ),
and after being served they are forwarded to the downstream
queue; after service in this second queue, they leave the
network. Service times at the second station are exponential
with parameterµ2 all the time, but the service speed at the first
queue depends on the content of the second queue. Normally,
service times at the first station are exponential with parameter
µ1, but if the number of jobs in the second queue is larger
than some prespecified thresholdm – the so-calledslow-
down threshold– then the service times are exponential with
parameterµ+

1 , whereµ+
1 < µ1. When the system ‘stabilizes’

and the number of jobs in the second queue is again strictly
below the slow-down threshold, the rate of the first station
returns to its original valueµ1.

For convenience we choose the parameters such thatλ +
µ1+µ2 = 1, without loss of generality (in fact, we ‘rescale our
time unit’), and henceλ+µ+

1 +µ2 < 1. As in [9], we assume
(as an approximation) the waiting rooms at both stations to
be infinitely large. We define the discrete-time joint queue-
length processQj = (Q1,j , Q2,j), whereQi,j is the number of
jobs at nodei after thej-th transition. We define the possible
jump directions of the processQj via vectorsv0 = (1, 0),
v1 = (−1, 1) andv2 = (0,−1) with corresponding jump rates
λ, µ1 (or µ+

1 ) andµ2 (where it is noted thatvk is impossible
if queuek is empty – then takevk = (0, 0) instead).

A first question is under what condition this process is
stable – clearly for design purposes such a criterion is of
crucial importance. Interestingly, the resulting criterion is

substantially more involved than the usual ‘% < 1 conditions’.
Defineψ := µ1/µ2 andψ+ := µ+

1 /µ2.
Theorem 2.1:Case I:µ+

1 < µ2. The network is stable if

λ <
µ1(1− ψm)(1− ψ+) + µ+

1 ψ
m(1− ψ)

(1− ψm)(1− ψ+) + ψm(1− ψ)
.

Case II:µ+
1 ≥ µ2. The network is stable ifλ < µ2.

Proof: It is obvious thatλ < µ2 is necessary, but not
sufficient for stability. We deal with both cases separately.

Case I:µ+
1 < µ2. The proof relies on techniques from the

theory of Quasi-Birth-and-Death (QBD) processes [6]; we aim
to prove the positive recurrence of the discrete-time process
Qj . From now on we will treatQj as a discrete-time QBD
with Q1,j andQ2,j being the level and the phase, respectively;
note that this is not a ‘standard QBD’, as the number of phases
is infinite.

We now introduce some QBD related notation. LetM0, M1

andM2 be(n+1)×(n+1) dimensional matrices, withn being
the number of phases (either finite or infinite).M0 represents
an increase in level (new job arrives to the system),M1 no
change in level (job leaves the system) andM2 an decrease
in level (job is forwarded from the first queue to the second
one); the precise definitions of these matrices were given in
[13] for our model. [6, Thm. 7.2.3] now states that if the
number of phases isfinite, then the QBD is positive recurrent
if αM0e < αM2e, where the vectorα is the solution to
αM = 0, with M := M0 +M1 +M2; e is an all-1 vector.

Application of this result (which is not legitimate in our
case, due to the infinite number of phases!) would yield that
the QBD is positive recurrent if

m−1∑
i=0

α0ψ
i(λ− µ1) +

∞∑
i=m

α0ψ
m(ψ+)i−m(λ− µ+

1 ) < 0, (1)

where

αi =
{
α0ψ

i, i < m
α0ψ

m(ψ+)i−m, i ≥ m
;

α0 =

(
m−1∑
i=0

ψi + ψm
∞∑

i=m

(ψ+)i−m

)−1

,

from which the first statement of the theorem would follow.
There is a counterpart of [6, Thm. 7.2.3] thatdoesdeal with
an infinite number of phases, though: [12, Thm. 5] states that
the QBD with infinite number of phases is positive recurrent
if αM0e < αM2e provided thatM̄ = M1 +M2. HereM̄ is
an infinite-dimensional matrix that describes the behavior of
the phase-process of the QBD at level0, see again [13] for its
precise form. The condition̄M = M1 +M2 effectively means
that the phase process in level0 is the same as for any other
level. Obviously, this requirement fails in our case. In order
to be able to apply [12, Thm. 5] we modify the QBDQj in
order to satisfy the condition condition̄M = M1 +M2:

v1 = (0, 1), whenQ1,j = 0,

where the other transition vectors remain unchanged. Now we
can conclude that this modified process is stable if (1) holds.



An elementary inspection yields that the cycle time (i.e., the
number of transitions it takes the discrete-time process to reach
the origin) of the modified QBD isstochastically largerthan
the cycle time of the original QBD, and hence stability of the
original QBD is implied by the stability of the modified QBD.

Case II: µ2 ≤ µ+
1 . Here we cannot apply the reasoning

mentioned above since the distributionαi does not exist when
µ2 ≤ µ+

1 . However, in this case, stability can be proven rather
straightforwardly. Clearly, the expected cycle length in this
case can be bounded from above by the expected cycle length
for m = 0 (due to elementary coupling arguments). The
latter value is finite, since it corresponds to the mean busy
cycle length of the two-node Jackson tandem with parameters
(λ, µ+

1 , µ2), which is stable underλ < µ2 ≤ µ+
1 .

We remark that somewhat related results for the slow-down
system with afinite second buffer were reported in [13, Thm.
15]. Also, interestingly, the slow-down system can be stable
even whenλ > µ+

1 ! The intuition behind this is as follows.
Consider the case when bothλ > µ+

1 and the condition
in Theorem 2.1 hold true. The content of the first queue
typically increases when the number of jobs in the second
queue is abovem. However, it stays finite because the content
of the second queue tends to decrease and the system returns
to its normal state in which the number of jobs in the first
queue tends to decrease. It is also worthwhile to mention that
when the slow down thresholdm is 0 or ∞, the criterion
mentioned above reduces to the standard stability condition
for the ordinary two-node Jackson tandem network.

B. State Space and System Dynamics

In Section III we focus on estimating the probability of
reaching some high levelB in the second queue before
it returns to the origin, starting from any given state; this
subsection describes a number of notions that are useful with
this goal in mind. From now on we let the thresholdm scale
linearly with B that is,m ≡ θB for some θ ∈ (0, 1). In
terms of the scaled process(X1, X2) = (Q1/B,Q2/B), we
analyze the probability that its second coordinate attains the
value 1 before reaching the origin. Note that an advantage of
this scaling is that, in order to analyze this probability, we
may use the state space[0,∞)× [0, 1] (for any value ofB!).
We introduce the following subsets of the state space, with
x := (x1, x2):

D := {x : x1 > 0, 0 < x2 < θ}, ∂2 := {(x1, 0) : x1 > 0},
D+ := {x : x1 > 0, θ ≤ x2 < 1}, ∂θ := {(x1, θ) : x1 ≥ 0},
∂+
1 := {(0, x2) : x2 ∈ [θ, 1)}, ∂e := {(x1, 1) : x1 ≥ 0},

∂1 := {(0, x2) : x2 > 0}.

The full state space is̄D ∪ D̄+, whereD̄ := D ∪ ∂θ ∪ (∂1 \
∂+
1 ) ∪ ∂2 and D̄+ := D+ ∪ ∂e ∪ ∂+

1 ∪ ∂θ. Recall that the
transitionvk is impossible when queuek is empty, i.e., when
Xj ∈ ∂k. We modify the processXj to deal with this by
allowing ‘self-loop transitions’ in the following way (see also

Figure 1): fork = 1, 2,

P(Xj+1 = Xj |Xj ∈ ∂k \ ∂+
1 ) = µk, (2)

P(Xj+1 = Xj |Xj ∈ ∂+
1 ) = µ+

1 /(λ+ µ+
1 + µ2).
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Fig. 1. State space and transition structure for the scaled processXj .

Next, we introduce the stopping timeτ s
B , which is the first

time that the processXj hits level1, starting from states =
(s1, s2), without visits to the origin: withX0 = s,

τ s
B = inf{k : Xk ∈ ∂e, Xj 6= 0 for j = 1, . . . , k − 1}, (3)

and we defineτ s
B = ∞ if Xj hits the origin before∂e. We let

I(As
B) be the indicator of the event{τ s

B <∞} for the scaled
sample path(Xj , j = 0, . . . : X0 = s). Thus we can write
the probability of our interest as

ps
B = EI(As

B) = P(τ s
B <∞). (4)

It is clear that estimating the probabilityps
B through direct,

näıve, simulations is not feasible whenB grows large, because
of the rarity of the event involved. We therefore have to use
some alternative techniques to obtain a reliable estimator. In
Section III we focus on importance sampling, which we will
now describe briefly.

C. Background on Importance Sampling

To estimateps
B , IS generates samples under a new prob-

ability measureQ, with respect to whichP is absolutely
continuous. The probabilityps

B can, in self-evident notation,
now alternatively be expressed as

ps
B = E[I] = EQ[LI], (5)

whereI is an indicator function andL is the likelihood ratio
of a realization (‘path’)ω:

L =
dP
dQ

(ω). (6)

After n replications we obtain a family of observations
(Li, Ii), i = 1, . . . , n and are able to construct the unbiased



estimator ofps
B by n−1 ·

∑n
i=1 LiIi. We conclude this subsec-

tion by recalling that an IS scheme (corresponding to measure
Q) is said to beasymptotically efficientif

lim inf
B→∞

log EQ[L2I]
log EQ[LI]

≥ 2. (7)

If the probability of {As
B} decays exponentially inB, i.e.,

B−1 log ps
B tends (forB large) to some value in(−∞, 0),

then, due to (5) andEQ[L2I] = E[LI], (7) simplifies to

lim sup
B→∞

1
B

log E[LI] ≤ 2 lim
B→∞

1
B

log ps
B . (8)

III. I MPORTANCESAMPLING

In [9] we have developed an asymptotically efficient IS-
based method for estimatingps

B , but this has, from a practical
point of view, important drawbacks: the new measure is state-
dependent, and needs to be recomputed at every transition
(amounting to jointly solving two cubic equations), thus
severely limiting the efficiency gain. In this section we present
a new measure that is still state-dependent, but its computation
is substantially less demanding, as it requires just a few cubic
equations to be solved. As we will see, the speed-up of this
new scheme is still substantial.

We give a detailed description of the IS scheme for the
caseµ2 < µ+

1 < µ1; for the other cases (i.e.,µ+
1 < µ2 ≤ µ1

andµ+
1 ≤ µ1 < µ2), we just present the results. Throughout

this section we fix the starting states and assume it is situated
below the slow-down threshold, i.e.,s ∈ D̄, which is evidently
the most interesting case.

A. IS Scheme for Caseµ2 < µ+
1 < µ1. At first recall

from [9] the most probable path to overflow and the pair of
new measures(λ̃, µ̃1, µ̃2) and (λ̃+, µ̃+

1 , µ̃
+
2 ) that will ensure

that any sample path will follow the optimal trajectory with
high probability. To this end we assign a ‘cost’ to any
path, minimizing which we obtain the optimal trajectory and
corresponding new measure, see [9]. To ease the exposition
on the new measures we divide the state space as it is
shown in Figure 2, whereα1 := (µ1 − µ2)/(µ1 − λ) and
α+

1 := (µ+
1 − µ2)/(µ+

1 − λ). This figure also provides some
examples of the most probable overflow trajectories. We are
particularly interested in the partition of the bottom part of
the state space, i.e., inA1, A2 andA3. The new measures for
s ∈ A1∪A3 are not difficult, as we will see in (17). However,
to find the optimal new measure fors ∈ A2 one first needs to
jointly solve


λ(line) = µ(line)

1 + κ(line)−s1
θ−s2

(µ(line)

1 − µ(line)

2 )
λ(line) + µ(line)

1 + µ(line)

2 = λ+ µ1 + µ2

λ(line)µ(line)

1 µ(line)

2 = λµ1µ2

λ(line) ≤ µ(line)

1 andµ(line)

1 > µ(line)

2

λ(line), µ(line)

1 , µ(line)

2 > 0

(9)

-
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Fig. 2. Partition ofD̄ ∪ D̄+ whenµ2 < µ+
1 < µ1.

and 
λ+(line) = µ+(line)

1 − κ(line)

1−θ (µ+(line)

1 − µ+(line)

2 )
λ+(line) + µ+(line)

1 + µ+(line)

2 = λ+ µ+
1 + µ2

λ+(line)µ+(line)

1 µ+(line)

2 = λµ+
1 µ2

λ+(line) ≤ µ+(line)

1 andµ+(line)

1 > µ+(line)

2

λ+(line), µ+(line)

1 , µ+(line)

2 > 0

(10)

with the condition

κ(line) := s1 −
µ(line)

1 − λ(line)

µ(line)

1 − µ(line)

2

(θ − s2) =
µ+(line)

1 − λ+(line)

µ+(line)

1 − µ+(line)

2

(1− θ).

(11)
It can be verified that this amounts to solving two coupled
cubic equations. The superscripts (line) and +(line) indicate
that the solution is in fact the optimal change of measure to
reach the state(0, 1) following a concatenation of two straight
line starting ins, with intersection in(κ(line), θ).

Now we can define the (overall) optimal new measures
below and above the slow-down threshold, which depend only
on the starting states. The new measure below the slow-down
threshold, as given through(λ̃, µ̃1, µ̃2), is

(λ̃, µ̃1, µ̃2) =

 (µ2, µ1, λ) if s ∈ A1,
(λ(line), µ(line)

1 , µ(line)

2 ) if s ∈ A2,
(λ, µ1, µ2) if s ∈ A3.

(12)

Above the slow-down threshold the new measure, given
through(λ̃+, µ̃+

1 , µ̃
+
2 ), is

(λ̃+, µ̃+
1 , µ̃

+
2 ) =


(µ2, µ

+
1 , λ) if s ∈ A1,

(λ+(line), µ+(line)

1 , µ+(line)

2 ) if s ∈ A2,
(λ, µ+

1 , µ2) if s ∈ A3.
(13)

Now, let us defineγs(x) to be the residual cost of moving
from statex to ∂e along the path to overflow that started ins:

γs(x) :=
{
γs
1(x) + γs

2(κ
?, θ) if x ∈ D̄,

γs
2(x) if x ∈ D̄+,

(14)

with

γs
1(x) := − (x1 − κ?) log

λ̃

λ
− (θ − x2) log

µ̃2

µ2
, if x ∈ D̄

(15)



being the minimal cost of the bottom part of the path to
overflow and

γs
2(x) := −x1 log

λ̃+

λ
− (1−x2) log

µ̃+
2

µ2
, if x ∈ D̄+ (16)

being the minimal cost of the top part of the optimal path to
overflow; the optimal crossing state(κ?, θ) is as follows

κ? :=

 max(0, s1 − α1(θ − s2)) if s ∈ A1,
κ(line) if s ∈ A2,
s1 − (θ − s2)/α1 if s ∈ A3.

(17)

Note that (λ̃, µ̃1, µ̃2), (λ̃+, µ̃+
1 , µ̃

+
2 ) and κ? (given by (12),

(13) and (17) respectively) are fixed, i.e., they only depend on
the fixed initial states, and not on the current statex (as was
the case in [9]). It is also important to note thatγs(s), the total
cost of moving from the starting states to the exit boundary
∂e, equals the decay rate ofps

B , i.e.,B−1 · log ps
B → −γs(s),

see Theorem 3.2 in [9].
Notice that the functionγs(x) is piecewise-linear inx,

since the new tilde-measure, i.e.,(λ̃, µ̃1, µ̃2) and(λ̃+, µ̃+
1 , µ̃

+
2 ),

depends only on the fixed initial states, and not on the current
statex. This is the main difference with the new measure
studied in [9], where we used the optimal new measure for
each current statex with its costγx(x). Therefore a pair of
cubic equations (corresponding to (9)–(11) withs replaced by
x) had to be solved foreachstatex in the sample path. In our
current approach, computation of the new measure requires
the solution of (9)–(11) just once.

It is known, e.g. from our previous research [7], that the new
measures(λ̃, µ̃1, µ̃2) and(λ̃+, µ̃+

1 , µ̃
+
2 ), which make a sample

path ‘on average’ follow the optimal trajectory to the rare set,
is not necessarily asymptotically efficient; this is due to the
possibility of several visits to the horizontal axis, which inflate
the likelihood ratio, cf. [1], [10]. In order to resolve this, we
first introduce the ‘hat’-measure(λ̂, µ̂1, µ̂2) and(λ̂+, µ̂+

1 , µ̂
+
2 )

as in [3], to be used when the current state is on or near the
horizontal axis, through

(λ̃, µ1λ/λ̃, µ2) and (λ̃+, µ+
1 λ/λ̃

+, µ+
2 ). (18)

The main idea behind it is to make the likelihood ratios of
the loops around the horizontal axis not greater than1 (by
ensuringµ̂2 = µ2).

Having introduced the ‘tilde-measure’ and the ‘hat-
measure’, we are now ready to define the measure
(λ̄(x), µ̄1(x), µ̄2(x)), of which we will prove asymptotic ef-
ficiency, and which is a combination of the two measures
defined above and the original measure:

λ̄(x) = λ̃ρ1 λ̂ρ2λρ3M(x), if x ∈ D̄,
µ̄1(x) = µ̃ρ1

1 µ̂
ρ2
1 µ

ρ3
1 M(x), if x ∈ D̄,

µ̄2(x) = µ̃ρ1
2 µ̂

ρ2
2 µ

ρ3
2 M(x), if x ∈ D̄,

λ̄+(x) = (λ̃+)ρ1(λ̂+)ρ2(λ)ρ3M+(x), if x ∈ D̄+,

µ̄+
1 (x) = (µ̃+

1 )ρ1(µ̂+
1 )ρ2(µ+

1 )ρ3M+(x), if x ∈ D̄+,

µ̄+
2 (x) = (µ̃+

2 )ρ1(µ̂+
2 )ρ2(µ2)ρ3M+(x), if x ∈ D̄+,

(19)

whereM(x) andM+(x) are normalization functions, and the
ρi(x) areweights, cf. [2], [3], given by

ρ1(x) = N(x) · e−
2γs(x1,x2)−δ

ε ,

ρ2(x) = N(x) · e−
2γs(x1, δ

2 log
µ2
λ

)−δ

ε , (20)

ρ3(x) = N(x) · e−
2γs(0,0)−δ

ε .

HereN(x) is a normalization function andδ and ε are small
positive numbers. We mention again that this measure is, albeit
state-dependent, of low computational complexity, as it does
not require to solve cubic systems for any point along the
path (excepts). There are interesting relations between this
new measure, and the scheme proposed in [2].

B. IS Scheme for Caseµ+
1 ≤ µ2 < µ1. Here we present the IS

scheme for the case whenµ+
1 ≤ µ2 < µ1. At first we provide

the pair of new measures(λ̃, µ̃1, µ̃2) and(λ̃+, µ̃+
1 , µ̃

+
2 ) under

which virtually any sample path follows the most probable
trajectory with high probability. The bottom part of the state
spaceD̄ is divided in subspacesBi as depicted in Fig. 3,
whereα+

2 := (µ2−µ+
1 )/(µ2−λ) andα1 has been introduced

in the previous subsection, cf. [9]. The new measure below
m, (λ̃, µ̃1, µ̃2), is as follows:

(λ̃, µ̃1, µ̃2) =

 (µ2, µ1, λ), if s ∈ B1,
(λ(line), µ(line)

1 , µ(line)

2 ), if s ∈ B2,
(λ, µ1, µ2), if s ∈ B3,

(21)

whereas abovem we have

(λ̃+, µ̃+
1 , µ̃

+
2 ) =


(
√

λµ+
1

z+ ,

√
λµ+

1
z+ , µ2z

+), if s ∈ B1

(λ+(line), µ+(line)

1 , µ+(line)

2 ), if s ∈ B2,
(λ, µ2, µ

+
1 ), if s ∈ B3,

(22)
wherez+ is the solution (unique in(0, 1)) to

λ+ µ+
1 + µ2(1− z+) = 2

√
λµ+

1

z+
. (23)

The optimal crossing state(κ?, θ) is now given by

κ? :=

 0 if s ∈ B1,
κ(line) if s ∈ B2,
s1 − (θ − s2)/α1 if s ∈ B3.

(24)

The functionγs(x) is defined by (14) with (15), (16) and
(24). The total cost of the pathγs(s) again is the decay
rate of ps

B , i.e., B−1 · log ps
B → −γs(s), see [9, Thm. 3.2].

The new state-dependent measures(λ̄(x), µ̄1(x), µ̄2(x)) and
(λ̄+(x), µ̄+

1 (x), µ̄+
2 (x)) are given by (19), where the ‘hat’-

measures and the weightsρi(x) are defined by (18) and (20),
respectively.

C. IS Scheme for Caseµ+
1 < µ1 ≤ µ2. This case is the most

difficult case. We partition the state space as in Fig. 4. To see
whether a starting states belongs toC1 or C2, one needs to
jointly solve (9)–(11). Thens belongs toC1 if and only if
f(s) ≤ 0, where

f(s) = θ log
µ2

λ
+ (θ − 1) log q − s1 log

µ1

λ
− γs(s),
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Fig. 3. Partition ofD̄ ∪ D̄+ whenµ+
1 ≤ µ2 < µ1.
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Fig. 4. Partition ofD̄ ∪ D̄+ whenµ+
1 < µ1 ≤ µ2.

with q being the solution (unique in(0, µ+
1 λ/µ

2
1)) to

µ1µ2q
2 + µ1(µ1 − λ− µ+

1 − µ2)q + λµ+
1 = 0, (25)

see also [7], [9]. The constantsβ and β1 are solutions to
f(0, s2) = 0 and f(s1, 0) = 0 respectively;α2 := (µ2 −
µ1)/(µ2 − λ).
• At first let us assume thats ∈ C2 ∪ C3. Then we define

the new measure below the slow-down threshold

(λ̃, µ̃1, µ̃2) =
{

(λ(line), µ(line)

1 , µ(line)

2 ), if s ∈ C2,
(λ, µ2, µ1), if s ∈ C3,

(26)

and above it

(λ̃+, µ̃+
1 , µ̃

+
2 ) =

{
(λ+(line), µ+(line)

1 , µ+(line)

2 ), if s ∈ C2,
(λ, µ2, µ

+
1 ), if s ∈ C3,

(27)
The optimal crossing state(κ?, θ) is now given by

κ? :=
{
κ(line) if s ∈ C2,
s1 − (θ − s2)/α2 if s ∈ C3.

(28)

The functionγs(x) is again defined by (14) with (15),
(16) and (28). The total costs of the path,γs(s), is the
decay rate ofps

B , i.e., B−1 · log ps
B → −γs(s), see

[9, Thm. 3.2]. The new measures(λ̄(x), µ̄1(x), µ̄2(x))

and(λ̄+(x), µ̄+
1 (x), µ̄+

2 (x)) are given by (19), where the
‘hat’-measures and the weightsρi(x) are defined by (18)
and (20), respectively.

• Let us now proceed to the cases ∈ C1. In this case the
optimal new measure below the slow-down threshold at
the k-th transition is

(λ̃, µ̃1, µ̃2) = (29)

(µ1, λI{k<τ?} + µ2I{k≥τ?}, µ2I{k<τ?} + λI{k≥τ?}),

whereτ? := min{k : Xk ∈ C3 andX2,k = 0}; see also
the optimal trajectory that starts inC1, Figure 4. Above
it the new measure is defined by

(λ̃+, µ̃+
1 , µ̃

+
2 ) = (µ1, λµ

+
1 /qµ1, qµ2), (30)

whereq is defined by (25).
It is important, that the residual cost of the bottom part
of the path to overflow, namelyγ1(x), for this case is
different from the one defined by (15). Here it is

γs
1(x) = θ log

µ2

λ
− (x1 − κ?) log

λ̃

λ
+ x2 log

µ̃2

µ2
, (31)

where

κ? = (1− θ)(λµ+
1 − qµ2

1)/(λµ
+
1 − q2µ1µ2). (32)

For this caseγs
2(x) is defined by (16), andγs(x) again

by (14) with (31), (16) and (32). As before,γs(s) is
the decay rate ofps

B , i.e., B−1 · log ps
B → −γs(s).

The new state-dependent measures(λ̄(x), µ̄1(x), µ̄2(x))
and(λ̄+(x), µ̄+

1 (x), µ̄+
2 (x)) are given by (19), where the

‘hat’-measures and the weightsρi(x) are defined by (18)
and (20) respectively.

For convenience we summarize the resulting IS scheme for
the different cases.

• Whenµ2 < µ+
1 < µ1 one needs to

1. define the ‘primary’ new measures (12) and (13);
2. define ‘hat’-measures (18);
3. define weightsρi(x) by (20) based on (14)–(17);
4. apply (19).

• When µ+
1 ≤ µ2 < µ1, the same procedure is

followed, only replacing the ‘primary’ new mea-
sures (12) and (13) by (21) and (22) in step 1; and
(17) by (24) in step 3.

• Whenµ+
1 < µ1 ≤ µ2 ands ∈ C2 ∪ C3, we follow

the same algorithm, only with the ‘primary’ new
measure replaced by (26) and (27) in step 1; and
using (28) instead of (17) in step 3.

• When µ+
1 < µ1 ≤ µ2 and s ∈ C1, again the

same procedure is followed, this time replacing the
‘primary’ new measure by that in (29) and (30);
we also replace (15) by (31) and (17) by (32) in
step 3.

In [9] we proved asymptotic efficiency of the fully state-
dependent IS scheme, i.e., when the ‘primary’ new measure
was dependent on the current state. Analyzing the simplified



IS scheme (19) we have to deal with the additional compli-
cation that the discontinuity ofγs(x) around the slow-down
threshold, see e.g., (14)–(16), (12) and (13). We do conjecture,
though, that the scheme is asymptotic efficient; for specific
cases we proved this in [8].

IV. COMPUTATIONAL ASPECTS ANDDESIGN ISSUES

In this section we first study the efficiency gain achieved
by applying IS (rather than naı̈ve simulation), and then we
address a number of design issues.

In Table I we present simulation results for four different
parameter settings using the new measure defined in (19).
Instead of performing a fixed number of simulation runs such
as in much of the IS literature, we simulated until the relative
error of the estimator reached some prespecified value, viz.
10−2 for the first three cases and5 · 10−2 for the last one.
In the table we present 95% confidence intervals forps

B , the
number of needed replications (# runs), the used machine
time in seconds, and the number of ‘succesful’ replications (#
succ.), i.e. the number of runs that resulted in buffer overflow.

We compare three values of the overflow levelB; the value
of δ was taken to beδ = − 1

3ε log ε and ε = 0.001, as in
[8]. We fixed the starting states at the origin, since this is
the most natural choice from a practical perspective. Clearly,

(λ, µ1, µ+
1 , µ2) = (0.1, 0.7, 0.15, 0.2), RE = 0.01

B ps
B # succ. # runs time

20 3.79 · 10−7 ± 7.44 · 10−9 15, 576 28, 332 0.4
50 1.28 · 10−16 ± 2.52 · 10−18 33, 542 58, 332 2
100 3.54 · 10−32 ± 6.95 · 10−34 56, 982 109, 992 8

(λ, µ1, µ+
1 , µ2) = (0.3, 0.36, 0.32, 0.34), RE = 0.01

20 5.63 · 10−2 ± 1.11 · 10−4 39, 496 91, 596 2
50 1.19 · 10−3 ± 2.33 · 10−5 99, 567 241, 332 18
100 1.63 · 10−6 ± 3.21 · 10−8 128, 864 320, 120 49

(λ, µ1, µ+
1 , µ2) = (0.3, 0.36, 0.35, 0.34), RE = 0.01

20 5.86 · 10−2 ± 1.44 · 10−4 32, 283 76, 169 2
50 1.42 · 10−3 ± 2.79 · 10−5 61, 034 152, 283 12
100 2.64 · 10−6 ± 5.18 · 10−8 113, 527 279, 196 47

(λ, µ1, µ+
1 , µ2) = (0.25, 0.35, 0.28, 0.4), RE = 0.05

20 1.11 · 10−4 ± 1.09 · 10−5 45, 685 83, 436 2
50 3.43 · 10−11 ± 3.36 · 10−12 79, 901 148, 256 7
100 5.72 · 10−22 ± 5.60 · 10−23 235, 502 439, 006 42

TABLE I
SIMULATION RESULTS FORθ = 0.8

the IS scheme provides fast and reliable estimates. In some
cases, especially whenB grows large, the running times may
be sensitive to the choice ofε and δ. In Table I we used
relatively ‘good’ε andδ. For instance, choosingε = 0.01 will
lead to almost900% increment in the number of replications
in the last line of the first part of Table I, i.e., for the case
when (λ, µ1, µ

+
1 , µ2) = (0.1, 0.7, 0.15, 0.2) andB = 100.

We also performed a few straightforward simulations (i.e.,
without IS) for comparison, using the same relative error of
10−2. For the parameter settings of the first part of Table I
with B = 20, this took 4521 seconds (±5 · 109 runs). In the
settings of the second part of Table I withB = 50 it took 118
seconds (±107 runs).

To enable comparison with the state-independent scheme in
[7] and the state-dependent scheme in [2], we also fixed the

(λ, µ1, µ+
1 , µ2) = (0.1, 0.7, 0.15, 0.2)

B st.-ind., [7] st.-dep., [2] current
20 1.49 · 10−3 2.63 · 10−3 3.54 · 10−3

50 2.06 · 10−3 7.87 · 10−3 8.00 · 10−3

100 2.75 · 10−3 19.71 · 10−3 17.01 · 10−3

(λ, µ1, µ+
1 , µ2) = (0.3, 0.36, 0.32, 0.34)

20 0.92 · 10−3 5.30 · 10−3 6.00 · 10−3

50 12.50 · 10−3 8.40 · 10−3 11.00 · 10−3

100 39.69 · 10−3 12.20 · 10−3 11.00 · 10−3

TABLE II
COMPARISON OF RELATIVE ERRORS FOR THREEIS SCHEMES

number of runs to be106 and compared the relative errors, see
Table II. Here,s = (0, 0), θ = 0.8, and in the state-dependent
schemesε = 0.03/

√
B andδ = −ε log ε. As can be expected,

both state-dependent schemes provide good estimates (in terms
of the relative errors), but the performance of the state-
independent scheme strongly depends on the parameters.

We now demonstrate techniques that enable selection of a
proper value for the slowdown thresholdm = θB. A first
caveat is the following. It is natural to expect that smaller
θ, will provide better protection of the second node and
consequently smaller probability of overflow (withs being
the origin), but this is not always the case. Indeed, numerical
experiments show that, starting inθ = 1, decreasingθ leads
to a reduction ofps

B . However, continuing to decreaseθ, the
probability of interest will start toincrease. The same holds
for thestationaryprobability of the processXk, with the slow-
down thresholdθ, to be above level1, denoted byπθ(B), see
Figs. 5 and 6. In these graphs we plottedπθ(B) againstθ
for parameters(λ, µ1, µ

+
1 , µ2) = (0.3, 0.36, 0.32, 0.34), with

overflow levelsB = 20 andB = 50.

Fig. 5. πθ(20) againstθ

Fig. 6. πθ(50) againstθ

For the case of ‘shifting bottlenecks’, i.e.,µ+
1 < µ2 < µ1,

we now provide an explanation for the non-monotone behavior
of πθ(B). Clearly, πθ(B) has decay rateθ log ρ2 + (1 −
θ) log z+, for θ ∈ (0, 1] and z+ from (23), see Section III;



ρ2 is defined asλ/µ2. However, whenθ = 0 the decay rate
is just log ρ2, as the queue is then an ordinary tandem queue
(without backpressure); in [7] it was shown thatz+ < ρ2. This
shows that the decay rate is discontinuous inθ = 0, explaining
that π0(B) > π0+(B) (for B large).

The above type of justification for the observed non-
monotonicity is valid only for the case thatµ+

1 ≤ µ2 < µ1.
Another explanation for the decreasing nature ofπθ(B) for
small θ is in the ‘specific’ behavior of theXk around the
origin. More precisely, consider the processXk with starting
state s = (0, 1), and compare threshold levelsθ = 0 and
θ = 1/B. In the latter case, the first server operates at full
speed only when the second queue is empty. It is not difficult
to see that the probability of transition(1, 0) → (0, 1) is
higher whenθ = 1/B; and the probability of the ‘terminating’
transition (0, 1) → (0, 0) is µ2/(λ + µ2), which does not
depend onθ. This means that the probability of overflow
starting from the origin,p0

B , is higher whenθ = 0 than when
θ = 1/B, even though we have ‘more slow-down’ in the
first case. One can generalize this type of arguments for the
other states around the origin and the other values ofθ. These
arguments, unlike the ones based on decay rates, hold for all
parameter values.

We now demonstrate how to develop procedures for op-
timally choosing the value of the slow-down threshold. The
primary role of the backpressure mechanism is to control the
probability of some undesirable event, viz. overflow in the
second buffer (expressed in terms ofps

B). However, introduc-
ing server slow-down has a negative side effect: the expected
sojourn time of a job decreases withθ. In order to find an
optimal value ofθ, one could, for given coefficientα andβ,
minimize the following (dis-)utility function

u(θ,B) = −α log−1 p0
B + βS(θ,B),

whereS(θ,B) is the mean sojourn time of a job,α is the
penalty for overflow andβ is the cost for each job being in
the system per unit time; we assumes is the origin. Theα
and β should be chosen by the service provider, and should
reflect the Service Level Agreement (SLA) as agreed upon.

We present plots of the utility functionsu(θ, 20) and
u(θ, 50), with α = 10 andβ = 3, for a system with parameters
(λ, µ1, µ

+
1 , µ2) = (0.3, 0.36, 0.32, 0.34) in Figures 7 and 8

respectively.

Fig. 7. Utility function againstθ for B = 20

We observe that the optimal points are located close to the
minimum of πθ(B), see Figures 5 and 6, as one may expect.

Fig. 8. Utility function againstθ for B = 50

V. CONCLUSION

In this paper we analyzed a backpressure-based control
mechanism. We first determined its (non-trivial) stability con-
dition. Then we focused on efficient IS-based simulation
techniques for estimating the probability of overflow in the
downstream queue (which outperforms methods [9] developed
earlier). It is noted that several aspects, which are not captured
by the notion of asymptotic efficiency, play a crucial role in as-
sessing the performance of this type of simulation techniques:
it matters for instance very much whether a new measure
requires computation of new transition rates ‘on the fly’, or
whether these can be precomputed. These issues have been
taken into account in the present paper. We then demonstrated
how the evaluation techniques developed in this paper help in
tuning the design parameters involved, specifically focusing on
selecting an appropriate value for the slow-down threshold.
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