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APPROXIMATIONS FOR THE MEAN SOJOURN TIME

IN PARALLEL QUEUES

BENJAMIN KEMPER & MICHEL MANDJES

Abstract. This paper considers a parallel queue, which is two-queue network, where
any arrival generates a job at both queues. The focus is on methods to quantify the
mean value of the ‘system’s sojourn time’ S: with Si denoting a job’s sojourn time in
queue i, S is defined as max{S1, S2}. It is noted that earlier work has revealed that this
class of models is notoriously hard to analyze. We first evaluate a number of bounds
developed in the literature, and observe that under fairly broad circumstances these can
be rather inaccurate. We distinguish between the homogeneous case, in which the jobs
generated at both queue stem from the same distribution, and the heterogeneous case.
For the former case we present a number of approximations, that are extensively tested
by simulation, and turn out to perform remarkably well. For the latter case, we identify
conditions under which S can be accurately approximated by the sojourn time of the
queue with the highest load.
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1. Introduction

Parallel queues are service systems in which every arrival generates input in multiple
queues. One could for example consider a Poissonian arrival stream (with rate λ) that
generates jobs in two queues. The service times in queue i (for i = 1, 2) constitute an i.i.d.
sequence of non-negative random quantities (Bi,n)n∈N (distributed as a generic random
variable Bi), where in addition both sequences (B1,n)n∈N and (B2,n)n∈N are assumed to be
mutually independent. One could call the resulting queueing system an ‘M/G/1 parallel
queue’. To ensure that the system is stable, one imposes the obvious condition that λEBi

be smaller than 1 for both i = 1 and 2.
While the distribution of the sojourn time of both individual queues, which behave as
M/G/1 queues, is explicitly known (albeit in terms of its Laplace transform, through
the celebrated Pollaczek-Khinchine formula), considerably less is known about the joint
distribution of the workload in both queues of the parallel queue. It is clear that these
workloads are positively correlated: if the workload of one of the queues is larger than
usual, a potential reason for this is that there were temporarily unusually many arrivals,
such that the workload in the other queue is probably larger than average as well. The level
of correlation is primarily caused by the shape of the distributions of B1 and B2; as can
be seen easily the correlation is maximal if both B1 and B2 equal the same deterministic
number (as then both queues evolve synchronically).
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The rationale behind studying parallel queues of the type described above lies in the fact
that they are a natural model for several relevant real-life systems, for instance in service
systems, health care applications, manufacturing systems, and communication networks.
With Si denoting a job’s sojourn time in queue i, a particularly interesting object is the
parallel queue’s sojourn time S := max{S1, S2}, as in many situations the job can be
further processed only if service at both queues has been completed. One could think of
many specific examples in which parallel queues (and the sojourn time S) play a crucial
role, such as:

- a request for a mortgage is handled simultaneously by a loan division and a life
insurance division of a bank; the mortgage request is finalized when the tasks at
both divisions have been completed.

- a laboratorial request of several blood samples is handled simultaneously by several
lab employees of a hospital; the patient’s laboratorial report is finalized when all
the blood samples have been analyzed.

- a computer code runs two routines in parallel; both should be completed in order
to start a next routine.

We here remark that on a generic level, many service systems can be modeled as networks
of queues, of which the parallel queue can be a building block. We refer the reader to
for instance the process-flow-based modeling framework proposed in [6], featuring metrics
such as the arrival rate, process sojourn time, and utilization. In the present paper we
focus on the process sojourn time of the parallel queue.

M/G/1 parallel queues have been studied intensively in the past, see for instance the
overview article [3], and have turned out to be notoriously hard to analyze. We now give a
brief account of the literature, where we restrict ourselves to the papers that are relevant
in the scope of our work.
In general, no explicit expressions are known for the joint steady-state workload distribu-
tion of both queues, nor for the mean sojourn time. For the specific case of an M/M/1
parallel queue, Flatto and Hahn [5] derive the probability generating function of the joint
queue-length (in terms of numbers of jobs), thus defining the steady-state probabilities pij ,
where i and j represent the number of jobs in the two queues. The asymptotics of this
distribution are analyzed in [4]; these provide insight into the interdependence between
the two queues. For this M/M/1 parallel queue, under the additional assumption that
the service times at both queues stem from the same exponential distribution, the mean
sojourn time can be derived explicitly from the system’s balance equations, see [8], and
obeys a simple closed-form expression. It is noted, however, that the underlying argument
breaks down as soon as we depart from the exponentiality and homogeneity assumptions.
For the general M/G/1 parallel queue (and in fact for the GI/G/1 parallel queue), upper
and lower bounds on the mean sojourn time were derived by Baccelli and Makowski [1],
relying on stochastic comparison techniques. These bounds are not always easy to compute,
as they require the availability of explicit expressions or accurate approximations of the
distribution function of the workload in related single-node M/G/1 and D/G/1 queues.
In addition, the bounds are in many cases quite far apart, as observed from the numerical
results on the heterogeneous exponential case by Balsamo et al. [2]. The authors of
[2] present considerably more accurate bounds, but their approach is restricted to the
situation of heterogeneous exponential service times; also, their method is of relatively
high computational complexity. An elegant approximation technique for the homogeneous
case was proposed in [10]; in that work, special attention is paid to the impact of the
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number of servers operating in parallel (which we assume to be 2 throughout this paper).
We finally note that results on the corresponding G/M/1 queue are given in [7].

The above literature overview underscores the need for accurate methods to approximate
the mean sojourn time ES that work for a broad set of service-time distributions. In this
paper we present a set of such approximations and heuristics, that are of low computational
complexity, yet remarkably accurate. In more detail, our contributions are the following:

• We explicitly compute the upper bound of [1] for a set of frequently used service-
time distributions. We also note that the accompanying lower bound can be eval-
uated for a limited set of service-time distributions only.

• We systematically assess the homogeneous case (i.e., B1 and B2 having the same
distribution). We observe that in many situations, the bounds presented in [1]
are rather far apart (and sometimes even outperformed by trivial bounds). By
investigating the mean sojourn time for a broad range of loads, and for various
coefficients of variations, we empirically determine a relation between these quan-
tities. It turns out that the ratio of ES and ES1 = ES2 just mildly depends on the
load, in line with the observations in [8] for the case exponential service times.

• We then consider heterogeneous scenarios. If the loads of both queues are different,
ES could be approximated by the mean sojourn time of the queue with the highest
load. We assess under what conditions such a bottleneck approach works well. For
the cases this approach does not lead to accurate results, we present alternative
rules of thumb.

The structure of the paper is as follows. In Section 2 we sketch the model, and present
some preliminaries. We also review the bounds of [1], and explicitly calculate them for
specific service-time distributions. In Section 3 we consider the homogeneous case, i.e.,
B1 =d B2, and identify under which conditions the bounds of [1] are far apart. We then
present a number of approximations, which turn out to be highly accurate. Section 4
covers the heterogeneous case. The paper is concluded by a brief summary and discussion.

2. Model, preliminaries, and bounds

In this section we formally introduce the parallel queue (or: fork-join network), see Fig. 1.
This system consists of two queues (or: workstations, nodes) that work in parallel. The
jobs arrive according a Poisson process with parameter λ; without loss of generality, we
can renormalize time such that λ = 1 (which we will do throughout this paper). Upon
arrival the job forks into two different ‘sub-tasks’ that are directed simultaneously to both
workstations. The service times in workstation i (for i = 1, 2), which can be regarded as a
queue, are an i.i.d. sequence of non-negative random quantities (Bi,n)n∈N (distributed as
a generic random variable Bi); we also assume (B1,n)n∈N and (B2,n)n∈N to be mutually
independent. As mentioned before, one could call the resulting queueing system an ‘M/G/1
parallel queue’. The load of node i is defined as %i := λEBi ≡ EBi < 1. The systems
stability is assured under the, intuitively obvious, condition max{%1, %2} < 1, see [1].
The queues handle the sub-tasks in a first-come-first-serve fashion. In other words: if the
sub-task finds the queue non-empty, it waits in the queue before until service starts. When
both sub-tasks (corresponding to the same job) have been performed, they join and the
job departs the network. Therefore, the total sojourn time of a the n-th job in the network
is the maximum of two sojourn times of the sub-tasks, that is, in self-evident notation,
Sn = maxi=1,2 Si,n. The goal of this paper is to analyze the mean sojourn time, i.e.,

ES = E [max{S1, S2}] ,
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Figure 1. A simple fork-join queue

with Si denoting the sojourn time of an arbitrary customer (in steady-state) in queue i.
In general, the mean sojourn time cannot be explicitly calculated, the only exception being
the case that B1 and B2 correspond to the same exponential distribution, as mentioned
in the introduction. This result, by Nelson and Tantawi [8], is recalled in Section 2.1.
Relaxing the homogeneity and exponentiality assumptions, upper and lower bounds are
known, which will be reviewed in Section 2.2, and made explicit in Section 2.3.

2.1. The homogeneous M/M/1 parallel queue. As proven in [8], in case of two
homogeneous servers with exponentially distributed service times, the mean sojourn time
obeys the strikingly simple formula

ES =

(

12− %

8

)

·m,

where m := %/(1− %) is the mean sojourn time of a M/M/1 queue. This result is found
by first decomposing the mean sojourn time ES is the sum of the mean sojourn time m
of an M/M/1 queue and a mean synchronization delay d, i.e., ES = m+ d. Using Little’s
formula and using the balance equations, one can show that

d =
1

λ

∞
∑

i=1

i(i+ 1)

2
pi0,

with pi0 the steady-state probability of i jobs in queue 1 and the other queue being empty.
The first two moments, that is,

∑

i ipi0 and
∑

i i
2pi0, are found from the generating function

[5]

P (z, 0) = (1− %)3/2/
√

1− %z,

thus yielding d = m · (4− %)/8, as desired.
Observe that, when increasing the load from 0 to 1, the ratio of the mean sojourn time ES
and the mean sojourn time of a single workstation, i.e., ES/m, varies just mildly: for % ↑ 1
it is 11/8 = 1.375, whereas for % ↓ 0 it is 12/8 = 3/2 = 1.5, i.e., about 8% difference. This
entails that an approximation of the type ES ≈ 3

2m is conservative, yet quite accurate.

2.2. Bounds for the M/G/1 parallel queue. In this section we discuss a number
of bounds on ES in an M/G/1 parallel queue. It is noted that they in fact apply to the
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GI/G/1 parallel queue, but under the assumption of Poisson arrivals explicit computations
are possible, see Section 2.3.
An upper and lower bound for the general GI/G/1 case are presented by Baccelli and
Makowski [1]; in the sequel we refer to these bounds as the BM bounds. The BM bounds
for the sojourn time are in fact sojourn times of similar systems of two independent queues:

- in the BM upper bound one does as if two queues are independent. Informally,
by making the queues independent, the stochasticity increases, and therefore the
mean of the maximum of ES1 and ES2 increases, explaining that this yields an
upper bound.

- in the BM lower bound one considers two D/G/1 queues (with the same loads as
in the original parallel queue). Informally, by assuming deterministic arrivals, one
reduces the system’s stochasticity, and therefore the mean of the maximum of ES1

and ES2 decreases, explaining that this yields a lower bound.

Below we discuss these BM bounds, and in addition also a number of trivial (but useful)
bounds. Then we show how to compute these bounds explicitly in a number of practically
relevant cases in Section 2.3.

2.2.1. Trivial bounds. We first present a trivial lower bound. Using that x 7→ max{0, x}
is a convex function, due to Jensen’s inequality, we have

ES = ES1 + Emax{0, S2 − S1}

≥ ES1 +max{0,E(S2 − S1)} = max{ES1,ES2} =: `.

Because max{a, b} = a+ b−min{a, b} ≤ a+ b, we also have the upper bound

ES ≤ ES1 + ES2 =: u.

Notice that these bounds are in some sense insensitive, as they depend on the distribution
of S1 and S2 only through their respective means.

2.2.2. BM bounds. The BM bounds for the GI/G/1 parallel queue are ‘explicit’ in the
sense that they reduce to standard formulas in terms of the distribution of the sojourn
times of single GI/G/1 systems for the upper bound, and single D/G/1 systems for the
lower bound (with the same load as the original system). Recall that the stability of these
systems is ensured by the assumption that %i = λEBi < 1 for both i = 1 and 2, which is
identical to the stability condition of our parallel queueing system.
The idea behind the BM bounds is that the level of the variability of the parallel queueing
system’s waiting time should be increasing in the level of variability of the stochastic
arrival process of the system. Replacing the ‘parallel arrivals’ by mutually independent
homogeneous arrival processes, magnifies the level of variability in the arrival process,
and therefore increases the level of variability in the system’s sojourn time. Replacing
the ‘parallel arrivals’ by identical deterministic arrival processes, as in the D/G/1 system,
reduces the level of variability in the arrival process, and therefore reduces the level of
variability in the system’s sojourn time. This intuitive reasoning leads to the following
bounds, which are rigorously proven in [1].

Upper bound. We do as if the queues are actually independent, that is, fed by independent
processes (but identical in law). As a consequence, S1 and S2 are independent as well; call
the maximum of S1 and S2 under this assumption S̄. Then, in self-evident notation, ES̄
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equals
∫ ∞

0

∫ y

0
ydPGI/G/1(S1 ≤ x)dPGI/G/1(S2 ≤ y) +

∫ ∞

0

∫ ∞

y
xdPGI/G/1(S1 ≤ x)dPGI/G/1(S2 ≤ y)

=

∫ ∞

0
yPGI/G/1(S1 ≤ y)dPGI/G/1(S2 ≤ y) +

∫ ∞

0
xPGI/G/1(S2 ≤ x)dPGI/G/1(S1 ≤ x);

we call the latter expression from now on U .

Lower bound. Now we do as if both queues are fed by deterministic arrival processes. Call
the maximum of S1 and S2 under this assumption S. Then ES equals

∫ ∞

0

∫ y

0
ydPD/G/1(S1 ≤ x)dPD/G/1(S2 ≤ y) +

∫ ∞

0

∫ ∞

y
xdPD/G/1(S1 ≤ x)dPD/G/1(S2 ≤ y)

=

∫ ∞

0
yPD/G/1(S1 ≤ y)dPD/G/1(S2 ≤ y) +

∫ ∞

0
xPD/G/1(S2 ≤ x)dPD/G/1(S1 ≤ x),

which we denote in the sequel by L.

2.3. BM bounds for an number of M/G/1 parallel systems. We now present a
number of explicit expression for the bounds u, U, `, and L in the case of Poisson arrivals
and various service time distributions. In Section 3 approximate the service-time distri-
bution by a so-called phase-type distribution (with appropriate mean and variance), and
therefore we focus on a number of phase-type service-time distributions, viz. exponential
service times, Erlang service times (useful to approximate service times with coefficient
of variation smaller than 1), and hyperexponential times (useful to approximate service
times with coefficient of variation larger than 1). In the sequel we will denote by scv the
squared coefficient of variation, defined by the ratio of the variance and the squared mean.

M/M/1 case. Here we let the service times in the first and second queue be both ex-
ponentially distributed, with means %1 and %2 respectively; recall that the exponential
distribution has scv equal to 1. It is well-known that Si has an exponential distribution
with mean mi := %i/(1− %i). Trivially,

` = max{m1,m2}, u = m1 +m2.

It is now a trivial computation to show that

U = m1 +m2 −

(

1

m1
+

1

m2

)−1

.

In case of deterministic arrivals it is known that Si has an exponential distribution (in
fact any G/M/1 leads to an exponential distribution). Its mean, that is ESi, reads κi :=
%i/(1 − ωi), where ωi is the unique solution to ωi = e−(1−ωi)/%i , with 0 < ωi < 1. Then
computing the integrals yields

L = κ1 + κ2 −

(

1

κ1
+

1

κ2

)−1

.

It is seen that if m1 is considerably larger than m2 (i.e., %1 considerably smaller than %2),
then ES ≈ m1. This is done as follows. Let m2 be m1/M for some M > 1. Recall that
` = m1 ≤ ES ≤ U, and also

U = m1

(

1 +
1

M

)

−

(

1

m1
+

M

m1

)−1

→ m1,
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as M → ∞. This indicates that, if the loads of both queues are highly asymmetric, the
bottleneck queue essentially determines the parallel queue’s sojourn time.

M/E2/1 case. We now consider the case of the service times having an Erlang distribution
with two phases. Random variables with an Erlang distribution are known to be ‘less vari-
able’ than the exponential distribution; more precisely, an Erlang distribution consisting of
k phases has a scv of 1/k. In case k = 2, these two exponential phases have mean length
%i/2 = 1/µi. Using elementary queueing theory, it is readily checked that the Laplace
transforms of the sojourn times read, for i = 1, 2,

S̄i(s) =
(1− %i)µ

2
i

s2 + s(2µi − 1) + µi(µi − 2)
.

Applying a partial fraction expansion, with s±,i denoting the zeros of the denominator

s±,i :=
1

2

(

1− 2µi ±
√

4µi + 1
)

,

and

α1i :=
s−,i

s−,i − s+,i
, α2i := −

s+,i
s−,i − s+,i

,

this leads to

P(Si ≤ x) = α1i(1− exp(s+,ix)) + α2i(1− exp(s−,ix)).(1)

This result enables us to evaluate the upper bound U . Tedious computations eventually
lead to

U = m1 +m2 +
1

(s−,1 − s+,1)(s−,2 − s+,2)
×

(

s+,1s+,2
(s−,1 + s−,2)

−
s−,1s+,2

(s+,1 + s−,2)
−

s+,1s−,2
(s−,1 + s+,2)

+
s−,1s−,2

(s+,1 + s+,2)

)

,

where mi is the mean sojourn time in queue i, which equals

(2) mi =
%2
i

2(1− %i)
(scvi + 1) + %i,

see for instance [9, Eq. (2.55)], which in this case reduces to %i(4−%i)/(4−4%i). The lower
bound L is based on P(Si ≤ x) for a D/E2/1 queue, for which no explicit form is known,
to the best of our knowledge.

M/E1 ,2/1 case. We now consider the situation of the service times being ‘generalized
Erlang’ [9, p. 398]. More specifically, we consider a mixture of an E1 and an E2 with the
same scale parameters, which is denoted as an E1,2. We here choose the parameters such
that the scv of the service time is 3

4 . This is done by choosing for Bi with probability pi
an exponential distribution with mean 1/µi, and with probability 1−pi an E2 distribution
with mean 2/µi. For given %i and scv, the parameters pi and µi are uniquely defined,
see [9, Eq. (A.14)]. Standard queueing theory then yields the Laplace transforms of the
sojourn times, for i = 1, 2,

S̄i(s) =
(1− %i)(µ

2
i + piµis)

s2 + s(2µi − 1) + µi(µi + pi − 2)
.
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With s±,i be the zeros of the denominator, that is,

(3) s±,i :=
1

2

(

1− 2µi ±
√

4(1− pi)µi + 1
)

,

and

(4) α1i :=
s−,i + pi(µi − 2 + pi)

s−,i − s+,i
, α2i := 1− α1i,

Equation (1) again applies, but now with s±,i given through (3) and αji through (4). Si
has a E1,2 distribution with mean given through (2). It can then be shown that

(5) U = m1 +m2 +
α11α12

s+,1 + s+,2
+

α21α12

s−,1 + s+,2
+

α11α22

s+,1 + s−,2
+

α21α22

s−,1 + s−,2
.

The lower bound L is based on P(Si ≤ x) for a D/E1,2/1 queue, for which no explicit form
is known, to our best knowledge.

M/H2/1 case. Above we concentrated on service times with scv smaller than 1; we
now consider the case of scv s larger than 1. A hyperexponentially distributed random
variable Bi now results from sampling from an exponential distribution with mean µ−1

i1

with probability pi, and from an exponential distribution with mean µ−1
i2 with probability

1− pi. We fix the mean service times, leading to the requirement

%i =
pi
µi1

+
1− pi
µi2

,

and, under the additional condition of ‘balanced means’ [9, Eq. (A.16)], the scv s, leading
to

scvi :=
VarBi
(EBi)2

=
1

2pi(1− pi)
− 1 ⇒ pi =

1

2
±

1

2

√

scvi − 1

scvi + 1
,

and µi1 = 2piµi and µi2 = 2(1− pi)µi. It is obvious that we again have that Si has mean
(2), with the scv s given in the previous display. For i = 1, 2 we find, as before, the Laplace
transforms of the sojourn times:

S̄i(s) =
4pi(1− pi)(µ

2
i − µi) + 2s(p2

i + (1− pi)
2)(µi − 1)

s2 + s(2µi − 1) + 4pi(1− pi)(µ2
i − µi)

.

With s±,i denoting the zeros of the denominator, i.e.,

(6) s±,i =
1

2

(

1− 2µi ±

√

1− 4
scvi − 1

scvi + 1
µi + 4

scvi − 1

scvi + 1
µ2
i

)

,

and

(7) α1i :=
1

2
+

1
2 + scvi−1

scvi+1(1− µi)
√

1− 4scvi−1
scvi+1µi + 4scvi−1

scvi+1µ
2
i

, α2i = 1− α1i,

it follows that Equations (1) and (5) again apply, but now with s±,i given through (6) and
αji through (7). The lower bound L requires knowledge of P(Si ≤ x) for a D/H2/1 queue,
for which no explicit expression is available.
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3. The homogeneous case

In this section we consider the situation of homogeneous servers, i.e., B1 and B2 are
(independently) sampled from the same distribution. As shown by [8], the mean sojourn
time in case of homogeneous exponentially distributed service times is a simple function of
the mean sojourn time of a single queue, say m, and the service load, %, see Section 2.1; for
other service times, however, no explicit results are known. In this section we assess the
accuracy of the bounds u, `, U , and L, by systematic comparison with simulation results.
We do this by varying the load % (equal for both queues) imposed on the system, as well
as the ‘variability’ of the service times (in terms of the scv).
Our analysis indicates that for a substantial set of model instances the upper and lower
bounds are far apart, and therefore we have attempted to develop more accurate approx-
imations. We empirically find an approximation with a nearly perfect fit, which gives us
the mean sojourn time as a function of the load and scv. An important by-product of the
analysis performed in this section, is a number of explicit expressions for the bounds, for
a set of practically relevant service time distributions (e.g., Erlang and hyperexponential);
it is noted that the trivial bounds u and ` reduce to 2m and m, respectively, in case of
homogeneity. Our results once again clearly reveal that the effect of the system’s service
load % is modest, as was already observed by [8] for the case of exponentially distributed
service times.

M/M/1 case. As mentioned earlier, in the symmetric case whenm = m1 = m2 = (1−%)/%,
the mean sojourn time is explicitly known: ES = m · (12− %)/8, see [8]. Also, it is easily
seen from the results in Section 2 that

U =
3

2
·m;

notably, this fraction 3
2 is insensitive with respect to the load %. The upper bound U is

close to the mean sojourn time ES for small %; one must, however, bear in mind that this
scenario is perhaps not so realistic in practice. Also,

L =
3

2
· κ,

with κ the mean sojourn time of a single D/M/1 queue with appropriate load. We will see
later on in this section, in Table 1, that U and L substantially differ from the ‘real’ (i.e.,
simulated) mean sojourn time.

M/E2/1 case. We consider the case that scv = 1
2 . Straightforward computations yield

U = 2m+
(µ− 1)(−5µ+ 1)

2µ(µ− 2)(2µ− 1)
= m

11µ2 − 10µ+ 3

8µ2 − 8µ+ 2
= m

3%2 − 20%+ 44

2(%− 4)2
.

The fraction clearly is sensitive to the service load %. For a system with small load % ↓ 0
gives U ≈ 11

8 m = 1.375m, and for a system with large load % ↑ 1 gives U ≈ 3
2m = 1.5m.

This once more implies that a conservative approximation can be of the type ES ≈ 3
2m.

M/E1 ,2/1 case. We now consider service times following a generalized Erlang distribution
with scv = 3

4 . In this symmetric case straightforward calculus yields, with s± ≡ s±,i given
by (3) and αj ≡ αji by (4), for i = 1, 2,

(8) U = 2m+
α2

1

2s+
+

2α1α2

1− 2µ
+

α2
2

2s−
,
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where we have used that s− + s+ = 1 − 2µ. It can be seen that the ratio of U and
m is sensitive to the service load %. For a system with a small load, % = 0.1, we have
U ≈ 1.45m, whereas for a system with large load, % = 0.9, we have U ≈ 1.49m. Again, a
conservative approximation can be of type ES ≈ 3

2m.

M/H2/1 case. We again obtain (8), but now with s±,i given through (6) and αij through
(7). Again the ratio of U and m is sensitive to the service load %. For a system with
scv = 2 and a small load, % = 0.1, we find U ≈ 1.59m, whereas for a system with large
load, % = 0.9, it holds that U ≈ 1.53m; for a system with scv = 4 and small load, % = 0.1,
we have U ≈ 1.89m, whereas for a system with large load % = 0.9, we have U ≈ 1.55m.
Observe that the ratio of U and m is close to 3

2 in the (perhaps most relevant) situation
that the load is relatively high, that is, for loads % higher than, say, 0.9.

The lower bound L cannot be given in closed-form, except in the M/M/1 case, but can
of course be determined through simulation. We now verify the accuracy of the bounds L
and U , see Table 1. We concentrate on two ‘extreme’ loads (0.1 and 0.9), and we vary the
scv. The table should be read as follows. The upper part is on the case % = 0.1, while the
lower part relates to % = 0.9. Then we provide, for several values of the scv:

(i) The mean sojourn time in a single queue, m. For this we have exact expressions
(following from ‘Pollaczek-Khinchine’), see [9, Eq. (2.55)].

(ii) The mean sojourn time ES of the parallel queue. We have an exact expression for
this for scv = 1, and for the other scv s we obtained a value through simulation.

(iii) The ratio of ES and m, which we call α(scv). In view of the trivial bounds, it is
clear that α lies between 1 and 2.

(iv) The upper bound U , using the expressions derived earlier in this section.
(v) The ratio of U and m, denoted by αU (scv).
(vi) The lower bound L, obtained through simulation (for scv = 1 we have an exact

expression).
(vii) The ratio of L and m, denoted by αL(scv).
(viii) The ‘BM-spread’, that is, the ratio of (U − L) and ES.

The service times with scv equal to 0.25 and 0.33 are obtained by using E4 and E3

distributions, respectively. For scv s larger than 1 we use hyperexponentional distribution,
with the additional condition of ‘balanced means’ [9, Eq. (A.16)]. In this table we used
explicit formulae where possible; we otherwise relied on simulation. Here and in the sequel,
the spread of the 95% confidence intervals for the simulated mean sojourn times is less
than 0.5%.
The main conclusions from this table (and additional numerical experimentation, on which
we do not report here) are the following:

• For low loads the bounds L and U are relatively close, but the difference can be
substantial for higher scv s. For higher loads, however, L and U tend to be far
apart, particularly for low scv s.

• In several cases, the lower bound L is even below the trivial lower bound ` = m. It
is readily checked that this effect is not ruled out in the construction of the lower
bound L.

• A disadvantage of relying on these bounds is that particularly L is in most cases
not known in closed-form. It therefore needs to be obtained by simulation, but
then there is no advantage of using this bound anymore: with comparable effort
we could have simulated the parallel queue as well.
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% scv m ES α(scv) U αU (scv) L αL(scv) BM-Spread

0.1 0.25 0.1069 0.1357 1.2690 0.1375 1.2861 0.1273 1.1908 7.55%

0.33 0.1074 0.1403 1.3070 0.1421 1.3227 0.1313 1.2220 7.68%

0.5 0.1083 0.1482 1.3676 0.1497 1.3819 0.1375 1.2693 8.23%
0.75 0.1097 0.1580 1.4401 0.1594 1.4531 0.1452 1.3230 9.03%

1 0.1111 0.1653 1.4875 0.1667 1.5003 0.1500 1.3501 10.10%

2 0.1167 0.1842 1.5792 0.1855 1.5902 0.1596 1.3681 14.06%

4 0.1278 0.2126 1.6634 0.2138 1.6730 0.1762 1.3787 17.67%

16 0.1944 0.3509 1.8048 0.3520 1.8105 0.2985 1.5350 15.26%
64 0.4611 0.8790 1.9062 0.8804 1.9093 0.8215 1.7815 6.70%

256 1.5278 2.9833 1.9527 2.9862 1.9546 2.9247 1.9143 2.06%

% scv m ES α(scv) U αU (scv) L αL(scv) BM-Spread

0.9 0.25 5.9600 7.4225 1.2449 8.7203 1.4625 2.3497 0.3941 85.83%

0.33 6.3000 8.0219 1.2733 9.2529 1.4687 2.8561 0.4534 79.74%

0.5 6.9750 9.1751 1.3154 10.3173 1.4792 3.8797 0.5562 70.16%
0.75 7.9875 10.8374 1.3568 11.9037 1.4903 5.4102 0.6773 59.92%

1 9.0000 12.4875 1.3875 13.5000 1.5000 6.9912* 0.7768 52.12%

2 13.050 19.0620 1.4607 19.9568 1.5293 13.4624 1.0316 34.07%

4 21.150 32.0373 1.5148 32.8541 1.5534 26.3568 1.2462 20.28%
16 69.750 109.3820 1.5682 110.1838 1.5797 103.6263 1.4857 6.00%

64 264.15 418.1811 1.5831 419.4601 1.5880 412.2813 1.5608 1.72%

256 1041.75 1650.0856 1.5840 1656.5520 1.5902 1636.7130 1.5711 1.20%

Table 1. Simulated sojourn times and the corresponding BM bounds.
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Figure 2. Graph with BM bounds, simulated values and approximated values
for load % = 0.1.

In view of the tables presented above and illustrated in Figures 2 and 3, there is a clear
need for more accurate bounds and/or approximations. The approach followed here is
to identify, for any given value of the load %, an elementary function ϕ(·), such that
ϕ(scv) accurately approximates α(scv). In this approach we parameterize the service-
time distribution by its mean and scv. The underlying idea is that in a single M/G/1
queueing system the mean sojourn time solely depends on its first two moments, as it can
be expressed as a function of its mean service time and coefficient of variation through the
Pollaczek-Khintchine formula, see for example [9, Eq. (2.55)]. We expect the mean sojourn
time of the parallel queueing system to exhibit (by approximation) similar characteristics,
thus justifying the approach followed. Having a suitable function ϕ(·) at our disposal, we
can estimate ES by m ·ϕ(scv). Note that m, i.e., the mean sojourn time of a single queue
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Figure 3. Graph with BM bounds, simulated values and approximated values
for load % = 0.9.

is known explicitly. The function ϕ(·) shown in Figures 2 and 3 refers to the one that will
be proposed in the left panel of Table 4.

(Approximate) insensitivity. In the approach described above, we assume that ES is
(approximately) insensitive, in that it depends on the first two moments of the service-time
distribution only. We verified this property by comparing ES for two different distributions
of the service times with identical first and second moments. Table 2 gives a representative
illustration of our findings. There we compare the ratio α(scv) of the phase-type service-
time distribution with the α(scv) of the Weibull service-time distribution.

% scv m ES α(scv) ESW α(scv)W

0.1 0.25 0.1069 0.1357 1.2690 0.1363 1.2749
0.33 0.1074 0.1403 1.3070 0.1411 1.3135

0.5 0.1083 0.1482 1.3676 0.1488 1.3737

0.75 0.1097 0.1580 1.4401 0.1579 1.4392
1 0.1111 0.1653 1.4875 0.1653 1.4875

2 0.1167 0.1842 1.5792 0.1871 1.6037
4 0.1278 0.2126 1.6634 0.2184 1.7092

16 0.1944 0.3509 1.8048 0.3627 1.8651

64 0.4611 0.8790 1.9062 0.8965 1.9448

256 1.5278 2.9833 1.9527 3.0227 1.9727

% scv m ES α(scv) ESW α(scv)W

0.9 0.25 5.96 7.4225 1.2449 7.4117 1.2431

0.33 6.30 8.0219 1.2733 8.0110 1.2715

0.5 6.98 9.1751 1.3154 9.1639 1.3138

0.75 7.99 10.8374 1.3568 10.8412 1.3572

1 9.00 12.4875 1.3875 12.4848 1.3874
2 13.05 19.0620 1.4607 18.9871 1.4549

4 21.15 32.0373 1.5148 31.9305 1.5100

16 69.75 109.3820 1.5682 110.4690 1.5836

64 264.15 418.1811 1.5831 430.3272 1.6318
256 1041.75 1650.0856 1.5840 1729.6191 1.6684

Table 2. Simulated sojourn times and the corresponding α(scv) s for
phase-type and Weibull service-time distributions.
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The table should be read as follows. The upper part is on % = 0.1, while the lower part
relates to % = 0.9. Then we provide, for a range of values of scv, the mean sojourn time ES
and the corresponding α(scv) for the service times having a phase-type distribution, as well
as their counterparts ESW and the corresponding α(scv)W in case of Weibullian service
times. The main conclusions from our experiments are the following. For % = 0.1 and
scv < 1 we observe that ES and α(scv) are nearly equal to their Weibullian counterparts;
for scv > 1 the difference is modest, that is, up to 3.5%. For % = 0.9 the fit is accurate
up to scv = 4, whereas for scv > 4 the difference is modest, that, is about 5%. The
results of other numerical experiments give the same impression. These findings justify
our two-moment approach.
Now that we have justified the use of phase-type distributions, we proceed as follows.
To estimate α(scv) = ES/m for various values of scv and %, we performed simulation
experiments, leading to the results shown in Table 3. The table indicates that a rule of
thumb of the type ES ≈ 3

2m (that is α ≈ 3
2) is a conservative, yet accurate approximation

for a broad range of parameter values. We now try to identify a function ϕ(·) with a better
fit.

scv log(scv) % = 0.1 % = 0.3 % = 0.5 % = 0.7 % = 0.9

0.25 -1.3863 1.2690 1.2603 1.2523 1.2462 1.2449

0.33 -1.0987 1.3070 1.2961 1.2858 1.2773 1.2733
0.50 -0.6931 1.3676 1.3526 1.3381 1.3251 1.3154

0.75 -0.2877 1.4401 1.4170 1.3948 1.3650 1.3568
1.00 0.0000 1.4874 1.4626 1.4374 1.4124 1.3875

2.00 0.6931 1.5792 1.5662 1.5447 1.5114 1.4607

4.00 1.3863 1.6634 1.6658 1.6423 1.5942 1.5148
16.0 2.7726 1.8048 1.8155 1.7685 1.6886 1.5682

64.0 4.1589 1.9062 1.8828 1.8143 1.7175 1.5831
256 5.5452 1.9527 1.8999 1.8207 1.7217 1.5840

Table 3. Simulated values of α(scv) of several scv s and several loads %.

In Table 3 we study the simulated ratios as function of the service-time distribution’s scv.
We approximate the ratio α(scv) with a polynomial of log(scv) of degree two, based on
10 datapoints. The coefficients are estimated by applying ordinary least squares. As can
be seen in the left part of Table 4 and from Figure 2 and 3, the polynomial regression fits
extremely well, with an R2 of nearly 100%. The table gives fitted curves for % = 0.1+0.2·i,
with i = 0, . . . , 4, but our experiments indicate that for other values values of % nice fits
can be achieved by interpolating estimates for α(scv) linearly.

Load % ϕ(scv) R2 ϕ(scv) R2

% = 0.1 1.484 + 0.1461 log(scv)− 0.01099 log(scv)2 100.00% 1.463 + 0.1031 log(scv) 96.20%

% = 0.3 1.476 + 0.1527 log(scv)− 0.01344 log(scv)2 99.70% 1.451 + 0.1001 log(scv) 93.80%

% = 0.5 1.456 + 0.1448 log(scv)− 0.01406 log(scv)2 99.50% 1.430 + 0.0898 log(scv) 91.70%

% = 0.7 1.427 + 0.1266 log(scv)− 0.01323 log(scv)2 99.40% 1.403 + 0.07486 log(scv) 89.70%

% = 0.9 1.392 + 0.0950 log(scv)− 0.01109 log(scv)2 99.60% 1.372 + 0.05158 log(scv) 85.80%

Table 4. Fitted ratios α(scv) for various loads % based on least squares estimation.

We could also try to see how good a fit can be obtained by an even simpler function, for
instance by approximating α(scv) by a polynomial of log(scv) of degree one. The results
are reported in the rightmost columns of Table 4. The model still shows a reasonable fit,
but one observes that the R2 for this polynomial regression analysis is decreasing in the
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load %. Especially for larger values of % the polynomial of degree one fits considerably
worse than the polynomial of degree two.
We conclude this section with a few words on the approximation approach proposed by
Varma and Makowski [10]. It is first noted that their approach gives expressions that are in
line with limiting results for heavy and light loads. Their idea is to interpolate these heavy-
and light-load results to expressions for arbitrary load. The results show a good fit, and
the procedures are of modest numerical complexity. In our paper, we took an alternative
approach, relying on (i) a two-moment parameterization of the service-times (and replacing
them by their phase-type counterpart), (ii) an (empirically derived) approximation with a
nearly perfect fit. Our approach requires negligible computational effort, and can therefore
be used as an easily applicable engineering heuristic.

4. The heterogeneous case

Having dealt with the case of homogeneous servers in the previous section, we now focus on
the situation that the servers are heterogeneous. We restrict ourselves to the case that the
service times B1 and B2 stem from the same distribution, but with different parameters, as
in the setting of Section 2. First two basic observations are in place: (i) in order to obtain
a conservative estimate of ES, we can replace the service-time distribution of the most
lightly loaded queue by the service-time distribution of the other queue, so that we obtain
a homogeneous system to which the theory developed in the previous section applies; (ii) if
one of the queues has a substantially higher load than the other one, one expects that the
mean sojourn time of the queue with the heaviest load yields a good approximation for
ES.
Balsamo et al. [2] describe a numerical scheme for finding accurate upper and lower bounds
for the situation of heterogeneous exponentially distributed service times. In this section we
further explore this issue by studying the impact of heterogeneity on the mean sojourn time
for a broader set of service-time distributions. As in previous section we will use the typical
phase-type service distributions, namely Erlang-2, exponential, and hyperexponential. As
before, we analyze the ratio α(scv) = ES/m, where m is now the mean sojourn time of
the bottleneck queue (that is, the queue with the heaviest load).

M/M/1 case. In [2] the numerical experiments are such that the load %1 of queue 1 (which
is the ‘bottleneck’) is in the interval (0.1, 0.9), whereas the load of queue 2 is %2 = b%1,
with the ‘heterogeneity factor’ b = { 1

3 ,
1
2 ,

2
3}. In these experiments the bounds presented in

[2] are rather tight, but the reader should bear in mind that the impact of heterogeneity is
modest anyway for b ∈ ( 1

3 ,
2
3) and a relatively high load in the bottleneck queue (so that,

for these situations, ES can be approximated by the mean sojourn time of queue 1). The
most substantial impact occurs in the range of ratios b ∈ (0.7, 1), as will be shown in Table
5.
Table 5 gives for % = 0.1 · i, with i = 1, . . . , 9, simulated values of α(scv) for various b.
As seen from the table, α(scv) increases in b, as could be expected. We also observe that
α(scv) ↓ 1 if b ↓ 0, since the sojourn times in the parallel queueing system then mimic
those in the bottleneck queue.
We emphasize that Table 5 shows that in a considerable part of the parameter space
α(scv) can be accurately approximated by 1. It is observed that the mean sojourn time
of the bottleneck queue plus an increment of about 10% can be a good (conservative)
approximation for all levels of heterogeneity b up to, say, 0.4.
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%1 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1.0

0.1 1.0074 1.0278 1.0590 1.0993 1.1475 1.2033 1.2656 1.3340 1.4081 1.4875

0.2 1.0060 1.0227 1.0490 1.0842 1.1281 1.1805 1.2414 1.3107 1.3885 1.4750

0.3 1.0047 1.0178 1.0395 1.0695 1.1084 1.1567 1.2153 1.2851 1.3672 1.4626

0.4 1.0034 1.0135 1.0305 1.0553 1.0885 1.1320 1.1872 1.2566 1.3432 1.4499
0.5 1.0024 1.0098 1.0225 1.0417 1.0688 1.1061 1.1568 1.2246 1.3156 1.4374

0.6 1.0015 1.0064 1.0153 1.0290 1.0495 1.0798 1.1236 1.1877 1.2824 1.4250

0.7 1.0007 1.0035 1.0090 1.0177 1.0317 1.0534 1.0880 1.1445 1.2405 1.4124

0.8 1.0003 1.0015 1.0043 1.0088 1.0160 1.0285 1.0512 1.0938 1.1828 1.3996

0.9 1.0000 1.0001 1.0009 1.0023 1.0044 1.0087 1.0174 1.0374 1.0969 1.3875

Table 5. Simulated values of α(scv) in case of exponential service-time
distribution for various levels of service loads heterogeneity (of type %2 =
b%1).

When increasing b from, say, 0.7 to 1.0 we see that the α(scv) sharply increases, par-
ticularly for the (perhaps more relevant) heavier loads. For these situations the value for
b = 1.0, which can be determined as described in Section 3, provides us with a conservative
estimate.

M/E2/1 case. In a similar way the impact of heterogeneity on values of α(scv) is presented
in case of an E2 service-time distribution. In Table 6 we observe the same behavior
of α(scv) for the various loads and levels of heterogeneity. The impact in the range
b ∈ (0.7, 1) for the relatively high loads is less severe compared to the M/M/1 case.

%1 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1.0

0.1 1.0013 1.0086 1.0243 1.0490 1.0826 1.1247 1.1748 1.2323 1.2967 1.3676

0.2 1.0010 1.0072 1.0204 1.0419 1.0721 1.1113 1.1596 1.2172 1.2840 1.3601
0.3 1.0008 1.0057 1.0166 1.0348 1.0613 1.0970 1.1429 1.2002 1.2697 1.3526

0.4 1.0006 1.0044 1.0130 1.0278 1.0502 1.0817 1.1244 1.1806 1.2531 1.3453

0.5 1.0005 1.0032 1.0096 1.0211 1.0390 1.0656 1.1038 1.1578 1.2333 1.3381
0.6 1.0003 1.0021 1.0065 1.0146 1.0280 1.0489 1.0812 1.1312 1.2089 1.3313

0.7 1.0001 1.0013 1.0039 1.0089 1.0177 1.0324 1.0569 1.0996 1.1769 1.3251
0.8 1.0001 1.0004 1.0018 1.0044 1.0089 1.0170 1.0323 1.0627 1.1322 1.3197

0.9 1.0000 1.0001 1.0004 1.0014 1.0023 1.0051 1.0106 1.0238 1.0665 1.3154

Table 6. Simulated values of α(scv) in case of E2 service-time distribu-
tion for various levels of service loads heterogeneity (of type %2 = b%1).

M/H2/1 case. Finally, the impact of heterogeneity on values of α(scv) is presented in case
of an H2 service-time distribution with scv = 4. In Table 7 we observe a similar behavior
of α(scv), for the various service loads and levels of heterogeneity.

From the experiments above a few, more general, conclusions can be drawn:

• Restricting ourselves to cases with scv ≤ 4 (which is quite realistic in most appli-
cations), a rule of thumb of the type 1.10 ·m always yields a conservative estimate
for the system’s mean sojourn time ES for heterogeneity level b ∈ (0.1, 0.7) and
loads %1 ∈ [0.8, 0.9].

• Similarly, for the same range of scv s, but b smaller than 0.3 and all %1 ≤ 0.9, the
same statement applies.
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%1 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1.0

0.1 1.0178 1.0551 1.1042 1.1621 1.2284 1.3014 1.3821 1.4691 1.5630 1.6634

0.2 1.0131 1.0426 1.0840 1.1354 1.1974 1.2698 1.3522 1.4458 1.5510 1.6682

0.3 1.0097 1.0325 1.0664 1.1112 1.1679 1.2369 1.3196 1.4172 1.5320 1.6658

0.4 1.0065 1.0235 1.0509 1.0885 1.1387 1.2026 1.2832 1.3831 1.5058 1.6569
0.5 1.0047 1.0164 1.0374 1.0678 1.1100 1.1671 1.2427 1.3419 1.4720 1.6423

0.6 1.0030 1.0108 1.0255 1.0481 1.0817 1.1296 1.1970 1.2923 1.4275 1.6215

0.7 1.0018 1.0065 1.0155 1.0308 1.0539 1.0907 1.1461 1.2315 1.3674 1.5942

0.8 1.0008 1.0029 1.0073 1.0152 1.0292 1.0515 1.0900 1.1567 1.2839 1.5592

0.9 1.0000 1.0004 1.0006 1.0041 1.0087 1.0171 1.0339 1.0680 1.1581 1.5148

Table 7. Simulated ratios α(scv) in case of H2 service-time distribution
for various levels of service loads heterogeneity (of type %2 = b%1).

• In all other situations, replacing the service time distribution of the most lightly
loaded queue by the service time distribution of the other queue yields a conser-
vative estimate; for the resulting homogeneous system the theory developed in the
previous section applies.

5. Concluding remarks

The parallel queue is a well known generic building block of more complex service systems
in industry, services, and healthcare. The fact that these systems have proven to be highly
complex, even in the very simple case of just two servers, is undisputably true. This makes
the analysis challenging, and explains the need for simple heuristics.
This paper first discussed the bounds suggested by Baccelli and Makowski [1]. Then these
bounds were numerically assessed for the homogeneous parallel queue (i.e., the service
times at both queues have the same distribution). As they performed poorly, we developed
an alternative approach: we identified a suitable function of the first two moments of the
service-time distribution to estimate the mean sojourn time of the homogeneous parallel
queue. Finally, we analyzed the heterogeneous parallel queue.
In more detail, the conclusions are as follows:

• A trivial lower on the parallel queue’s mean sojourn time is evidently the largest
of the individual mean sojourn times, ` := max{ES1,ES2}, and an upper bound is
the sum of the two mean sojourn times, u := ES1 + ES2.

• Using standard queueing-theoretic methods, we derive explicit expressions for the
upper bound developed in [1]. We do so for various phase-type service-time distri-
butions. The lower bound suggested in [1], however, can only be evaluated through
simulation for almost all service-time distributions. We stress that when doing so
there is no advantage of using this bound anymore: with comparable effort we
could have simulated the parallel queue itself as well.

• For a substantial part of the parameter space both bounds from [1] are highly
inaccurate. In some cases their lower bound is even outperformed by the trivial
lower bound.

• In the homogeneous case the ratio of the mean sojourn time of the parallel queue,
that is ES, and the mean sojourn time of a single queue, that is m, is depends
on the distribution of the service times mainly through the first two moments, or
equivalently, the load %, and the scv of the service times. This legitimates our
approach to express ES as a function of % and scv. The resulting function has a
nearly perfect fit.
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• In case of two heterogeneous queues in the parallel queueing system, we identified
situations in which ES is close to the mean sojourn time of the queue with the
highest load (the ‘bottleneck’). In all other situations, we showed how to con-
servatively approximate ES by the mean sojourn time of a suitable homogeneous
parallel queue, to which the theory mentioned above applies (see previous bullet).

Possible directions for future research include:

• To what extent is the mean sojourn time of the parallel queueing system insensitive
with respect to higher moments of the service-time distribution?

• The study on the effect of heterogeneity, see Section 4, can be extended, for in-
stance by considering scenarios in which the service times stem from two entirely
different distributions (e.g., exponentially distributed service times in queue 1, and
E2 service times in queue 2).
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