
INFORMATION AND C'OMPllTATION 121. 214--233 (1995)

Forward and Backward Simulations

I. U ntimed Systems*

NANCY LYNCH

Mossachusem Institute of Technology, laboratory for Computer Science, Cambridge, Massachusetts 02139
E-mail: lynch(q theory.lcs.mit.edu

AND

FRITS V AANDRAGER

Cemrum voor Wiskwzde en lnformatica, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands, and
University of Amsterdam, Programming Research Group, Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

E-mail: fritsv (J~cwi.nl

A unified, comprehensive presentation of simulation techniques for
verification of concurrent systems is given, in terms of a simple untimed
automaton model. In particular, (1) refinements, (2) forward and
backward simulations, (3) hybrid forward-backward and backward
forward simulations, and (4) history and prophecy relations are
defined. History and prophecy relations are abstract versions of the
history and prophecy variables of Abadi and Lamport, as well as the
auxiliary variables of Owicki and Gries. Relationships between the
different types of simulations, as well as soundness and completeness
results, are stated and proved. Finally, it is shown how invariants can be
incorporated into all the simulations. Even though many results are
presented here for the first time, this paper can also be read as a survey
(in a simple setting) of the research literature on simulation techniques.
The development for untimed automata is designed to support a similar
development for timed automata. Part II of this paper will show how the
results of this paper can be carried over to the setting of timed
automata. ,c 1995 Academic Press, Inc.

CONTENTS

1. Introduction
2. Untimed automata and their behaviors. 2.l. Automata.

2.2. Restricted kinds of automata. 2.3. Trace properties.
3. Basic simulations. 3.1. Refinements. 3.2. Forward simulations.

3.3. Backward simulations. 3.4. Combined forward and
backward simulations.

4. Hybrid simulations. 4.1. Forward-backward simulations.
4.2. Backward-forward simulations.

*This work was supported by ONR Contracts N00014-85-K-0168 and
N000!4-91-J-1988, by NSF Grants CCR-8915206 and CCR-9225124, by
DARPA Contracts N000!4-89-J-1988 and N00014-92-J-4033, and by
ONR-AFOSR Contract F49620-94-1-0199. Part of this work took place
while the second author was employed by the Ecole des Mines, CMA,
Sophia Antipolis, France. The second author also received partial support
from ESPRIT Basic Research Action 7166, CONCUR2. An earlier version
of this paper (Parts I and II) appeared as [36].

0890-5401/95 SI~.oo

Copyright ,£, 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

5. Auxiliary variable constructions. 5.1. History relations.
5.2. Prophecy relations. 5.3. Completeness of history and
prophecy relations.

6. Including invariants.
7. Conclusions and related work.

Appendix A. Mathematical preliminaries. A. I. Sequences.
A.2. Sets, relations, and functions. A.3. A basic graph lemma.
Appendix B. Glossary of conventions.

1. INTRODUCTION

Much of the current work in verification of concurrent
systems is based on the use of simulation techniques. A
simulation proof involves establishing a correspondence
known as a simulation between the states of two systems, A
and B, where one (A) is regarded as an implementation and
the other (B) is regarded as a specification. The corre
spondence is generally defined in terms of individual states
and transitions, rather than in terms of entire executions.
The existence of a simulation is used to show that any
behavior that can be exhibited by A can also be exhibited by
B; thus, if B solves some problem of interest, so does A.
Typically, system A contains more details than B, or is an
optimized or distributed version of B. Simulation techni
ques work for timing-based as well as untimed systems.

The research literature contains a large number of
different types of simulations. Although all have the same
general goals, there are many variations, some significant
and some not, in their definitions and properties. An
obstacle to the use of simulations in practice is that there has
been, so far, no unified, comprehensive presentation of
simulation methods. Our goal is to provide such a presenta
tion: to identify the most important types of simulations, to
express them in a common framework, to clarify the rela
tionships between them, and to identify those properties

214

FORWARD AND BACKWARD SIMULATIONS. I 215

that are significant for verification purposes. We present our
results for the untimed setting in this paper, and extend
them to the timed setting in Part II [38].

Specifically, in this paper, we present forward and back
ward simulation techniques for proving trace inclusion
relationships between concurrent systems. We describe all
the simulation techniques in terms of a simple and general
untimed automaton model that includes internal actions.
Among the kinds of simulations we define are refinements,
forward simulations, backward simulations, and hybrid ver
sions that we call forward-backward and backward-forward
simulations. We also define history relations and prophecy
relations, which are abstract versions of the history and
prophecy variables, respectively, of Abadi and Lamport
[1]. We prove implication relationships among the different
types of simulations, as well as soundness and completeness
theorems. Finally, we show how invariants can be incor
porated into all of the simulations.

The simplest simulations we consider are refinements.
Refinements are similar to homomorphisms between
automata in the sense of classical automata theory [10],
and to the data refinements that are used in program
development to replace abstract mathematical data struc
tures by concrete structures that are more easily imple
mented [40, 15, 30, 18]. Lamport [28] advocates the use of
refinements to prove that one concurrent program module
implements another. A refinement from an automaton A to
another automaton Bis a function from states of A to states
of B such that (a) the image of every start state of A is a start
state of B, and (b) every step of A has a corresponding
sequence of steps of B that begins and ends with the images
of the respective beginning and ending states of the given
step, and that has the same external actions. This notion of
refinement implies that the traces of A are also traces of B.
We give soundness and partial completeness results for
refinements.

We next consider forward simulations and backward
simulations, generalizations of refinements that allow a set
of states of B to correspond to a single state of A. Forward
simulations are similar to the simulations of [44, 19, 21],
the possibilities mappings of [33, 35], the downward
simulations of [17, 23, 13], the forward simulations of
[22], and the history measures of [25]. The corre
spondence conditions (a) and (b) for refinements are
generalized so that (a) every start state of A has some image
that is a start state of B, and (b) every step of A and every
state of B corresponding to the beginning state of the step
yield a corresponding sequence of steps of Bending with an
image of the ending state of the given step. Again, we give
soundness and partial completeness results.

Backward simulations are similar to the upward simula
tions of [17, 23, 13], the prophecy mappings of [39], the
backwards simulations of [21], and the prophecy measures
of [25]. In the case of a backward simulation, conditions

(a) and (b) for refinements are generalized so that (a) all
images of every start state of A are start states of B, and (b)
every step of A and every state of B corresponding to the
ending state of the step yield a corresponding sequence of
steps of B beginning with an image of the beginning state of
the given step. Again, we give soundness and partial
completeness results.

Next, we consider two combinations of forward and
backward simulations, which we callforward-backward and
backward-forward simulations, respectively. These are
essentially compositions of one forward and one backward

simulation, in the two possible orders. The definition of a
forward-backward simulation was inspired by the work of
Klarlund and Schneider [24, 25] for the case without inter
nal actions. Forward-backward simulations are also similar
to the subset-simulations of [22] and the simple failure
simulations of [9]. Our new notion of a backward-forward
simulation is suggested by symmetry with forward-back
ward simulations. We give soundness and completeness
results; while some of the results for backward-forward
simulations are symmetric with those for forward-back
ward simulations, others (notably certain completeness
results) are different.

The final simulations we consider are history relations and
prophecy relations. These are new and abstract versions of
the history and prophecy variables of Abadi and Lamport
[1]. The basic concept of history variables goes back at
least as far as Lucas [32]. Owicki and Gries [43] defined
history variables (which they called auxiliary variables) and
used them in verifying parallel programs. Subsequently,
Abadi and Lamport [1] gave a more abstract, language
independent definition of history variables, and also intro·
duced the dual concept of a prophecy variable. Severa
authors observed that history and prophecy variables are
closely related to forward and backward simulations,
respectively, [39, 22, 25]. Inspired by this, we define in this
paper the even more abstract notions of history and
prophecy relations, and show their equivalence with the
history, respectively prophecy, variables of [1]. According
to our definitions, a history relation is simply a forward
simulation whose inverse is a refinement, while a prophecy
relation is simply a backward simulation whose inverse is a
refinement. We prove some simple new characterizations;
e.g., a forward simulation from A to B is equivalent to the
combination of a history relation from A to some C and a
refinement from C to B, and analogously for a backward
simulation and a prophecy relation. We also give a simple
new proof of a completeness result of Abadi and Lamport.

Finally, we address the issue of integrating invariants into
simulation proofs. Our main development is carried out
without mention of invariants, for the sake of simplicity.
However, in actual verification examples using simulations,
it is almost always the case that a preliminary collection of
invariants is proved, then used where needed in proving

216 LYNCH AND VAANDRAGER

the step correspondence. We state results showing how
invariants can be used in conjunction with all the types of
simulations.

We have crafted the development in this paper to be com
patible with a similar development for timed systems; this
work appears in Part II [38]. There, we define a new type
of automaton called a timed automaton, and use it to define
timed versions of all the simulations in this paper. Happily,
the results for the timed setting turn out to be analogous to
those for the untimed setting. In nearly all cases, the results
for the timed setting are derived from those for the untimed
setting, while in the few remaining cases, new proofs
analogous to those in this paper are presented.

The usefulness of refinement mappings, history variables,
and forward simulations in proving correctness has been
well demonstrated. Abstraction mappings, which are essen
tially refinement mappings, comprise a basic proof method
for implementations of abstract data types [30, 18]. They
are also widely used in the verification of concurrent and
reactive systems. Some typical examples can be found in
[28, 14]. There is also a long tradition of using history
variables in program verification [32, 6, 43, 45]. Often
history variables are used together with refinements, see for
instance [27]. Forward simulations combine refinement
mappings with history variables. Typical examples of their
use appear in [19, 31, 34, 29, 42]. Bisimulations, which
combine in a single relation forward simulations in two
directions, play a vital role in the theory of process algebras
[44, 41, 4]. Backward simulations have so far been much
less widely used. Abadi and Lamport [1] demonstrate the
usefulness of prophecy variables (and hence backward
simulations), with some simple examples, while [29]
contains a somewhat more practical example. There has not
been much work on applying the hybrid forward and
backward methods.

We consider the main contribution of this paper to be the
unified presentation, in terms of a simple and general
automaton model, of a wide range of important simulation
techniques, together with their basic soundness and com
pleteness properties. Some features of our presentation are:
(a) It parallels and supports a similar development for
timed systems. (b) We present the simulations in a "bottom
up" order, starting with simple ones such as forward and
backward simulations and building up to more complicated
simulations such as forward-backward simulations and
history relations. The proofs of many of the results for
complicated simulations rest on the results for the simpler
simulations. (c) We separate out the treatment of invariants.
We make no mention of invariants (or even of state
reachability) in our main development, but only incor
porate them at the end. The results involving invariants can
be proved using the results without invariants.

In addition, there are several new definitions and
theorems, notably, (a) the abstract definitions of history

and prophecy relations, and the accompanying charac
terization and completeness theorems, and (b) the defini
tion and properties of backward-forward simulations.

The rest of this paper is organized as follows. Section 2
contains basic definitions and results for untimed automata.
Section 3 contains the development of the basic simulation
techniques: refinements, forward simulations and backward
simulations. Section 4 contains the development of the
hybrid techniques: forward-backward and backward
forward simulations. Section 5 contains the results on
history and prophecy relations. Section 6 shows how
invariants can be included in the simulations. Section 7
contains some conclusions and a discussion of related
work. Finally, Appendix A contains some mathematical
preliminaries, and Appendix B gives a glossary of conven
tions followed in the paper.

2. UNTIMED AUTOMATA AND THEIR BEHAVIORS

In this section, we present the basic definitions and results
for untimed automata. We also define certain restricted
kinds of automata that are useful in our proofs, and define
various sets of traces that automata can generate.

2.1. Automata

We begin with the definition of an (untimed) automaton.
An automaton A consists of:

• a set states(A) of states,

• a nonempty set start(A) s;; states(A) of start states,

• a set acts(A) of actions that includes a special element
r, and

• a set steps(A) ~states(A) x acts(A) x states(A) of steps.

All these components should be completely self-explana
tory.

We let s, s', u, u', ... range over states, and a, ... over
actions. We let ext(A), the external actions, denote
acts(A)- { r}. We call r the internal action. The term event
refers to an occurrence of an action in a sequence. If y is a
sequence of actions then y is the sequence obtained by
deleting all r events from y. We writes'--!!..+ As, or just s'--!!..+ s
if A is clear from the context, as a shorthand for (s', a, s) E

steps(A). In this paper (Part I), A, B, ... range over
automata.

An execution fragment of A is a finite or infinite alter
nating sequence, s0 a 1 s1 a2s2 • • ·, of states and actions of A,
beginning with a state, and if it is finite also ending with a
state, such that for all i, S; a;+i s;+ 1 . We denote by frag*(A),
frag"'(A), and frag(A) the sets of finite, infinite, and all
execution fragments of A, respectively. An execution of A is
an execution fragment that begins with a start state. We
denote by execs*(A), execsw(A), and execs(A) the sets of

FORWARD AND BACKWARD SIMULATIONS, I 217

finite, infinite, and all executions of A, respectively. A state
s of A is reachable ifs= last(r:x) for some finite execution r:x
of A.

Suppose r:x = s0 a1 s1 a1s2 · · · is an execution fragment of A.
Let y be the sequence consisting of the actions in a.:
y = a 1 a2 • • .• Then trace(r:x) is defined to be the sequence y. A
finite or infinite sequence fJ of external actions is a trace of
A if A has an execution r:x with fJ = trace(r:x). We write
traces*(A), traces<»(A), and traces(A) for the sets of finite,
infinite and all traces of A, respectively. These notions
induce three preorders (i.e., reflexive and transitive rela
tions). For A and B automata, we define A ~ •T B ~
traces*(A) £ traces*(B), A ~wT B ~ tracesw(A)s; tracesw(B),
and A ~TB ~ traces(A)£ traces(B). Recall that the kernel
of a preorder ~ is the equivalence = defined by x = y ~
xc:y Ayc:x. We denote by =·T• =wT• and =T the respec
tive kernels of the preorders ~ff' ~wT• and ~T·

Suppose A is an automaton, s' and s are states of A, and
fJ is a finite sequence over ext(A). We say that (s', [J, s) is a
move of A, and writes' b A s, or just s' b s when A is clear,
if A has a finite execution fragment r:x with first(rx)=s',
trace(rx) = fJ and last(rx) = s.

EXAMPLE 2.1. The automata A1 and A1 of Fig. 1
illustrate the difference between ~.T and ~T· Each has a
linear sequence of states. A 1 has a single start state, and a
step from each state to its right neighbor, while A2 has all
states as start states, and a step from each state to its left
neighbor. Every finite sequence of a's is a trace of each of A 1

and A 2 ; in addition, the sequence consisting of infinitely
many a's is a trace of A 1 but not of A 2 • Therefore,
A 1 =.TA 2 , A 2 ~TA 1 , andA 1 ~TA2 •

2.2. Restricted Kinds of Automata

Now we describe three restricted kinds of automata that
are useful in our proofs.

First, automaton A is deterministic if lstart(A)I = 1, and
for any states' and any finite sequence fJ over ext(A), there

is at most one state s such that s' b s. A deterministic
automaton is characterized uniquely by the properties that
lstart(A)I = 1, every r step is of the form (s, r, s) for some s,
and for all states s' and all actions a there is at most one
state s such that s' ~As.

Second, A has finite invisible nondeterminism (fin) if
start(A) is finite, and for any states' and any finite sequence

a a a j a j a j a j ...

~T

~T

FIG. 1. ,;;;.T versus ,;;;T.

/3 oler ext(A), there are only finitely many states s such that
S1 ==>AS.

Third, A is a forest if, for each state s of A. there is a
unique execution that leads to s. A forest is characterized
uniquely by the property that all states of A are reachable,
start states have no incoming steps and each of the other.
states has exactly one incoming step.

The relation after(A) consists of the pairs ([J, s) for which
there is a finite execution of A with trace fJ and last states:

after(A) ~ { {/J, s) I 3rx E execs*(A):

trace(rx) = fJ and last(r:x) = s}.

We also define past(A) to be the inverse of qfter(A),
past(A) ~ after(A) - 1; this relates a state s of A to the traces
of finite executions of A that lead to s.

LEMMA 2.2.

I. If A is deterministic then after(A) is a function from
traces*(A) to states(A).

2. If A has fin then after(A) is image-finite. 1

3. If A is a forest then past(A) is a function from
states(A) to traces*(A).

EXAMPLE 2.3. In Fig. 1, automaton A 1 is deterministic
(and so has fin), and is a forest. Automaton A2 has none of
these three properties.

2.3. Trace Properties

In this subsection, we define "trace properties," the
structures that are used as external behaviors for automata.
We also prove some basic properties of trace properties and
some lemmas relating trace properties to automata.

A trace property P is a pair (K, L), where K is a set and
L is a nonempty, prefix closed set of (finite or infinite)
sequences over K. We will refer to the constituents of. P
as sort(P) and traces(P), respectively. Also, we wnte
traces*(P) ~ K* n Land tracesw(P) ~ Kw n L. For P and
Q trace properties, we define P ~.T Q ~ traces*(P) £
traces*(Q), P ~wT Q ~ tracesw(P) s; tracesw(Q), and P ~ T

Q ~ traces(P) s; traces(Q). With ==·T• =wT• and =T· we
denote the kernels of the preorders ~.T, ~wT• and ~T•
respectively. A trace property P is limit-~losed. if an ~nfi
nite sequence is in traces(P) whenever all its fimte prefixes
are.

LEMMA 2.4. Suppose P and Qare trace properties with Q
limit-closed. Then P~.T Q~P~T Q.

The behavior of an automaton A, beh(A), is defined by
beh(A) ~ (ext(A), traces(A)).

1 See Appendix A for the definition of image-finite.

218 LYNCH AND VAANDRAGER

LEMMA 2.5.

1. beh(A) is a trace property.

2. If A has fin then beh(A) is limit-closed.

3. A ~.T B<=>beh(A) ~.T beh(B), A ~wT B<=>beh(A) ~wT
beh(B), and A ~TB<=> beh(A) ~T beh(B).

Proof It is easy to see that beh(A) is a trace property.
For Part 2, suppose A has fin. We use Lemma A.1 to

show that beh(A) is limit-closed. Suppose fJ is an infinite
sequence over ext(A) such that all finite prefixes of pare in
traces(A). Consider the digraph G whose nodes are pairs
(y, s) E afier(A), where y is a finite prefix of {J; there is an
edge from node (y', s') to node (y, s) exactly if y is of the
form y' a, where a E ext(A), and where s' ~A s. Then G
satisfies the hypotheses of Lemma A. l, which implies that
there is an infinite path in G starting at a root. This
corresponds directly to an execution a having trace(a)= {J.
Hence, fJ E traces(A).

Part 3 is immediate from the definitions. I
PROPOSITION 2.6. If B has fin then A ~ •T B <=>A ~TB.

Proof Immediate from Lemma 2.4 and Lemma 2.5. I
EXAMPLE 2.7. Recall that, in Fig. 1, A1 :::;;.T A2 but

A 1 ~TA 2 • This is consistent with Lemma 2.6, because A 2

does not have fin.

We close this section with the construction of the canoni
cal automaton 2 for a given trace property. For P a trace
property, the associated canonical automaton can(P) is the
structure A given by

• states(A)= traces*(P),

• start(A) ={A.},
• acts(A) =sort(P)u {r}, and

•for {J',[Jestates(A) and aEacts(A), fJ'~AfJ-=

a E ext(A) /\ {J' a = {J.

LEMMA 2.8.

1. can(P) is a deterministic forest.

2. beh(can(P)) = •T P.

3. beh(can(P))~TP.

4. If P is limit-closed then beh(can(P)) = T P.

Proof Parts 1 and 2 follow easily from the definitions.
Since can(P) is deterministic it certainly has fin, so it follows
by Lemma 2.5 that beh(can(P)) is limit-closed. Now 3 and
4 follow by combination of 2 and Lemma 2.4. I

LEMMA 2.9.

I. can(beh(A)) is a deterministic forest.

2. can(beh(A)) =•TA.

2 This notion is due to He Jifeng [13].

3. can(beh(A))~yA.

4. If A has fin then can(beh(A)) =TA.

Proof: By combining Lemma 2.5 and Lemma 2.8. I

3. BASIC SIMULATIONS

In this section, we develop the basic simulation techni
ques for untimed automata: refinements and forward and
backward simulations.

3.1. Refinements

The simplest type of simulation we consider is a refine
ment. A refinement from A to Bis a function r from states of
A to states of B that satisfies the following two conditions:

I. Ifs E start(A) then r(s) E start(B).

2. Ifs' ~As then r(s') b 8 r(s).

We write A ~RB if there exists a refinement from A to B.
This notion is similar to that of a homomorphism in

classical automata theory; see for instance Ginzberg [10].
Besides our additional treatment of internal actions, a dif
ference between the two notions is that the classical notion
involves a mapping between the action sets of the automata,
whereas our refinements do not.

EXAMPLE 3.1. Figure 2 presents some examples of
automata that are and are not related by ~R· Automata A 3

and A 4 have the same traces, A 3 ::::;R A 4 and A 4 ~R A 3 .

Likewise, automata A5 and A6 have the same traces,
A 5 ~ R A 6 and A 6 ~ R A 5 .

The following technical lemma is a straightforward
consequence of the definition of a refinement.

LEMMA 3.2. Supp_ose r is a refinement from A to B and
s' bA s. Then r(s') b 8 r(s).

PROPOSITION 3.3. ~R is a preorder (i.e., is transitive and
reflexive).

Proof: The identity function id(states(A)) is a refine
ment from A to itself. This implies that ~ R is reflexive.
Using Lemma 3.2, transitivity follows from the observation
that if r is a refinement from A to B and r' is a refinement
from B to C, then r' a r3 is a refinement from A to C. I

The important property of refinements for verification is
that they are sound for the trace inclusion preorder.

THEOREM 3.4 (Soundness of Refinements). A ~ R B =>

A~TB.

Proof: Suppose A ~RB. Let r be a refinement from A to
B, and let e be a function that maps each move (s', [J, s) of
B to a finite execution fragment of B from s' to s with trace
fJ. Suppose fJ E traces(A). Then there exists an execution

3 See Appendix A for the definition of the composition operator.

FORWARD AND BACKWARD SIMULATIONS, I 219

:;:T (} l·
:;:T A: a a'

~R ~R

a :lR :lR

A3 A4 As As

FIG. 2. Refinements.

cx. = soa1s1 a 2s2 · · · of A with p = trace(cx.). By the first condi
tion in the definition of a refinement, r(s0) is a start state of --B, and by the second condition, r(s;) ~8 r(s;+il for
all i. For i~O, define a;=e((r(s;), C. r(s;+il)). Next
define sequence cx.' to be the (infinitary) concatenation
rxo tail(cx. 1) tail(cx.2) · · · . By construction, cx.' is an execution of
B with trace(cx.') = trace(cx.) = p E traces(B). I

Refinements alone are not complete for ~Tor :::;.T· We
do have a (very) partial completeness result, however,
which slightly generalizes a similar result of [25] in that it
also allows for r-steps in the A automaton.

THEOREM 3.5 (Partial Completeness of Refinements).
Suppose A is a forest, B is deterministic, and A ~•TB. Then
A~RB.

Proof The relation r ~ after(B)opast(A) is a refine
ment from A to B. I

3.2. Forward Simulations

A forward simulation from A to B is a relation f over
states(A) and states(B) that satisfies:

1. Ifs E start(A) thenf[s] n start(B) # 0.
2. If s' -3!..+A s and u' Ef[s'], then there exists a state

uEf[s] such that u' b 0 u.

We write A ~F B ifthere exists a forward simulation from A
to B.

EXAMPLE 3.6. Let A 3 , A4 , A 5 , A 6 be as in Fig. 2. Then
A4 ~F A3 and A 6 ~F A 5 .

PROPOSITION 3.7. A ~R B=>A ~F B.

Proof Any refinement relation is a forward simula
tion. I

The following lemma is the analogue of Lemma 3.2 for
forward simulations.

LEMMA 3.8. Suppose f is a forward simulation from A to
Bands' b A s. If u' Ef[s'], then there exists a state u Ef[s]
such that u' b 8 u.

PROPOSITION 3.9. :::;;F is a preorder.

Proof For reflexivity, observe that the identity function
id(states(A)) is a forward simulation from A to itself. For
transitivity, use Lemma 3.8 to show that if f and f' are
forward simulations from A to B and from B to C, respec
tively,f' 0 fis a forward simulation from A to c. I

THEOREM 3.10 (Soundness of Forward Simulations [35,
20, 47]). A ::;;;F B=>A ::;;;TB.

Proof Versions of this proof appear in the cited papers.
The proof is similar to that of Theorem 3.4. I

Also, the following result is well known and variants of it
have appeared in many papers (for instance, in [19, 47]).

THEOREM 3.11 (Partial Completeness of Forward
Simulations). Suppose B is deterministic and A ~ *T B. Then

A~FB.

Proof The relation f ~ after(B) a past(A) is a forward
simulation from A to B. I

The following Proposition 3.12 is mainly of technical
interest; in particular, it is the only one of our results for
which we have not been able to prove an analogue in the
timed case. It might also have some implications for verifica
tion: if one guesses that a relation! is a forward simulation
from a forest A to an automaton B, then one might try to
restrict f to a refinement r. Since such a refinement must
exist (if f is in fact a forward simulation) and since
refinements are usually easier to verify than forward
simulations, this may lead to a simpler proof.

PROPOSITION 3.12. Suppose A is a forest and A ::;:;; F B.
Then A ~RB.

Proof Let f be a forward simulation from A to B. We
construct a choice function r for f, and prove that r is a
refinement from A to B.

For n ~ 0, let Layer n be the set of states s of A for which the
(unique) execution leading to it contains n actions. Then the
sets Layer n (n ~ 0) partition the set states(A) and Layer0 =
start(A). We define functions r n: Layer,,~ states(B) in due
tively such that r,.(s) Ef[s]. By Condition l in the definitio
ofa forward simulation, there exists a function r0 : Layer0 -

start(B) satisfying r0(s) ef[s]. Suppose that r; has bee.
defined for i:;:;:; n. By Condition 2 in the definition of a forwarc
simulation, there exists a function r,, + 1 : Layer,,+ 1 -1

states(B) such that if s is in Layer,,+ 1 and s' ~A s is th1
unique incoming step of s, we have r11(.s 1) b 8 r,,+ 1(s) an<
r11+ 1(s) Ef[s]. By construction, the union r of the function
r 11 is a refinement from A to B with r(s) Ef[s]. I

Proposition 3.12 allows us to give an alternative proc
of the partial completeness result for refinement
(Theorem 3.5): if A is a forest, B is deterministic ar>
A ::;;;*TB, then A ~F B by Theorem 3.11, and then A :;;;R
follows using Prop. 3.12.

220 LYNCH AND VAANDRAGER

3.3. Backward Simulations

In many respects, backward simulations are the dual
of forward simulations. Whereas a forward simulation
requires that some state in the image of each start state
should be a start state, a backward simulation requires that
all states in the image of a start state be start states. Also, a
forward simulation requires that forward steps in the source
automaton can be simulated from related states in the target
automaton, whereas the corresponding condition for a
backward simulation requires that backward steps can be
simulated. However, the two notions are not completely
dual: the definition of a backward simulation contains a
nonemptiness condition, and also, in order to imply sound
ness in general, backward simulations also require a finite
image condition. The mismatch is due to the asymmetry in
our automata between the future and the past: from any
given state, all the possible histories are finite executions,
whereas the possible futures can be infinite.

A ba<kward simulation from A to B is a total4 relation b
over states(A) and states(B) that satisfies:

1. Ifs E start(A) then h[s] £start(B).

2. If s' ~A s and u E b[s], then there exists a state
u' E b[s'] such that u' b 8 u.

We write A ~a B ifthere exists a backward simulation from
A to B, and A :::;;ia B if there exists an image-finite backward
simulation from A to B.

EXAMPLE 3.13. Let A 1 , A 1 be as in Fig. 1. Then
A 1 ~ 8 A 2 but A 1 ~iB A 1 . If A 3 , A 4 , As, A 6 are as in Fig. 2,
then A 4 ~ 8 A 3 and A 6 ~iB As.

PROPOSITION 3.14. A~RB=A~iaB.

The following lemma is useful in the proofs of the
preorder properties and of soundness.

LEMMA 3.15. Suppose bis a back·ward simulation from A
to B and s' bA s. If ueb[s], then there exists a state
u' E b[s'] such that u' .Jb,.9 u.

PROPOSITION 3.16. ~Band ~iB are preorders.

Proof The identity function id(states(A)) is a backward
simulation from A to itself. Using Lemma 3.15 one can
easily show that if b is a backward simulation from A to B
and b' is a backward simulation from B to C, b' o bis a back
ward simulation from A to C. Moreover, if both band b' are
image-finite, then b' o b is image-finite too. I

THEOREM 3.17 (Soundness of Backward Simulations).

1. A ~a B=A :::;;;.TB.

2. A ~iB B=?A ~TB.

4 See Appendix A for the definition of a total relation.

Proof Suppose b is a backward simulation from A to B
• ' /3 and suppose fJ e traces*(A). Then there 1s a moves .=As,

where s' is a start state of A. Since b is a backward simula
tion it is a total relation, so there exists a state ueb[s]. By
Lemma3.15, there exists u'eb[s'] with u'b0 u. By the
first condition of the definition of a backward simulation,
u' e start(B). Therefore, fJ E traces*(B), which shows the
first part of the proposition.

For the second part, suppose that b is image-finite. We
have already established A ::::;; •T B, so it is sufficient to
show A :::;;;wT B. Suppose that fJ E tracesw(A), and !et
oc=s0 a1s1a2 ••• be an infinite execution of A with
trace(oc) = fJ.

Consider the digraph G whose nodes are pairs (u, i) such
that (s ;, u) E b and in which then;.)s an edge from (u', i') to
(u, i) exactly if i = i' + 1 and u' /;b.8 u. Then G satisfies the
hypotheses of Lemma A.l, which implies that there is an
infinite path in G starting at a root. This corresponds
directly to an execution oc' of B having trace(a.')=
trace(ex:) = [J. Hence, fJ E traces(B). I

Jonsson [22] considers a weaker image-finiteness condi
tion for backward simulations. Translated into our setting,
the key observation of Jonsson is that in order to prove
A :::;;;T B, it is enough to give a backward simulation b from
A to B with the property that each infinite execution of A
contains infinitely many states s with b[s] finite. We do not
explore this extension in this paper, primarily because it
lacks a key feature of simulation techniques. Namely, it fails
to reduce reasoning about executions to reasoning about
individual states and steps.

The following partial completeness result slightly
generalizes a similar result of Jonsson [21] in that it also
allows for -r-steps in the B automaton.

THEOREM 3.18 (Partial Completeness of Backward
Simulations). Suppose A is a forest and A ~ •T B. Then

1. A ~8 B, and

2. if B has fin then A ~rn B.

Proof We define a relation b over states(A) and
states(B). Supposes is a state of A. Since A is a forest there
is a unique trace leading up to s, say /J. Now define

b[s] = { u I 3oc E execs*(B): trace(a.)= fJ /\ last(a)= u

/\ Voc' eexecs*(B): [ex.'< ex.=? trace(a')# [J] }.

By letting b[s] consist only of those states of B which can
be reached via a minimal execution with trace p, we achieve
that, ifs is a start state, all the states in b[s] are start states
of B. It is also the case that b satisfies the other conditions
in the definition of a backward simulation.

Lemma 2.2 implies that b is image-finite if B has fin. I

FORWARD AND BACKWARD SIMULATIONS, I 221

Oa ::;B

~iB

a a a

FIG. 3. ~sand ~iB are different, even for automata withfin.

The next proposition is the dual of Prop. 3.12, and
provides us with yet another proof of the partial complete
ness result for refinements (Theorem 3.5), now using
Theorem 3.18. Unlike Prop. 3.12, Prop. 3.19 does have an
analogue in the timed case.

PROPOSITION 3.19. Suppose all states of A are reachable,
B is deterministic and A :::::; 8 B. Then A ::::; R B.

Proof Let b be a backward simulation from A to B and
let s be a reachable state of A. We will prove that b[s]
contains exactly one element. Because all states of A are
reachable, it follows that b is functional. But any functional
backward simulation trivially is a refinement, and so we
obtain A ~RB.

Since b is a backward simulation, it is a total relation, so
we know b[s] contains at least one element. Suppose that
both u1 Eb[s] and u2 Eb[s]; we prove u 1 =u2 • Since sis
reachable, there exists a start states' and a trace P such that
s1 bAs. By Lemma3.15, there exist states u'1 ,u~Eb[s']
such that u'1 b 0 u 1 and u~ b 8 u2 . Since b is a backward
simulation and s' is a start state of A, u'1 and u~ are start
states of B. But B is deterministic and deterministic
automata have only a single start state so u'1 = u~. Now the
fact that Bis deterministic also implies u1 = u2 • I

The following proposition is mainly of technical interest.
It is used as a lemma in the technical report version of this
paper [37] to complete the classification of weak simula
tions (see Section 6).

PROPOSITION 3.20. Suppose all states of A are reachable,
B has fin and A ~8 B. Then A ~iB B.

Proof Let b be a backward simulation from A to Band
let s be a state of A. Since s is reachable we can find a trace
ftepast(A)[s]. From the fact that bis a backward simula
tion it follows that b[s] s; after(B)[fi]. But since B has fin,
after(B)[fJ] is finite by Lemma 2.2. This implies that b is
image-finite. I

EXAMPLE 3.21. Figure 3 shows that the reachability
assumptions in Propositions 3.19 and 3.20 are essential.
There is a backward simulation from A7 to A8 , but even
though A8 is deterministic there is no image-finite backward
simulation.

3.4. Combined Forward and Backward Simulations

Several authors have observed that forward and back
ward simulations together give a complete proof method for

::::;-T (see [17, 13, 21, 22, 23, 25]): if A~.yB then there
exists an intermediate automaton C with a forward simula
tion from A to C and a backward simulation from C to B.
We prove this below by taking C to be the canonical
automaton of A, as defined in Section 2. Alternative proofs
can be given using different intermediate automata, for
example the automaton obtained by applying the classical
subset construction on B (see [22, 25]) or the unfolding
construction of Section 5.1 on A.

THEOREM 3.22 (Completeness of Forward and Back-
ward Simulations). If A ~•TB then the following are true.

i. 3C: A ,:::;F c~s B.

2. If B has fin then 3C: A ~F C ~iB B.

Proof Take C =can(heh(A)). By Lemma 2.9, C is a
deterministic forest and A= •T C. Since C is deterministic.
A ~ F C by Theorem 3.11, and because C is a forest, C ~ 8 B
follows by Theorem 3.18(l). If B has fin then C ~is B
follows by Theorem 3.18(2). I

4. HYBRID SIMULA TI ONS

4.1. Forward-Backward Simulations

Forward-backward simulations were introduced by
Klarlund and Schneider, who call them invariants in [24]
and ND measures in [25]. They also occur in the work of
Jonsson [22] under the name subset simulations, and are
related to the failure simulations of Gerth [9]. Forward
backward simulations combine in a single relation both a
forward and a backward simulation. Below we present
simple proofs of their soundness and completeness by
making this connection explicit.

Formally, a forward-backward simulation from A to Bis
a relation g over states(A) and N(states(B)) that satisfies: 5

I. If sEstart(A) then there exists SEg[s] such that
S £ start(B).

2. If s' ~A s and S' E g[s']. then there exists a set
SE g[s] such that for every u ES there exists u' ES' with

I il u ==>8 u.

We write A ::::;FB B if there exists a forward-backward
simulation from A to B, and A ~iFB B if there exists an
image-set-finite forward-backward simulation from A to B.

The following theorem, which is similar to a result of [22],
says that a forward-backward simulation is essentially just a
combination of a forward and a backward simulation.

THEOREM 4.1.

i. A ~Fs B<=:>-(3C: A ~F c::::;s BJ.

2. A::::;iFsB-(3C:A~Fc~iBB).

5 The N() notation is defined in Appendix A.

222 LYNCH AND VAANDRAGER

Proof "=>" Let g be a forward-backward simulation
from A to B, which is image-set-finite if A ~iFB B. Define C
to be the automaton given by:

• states(C) = range(g),

.. start(C) = range(g) n P(start(B)),

• acts(C) = acts(B), and

• for S', SE states(C) and a E acts(C), S' E.,c S =-Vu ES:
3u' ES': u' b.9 u.

Then g is a forward simulation from A to C. Also, { (S, u) I
SE states(C) and u ES} is a backward simulation from C to
B, which is image finite if g is image-set-finite.

"<=" Suppose f is a forward simulation from A to C, and
b is a backward simulation from C to B. Then the relation
g over states(A) and N(states(B)) defined by g=
{ (s, b[u]) I (s, u) Ef} is a forward-backward simulation
from A to B. If bis image-finite then g is image-set-finite. I

PROPOSITION 4.2.

1. A ~F B=>A ~iFB B.

2. A ~B B=>A ~FB B.

3. A~iBB=A~iFBB.

Proof Immediate from Theorem 4.1, using that ~iB
and ~ F are reflexive. I

In order to show that ~FB and ~iFB are preorders, we
require a definition of composition for forward-backward
simulations, and a transitivity lemma.

If g is a relation over X and N (Y) and g' is a relation over
Y and N (Z) then the composition g' • g is a relation over X
and N(Z) defined as follows.

(x, S') Eg1 •g =- 3S Eg[x]: 3cE S-+ N(Z):

(c £ g' ;\ S' = u { c(y) I y ES}).

Note that in the above definition c is a choice function
for g' IS. The nonemptiness assumptions for g and g'
immediately imply the nonemptiness assumption for g' •g.

LEMMA 4.3. Suppose g is afonvard-backward simulation
from A to B, and g' is a forward backward simulation from
B to C. Then g' • g is a forward-backward simulation from A
to C. Moreover, (f'g and g' are image-set-finite then g' • g is
also image-set-finite.

Proof For Condition 1 of the definition of a forward-
backward simulation, suppose s E start(A). Because g is a
forward-backward simulation, there is a set SE g[s] with
S £start(B). Since g' is a forward-backward simulation, it
is possible to find, for each u ES, a set S 11 E g' [u] with
S" £start(C). Hence all states in the set S' = U { S 11 I u ES}
are start states of C. Now let c be the function with domain

S given by c(u) =Su. Then c is a choice function for g' IS.
From the definition of• it now follows that (s, S') E g' •g.
This shows that g' • g satisfies Condition 1.

Now we show Condition 2 of the definition of a forward
backward simulation. Suppose s''!__,,A s and (s', S') E g' •g .
By definition of g' • g, there exist U' E g[s'] and a choice
function C1 for g' r U' such that S' = u { c' (u') I u' E U'}.
Because g is a forward-backward simulation from A to B,
there is a set U eg[s] such 'that for each u EU there exists
u' E U' with u' b.9 u. Consider any particular u E U. Choose
u' E U' with u' b 9 u. Because g' is a forward-backward
simulation, there exists a set S" E g' [u] such that for every
v ES" there exists a v' E c1(u 1) with v' be u. Define a choice
function c for g' r u by taking c(u) to be the set s l<.

Now consider the set S = U { c(u) I u E U}. Then (s, S) E

g' • g by definition. By construction, we can find. for each
v ES. a state v' ES' with u' be v. Thus S has the required
property to show Condition 2.

Finally, it is immediate from the definitions that, if g and
g' are image-set-finite, g' • g is also image-set-finite. I

PROPOSITION 4.4. ~FB and <iFB are preorders.

Proof By Lemma 4.3. I
THEOREM 4.5 (Soundness of Forward-Backward Simu-

lations, [24]).

!. A~rnB=A<.TB.

2. A ~iFB B=A <TB.

Proof For part 1, suppose A ~FB B. By Theorem 4.1,
there exists an automaton C with A ~ F C ~ B B. By sound
ness of forward simulations, Theorem 3.10, A ~TC, and
by soundness of backward simulations, Theorem 3.17,
C ~.TB. This implies A ~.TB. Part 2 is similar. I

THEOREM 4.6 (Completeness of Forward-Backward
Simulations [24]). Suppose A ~ •T B. Then

!. A ~FB B, and

2. if B has fin then A <iFB B.

b s;T
a b a a a

b
J'.'.iFB

a b a a
b

a b a
b

a

FIG. 4. The difference between ~T and ~iFB·

FORWARD AND BACKWARD SIMULATIONS, I 223

Proof By Theorem 3.22, there exists an automaton C
with A ~F c~B B. Moreover, if Bhas fin then A ~Fc~iB B.
Then Theorem 4.1 implies the needed conclusions. I

EXAMPLE 4.7. The automata A 9 and Aw of Fig. 4
illustrate the difference between ~T and ~iFB• and also
show that the assumption that B has fin in Theorem 4.6(2)
is essential.

4.2. Backward-Forward Simulations

Having studied forward-backward simulations, we find it
natural to define and study a dual notion of backward
forward simulation.

A backward-forward simulation from A to B is a total
relation g over states(A) and P(states(B)) that satisfies:

1. Ifs E start(A) then, for all SE g[s], Sn start(B) =f:. 0.
2. If s'!!.+As and SEg[s], then there exists a set

S' E g[s'] such that for every u' ES' there exists a u ES with
I a u =>8 u.

We write A ~BF B if there exists a backward-forward
simulation from A to B, and A ~iBF B if there exists an
image-finite backward-forward simulation from A to B.

As for forward-backward simulations, backward
forward simulations can be characterized as combinations
offorward and backward simulations.

THEOREM 4.8.

1. A~BFB<=>(3C:A~ 8 C~FB).

2. A~iBFB<=>(3C:A~;BC~FB).

Proof "=>" Let g be a backward-forward simulation
from A to B, which is image-finite if A ~iBF B. Define C to
be the automaton given by

• states(C) = range(g),

• start(C) =range(g I start(A)),

• acts(C) = acts(B), and

• for S', SE states(C) and a E acts(C}, S' ...!!....,,c S <=>
Vu' ES': 3uES: u' b 8 u.

Then g is a backward simulation from A to C (and
image-finiteness carries over). Also, the relation { (S, u) I
SE states(C) and u ES} is a forward simulation from C
to B.

"=" Easy. I
PROPOSITION 4.9.

1. A ~FB=>A ~iBF B.

2. A ~B B=>A ~BF B.

3. A ~iB B=>A ~iBF B.

Proof Immediate from Theorem 4.8, using the fact that
~iB and ~Fare reflexive. I

In order to show the properties of backward-forward
simulations, it is useful to relate them to forward-backward
simulations.

THEOREM 4.10.

1. A~BFB<=>A~FBB.

2. A ~iBF B =>A ~iFB B.

Proof For one direction of 1, suppose that A ~BF B.
Then by Theorem 4.8, there exists an automaton C
with A ~B c~F B. By Prop. 4.2, A ~FB c and c~FB B.
Now A ~FB B follows by Prop. 4.4. The proof of 2 is
similar.

For the other direction of 1, suppose that/ is a forward
backward simulation from A to B. Given a state s of A, we
define g[s] to be exactly the set of subsets S of states(B)
such that S intersects each set in /[s] in at least one
element. We claim that g is a backward-forward simulation
from A to B.

1. g is total.

Proof Suppose sEstates(A). By assumption f is a
forward-backward simulation, so all elements off[s] are
nonempty. Hence the set S = U /[s] intersects each
element of/[s] in at least one element. Thus, by definition
Sis in g[s].

2. Ifs E start(A) then, for all SE g[s], Sn start(B) =f:. 0

Proof Suppose s E start(A) and SE g[s]. By assumr
tionfis a forward-backward simulation, so there exists a sc.,
S' inf[s] such that S' £ start(B). By definition of g, Sinter
sects S' in at least one element. Hence S intersects start(B)
in at least one element.

3. If s'....!!..+As and Seg[s], then there exists a set
S' E g[s'] such that for every u' ES' there exists a u ES with

I a
U ==':>BU.

Proof Suppose s' ~A s and SE g[s]. Let f [s'] =

{ S~ I i EI}. By assumption/is a forward-backward simula
tion, so there exists, for each iE/, a set S;E/[s] such that
for every u ES; there exists u' Es: with u' b.8 u. By defini
tion of g, S intersects each of the sets S; in at least one
element. So choose, for each i, an element u; in the intersec
tion of S and S;. Then, for each i, there exists u; ES~ such
that u: b.8 u;. Let S' = { i(I i EI}. Then S' intersects each
element of/[s'] in at least one element, so S'ef[s']. By
construction, for every u' ES' there exists a u ES with

I {/
U ~BU.

Hence A ~BF B. I

EXAMPLE 4.11. In general it is not the case that
A ~iFB B implies A ~iBF B. A counterexample is presented
in Fig. 5. The diagram shows two automata A 11 and A 12 •

224 LYNCH AND VAANDRAGER

w

0

:SiFB

0

t;iBF O'

1 2 3 4

Au w' A12

FIG. 5. The difference between ~iFB and ~iBF·

In the diagram a label > i next to an arc means that in fact
there are infinitely many steps, labeled i + 1, i + 2, i + 3, etc.

We claim that the relation g given by

g[0] = { { 0}, { O', 1}, { O', 1 ', 2}, ... }

g[n] = { { w}, { w'} } for n > 0

is an image-set-finite forward-backward simulation from
Au to A 12 •

However, there is no image-finite backward-forward
simulation from A 11 to A12 . We see this as follows. Suppose
g is an image-finite backward-forward simulation from A 11

to A 12 • In order to prove that this assumption leads to a
contradiction, we first establish that g[O] does not contain
a finite subset X of N. First note that by the first condition
in the definition of a backward-forward simulation, all sets
in g[O] are nonempty. The proof proceeds by induction on
the maximal element of X. For the induction base, observe
that { 0} ~ g[0], since 0 has an incoming 0-step in A 11 but
not in A 12 • For the induction step, suppose that we have
established that g[0] contains no finite subset of N with a
maximum less than n, and suppose X E g[0] with X a finite
subset of N with maximum n. Using the fact that O has
an incoming 0-step in A 11 , the second condition in the
definition of a backward-forward simulation gives that
g[O] contains an element of g[O] which is a subset of N
with a maximum less than n. This contradicts the induction
hypothesis.

Pick some state n > 0ofA 11 and a set S' E g[n]. Since A11

has a step 0 ~ n, there exists a set SE g[O] such that every
state in S has an outgoing n-step. Then S must be a subset
of { 0, ... , n - 1, (n - 1)'}. Since g[O] does not contain the
empty set or a finite subset of N, it follows that (n - l)'ES.
But since n was chosen arbitrarily (besides being positive) it
follows that g[O] has an infinite number of elements.
This gives a contradiction with the assumption that g is
image-finite.

PROPOSITION 4.12. ~BF is a preorder. (However, ~iBF is
not a preorder.)

Proof The fact that ~BF is a preorder, is trivially
implied by Theorem 4.10 and Prop. 4.4.

The counterexample of Fig. 5 tells us that ~iBF is not a
preorder in general. If we take the two automata A 11 and
A 12 from the example, then we can find an automaton C
with A 11 ~F C ~iB A 12 , using Theorem 3.22. By Prop. 4.9,
A11~iBFC and c~iBFA12· Hence it cannot be
that ~iBF is transitive, because this would imply
A11~iBFA12• I

Soundness and completeness results for backward
forward simulations now follow from those for forward
backward simulations.

THEOREM 4.13 (Soundness of Backward-Forward Simu
lations).

1. A ~BF B=>A ~.TB.

2. A ~iBFB=>A ~TB.

Proof By Theorem4.10 and Theorem 4.5. I

THEOREM 4.14 (Completeness of Backward-Forward
Simulations). A ~•TB=> A ~BF B.

Proof By Theorem 4.6 and Theorem 4.10. I

Example 4.11 falsifies the completeness result that one
might expect here. That is, Theorem 4.14 does not have a
second case saying that if B has Jin and A ~.TB, then
A ~iBFB.

5. AUXILIARY VARIABLE CONSTRUCTIONS

In this section, we present two new types of relations,
history relations and prophecy relations, which correspond
to the notions of history and prophecy variable of Abadi
and Lamport [1]. We show that there is a close connection
between history relations and forward simulations, and also
between prophecy relations and backward simulations.
Using these connections together with the earlier results of
this paper, we can easily derive a completeness theorem for
refinements similar to the one of Abadi and Lamport [1].
In fact, in the setting of this paper, the combination of
history and prophecy relations and refinements gives
exactly the same verification power as the combination of
forward and backward simulations.

5.1. History Relations

A relation hover states(A) and states(B) is a history rela
tion from A to B if h is a forward simulation from A to B and
h- 1 is a refinement from B to A. We write A~ H B if there
exists a history relation from A to B. Thus A ~ H B implies
A~FBandB~RA.

FORWARD AND BACKWARD SIMULATIONS, I 225

We give an example of a history relation, using the con
struction of the unfolding of an automaton; the unfolding of
an automaton augments the automaton by remembering
information about the past

The unfolding of an automaton A, notation ur~fold(A), is
the automaton B defined by

• states(B) =execs*(A),

• start(B) = the set of finite executions of A that consist
of a single start state,

• acts(B) =acts(A), and

• for oc', rx Estates(B) and a E acts(B), rx' __E__,8 ex Q> ex=
rx'a last(rx).

PROPOSITION 5.1. unfold(A) is a forest and A ~H
unfold(A).

Proof Clearly, unfold(A) is a forest. The function last
which maps each finite execution of A to its last state is a
refinement from unfold(A) to A, and the relation last - 1 is a
forward simulation from A to unfold(A). I

EXAMPLE 5.2. For the automata of Fig. 2, A 3 :)i1'.; HA 4 ,

A 4 ~H A 3 , A 5 ~ A 6 and A 6 ~ A 5 .

PROPOSITION 5.3. "(H is a preorder.

Proof Reflexivity is trivial. For transitivity, suppose his
a history relation from A to B and h' is a history relation
from B to C. Then h is a forward simulation from A to Band
h' is a forward simulation from B to C, so h' "h is a forward
simulation from A to C, by Proposition 3.9. Also, since h' - 1

is a refinement from C to B and h - 1 is a refinement from B
to A, (h' oh)- 1 =1i- 1 oh' - 1 is a refinement from C to A by
Proposition 3.3. It now follows that h' oh is a history
relation from A to C. I

Although inspired by [39, 22, 25], the notion of a history
relation is a new contribution of this paper. It provides a
simple and abstract view of the history variables of Abadi
and Lamport [1] (which in turn are abstractions of the
auxiliary variables of Owicki and Gries [43]). Translated
into the setting of this paper, history variables can be simply
defined in terms of history relations, as follows.

An automaton B is obtained from an automaton A by
adding a history variable if there exists a set V such that

• states(B) t;;:;states(A) x V, and

• the relation { (s, (s, v)) I (s, v) Estates(B)} is a history
relation from A to B.

Whenever B is obtained from A by adding a history
variable, then A ~H B by definition. The following proposi
tion states that the converse is also true if one is willing to
consider automata up to isomorphism.

Two automata A and B are isomorphic, notation A ~ B,
iff they have the same sets of actions and there exists an

isomorphism between them, i.e., a bijective function c;o from
states(A) to states(B) satisfying

1. s E start(A) iff c;o(s) E start(B).

2. s' ...!!...., A s itf <p(s') __E__, 8 <p(s).

PROPOSITION 5.4. Suppose A ;;;H B. Then there exists an
automaton C that is isomorphic to Band obtainedfrom A by
adding a history variable.

Proof Let h be a history relation from A to B. Define
automaton C by

• states(C) = h,

• (s, u) Estart(C) <o> u Estart(B),

• acts(C) =acts(B), and

•for (s',u'), (s,u)Estates(C) and aEacts(C), (s',u')

...!!....,c (s, u) <o> u' _!!_., 8 u.

The function c;o that maps a state (s, u) of C to the state u of
Bis an isomorphism between C and B: c;o is bijective because
h - i is a function from states of B to states of A, and from the
definition of C it is immediate that cp preserves initial states
and steps. In order to see that C is obtained from A by
adding a history variable, let states(B) play the role of the
set V required in the definition of a history variable. We
check that h' = { (s, (s, v)) I (s, v) Eh} is a history relation
from A to C.

1. h' is a forward simulation from A to C.

Proof Suppose sEstart(A). Since his a history relation
from A to B, it is in particular a forward simulation from A
to B. Thus there exists a state v E start(B) n h[s]. By defini
tion of C, (s, v)Estart(C), and by definition of h', (s, v)E

h'[s].
Next supposes' __E__, A sand (s', v') Eh' [s']. Then v' Eh [s']

and so there exists a v E /z[s] such that v' b 8 v. This implies
(s, v) E h'[s] and (s', v') be (s, v).

2. h' - 1 is a refinement from C to A.

Proof Suppose (s, v) E start(C).Then v E start(B). Since
h is a history relation from A to B, 1z- 1 is a refinement from
B to A. This implies

Next suppose (s', v') __E__,c (s, v). Then by definition of C,
v' __E__, 8 v. Hence, since h- 1 is a refinement from B to A,

At first sight, Prop. 5.4 may look tautological, since
history variables are defined in terms of history relations.
However, note that the analogue of Prop. 5.4 does not
hold in the setting of Klarlund and Schneider [25], who

226 LYNCH AND VAANDRAGER

define their notion of a history variable in terms of forward
simulations rather than history relations. Klarlund and
Schneider [25] say that an automaton Bis obtained from
an automaton A by adding history infimnation if there exists
a set 1 ·such that

• states(B) :;;; states(A) x T •• and

•the relation {(s. {s. r)) I (s, I') Estates(BJ} is a forward
simulation from A to B.

It is easy to see that even though there is a forward simula
tion from automaton A 5 to automaton A. 6 in Fig. 2, A 6 is
not isomorphic to any automaton C obtained from A 5 by
adding history information. This follows because each such
C must have at least two start states.

Proposition 5.4 shows that in our setting history relations
do capture the essence of history variables. For this reason
and also because history relations have nicer theoretical
properties. we will state all our results in this subsection in
terms of relations, and will not mention the auxiliary
variables any further.

THEOREM 5.5 (Soundness of History Relations). A :S:::H
B=>A :=TB.

Proo(Immediate from the soundness of refinements
and forward simulations. I

In fact, a history relation from A to B is just a functional
(weak) bisimulation between A and B in the sense of Park
[44] and Milner [41] . This implies that if there exists a
history relation from A to B, both automata are observa
tion-equira/ent. Hence, history relations preserve the
behavior of automata in a very strong sense.

We can now state and prove the completeness results of
Sistla [46].

THEOREM 5.6 (Completeness of History Relations and
Backward Simulations. [46]). Suppose A :::::; •T B. Then

I. 3C:A::::;Hc::::;BB,and

1 !fB hasfin then 3C: A :S:::H C:S:::is B.

Proof Take C = unfi!/d(A). By Prop. 5.1, C is a forest
and A :::::; H C. Since A :::::; .r B. also C:::::; .r B by the soundness
of history relations (Theorem 5.5). Next we can apply the
partial completeness result for backward simulations
(Theorem 3.18) to conclude (1) C:::::; B B. and (2) if B has fin
then c:::::;iB B. I

Suppose R is a relation over states(A) and states(B)
with Rn(start(A)xstart(B))#0. (Typically. R will be a
fonvard or a backward simulation.) The superposition
sup(A. B, R) of B onto A via R is the automaton C defined
by

• states(C) = R,

• start(C) =Rn (start(A) x start(B)),

• acts(C) =acts(A) n acts(B), and

• for (s'. u'), (s, u)Estates(C) and aEacts(C),

a , a
(s', u') ~c (s, u) ~ s' =As/\ u =s u.

LEMMA 5.7. Suppose f is a forward simulation from A to
B. Let C= sup(A, BJ) and let n 1 and n 2 be the projection
functions that map states of C to their first and second
.components, respectively. Then n ;- 1 is a history relation from
A to C and n2 is a refinement from C to B.

The following theorem gives a precise and compact
formulation of the folklore result that forward simulations
are the same as history variables combined with refinements.

THEOREM 5.8. A :::;F B<=> (3C: A :::::;H C :::::;RB).

Proof For the implication"=>", suppose A :::::;F B. Letf
be a forward simulation from A to B. Take C =sup(A, B, j).
The result follows by Lemma 5.7. For the implication"=",
suppose that A :::::;H C :::::;RB. Then A:::::; F C by the definition
of history relations, and C:::::; F B because any refinement is a
forward simulation. Now A ::::;F B follows by the fact that
:::::; F is a preorder. I

5.2. Prophecy Relations

Now we will present prophecy relations and show that
they correspond to backward simulations, very similarly to
the way in which history relations correspond to forward
simulations.

A relation p over states(A) and states(B) is a prophecy
relation from A to B if p is a backward simulation from A to
Band p- 1 is a refinement from B to A. We write A:::::; PB if
there exists a prophecy relation from A to B, and A :::::;iP B if
there is an image-finite prophecy relation from A to B. Thus
A :S:::iP B implies A ::::;iB Band A::;:;" B, and A :::::;PB implies
A ::::;a Band B ::::;RA. We give an example of a prophecy rela
tion, using the construction of the guess of an automaton.
This new construction is a kind of dual to the unfolding
construction of the previous subsection in that the states
contain information about the future rather than about the
past. 6

The guess of an automaton A, notation guess(A), is the
automaton B defined by

• states(B) = frag*(A),

• start(B)=execs*(A),

0 Just as the unfolding operation gives rise to a forest, the guess construc
tion leads to the dual notion of a backward forest, i.e., an automaton with
the property that for each state there is a unique maximal execution that
starts in it. Also, similar to the partial completeness result for backward
simulations that requires one of the automata to be a forest, there is a
partial completeness result for forward simulations that involves backward
forests. Since the guess construction appears to be useful only in proving
finite trace inclusion, we decided not to work out the forward/backward
duality completely at this point.

FORWARD AND BACKWARD SIMULATIONS, I 227

• acts(B) =acts(A), and

• for a.', a.Estates(B) and a E acts(B), a.' ...!!....,, 9 a.<.!>
first(a.') aa. = a.'.

PROPOSITION 5.9. A ::.;;p guess(A).

Proof The function first which maps each execution
fragment of A to its first state is a refinement from guess(A)
to A, and the relationfirst- 1 is a backward simulation from
A to guess(A). I

EXAMPLE 5.10. For the automata of Fig. 2 we have
A 3 :j;;pA 4 , A 4 'li(;pA 3 , A 5 :j;;pA 6 and A 6 :i::;;;pA 5 • The dif
ference between ~P and ::;;iP is illustrated by the automata
of Fig. 3: A 7 ~P A8 but A 7 :j;;iP A8 . The automata A 1 and A 2

of Fig. 1 cannot be used directly to show the difference
between ::;;P and ::;;;p since neither A 1 ::;;P A2 nor A 2 ::;;PA 1 .

However, we obtain a counterexample by unfolding the A 2

automaton: A 1 ~ P unfold(A 2) but A 1 ~iP unfold(A 2).

PROPOSITION 5.11. ::;;P and ~iP are preorders.

The following proposition sheds some more light on the
relationship between ~P and ~iP·

PROPOSITION 5.12. Suppose all states of A are reachable,
B has fin, and A ::.;;PB. Then A ::.;;iP B.

Proof Let p be a prophecy relation from A to B. Then
p is a backward simulation. Now the proof of Proposi
tion 3.20 implies that p is image-finite. Thus A :i:;;;iP B. I

We will now show that prophecy relations capture the
essence of prophecy variables, just as history relations
capture the essence of history variables.

An automaton B is obtained from an automaton A by
adding a prophecy variable if there exists a set V such that

• states(B) <;;;;states(A) x V, and

• the relation { (s, (s, v)) I (s, v) Estates(B)} is a prophecy
relation from A to B.

A prophecy variable is bounded if the underlying
prophecy relation is image-finite.

PROPOSITION 5.13. Suppose A ~PB. Then there exists an
automaton C that is isomorphic to Band obtained from A by
adding a prophecy variable, which is bounded if A :i::;; ;p B.

Again, we will state all further results in this subsection in
terms of relations, and not mention the auxiliary variables
any further.

THEOREM 5 .14 (Soundness of Prophecy Relations).

1. A:::;;;pB=>A::.TB.

2. A:::;;;;pB=>A::TB.

Proof Immediate from the soundness of refinements
and backward simulations. I

LEMMA 5.15. Suppose bis a backward simulation from A
to B. Let C =sup(A, B, b) and let n 1 and n 2 be the projection
functions that map states of C to their first and second
components, respectively. Then n 11 is a prophecy relation
from A to C and n 2 is a refinement from C to B. If b is image
finite then so is n 11.

THEOREM 5.16.

l. A ::_;;B B<:;> (3C: A ~PC ~RB).

2. A ~iB B <.!> (3C: A ~iP C ::_;;RB).

Proof The proof of 1 is analogous to that of
Theorem 5.8, using Lemma 5.15. Statement 2 can be proved
similarly. I

The following result is dual to Sistla's completeness result.

THEOREM 5.17 (Completeness of Prophecy Relations
and Forward Simulations). A ~ •T B => 3 C: A ::.;:; P C ~ F B.

Proof

A ~ff B=>A ::_;;BF B

(by Theorem 4.14)

=>3D: A ::_;;B D::.;;FB

(by Theorem 4.8)

=>3C, D: A ~P C~R D::;;F B

(by Theorem 5.16)

=>3C: A ::;;p C::;;F B

(by Propositions 3.7 and 3.9). I

5.3. Completeness of History and Prophecy Relations

We finish this section with versions of the completeness
results of Abadi and Lamport [1].

THEOREM 5.18 (Completeness of History Relations,
Prophecy Relations, and Refinements [1]). Suppose
A ~.TB. Then

1. 3C, D: A ~H C~p D :::;;;RB, and

2. if B has fin then 3C, D: A ~H C ::::;;iP D ~R B.

Proof By Sistla's result (Theorem 5.6), there exists an
automaton C with A ~H C ~B B. Next, Theorem 5.16 yields
the required automaton D with C ~PD ~RB, which proves
l. Now statement 2 is routine. I

Similarly, we obtain the dual result:

THEOREM 5.19. A ::;;.T B~3c, D: A ~p c~H D::.;;R B.

6. INCLUDING INVARIANTS

For the sake of simplicity, our entire development so far
has been carried out without any mention of invariants;

228 LYNCH AND VAANDRAGER

in fact, all considerations involving reachability of the
various states have been ignored. However, in actual
verification examples using simulations, it is almost always
the case that a preliminary collection of invariants is
proved, then used in proving the step correspondence. In
this section, we show how to integrate invariants into
simulation proofs.

We define an invariant of an automaton A to be any
superset of the set of reachable states of A, i.e., a property
that is true of all the reachable states of A. 7 One way to
prove that a property is an invariant is by induction on the
length of a finite execution that leads to the state in ques
tion. More usually, a batch of invariants is proved together,
by induction. In fact, invariants are most often proved in
several batches, where each batch is proved by induction,
assuming that those in the previous batches are true.

We now define versions of all our simulations that use
invariants. We call these simulations "weak," although that
is is bit of a misnomer in the case of some of the simula
tions. 8 Let A and B be automata with invariants IA and I 8 ,

respectively.
A weak refinement from A to B, with respect to I A and I 8 ,

is a function r from states(A) to states(B) that satisfies the
following two conditions:

I. Ifs E start(A) then r(s) E start(B).

2. Ifs' ...!'...,As, s', s E IA, and r(s') El 8 , then r(s') b 3 r(s).

A weak.forward simulation from A to B, with respect to IA
and 18 , is a relation f over states(A) and states(B) that
satisfies the following two conditions:

1. Ifs E start(A) then f[s J n start(BJ# 0.
? If s'...!'...,As, s', sEIA, and u'Ef[s']n18 , then there

exists a state u ef[s] such that u' -k-8 u.

Thus, weak refinements and weak forward simulations
are weaker than ordinary refinements and forward simula
tions in that they allow use of invariants for all the
hypothesized states.

A weak backward simulation from A to B, with respect to
I A and I 8 , is a relation b over states(A) and states(B) that
satisfies:

1. If sEstart(A) then b[s] nfs<;;start(B).

2. If s'...!'...,As, s', sEIA, and uEb[s]nI8 , then there
exists a state u' E b [s'] n I 8 such that u' bs u.

3. IfsEIAthenb[s]nl8 #0.

7 Sometimes the term "invariant" is used with a slightly different
meaning, to denote a property that holds initially and is preserved by all
transitions.

8 This usage of the term "weak" has nothing to do with Milner's usage
[41] ; he uses it to indicate whether or not internal steps are abstracted
away.

Thus, weak backward simulations allow use of invariants
in all the hypothesized states. However, they also require
additional proof obligations: in the second and third
properties, it is necessary to show that the state produced
satisfies 18 . So, strictly speaking, they are not weaker than
ordinary backward simulations.

A weak forward-backward simulation from A to B, with
respect to I A and I 8 , is a relation g over states(A) and
P(states(B)) that satisfies:

1. If s E start(A) then there exists SE g[s] such that
Sn I 8 <;;start(B).

2. Ifs' -3!..+ A s, s', s E IA and S' E g[s'], then there exists a
set SE g[s] •such that for every u E Sn I 8 there exists
u' ES' n Is with u' b 8 u.

3. Ifs El A and SE g[s] then Sn I 8 # 0.

A weak backward-forward simulation from A to B, with
respect to IA and Is, is a relation g over states(A) and
P(states(B)) that satisfies:

1. Ifs E start(A) then, for all SE g[s], S nstart(B) # 0-
2. Ifs' -3!..+ As, s', s EI A and SE g[s], then there exists a

set S' E g[s'] such that for every u' E S' n I 8 there exists a
u ES n I 8 with u' b 8 u.

3. Ifs El A then g[s] # 0.

A relation h over states(A) and states(B) is a weak history
relation from A to B, with respect to I A and I 8 , provided
that h is a weak forward simulation from A to B, with
respect to I A and I 8 , and h - I is a weak refinement from B
to A, with respect to I 8 and I A.

A relation p over states(A) and states(B) is a weak
prophecy relation from A to B, with respect to I A and I 8 ,

provided that p is a weak backward simulation from A to B.
with respect to I A and I 8 , and p - I is a weak refinement from
B to A, with respect to I 8 and I A.

We write A~wRB, A~wFB, A~wBB, A~wiBB,
A :::;wFB B, A ~wiFB B, A :::;wBF B, A :::;wiBF B, A :::;wH B,
A :::;wP B and A ~wiP B to denote the existence of a weak
refinement, weak forward simulation, weak backward
simulation, weak image-finite backward simulation, etc.,
from A to B, with respect to some invariants I A and I 8 .

PROPOSITION 6.1. The relations ~wR' ~wF, :::;wB, ~wiB•
::::;wFB• ~wiFB' ~wBF' :::;wH• ~wP' and :::;wiP areallpreorders.
(However, :::;wiBF is not a preorder.)

THEOREM 6.2 (Soundness of Weak Simulations),

1. If A ~wR B, A ~wF B, A :::;wiB B, A :::;wiFB B,
A ~wiBF B, A :::;wH B, or A ~wiP B, then A :::;TB.

2. If A ~wB B, A ::::;wFB B, A ~wBF B, or A ~wP B, then
A ~.TB.

FORWARD AND BACKWARD SIMULATIONS, I 229

Proposition 6.1 and Theorem 6.2 can be proved
analogously to the way we proved the corresponding results
for the nonweak case. Alternatively, it is possible to derive
these results as consequences of the corresponding results
for the nonweak case. We do this in a technical report
version of this paper, [37].

7. CONCLUSIONS AND RELATED WORK

In this paper, we have given a unified, comprehensive
presentation of simulation proof methods for untimed
automata, including refinements, forward and backward
simulations and combinations thereof, and history and
prophecy relations. We have given relationships between all
of these kinds of simulations, plus soundness and complete
ness results.

We summarize the basic implications between the various
simulation techniques of this paper in a diagram. Suppose
M, NE {T, *T, R, F, (i)B, (i)FB, (i)BF, H, (i)P}, where the
(i) indicates that i is optional. Then A :::;;MB=> A :::;;NB for
all automata A and B if and only if there is a path from :::;; M

to :::;;Nin Fig. 6 consisting of thin lines only. If Bhasfin, then
A :::;;MB=> A ::;;;NB for all automata A and B if and only if
there is a path from :::;;M to :::;;N consisting of thin lines and
thick lines. In the technical report version of this paper,
[37], this classification is extended to include the various
weak simulations as well.

The classification of Fig. 6 has been established for a
specific automaton model (labeled transition systems with
multiple start states but without final states) and a specific
behavioral preorder (inclusion of finite and infinite traces
with hiding of internal actions). We have chosen this model
because of its simplicity and because it is used both in the
theory of I/O automata [35, 20] and in the theory of

~iP- ~p

l
~R-~iB- ~B

l
~H - ~F -~iBF-~BF

l 11
~iFB-~FB

lt 11
::;T ~~•T

FIG. 6. Classification of basic relations between automata.

643/121/2-7

process algebras [4, 16, 41], two important approaches
toward specification and verification of concurrent systems.
Simulations techniques play an important role in many
other models of computation, and variants of most of the
simulations that we discuss here have been proposed in the
literature for other models and other notions of behavior. If
one attempts to classify all the simulations that have been
defined for any given approach, then typically one will get
a picture very similar to our Fig. 6. Still, it is in most cases
difficult, if not impossible, to formally derive results about
simulations in one approach from the corresponding results
in another approach: although the general picture is the
same, the details are frequently different, and one should
always be careful with claims that simulation proof methods
carry over from one setting to another. We give some
examples.

1. In this paper we follow an action-based approach, in
which the behavior of a system is a sequence of (visible)
actions. Another popular approach, followed for instance in
[1], is based on states: the behavior of a system is a
sequence of states (up to stuttering). These different
approaches are, in some sense, equivalent. In [5], for
instance, translations are presented between an action based
model oflabeled transition systems (L TSs) and a state base
model ofKripke structures (KSs). These translations show
that the concept of internal actions in action-based
approaches is the same, in some sense, as the concept of
stuttering in state-based approaches. However, if one takes
our history variables and maps them to the state bas.ed
world via the translation of [5], one gets something which
is slightly different from the history variables of [1], due to
a subtle difference in the treatment of internal actions/
stuttering. By slightly restricting our history and prophecy
relations one can obtain history and prophecy variables
that do correspond exactly to those of [1]. However, doing
this either destroys the classification of Fig. 6, or forces us to
change the definitions of all the other simulations as well,
with the result that the correspondence with previous work
on simulations in action-based approaches (for instance,
[19, 21, 22, 34, 35, 39]) gets lost.

2. In classical automata theory, there is a complete
duality between past and future since besides start states
there are also final states, and traces correspond to finite
executions from a start state to a final state. In our automata
there are no final states, and traces correspond to possibly
infinite executions from start states. As a result forward and
backward simulations are not completely dual in our
setting, unlike in classical automata theory.

3. There are a few results that depend on whether
invariants are included in the definitions of the simulations.
For example, the implication

A :::;; a B /\ B has fin => A :::;; iB B

230 LYNCH AND VAANDRAGER

is not valid in our setting (Example 3.21), but does hold in
the context or [39] because there reachability conditions
are included in the definition of backward simulations
(cf. Proposition 3.20).

4. Simulation techniques have been used not only to
prove trace inclusion, but also to prove several other
preorders from Van Glabbeek's [11, 12] linear time
branching time spectrum. In [23, 13] for instance, proof
methods based on forward and backward simulations are
presented and proved to be sound and complete forthe failure
preorder of CSP [16]. In the definitions of these simulations
additional clauses are present which for instance require that
related states have the same initial actions.

5. All the automata studied in this paper have been
untimed. In Part II [38], the simulation definitions and the
results of this paper are extended to timed systems. In fact,
many of the results for the timed case are obtained as conse
quences of the analogous results for the untimed case. How
ever, there are several results that do carry over, but cannot be
proved from the untimed results. Furthermore, the implication

A :s;; F B /\ A is a forest =A :s;; R B

of Proposition 3.12 does not carry over to the timed setting.

6. As far as the classification of simulations is con
cerned, our work is closely related to and extends that of
Jonsson [22]. Jonsson, however, has a more powerful
notion of backward simulation that can also handle
automata with infinite invisible nondeterminism. We
preferred not to use this notion since it fails to reduce
reaso.ning about entire executions to reasoning about
md1v1dual states and transitions.

7. This paper is related to the work of [17, 18, 3, 7, 48]
on data refinement. In [17], an operation is a binary rela
t10n over some universal set 1:. A data type is a triple (Al,

AO, AF), where Al and AF are the initialization and
finaliz~tion operation, respectively, and AO= { AOj I j E J}
1s an mdexed set of operations. An automaton A can be
encoded as a data type by defining

Al ~ 2: x start(A)

AO a~ {(s',s) I s'-'!..,. __ 1 s}, for all aEacts(A)

AF ~ states(A) x I:.

Here acts(A) plays the role of the index set J. In [17 J, a
downward simulation from (Al, {A01 I }El}, AF) to (BI
{ BOj I j E J}, BF) is defined to be any relation R for which
the following inequations hold:

Blc:RcAf

BO.cR c R c AO.
J - J'

Bf,,R s AF.

for all }E J

It is easy to verify that in a setting without r-steps, a relation
f s states(A) x states(B) is a forward simulation from A to
B iff f -1 is a downward simulation from the data type
encoding B to the data type encoding A. A similar corre
spondence can be established between our backward
simulations and the upward simulations of [17]. Just as
forward and backward simulations provide a sound and
complete proof method for trace inclusion between
automata, downward and upward simulations offer a sound
and complete proof method for refinement between data
types. Surprisingly however, the definition of refinement
between data types is completely different from the defini
tion of trace inclusion between automata: informally, one
data type is refined by another if any program that uses the
former would function at least as well using the latter. Even
more surprising (at least for us) is the fact that the
requirements of totality and finite invisible nondeterminism
that we used to prove soundness of backward simulations,
also play a role in the soundness result of upward simula
tions, in case iteration and recursion can be used in the
formation of programs [17]. Clearly, an important topic for
future research is the connection between automata based
simulation techniques and methods for data refinement. A
specific question here concerns the relationship between
forward-backward simulations and the single complete rule
for data refinement of [7].

The present paper provides complete proof methods for
trace inclusion between automata with finite invisible
nondeterminism. Such automata express the class of safety
properties [2]. For simplicity, we have not considered
liveness properties here. Simulation techniques that deal with
liveness are for instance described in [21, 22, 1, 8].The results
of [1, 8] are more general than ours because safety and live
ness issues are separated through the use of automata that
are equipped with additional liveness properties.

History variables were first defined at the syntactic level
for specific (parallel) programming languages. Owicki and
Gries [43], for instance, define an auxiliary variable set for
a statement S to be a set of variables AV that appears in S
only in assignments x := E, where x is in AV One of the
contributions of Abadi and Lamport [1] is a language inde
pe_ndent, semantic definition of this important concept. In
this p~per we have simplified their definition and the proof
of their completeness theorem by observing that history
vanables are equivalent to history relations, and the dual
prophecy variables are equivalent to prohecy relations.
Several authors have observed that forward and backward
sim_ulations are closely related to history and prophecy
variables, respectively, [39, 22, 25].9 Still we believe that,

9N ote, however, that [39] contains some minor flaws (Propositions 7.1,
7.6, and 8.1 are mcorrect), and that the auxiliary variables of [25 J have the
peculiar property that adding them may change the visible behavior of an
automaton.

FORWARD AND BACKWARD SIMULATIONS. I 231

through Theorems 5.8 and 5.16, our paper is the first to
establish an exact correspondence in a general setting of
transition systems.

In this paper we have only discussed simulation techniques
at the semantic level of automata. We have not paid any
attention to the syntax that is used to define these automata.
Since some of our methods require the introduction of inter
mediate automata, this means that if one wants to use these
methods for any given language, one has to check whether
this language is suffiently expressive to describe the inter
mediate automata. Also, one has to check whether the
language used for specifying relations is sufficiently
expressive to define the various simulation relations that are
required in a correctness proof. We leave it is a topic for future
research to find syntactic formulations of our results.

Refinements, history variables and forward simulations
have been used extensively and successfully for verifying
concurrent algorithms. Backward simulations and pro
phecy variables have also been shown to be of practical
value in a few cases. Additional work remains to determine
the practical utility of backward simulations, prophecy
variables and relations, and the hybrid methods of this
paper. This will involve applying these techniques to a wide
range of examples.

APPENDIX A. MATHEMATICAL PRELIMINARIES

This appendix contains some basic mathematical
notation, plus a compactness lemma.

A 1. Sequences

Let K be any set. The sets of finite and infinite sequences
of elements of K are denoted by K* and K'", respectively.
The symbol ;, denotes the empty sequence and the sequence
containing one element k EK is denoted by k. Concatena
tion of a finite sequence with a finite or infinite sequence is
denoted by juxtaposition. We say that a sequence (J is a
prefix of a sequence p, denoted by a~ p, if either a= p, or
a is finite and p = aa' for some sequence (J 1

• A set L of
sequences is prefix closed if, whenever some sequence is in L,
all its prefixes are also.

If a is a nonempty sequence then first(a) denotes the first
element of a, and tail(a) denotes the sequence obtained
from a by removing first(a). Moreover, if a is finite, then
last(a) denotes the last element of a.

If a is a sequence over Kand K' s; K, then (JI K' denotes
the projection of a on K', i.e., the subsequence of a con
sisting of the elements of K'. If L is a set of sequences, L I K'
is defined as {a I K' I a E L} .

A.2. Sets, Relations, and Functions

A relation over sets X and Y is defined to be any subset of
Xx Y. If R is a relation over X and Y, then we define the

domain of R to be domain(R) @ { x EX I (x, y) E R for some
YE Y}, and the range of R to be range(R) @ {ye Y
l(x, y) ER for some x EX}. A relation R over X and Y is
total over X if domain(R) = X. If X is any set, we let id(X)
denote the identity relation over j:' and X, i.e.,
{(x,x)lxeX}.

Suppose that R and R' are relations over .\' and Y and
over Y and Z, respectively. Then the composition of R and
R', denoted by R'" R (pronounced R' after R) is the relation
over X and Z defined by

(x, .:) ER' 0 R <=> 3yE Y: ((.Y,y) ER/\ (y, :) ER').

For all relations R, R', and R", R, (R', R") = (R oR') ccR".
Also, for any relation R over X and Y, id(Y) , R =

Ruid(X) = R.
If R is a relation over X and Y, then the inverse of R,

written R - 1, is defined to be the relation over Y and X
consisting of those pairs (y, x) such that (x, y) e R. For any
pair of relations R and R', (R' , R)- 1 = R - 1 ., (R' i - 1•

If R is a relation over X and Y, and Z is a set, then R I Z
is the relation over X n Z and Y given by R I Z @ Rn
(Z x Y). If R is a relation over X and Y and x E X, we define
R[x] = {y E YI (x, y) ER}. We say that a relation Rover X
and Yis ajimctionfrom X to Yif JR[x] I= 1 for all xeX
in this case, we write R(x) to denote the unique element o
R[x]. We write X-+ Y for the set of functions from X to Y
A function c from X to Y is a choice function for a relatior
R over X and Y provided that c £ R (i.e., c(x) E R[x] for all
XEX).

If X is a set, P(X) denotes the powerset of X, i.e., the set
of subsets of X, and N(X) the set of nonempty subsets of X,
i.e., the set P(X)- {0}. We say that a relation Rover X
and Y is image-finite if R[x] is finite for all x in X. If R is
a relation over X and P(Y), then we say that R is image-set

finite if every set in the range of R is finite.

A.3. A Basic Graph Lemma

We require the following lemma. a generalization of
Ki:inig's Lemma [26]. If G is a digraph, then a root of G is
defined to be a node with no incoming edges.

LEMMA A. I. Let G be an infinite digraph that sati.~fles

the following properties.

I. G has finiteZv many roots.

2. Each node of G hasfi'tzite outdegree.

3. Each node of G is reachable from some root of G.

Then there is an infinite path in G starting from some root.

Proof The usual proof for Ki:inig's Lemma extends to

this case. I

232 LYNCH AND VAANDRAGER

APPENDIX B. GLOSSARY OF CONVENTIONS

a
b
c
f
g

h

11

p
r
s, u
A,B,C,D
G
I
K
L
P,Q
R
S, U
X, Y,Z

fJ

}.

TC

u,p
T

Actions
Backward simulations
Choice functions
Forward simulations
Forward-backward and
backward-forward simulations
History relations
Indices
Natural numbers
Prophecy relations
Refinements
States
Automata
Digraphs
Invariants
Sets of symbols
Sets of sequences
Trace properties
Relations
Sets of states
Sets
Execution fragments
Sequences of external actions (traces)
Sequences of actions
The empty sequence
Projections
Sequences
The internal action

Received March 2, 1993; final manuscript received November 18, 1994

REFERENCES

L Abadi, M., and Lamport, L. (1991), The existence of refinement
mappings, Theoret. Comput. Sci. 82(2), 253-284.

2. Alpern, B., and Schneider, F. B. I 1985), Defining liveness, Inform.
Process. Lett. 21, 181-185:

3. Back, R. J. R., and von Wright, J. (1990), Refinement calculus. I.
Sequential nondeterministic programs, in "Proceedings REX
Workshop on Stepwise Refinement of Distributed Systems: Models,
Formalism, Correctness, Mook, The Netherlands, May/June 1989"
(J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds.), pp. 42-66,
Lecture Notes in Computer Science, Vol. 430, Springer-Verlag, Berlin/
New York.

4, Baeten, J. C. M., and Weijland, W. P. (1990), "Process Algebra,"
Cambridge Tracts in Theoretical Computer Science, Vol. 18, Cam
bridge Univ. Press, London, New York.

5. De Nicola, R., and Vaandrager, F. W. (1990), Three logics for
branching bisimulation (extended abstract), in "Proceedings, 5th
Annual Symposium on Logic in Computer Science, Philadelphia,
USA," pp. 118-129, IEEE Comput. Soc. Press, Los Alamitos, CA; Full
version to appear in J. Assoc. Comput. Mach.; available as Rapporto di
Ricerca SI-92/07, Dipartimento di Scienze dell'Inforrnazione, Univer
sitit degli Studi di Roma "La Sapienza," November 1992.

6. Dijkstra, E.W. (1976), "A Discipline of Programming," Prentice-Hall
International, Englewood Cliffs, NJ.

7. Gardiner, P. H. B., and Morgan, C. C. (1993), A single complete rule
for data refinement, J. Formal Aspects Comput. Sci. 5, 367-382.

8. Gawlick, R., Segala, R., S0gaard-Andersen, J. F., and Lynch, N.
(1994), Liveness in timed and untimed systems, in "Proceedings, 21 th
ICALP, Jerusalem" (S. Abiteboul and E. Shamir, Eds.), Lecture Notes
in Computer Science, Vol. 820, Springer-Verlag, Berlin/New York; a
full version appears as MIT Technical Report MIT/LCS/TR-587.

9. Gerth, R. (1990), Foundations of compositional program refinement
[first version], in "Proceedings, REX Workshop on Stepwise Refine
ment of Distributed Systems: Models, Formalism, Correctness, Mook,
The Netherlands, May/June 1989" (J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, Eds.), pp. 777-808, Lecture Notes in Computer
Science, Vol. 430, Springer-Verlag, Berlin/New York.

10. Ginzburg, A. (1968), "Algebraic Theory of Automata," Academic
Press, New York/London.

11. van Glabbeek, R. J. (1990), The linear time-branching time spectrum,
in "Proceedings CONCUR 90, Amsterdam" (J. C. M. Baeten and
J. W. Klop, Eds.), pp. 278-297, Lecture Notes in Computer Science,
Vol. 458, Springer-Verlag, Berlin/New York.

12. van Glabbeek, R. J. (1993), The linear time-branching time spectrum,
II (the semantics of sequential systems with silent moves), in
"Proceedings CONCUR 93, Hildesheim, Germany" (E. Best, Ed.),
pp. 66-81, Lecture Notes in Computer Science, Vol. 715, Springer
Verlag, Berlin/New York.

13. He, J. (1989), Process simulation and refinement, J. Formal Aspects
Comput. Sci. 1, 229-241.

14. Helmink, L., Sellink, M. P. A., and Vaandrager, F. W. (1994), Proof
checking a data link protocol, in "Proceedings, International
Workshop TYPES'93, Nijmegen, The Netherlands, May 1993"
(H. Barendregt and T. Nipkow, Eds.), pp. 127-165, Lecture Notes in
Computer Science, Vol. 806, Springer-Verlag, Berlin/New York; full
version available as Report CS-R9420, CWI, Amsterdam, March 1994.

15. Hoare, C. A. R. (1972), Proof of correctness of data representations,
Acta Informal. 1, 271-281.

16. Hoare, C. A. R. (1985), "Communicating Sequential Processes,"
Prentice-Hall International, Englewood Cliffs, NJ.

17. Hoare, C. A. R., He, J., and Sanders, J. W. (1987), Prespecification in
data refinement, Inform. Process. Lett. 25, 71-76.

18. Jones, C. B. (1986), "Systematic Software Development Using VDM,"
Prentice-Hall International, Englewood Cliffs, NJ.

19. Jonsson, B. (1987), "Compositional Verification of Distributed
Systems," Ph.D. thesis, Department of Computer Systems, Uppsala
University, 1987, [DoCS 87 /09].

20. Jonsson, B. Modular verification of asynchronous networks, in
"Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, Aug. 1987," pp. 152-166.

21. Jonsson, B. (1990), On decomposing and refining specifications of
distributed systems, in "Proceedings REX Workshop on Stepwise
Refinement of Distributed Systems: Models, Formalism, Correctness,
Mook, The Netherlands, May/June 1989" (J. W. de Bakker, W. P. de
Roever, and G. Rozenberg, Eds.), pp. 361-387, Lecture Notes in
Computer Science, Vol. 430, Springer-Verlag, Berlin/New York.

22. Jonsson, B. (1991), Simulations between specifications of distributed
systems, in "Proceedings CONCUR 91, Amsterdam" (J.C. M. Baeten
and J. F. Groote, Eds.), pp. 346-360, Lecture Notes in Computer
Science, Vol. 527, Springer-Verlag, Berlin/New York.

23. Josephs, M. B. (1988), A state-based approach to communicating
processes, Distrib. Comput. 3, 9-18.

24. Klarlund N., and Schneider, F. B. (1989), "Verifying Safety Properties
Using Infinite-State Automata," Technical Report 89-1039,
Department of Computer Science, Cornell University.

25. Klarlund N., and Schneider, F. B. (1993), Proving nondeterministi
cally specified safety properties using progress measures, Inform. and
Comput. 107, 151-170.

FORWARD AND BACKWARD SIMULATIONS, I 233

26. Knuth, D. E. (1973), "Fundamental Algorithms," The Art of Com
puter Programming, Vol. 1, 2nd ed., Addison-Wesley, Reading, MA.

27. Lam, S. S., and Shankar, A. U. (1984), Protocol verification via
projections, IEEE Trans. Software Engrg. 10(4), 325--342.

28. Lamport L. (1983), Specifying concurrent program modules, ACM
Trans. Programming Languages Systems 5(2), 190--222.

29. Lampson, B. W., Lynch, N. A., and S0gaard-Andersen, J. F.
Correctness of at-most-once message delivery protocols, in
"FORTE'93-Sixth International Conference on Formal Description
Techniques, Boston, MA, October 1993," pp. 387-402.

30. Liskov, B. L., and Guttag, J. V. (1986), "Abstraction and Specification
in Program Development," MIT Press, Cambridge, MA/McGraw
Hill, New York.

31. Loewenstein. P., and Dill, D. L. (1991), Verification of a multipro
cessor cache protocol using simulation relations and higher-order logic
[summary], in "Proceedings of the 2nd International Conference on
Computer-Aided Verification, New Brunswick, NJ" (E. M. Clarke and
R. P. Kurshan, Eds.), pp. 302-311, Lecture Notes in Computer
Science, Vol. 531, Springer-Verlag, Berlin/New York.

32. Lucas, P. (1968), "Two Constructive Realizations of the Block
Concept and Their Equivalence," Technical Report 25.085, IBM
Laboratory, Vienna.

33. Lynch, N. A. (1993), "Concurrency Control for Resilient Nested
Transactions," MIT Technical Report MIT/LCS/TR-285, Laboratory
for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA.

34. Lynch, N. A. (1990), Multivalued possibilities mappings, in
"Proceedings, REX Workshop on Stepwise Refinement of Distributed
Systems: Models, Formalism, Correctness, Mook, The Netherlands,
May/June 1989" (J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
Eds.), pp. 519-530, Lecture Notes in Computer Science, Vol. 430,
Springer-Verlag, Berlin/New York.

35. Lynch, N. A., and Tuttle, M. R. Hierarchical correctness proofs for
distributed algorithms, in "Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing, August 1987,"
pp. 137-151; a full version is available as MIT Technical Report MIT/
LCS/TR-387.

36. Lynch, N. A., and Vaandrager, F. W. (1992), Forward and backward
simulations for timing-based systems, in "Proceedings REX Workshop
on Real-Time: Theory in Practice. Mook, The Netherlands, June
1991" (J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen
berg, Eds.), pp. 397-446, Lecture Notes in Computer Science, Vol. 600,
Springer-Verlag, Berlin/New York.

37. Lynch, N. A., and Vaandrager. F. W. (1993), "Forward and Backward
Simulations. I. Untimed Systems," Report CS-R9313, CW!, Amster
dam; also (1995) MIT /LCS/TM-486. b, Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA.

38. Lynch, N. A., and Vaandrager, F. W. (1993). "Forward and Backward
Simulations. II. Timing-Based Systems," Report CS-R9314, CWI,
Amsterdam; also (1995) MIT/LCS/TM-487. c, Laboratory for Com
puter Science, Massachusetts Institute of Technology, Cambridge,
MA.

39. Merritt, M. (1990), Completeness theorems for automata, in
"Proceedings REX Workshop on Stepwise Refinement of Distributed
Systems: Models, Formalism, Correctness, Mook, The Netherlands,
May/June 1989" (J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
Eds.), pp. 544-560, Lecture Notes in Computer Science, Vol. 430,
Springer-Verlag, Berlin/New York.

40. Milner, R. (1971), An algebraic definition of simulation between
programs, in "Proceedings, 2nd Joint Conference on Artificial
Intelligence," pp. 481-489, BCS; also available as Report No. CS-205,
Computer Science Department, Stanford University, February
1971.

41. Milner, R. (1989), "Communication and Concurrency," Prentice--Hall
International, Englewood Cliffs, NJ.

42. Nipkow, T. (1990), Formal verification of data type refinement
Theory and practice, in "Proceedings REX Workshop on Stepwise
Refinement of Distributed Systems: Models, Formalism, Correct
ness, Mook, The Netherlands, May/June 1989" (J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, Eds.), pp. 561-591, Lecture
Notes in Computer Science, Vol. 430, Springer-Verlag, Berlin/
New York.

43. Owicki, S., and Gries, D. (1976), An axiomatic proof technique for
parallel programs, Ac ta Informal. 6(4), 319-340.

44. Park, D. M. R. (1981), Concurrency and automata on infinite
sequences, in "5th GI Conference, Karlsruhe, Germany, March 1981"
(P. Deussen, Ed.), pp. 167-183, Lecture Notes in Computer Science.
Vol. 104, Springer-Verlag, Berlin/New York.

45. Reynolds, J. C. (1981), "The Craft of Programming," Prentice-Hall
International, Englewood Cliffs, NJ.

46. Sistla, A. P. (1991), Proving correctness with respect to nondeter
ministic safety specifications, Inform. Process. Lett. 39(1), 45-49.

47. Stark, E. W. (1988), Proving entailment between conceptual state
specifications, Theoret. Comput. Sci. 56, 135-154.

48. von Wright, J. (1994), The lattice of data refinement, Act a Informal. 31,
105-135.

