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A unified, comprehensive presentation of simulation techniques for 
verification of concurrent systems is given, in terms of a simple untimed 
automaton model. In particular, ( 1) refinements, ( 2) forward and 
backward simulations, ( 3) hybrid forward-backward and backward
forward simulations, and ( 4) history and prophecy relations are 
defined. History and prophecy relations are abstract versions of the 
history and prophecy variables of Abadi and Lamport, as well as the 
auxiliary variables of Owicki and Gries. Relationships between the 
different types of simulations, as well as soundness and completeness 
results, are stated and proved. Finally, it is shown how invariants can be 
incorporated into all the simulations. Even though many results are 
presented here for the first time, this paper can also be read as a survey 
(in a simple setting) of the research literature on simulation techniques. 
The development for untimed automata is designed to support a similar 
development for timed automata. Part II of this paper will show how the 
results of this paper can be carried over to the setting of timed 
automata. ,c 1995 Academic Press, Inc. 
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1. INTRODUCTION 

Much of the current work in verification of concurrent 
systems is based on the use of simulation techniques. A 
simulation proof involves establishing a correspondence 
known as a simulation between the states of two systems, A 
and B, where one (A) is regarded as an implementation and 
the other (B) is regarded as a specification. The corre
spondence is generally defined in terms of individual states 
and transitions, rather than in terms of entire executions. 
The existence of a simulation is used to show that any 
behavior that can be exhibited by A can also be exhibited by 
B; thus, if B solves some problem of interest, so does A. 
Typically, system A contains more details than B, or is an 
optimized or distributed version of B. Simulation techni
ques work for timing-based as well as untimed systems. 

The research literature contains a large number of 
different types of simulations. Although all have the same 
general goals, there are many variations, some significant 
and some not, in their definitions and properties. An 
obstacle to the use of simulations in practice is that there has 
been, so far, no unified, comprehensive presentation of 
simulation methods. Our goal is to provide such a presenta
tion: to identify the most important types of simulations, to 
express them in a common framework, to clarify the rela
tionships between them, and to identify those properties 
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that are significant for verification purposes. We present our 
results for the untimed setting in this paper, and extend 
them to the timed setting in Part II [ 38]. 

Specifically, in this paper, we present forward and back
ward simulation techniques for proving trace inclusion 
relationships between concurrent systems. We describe all 
the simulation techniques in terms of a simple and general 
untimed automaton model that includes internal actions. 
Among the kinds of simulations we define are refinements, 
forward simulations, backward simulations, and hybrid ver
sions that we call forward-backward and backward-forward 
simulations. We also define history relations and prophecy 
relations, which are abstract versions of the history and 
prophecy variables, respectively, of Abadi and Lamport 
[ 1]. We prove implication relationships among the different 
types of simulations, as well as soundness and completeness 
theorems. Finally, we show how invariants can be incor
porated into all of the simulations. 

The simplest simulations we consider are refinements. 
Refinements are similar to homomorphisms between 
automata in the sense of classical automata theory [ 10], 
and to the data refinements that are used in program 
development to replace abstract mathematical data struc
tures by concrete structures that are more easily imple
mented [ 40, 15, 30, 18]. Lamport [28] advocates the use of 
refinements to prove that one concurrent program module 
implements another. A refinement from an automaton A to 
another automaton Bis a function from states of A to states 
of B such that (a) the image of every start state of A is a start 
state of B, and (b) every step of A has a corresponding 
sequence of steps of B that begins and ends with the images 
of the respective beginning and ending states of the given 
step, and that has the same external actions. This notion of 
refinement implies that the traces of A are also traces of B. 
We give soundness and partial completeness results for 
refinements. 

We next consider forward simulations and backward 
simulations, generalizations of refinements that allow a set 
of states of B to correspond to a single state of A. Forward 
simulations are similar to the simulations of [ 44, 19, 21 ], 
the possibilities mappings of [33, 35], the downward 
simulations of [ 17, 23, 13 ], the forward simulations of 
[ 22], and the history measures of [ 25]. The corre
spondence conditions (a) and ( b) for refinements are 
generalized so that (a) every start state of A has some image 
that is a start state of B, and (b) every step of A and every 
state of B corresponding to the beginning state of the step 
yield a corresponding sequence of steps of Bending with an 
image of the ending state of the given step. Again, we give 
soundness and partial completeness results. 

Backward simulations are similar to the upward simula
tions of [17, 23, 13], the prophecy mappings of [39], the 
backwards simulations of [21 ], and the prophecy measures 
of [ 25]. In the case of a backward simulation, conditions 

(a) and (b) for refinements are generalized so that (a) all 
images of every start state of A are start states of B, and ( b) 
every step of A and every state of B corresponding to the 
ending state of the step yield a corresponding sequence of 
steps of B beginning with an image of the beginning state of 
the given step. Again, we give soundness and partial 
completeness results. 

Next, we consider two combinations of forward and 
backward simulations, which we callforward-backward and 
backward-forward simulations, respectively. These are 
essentially compositions of one forward and one backward 

simulation, in the two possible orders. The definition of a 
forward-backward simulation was inspired by the work of 
Klarlund and Schneider [ 24, 25] for the case without inter
nal actions. Forward-backward simulations are also similar 
to the subset-simulations of [22] and the simple failure 
simulations of [ 9]. Our new notion of a backward-forward 
simulation is suggested by symmetry with forward-back
ward simulations. We give soundness and completeness 
results; while some of the results for backward-forward 
simulations are symmetric with those for forward-back
ward simulations, others (notably certain completeness 
results) are different. 

The final simulations we consider are history relations and 
prophecy relations. These are new and abstract versions of 
the history and prophecy variables of Abadi and Lamport 
[ 1]. The basic concept of history variables goes back at 
least as far as Lucas [ 32]. Owicki and Gries [ 43] defined 
history variables (which they called auxiliary variables) and 
used them in verifying parallel programs. Subsequently, 
Abadi and Lamport [ 1] gave a more abstract, language 
independent definition of history variables, and also intro· 
duced the dual concept of a prophecy variable. Severa 
authors observed that history and prophecy variables are 
closely related to forward and backward simulations, 
respectively, [ 39, 22, 25]. Inspired by this, we define in this 
paper the even more abstract notions of history and 
prophecy relations, and show their equivalence with the 
history, respectively prophecy, variables of [ 1]. According 
to our definitions, a history relation is simply a forward 
simulation whose inverse is a refinement, while a prophecy 
relation is simply a backward simulation whose inverse is a 
refinement. We prove some simple new characterizations; 
e.g., a forward simulation from A to B is equivalent to the 
combination of a history relation from A to some C and a 
refinement from C to B, and analogously for a backward 
simulation and a prophecy relation. We also give a simple 
new proof of a completeness result of Abadi and Lamport. 

Finally, we address the issue of integrating invariants into 
simulation proofs. Our main development is carried out 
without mention of invariants, for the sake of simplicity. 
However, in actual verification examples using simulations, 
it is almost always the case that a preliminary collection of 
invariants is proved, then used where needed in proving 
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the step correspondence. We state results showing how 
invariants can be used in conjunction with all the types of 
simulations. 

We have crafted the development in this paper to be com
patible with a similar development for timed systems; this 
work appears in Part II [ 38]. There, we define a new type 
of automaton called a timed automaton, and use it to define 
timed versions of all the simulations in this paper. Happily, 
the results for the timed setting turn out to be analogous to 
those for the untimed setting. In nearly all cases, the results 
for the timed setting are derived from those for the untimed 
setting, while in the few remaining cases, new proofs 
analogous to those in this paper are presented. 

The usefulness of refinement mappings, history variables, 
and forward simulations in proving correctness has been 
well demonstrated. Abstraction mappings, which are essen
tially refinement mappings, comprise a basic proof method 
for implementations of abstract data types [ 30, 18]. They 
are also widely used in the verification of concurrent and 
reactive systems. Some typical examples can be found in 
[28, 14 ]. There is also a long tradition of using history 
variables in program verification [ 32, 6, 43, 45]. Often 
history variables are used together with refinements, see for 
instance [27]. Forward simulations combine refinement 
mappings with history variables. Typical examples of their 
use appear in [ 19, 31, 34, 29, 42]. Bisimulations, which 
combine in a single relation forward simulations in two 
directions, play a vital role in the theory of process algebras 
[ 44, 41, 4]. Backward simulations have so far been much 
less widely used. Abadi and Lamport [ 1] demonstrate the 
usefulness of prophecy variables (and hence backward 
simulations), with some simple examples, while [ 29] 
contains a somewhat more practical example. There has not 
been much work on applying the hybrid forward and 
backward methods. 

We consider the main contribution of this paper to be the 
unified presentation, in terms of a simple and general 
automaton model, of a wide range of important simulation 
techniques, together with their basic soundness and com
pleteness properties. Some features of our presentation are: 
(a) It parallels and supports a similar development for 
timed systems. (b) We present the simulations in a "bottom
up" order, starting with simple ones such as forward and 
backward simulations and building up to more complicated 
simulations such as forward-backward simulations and 
history relations. The proofs of many of the results for 
complicated simulations rest on the results for the simpler 
simulations. ( c) We separate out the treatment of invariants. 
We make no mention of invariants (or even of state 
reachability) in our main development, but only incor
porate them at the end. The results involving invariants can 
be proved using the results without invariants. 

In addition, there are several new definitions and 
theorems, notably, (a) the abstract definitions of history 

and prophecy relations, and the accompanying charac
terization and completeness theorems, and (b) the defini
tion and properties of backward-forward simulations. 

The rest of this paper is organized as follows. Section 2 
contains basic definitions and results for untimed automata. 
Section 3 contains the development of the basic simulation 
techniques: refinements, forward simulations and backward 
simulations. Section 4 contains the development of the 
hybrid techniques: forward-backward and backward
forward simulations. Section 5 contains the results on 
history and prophecy relations. Section 6 shows how 
invariants can be included in the simulations. Section 7 
contains some conclusions and a discussion of related 
work. Finally, Appendix A contains some mathematical 
preliminaries, and Appendix B gives a glossary of conven
tions followed in the paper. 

2. UNTIMED AUTOMATA AND THEIR BEHAVIORS 

In this section, we present the basic definitions and results 
for untimed automata. We also define certain restricted 
kinds of automata that are useful in our proofs, and define 
various sets of traces that automata can generate. 

2.1. Automata 

We begin with the definition of an (untimed) automaton. 
An automaton A consists of: 

• a set states( A) of states, 

• a nonempty set start( A) s;; states( A) of start states, 

• a set acts( A) of actions that includes a special element 
r, and 

• a set steps( A) ~states( A) x acts( A) x states( A) of steps. 

All these components should be completely self-explana
tory. 

We let s, s', u, u', ... range over states, and a, ... over 
actions. We let ext( A), the external actions, denote 
acts( A)- { r}. We call r the internal action. The term event 
refers to an occurrence of an action in a sequence. If y is a 
sequence of actions then y is the sequence obtained by 
deleting all r events from y. We writes'--!!..+ As, or just s'--!!..+ s 
if A is clear from the context, as a shorthand for (s', a, s) E 

steps(A). In this paper (Part I), A, B, ... range over 
automata. 

An execution fragment of A is a finite or infinite alter
nating sequence, s0 a 1 s1 a2s2 • • ·, of states and actions of A, 
beginning with a state, and if it is finite also ending with a 
state, such that for all i, S; a;+i s;+ 1 . We denote by frag*(A), 
frag"'(A), and frag(A) the sets of finite, infinite, and all 
execution fragments of A, respectively. An execution of A is 
an execution fragment that begins with a start state. We 
denote by execs*(A), execsw(A), and execs(A) the sets of 
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finite, infinite, and all executions of A, respectively. A state 
s of A is reachable ifs= last(r:x) for some finite execution r:x 
of A. 

Suppose r:x = s0 a1 s1 a1s2 · · · is an execution fragment of A. 
Let y be the sequence consisting of the actions in a.: 
y = a 1 a2 • • .• Then trace(r:x) is defined to be the sequence y. A 
finite or infinite sequence fJ of external actions is a trace of 
A if A has an execution r:x with fJ = trace(r:x). We write 
traces*( A), traces<»( A), and traces(A) for the sets of finite, 
infinite and all traces of A, respectively. These notions 
induce three preorders (i.e., reflexive and transitive rela
tions). For A and B automata, we define A ~ •T B ~ 
traces*(A) £ traces*(B), A ~wT B ~ tracesw(A)s; tracesw(B), 
and A ~TB ~ traces( A)£ traces(B). Recall that the kernel 
of a preorder ~ is the equivalence = defined by x = y ~ 
xc:y Ayc:x. We denote by =·T• =wT• and =T the respec
tive kernels of the preorders ~ff' ~wT• and ~T· 

Suppose A is an automaton, s' and s are states of A, and 
fJ is a finite sequence over ext(A). We say that (s', [J, s) is a 
move of A, and writes' b A s, or just s' b s when A is clear, 
if A has a finite execution fragment r:x with first(rx)=s', 
trace( rx) = fJ and last( rx) = s. 

EXAMPLE 2.1. The automata A1 and A1 of Fig. 1 
illustrate the difference between ~.T and ~T· Each has a 
linear sequence of states. A 1 has a single start state, and a 
step from each state to its right neighbor, while A2 has all 
states as start states, and a step from each state to its left 
neighbor. Every finite sequence of a's is a trace of each of A 1 

and A 2 ; in addition, the sequence consisting of infinitely 
many a's is a trace of A 1 but not of A 2 • Therefore, 
A 1 =.TA 2 , A 2 ~TA 1 , andA 1 ~TA2 • 

2.2. Restricted Kinds of Automata 

Now we describe three restricted kinds of automata that 
are useful in our proofs. 

First, automaton A is deterministic if lstart(A)I = 1, and 
for any states' and any finite sequence fJ over ext(A), there 

is at most one state s such that s' b s. A deterministic 
automaton is characterized uniquely by the properties that 
lstart(A)I = 1, every r step is of the form (s, r, s) for some s, 
and for all states s' and all actions a there is at most one 
state s such that s' ~As. 

Second, A has finite invisible nondeterminism (fin) if 
start( A) is finite, and for any states' and any finite sequence 

a a a j a j a j a j ... 

~T 

~T 

FIG. 1. ,;;;.T versus ,;;;T. 

/3 oler ext( A), there are only finitely many states s such that 
S1 ==>AS. 

Third, A is a forest if, for each state s of A. there is a 
unique execution that leads to s. A forest is characterized 
uniquely by the property that all states of A are reachable, 
start states have no incoming steps and each of the other. 
states has exactly one incoming step. 

The relation after( A) consists of the pairs ( [J, s) for which 
there is a finite execution of A with trace fJ and last states: 

after( A) ~ { {/J, s) I 3rx E execs*( A): 

trace(rx) = fJ and last( r:x) = s}. 

We also define past(A) to be the inverse of qfter(A), 
past( A) ~ after( A) - 1; this relates a state s of A to the traces 
of finite executions of A that lead to s. 

LEMMA 2.2. 

I. If A is deterministic then after( A) is a function from 
traces*(A) to states(A). 

2. If A has fin then after( A) is image-finite. 1 

3. If A is a forest then past(A) is a function from 
states( A) to traces*( A). 

EXAMPLE 2.3. In Fig. 1, automaton A 1 is deterministic 
(and so has fin), and is a forest. Automaton A2 has none of 
these three properties. 

2.3. Trace Properties 

In this subsection, we define "trace properties," the 
structures that are used as external behaviors for automata. 
We also prove some basic properties of trace properties and 
some lemmas relating trace properties to automata. 

A trace property P is a pair ( K, L ), where K is a set and 
L is a nonempty, prefix closed set of (finite or infinite) 
sequences over K. We will refer to the constituents of. P 
as sort(P) and traces(P), respectively. Also, we wnte 
traces*(P) ~ K* n Land tracesw(P) ~ Kw n L. For P and 
Q trace properties, we define P ~.T Q ~ traces*(P) £ 
traces*( Q), P ~wT Q ~ tracesw(P) s; tracesw( Q), and P ~ T 

Q ~ traces(P) s; traces( Q). With ==·T• =wT• and =T· we 
denote the kernels of the preorders ~.T, ~wT• and ~T• 
respectively. A trace property P is limit-~losed. if an ~nfi
nite sequence is in traces(P) whenever all its fimte prefixes 
are. 

LEMMA 2.4. Suppose P and Qare trace properties with Q 
limit-closed. Then P~.T Q~P~T Q. 

The behavior of an automaton A, beh(A), is defined by 
beh(A) ~ (ext(A), traces(A)). 

1 See Appendix A for the definition of image-finite. 
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LEMMA 2.5. 

1. beh(A) is a trace property. 

2. If A has fin then beh(A) is limit-closed. 

3. A ~.T B<=>beh(A) ~.T beh(B), A ~wT B<=>beh(A) ~wT 
beh(B), and A ~TB<=> beh(A) ~T beh(B). 

Proof It is easy to see that beh(A) is a trace property. 
For Part 2, suppose A has fin. We use Lemma A.1 to 

show that beh(A) is limit-closed. Suppose fJ is an infinite 
sequence over ext( A) such that all finite prefixes of pare in 
traces(A). Consider the digraph G whose nodes are pairs 
(y, s) E afier(A), where y is a finite prefix of {J; there is an 
edge from node (y', s') to node (y, s) exactly if y is of the 
form y' a, where a E ext( A), and where s' ~A s. Then G 
satisfies the hypotheses of Lemma A. l, which implies that 
there is an infinite path in G starting at a root. This 
corresponds directly to an execution a having trace( a)= {J. 
Hence, fJ E traces( A). 

Part 3 is immediate from the definitions. I 
PROPOSITION 2.6. If B has fin then A ~ •T B <=>A ~TB. 

Proof Immediate from Lemma 2.4 and Lemma 2.5. I 
EXAMPLE 2.7. Recall that, in Fig. 1, A1 :::;;.T A2 but 

A 1 ~TA 2 • This is consistent with Lemma 2.6, because A 2 

does not have fin. 

We close this section with the construction of the canoni
cal automaton 2 for a given trace property. For P a trace 
property, the associated canonical automaton can(P) is the 
structure A given by 

• states( A)= traces*( P ), 

• start(A) ={A.}, 
• acts(A) =sort(P)u {r}, and 

•for {J',[Jestates(A) and aEacts(A), fJ'~AfJ-= 

a E ext( A) /\ {J' a = {J. 

LEMMA 2.8. 

1. can(P) is a deterministic forest. 

2. beh( can( P)) = •T P. 

3. beh(can(P))~TP. 

4. If P is limit-closed then beh( can( P)) = T P. 

Proof Parts 1 and 2 follow easily from the definitions. 
Since can( P) is deterministic it certainly has fin, so it follows 
by Lemma 2.5 that beh( can( P)) is limit-closed. Now 3 and 
4 follow by combination of 2 and Lemma 2.4. I 

LEMMA 2.9. 

I. can(beh(A)) is a deterministic forest. 

2. can(beh(A)) =•TA. 

2 This notion is due to He Jifeng [ 13]. 

3. can(beh(A))~yA. 

4. If A has fin then can(beh(A)) =TA. 

Proof: By combining Lemma 2.5 and Lemma 2.8. I 

3. BASIC SIMULATIONS 

In this section, we develop the basic simulation techni
ques for untimed automata: refinements and forward and 
backward simulations. 

3.1. Refinements 

The simplest type of simulation we consider is a refine
ment. A refinement from A to Bis a function r from states of 
A to states of B that satisfies the following two conditions: 

I. Ifs E start( A) then r(s) E start(B). 

2. Ifs' ~As then r(s') b 8 r(s). 

We write A ~RB if there exists a refinement from A to B. 
This notion is similar to that of a homomorphism in 

classical automata theory; see for instance Ginzberg [ 10]. 
Besides our additional treatment of internal actions, a dif
ference between the two notions is that the classical notion 
involves a mapping between the action sets of the automata, 
whereas our refinements do not. 

EXAMPLE 3.1. Figure 2 presents some examples of 
automata that are and are not related by ~R· Automata A 3 

and A 4 have the same traces, A 3 ::::;R A 4 and A 4 ~R A 3 . 

Likewise, automata A5 and A6 have the same traces, 
A 5 ~ R A 6 and A 6 ~ R A 5 . 

The following technical lemma is a straightforward 
consequence of the definition of a refinement. 

LEMMA 3.2. Supp_ose r is a refinement from A to B and 
s' bA s. Then r(s') b 8 r(s). 

PROPOSITION 3.3. ~R is a preorder (i.e., is transitive and 
reflexive). 

Proof: The identity function id( states( A)) is a refine
ment from A to itself. This implies that ~ R is reflexive. 
Using Lemma 3.2, transitivity follows from the observation 
that if r is a refinement from A to B and r' is a refinement 
from B to C, then r' a r3 is a refinement from A to C. I 

The important property of refinements for verification is 
that they are sound for the trace inclusion preorder. 

THEOREM 3.4 (Soundness of Refinements). A ~ R B => 

A~TB. 

Proof: Suppose A ~RB. Let r be a refinement from A to 
B, and let e be a function that maps each move (s', [J, s) of 
B to a finite execution fragment of B from s' to s with trace 
fJ. Suppose fJ E traces( A). Then there exists an execution 

3 See Appendix A for the definition of the composition operator. 
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:;:T (} l· 
:;:T A: a a' 

~R ~R 

a :lR :lR 

A3 A4 As As 

FIG. 2. Refinements. 

cx. = soa1s1 a 2s2 · · · of A with p = trace(cx.). By the first condi
tion in the definition of a refinement, r(s0 ) is a start state of --B, and by the second condition, r(s;) ~8 r(s;+il for 
all i. For i~O, define a;=e((r(s;), C. r(s;+il)). Next 
define sequence cx.' to be the (infinitary) concatenation 
rxo tail( cx. 1 ) tail( cx.2 ) · · · . By construction, cx.' is an execution of 
B with trace( cx.') = trace( cx.) = p E traces( B). I 

Refinements alone are not complete for ~Tor :::;.T· We 
do have a (very) partial completeness result, however, 
which slightly generalizes a similar result of [25] in that it 
also allows for r-steps in the A automaton. 

THEOREM 3.5 (Partial Completeness of Refinements). 
Suppose A is a forest, B is deterministic, and A ~•TB. Then 
A~RB. 

Proof The relation r ~ after(B)opast(A) is a refine
ment from A to B. I 

3.2. Forward Simulations 

A forward simulation from A to B is a relation f over 
states( A) and states( B) that satisfies: 

1. Ifs E start( A) thenf[s] n start(B) # 0. 
2. If s' -3!..+A s and u' Ef[ s'], then there exists a state 

uEf[s] such that u' b 0 u. 

We write A ~F B ifthere exists a forward simulation from A 
to B. 

EXAMPLE 3.6. Let A 3 , A4 , A 5 , A 6 be as in Fig. 2. Then 
A4 ~F A3 and A 6 ~F A 5 . 

PROPOSITION 3.7. A ~R B=>A ~F B. 

Proof Any refinement relation is a forward simula
tion. I 

The following lemma is the analogue of Lemma 3.2 for 
forward simulations. 

LEMMA 3.8. Suppose f is a forward simulation from A to 
Bands' b A s. If u' Ef[ s'], then there exists a state u Ef[ s] 
such that u' b 8 u. 

PROPOSITION 3.9. :::;;F is a preorder. 

Proof For reflexivity, observe that the identity function 
id(states(A)) is a forward simulation from A to itself. For 
transitivity, use Lemma 3.8 to show that if f and f' are 
forward simulations from A to B and from B to C, respec
tively,f' 0 fis a forward simulation from A to c. I 

THEOREM 3.10 (Soundness of Forward Simulations [35, 
20, 47]). A ::;;;F B=>A ::;;;TB. 

Proof Versions of this proof appear in the cited papers. 
The proof is similar to that of Theorem 3.4. I 

Also, the following result is well known and variants of it 
have appeared in many papers (for instance, in [ 19, 47] ). 

THEOREM 3.11 (Partial Completeness of Forward 
Simulations). Suppose B is deterministic and A ~ *T B. Then 

A~FB. 

Proof The relation f ~ after( B) a past( A) is a forward 
simulation from A to B. I 

The following Proposition 3.12 is mainly of technical 
interest; in particular, it is the only one of our results for 
which we have not been able to prove an analogue in the 
timed case. It might also have some implications for verifica
tion: if one guesses that a relation! is a forward simulation 
from a forest A to an automaton B, then one might try to 
restrict f to a refinement r. Since such a refinement must 
exist (if f is in fact a forward simulation) and since 
refinements are usually easier to verify than forward 
simulations, this may lead to a simpler proof. 

PROPOSITION 3.12. Suppose A is a forest and A ::;:;; F B. 
Then A ~RB. 

Proof Let f be a forward simulation from A to B. We 
construct a choice function r for f, and prove that r is a 
refinement from A to B. 

For n ~ 0, let Layer n be the set of states s of A for which the 
(unique) execution leading to it contains n actions. Then the 
sets Layer n (n ~ 0) partition the set states( A) and Layer0 = 
start( A). We define functions r n: Layer,,~ states( B) in due 
tively such that r,.(s) Ef[s]. By Condition l in the definitio 
ofa forward simulation, there exists a function r0 : Layer0 -

start(B) satisfying r0(s) ef[s]. Suppose that r; has bee. 
defined for i:;:;:; n. By Condition 2 in the definition of a forwarc 
simulation, there exists a function r,, + 1 : Layer,,+ 1 -1 

states(B) such that if s is in Layer,,+ 1 and s' ~A s is th1 
unique incoming step of s, we have r11(.s 1 ) b 8 r,,+ 1(s) an< 
r11+ 1(s) Ef[s]. By construction, the union r of the function 
r 11 is a refinement from A to B with r(s) Ef[s]. I 

Proposition 3.12 allows us to give an alternative proc 
of the partial completeness result for refinement 
(Theorem 3.5): if A is a forest, B is deterministic ar> 
A ::;;;*TB, then A ~F B by Theorem 3.11, and then A :;;;R 
follows using Prop. 3.12. 
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3.3. Backward Simulations 

In many respects, backward simulations are the dual 
of forward simulations. Whereas a forward simulation 
requires that some state in the image of each start state 
should be a start state, a backward simulation requires that 
all states in the image of a start state be start states. Also, a 
forward simulation requires that forward steps in the source 
automaton can be simulated from related states in the target 
automaton, whereas the corresponding condition for a 
backward simulation requires that backward steps can be 
simulated. However, the two notions are not completely 
dual: the definition of a backward simulation contains a 
nonemptiness condition, and also, in order to imply sound
ness in general, backward simulations also require a finite 
image condition. The mismatch is due to the asymmetry in 
our automata between the future and the past: from any 
given state, all the possible histories are finite executions, 
whereas the possible futures can be infinite. 

A ba<kward simulation from A to B is a total4 relation b 
over states( A) and states(B) that satisfies: 

1. Ifs E start( A) then h[ s] £start( B). 

2. If s' ~A s and u E b[ s], then there exists a state 
u' E b[ s'] such that u' b 8 u. 

We write A ~a B ifthere exists a backward simulation from 
A to B, and A :::;;ia B if there exists an image-finite backward 
simulation from A to B. 

EXAMPLE 3.13. Let A 1 , A 1 be as in Fig. 1. Then 
A 1 ~ 8 A 2 but A 1 ~iB A 1 . If A 3 , A 4 , As, A 6 are as in Fig. 2, 
then A 4 ~ 8 A 3 and A 6 ~iB As. 

PROPOSITION 3.14. A~RB=A~iaB. 

The following lemma is useful in the proofs of the 
preorder properties and of soundness. 

LEMMA 3.15. Suppose bis a back·ward simulation from A 
to B and s' bA s. If ueb[s], then there exists a state 
u' E b[s'] such that u' .Jb,.9 u. 

PROPOSITION 3.16. ~Band ~iB are preorders. 

Proof The identity function id(states(A )) is a backward 
simulation from A to itself. Using Lemma 3.15 one can 
easily show that if b is a backward simulation from A to B 
and b' is a backward simulation from B to C, b' o bis a back
ward simulation from A to C. Moreover, if both band b' are 
image-finite, then b' o b is image-finite too. I 

THEOREM 3.17 (Soundness of Backward Simulations). 

1. A ~a B=A :::;;;.TB. 

2. A ~iB B=?A ~TB. 

4 See Appendix A for the definition of a total relation. 

Proof Suppose b is a backward simulation from A to B 
• ' /3 and suppose fJ e traces*(A ). Then there 1s a moves .=As, 

where s' is a start state of A. Since b is a backward simula
tion it is a total relation, so there exists a state ueb[s]. By 
Lemma3.15, there exists u'eb[s'] with u'b0 u. By the 
first condition of the definition of a backward simulation, 
u' e start(B). Therefore, fJ E traces*(B), which shows the 
first part of the proposition. 

For the second part, suppose that b is image-finite. We 
have already established A ::::;; •T B, so it is sufficient to 
show A :::;;;wT B. Suppose that fJ E tracesw(A), and !et 
oc=s0 a1s1a2 ••• be an infinite execution of A with 
trace( oc) = fJ. 

Consider the digraph G whose nodes are pairs ( u, i) such 
that (s ;, u) E b and in which then;.)s an edge from ( u', i') to 
(u, i) exactly if i = i' + 1 and u' /;b.8 u. Then G satisfies the 
hypotheses of Lemma A.l, which implies that there is an 
infinite path in G starting at a root. This corresponds 
directly to an execution oc' of B having trace( a.')= 
trace( ex:) = [J. Hence, fJ E traces( B). I 

Jonsson [22] considers a weaker image-finiteness condi
tion for backward simulations. Translated into our setting, 
the key observation of Jonsson is that in order to prove 
A :::;;;T B, it is enough to give a backward simulation b from 
A to B with the property that each infinite execution of A 
contains infinitely many states s with b[s] finite. We do not 
explore this extension in this paper, primarily because it 
lacks a key feature of simulation techniques. Namely, it fails 
to reduce reasoning about executions to reasoning about 
individual states and steps. 

The following partial completeness result slightly 
generalizes a similar result of Jonsson [ 21] in that it also 
allows for -r-steps in the B automaton. 

THEOREM 3.18 (Partial Completeness of Backward 
Simulations). Suppose A is a forest and A ~ •T B. Then 

1. A ~8 B, and 

2. if B has fin then A ~rn B. 

Proof We define a relation b over states( A) and 
states(B). Supposes is a state of A. Since A is a forest there 
is a unique trace leading up to s, say /J. Now define 

b[s] = { u I 3oc E execs*(B): trace( a.)= fJ /\ last( a)= u 

/\ Voc' eexecs*(B): [ex.'< ex.=? trace( a')# [J] }. 

By letting b[s] consist only of those states of B which can 
be reached via a minimal execution with trace p, we achieve 
that, ifs is a start state, all the states in b[s] are start states 
of B. It is also the case that b satisfies the other conditions 
in the definition of a backward simulation. 

Lemma 2.2 implies that b is image-finite if B has fin. I 
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FIG. 3. ~sand ~iB are different, even for automata withfin. 

The next proposition is the dual of Prop. 3.12, and 
provides us with yet another proof of the partial complete
ness result for refinements (Theorem 3.5 ), now using 
Theorem 3.18. Unlike Prop. 3.12, Prop. 3.19 does have an 
analogue in the timed case. 

PROPOSITION 3.19. Suppose all states of A are reachable, 
B is deterministic and A :::::; 8 B. Then A ::::; R B. 

Proof Let b be a backward simulation from A to B and 
let s be a reachable state of A. We will prove that b[s] 
contains exactly one element. Because all states of A are 
reachable, it follows that b is functional. But any functional 
backward simulation trivially is a refinement, and so we 
obtain A ~RB. 

Since b is a backward simulation, it is a total relation, so 
we know b[s] contains at least one element. Suppose that 
both u1 Eb[s] and u2 Eb[s]; we prove u 1 =u2 • Since sis 
reachable, there exists a start states' and a trace P such that 
s1 bAs. By Lemma3.15, there exist states u'1 ,u~Eb[s'] 
such that u'1 b 0 u 1 and u~ b 8 u2 . Since b is a backward 
simulation and s' is a start state of A, u'1 and u~ are start 
states of B. But B is deterministic and deterministic 
automata have only a single start state so u'1 = u~. Now the 
fact that Bis deterministic also implies u1 = u2 • I 

The following proposition is mainly of technical interest. 
It is used as a lemma in the technical report version of this 
paper [37] to complete the classification of weak simula
tions (see Section 6 ). 

PROPOSITION 3.20. Suppose all states of A are reachable, 
B has fin and A ~8 B. Then A ~iB B. 

Proof Let b be a backward simulation from A to Band 
let s be a state of A. Since s is reachable we can find a trace 
ftepast(A)[s]. From the fact that bis a backward simula
tion it follows that b[s] s; after(B)[fi]. But since B has fin, 
after(B)[fJ] is finite by Lemma 2.2. This implies that b is 
image-finite. I 

EXAMPLE 3.21. Figure 3 shows that the reachability 
assumptions in Propositions 3.19 and 3.20 are essential. 
There is a backward simulation from A7 to A8 , but even 
though A8 is deterministic there is no image-finite backward 
simulation. 

3.4. Combined Forward and Backward Simulations 

Several authors have observed that forward and back
ward simulations together give a complete proof method for 

::::;-T (see [17, 13, 21, 22, 23, 25]): if A~.yB then there 
exists an intermediate automaton C with a forward simula
tion from A to C and a backward simulation from C to B. 
We prove this below by taking C to be the canonical 
automaton of A, as defined in Section 2. Alternative proofs 
can be given using different intermediate automata, for 
example the automaton obtained by applying the classical 
subset construction on B (see [22, 25]) or the unfolding 
construction of Section 5.1 on A. 

THEOREM 3.22 (Completeness of Forward and Back-
ward Simulations). If A ~•TB then the following are true. 

i. 3C: A ,:::;F c~s B. 

2. If B has fin then 3C: A ~F C ~iB B. 

Proof Take C =can( heh( A)). By Lemma 2.9, C is a 
deterministic forest and A= •T C. Since C is deterministic. 
A ~ F C by Theorem 3.11, and because C is a forest, C ~ 8 B 
follows by Theorem 3.18( l ). If B has fin then C ~is B 
follows by Theorem 3.18(2). I 

4. HYBRID SIMULA TI ONS 

4.1. Forward-Backward Simulations 

Forward-backward simulations were introduced by 
Klarlund and Schneider, who call them invariants in [ 24] 
and ND measures in [25]. They also occur in the work of 
Jonsson [22] under the name subset simulations, and are 
related to the failure simulations of Gerth [9]. Forward
backward simulations combine in a single relation both a 
forward and a backward simulation. Below we present 
simple proofs of their soundness and completeness by 
making this connection explicit. 

Formally, a forward-backward simulation from A to Bis 
a relation g over states( A) and N(states(B)) that satisfies: 5 

I. If sEstart(A) then there exists SEg[s] such that 
S £ start( B ). 

2. If s' ~A s and S' E g[ s']. then there exists a set 
SE g[ s] such that for every u ES there exists u' ES' with 

I il u ==>8 u. 

We write A ::::;FB B if there exists a forward-backward 
simulation from A to B, and A ~iFB B if there exists an 
image-set-finite forward-backward simulation from A to B. 

The following theorem, which is similar to a result of [ 22 ], 
says that a forward-backward simulation is essentially just a 
combination of a forward and a backward simulation. 

THEOREM 4.1. 

i. A ~Fs B<=:>-(3C: A ~F c::::;s BJ. 

2. A::::;iFsB-(3C:A~Fc~iBB). 

5 The N( ) notation is defined in Appendix A. 
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Proof "=>" Let g be a forward-backward simulation 
from A to B, which is image-set-finite if A ~iFB B. Define C 
to be the automaton given by: 

• states( C) = range(g), 

.. start( C) = range(g) n P(start( B) ), 

• acts( C) = acts(B), and 

• for S', SE states( C) and a E acts( C), S' E.,c S =-Vu ES: 
3u' ES': u' b.9 u. 

Then g is a forward simulation from A to C. Also, { ( S, u) I 
SE states( C) and u ES} is a backward simulation from C to 
B, which is image finite if g is image-set-finite. 

"<=" Suppose f is a forward simulation from A to C, and 
b is a backward simulation from C to B. Then the relation 
g over states(A) and N(states(B)) defined by g= 
{ (s, b[ u]) I (s, u) Ef} is a forward-backward simulation 
from A to B. If bis image-finite then g is image-set-finite. I 

PROPOSITION 4.2. 

1. A ~F B=>A ~iFB B. 

2. A ~B B=>A ~FB B. 

3. A~iBB=A~iFBB. 

Proof Immediate from Theorem 4.1, using that ~iB 
and ~ F are reflexive. I 

In order to show that ~FB and ~iFB are preorders, we 
require a definition of composition for forward-backward 
simulations, and a transitivity lemma. 

If g is a relation over X and N ( Y) and g' is a relation over 
Y and N ( Z) then the composition g' • g is a relation over X 
and N(Z) defined as follows. 

(x, S') Eg1 •g =- 3S Eg[x]: 3cE S-+ N(Z): 

( c £ g' ;\ S' = u { c( y) I y ES}). 

Note that in the above definition c is a choice function 
for g' IS. The nonemptiness assumptions for g and g' 
immediately imply the nonemptiness assumption for g' •g. 

LEMMA 4.3. Suppose g is afonvard-backward simulation 
from A to B, and g' is a forward backward simulation from 
B to C. Then g' • g is a forward-backward simulation from A 
to C. Moreover, (f'g and g' are image-set-finite then g' • g is 
also image-set-finite. 

Proof For Condition 1 of the definition of a forward-
backward simulation, suppose s E start( A). Because g is a 
forward-backward simulation, there is a set SE g[ s] with 
S £start( B). Since g' is a forward-backward simulation, it 
is possible to find, for each u ES, a set S 11 E g' [ u] with 
S" £start( C). Hence all states in the set S' = U { S 11 I u ES} 
are start states of C. Now let c be the function with domain 

S given by c(u) =Su. Then c is a choice function for g' IS. 
From the definition of• it now follows that (s, S') E g' •g. 
This shows that g' • g satisfies Condition 1. 

Now we show Condition 2 of the definition of a forward
backward simulation. Suppose s' ....'!__,,A s and ( s', S') E g' •g . 
By definition of g' • g, there exist U' E g[ s'] and a choice 
function C1 for g' r U' such that S' = u { c' ( u') I u' E U'}. 
Because g is a forward-backward simulation from A to B, 
there is a set U eg[s] such 'that for each u EU there exists 
u' E U' with u' b.9 u. Consider any particular u E U. Choose 
u' E U' with u' b 9 u. Because g' is a forward-backward 
simulation, there exists a set S" E g' [ u] such that for every 
v ES" there exists a v' E c1(u 1 ) with v' be u. Define a choice 
function c for g' r u by taking c( u) to be the set s l<. 

Now consider the set S = U { c(u) I u E U}. Then (s, S) E 

g' • g by definition. By construction, we can find. for each 
v ES. a state v' ES' with u' be v. Thus S has the required 
property to show Condition 2. 

Finally, it is immediate from the definitions that, if g and 
g' are image-set-finite, g' • g is also image-set-finite. I 

PROPOSITION 4.4. ~FB and <iFB are preorders. 

Proof By Lemma 4.3. I 
THEOREM 4.5 (Soundness of Forward-Backward Simu-

lations, [ 24] ). 

!. A~rnB=A<.TB. 

2. A ~iFB B=A <TB. 

Proof For part 1, suppose A ~FB B. By Theorem 4.1, 
there exists an automaton C with A ~ F C ~ B B. By sound
ness of forward simulations, Theorem 3.10, A ~TC, and 
by soundness of backward simulations, Theorem 3.17, 
C ~.TB. This implies A ~.TB. Part 2 is similar. I 

THEOREM 4.6 (Completeness of Forward-Backward 
Simulations [ 24] ). Suppose A ~ •T B. Then 

!. A ~FB B, and 

2. if B has fin then A <iFB B. 

b s;T 
a b a a a 

b 
J'.'.iFB 

a b a a 
b 

a b a 
b 

a 

FIG. 4. The difference between ~T and ~iFB· 
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Proof By Theorem 3.22, there exists an automaton C 
with A ~F c~B B. Moreover, if Bhas fin then A ~Fc~iB B. 
Then Theorem 4.1 implies the needed conclusions. I 

EXAMPLE 4.7. The automata A 9 and Aw of Fig. 4 
illustrate the difference between ~T and ~iFB• and also 
show that the assumption that B has fin in Theorem 4.6(2) 
is essential. 

4.2. Backward-Forward Simulations 

Having studied forward-backward simulations, we find it 
natural to define and study a dual notion of backward
forward simulation. 

A backward-forward simulation from A to B is a total 
relation g over states( A) and P(states(B)) that satisfies: 

1. Ifs E start( A) then, for all SE g[s], Sn start( B) =f:. 0. 
2. If s' ....!!.+As and SEg[s], then there exists a set 

S' E g[ s'] such that for every u' ES' there exists a u ES with 
I a u =>8 u. 

We write A ~BF B if there exists a backward-forward 
simulation from A to B, and A ~iBF B if there exists an 
image-finite backward-forward simulation from A to B. 

As for forward-backward simulations, backward
forward simulations can be characterized as combinations 
offorward and backward simulations. 

THEOREM 4.8. 

1. A~BFB<=>(3C:A~ 8 C~FB). 

2. A~iBFB<=>(3C:A~;BC~FB). 

Proof "=>" Let g be a backward-forward simulation 
from A to B, which is image-finite if A ~iBF B. Define C to 
be the automaton given by 

• states( C) = range(g), 

• start( C) =range( g I start( A)), 

• acts( C) = acts( B ), and 

• for S', SE states( C) and a E acts( C}, S' ...!!....,,c S <=> 
Vu' ES': 3uES: u' b 8 u. 

Then g is a backward simulation from A to C (and 
image-finiteness carries over). Also, the relation { (S, u) I 
SE states( C) and u ES} is a forward simulation from C 
to B. 

"=" Easy. I 
PROPOSITION 4.9. 

1. A ~FB=>A ~iBF B. 

2. A ~B B=>A ~BF B. 

3. A ~iB B=>A ~iBF B. 

Proof Immediate from Theorem 4.8, using the fact that 
~iB and ~Fare reflexive. I 

In order to show the properties of backward-forward 
simulations, it is useful to relate them to forward-backward 
simulations. 

THEOREM 4.10. 

1. A~BFB<=>A~FBB. 

2. A ~iBF B =>A ~iFB B. 

Proof For one direction of 1, suppose that A ~BF B. 
Then by Theorem 4.8, there exists an automaton C 
with A ~B c~F B. By Prop. 4.2, A ~FB c and c~FB B. 
Now A ~FB B follows by Prop. 4.4. The proof of 2 is 
similar. 

For the other direction of 1, suppose that/ is a forward
backward simulation from A to B. Given a state s of A, we 
define g[ s] to be exactly the set of subsets S of states( B) 
such that S intersects each set in /[s] in at least one 
element. We claim that g is a backward-forward simulation 
from A to B. 

1. g is total. 

Proof Suppose sEstates(A). By assumption f is a 
forward-backward simulation, so all elements off[ s] are 
nonempty. Hence the set S = U /[ s] intersects each 
element of/[s] in at least one element. Thus, by definition 
Sis in g[s]. 

2. Ifs E start( A) then, for all SE g[s], Sn start(B) =f:. 0 

Proof Suppose s E start( A) and SE g[ s]. By assumr 
tionfis a forward-backward simulation, so there exists a sc., 
S' inf[s] such that S' £ start(B). By definition of g, Sinter
sects S' in at least one element. Hence S intersects start( B) 
in at least one element. 

3. If s'....!!..+As and Seg[s], then there exists a set 
S' E g[ s'] such that for every u' ES' there exists a u ES with 

I a 
U ==':>BU. 

Proof Suppose s' ~A s and SE g[ s]. Let f [ s'] = 

{ S~ I i EI}. By assumption/is a forward-backward simula
tion, so there exists, for each iE/, a set S;E/[s] such that 
for every u ES; there exists u' Es: with u' b.8 u. By defini
tion of g, S intersects each of the sets S; in at least one 
element. So choose, for each i, an element u; in the intersec
tion of S and S;. Then, for each i, there exists u; ES~ such 
that u: b.8 u;. Let S' = { i( I i EI}. Then S' intersects each 
element of/[s'] in at least one element, so S'ef[s']. By 
construction, for every u' ES' there exists a u ES with 

I {/ 
U ~BU. 

Hence A ~BF B. I 

EXAMPLE 4.11. In general it is not the case that 
A ~iFB B implies A ~iBF B. A counterexample is presented 
in Fig. 5. The diagram shows two automata A 11 and A 12 • 



224 LYNCH AND VAANDRAGER 

w 

0 

:SiFB 

0 

t;iBF O' 

1 2 3 4 

Au w' A12 

FIG. 5. The difference between ~iFB and ~iBF· 

In the diagram a label > i next to an arc means that in fact 
there are infinitely many steps, labeled i + 1, i + 2, i + 3, etc. 

We claim that the relation g given by 

g[ 0] = { { 0}, { O', 1}, { O', 1 ', 2}, ... } 

g[ n] = { { w}, { w'} } for n > 0 

is an image-set-finite forward-backward simulation from 
Au to A 12 • 

However, there is no image-finite backward-forward 
simulation from A 11 to A12 . We see this as follows. Suppose 
g is an image-finite backward-forward simulation from A 11 

to A 12 • In order to prove that this assumption leads to a 
contradiction, we first establish that g[O] does not contain 
a finite subset X of N. First note that by the first condition 
in the definition of a backward-forward simulation, all sets 
in g[O] are nonempty. The proof proceeds by induction on 
the maximal element of X. For the induction base, observe 
that { 0} ~ g[ 0], since 0 has an incoming 0-step in A 11 but 
not in A 12 • For the induction step, suppose that we have 
established that g[ 0] contains no finite subset of N with a 
maximum less than n, and suppose X E g[ 0] with X a finite 
subset of N with maximum n. Using the fact that O has 
an incoming 0-step in A 11 , the second condition in the 
definition of a backward-forward simulation gives that 
g[O] contains an element of g[O] which is a subset of N 
with a maximum less than n. This contradicts the induction 
hypothesis. 

Pick some state n > 0ofA 11 and a set S' E g[n]. Since A11 

has a step 0 ~ n, there exists a set SE g[ O] such that every 
state in S has an outgoing n-step. Then S must be a subset 
of { 0, ... , n - 1, (n - 1 )'}. Since g[O] does not contain the 
empty set or a finite subset of N, it follows that (n - l )'ES. 
But since n was chosen arbitrarily (besides being positive) it 
follows that g[O] has an infinite number of elements. 
This gives a contradiction with the assumption that g is 
image-finite. 

PROPOSITION 4.12. ~BF is a preorder. (However, ~iBF is 
not a preorder.) 

Proof The fact that ~BF is a preorder, is trivially 
implied by Theorem 4.10 and Prop. 4.4. 

The counterexample of Fig. 5 tells us that ~iBF is not a 
preorder in general. If we take the two automata A 11 and 
A 12 from the example, then we can find an automaton C 
with A 11 ~F C ~iB A 12 , using Theorem 3.22. By Prop. 4.9, 
A11~iBFC and c~iBFA12· Hence it cannot be 
that ~iBF is transitive, because this would imply 
A11~iBFA12• I 

Soundness and completeness results for backward
forward simulations now follow from those for forward
backward simulations. 

THEOREM 4.13 (Soundness of Backward-Forward Simu
lations). 

1. A ~BF B=>A ~.TB. 

2. A ~iBFB=>A ~TB. 

Proof By Theorem4.10 and Theorem 4.5. I 

THEOREM 4.14 (Completeness of Backward-Forward 
Simulations). A ~•TB=> A ~BF B. 

Proof By Theorem 4.6 and Theorem 4.10. I 

Example 4.11 falsifies the completeness result that one 
might expect here. That is, Theorem 4.14 does not have a 
second case saying that if B has Jin and A ~.TB, then 
A ~iBFB. 

5. AUXILIARY VARIABLE CONSTRUCTIONS 

In this section, we present two new types of relations, 
history relations and prophecy relations, which correspond 
to the notions of history and prophecy variable of Abadi 
and Lamport [ 1]. We show that there is a close connection 
between history relations and forward simulations, and also 
between prophecy relations and backward simulations. 
Using these connections together with the earlier results of 
this paper, we can easily derive a completeness theorem for 
refinements similar to the one of Abadi and Lamport [ 1]. 
In fact, in the setting of this paper, the combination of 
history and prophecy relations and refinements gives 
exactly the same verification power as the combination of 
forward and backward simulations. 

5.1. History Relations 

A relation hover states( A) and states(B) is a history rela
tion from A to B if h is a forward simulation from A to B and 
h- 1 is a refinement from B to A. We write A~ H B if there 
exists a history relation from A to B. Thus A ~ H B implies 
A~FBandB~RA. 
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We give an example of a history relation, using the con
struction of the unfolding of an automaton; the unfolding of 
an automaton augments the automaton by remembering 
information about the past 

The unfolding of an automaton A, notation ur~fold(A ), is 
the automaton B defined by 

• states( B) =execs*( A), 

• start( B) = the set of finite executions of A that consist 
of a single start state, 

• acts( B) =acts( A), and 

• for oc', rx Estates( B) and a E acts( B), rx' __E__,8 ex Q> ex= 
rx'a last(rx). 

PROPOSITION 5.1. unfold( A) is a forest and A ~H 
unfold( A). 

Proof Clearly, unfold( A) is a forest. The function last 
which maps each finite execution of A to its last state is a 
refinement from unfold( A) to A, and the relation last - 1 is a 
forward simulation from A to unfold( A). I 

EXAMPLE 5.2. For the automata of Fig. 2, A 3 :)i1'.; HA 4 , 

A 4 ~H A 3 , A 5 ~ A 6 and A 6 ~ A 5 . 

PROPOSITION 5.3. "( H is a preorder. 

Proof Reflexivity is trivial. For transitivity, suppose his 
a history relation from A to B and h' is a history relation 
from B to C. Then h is a forward simulation from A to Band 
h' is a forward simulation from B to C, so h' "h is a forward 
simulation from A to C, by Proposition 3.9. Also, since h' - 1 

is a refinement from C to B and h - 1 is a refinement from B 
to A, (h' oh )- 1 =1i- 1 oh' - 1 is a refinement from C to A by 
Proposition 3.3. It now follows that h' oh is a history 
relation from A to C. I 

Although inspired by [ 39, 22, 25 ], the notion of a history 
relation is a new contribution of this paper. It provides a 
simple and abstract view of the history variables of Abadi 
and Lamport [ 1] (which in turn are abstractions of the 
auxiliary variables of Owicki and Gries [ 43] ). Translated 
into the setting of this paper, history variables can be simply 
defined in terms of history relations, as follows. 

An automaton B is obtained from an automaton A by 
adding a history variable if there exists a set V such that 

• states(B) t;;:;states(A) x V, and 

• the relation { (s, (s, v)) I (s, v) Estates(B)} is a history 
relation from A to B. 

Whenever B is obtained from A by adding a history 
variable, then A ~H B by definition. The following proposi
tion states that the converse is also true if one is willing to 
consider automata up to isomorphism. 

Two automata A and B are isomorphic, notation A ~ B, 
iff they have the same sets of actions and there exists an 

isomorphism between them, i.e., a bijective function c;o from 
states( A) to states( B) satisfying 

1. s E start( A) iff c;o( s) E start( B). 

2. s' ...!!...., A s itf <p( s') __E__, 8 <p( s). 

PROPOSITION 5.4. Suppose A ;;;H B. Then there exists an 
automaton C that is isomorphic to Band obtainedfrom A by 
adding a history variable. 

Proof Let h be a history relation from A to B. Define 
automaton C by 

• states( C) = h, 

• (s, u) Estart( C) <o> u Estart(B), 

• acts( C) =acts( B), and 

•for (s',u'), (s,u)Estates(C) and aEacts(C), (s',u') 

...!!....,c (s, u) <o> u' _!!_., 8 u. 

The function c;o that maps a state (s, u) of C to the state u of 
Bis an isomorphism between C and B: c;o is bijective because 
h - i is a function from states of B to states of A, and from the 
definition of C it is immediate that cp preserves initial states 
and steps. In order to see that C is obtained from A by 
adding a history variable, let states( B) play the role of the 
set V required in the definition of a history variable. We 
check that h' = { (s, (s, v)) I (s, v) Eh} is a history relation 
from A to C. 

1. h' is a forward simulation from A to C. 

Proof Suppose sEstart(A). Since his a history relation 
from A to B, it is in particular a forward simulation from A 
to B. Thus there exists a state v E start(B) n h[s]. By defini
tion of C, (s, v)Estart(C), and by definition of h', (s, v)E 

h'[s]. 
Next supposes' __E__, A sand (s', v') Eh' [ s']. Then v' Eh [ s'] 

and so there exists a v E /z[ s] such that v' b 8 v. This implies 
(s, v) E h'[s] and (s', v') be (s, v). 

2. h' - 1 is a refinement from C to A. 

Proof Suppose (s, v) E start( C).Then v E start( B). Since 
h is a history relation from A to B, 1z- 1 is a refinement from 
B to A. This implies 

Next suppose (s', v') __E__,c (s, v). Then by definition of C, 
v' __E__, 8 v. Hence, since h- 1 is a refinement from B to A, 

At first sight, Prop. 5.4 may look tautological, since 
history variables are defined in terms of history relations. 
However, note that the analogue of Prop. 5.4 does not 
hold in the setting of Klarlund and Schneider [ 25 ], who 
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define their notion of a history variable in terms of forward 
simulations rather than history relations. Klarlund and 
Schneider [25] say that an automaton Bis obtained from 
an automaton A by adding history infimnation if there exists 
a set 1 ·such that 

• states( B) :;;; states( A) x T •• and 

•the relation {(s. {s. r)) I (s, I') Estates( BJ} is a forward 
simulation from A to B. 

It is easy to see that even though there is a forward simula
tion from automaton A 5 to automaton A. 6 in Fig. 2, A 6 is 
not isomorphic to any automaton C obtained from A 5 by 
adding history information. This follows because each such 
C must have at least two start states. 

Proposition 5.4 shows that in our setting history relations 
do capture the essence of history variables. For this reason 
and also because history relations have nicer theoretical 
properties. we will state all our results in this subsection in 
terms of relations, and will not mention the auxiliary 
variables any further. 

THEOREM 5.5 (Soundness of History Relations). A :S:::H 
B=>A :=TB. 

Proo( Immediate from the soundness of refinements 
and forward simulations. I 

In fact, a history relation from A to B is just a functional 
(weak) bisimulation between A and B in the sense of Park 
[ 44] and Milner [ 41 ] . This implies that if there exists a 
history relation from A to B, both automata are observa
tion-equira/ent. Hence, history relations preserve the 
behavior of automata in a very strong sense. 

We can now state and prove the completeness results of 
Sistla [ 46]. 

THEOREM 5.6 (Completeness of History Relations and 
Backward Simulations. [ 46] ). Suppose A :::::; •T B. Then 

I. 3C:A::::;Hc::::;BB,and 

1 !fB hasfin then 3C: A :S:::H C:S:::is B. 

Proof Take C = unfi!/d(A ). By Prop. 5.1, C is a forest 
and A :::::; H C. Since A :::::; .r B. also C:::::; .r B by the soundness 
of history relations (Theorem 5.5 ). Next we can apply the 
partial completeness result for backward simulations 
(Theorem 3.18) to conclude ( 1) C:::::; B B. and (2) if B has fin 
then c:::::;iB B. I 

Suppose R is a relation over states( A) and states(B) 
with Rn(start(A)xstart(B))#0. (Typically. R will be a 
fonvard or a backward simulation.) The superposition 
sup( A. B, R) of B onto A via R is the automaton C defined 
by 

• states( C) = R, 

• start( C) =Rn (start( A) x start( B) ), 

• acts( C) =acts( A) n acts( B), and 

• for (s'. u'), (s, u)Estates(C) and aEacts(C), 

a , a 
(s', u') ~c (s, u) ~ s' =As/\ u =s u. 

LEMMA 5.7. Suppose f is a forward simulation from A to 
B. Let C= sup( A, BJ) and let n 1 and n 2 be the projection 
functions that map states of C to their first and second 
.components, respectively. Then n ;- 1 is a history relation from 
A to C and n2 is a refinement from C to B. 

The following theorem gives a precise and compact 
formulation of the folklore result that forward simulations 
are the same as history variables combined with refinements. 

THEOREM 5.8. A :::;F B<=> (3C: A :::::;H C :::::;RB). 

Proof For the implication"=>", suppose A :::::;F B. Letf 
be a forward simulation from A to B. Take C =sup( A, B, j). 
The result follows by Lemma 5.7. For the implication"=", 
suppose that A :::::;H C :::::;RB. Then A:::::; F C by the definition 
of history relations, and C:::::; F B because any refinement is a 
forward simulation. Now A ::::;F B follows by the fact that 
:::::; F is a preorder. I 

5.2. Prophecy Relations 

Now we will present prophecy relations and show that 
they correspond to backward simulations, very similarly to 
the way in which history relations correspond to forward 
simulations. 

A relation p over states(A) and states(B) is a prophecy 
relation from A to B if p is a backward simulation from A to 
Band p- 1 is a refinement from B to A. We write A:::::; PB if 
there exists a prophecy relation from A to B, and A :::::;iP B if 
there is an image-finite prophecy relation from A to B. Thus 
A :S:::iP B implies A ::::;iB Band A::;:;" B, and A :::::;PB implies 
A ::::;a Band B ::::;RA. We give an example of a prophecy rela
tion, using the construction of the guess of an automaton. 
This new construction is a kind of dual to the unfolding 
construction of the previous subsection in that the states 
contain information about the future rather than about the 
past. 6 

The guess of an automaton A, notation guess( A), is the 
automaton B defined by 

• states(B) = frag*(A), 

• start(B)=execs*(A), 

0 Just as the unfolding operation gives rise to a forest, the guess construc
tion leads to the dual notion of a backward forest, i.e., an automaton with 
the property that for each state there is a unique maximal execution that 
starts in it. Also, similar to the partial completeness result for backward 
simulations that requires one of the automata to be a forest, there is a 
partial completeness result for forward simulations that involves backward 
forests. Since the guess construction appears to be useful only in proving 
finite trace inclusion, we decided not to work out the forward/backward 
duality completely at this point. 
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• acts(B) =acts( A), and 

• for a.', a.Estates( B) and a E acts( B), a.' ...!!....,, 9 a.<.!> 
first( a.') aa. = a.'. 

PROPOSITION 5.9. A ::.;;p guess(A). 

Proof The function first which maps each execution 
fragment of A to its first state is a refinement from guess( A) 
to A, and the relationfirst- 1 is a backward simulation from 
A to guess(A). I 

EXAMPLE 5.10. For the automata of Fig. 2 we have 
A 3 :j;;pA 4 , A 4 'li(;pA 3 , A 5 :j;;pA 6 and A 6 :i::;;;pA 5 • The dif
ference between ~P and ::;;iP is illustrated by the automata 
of Fig. 3: A 7 ~P A8 but A 7 :j;;iP A8 . The automata A 1 and A 2 

of Fig. 1 cannot be used directly to show the difference 
between ::;;P and ::;;;p since neither A 1 ::;;P A2 nor A 2 ::;;PA 1 . 

However, we obtain a counterexample by unfolding the A 2 

automaton: A 1 ~ P unfold( A 2 ) but A 1 ~iP unfold(A 2 ). 

PROPOSITION 5.11. ::;;P and ~iP are preorders. 

The following proposition sheds some more light on the 
relationship between ~P and ~iP· 

PROPOSITION 5.12. Suppose all states of A are reachable, 
B has fin, and A ::.;;PB. Then A ::.;;iP B. 

Proof Let p be a prophecy relation from A to B. Then 
p is a backward simulation. Now the proof of Proposi
tion 3.20 implies that p is image-finite. Thus A :i:;;;iP B. I 

We will now show that prophecy relations capture the 
essence of prophecy variables, just as history relations 
capture the essence of history variables. 

An automaton B is obtained from an automaton A by 
adding a prophecy variable if there exists a set V such that 

• states( B) <;;;;states( A) x V, and 

• the relation { ( s, ( s, v)) I ( s, v) Estates( B)} is a prophecy 
relation from A to B. 

A prophecy variable is bounded if the underlying 
prophecy relation is image-finite. 

PROPOSITION 5.13. Suppose A ~PB. Then there exists an 
automaton C that is isomorphic to Band obtained from A by 
adding a prophecy variable, which is bounded if A :i::;; ;p B. 

Again, we will state all further results in this subsection in 
terms of relations, and not mention the auxiliary variables 
any further. 

THEOREM 5 .14 (Soundness of Prophecy Relations). 

1. A:::;;;pB=>A::.TB. 

2. A:::;;;;pB=>A::TB. 

Proof Immediate from the soundness of refinements 
and backward simulations. I 

LEMMA 5.15. Suppose bis a backward simulation from A 
to B. Let C =sup( A, B, b) and let n 1 and n 2 be the projection 
functions that map states of C to their first and second 
components, respectively. Then n 11 is a prophecy relation 
from A to C and n 2 is a refinement from C to B. If b is image
finite then so is n 11. 

THEOREM 5.16. 

l. A ::_;;B B<:;> (3C: A ~PC ~RB). 

2. A ~iB B <.!> (3C: A ~iP C ::_;;RB). 

Proof The proof of 1 is analogous to that of 
Theorem 5.8, using Lemma 5.15. Statement 2 can be proved 
similarly. I 

The following result is dual to Sistla's completeness result. 

THEOREM 5.17 (Completeness of Prophecy Relations 
and Forward Simulations). A ~ •T B => 3 C: A ::.;:; P C ~ F B. 

Proof 

A ~ff B=>A ::_;;BF B 

(by Theorem 4.14) 

=>3D: A ::_;;B D::.;;FB 

(by Theorem 4.8) 

=>3C, D: A ~P C~R D::;;F B 

(by Theorem 5.16) 

=>3C: A ::;;p C::;;F B 

(by Propositions 3.7 and 3.9). I 

5.3. Completeness of History and Prophecy Relations 

We finish this section with versions of the completeness 
results of Abadi and Lamport [ 1]. 

THEOREM 5.18 (Completeness of History Relations, 
Prophecy Relations, and Refinements [ 1] ). Suppose 
A ~.TB. Then 

1. 3C, D: A ~H C~p D :::;;;RB, and 

2. if B has fin then 3C, D: A ~H C ::::;;iP D ~R B. 

Proof By Sistla's result (Theorem 5.6), there exists an 
automaton C with A ~H C ~B B. Next, Theorem 5.16 yields 
the required automaton D with C ~PD ~RB, which proves 
l. Now statement 2 is routine. I 

Similarly, we obtain the dual result: 

THEOREM 5.19. A ::;;.T B~3c, D: A ~p c~H D::.;;R B. 

6. INCLUDING INVARIANTS 

For the sake of simplicity, our entire development so far 
has been carried out without any mention of invariants; 
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in fact, all considerations involving reachability of the 
various states have been ignored. However, in actual 
verification examples using simulations, it is almost always 
the case that a preliminary collection of invariants is 
proved, then used in proving the step correspondence. In 
this section, we show how to integrate invariants into 
simulation proofs. 

We define an invariant of an automaton A to be any 
superset of the set of reachable states of A, i.e., a property 
that is true of all the reachable states of A. 7 One way to 
prove that a property is an invariant is by induction on the 
length of a finite execution that leads to the state in ques
tion. More usually, a batch of invariants is proved together, 
by induction. In fact, invariants are most often proved in 
several batches, where each batch is proved by induction, 
assuming that those in the previous batches are true. 

We now define versions of all our simulations that use 
invariants. We call these simulations "weak," although that 
is is bit of a misnomer in the case of some of the simula
tions. 8 Let A and B be automata with invariants IA and I 8 , 

respectively. 
A weak refinement from A to B, with respect to I A and I 8 , 

is a function r from states( A) to states( B) that satisfies the 
following two conditions: 

I. Ifs E start( A) then r(s) E start( B). 

2. Ifs' ...!'...,As, s', s E IA, and r(s') El 8 , then r(s') b 3 r(s). 

A weak.forward simulation from A to B, with respect to IA 
and 18 , is a relation f over states(A) and states(B) that 
satisfies the following two conditions: 

1. Ifs E start( A) then f[ s J n start( BJ# 0. 
? If s'...!'...,As, s', sEIA, and u'Ef[s']n18 , then there 

exists a state u ef[s] such that u' -k-8 u. 

Thus, weak refinements and weak forward simulations 
are weaker than ordinary refinements and forward simula
tions in that they allow use of invariants for all the 
hypothesized states. 

A weak backward simulation from A to B, with respect to 
I A and I 8 , is a relation b over states( A) and states( B) that 
satisfies: 

1. If sEstart(A) then b[s] nfs<;;start(B). 

2. If s'...!'...,As, s', sEIA, and uEb[s]nI8 , then there 
exists a state u' E b [ s'] n I 8 such that u' bs u. 

3. IfsEIAthenb[s]nl8 #0. 

7 Sometimes the term "invariant" is used with a slightly different 
meaning, to denote a property that holds initially and is preserved by all 
transitions. 

8 This usage of the term "weak" has nothing to do with Milner's usage 
[ 41 ] ; he uses it to indicate whether or not internal steps are abstracted 
away. 

Thus, weak backward simulations allow use of invariants 
in all the hypothesized states. However, they also require 
additional proof obligations: in the second and third 
properties, it is necessary to show that the state produced 
satisfies 18 . So, strictly speaking, they are not weaker than 
ordinary backward simulations. 

A weak forward-backward simulation from A to B, with 
respect to I A and I 8 , is a relation g over states( A) and 
P(states(B)) that satisfies: 

1. If s E start( A) then there exists SE g[ s] such that 
Sn I 8 <;;start( B). 

2. Ifs' -3!..+ A s, s', s E IA and S' E g[ s'], then there exists a 
set SE g[ s] •such that for every u E Sn I 8 there exists 
u' ES' n Is with u' b 8 u. 

3. Ifs El A and SE g[ s] then Sn I 8 # 0. 

A weak backward-forward simulation from A to B, with 
respect to IA and Is, is a relation g over states(A) and 
P( states( B)) that satisfies: 

1. Ifs E start( A) then, for all SE g[s], S nstart(B) # 0-
2. Ifs' -3!..+ As, s', s EI A and SE g[ s ], then there exists a 

set S' E g[ s'] such that for every u' E S' n I 8 there exists a 
u ES n I 8 with u' b 8 u. 

3. Ifs El A then g[s] # 0. 

A relation h over states( A) and states( B) is a weak history 
relation from A to B, with respect to I A and I 8 , provided 
that h is a weak forward simulation from A to B, with 
respect to I A and I 8 , and h - I is a weak refinement from B 
to A, with respect to I 8 and I A. 

A relation p over states( A) and states(B) is a weak 
prophecy relation from A to B, with respect to I A and I 8 , 

provided that p is a weak backward simulation from A to B. 
with respect to I A and I 8 , and p - I is a weak refinement from 
B to A, with respect to I 8 and I A. 

We write A~wRB, A~wFB, A~wBB, A~wiBB, 
A :::;wFB B, A ~wiFB B, A :::;wBF B, A :::;wiBF B, A :::;wH B, 
A :::;wP B and A ~wiP B to denote the existence of a weak 
refinement, weak forward simulation, weak backward 
simulation, weak image-finite backward simulation, etc., 
from A to B, with respect to some invariants I A and I 8 . 

PROPOSITION 6.1. The relations ~wR' ~wF, :::;wB, ~wiB• 
::::;wFB• ~wiFB' ~wBF' :::;wH• ~wP' and :::;wiP areallpreorders. 
(However, :::;wiBF is not a preorder.) 

THEOREM 6.2 (Soundness of Weak Simulations), 

1. If A ~wR B, A ~wF B, A :::;wiB B, A :::;wiFB B, 
A ~wiBF B, A :::;wH B, or A ~wiP B, then A :::;TB. 

2. If A ~wB B, A ::::;wFB B, A ~wBF B, or A ~wP B, then 
A ~.TB. 
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Proposition 6.1 and Theorem 6.2 can be proved 
analogously to the way we proved the corresponding results 
for the nonweak case. Alternatively, it is possible to derive 
these results as consequences of the corresponding results 
for the nonweak case. We do this in a technical report 
version of this paper, [37]. 

7. CONCLUSIONS AND RELATED WORK 

In this paper, we have given a unified, comprehensive 
presentation of simulation proof methods for untimed 
automata, including refinements, forward and backward 
simulations and combinations thereof, and history and 
prophecy relations. We have given relationships between all 
of these kinds of simulations, plus soundness and complete
ness results. 

We summarize the basic implications between the various 
simulation techniques of this paper in a diagram. Suppose 
M, NE {T, *T, R, F, (i)B, (i)FB, (i)BF, H, (i)P}, where the 
(i) indicates that i is optional. Then A :::;;MB=> A :::;;NB for 
all automata A and B if and only if there is a path from :::;; M 

to :::;;Nin Fig. 6 consisting of thin lines only. If Bhasfin, then 
A :::;;MB=> A ::;;;NB for all automata A and B if and only if 
there is a path from :::;;M to :::;;N consisting of thin lines and 
thick lines. In the technical report version of this paper, 
[ 37], this classification is extended to include the various 
weak simulations as well. 

The classification of Fig. 6 has been established for a 
specific automaton model (labeled transition systems with 
multiple start states but without final states) and a specific 
behavioral preorder (inclusion of finite and infinite traces 
with hiding of internal actions). We have chosen this model 
because of its simplicity and because it is used both in the 
theory of I/O automata [ 35, 20] and in the theory of 

~iP- ~p 

l 
~R-~iB- ~B 

l 
~H - ~F -~iBF-~BF 

l 11 
~iFB-~FB 

lt 11 
::;T ~~•T 

FIG. 6. Classification of basic relations between automata. 
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process algebras [ 4, 16, 41 ], two important approaches 
toward specification and verification of concurrent systems. 
Simulations techniques play an important role in many 
other models of computation, and variants of most of the 
simulations that we discuss here have been proposed in the 
literature for other models and other notions of behavior. If 
one attempts to classify all the simulations that have been 
defined for any given approach, then typically one will get 
a picture very similar to our Fig. 6. Still, it is in most cases 
difficult, if not impossible, to formally derive results about 
simulations in one approach from the corresponding results 
in another approach: although the general picture is the 
same, the details are frequently different, and one should 
always be careful with claims that simulation proof methods 
carry over from one setting to another. We give some 
examples. 

1. In this paper we follow an action-based approach, in 
which the behavior of a system is a sequence of (visible) 
actions. Another popular approach, followed for instance in 
[ 1 ], is based on states: the behavior of a system is a 
sequence of states (up to stuttering). These different 
approaches are, in some sense, equivalent. In [ 5], for 
instance, translations are presented between an action based 
model oflabeled transition systems ( L TSs) and a state base 
model ofKripke structures (KSs). These translations show 
that the concept of internal actions in action-based 
approaches is the same, in some sense, as the concept of 
stuttering in state-based approaches. However, if one takes 
our history variables and maps them to the state bas.ed 
world via the translation of [5], one gets something which 
is slightly different from the history variables of [ 1], due to 
a subtle difference in the treatment of internal actions/ 
stuttering. By slightly restricting our history and prophecy 
relations one can obtain history and prophecy variables 
that do correspond exactly to those of [ 1]. However, doing 
this either destroys the classification of Fig. 6, or forces us to 
change the definitions of all the other simulations as well, 
with the result that the correspondence with previous work 
on simulations in action-based approaches (for instance, 
[ 19, 21, 22, 34, 35, 39]) gets lost. 

2. In classical automata theory, there is a complete 
duality between past and future since besides start states 
there are also final states, and traces correspond to finite 
executions from a start state to a final state. In our automata 
there are no final states, and traces correspond to possibly 
infinite executions from start states. As a result forward and 
backward simulations are not completely dual in our 
setting, unlike in classical automata theory. 

3. There are a few results that depend on whether 
invariants are included in the definitions of the simulations. 
For example, the implication 

A :::;; a B /\ B has fin => A :::;; iB B 
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is not valid in our setting (Example 3.21 ), but does hold in 
the context or [ 39] because there reachability conditions 
are included in the definition of backward simulations 
( cf. Proposition 3.20 ). 

4. Simulation techniques have been used not only to 
prove trace inclusion, but also to prove several other 
preorders from Van Glabbeek's [ 11, 12] linear time
branching time spectrum. In [ 23, 13] for instance, proof 
methods based on forward and backward simulations are 
presented and proved to be sound and complete forthe failure 
preorder of CSP [ 16]. In the definitions of these simulations 
additional clauses are present which for instance require that 
related states have the same initial actions. 

5. All the automata studied in this paper have been 
untimed. In Part II [ 38 ], the simulation definitions and the 
results of this paper are extended to timed systems. In fact, 
many of the results for the timed case are obtained as conse
quences of the analogous results for the untimed case. How
ever, there are several results that do carry over, but cannot be 
proved from the untimed results. Furthermore, the implication 

A :s;; F B /\ A is a forest =A :s;; R B 

of Proposition 3.12 does not carry over to the timed setting. 

6. As far as the classification of simulations is con
cerned, our work is closely related to and extends that of 
Jonsson [ 22]. Jonsson, however, has a more powerful 
notion of backward simulation that can also handle 
automata with infinite invisible nondeterminism. We 
preferred not to use this notion since it fails to reduce 
reaso.ning about entire executions to reasoning about 
md1v1dual states and transitions. 

7. This paper is related to the work of [ 17, 18, 3, 7, 48] 
on data refinement. In [ 17], an operation is a binary rela
t10n over some universal set 1:. A data type is a triple (Al, 

AO, AF), where Al and AF are the initialization and 
finaliz~tion operation, respectively, and AO= { AOj I j E J} 
1s an mdexed set of operations. An automaton A can be 
encoded as a data type by defining 

Al ~ 2: x start( A) 

AO a~ {(s',s) I s'-'!..,. __ 1 s}, for all aEacts(A) 

AF ~ states(A) x I:. 

Here acts( A) plays the role of the index set J. In [ 17 J, a 
downward simulation from (Al, {A01 I }El}, AF) to (BI 
{ BOj I j E J}, BF) is defined to be any relation R for which 
the following inequations hold: 

Blc:RcAf 

BO.cR c R c AO. 
J - J' 

Bf,,R s AF. 

for all }E J 

It is easy to verify that in a setting without r-steps, a relation 
f s states( A) x states( B) is a forward simulation from A to 
B iff f -1 is a downward simulation from the data type 
encoding B to the data type encoding A. A similar corre
spondence can be established between our backward 
simulations and the upward simulations of [ 17]. Just as 
forward and backward simulations provide a sound and 
complete proof method for trace inclusion between 
automata, downward and upward simulations offer a sound 
and complete proof method for refinement between data 
types. Surprisingly however, the definition of refinement 
between data types is completely different from the defini
tion of trace inclusion between automata: informally, one 
data type is refined by another if any program that uses the 
former would function at least as well using the latter. Even 
more surprising (at least for us) is the fact that the 
requirements of totality and finite invisible nondeterminism 
that we used to prove soundness of backward simulations, 
also play a role in the soundness result of upward simula
tions, in case iteration and recursion can be used in the 
formation of programs [ 17]. Clearly, an important topic for 
future research is the connection between automata based 
simulation techniques and methods for data refinement. A 
specific question here concerns the relationship between 
forward-backward simulations and the single complete rule 
for data refinement of [7]. 

The present paper provides complete proof methods for 
trace inclusion between automata with finite invisible 
nondeterminism. Such automata express the class of safety 
properties [2]. For simplicity, we have not considered 
liveness properties here. Simulation techniques that deal with 
liveness are for instance described in [ 21, 22, 1, 8 ].The results 
of [ 1, 8] are more general than ours because safety and live
ness issues are separated through the use of automata that 
are equipped with additional liveness properties. 

History variables were first defined at the syntactic level 
for specific (parallel) programming languages. Owicki and 
Gries [ 43 ], for instance, define an auxiliary variable set for 
a statement S to be a set of variables AV that appears in S 
only in assignments x := E, where x is in AV One of the 
contributions of Abadi and Lamport [ 1] is a language inde
pe_ndent, semantic definition of this important concept. In 
this p~per we have simplified their definition and the proof 
of their completeness theorem by observing that history 
vanables are equivalent to history relations, and the dual 
prophecy variables are equivalent to prohecy relations. 
Several authors have observed that forward and backward 
sim_ulations are closely related to history and prophecy 
variables, respectively, [39, 22, 25].9 Still we believe that, 

9N ote, however, that [39] contains some minor flaws (Propositions 7.1, 
7.6, and 8.1 are mcorrect ), and that the auxiliary variables of [ 25 J have the 
peculiar property that adding them may change the visible behavior of an 
automaton. 
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through Theorems 5.8 and 5.16, our paper is the first to 
establish an exact correspondence in a general setting of 
transition systems. 

In this paper we have only discussed simulation techniques 
at the semantic level of automata. We have not paid any 
attention to the syntax that is used to define these automata. 
Since some of our methods require the introduction of inter
mediate automata, this means that if one wants to use these 
methods for any given language, one has to check whether 
this language is suffiently expressive to describe the inter
mediate automata. Also, one has to check whether the 
language used for specifying relations is sufficiently 
expressive to define the various simulation relations that are 
required in a correctness proof. We leave it is a topic for future 
research to find syntactic formulations of our results. 

Refinements, history variables and forward simulations 
have been used extensively and successfully for verifying 
concurrent algorithms. Backward simulations and pro
phecy variables have also been shown to be of practical 
value in a few cases. Additional work remains to determine 
the practical utility of backward simulations, prophecy 
variables and relations, and the hybrid methods of this 
paper. This will involve applying these techniques to a wide 
range of examples. 

APPENDIX A. MATHEMATICAL PRELIMINARIES 

This appendix contains some basic mathematical 
notation, plus a compactness lemma. 

A 1. Sequences 

Let K be any set. The sets of finite and infinite sequences 
of elements of K are denoted by K* and K'", respectively. 
The symbol ;, denotes the empty sequence and the sequence 
containing one element k EK is denoted by k. Concatena
tion of a finite sequence with a finite or infinite sequence is 
denoted by juxtaposition. We say that a sequence (J is a 
prefix of a sequence p, denoted by a~ p, if either a= p, or 
a is finite and p = aa' for some sequence (J 1

• A set L of 
sequences is prefix closed if, whenever some sequence is in L, 
all its prefixes are also. 

If a is a nonempty sequence then first( a) denotes the first 
element of a, and tail( a) denotes the sequence obtained 
from a by removing first( a). Moreover, if a is finite, then 
last( a) denotes the last element of a. 

If a is a sequence over Kand K' s; K, then (JI K' denotes 
the projection of a on K', i.e., the subsequence of a con
sisting of the elements of K'. If L is a set of sequences, L I K' 
is defined as {a I K' I a E L} . 

A.2. Sets, Relations, and Functions 

A relation over sets X and Y is defined to be any subset of 
Xx Y. If R is a relation over X and Y, then we define the 

domain of R to be domain( R) @ { x EX I ( x, y) E R for some 
YE Y}, and the range of R to be range( R) @ {ye Y 
l(x, y) ER for some x EX}. A relation R over X and Y is 
total over X if domain(R) = X. If X is any set, we let id(X) 
denote the identity relation over j:' and X, i.e., 
{(x,x)lxeX}. 

Suppose that R and R' are relations over .\' and Y and 
over Y and Z, respectively. Then the composition of R and 
R', denoted by R'" R (pronounced R' after R) is the relation 
over X and Z defined by 

(x, .:) ER' 0 R <=> 3yE Y: ((.Y,y) ER/\ (y, :) ER'). 

For all relations R, R', and R", R, (R', R") = (R oR') ccR". 
Also, for any relation R over X and Y, id( Y) , R = 

Ruid(X) = R. 
If R is a relation over X and Y, then the inverse of R, 

written R - 1, is defined to be the relation over Y and X 
consisting of those pairs ( y, x) such that ( x, y) e R. For any 
pair of relations R and R', ( R' , R )- 1 = R - 1 ., ( R' i - 1• 

If R is a relation over X and Y, and Z is a set, then R I Z 
is the relation over X n Z and Y given by R I Z @ Rn 
( Z x Y). If R is a relation over X and Y and x E X, we define 
R[x] = {y E YI (x, y) ER}. We say that a relation Rover X 
and Yis ajimctionfrom X to Yif JR[x] I= 1 for all xeX 
in this case, we write R(x) to denote the unique element o 
R[ x]. We write X-+ Y for the set of functions from X to Y 
A function c from X to Y is a choice function for a relatior 
R over X and Y provided that c £ R (i.e., c( x) E R[ x] for all 
XEX). 

If X is a set, P( X) denotes the powerset of X, i.e., the set 
of subsets of X, and N(X) the set of nonempty subsets of X, 
i.e., the set P(X)- {0}. We say that a relation Rover X 
and Y is image-finite if R[x] is finite for all x in X. If R is 
a relation over X and P( Y), then we say that R is image-set

finite if every set in the range of R is finite. 

A.3. A Basic Graph Lemma 

We require the following lemma. a generalization of 
Ki:inig's Lemma [ 26]. If G is a digraph, then a root of G is 
defined to be a node with no incoming edges. 

LEMMA A. I. Let G be an infinite digraph that sati.~fles 

the following properties. 

I. G has finiteZv many roots. 

2. Each node of G hasfi'tzite outdegree. 

3. Each node of G is reachable from some root of G. 

Then there is an infinite path in G starting from some root. 

Proof The usual proof for Ki:inig's Lemma extends to 

this case. I 
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APPENDIX B. GLOSSARY OF CONVENTIONS 

a 
b 
c 
f 
g 

h 

11 

p 
r 
s, u 
A,B,C,D 
G 
I 
K 
L 
P,Q 
R 
S, U 
X, Y,Z 

fJ 

}. 

TC 

u,p 
T 

Actions 
Backward simulations 
Choice functions 
Forward simulations 
Forward-backward and 
backward-forward simulations 
History relations 
Indices 
Natural numbers 
Prophecy relations 
Refinements 
States 
Automata 
Digraphs 
Invariants 
Sets of symbols 
Sets of sequences 
Trace properties 
Relations 
Sets of states 
Sets 
Execution fragments 
Sequences of external actions (traces) 
Sequences of actions 
The empty sequence 
Projections 
Sequences 
The internal action 
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