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Cells in isogenic populations may differ substantially in their molec­
ular make up because of the stochastic nature of molecular processes. 
Stochastic bursts in process activity have a great potential for gen­
erating molecular noise. They are characterized by (short) periods of 
high process activity followed by (long) periods of process silence 
causing different cells to experience activity periods varying in size, 
duration, and timing. We present an analytically solvable model of 
bursts in molecular networks, originally developed for the analysis of 
telecommunication networks. We define general measures for mod­
el-independent characterization of bursts (burst size, significance, 
and duration) from stochastic time series. Inspired by the discovery of 
bursts in mRNA and protein production by others, we use those 
indices to investigate the role of stochastic motion of motor proteins 
along biopolymer chains in determining burst properties. Collisions 
between neighboring motor proteins can attenuate bursts intro­
duced at the initiation site on the chain. Pausing of motor proteins can 
give rise to bursts. We investigate how these effects are modulated 
by the length of the biopolymer chain and the kinetic properties of 
motion. We discuss the consequences of those results for transcrip­
tion and translation. 

bursts I interrupted Poisson process I transcriptional pausing I 
waiting times 

he stochasticity of molecular processes contributes to hetero­
geneity in populations of isogenic cells. Cellular heterogeneity 

is manifested by differences in the copy numbers of molecules and 
in the timing and duration of processes. Recent advances in 
single-cell measurement have facilitated the quantification of sto­
chastic phenomena (1-4) (reviewed in refs. 5 and 6). Together with 
models and theory much insight has been obtained into the sources 
of noise and how particular network designs contribute to noise 
suppression and amplification (7-10). 

Stochasticity of gene expression has been described by distribu­
tions of macromolecules in a population of cells (1, 2). Whether 
averaging over a population captures the entire spectrum of mo­
lecular fluctuations a particular cell experiences over one genera­
tion, depends on magnitudes and rates of fluctuations. If these are 
slow but high in amplitude, the required averaging duration may 
extend over a generation span (11). Then, a single cell may not even 
be able to reach protein states accessible to other members, thus 
rendering cell-cell protein level distributions uninformative with 
respect to behavior of genetic circuits (12). In such cases, waiting 
times for individual birth and death events need to be monitored to 
assess physiological constraints on a single-cell level. This stochastic 
nature of waiting times will be our focus. Little analytical theory has 
been developed to deal with this phenomenon despite its relevance 
for single-cell behavior. 

The waiting times in a first-order process with rate constant k 
follow an exponential distribution; the mean waiting time between 
events and its standard deviation are equal to 1/k. The waiting time 
for an event is no longer exponentially distributed if it is regulated 
by another process. This mechanism underlies bursts in synthetic 
activity. The interrupted Poisson process (IPP) was introduced to 
study bursts in queuing and telecommunication theory ( 13 ). In an 
IPP,. a stochastic switch modulates a process with exponentially 
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distributed waiting times. Depending on the tin1e scale separation 
between the process and the switch, multiple timescales may appear 
in waiting times for production events. 

Bursts have received ample attention in the biophysics literature 
(5, 10, 14-17). These studies tend to focus predominantly on the 
protein number distributions, but do not analyze the distributions 
for waiting times in much depth. We show that such statistics are 
relevant for burst characterization and the molecular mechanisms 
giving rise to bursts. 

Bursts have been experimentally observed for synthesis of 
mRNA and protein (3, 4, 18-22). They are characterized by rapid 
productions of a number of mRNA or protein molecules during 
short time intervals. Periods of synthetic silence occur between 
bursts. Bursts may give rise to significant disturbances of cellular 
physiology depending on burst size and the duration of synthetic 
silence and activity. Even though the benefit of bursts needs to be 
analyzed further, they could be beneficial for cells living in rapidly 
fluctuating environments (23). Bursts may give rise to a bimodal 
distribution of protein expression across cell populations (24 ). 
Thereby, 2 subpopulations could emerge having different adaptive 
potentials. 

We apply the analytical theory of IPPs to a molecular mechanism 
for bursts. To identify and characterize bursts we derive 3 new 
indices: burst size, duration, and significance. We demonstrate how 
motor protein trafficking along biopolymer chains (such as mRNA 
polymerase and DNA polymerase along DNA, ribosomes along 
mRNA, and cargo-carrying dynein along microtubuli) can generate 
bursts depending on the length of the biopolymer and stochasticity 
of initiation and motion. We show that motor proteins can generate 
bursts by pausing or by memory of initiation bursts. 

Analytical Expression of the Waiting Time Distribution 
In this section, we study a small network to gain insight into 
burst-generating mechanisms. This will allow us to derive general 
indices for the characterization of burst properties. These indices 
will be applied to characterize biological mechanisms. 

The network consists of a source switching between an inactive 
OFF and an active ON state according to a Poisson process (Fig. 
1A ). OFF and ON periods are defined on the level of the switch ( see 
refs. 15 and 17 for the discussion of mechanisms giving rise to 
genetic switches). In the active state, production of P, e.g., mRNA 
or protein, occurs at exponentially distributed intervals of length Tini 

= 1/kini• The average ON period lasts for T,)n - 1/ksw· Production 
periods are interrupted by transitions to the OFF state. Each rate 
constant corresponds to the inverse of the mean first passage time 
for a complex kinetic mechanism. We assume that it follows an 
exponential waiting time distribution. 
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Fig. 1. Bursts generated by the minimal model. (A) The network consists of 
a switching source and a Poissonian product generator. Full arrows denote 
reactions. Product Pis synthesized only in the ON state. k-:W, k;;;, kini, and kdeg 

denote the ON switching, OFF switching, production, and degradation rate 
constant, respectively. (B) Simulation of bursty accumulation of P. Two time­
scales correspond to uninterrupted and interrupted production events. Bars 
denote OFF (white) and ON (gray) state. (C) Waiting times for nonbursty 
production events (vertical lines). On average, 1 Pis produced during the ON 
state. The resulting intervals between production events correlate weakly 
with OFF and ON states. 

Product generation is bursty if it occurs many times during one 
ON state. In addition, the duration of the OFF state ( ,-()t·r = l!k-:W) 
should be longer than or comparable to the ON period. Under these 
conditions, waiting times display 2 timescales (Fig. 1B). Because our 
interest is the statistics of intervals between production, the deg­
radation of P does not play a role. 

The mechanism discussed here specifies an interrupted Poisson 
process (IPP) investigated in the field of queuing theory (13). An 
IPP is a Poisson process for event occurrence (arrival~) modulated 
by a random switch. In this framework a gene that switches between 
an ON and OFF state as function of a transcription factor would be 
considered the source. Arrivals would, for instance, correspond to 
initiations of transcription giving rise to elongating RNA poly­
merases. The IPP theory provides the probability density function 
(PDF) for waiting times between production events,fx(t), with the 
stochastic variable X as the waiting time with value t. It is instructive 
to realize that the PDF can become > 1 (it is not a probability) and 
that J~ fx(t)dt = 1. The probability of an interval between consec­
utive events being within [t, t + dt] equalsfx(t) dt. The PDF of an 
IPP is a weighted sum of 2 exponential distributions, 

fx(t) = P[X E (t, t + dt)]!dt = W1r1e-rit + W2r2e-r21 , 

[1] 

where K = k:W + k~ + kini, and the weight factors w1 = 1 - w2 = 
(kini - r2)/(r1 - r2) E (0, 1); derived in the Sll!)Pl)]·ting inio1·1n,1ti()tl 

(SI} AJJ/Jt>.11dix. The PDF can reveal the presence of 2 times scales 
in a stochastic time series (Fig. 2 Upper). 

The length of intervals between production events follows from 
the superposition of 2 independent processes: production during a 
single ON state, and periods of synthetic inactivity. The latter n1ay 
result from multiple switches between ON and OFF states without 
producing any P. This is the case if the mean number of productions 
per ON state is small, i.e., kini ~"" k~ (Fig. lC). Accordingly, synthetic 
activity and silence periods ( at the level of P production) do not 
strictly overlap with ON and OFF states of the switch. 

Characteristic timescales of the fast and the slow process appear 
in Eq. 1 as rates r1 and r2. Weight factors w1 and w2 are the 
probabilities to observe the short period (mean duration 1/r1) and 
the long period (mean 1/r2) between P productions, respectively. 
For large timescale separation, i.e., when k-:W and k~ are much 
smaller than kini (Fig. 2 Right), the rates become r1 ,=,:; kini and r2 """" 

k:W. In this regime, the expected bt,1,rst size, f3e, equals the number of 
initiations per ON state, i.e., kinilk-:W. 

The point of timescale separation we refer to as Tx (Fig. 2). At 
this interval the probability to observe a waiting time resulting from 
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Fig. 2. Theoretical analysis of the minimal burst model (Fig. 1). Columns 
correspond to different parameterizations. (Upper) The waiting time PDF for 
a pure Poisson process and for 2 IPPs with different burst characteristics (Eq. 1). 
The vertical dashed lines indicate the threshold of timescale separation 7)(. 

(Lower) Sequence size function (Eq. 4}. The <I> evaluated at Tx yields the burst 
size /3 (horizontal dotted Ii nes). 

the fast and the slow process is identical (two terms of Eq. 1 are 
equal). Two timescales are observable if kini > k:W - k~; only then 
rx > 0 (~S'/ ApJJt'lltiix). 

The mean waiting time determined from Eq. 1 corresponds to the 
n1acroscopic estimate (.SI .4JJ/Jetl(.lb:), 

(t) = 
oc 

. W1 Wz 
t l'x(t)dt = - + - = T· • )-' . . r r 1n1 

CJ I 2 

-1 

[2] 

The inverse of this equation equals the mean arrival rate, kini (ON). 
It has the interpretation of the expected burst size divided by the 
duration of a single switch cycle. The noise in the waiting time is 
given by 

The second term expresses the deviation of IPP from a Poisson 
process. It is small if either the ON state is short-lived (/3c decreases) 
or silence periods are negligible. 

Measures for Characterization of Bursts 
The size of a burst and the burst duration are relevant burst 
properties. For biological applications they need to be determined 
on the basis of a stochastic time series as the mechanism underlying 
bursts is typically unknown. 

The bt1.rst size f3 is defined as the mean number of production 
events not interrupted by a long inactivity period. Inactivity periods 
(interruptions) occur as often as bursts. The total number of 
production events divided by the number of interruptions yields the 
burst size. To determine the timescale of interruptions and hence 
their number, we define a sequence size function <I:>( {t), 

# total events 

intervals longer than {t 

na 1 
= ------ = -----

Ila P[X > it] 1 - Fx ( it) [4] 

where Fx( {t) is the cumulated distribution functio11 (CDF), i.e., 
Fx( iJ) = Jl1 fx(t) dt. For a given threshold {}, the function yields the 
sequence size such that events are grouped into sequences inter­
rupted by intervals longer than ,t,, Because of the timescale sepa­
ration, there is a specific interval 'l1b for which ¢>(,{j-) equals the burst 
size /3. The value of -t}b can be determined on the basis of the 
functional dependence of <I>({}) as illustrated in Fig. 3. 
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Fig. 3. Diagram of a sequence size function <I>. (Upper) Time series of 
production events. Horizontal bars denote intervals longer than thresholds 
{;A-D• (Bottom) For a given fr, <I) is constructed by dividing the total number of 
intervals by the number of intervals longer than ·tt. Timescale separation 
introduces a regime where fr is longer than intervals within bursts but shorter 
than interruptions between them; a plateau appears. The point of timescale 
separation Txlies in the middle of 2 inflection points ,.,,2 determined from the 
second derivative of <I>. The value of <l> at Tx is the burst size {3. 

As a measure for burst size /3 we evaluate the sequence size 
function at the interval of timescale separation, T.x, which has a 
straightforward interpretation for the minimal burster from Fig. 1. 
This point lies in the middle of 2 intervals T1 and -r2 ( r 1 < -r2); they 
correspond to the change of cf>({}) from convex to concave to convex 
as function of -{}, respectively (.SJ AJJJ>t:~11lii.t·). 

The burst size /3 is greater than the expected burst size f3e because 
the f3e excludes the possibility of an ON state without a production 
event. Both measures are approximately equal for a la1·ge timescale 
separation: /3 = f3e + O(log k111i), if kini >> k:W and k~ --::i k:W. Fig. 
2 illustrates the PDF and ct>( it) for different parameter regimes of 
the minimal model. Bursts become more pronounced for high kini 

over k-:W ratios (increased timescale separation). The behavior of the 
sequence size function for nonexponential waiting times is explored 
in the ~c;J Appe11di.x. In short, a gamma-distributed waiting time for 
the OFF to ON transition increases the timescale separation. The 
applicability of the indices is not affected. 

Once the burst size is known, the duration of a burst, Tf3, can be 
obtained by multiplying /3 by the mean waiting time within a burst 
( l/r1 in the minimal model). Whether the interval is part of a burst 
can be deduced by using the threshold of timescale separation, Tx 
( determined on the basis of the waiting time PDF). In addition to 
burst size, burst significance is important. Bursts lose significance if 
the interruption period becomes comparable to intervals within a 
burst. To quantify this we introduce a dimensionless significance 
coefficient ~ = 1 - T1/r2, ~ E (0, 1). 

We use all 3 measures, (3, Tf3, and ~' to analyze stochastic time 
series for more complex schemes. The advantage is that the indices 
are mechanism-independent. In addition to their unbiased nature, 
they have a clear mechanistic interpretation for the minimal 
burster. This property facilitates interpretation of yet unidentified 
mechanisms giving rise to bursts. 

Motor-Protein Traffic Jams along Biopolymer Chains 
Bursts have been observed experimentally for single-cell synthesis 
of mRNA and protein (3, 4, 18-20) (review, ref. 6). For such cases, 
free-energy-driven motion of a catalytic motor protein along a 
biopolymer template is required. Here, we investigate the role of 
the stochasticity in the initiation of motion and in the motion itself 
for the observation of bursts at the end of the chain. We will 
consider different lengths of the polymer and kinetics of initiation 
and transport. 

Fig. 4 shows a canonical 1D macromolecular trafficking model. 
It contains the switching source, as described in the previous 
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Fig. 4. Canonical model of macromolecular trafficking along a biopolymer. In 
the ON state of the switch, proteins initiate elongation with a rate constant kini• 

Elongation occurs with a rate constant kei- ''O'' and ''U'' denote occupied and 
unoccupied state of the site, respectively. Motors leave the chain with a rate 
constant kter and accumulate a product P. The product is degraded with a rate 
constant kdeg• 

section, followed by sites on the polymer. Eacl1 site can be occupied 
by a single n1otor, moving forward only, with the elongation rate 
constant ke1 (sites per time). Evidently, motors cannot pass each 
other and shall collide. We also consider the motor occupying more 
than one site (.S'/ .4J,JJt~11£iir). Previously we discussed conditions for 
bursts to emerge at the start of the polymer. Whether bursts are 
preserved at the end of tl1e chain depends on the characteristics of 
the stochastic motion. 

In Fig. SA we consider a polymer of length 100 sites, preceded by 
a bursty switch with 100 initiations per ON state, on average. We 
plot tl1e mean occupancy of sites at the beginning and at the end of 
the polymer as function of a dimensionless ratio, kc1/kini• If a motor 
protein travels many sites between initiations during a single ON 
state (ke1/kini >> 1), its progression is not hampered by collisions. A 
traffic jam arises at the beginning of the chain if the number of 
traversed sites during consecutive initiations is small (ke1/kini << 1 ). 
This results in high mean site occupancy at the initial segment of the 
polymer. Congestion weakens at the end of the polymer because 
motors have fewer partners ahead of them. As shown in Fig. 5B, the 
net occupancy gradient along the chain increases with the polymer 
length. 

If collisions are significant, the timescale separation generated at 
the initiation stage is disrupted. The frequency of P production 
becomes exclusively determined by the motor protein progression 
at the end of the chain. The effect intensifies as the length of the 
polymer increases as illustrated in Fig. 6A. 

Because of collisions, the rate at which motors leave the polymer 
becomes smaller than kini- The mean interval between productions 
( the inverse of the macroscopic flux) becomes longer for longer 
chains (Fig. 6B). Additionally, the standard deviation becomes 
comparable to the mean waiting time. The process becomes expo­
nentially distributed and the memory of the state of the switch is lost 
entirely. 

Motor protein collisions disrupt inactivity periods of initiation 
bursts. As a result, intervals between production events become 
comparable. In this regime, the burst size /3 measured at the end of 
a long polymer is seemingly larger than for a short one (Fig. 6C). 
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Fig. 5. Mean site occupancy. (A) At the beginning (solid line) and at the end 
(dashed line) of a 100-site polymer (k~ = k;w = 1 [1/7], kini = 100 k~); error 
bars, standard deviation; (B) along 1- to 100-site polymers (dotted}, numbers 
indicate the length, circles mark mean occupancy at the polymer's end; 
parameters as in A, and ke1 = kini• 
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Therefore, it is necessary to aid the measurement of bursts with the 
significance index, f. As the length of the polymer increases, the 
significance of bursts diminishes (Fig. 6D). Below, we introduce a 
mechanism that can recover bursts at the output even if no bursts 
occur at the input. 

Pausing of Motor Proteins Can Generate Bursts 
We will consider a polymer without a switching source that 
modulates initiation. Initiation takes place at a fixed rate constant 
kini• Such a model has only one timescale, thereby no bursts at 
initiation can occur. We consider motor protein pausing along the 
chain as a potential burst-generating mechanism. At every site, a 
motor can switch at a rate k; to a paused state that lasts 1/k- (Fig. 
7). This mechanism is known to occur for RNA polymerase 25-29) 
and ribosomes (30-34 ). 

Pausing of a single motor causes congestion due to its collision 
with consecutive motors during its dwell time. This allows for the 
buildup of a burst packet. The packet can survive until the end of 
the chain only if the pausing frequency is low for a given chain 
length L. If this is not the case, there is a high probability that 
proteins within the potential burst will also pause and thus divide 
the packet (Fig. 8A, curves fork; = 100 [1/T]). Another require­
ment for bursting concerns the lifetime of the paused state. If too 
short, compared with the initiation rate kini and the elongation 
rate ke1, the consecutive proteins will not catch up (Fig. BA, 
curves fork;; = 100 [1/T]). Timescale separation in the waiting 
times at the end of the chain, and hence bursts, appear only when 
motors do not pause too frequently during the elongation, and 
when the paused state is sufficiently long-lived (Fig. BA, solid 
curve for k; = k1; = 1 [1/T]). 

The length of the biopolymer chain affects the statistics of bursts 
as well. The addition of sites increases the probability that a single 
motor pauses a number of times during its progression. Thereby, 
such a motor destroys the burst it was part of. The effect is 
equivalent to an increase in k1; at a fixed L. As a result, the waiting 
times lack the short timescale originating from frequent product 
initiation. Instead, they are dominated by the lifetime of the paused 
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Fig. 6. Analysis of the canonical model of macromo­
lecular trafficking. Gillespie simulations of at least 
1 E-05 events, k~ = k~ = 1 [1/7], ke1 = kini = 100 k~. 
(A-D) The dashed line marks the minimal burst model 
(no elongation). (A) The waiting time PDF for 10- and 
1,000-site polymers. Circlesi the mean waiting time. 
(8-0) The mean waiting time and its standard devia­
tion (8), burst size (C), and burst significance (D) for 
different chain lengths. 

state. The mean waiting time (t) and its standard deviation increase 
with increasing L, and the timescale separation becomes less 
pronounced (Fig. 8 Band C). Because burst size /3 decreases, bursts 
tend to disappear for longer chains. They can always be recovered 
by decreasing the probability of a single motor protein to pause 
many times during its progression. As an illustration we will change 
the pausing rate for the longest chain considered, L = 500. If we set 
k; 10 times smaller than the value used for L = 50, the timescale 
separation is recovered and /3 increases (Fig. BB and D, dashed 
line). This indicates that pausing may prevent or promote bursts 
depending on the properties of the biopolymer. 

Aggregative Behavior of Multiple Burst Generators 
Statistics of bursts change when they arise from the simultaneous 
activity of a number of independent burst-generating mechanisms. 
In biological terms, this superposition may describe the transcrip­
tion of an mRNA from independent copies of a gene or the 
translation of protein from a number of mRNAs. Here, we focus on 
the extension of the simple model of bursts to a superposition of 
many independent interrupted Poisson processes. 

We choose parameters such that a single burster initiates 1 
product per ON state (k:W = 0.1 [1/T], k-::W = 1 [1/T], kini = k:W). The 
resulting burst size is small, f3 ~ 2.3. The waiting time PDF almost 
completely loses its double-exponential character for >8 sources 
(Fig. 9A ). Although the burst size increases for many sources (Fig. 
9B), their significance t diminishes until the sequence size function 
<I> becomes always convex and g can no longer be evaluated (Fig. 9B 
Inset). This indicates that the clustering of events into bursts no 
longer occurs; waiting times follow a single-exponential distribu­
tion. Analytical results for the pooled mechanism, the PDF, and the 
Poissonian behavior in the limit of many independent IPPs, can be 
found in the ~S'/ .4./Jf>ertl'lil.:. These results are particularly insightful for 
the conditions for bursts in the protein level. A burst of a few 
mRNA transcripts does not necessarily cause a protein burst. It 
depends on temporal correlation between translation that occurs 
independently on each transcript. 

kel 
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kter kdeg 

• • • 0 pr ~0 

k- k+ k-p p 
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p 

Fig. 7. Model of macromolecular trafficking with pausing motor proteins. Proteins initiate motion with a fixed rate constant kini• A site can be unoccupied (U), 
occupied (0) by a motor, or occupied by a motor in a paused state (S). Motors can pause at a rate kp1 at every site. The lifetime of the paused state is 1/k,; . Other 
parameters are the same as in Fig. 4. 
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1 E-06 events. Common parameters, kini = 100 [1/71, 
kei = kter = kini• (A} The appearance of the timescale 
separation due to the pausing of proteins. Chain 
length, 100 sites. Bursts arise when (t) kp1 allows for 
only few pauses during the elongation and (ii) 1/k,; is 
long enough for many initiations to occur (solid line}. 
Circles, the mean waiting time. (8) Waiting time PDF 
for chain lengths 50 and 500 sites. The lifetime of the 
paused state is fixed: 1/k,; = 100 [71. At a pausing rate 
constant k,,+ = 0.01 [1/71, the increase in the chain 
length increases the probability of multiple pauses 
during the progression: bursts disappear (dotted line) . 
Reduction of kp' to 0.001 [1/TI recovers bursts (dashed 
line). Circles, (t). (C) The mean waiting time and its 
standard deviation as function of chain length. Lines, 
k,,+ = kp = 0.01 [11n. Symbols at L = 500 corre­
spond to the dashed line in B: kp1 = 0.001 [1/TI. (D) 
Sequence size function for polymers as in B. Circles, {3. 
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For most applications the exact burst-generating mechanism is not 
known or too complex to handle analytically. To overcome this 
problem we defined 3 measures for the characterization of bursts: 
bL,rst size, duration, and significa11ce. We stress the usefulness of the 
significance measure, because large bursts can arise at a negligible 
timescale separation. The indices have a transparent interpretation 
for the system in Fig. 1 and allow for model-independent analysis 
of more complicated mechanisms. Additionally, we offer a rigorous 
method to obtain the indices from stochastic time series. We 
applied those measures to investigate the influence of the stochastic 
motion of motor proteins along a biopolymer on bursts of product 
release at the end of the chain, e.g., of protein, cargo-vesicles, or 
mRNA Our study was inspired by the experimental discovery of 
bursts in transcription and translation (3, 4, 18-20). We found that 
bursts at the input of the chain tend to be smoothed out by longer 
chains because of the congestion of motor proteins. Because of 
collisions, timescales within and between bursts become compara­
ble causing the burst size to be larger but of less significance. Hence, 
the stationary output flux decreases with the length of the chain. At 
a fixed initiation rate, bursts can emerge because of the pausing of 
motor proteins. 

We discussed 2 mechanisms that could give rise to bursts in 
production. Bursty transcription initiation was the first one. The 
second considered motor protein pausing as a source of bursts. How 
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Fig. 9. Superposition of independent bursters (k'tw = 0.1 [1/71, k~ = 1 [1171 .. 
k1ni = k~}. (A) Analytical waiting time PDF as a function of the number of burst 
sources. The curve becomes almost exponential for 8 sources. (B) Analytical 
sequence size function for 1-20 sources. The 2 roots of its second derivative 
(filled circles and triangles) vanish for >8 sources. (Inset) Burst significance as 
function of the number of sources. 
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can these 2 mechanisms be distinguished experimentally and how 
can existing data be interpreted in this light? We will consider this 
in more detail for transcription. Promising mechanisms for initia­
tion-induced bursts in rnRNA production are genes controlled by 
strong repressors occasionally leaving the promoter to allow a few 
RNA polymerases to initiate transcription as suggested in refs. 3 
and 4. On average, every Tini minutes an RNA polymerase initiates 
elongation if the gene is in the ON state, i.e., in the presence ot· an 
activating transcription factor or in the absence of a repressor. 
During this time, polymerase traverses ke1 Tini nucleotides. If no 
significant congestion occurs along the DNA, the mean waiting time 
(t) for polymerases at the end of the chain is proportional to Tini (Eq. 
2); the timescale of initiation bursts (if present) is preserved at the 
end of the chain. If motors collide during their progression this 
relationship is destroyed. Fig. 10 illustrates this for switch param-
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Fig. 10. Detailed model of elongation: mean waiting time (t) for mRNA 
production as function of initiation intervals Tin!= 1/kini• The gene consists of 1,000 
nt, RNA polymerase occupies 50 nt (35}. Parameters of the initiation switch are 
Ton = 6 and Toff = 37 min (3). Elongation occurs at 50 nt's (28). Means were 
obtained from Gillespie simulations of at least 1 E-04 events. Solid line without 
symbols denotes the mean, and the dashed line denotes one standard deviation 
plus the mean for the minimal burst model (no elongation). The vertical line 
indicates the mean waiting time of mRNA in the experiment of Golding et al. (3). 
Deviation from the solid line results from collisions of RNA polymerases. 
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eters corresponding to n1easurements by Golding et al. (3 ); T()ll = 6, 
T()ff = 37 min. This figure displays the dependency of: (t) ()11 the 
initiation tin1e Tini fo1· the minimal, canonical trat·ficking, and 
detailed model (with initiation switch and pausing). Assuming that 
the experin1ental systen1 studied by Golding et al. (3) is in the regime 
where collisions do not disrupt the proportionality between (t) and 
Tir1i, their measured waiting time within a burst corresponds to Tirli 

= 2.5 min. For these parameters, Fig. 10 indicates that n1ost of the 
control on the waiting time is exerted by the initiation; pausing 
properties do not affect (t). The calculated burst size (3.6) is close 
to the experimental result ( ~2.2). 

How would pausing of RNA polymerases and altered initiation 
rates ( different genes) change this picture? In Fig. 10, we investigate 
this question by using realistic pausing parameters. The panel for 
burst size shows that initiation bursts are reduced by pausing. 
Spontaneous collisions and hence deviation of (t) from linear 
dependence (Eq. 3) occur only at high initiation rates. The dis­
crepancy is larger if pausing is considered. Therefore, pausing is a 
more plausible mechanism for such deviations in real biological 
systems where Tini exceeds 0.1 min. This makes pausing a potent 
target for regulation, e.g., by NusA and NusG, in accordance to 
recent experiments (26-29). Voliotis et al. (35) have postulated 
collision-induced bursts caused by backtracking of RNA poly­
merases. Fig. 10 offers a convenient method to determine whether 
collisions induced by pausing or spontaneous are additional con­
trolling processes besides initiation. 

Which genes are likely to generate bursts? Strong repressors 
could induce bursts according to bursty initiation as described 
above. In experimental studies this mechanism yielded a small burst 
size (3, 4 ). If the lifetime of mRNAs and proteins is shorter than the 
OFF period, transient bursts (''puffs'') are produced. Savageau's 
demand principle (36) predicts that infrequently used genes are 
regulated by repressors to prevent them from accumulating muta­
tions. Such systems should be susceptible to bursts, e.g., repressor­
regulated operons of prokaryotic signaling networks. 
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Highly activated ge11es under the control ()f' an ,tctivating tran­
scription factor can give rise to bursts by the pausing n1echanism 
(Fig. 8). Such systems arc predon1inantly in the ON state (e.g., by 
way of enhancer dependence) and have an approximately constant 
and high initiation rate. This should make then1 prone to bursts 
induced by pat1sing. Such a mechanism has not been experimentally 
observed so far. Esche,·iclzia coli's rrn genes ( coding for ribosomal 
RNA) would be likely candidates, for they are among the genes with 
the highest expression activity (37). In mammalian systems, poised 
and paused polymerases occur ot·ten and could underlie the ex­
perin1entally observed bursts (20, 38, 39). 

Typically, products are not synthesized in a single macromolec­
ular process. We showed that if bursts are generated independently, 
the resultant burst tends to lose significance with an increasing 
number of sources. Hence, mRNA bursts are more likely to occur 
than protein bursts, because protein is typically produced from a 
few transcripts simultaneously. Depending on the significance and 
size of the burst generated by a single catalytic process, this rules out 
significance of l1ursts in, for instance, n1etabolism where the copy 
number of catalytic proteins is thousands. 

Bursts are a powerful mechanism to generate cellular heteroge­
neity. Key processes such as transcription and translation are 
particularly prone to generate bursts. How biological systems 
manage to function reliably in the presence of bursts, whether they 
actively suppress them or control their characteristics, remains to be 
experimentally shown. Exact burst properties and their functional 
consequences depend on the relative timescales of initiation, elon­
gation, and termination processes. The analytical theory we pre­
sented gives insight into generic burst properties. The proposed 
burst indices allow for quantitative studies of specific systems and 
their comparison. 
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