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CHAPTER 1

INTRODUCTION

Modern communication systems are mixtures of voice telephony systems and
computer-communication systems designed to offer a wide range of services
such as voice telephony, data transfer, and interactive video. In the strongly
competitive market of communication services, it is essential for service pro-
viders to be able to deliver services at attractive price-quality ratios. To this
end, it is important for service pro viders to have an understanding of how
the performance of the system (e.g., in terms of response times, throughput,
stability) for a given traffic load depends on the system resources, such as
bandwidth and computing power. This understanding gives insights in how to
properly control the system and manage its quality.

Queueing theory provides a powerful means to study performance ques-
tions and price-quality optimization. In the vast majority of queueing models
the servers are assumed to be independent entities that serve incoming jobs at
a fixed processing rate. However, in many modern application areas, such as
(middleware-based) distributed systems, mobile ad hoc networks, and appli-
cation servers, the development of performance models naturally leads to the
formulation of queueing networks with shared resources, i.e., where servers do
interact and hence service rates are dependent. Although the theory of queue-
ing models with independent servers is well-matured, today remarkably little
is known about queueing models in which the servers share common resources.

In this thesis we study fundamental performance questions for queueing
models with shared resources. We first focus on stability issues of these models,
and then on their product-form solutions. For the so-called LPS queue we
study its monotonicity with respect to the number of servers, continuing with
optimizing the LPS queue and some variants.
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1.1 Background and motivation

The phenomenon of congestion occurs in many real-world situations. For example,
waiting lines occur at post offices, in supermarkets, at elevators, and in traffic sit-
uations, but also on a more abstract level in call centers, inventory and production
systems, and computer-communication systems. To cope with congestion, one needs
to understand the relevant queueing situations. This can be realized by developing
and analyzing models in the framework of queueing theory. A key characteristic of
queueing models is the inherent randomness in the arrival processes, service require-
ments, and routing policies. Queueing theory typically focuses on the derivation and
calculation of performance metrics such as queue-length and waiting-time distribu-
tions, stability, throughput, and also addresses the optimization of the performance
of the system.

In general, a queueing model describes a system in which resources are used
to perform certain tasks. The tasks are usually called jobs, and these tasks are
performed by so-called servers. A common assumption in most classical queueing
models is that servers are independent entities that serve incoming jobs at a fixed
rate. However, such an assumption is often unrealistic. Many application areas lead
to the formulation of queueing models where servers are not stand-alone entities but
share resources. Examples of such models are multi-layered queueing models, where
servers at one layer effectively share a lower-layer resource, and hence become jobs
at that lower layer. To illustrate the practical relevance of such layered queueing
models, below we address several applications motivating the models studied in this
thesis.

Over the past few decades, the popularity of data services has increased dra-
matically, both in the business and the consumer market. This has boosted the
demand for application servers (e.g., Web servers, database management systems,
multi-media servers) and distributed software systems that can handle extremely
large numbers of users simultaneously, while the user-perceived performance should
be both satisfactory and predictable (cf., e.g., [24]). In line with this development,
new services that combine and integrate the functionalities of existing services have
been brought to the market. Consider, for example, Web server technology. Over
the past few years, Web server functionality has evolved from standard document-
retrieval functionality to the ability to provide end-user interfaces in distributed
computing environments. In this context, Web servers are typically used as front-
end devices, hiding the business logic and the communication protocols with remote
back-end application servers. This type of architectures are often referred to as
multi-tiered IT architectures, see Figure [[Jl Typical examples of services operat-
ing in multi-tiered IT architectures are on-line services, such as Internet banking,
on-line booking services, and on-line shopping. The ability to offer on-line services
has raised the need for service providers to reach an understanding of the perfor-
mance capabilities and limitations of their IT infrastructures, and to predict the
end-to-end performance of the services offered to the users. This requires the devel-
opment and analysis of the performance models of Web servers. Van der Mei et al.
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Figure 1.1: Application servers in a multi-tiered distributed computing environ-
ment.

propose a Web server model in [79], which works as follows. Incoming Web trans-
action requests go through two consecutive processing phases: document-retrieval
processing (phase I), and script processing (phase IT). To this end, the Web server is
equipped with two types of threads: type-1 threads are dedicated to perform phase-
I processing, and type-2 threads are dedicated to perform phase-II processing. If
a tagged transaction request 7T finds a type-1 thread available upon arrival, then
that thread will immediately start phase-I processing; otherwise, T is placed in the
type-1 buffer which is served on a First Come First Served (FCFS) basis. When
the type-1 processing of T" has been finalized, T" may be forwarded to the pool of
type-2 threads for phase-1II processing (if needed, depending on the type of request).
Similarly, if 7" finds a type-2 thread available upon arrival, then that thread will
immediately start phase II processing; otherwise, T" is placed in the type-2 FCFS-
based buffer. An important feature of this model is that at any moment in time
all busy threads effectively share the underlying hardware resources. In its sim-
plest form, this model can be viewed as a tandem of two multiserver queues with
two layers: at the higher layer the busy servers (representing threads) effectively
share the resources at the lower layer; this sharing can be done, for example, in a
processor-sharing (PS) fashion or on an FCFS basis, see Figure [[2

Queueing models with shared resources also occur in many other application ar-
eas. Counsider, for example, bandwidth-sharing networks [I6l, [75], providing natural
models for describing the dynamic flow-level interaction among elastic data transfers
that traverse several links along their source-destination paths in communication
networks. In these networks the bandwidth is shared among the flows according to
a processor-sharing type of service discipline. Other examples of resource-sharing
networks are found in the modeling of the flow-level performance in wireline data
networks where the capacity of different links is shared among competing flows [15],
or in wireless networks where users can communicate via a cascade of interme-
diate hops (cf. 211 26] [70]). Multi-layered networks also occur in the modeling
of cable access networks, which are often regulated by a request-grant procedure
in which actual data transmission is preceded by a reservation procedure. Con-
sider, for example, TV networks that have been upgraded to enable communica-
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Figure 1.2: An example of a Web server.

tions between users and a centrally located head-end, which is a master facility for
receiving television signals for processing and distribution over a cable television
system. In order to coordinate transmissions from users to a head-end, a medium
access protocol is needed, in which time slots are used for reservation and for data
transmission [72 95]. In addition to the examples given above, software-hardware
interaction also occurs in distributed applications based on middleware, a software
layer that manages the interaction between the distributed applications. In such an
environment, the Portable Object Adapters perform server-side operations (jobs),
that can be executed either sequentially or in parallel [52]. The applications dis-
cussed above all lead to queueing models with shared resources. In the next section
we briefly introduce classical queueing models, continuing with layered queueing
models in Section 3

1.2 Classical queueing models

In the beginning of the 20*" century the first queueing models for dimensioning of
telephone systems were developed by Erlang. The classic problem of determining
how many circuits are needed to provide an acceptable telephone service quality be-
came tractable due to his famous Erlang blocking formula [40]. The rise of comput-
ers in the mid-20'" century boosted the interest in queueing theory (e.g., [64, 69]).
The appearance of communication systems in which data and voice are integrated
further intensified the research on queueing models (see [29, 92] for overviews). We
refer to [28] [64] [68] for excellent monographs on classical queueing theory.
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1.2.1 Single-server queue

The most elementary queueing model is the so-called G/G/1 queue, which works
as follows: Jobs arrive to the queue one at a time. The time between two consec-
utive arrivals is defined to be the interarrival time. Arrival processes are usually
assumed to be such that interarrival times form an independent and identically dis-
tributed (i.i.d.) sequence of random variables. The service requirement of a job is
the amount of time the server needs to serve the job if the job would receive the
server’s full capacity. It is assumed that service requirements are i.i.d., and that jobs
only leave the system after having received their entire service requirement. The
described model is often called the G/G/1 queue, a notational convention proposed
by Kendall [65]. The G in this notation stands for general probability distributions,
(note that G is also used in literature, denoting generally independent) the first G
referring to the distribution of the interarrival times, and the second to the distri-
bution of the service requirements. The number 1 refers to the single server. This
server serves one job at a time, and is only idle if there are no jobs in the queue.
The G/G/1 queue is illustrated in Figure In the special case of Poisson ar-
rivals, i.e., exponentially distributed interarrival times, we denote the model as the
M/G/1 queue, where the M stands for Markovian. If the service requirements are
also exponentially distributed, the queue is referred to as the well-known M/M/1
queue. Following Kendall’s notation, multiserver queues with s > 1 servers are
denoted by M/G/s, G/G/s, etcetera.

job arrival
—_—l —_—T

Figure 1.3: An illustration of a single-server queue.

Many variations on the basic G/G/1 queue have been studied. The behavior
of the queue depends on the service discipline, which specifies how the capacity is
allocated to jobs in the system. Many different service disciplines have been studied
in the literature. We only mention the disciplines relevant for this thesis, starting
with the FCFS discipline. The FCFS discipline is a service policy in which the jobs
are served in the order of arrival, without other biases or preferences.

1.2.2 Processor-sharing queue

The (egalitarian) processor-sharing (PS) queue was introduced in the context of
computer systems, where multiple processes share common processors. In the PS
queue the total service capacity is equally shared among all jobs present. Thus,
when there are n > 0 jobs present, each of them receives a fair share 1/n of the
available service capacity 1. Originally, the PS paradigm emerged as an idealization
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of round-robin scheduling mechanisms in time-shared computer systems [66] [67].
In recent years, the PS discipline has attracted interest for modeling the flow-level
performance of bandwidth-sharing protocols, see for example [75]. A main advan-
tage of PS disciplines compared to FCFS disciplines is that small jobs do not have
to wait before a server becomes available, but will immediately receive service [84].

A variation on the PS queue is the so-called limited processor-sharing (LPS)
queue. The LPS queue extends the ordinary PS queue by assuming that not all jobs
can be served directly upon arrival. This extension moves away from the idealized
PS paradigm that serves all jobs in a round-robin scheme in time-sharing systems.
This LPS queue is a PS queue in which a newly incoming job is only taken into
service when the number of jobs in service is less than some threshold c; jobs that
find that the threshold is reached, are placed in an entrance buffer which is served
on an FCFS basis. The service capacity is shared equally by all jobs in service,
which is less than or equal to ¢. When the number of jobs in service drops from
¢ to ¢ — 1, the longest waiting job in the buffer will be served. For this general
setting, ¢ equal to one reduces the system to an FCFS queue and ¢ equal to infinity
reduces the system to a PS queue. A disadvantage of the PS queue [12, [33] is that
allowing too many jobs may lead to a reduction of the overall performance. This
can be avoided with the LPS queue, since always at least 1/c of the service capacity
is guaranteed to the jobs in service.

A commonly used generalization of the PS queue is the generalized processor-
sharing (GPS) queue. In a GPS queue the jobs are served simultaneously with a
rate depending on the phase and the number of jobs present at that phase. The
service rate of a job is given as a function f()(z;), where z; is the number of jobs
present in service phase ¢ [27]. In [88] [89], the service rate only depends on the
fact of a queue is empty or not, and not on the queue length itself. Each non-
empty class receives a certain guaranteed share of the capacity, which is defined by
a weight function per class. This discipline is also referred to as the GPS discipline.
This GPS discipline was developed as a service discipline to share the capacity of
congested communication links in an efficient, flexible, and fair manner.

The discriminatory processor-sharing (DPS) discipline is a multiclass generaliza-
tion of the egalitarian processor-sharing queue in which the total service capacity
is shared by the jobs in proportion to class-dependent weight factors. The DPS
discipline provides a natural approach for modeling the flow-level performance of
differentiated bandwidth-sharing mechanisms. A literature survey on DPS queues

is given in [T} 20].

1.3 Layered queueing models

Queueing models with resources shared among the servers can be seen as queueing
models with multiple layers. At one layer jobs compete for access to servers which,
in turn, compete for access to resources at another layer, and hence, can be seen
as jobs at that layer. Several papers focus on layered queueing models. Rolia
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and Sevcik [99] propose the method of layers (MOLs) approach for modeling a
distributed software system. They explicitly take into account both software and
hardware contention and interactions between client and server processes. Software
tasks are organized into several layers. A task may only send synchronous messages
to tasks belonging to a lower layer and may receive synchronous messages to tasks
belonging to a higher layer. They analyzed this queueing model by decomposition,
considering two adjacent layers of tasks at a time, and they developed a separate
queueing model to represent the contention in the CPU and the I/O devices. The
two models are then combined using an iterative algorithm to obtain the expected
response time. The MOLs approach was further extended in Sheikh et al. [107] to
account for asynchronous messaging using residence time expression modifications.

Another fundamental contribution to layered queueing networks theory is pre-
sented by Woodside et al. [I19], who propose the so-called Stochastic Rendezvous
Network (SRN) models to analyze the performance of application software with
client-server synchronization. In an SRN model entities called tasks represent hard-
ware or software objects which may execute concurrently. A single task does not
have any internal concurrency. Tasks communicate through synchronous messages.
A task that accepts messages from other tasks, i.e., a server task, executes two or
more service phases. The first phase has to do with message processing while the
server acts on its own in the remaining phases, performing, for instance, cleanup
tasks. A server task, during any phase, may send a synchronous message to another
task. The SRN model is analyzed using a Mean Value Analysis (MVA) in order to
obtain contention delays.

Ramesh and Perros [94] model a Web server system where clients and servers
communicate via synchronous and asynchronous communication, and where the
servers form a multi-layered hierarchical structure. They propose an approximate
method for calculating the mean response time based on a decomposition approach.
Dilley et al. [37] describe custom instrumentation to collect workload metrics and
model parameters from large-scale Web servers. They develop a layered queueing
model (LQM) of a Web server and use the model to predict the impact of a single
Web server thread pool size on the server and client response times. Franks et
al. [45] focus on the correct definition and detection of bottlenecks in the context
of layered queueing models. Models related to layered queueing models are the so-
called coupled-processor models, i.e., multi-server models where the rate of a server
at a queue depends on the number of servers at the other queues (see [27, 411 [71], 93] ).

The LPS queue (see also Section [LZ2) can be seen as a two-layered queueing
model. For this model, Avi-Itzhak and Halfin [6] give a simple approximation for
the expected sojourn time, and Van der Weij [I12] extends these approximations
to a tandem of two multiserver queues, in which the active servers share a common
resource in a PS fashion. Zhang and Lipsky [124] [125] give a computational analysis
based on matrix-geometric methods. More recently, several new results for the
LPS queue have been obtained. Zhang et al. [I26] obtain for the LPS queue the
limit of the measure-valued process under diffusion scaling and under heavy traffic
conditions and they proved that the limit of the number of jobs in the system is
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a piece-wise reflected Brownian motion. An extension of the study for the LPS
queue can be found in [127], where fluid analysis is done. Approximation formulas
for various performance quantities for the LPS queue are established in Zhang and
Zwart [128] based on diffusion limits.

For the special case ¢ = oo, the LPS queue coincides with the classical PS queue.
Kleinrock [66 [67] wrote extensive literature on processor-sharing queues, studying
the M/M/1 processor-sharing queue. Kleinrock [68] shows that the expected so-
journ time conditioned on the service requirement of the jobs is proportional to
the service requirement. This result is extended to the M/G/c processor-sharing
queue by Sakata et al. [I00, [0T]. In [27], Cohen extends this to a general class of
networks, where the service rate of a queue depends on the number of jobs in that
queue. In [69] [O7] the processor-sharing queue is viewed as an idealization of time-
sharing protocols in computer systems, and the authors notice the advantage of an
PS discipline above the FCFS discipline, namely that a big job does not block the
entire system, which is the case if only one job is served at a given time, serving the
jobs in order of arrival. Schassberger [I03] considers the processor-sharing queue
as the limit of the round-robin discipline, where the round-robin discipline assigns
time slices to each job in equal portions and in order, handling all jobs without pri-
ority. Bonald and Proutiére [I7] study the insensitivity of processor-sharing queues
with respect to the service-time distribution. Yashkov [I2I] analyzes the sojourn-
time distribution for this queue and also wrote survey papers on processor-sharing

queues [122] 123].

1.4 Performance aspects

In this thesis we consider the following three aspects of queueing networks with
shared resources: stability, product forms, and scheduling. These aspects and the
related literature are outlined below.

1.4.1 Stability

Stability of a network is a concept that refers to the behavior of the queue-length
process. Loosely speaking, in an unstable network the total number of jobs in the
network (under proper scaling in time) will become infinite, whereas a network is
stable if the scaled number of jobs remains in a compact set. Definitions can be
found in Section It is plausible that instability phenomena will be reflected
in poor performance in terms of long delays and user impatience in practical cir-
cumstances. However, (in)stability is to a certain extent a theoretical concept that
is unlikely to occur in an actual system due to admission and flow control mech-
anisms. Nevertheless, the stability properties of resource-sharing networks give a
useful indication of the performance in terms of delays and user throughput. Note
that a well-engineered network should avoid experiencing overload. However, the
traffic fluctuations over time might lead to temporary surges that a well-designed
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network should deal with. A thorough understanding of the behavior of the net-
work in overload is hence strongly needed. In particular, it is a fundamental issue
to characterize in a network of queues, for given traffic conditions, which queues
become unstable and what the asymptotic growth rates and throughputs are.

Over the past few decades a considerable amount of research has been dedi-
cated to the stability of queueing networks. The Foster-Lyapunov criteria, which
are based on finding a suitable test function having a positive or negative drift in
almost all states of the state space is a general framework for analyzing stochastic
stability [42] 82]. In [ITI] these methods are applied to multiserver queues with
coupled servers. Fluid-limit analysis is also known as a powerful method for finding
necessary and sufficient stability conditions for a wide class of multiclass queue-
ing networks with work-conserving service disciplines [32, [8T]. Recently, a sharp
characterization of stability for systems where the service rate of each queue is
decreasing in the number of jobs has been obtained in [19]. A characterization
of the per-queue stability in a tandem of queues with an LPS service discipline
is given in [78]. It emerges from these papers that general results for per-queue
stability for multi-layered networks (or networks with bandwidth sharing) appear
to be very challenging. In particular, if the stochastic stability of a network is
well-known for work-conserving networks, detailed (per-queue) stability remains a
difficult problem. For general service allocations without monotonicity properties,
it is still an open area, even for exponentially distributed service times. Instead of
focusing on stochastic stability, an alternative approach to tackle stability issues is
to weaken the stability definition and to investigate the so-called rate stability of a
network [39, [109]. Roughly speaking, it consists of characterizing the growth rates
as linear or sub-linear. However, because in a great number of practical situations
an overload situation is characterized by a linear asymptotic per-queue growth rate,
rate stability provides a benchmark in cases where a more detailed stability descrip-
tion is almost hopeless. Using a similar line of thoughts, Egorova et al. [38] give
a partial characterization of the overload behavior for the wide class of so-called
a-fair bandwidth-sharing strategies defined in [75]. They examine the fluid limit
under a suitable scaling of the number of flows in the system, and give a fixed-point
equation for the corresponding asymptotic growth rates.

1.4.2 Product forms

Another important aspect worth studying in the context of queueing networks is the
steady-state distribution. If a steady-state distribution has a product form, efficient
algorithms to evaluate performance measures that are functions of this steady-state
distribution can be defined. With insights on which particular characteristic will
destroy the closed-form results for a given network, it might be possible to obtain
a reasonable approximation heuristic for this network. The practical usefulness
of queueing networks is often attributed to the simple Jacksonian product-form
expressions that are available.

Jackson [56] introduces product-form solutions for open queueing networks,
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which is extended by Gordon and Newell [46] to closed queueing networks. Gordon
and Newell introduce several assumptions on the model characteristics and provide
a simple closed-form expression for the steady-state distribution and some aver-
age performance indices. This class of models is then extended to include various
interesting and useful characteristics to represent more complex systems. These
features include different types of jobs in the network, various service disciplines,
state-dependent service rates, state-dependent routing between the queues, and
some constraints on the size of the population of several queues in the network.
The most famous result concerning product-form queueing networks is presented
by Baskett, Chandy, Muntz and Palacios in 1975 [10], known as the BCMP theo-
rem. It defines the well-known class of BCMP queueing networks with a product-
form solution for open, closed or mixed models with multiple classes of jobs and
various service disciplines and service-time distributions. The steady-state distri-
bution is expressed as the product of the distributions of the individual queues with
appropriate parameters and, for closed networks, with a normalization constant.
Other extensions of networks having a product form can be found in [64]. In addi-
tion, Schassberger [103], Pittel [91], and Hordijk and Van Dijk [53] [54] contribute
to product-form results, including blocking and non work-conserving service disci-
plines. Processor-sharing results with respect to product forms are presented in [25]
and [I7], in which capacity allocation functions are assumed to be strictly positive.
Remarkably, hardly any product-form results are known for queueing networks with
shared resources. In this context [53] and [54] introduce the concept of the ‘adjoint’
Markov chain to characterize the existence of a product form. For open and closed
single-layered queueing networks this characterization has been explored extensively
in [34] to obtain product-form results.

1.4.3 Scheduling

Scheduling is the process of deciding how to assign resources to the jobs in the
system. This is usually done to balance the load of a system effectively or to
achieve acceptable performance. The need for scheduling policies arises from the
requirement to perform more than one process at a time and to transmit multiple
flows simultaneously. During the last decades, scheduling received more attention
with the introduction of complex communication systems.

There is a lot of literature on scheduling algorithms, and these have been suc-
cessfully applied to many real-world problems. We refer to [30] for an excellent
survey on scheduling, and to [90] for a more recent survey on the theory and ap-
plications. In the specific context of Web servers, Harchol-Balter et al. [47, [48], [49]
and Crovella et al. [3T] studied scheduling policies for static Web pages to reduce
the response-time performance of Web servers, provided the size of a Web page is
known a-priori; for this type of models, the results show that the classical Shortest
Remaining Processing Time (SRPT) policy [105] is very effective. Relatively new
scheduling mechanisms in literature for optimizing performance are based on the
number of arrivals occurring during the service of the jobs. This policy can be
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used if a notion of time is missing [I15]. Dynamic scheduling strategies are ob-
tained using the framework of Markov decision processes (MDPs). Markov decision
theory provides a mathematical framework for modeling decision-making in situa-
tions where outcomes are partly random and partly under the control of a decision
maker. MDPs are useful for studying a wide range of optimization problems solved
via dynamic programming. After the pioneering work on MDPs by Bellman [I1],
the research activity was intensified due to Howard’s book [55]. In [93] models are
presented for sequential decision making under uncertainty, taking into account out-
comes of current and future decisions. It encompasses a wide range of applications
and has generated a rich mathematical theory. We refer to [43] for a survey on
methods and applications of MDPs.

1.5 Outline of the thesis

In the course of this thesis, the emphasis gradually shifts from performance evalua-
tion to performance optimization. Also the models considered gradually shift from
general to more specific model instances. First, we are interested in general layered
queueing models and their stability, continuing with product-form solutions. Then,
after studying the LPS queue and its monotonicity properties with respect to the
number of servers, we continue with optimizing the LPS queue and some LPS queue
variants.

Each chapter is self-contained and has the following structure. First, we give
an introduction and discuss the relevant literature. Second, the models studied are
described and the notation is introduced. Third, we present the derivation of the
results, and finally, we discuss the results and insights obtained.

In Chapter [2 we focus on stability and throughput. We present the per-queue
rate stability and the output rates for a general class of feed-forward queueing
networks with a general capacity allocation function. More specifically, we derive
necessary conditions for per-queue rate stability, and give upper bounds for the
per-queue output rates and asymptotic growth rates under mild assumptions on the
allocation function. For a set of parallel queues, we further prove the convergence
of the output rates and give a full characterization of the per-queue rate stability,
and an explicit expression for the per-queue output rate.

In Chapter[3 we study product-form solutions. We consider two-layered queue-
ing networks with two queues, either in series or in parallel, with a common resource
shared among the two queues. For this type of networks, we specify a necessary
and sufficient criterion to decide whether a given model possesses a product-form
solution or not. This criterion unifies the parallel system, a reversible Markov chain,
and the tandem system, a non-reversible Markov chain, in one product-form theo-
rem. Subsequently, the criterion is applied to obtain a number of models yielding
a product-form solution. These models include non-balanced capacity sharing. De-
spite of, but also due to, the different parallel and tandem mechanisms we observe
that for certain examples the product form has the same structure, while for others
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there are essential differences. In addition, it is proven that several models cannot
have a product-form solution.

In Chapter[J] we study monotonicity properties for the LPS queue with respect
to the number of servers. We use coupling arguments to prove that for service times
with a decreasing failure rate the queue length is stochastically decreasing in the
number of servers, and that for service times with an increasing failure rate, the
queue length is stochastically increasing in the number of servers. The expected
queue lengths and the asymptotic decay rate of the sojourn-time distributions are
compared to that in other queueing models with and without restrictions on the
number of servers.

In Chapter [A our goal is to obtain an optimal dynamic scheduling policy that
minimizes the average queue length in the LPS queue. It is assumed that each
job has a phase-type service-time distribution. We present a new decomposition-
based approach to analyze monotonicity properties of the relative value function,
which lead to a complete characterization of the optimal scheduling policy. Next,
the performance under the optimal policy is compared to the performance under
several commonly used static policies, including the optimal static policy. The
results show that a significant gain can be obtained by using the optimal dynamic
policy.

A logical continuation of Chapter [l is Chapter [d in which we derive dynamic
thread-assignment policies that minimize the average response time of Web servers.
The Web server is modeled as a two-layered tandem of multi-threading queues,
where the active threads compete for access to a common resource. We show that
for Erlang and exponential service-time distributions the optimal dynamic policies
assign threads to pending jobs with a shorter expected sojourn time than the jobs
already in service. Experimental validation on an Apache Web server shows that
these optimal dynamic thread-assignment policies confirm our analytical results on
reductions in the response times.



CHAPTER 2

STABILITY ANALYSIS

In this chapter we study stability properties of layered queueing networks.
The asymptotic behavior of this type of networks is fundamentally different
from the behavior of classical queueing networks, where the service rate at
each queue is usually assumed to be independent of the state of the other
queues. We study the per-queue rate stability and output rates for a general
class of feed-forward queueing networks with a general capacity allocation
function. More specifically, we derive necessary conditions for per-queue rate
stability, and give bounds for the per-queue output rate and asymptotic growth
rates under mild assumptions on the allocation function. For a set of parallel
queues, we further prove the convergence of the output rates and give explicit
expressions for the per-queue rate stability and the per-queue throughput.
This chapter is based on [59] [116].

2.1 Introduction

We study queueing networks in which the service rates at each of the individual
queues are not independent, but depend on the state of the entire system, accord-
ing to some general capacity allocation function, allocating the capacity resources
to the servers. For this type of models, exact structural results are rare, and fun-
damental insight and intuition for seemingly simple questions about stability and
throughput are lacking. This motivates an in-depth study of the per-queue stability
for queueing networks with a general class of capacity allocation functions. General
results for per-queue stability for multi-layered networks (or networks with band-
width sharing) are scarce. In particular, even if global stability is well understood
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for work-conserving networks, detailed (per-queue) stability remains a difficult prob-
lem. For instance, if a network is globally stable, an interesting aspect is whether
the individual queues are stable or not.

For general service allocations without monotonicity properties, detailed sta-
bility characterization is to the best of our knowledge an open problem, even for
exponentially distributed services. Since stochastic stability seems to be intractable
for these networks, only in [19] it is shown that for decreasing service allocation
stochastic monotonicity can be obtained. We focus on an alternative approach to
tackle stability issues, namely to weaken the stability definition and to investigate
the so-called rate stability of the network [39]. This consists of characterizing the
growth rates of the number of jobs in the queues as linear or sub-linear. For a great
number of practical situations an overload situation is characterized by a linear
asymptotic per-queue growth rate, and therefore rate stability provides valuable
benchmark information in cases where a more detailed stability description seems
to be impossible. This approach is applied in [I09], where for a general class of
single-server queues the rate stability of the single queues is determined. However,
the service rate at these queues is independent of the other queues. Related are the
lines of thought in Egorova et al. [38]. They give a partial characterization of the
overload behavior, for the wide class of so-called a-fair bandwidth-sharing strategies
defined in [75], by examining the fluid limit by suitable scaling the number of flows
in the system, and give a fixed-point equation for the corresponding asymptotic
growth rates.

We consider a queueing network with Poisson arrivals, exponential service-time
distributions at all queues, internal feed-forward routing and with a structured
work-conserving allocation function driving the service in all queues and depending
on the state of the entire system. For this general model, we (1) derive necessary
conditions for the per-queue rate stability, and (2) give bounds for the per-queue
output rate. We show how to use these conditions on a two-queue tandem network
to get necessary and sufficient conditions for rate stability. For a set of parallel
queues with homogeneous capacity allocation, we further prove the convergence of
the output rates and give a sharp characterization of the per-queue rate stability
and per-queue throughputs.

The organization of this chapter is as follows. In Section the model is de-
scribed and the relevant notation and definitions are introduced. In particular,
the difference between stochastic and rate stability is rigorously explained. In Sec-
tion 23] asymptotic values as output rates and growth rates are defined. Using
the structure of the considered allocation functions, important properties of these
output rates are derived. In Section [Z4] some traffic inequalities are established
leading to necessary conditions for the rate stability of each queue. We then illus-
trate the obtained results on two toy examples. In Sections and 2.6, we consider
two special cases, namely a two-queue tandem model and a model with an arbi-
trary number of parallel queues, and show that the necessary conditions derived in
Sections and 4] are also sufficient under mild conditions on the capacity allo-
cation function. Finally, in Section [Z77] we address a number of challenging topics
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for further research.

2.2 Model and stability definitions

2.2.1 Network model

We consider an open queueing network with N queues. A job present at queue i is
said to be of class i (i = 1,..., N). External jobs arrive at queue i according to a
Poisson process with intensity A; > 0. Denote the vector of external arrival rates by
A= (A1,...,Ax)". The service times at queue i are exponentially distributed with
mean 3; = 1/p;. Let p:= (u1,...,un). The state of the system is described by a
vector x := (x1,...,2N), where x; represents the number of jobs of class i present
in the system. Let x € X := {0,1,...,}. When the system is in state x, jobs of
class i receive a service rate ¢;(x), where the function ¢(x) := (¢1(x),...,on(X))
is referred to as the system capacity allocation function . It is important to note that
the various job classes are coupled since their individual service rates may depend
on the state x of the entire system.

Assumptions on the routing

After receiving service at queue i, a job is routed to queue j € Z := {0,1,...,N}
with probability p;;. We adopt the convention that when j = 0, the job simply
leaves the network. Denote the N-by-N routing matrix by P := (p;), where
i, k =1,...,N. We assume that there is no loop in the routing, i.e., once a job
has been served at a given queue, he never returns to this queue. This type of
routing is often referred to as feed-forward routing. Consequently, we can order
the queues such that p;; = 0, 1 < j < 4. The routing matrix P is substochastic,
so that R := (r;;) := (I — P)~! exists, where I is the N-by-N identity matrix.
Moreover, let D = (d;;) be the N-by-N diagonal matrix with diagonal entries,
di; = ui (t=1,...,N). Using these definitions, the load offered to queue i is given
by

N
1
pPi ‘= /\TRDei = ‘LL_ Z )\j’l“ji, (2.1)
3 _7:1

where e; is the ¢-th unit vector. Furthermore, denote p = Zi\il Di-

Let X(t) := (X1(t),...,Xn(t)), where X;(t) denotes the number of jobs at
queue 7 (i.e., either waiting or being served) at time ¢ > 0. Then the N-dimensional
process {X(t),t > 0} can be described as a continuous-time Markov process with
state space X. For a subset of indices S, we denote by xs the restriction of the
vector x to queues S, i.e., xs = (z;)ics-
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Assumptions on the service rates

Throughout the chapter, the system allocation function ¢(x) satisfies certain as-
sumptions that we describe here.

Assumption 2.2.1 (Work-conserving allocation). Whenever the system is not
empty, all capacity is assigned to the queues. For x #0 = (0,...,0),

N
3 %) 1 and 6(0) = 0. (2.2)

Without loss of generality, the total capacity of the system is assumed to be
equal to 1 in (Z2)).

Assumption 2.2.2 (Symmetric uniform limits). For all subsets of indices U C
{1,...,N} and S = {1,...,NY\ U, there exists a function g* on {0,1,..., }N-IU
and some strictly positive numbers l;,1 € U such that

VjeUu, lim %—(X) = ljgu(xS). (2.3)

Note that [; does not depend on the set /. In many applications in computer-
communication systems the allocation functions have the following structure which
is a special case of work-conserving allocations with symmetric uniform limits

¢i(x) _ fi(z:)

D AR TC)

where f;(-) is a non-negative function such that f;(0) := 0 and limg, oo fi(z:) =
l; <oo (i=1,...,N). Note that in this case, Assumption 2.2.2] implies that

, xX€EX, x#£0, (2.4)

-1
U (L) = (T D) 25)
= it

In the sequel, we refer to these allocations as extended processor-sharing allocations.

Here are a few examples that have become classic models in queueing theory and
performance evaluation

1. The limited processor-sharing allocation defined by
fi(x;) = min{x;, 1;},
where [; is a positive integer.
2. The limited discriminatory processor-sharing allocation defined by
fi(x;) = w; min{a;, C;},

where C; is a positive integer and w; > 0 is a weight given to class i. In this
case [; = w; C;.
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3. The coupled processors allocation defined by

fi(xi) = lilz, >0,

where 0 < [; < 400 is a weight associated with class . In the literature, this
allocation is sometimes referred to as the generalized processor-sharing (GPS)
allocation.

The Assumptions 22T and [Z2.2] are not sufficient in general to get a sharp char-
acterization of the rate stability set of the network. To get more precise results, we
may assume one or both of the following conditions

Assumption 2.2.3 (Asymptotic monotonicity). For all subsets of indices U C
{1,..., N}, there exists x* > 0, such that if x; > xf, for alli ¢ U and for all j € U,
then

6:X") 1 ¥(xs). (2.6)

i

ViU,

For extended processor-sharing allocations, note that Assumption 2.2.3]is veri-
fied in particular if

ft(xt) < li7 \V’J)zZO,Z:l,,N
Assumption 2.2.4 (Homogeneity). The allocation is called homogeneous if
Vx € X, ¥y e RT, ¢(7x) = ¢(x). (2.7)

This assumption is satisfied for the coupled processors allocation and for allo-
cations based on homogeneous utility functions. For more details on bandwidth-
sharing networks and utility-based allocations, we refer to [75].

2.2.2 Stability definitions

The study of stability of stochastic processes traditionally deals with the question of
existence of a measure that is invariant to the transition operator of the process and
to which the process converges in distribution or in total variation. We aim here
at describing some ‘per-queue’ stability properties, i.e., properties of the processes
{Xi(s),s > 0}, for i = 1,..., N. Since the process {X;(s),s > 0} is not by itself
a Markov process, this is generally a much more ambitious question than describ-
ing the global stability (stability of X(¢)) which is well-known for work-conserving
networks (see Theorem 2227 below). To the best of our knowledge, the only per-
queue stochastic stability results have been obtained for a set of parallel queues
with decreasing allocations and there is no such result available for the general type
of networks we consider here. Because the usual definitions of stochastic stability
did not lead so far (without stricter assumptions on the allocation function and the
topology) to tractable results, we turn our attention to a weaker definition of sta-
bility that allows to give practical answers. Hence, we are primarily concerned with
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the property of the conservation of rates through the network. Roughly speaking,
it consists of characterizing the asymptotic growth rates as linear or sub-linear and
to characterize the set of input parameters such that the incoming traffic at a queue
is equal to the outgoing traffic. Interesting as a first-order stability property, rate
stability turns out to also give useful necessary conditions for stochastic instabil-
ity. For later reference, we thus define the following two notions of stability: rate
stability and the stronger notion of stochastic stability.

From Assumption the allocation functions ¢;(.), and hence the transition
rates are bounded, and thus the process X is non-explosive. Hence we may assume
that X and all other stochastic processes treated in the sequel have paths in the
space D = D(R., Z¥) of right-continuous functions from R to Z¥ with finite left
limits. In the sequel, a stochastic process with paths in D is viewed as a random
element on the measurable space (D,D), where D denotes the Borel o-algebra
generated by the standard Skorokhod topology [61].

Definition 2.2.5 (Rate stability). The process {X;(t),t > 0} is said to be rate
stable if

lim inf XZ—(t) =0 a.s.,

t—o00

and the process is called rate unstable if

lim inf Xz—(ﬂ
t—o0

>0 a.s.

Definition 2.2.6 (Stochastic stability). The process {X;(t),t > 0} is said to be
stochastically stable if

lim sup Pr{X;(t) >r} =0,

70 t—o0
and the process is called stochastically unstable if

lim sup Pr{X;(t) >r} > 0.

70 t—o00
Moreover, the N-dimensional process {X(t),t
cally stable (or stochastically stable) if {X;(t),
i=1,...,N.

> 0} is said to be globally stochasti-
t > 0} is stochastically stable for all

The following result, characterizing the stochastic stability of the process {X(s),
s > 0}, is well-known for work-conserving networks. The total number of jobs can
indeed be seen as the number of jobs of a single queue with unit service rate and
the global stability is then a consequence of Loynes Theorem (cf., e.g., [7]).

Theorem 2.2.7 (Global stability). The network is globally stochastically stable if

N
Zpi < 1.
i=1
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The network is globally stochastically unstable if

N
Zpi > 1.
i=1

Definition 2.2.8 (Rate stability subsets). Let S = {i : {X;(t),t > 0} is rate
stable}, and U = {i : {X;(t),t > 0} is rate unstable}.

Since each queue is either rate stable or rate unstable, the index set {1,..., N}
is partitioned into the tuple P := (S,U), with SUU = {1,...,N}, SNU =0. In
case of rate stability, the number of jobs at queue i grows asymptotically ‘slower
than ¢’ when t goes to infinity, at least on some trajectories. In case of stochastic
stability, the process {X;(t),t > 0} remains in a finite neighborhood with positive
probability. Remark that if {X;(¢),t > 0} is an irreducible Markov process, then
stochastic stability is equivalent to requiring {X;(¢),t > 0} to be positive recurrent
(see for example Theorem 12.25 in [61]). Note also that stochastic stability implies
rate stability, as it should, but that the converse result is generally not true.

The next result underlines the relation between rate instability and stochastic
instability.

Proposition 2.2.9. Fori=1,..., N, liminf; XM 59 implies that X;(t) —

t
oo in probability.

Proof. Suppose that X;(t) does not diverge to infinity in probability. Then there
exists a subsequence {t,,n = 0,1,...} such that X;(¢t,) — Z; (in probability) for
some honest (i.e., almost surely finite) random variable Z;. Moreover, there exists
another subsequence {t/,,n =0,1,...} such that {X;(¢),)} — Z; almost surely [61].

Hence, X(t;# — 0 almost surely and since Z; is almost surely finite, tZ7 — 0
and %t/) — 0 almost surely, which implies that liminf;_, X"t(t) = 0, almost
surely. O

Remark 2.2.10. Many authors (see for instance [2 [39] [76]) define rate stability
differently, with slightly stronger assumptions. For the purpose of our analysis,
we prefer the given definition that allows to link rate instability to the fact that a
process is diverging to infinity.

2.3 Output rates and growth rates
2.3.1 Definition

The following notation is useful in the sequel. For a given sample path {X(s), s > 0},
we define the Cesaro mean service rate at each queue of the network by

pilt) = %/0 ¢:(X(s))ds, i=1,...,N,t>0. (2.8)
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The growth rate of queue i is defined by

X;(t
Yi(t) = # i=1,...,N,t>0. (2.9)
Over a given sample path {X(s),s > 0}, we can further define the limiting values
of the mean service rate
¢, = liminf vi(t), @i :=lmsupep;(t), i=1,...,N,

- t—o0 t—o0
and the asymptotic growth rate of the queues

Y, =liminf Y;(¢), and Y; = limsup Y;(¢).
t—oo t—00
From Assumption ZZ2] the random variables p; are bounded, and consequently,
we prove in the following section that the Y; are almost surely bounded. We may
therefore define the mean values of vectors, for i =1,..., N,

0; :=Elp], 0, :=E[g], Q.:=EY,], Q;:=E[Y], (2.10)
and denote the corresponding vectors by O := (Oq, ..., On)T,0:=(0y,...,0n)7,
Q:=(Q1,...,Qn)" and Q := (Q1,...,Qn)". Note that rate stability of queue i
implies that v, =0 (almost surely) and @; = 0. Moreover, note that if queue 7 is
stochastically stable, then Q; = Q; = 0 and O; = O;.

2.3.2 Properties of the asymptotic rates

In this section we derive some properties of the rates of service obtained when a
queue is rate unstable. These properties turn out to be crucial when characterizing
the rate stability of the network. It is convenient to define, for i =1,..., N,

i = fils.

The next result gives a relation between the output rates and the fraction of capacity
assigned for rate unstable queues. For a given stability partitioning of the queues
P = (S,U), denote

Zp = E i [ t o (Xs(s))ds]

t—o0

Proposition 2.3.1. (Balanced output rates for rate-unstable queues) Sup-
pose Assumption 2211 holds. Ifi,j € U, then

njOi 2777;0]'. (2.11)

In particular if l; >0 and l; > 0, then

O _ O—? =7p. (2.12)

i 15
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Moreover, if (o) jcu are positive numbers, then

E 1imsup ZO&j(ﬁj(i’) :anozjoj.

t=ee \ jeu jeu

Proof. For all i € U, X; diverges in probability to infinity. As ¢ is bounded, it
implies that w —1;g"(Xs(s)) — 0 (in L'), which gives that

o[ (45 i) ] -

Using the dominated convergence theorem, which allows us to interchange the ex-
pectation and the limit, we obtain that

E [nmtﬂoo L (M - ligu(Xs(s))) ds}

Hi

= limyoo E [% I (M —ligu(Xs(s))) ds} = 0.

Hi

We conclude by observing that

E [hm SUD;_, o0 ‘PH—(t)} = E |:1imt~>oo : fot (W - ligu(XS(S))) ds}
+ U [limsup, o b [y 6(Xs(s))ds]
= lzZ'p
- 7.
(|

The next two propositions compare the outputs of rate stable and rate unstable
queues for asymptotically decreasing allocations.

Proposition 2.3.2. (Unbalanced rates between rate stable and rate un-
stable queues) Suppose Assumption holds. Then ifi € S and j € U, it holds
that

;0 < 1:0;. (2.13)

Proof. For i € § and j € U, following the same lines as in the proof of the previous
proposition, we have

2

t
< LE {limsup l/ gu(X(s))ds} .
i t Jo

t—o0
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The following proposition explores the structure of the extended processor-
sharing allocation.

Proposition 2.3.3. (Comparison of output rates for different stability
partitioning) Define the extended processor-sharing allocation as follows, for i =
1,...,N,

-1

N
¢i(x) = fi(z:) ij(ﬂ?j) ;

with fi(z;) < l; for all ®; > 0, i = 1,...,N, and consider two rate stability
partition sets P1 = (S1,U1) and Py = (S2,Us) such that Us = Uy U {k}, with
ke{l,...,N}. Then it holds that for i =1,...,N,

;07" < 007", (2.14)

Proof. Using again the lines of the proof of PropositionZ3.1] we get fori =1,..., N,

on I fi(Xi(s))
t = FE limsup—/ ds|, (2.15
i t—oo t Jo filXi(s)+ 2540 )
and
or- :
J _ ]\l[j . (2.16)

The proof then follows directly from 2I5) and (ZI6) by observing that for i =
1,....N,
fi(Xi(s)) ol
filXa(8) + 22500 — Eévzl l;

2.4 Rate stability necessary conditions

2.4.1 Traffic inequalities

In the absence of stochastic stability assumptions, it is naturally not possible to
define the input rate of the queues as the solutions of the classic traffic equations
as in [I06] for instance. However, we can derive traffic inequalities linking the
input rates and the asymptotic output rates of the network. These equations give
a mathematical understanding on the common notions of mean output rates and
input rates in the network.
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Theorem 2.4.1 (Traffic inequalities). The asymptotic output rates O, O and
growth rates Q, Q are finite and satisfy the following linear inequalities given that

Assumptions [Z21) to[2.2) hold, fori=1,...,N,
Qi+0i <X+ p;iO;, (2.17)
J

Qi+0i >N+ p;iO;. (2.18)
i

The work-conserving property brings the additional inequalities

Y 0,
Z M_ >1, and Z s <1 (2.19)
1=1 i=1 v

In the special case of p>1 and U = {1,..., N}, we have

> i _ 1. (2.20)

— M

Proof. Because of exponential service times and Poisson arrivals, X (¢) is a Markov
process. Note again that from Assumption 222 the allocation functions ¢;(.), and
hence the transition rates are bounded. This implies (the departure process from a
queue being D;(t) = A;(t) — X;(t), with A;(t) the arrival process at queue i) that
the process {M;(t),t > 0}, defined by

Mi(t) == Xi(t) — X:(0) / O+ 30 s ;S{(S)) B qsio;(s)) s,

is a local martingale. And since the transitions are bounded the martingale satisfies
E[M2(t)] < Kt fori=1,...,N, t> 0 and some K > 0 [08]. This implies that the
process {M;(t)/t,t > 0} is a super-martingale bounded in L? and consequently, for
i=1,...,N, M"'t(t) — 0 (t — 00), a.s. [98]. Assuming for simplicity that X (0) =

it is readily seen from the definitions ([2.9) and (2.8)) that, for i =1,..., N, t > 0,

1 pjitp;(t) _pi(t)
ZMi(t) + Ai + zj: T Yi(t) = T

Xilt) - 1 o6 as well as

This implies that limsup,_,

lim sup ——= #ilt) = limsup | \; —l—zpﬂ% )—Yi(t)

t—o00 i t—o0 J Hj

bji limsup, _, i (t) B
< . — L
Ai + E htm inf Y;(t).

’ Iz
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Using the dominated convergence theorem, we get ([ZI7). Relations (ZIF) are
obtained along the same lines. The inequalities in ([2I9) follow from the dominated
convergence theorem as well as the equation

- eil0)) _§ 10
1 = limsup (Z st—) < Zlimsup %—
i=1

t—00 =1 Hi t—00 Hi

If p > 1, the total number of jobs is transient, and hence for all ¢, almost surely

Zfil W = 1 and Ei\il w = 1. The last assertion thus follows from

Proposition 2311 O

2.4.2 Necessary conditions for rate stability for converging
rates

In this subsection, we study the case O = O, which serves as a benchmark for
finding rate stability conditions in the general case. We show in the last section
that we can actually prove the convergence of the asymptotic growth rates for a set
of parallel queues with homogeneous, asymptotically monotone allocations.

Definition 2.4.2 (0,Q). For a gwen stability partitioning P = (S,U) (U # 0),
define (O, Q) as the solution (when it exists) of

0i+qi =X+ Y_pjioj, (2.21)

N .
3 %y, (2.22)

i M

0; 04 5 ..

—="L:=Zp (i, €U), (2.23
N M ( )
=0 (ie8). (2.24)

We first prove the existence of a unique solution for O, Q. We then give con-
ditions for this solution to be positive vectors. To simplify the notations, sup-
pose without loss of generality that the queues are ordered so that the stable ones
are the first ones, i.e., there exists an index m such that S = {1,...,m} and
U={m+1,...,N}. Define G¥1¢2 as the truncation of the matrix G to the queues
in &,& : G = (Q)ies, jes, and similarly the vector v& = (v;)ice. We then
write the routing matrix in the following form

PSS PSM
P = ( pus  puu )
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Recall that the vector n is defined as = (l1u1, ..., Inyun) and let us introduce the
vector w®, and the positive constants kp and yp as

WS = XSHSS,

B (i PYS (1SS,
Rp = ZiES I P
XP = Zieu li,

where HSS = (I — PS%)~!. Remark that the matrix HSS is not in general the
restriction of the matrix R.

Proposition 2.4.3. Fiz a partition P = (S,U) (U # 0). There exists a unique
solution (O, Q) of Equations 221)) to 224), characterized by the following equa-
tions

OS _ (AS +Z~7>77”P”5)H35,
oY = Zpn¥,
- vy
% _ T2.i€S Ty
ZP Kp+XP

Moreover, the solution O, Q is positive if and only if

and
ZP,UZ/{ (IZ/{Z/{ o PZ/{Z/{ _ PZ/{SHSSPSU) > AM + )\SHSSPSM.

Proof. The system of Equations [221)) to ([2:24]) can be rewritten as

0° = X° + O°PSS 4 ZpnH PYS, (2.25)

QL{ _ )‘Z/l + OSPSI/{ + ZPnM(PUU _ qu), (2.26)
08 -

SE 2, (2.27)

ies 1

since from the definition it follows that Qf =0ifi € S, and thus Equation (221))
reduces to Equation (Z2Z0). Similarly Equation (Z26) can be obtained. Using
Equations [223) and (Z24) the Equation (Z27) can be derived. The proposition



26 2.4 Rate stability necessary conditions

follows from the fact that the matrices I € —~P‘€, E =88, UU are invertible with
positive inverse matrices. Then, O > 0 and Zp > 0, if and only if

€S
Moreover, Q > 0 if and only if

Zp(IWY — pUttypUt > \U | §S pSU.,
which follows from Equation (2:20]). O

It is remarkable that the conditions of positivity of the output rates are not
sufficient to characterize the stability set. In the case of parallel queues, for instance,
where we will actually derive that O = O, we show that the additional conditions
underlined in Section 23] are indeed needed to sharply characterize, for given input
parameters, the rate stability set.

2.4.3 Necessary conditions for rate stability

To derive necessary conditions for a given rate stability partitioning, we bound
the output rates, taking into account the assumption of feed-forward routing. The
bounds are obtained by comparing the maximum output rates with the outputs
previously obtained in a (virtual) network where O; = O;, for all i.

Lemma 2.4.4. Fori=1,...,N, we have
0; < w;,

where the vector w = AR is the solution of the usual traffic equations
w=A+wP.

Proof. Remark first that w exists and is unique because R = (I — P)~! is a well-
defined positive matrix since I — P is substochastic. Define the degree of queue
i in the following way; d; = 0 if pj; = 0, for all j = 1,..., N,. Otherwise, d; =
max;. p,,>0{d;}. Because of the absence of loops in the network, there exists at
least one queue ig of degree 0 (a source). Using the traffic inequalities of the
previous section, we get for all queues iy of degree 0

Oio § >‘io = wio.

We further proceed by induction on the degree of queues. Suppose the assertion is
true for all degrees less than m. Consider a queue of degree m + 1. It is receiving
traffic from queues of lower degree. Using the traffic inequalities, the induction
assumption and the definition of w, we get

N
Oi < \i + Z pjiO; < Xi + ijiwj = wi.

j:d;<m j=1
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We now derive the lemma leading to the main result of this section.

Lemma 2.4.5. Let Zp := %,Vi € U,. For each partitioning P = (S,U) (U # 1),
we have

Zp > Zp.
If moreover PYS =0, then
Vi € S, Oi < Oi.

Note that this result holds without restriction on the routing policy, and is not
limited to feed-forward routing.

Proof. Using Lemma 244 and the traffic inequalities given in Theorem 21| we
can write that

68 < wS + ZP’I]SPUSHSS,

since from Equation ([2I7) we have that Q; = 0 for i € S. Next, using Equation
@EI3) and xp = >, lis it follows that

_ 0,
1< xpZp+ Z —.
ies Hi
Hence, combining these equations we have
_ _ 0,
(xp+hp)Zp+Y WS > xpZp+ )y — =1,
€S ics

which gives Zp > Zp. If PYS = 0, the second assertion follows from Proposition
2.4.3 [l

We can now derive necessary conditions for the partitioning P = (S,U) to hold.
We make use here of Lemma 244 and we therefore need the assumption of feed-
forward routing.

Theorem 2.4.6. Assume a given partitioning P = (S,U). Then for all i € U
w; =

— > Zp.

i

Proof. For an unstable queue i, (); can be written as strictly positive for all ¢ € U,
which gives, using the traffic inequalities

N
> pjiOj+Xi—0i > Qi > 0.

=1
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Using the two previous lemmas, it leads to

N N

Vi elU, ijiwj + XN —miZp > ijin +A—0;>Q; >0,
Jj=1 Jj=1

which gives using Lemma 244 that —n;Zp > O; and thus ‘f]— > Zp. O

So far, only necessary conditions for a given rate stability partition of the queues
follow from Theorem We illustrate the obtained results on two examples,
where the obtained necessary conditions turn out to be sufficient in the first example
and not sufficient in the second.

In the next two sections, we derive necessary and sufficient conditions for rate
stability under some of the Assumptions 2211 to 224 for two important special
cases. In Section we study a two-queue tandem model, and in Section we
consider systems of parallel queues, with shared resources.

2.5 Two-queue tandem model

Consider the system of two queues in tandem, illustrated in Figure 2] with an
asymptotically decreasing extended processor-sharing allocation (see Section 22)).
The routing matrix is given by

P—<8 g). (2.28)

Thus, a fraction p of the output rate of the first queue is sent as input rate to the
second queue. The following traffic equations and inequalities hold (Theorem 2-Z.T])

Q1+01 = )\,
Q2+02 < pOy,
AR Y

H1o p2

For the corresponding virtual model satisfying O = O, the traffic equations are

AP AP
Ol = )‘1 2

P P

O_l + 0_2 — ]_’

M1 H2

P -

O, = Zp, foriel.

i
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P Ql Qz O~1 02
U=10 0 0 A A1p
S={1}, u={2} 0 N e N R L
S=@huU=(F | n-ge 0 e e
w={1,2) | a-fm Pl el

Table 2.1: Output rates for the stability subsets.
M1 M2
— T0O — 00 —
P

Figure 2.1: Two queues in tandem.

A1

By P we denote the partition of queues according to their rate stability. P can thus
belUd =0, and S = {1}, U = {2}, and § = {2}, U = {1}, and U = {1, 2}. The
solutions of O and Q are given in Table 2] for each stability subset P.
According to Theorem the network is globally stochastically stable if and
only if p < 1 which reads
fa 2
ppy A+ p2

Note that in this case O = O = O and Q=Q=qQ.

Necessary conditions for ¢/ = {1, 2}

For the partition & = {1,2}, given that Zp = ﬁ w = (A1,pA1), the following
conditions given by Theorem [2.4.0] are necessary

> l2M2,
Iy

M1l1
I+l

Using the last assertion in Theorem ZZI] we further obtain that Zp = Zp.

AL >
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Necessary conditions for § = {1}, U = {2}

For the partitions f = {1},S = {2} and § = {1},U = {2}, the necessary conditions
stated in Theorem [ZZ4.0lead to the already known condition p > 1. Using Theorem
(Zp > Zp), the first traffic equation and the additional inequalities given by
Theorem 2.4.1] and Proposition we obtain

M O~§S:{1},U:{2}) B O§S:{1},U:{2}) § OEU:{LQ}) B O~§M:{1’2}) !
i m m m m L+l
which leads to the necessary condition A\; < l‘f_l:lz .

Necessary conditions for ¢/ = {1}, S = {2}

e ORISR pum).s-)
(pap + p2)lapi2 72 - 72 ’
and
RN e R o S
72 72 2 I +1’

and this leads to the necessary condition that p < %

The obtained necessary conditions are easily seen to lead to a complete parti-
tioning of the parameter set, which gives a sharp characterization of the stability
set. As a consequence, the obtained conditions are both necessary and sufficient,
except on a boundary set of input parameters.

In Figure the stability set is depicted for two different sets of input parame-

ters.

2.6 Parallel queues

In this section, we consider parallel queues and thus suppose that there is no internal
routing, i.e., p;; = 0, for all ¢, j. In that case, we can derive a sharp characterization
of the per-queue rate stability. To this end, we first show that in that case, the traffic
inequalities are actually a set of traffic equations (Theorem 2.6.1]). This allows to
prove that the output rates and asymptotic growth rates converge. Using the results
of Sections and [Z4] we then derive a characterization of the per-queue stability

(Theorem 2:6.6)).

2.6.1 Extended traffic equations

In this subsection, we specify the traffic inequalities obtained in the general case by
deriving traffic equations linking the input rates and the asymptotic output rates
of the network.
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M | At
3 | | ]
7u:{1},§s:{2} ) |
U=1{1,2} U={1},8=1{2}
2 B

o S={1}u=1{2} 1

0.2 0.6 1 P 0.2 0.6 1 P

Figure 2.2: Stability regions with (u1,11, p2,l2) = (3,1,1,1) in the left figure, and
with (g1, 01, po,l2) = (1,1,3,1) in the right figure.

Theorem 2.6.1 (Extgnded traffic equations). The asymptotic output rates O, O
and growth rates Q, Q are finite and satisfy the following linear equations. For
i=1,...,N,

Qi+0; = N, (2.29)
Qi+0; = \. (2.30)

Proof. We follow the same lines as in Theorem ZZ4.1]

Mi(t) = X,(t) — X,(0) — / [\ — 61(X(s))}ds, (2.31)

is a martingale that satisfies E[M?(t)] < Kt for i = 1,...,N, t > 0 and some
K > 0. This implies that limsup, ., 242 < 400 and liminf, . Y;i(t) = A —

limsup,_, . ¢i(t). Using the dominated convergence theorem, we get Equations

229)) and (Z30). O

2.6.2 Output rates convergence

We fix P to be a partition of queues such that queues in S are rate stable while
queues in U are rate unstable. In the following proposition, we prove that the output
rates of the different queues converge which further allows a complete description
of the rate stability set.

Proposition 2.6.2. Consider a set of parallel queues with a decreasing allocation
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satisfying the Assumptions 2211, 222, and 2224 Then, for t — oo,

X;i(t
% — Q;, in probability, (2.32)
wi(t) — Oy, in probability, (2.33)

with

Oi=X\ (i€8), Oi=2Zpy; (ield),
Qi=0 (ie8), Qi=\—Zpn (icl),

where

Aj
P 1= es it 1= Yesp

P = =
Ejel,{ lj XP
Proof. Let us first prove the convergence of the rates. Note that an asymptotically
monotone homogeneous allocation is actually monotone. Using the homogeneity

and the monotonicity of the allocation, we get that for ¢ large and fori=1,..., N,
X(t _
$i(Xi(1)) = ¢ (¥> > 9:(Q),

which implies

ei(t) > ¢:(Q).
This leads to

Qi<Ai—ai(Q) i=1,...,N.
Similarly, for i € U,

Qiz)\i_qsi(Q)a Z:]-avN

Summing these inequalities for ¢ = 1,..., N and using the property of a work-
conserving allocation, we obtain that

N N N =
Qi N Q
;ngm 12;/%'

Since Q; > Q;, and Q; > 0 for i = 1,..., N, we hence deduce that Q; = Q; and as
a consequence for i =1,... N,

0;=0;=0;. (2.34)

The convergence in L' of ¢;(t) to a constant implies the convergence in probability
of ¢;(t) which combined with the almost sure convergence of the difference Y;(t) —
©i(t) implies the convergence of Y;(t) in probability. The traffic equations defined
previously together with the system of equations in Definition allow us to
complete the proof. O
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Remark 2.6.3. It appears plausible to prove an almost sure convergence for these
processes even without the assumption of exponential service times and Poisson
arrivals. This result is out of the scope of this study but we refer to the method
presented in [58] and further used for a set of discriminatory processor-sharing
queues (DPS) in [3] for such a derivation. These techniques, jointly used with the
traffic conservation used here would prove the stated convergence in the context of
stationary marked point processes.

Remark 2.6.4. Note that we are not able to prove Equation ([Z37]) in general and
therefore the results do not apply to feed-forward routing. However, if Equation
@34)) can be proven for feed-forward routing the results for parallel queues also
hold for feed-forward routing.

2.6.3 Characterization of the per-queue rate stability

We assume without loss of generality that the queues are ranked in decreasing order
of the loads (; := %, in the sense that

Q< <Cn (2.35)

The following result shows the relation between the ordering of the queues and the
per-queue rate stability.

Proposition 2.6.5. If queue i is rate stable and j < i, then queue j is also rate

stable.

Proof. Suppose j € U, i € S and j < i. From Proposition 232 we get (3— < %
, _ ’ 5

From Theorem 2:47] it follows that O; = A; and that O; < ;. We thus find that

O, 0O; )\
(=—<2L<2L (2.36)
i N M
This contradicts ¢; < ¢;. O
Denote Z(m) = Z{l,...,m} = 1_22#/) The following result shows that the
i>m 't

partitioning P = (S,U) has a simple structure.

Theorem 2.6.6 (Structure of stability partitioning). Consider a set of parallel
queuves with a decreasing allocation verifying the Assumptions 2.2.1], and 22241
The stability partitioning P = (S,U) is characterized as follows P = (S,U) with
S={l,....m} andUU ={m+1,...,N} if and only if

Cm < Z(m) < Cm—i—l- (237)

Proof. Using Proposition 6.5, there exists a k such that S = {1,...,k} and U =
{k+1,...N}. Theorem combined with Proposition gives that Z(k) =
Z(k) < {(k +1). Proposition 6.1 gives

Or o Ok,
Nk Nke+1
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which in combination with the traffic equations leads to
G < Z(K).
As Z(-) is a decreasing function, we conclude that m = k. O

We emphasize that Theorem gives a complete characterization of the rate
stability partitioning for model instances that satisfy Assumptions 22211 222 and
224 and are monotone. Typical examples of such allocations are the coupled-
processors allocation (defined in Section ZZ2T]), and utility-based allocations on
some tree topology (see [1§]).

2.7 Conclusion and topics for further research

The results presented in this study provide new intuition and fundamental insight
in the stability and throughput behavior of queueing models in which resources
are shared among different queues. These results should be viewed as a first step
in understanding the behavior of this type of queueing networks, and open up a
wealth of challenging open research questions. Some of these questions will be
briefly touched upon below.

In the context of stability and throughput characteristics, several interesting
questions remain to be answered. First, when X is a continuous-time Markov
process, it actually remains an open and crucial question to know for which input
parameters, rate instability of queue i coincides to the convergence of X; to infinity
(either in probability or in law). In [19], per-queue stochastic stability is established
for parallel queues with monotone allocation functions. It is remarkable that, except
possibly on the boundary of the stability sets, the conditions for rate instability
(and thus stochastic instability) that we have derived here coincide with the sharp
characterization of the stochastic instability set given in [I9]. This encouraging
observation calls for a generalization of this result to more complex topologies.

Second, the derivation of necessary conditions for rate stability for models that
are not covered by the ones discussed in Sections and is an open area. For
example, consider a seemingly simple three-queue network where all jobs arrive at
queue 1, and then either move to queue 2 (with probability p1) or to queue 3 (with
probability ps) before departing from the system, with 0 < p; + ps < 1. Then it
can be shown that the necessary conditions obtained in this study do not lead to
a full partitioning of the parameter set. This observation shows that an extension
of the necessary conditions presented in Sections and 24 to a broader class
of models is far from trivial, and provides an open area for further research. In
addition to considering stability and throughput, one may also be interested in
other performance metrics such as steady-state sojourn-time distributions of jobs
at the different queues, the optimal static or dynamic assignment of servers to the
queues depending on the state of the system. Derivation of such results is another
interesting topic for further research.



CHAPTER 3

PRODUCT-FORM SOLUTIONS

In this chapter we focus on networks with queues either in tandem or in paral-
lel, with a common resource shared among the queues. First, a necessary and
sufficient criterion, called adjoint reversibility, is provided to decide whether
the system possesses a product form or not. This criterion unifies both the
parallel (a reversible) and the tandem (a non-reversible) system in one product-
form theorem. Next, the criterion is applied separately for the parallel and
tandem system to obtain a number of new product-form examples which also
includes non-balanced capacity sharing. Despite of, but also due to, the dif-
ferent parallel and tandem mechanisms we observe that for certain examples
the product form has the same structure, while for others there are essen-
tial differences. In addition, it is proven that several models cannot have a
product-form result. This chapter is based on [I17].

3.1 Introduction

In this chapter we study perhaps the simplest non-trivial class of queueing models
in which resources are shared: a network of queues, either in tandem or in parallel,
in which a common resource is shared amongst the servers at both queues. For
this class of models, we derive a variety of product-form and non-product-form re-
sults, leading to fundamental insight and understanding in the behavior of queueing
networks with shared resources.

The literature on product-forms is extensive. In [506] 57], the authors provide
product-form results for job-shop networks. The well-known BCMP-paper for com-
puter applications [I0] and other extensions of networks having a product form can
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be found in [64]. Schassberger [103], Pittel [91] and Hordijk and Van Dijk [53] [54]
contribute product-form results, including blocking and non work-conserving ser-
vice disciplines. Specific product-form results for processor-sharing systems are pre-
sented, most notably, in [I7] and [25]. More essentially though, in these references,
the capacity allocation functions are assumed to be strictly positive. In [I7] Bonald
and Proutiere show that the stationary distribution of a network is insensitive with
respect to the service-time distribution if and only if the service capacities are bal-
anced, considering networks with state-dependent service rates and state-dependent
arrival rates. Van Dijk [34] [36] provides sufficient and necessary conditions for a
network to possess a product-form solution. The focus in these references is on
blocking.

In this study, in contrast to the literature given above, the focus is on the sharing
of the service capacity. In addition, it is studied whether or not the parallel and
tandem models are equivalent with respect to their product forms. In particular,
the product-form results are compared for the tandem and parallel model with sim-
ilar sharing functions. We specify the criterion in [34], [36] to give both necessary and
sufficient conditions for the existence of a product-form solution to a general setting
of service sharing among two stations in either parallel or tandem. A theorem is
provided to unify models despite different routing mechanisms, leading to compa-
rable (and similar) product-form solutions. The product-form behavior of a range
of model examples will be analyzed. This covers the standard processor-sharing
mechanism in which the resource is fairly shared among the jobs in the system:;
note that for this model the existence of a product form is well-known, but that
we give an alternative approach to prove this. Moreover, new product-form results
for non-standard PS models are obtained, e.g., where the resource sharing may be
unproportional and where service may be stopped. This analysis leads to a number
of new product-form results, including results on models not having product-form
solutions.

The set up of this chapter as follows. In Section the models investigated
in this chapter are described and relevant notation and definitions are introduced.
Also the general condition for models to possess a product-form solution or not is
given. In Section B3] the parallel model is discussed in detail and examples are given
for several capacity allocations and state space truncations leading to product-form
solutions and non-product form solutions. Also the two-queue extension of the LPS
service discipline is considered here. In Section [34] similar results are presented for
the tandem model. After a discussion in Section .6 we conclude with addressing a
number of challenging topics for further research.

3.2 The models and general product-form charac-
terization

We restrict the presentation to queueing networks with two service queues and
investigate product-form properties of these queueing networks, where the networks
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have the following specific features: (1) state-dependent service sharing, where the
per-queue service rates depend on the state of the entire system, (2) services can be
fully stopped at a queue, even if jobs are present at that queue, and (3) incoming
jobs can be denied access to the system. For the networks we focus on the sharing
of the capacity, more than on blocking, which is motivated by the applications
introduced in Section Bl We focus on networks with only two queues since the
complexities with respect to product forms manifest themselves for these networks,
while the behavioral insights and intuition can be obtained by illustrations.

We consider two models; a model with two queues in parallel (PM), and a model
with two queues in series, a tandem model (TM). For these models we first introduce
some common notation. Denote the state of the system by x = (21, z3), where a;
denotes the number of jobs present (i.e., waiting or in service) at queue i (i =1, 2).
The state space is denoted by C, where C = {x | x1,x2 > 0}. Let the total amount
of service capacity offered to all jobs in service at queue i denoted by ¢;(x) > 0, for
i =1, 2. We assume that an empty queue does not receive service capacity (i.e.,
¢i(x) = 0 if &; = 0). The service times at queue ¢ are exponentially distributed
with mean (3; = ui_l. Given this notation, we now define the two different models.

3.2.1 Parallel model

Consider a network of two queues in parallel. Jobs arrive at queue i according to a
Poisson process with rate A; (i = 1, 2). After completion of service at queue i a job
leaves the network. Upon arrival at queue ¢, an incoming job is either accepted or
blocked, depending on the state of the system, x. This admission policy, denoted
by the blocking function b;(x) € {0,1} (i = 1, 2), is defined as follows: If b;(x) =1
then a job arriving at queue i is accepted, and if b;(x) = 0 the job is blocked.
In Section we focus on product forms for this model, given a function ¢;(x),
for ¢ = 1, 2. A first example of this model is presented in Figure Bl In this
example, which will be discussed in detail in Section B35 the state x equals (4, 2).
The capacity assignment is based on a processor-sharing discipline, jobs in service
receive a fair share of the total capacity, and in this example three jobs are in service
in the first queue, and two jobs in the second queue, all receiving a fifth of the total
capacity of the shared resource.

3.2.2 Tandem model

For the tandem model (TM) we consider a network consisting of two queues in
series. The jobs arrive at queue 1 according to a Poisson process with rate A. After
completion of service at this queue jobs are forwarded to queue 2; after receiving
service at queue 2 jobs depart from the network. There are no external arrivals to
the second queue. Upon arrival at the system, an incoming job is either accepted
or blocked, depending on the state of the system. To this end, we again denote
an admission policy, for the tandem model by by (x),x > 0, where b;(x) := 1 if an
arriving job is accepted, and b1 (x) := 0 otherwise. In Section [B4] this model and
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queue 1
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queue 2 Y
] I
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Figure 3.1: The parallel model.

its product-form results are presented and discussed.

Figure illustrates an example of this model where the capacity assignment
is again based on a processor-sharing discipline. Note that in this figure, as well as
in Figure B} x = (4, 2), with three jobs in service at the first queue and two at the
second queue.

Figure 3.2: The tandem model.

We note that the three features discussed above are included in both model de-
scriptions. State-dependent service sharing is captured in the function ¢;(x), which
includes the possibility to provide no service to queue ¢ by taking ¢;(x) := 0 for
some x; > 0. Access blocking is described by b;(x).
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3.2.3 A unifying product-form characterization

Under natural ergodicity assumptions for its existence, let 7(x) denote the corre-
sponding steady-state distribution. In this section we present a general criterion
that gives both necessary and sufficient conditions for 7(x) to possess a product-
form solution. Here the standard notion of a product form is given by the following
definition

A product form is defined as the factorization of the steady-state joint queue dis-
tribution to the steady-state single-queue distribution, up to a normalization con-

stant [34].

Station balance

As will be shown below, the existence of a product form can be characterized by
the so-called notion of reversibility, not necessarily of the underlying Markov chain
itself but of a special constructed Markov chain that will be called the adjoint
Markov chain. This notion of reversibility reflects the phenomenon that a chain
would stochastically evolve in the same way if we could reverse time (see [64] for an
elegant and extensive exposition of this concept).

The construction of the adjoint Markov chain depends on the specific application
of interest in order for a notion of queue balance to be satisfied, i.e.,

The rate out of a state x due to a departure at a queue i = (3.1)
the rate into that state x due to an arrival at that queue 1. '

Whether this queue balance is indeed satisfied, which in turn appears to be di-
rectly related to a product form, then remains to be seen and is one-to-one related
to the reversibility of the adjoint Markov chain (defined in Section B:Z3]). The
reversibility of the adjoint Markov chain requires the existence of a stationary dis-
tribution 7, such that 7(4)g ; = 7(j)q;:, where §; ; are the transition rates of the
adjoint Markov chain.

First let us make the constructions of the adjoint chain explicit for the parallel
and tandem model. For the parallel model the construction of the adjoint transition
rates appears to be identical up to service scaling, as of the original model. For
the tandem model, in contrast, the construction of the adjoint Markov chain is
necessary and different as the model itself is not reversible. It is obtained by the
transition rates of the original model supplemented with transition rates in the
opposite direction.

From here on we adopt the state notation x = (x1,x2) as in Section B2, with x;
the number of jobs at queue ¢ = 1, 2, and we assume the existence of a stationary
distribution 7(x) at some set of admissible states C', where C' € C. Hence, w(x) =0
for x ¢ C. The following notation is convenient throughout. Let e; denote the i*"
unit vector, for ¢ = 1, 2, and let 0 := (0,0). Finally, denote by 1y the indicator
function for an event F, i.e., 1p = 1 if event F is satisfied and 0 if not. We recall
Sections BZ.T] and for the model descriptions.
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For the parallel model the Kolmogorov or global balance equations for a state
x € C, become

(%) p2¢2(x) B.24

= (3.2)
T(x+e)mdi(x+e)+ | BAL)
T(x +ex)uada(x+ex) + | B2A2)
T(x —e)\bi(x —e1) + 323"
7T(X— eg)AQbQ(X— eg) (EZA,)

For the tandem model the global balance equations are, for x € C

m(x)Ab1(x) + B31)
m(x) g1 (x) + B32)
(%) p2¢2(x) B33)

= (3.3)

W(X+€2)M2¢2(X+92) + (Bﬂll)

T(x+e —e)uipi(x+e —er) + B32)

m(x —e1)\b1(x —eq) @313
We cannot expect to obtain analytic solutions for equations (32 and B3], unless
these equations are satisfied by the more detailed equations [B21i)=@2") for i =
1, 2, 3, 4 for the parallel model and B3l:)=B34') for i =1, 2, 3 for the tandem
model. These more detailed relations will be referred to as station balance relations.

Adjoint Markov chains

In this section we will define the adjoint transition rates g for the parallel and
the tandem model. For the parallel model, as the routing itself can be seen as
reversible, the transition rates of the adjoint Markov chain can be chosen as for the
original Markov chain, up to service scaling by

Q(X x+e1) = Albl(X),
dx,x+e2) = Aaba(x),
ox—e) = 6i(x), (3.0
gx,x —e2) = ¢2(x),

q(x1,%2) := 0, otherwise.

For the tandem model the routing has a triangular form and is not reversible
itself, since transitions only take place in one direction. In line with the detailed
equations B3li)=@3l¢') for i =1, 2, 3, therefore, define the adjoint Markov chain
by constructing transition rates in opposite direction as follows

q(x,x+eq) = Abi(x),
Q(Xv X—e;+ e2) = ¢1 (X),
(j(X,X - e2) = ¢2(X),
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supplemented with

q(x +e1,x) = ¢1(x—er +ez),

q(x—e1+e2,x) = (bQ(X—EQ), (3 5)
d(x — e2,x) = Abi(x), '
q(x1,%2) := 0, otherwise.

Note that this adjoint Markov chain coincides with the parameterization of the
original tandem network up to exponential service parameters in the natural queue
flow direction from queue i to queue i+ 1. In contrast though, also a flow in opposite
direction has been constructed. The general definition of the transition rates of the
adjoint Markov chain are as follows. Consider a queue i and a transition rate ~y
from queue i to some queue i + 1, then

Jx+e,x+e41)=2 (asoriginal Markov chain),
and
Jx+e,x+e_1)=7 (as new),

as is presented in [34].

Product-form result

Both the parallel and the tandem model can now be characterized by one unify-
ing theorem. To the best of the author’s knowledge, this seems to be new in the
literature. It characterizes the existence of a product-form solution by means of re-
versibility of the adjoint Markov chain, which we will refer to as adjoint reversibility.

Theorem 3.2.1. There exists a product-form steady-state distribution of the form

r(x) = cH() [ [Hx . forallxcC (3.6)

%

with ¢ a normalizing constant, if and only if the adjoint Markov chain is reversible.
That is for some solution w(x) of the adjoint Markov chain and for all pairs of
states x1,x9 € C

7(x1)q(x1,%2) = T(x2)q(x2,X1). (3.7)

Proof. The proof is concluded directly by substitution of Equation (34)) in Equation
(32) and showing that 32li) = B21¢') for i = 1, 2, 3, 4 for the parallel model, and

similarly, by substitution [B.3]) in (3] showing that B3li) = B3li’) fori =1, 2, 3
for the tandem model. O

Note that the result stated in Theorem 32Tl also holds for more than two queues.
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Reversibility characterization

Once again, it is important to observe that reversibility appears as a key character-
ization for a product form. However, it does not imply that the model itself needs
to be reversible. Furthermore, in that case the stationary distribution {7 (7)} of the
original chain coincides with that of the adjoint Markov chain {7 (i)} up to scaling
factors of the mean service times. See Remark below for references.

The major advantage of Theorem [B.2.1] is that it enables one to verify the exis-
tence of a product form (B.6]), by simply investigating the existence of a reversible
solution H(x). This, in turn, can be verified by the so-called Kolmogorov criterion
(see for example [83]) as based upon just the transition rates as defined by (4] and
B3). The Kolmogorov criterion for the adjoint Markov chain need to be verified.
Below we present the reversibility conditions in more detail, for two reasons: (1)
for the readability of the chapter and (2) to use these reversibility characterizations
explicitly later on in the proofs for product-form and non-product form results for
the parallel and tandem model. To verify reversibility of the adjoint Markov chain,
we need to verify if one of the two conditions below, (B8) or (BI1]), holds.

Lemma 3.2.2 (Equivalent adjoint reversibility conditions). The following two con-
ditions are equivalent for the reversibility of the adjoint Markov chain as in ([B.1).

1. For any cycle of the form p of any length t and its reverse cycle of the form p

0p) = 0(p), (38)
where
p = X9 — X1 — ... Xt — Xt41 = X0, (3.9)
p = X0 =3X41 — Xt — ... — X1 — X0, .

with their products of transitions rates

6(p)
0(p)

q(x0,x1)q(x1,%2) ... G(x¢,%0),
Q(XO, Xt)Q(Xt, Xt—l) .. .Q(Xh XO)- (310)

2. There exists a function H(x) such that for any fized xo € C and any state
x € C it holds that

K—1

q(xp,x

H(x [ by Thtl } , for any path xg — x1 —
k=0

(Xk+1,Xk) (3.11)

. — Xg = X, for which the denominator is positive.

This means that H(x) is independent of the path x1 — ... — Xx_1; it only
depends on xqg and X .
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Proof. This can be concluded from substitution of Equation (ZI1) in (37) or in-
directly as by [64] for the characterization of reversibility for the adjoint Markov
chain. Note that we have

H(xk)  q(Xk;Xk41)

H(xp+1) B q(Xkt1,Xk)’ (8.12)

and since we assume Equation (3.0) has a unique solution up to a normalization
constant we can directly derive Equation (3IT]). O

Either one of the two checks above in turn can generally be reduced to basic
cycles or short paths that directly suggest a necessary form of the function H(x)
and a decomposition in a service and routing component, satisfying

H(x+e;) _ oi(x +e;) bi(x)
H(x+ej) o¢j(x+e;)bi(x)

(3.13)

Note that for x € C'if x+e; ¢ C then b;(x) = 0. This equation appears to be the
most explicit form to find a suggestion for the function H (x).

Remark 3.2.3. From the condition given in Equation (BI3) it follows that the
structure of the product form does not depend on the routing mechanism, whether
parallel or in tandem.

For the applications in Sections B.3.5 and B.4.5] also the following corollary will
appear to be useful.

Corollary 3.2.4. A product form does not exist if for some pair of states x5 and
Xy for some paths p1 and pa and their reversed paths py and po, it holds that

O(p1) # O(p2), (3.14)
with
O(pi) := zggi, (3.15)

and where p1 and ps are paths defined as follows

P11 = Xs —X] ... XK1 XK = Xy, (316)

p2 = Xs—>XI1—>---_’XIK/71_’XIK’:Xt'

Remark 3.2.5. (Literature) The concept of an adjoint (artificial) Markov chain to
characterize the existence of a product form has first been introduced and exploited
in [53] and extended in [54]. For the case of a single job-class this characterization
has been explored extensively in [34]. A somewhat related product-form charac-
terization as by an invariance condition has also been provided in [25] under the
condition that there is no blocking and that the service rates are strictly positive.
Its result is included by the current one as a special case. More specifically, the
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most closely related results for processor-sharing mechanisms are those from [I7]
and [25]. In these references though the implicit but essential condition is assumed
for the existence of a function ¢ (see [25]) or @ (in [I7]) to be seen as the function
H(x) in Theorem B227Il However, these are hard to find in general. The present
setting, in contrast, does lead to a construction or check of this function by means
of reversibility, as will be illustrated in Sections and [B4] for the models of our
interest.

Examples

In the next two sections the theorem presented in this section is used to investigate
product-form results for the following six examples for both parallel and tandem
models. The parallel case is given Section B3] and the tandem case in Section 3.4

(1) The proportional PS model,

2) An unproportional PS model with full capacity to one queue,

3) An c-unproportional PS model,

(
(
(
(

5

)
)

4) A state-space reduction,
) A two-queue LPS model,
)

(6) A truncated two-queue LPS model.

The first model is well-known to possess a product form. However, it is included
to illustrate Theorem B2} The results for the second and third model seem to
be new in the literature; unbalanced sharing of the service capacity is captured in
these examples. The results for the fourth model are known for the parallel model,
but new for the tandem model; it illustrates the differences that appear between
tandem and parallel routing mechanisms for truncation of the state space. The fifth
model example was already introduced [6l, I12], but the non-product form proof is
new as is the product-form truncation in the tandem case. None of the examples
did appear this detailed in literature, and therefore also contributes to the insights
of product-form results.

3.3 Parallel model: Examples

In this section we apply Theorem B.2.1] to show and prove the existence of product-
form solutions for the parallel model with shared resources as described in Section
3.2.3l To this end, we write

¢i(x) = P(x1 + x2)si(x), for i =1, 2, (3.17)

where ®(k) > 0 represents the total service capacity of the shared resource when
the total number of jobs 1 + z2 equals k, and where the sharing function s;(x) is a
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fraction of this capacity allocated to queue ¢ (i = 1, 2). Note that ¢;(x) is uniquely
defined by ®(x1 + z2) and s;(x) up to a scaling constant and that in general ®(-)
is not necessarily equal to 1, additionally note that ), s;(x) < 1. Furthermore, for
notational convenience, we define

-1

; (3.18)

z1+T2

P(x) := l H O (k)
k=1

which we will from now on use in the remainder of the chapter. We now consider
the examples presented in Section 323

3.3.1 Proportional PS model

Consider the two-queue extension of the standard single-queue PS queue where the
total capacity equals ®(z1 4+ 22) and where the fraction of this capacity allocated
to the queues equals

T4

i(x) = , fori=1, 2, 3.19
$:(x) P or i (3.19)
for x € C, with

C={x|z1,22 > 0}. (3.20)

Thus, for given state x queue i gets a fraction s;(x) of the capacity ®(z1 + x2); in
words, s;(x) represents the proportion of jobs that are at queue i. The admission
policy is given by b;(x) := 1 for i = 1, 2 and all x € C, i.e., all arriving jobs are
accepted for all x € C. Note that the classical PS-case occurs as a special case by
taking ®(k) =1 for all k£ > 0.

Result 3.3.1. The proportional parallel PS model possesses a product-form solution

of the form [B.4), with

2

H(x) = [H A

i=1

T+ T2
1

P(x)< > forxeC. (3.21)

Proof. We first use Theorem B.Z1] to prove the existence of the product form, and
then, to prove that the product-form solution has the form (32I). Note that the
proof can also be constructed based on the balance equations, which is stated in
Remark However, we construct a proof based on Theorem B.2.1], illustrating
this theorem. Therefore it suffices to show that the reversibility condition (828, i.e.,
0(p) = (p), is satisfied for each path p. To this end, note that for the model under
consideration, the transition rates are as follows using Equations (34) and BI7).



46 3.3 Parallel model: Examples

For x € C,

q(x,x +e1) = A,

Q(X)X + e2) = A27

~ 1 (3.22)
— = (0]

Q(Xa X el) T + o (xl + x2)7

_ €2
—_ p— @ .

q(x,x — e) 21+ 2o (1 + x2)

Based on these transition rates one may verify that the transition matrix of the
adjoint Markov chain @ equals the transition matrix @ of the original Markov
chain. Note that for this model it suffices to consider only two basic cycles, since all
other cycles are constructed similarly. Thus, we only need to show that 6(p) = 6(p)
for the following two paths

= X—X+e —X+e +e —>X+ey —X,

= X—Xte —Xte +te —>X+e —X. (3'23)

p
P
To this end, substitution of Equations ([3.22) into Equation ([BI0) leads to

0(p) =q(x,x +e1)q(x + e, x + e +ez)

X (x4 e+ e, x+ e3)g(x + ea,x)

(1 +1)
1+ a9+ 2

(w2 +1)
1 +ao+1

=)\ X Ay X (I>($1+J,‘2+2)

D (21 + 29 + 1),

and

0(p) =q(x,x + e2)q(x + ez, x + €1 + e2)

X J(x+e;+eyx+e)gx+er,x)

($2+1)
r1 + 20 + 2

(z1+1)
1 +xo+1

=Xy X A\ X Q)(x1+x2—|—2)

D(x1 +x2 + 1),

which immediately implies 6(p) = 6(p). Hence, the reversibility condition (B.8])
applies, and thus, there exists a product-form solution (B6). Next, we show that
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the product-form solution has the form (Z2I)). To this end, we observe that using
Equation 1) in Theorem [B.2Z1] and the equations in ([3.22]) imply the following
recursive relations for x € C

H()A = Hx)(x,x + e1)

= H(x+e1)q(x+e1,x) (3.24)

(x1+1)

Oz + 22+ 1).

Similarly by ) and 322) we find that

H(x)\o = H(x)q(x,x + e2)

= H(x + e2)q(x + €2, x) (3.25)
=H(x+ eg)%(ﬂm +xo+1),
and
H(x) xlf&@ O(x1 + 12) = HX)G(x, % — e1)
= H(x — e1)q(x — e1,%) (3.26)
= H(x—e)\,
and
H() 2 (@, + a) = H(x)q(x.x — e2)
= H(x — e2)(x — €2,%) (8:27)

= H(X — eg)>\2.

Note that Equation 824]) equals Equation 326), since for (z1,x2) = (0,0) tran-
sition rates to states (1 — 1,22) = (—1,0) and (21,22 — 1) = (0,—1) are zero,
which forces that Equation ([24) and Equation (3:20]) are equivalent. Similarly, we
conclude that Equation (3:28) equals Equation (3:227)). Thus, the recursive relation
can be rewritten as

Hx—e) 1 m
H(X) 7)\1])14-1‘2

(I)(il,'l + {EQ), x>0, (328)
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H(x —e3) 1 a9
= — P . 2
H(X) N T1 1 7o (:L'l + CL'Q), xo >0 (3 9)

Equation ([B21]) can now be obtained by recursively solving (328) and (3:29), start-
ing with H(0) := ®(0). O

Remark 3.3.2. (Alternative approaches) Instead of by the proof presented above,
Result B3] can also be concluded:

1. Directly by substituting B7) in (30).

2. From [64], since the proportional PS queue is a symmetric queue, and station-
ary symmetric queues are reversible which is stated in Theorem 3.1 in [64].

3. From [25]. To this end, consider the system as a single processor. Let a class-
r job have a service with respective parameters u, for class r. This has a
one to one correspondence with the two-queue parallel model, since each class
corresponds to a queue.

4. From [17] directly for a processor-sharing discipline and indirectly for arbitrary
disciplines as in this reference it is implicitly assumed that each queue itself
(also) has a PS-discipline. However, as the effective service rates at queue
1 and 2 are independent of the service discipline provided the services are
assumed to be exponential, in the exponential case the product form can be
concluded for arbitrary disciplines at each queue.

By this reference as well as by [25] it can also be concluded that the product form
is insensitive with respect to the service-time distributions.

Remark 3.3.3. (Special PS-case and insensitivity) The standard type processor-
sharing function, that assigns an equal (fair) share 1/(x1 + x2) of the total capacity
®(x1 4 x2) to each job in service, is included by assuming that each queue itself also
has a PS-discipline; that, at both queues, all jobs present equally share a fraction
x;/(x1 + x2) of the total capacity. For this particular case, it can also be concluded
directly from [I7] or indirectly from [25] or [53, 54], that the product form (B.6)
also applies to arbitrary non-exponential service requirements with means 1/pu; at
queue i. This property is well-known in the literature as insensitivity.

3.3.2 Unproportional PS model with full capacity to one
queue

A first example in which an unproportional processor sharing is effectuated is ob-
tained by always allocating the full capacity to one queue, and to fairly share this
capacity among all jobs at that queue. For this model, consider the state space

C={x|z1 €{x2— 1,223,220 + 1,22 + 2}, with z1,29 > 0}, (3.30)
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and access blocking functions

bi(x) = 1g, with By :={xe€C:21=z30r 1 =x9+ 1},
ba(x) = 1p,, with By :={x€C:x; =z 0r 21 =23 — 1}, (3.31)

and sharing functions

s1(x) = 1lpg,, with Bs:={x€C:x1 =2+ 1 or 1 = x9 + 2},
s2(x) = 1g,, with By :={xe€ C:2y =x9 or 1 =22 — 1}. (3.32)

The access blocking function only allows arrivals to queue 1 if x1 = x5 or 1 = x2+1,
and similarly, queue-2 arrivals are accepted only if £1 = o — 1 or 7 = x3. The
sharing function forces to assign all capacity to queue 1if x1 = zo+1 or z1 = x2+2,
and to queue 2 if xr1 = zo — 1 or 1 = x2. In words, if 1 > x5 then queue 1 gets
the full capacity, and queue 2 gets the full capacity otherwise. This model will be
referred to as the unproportional parallel PS model. Using Equations (831 and
B32) it is readily verified that the state space for this model is given by Equation
B30). Figure illustrates the non-zero transitions at the state space of this
model.

T2

1

Figure 3.3: Parallel model: Transitions in the state space C' for which the product
form (B) applies with positive transition rates (in both directions) indicated by
arrows (all other rates are equal to 0).

Result 3.3.4. The unproportional parallel PS model possesses a product-form so-

lution of the form B4, with

H(x) = [H AT

where C' is defined in (330).

P(x), forx € C, (3.33)

Proof. First we show that the model possesses a product form by checking Equation
B3) for all paths within the state space C, defined in (F30). To this end, note
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that the transition rates for the adjoint Markov chain (which are again equal to the
transition rates for the original Markov chain) are as follows

Q(va + el) = >\1b1(X),

Q(va + e2) = >\2b2(x)7

Q(X7 X — el) - (b(l‘l + 1‘2)51()(), (334)
Jx,x —ez) = @(z1+ w2)s2(x).

Note that we only need to verify Equation [B.8]) for the following two basic cycles,
since any cycle can be constructed similarly.

P = X—X+e —X,

P2 = X—X + ey — X.
Substitution of (334 in (BI0) leads to the following two equations, for x € C,

O(p1) = qx,x+e)gx+e,x)=A X P(x1+ x2),
O(p2) = q(x,x+e2)q(x+e2,x)= A2 X P(x1 + x2).

Next, notice that the paths in the opposite directions, denoted by p; and ps, are

equal to the paths p; and pa, respectively. Hence, for i = 1, 2 we have 0(p;) = 0(p;),

so that the reversibility condition ([B.8)) is satisfied, which implies that the model

has a product-form solution. Then, to show that ([B33]) holds, note that arguments

similar to those in Result B:3d] hold and that it is easily verified that x; > 0,
H(x—e¢;) 1

W = )\—1(1)(:[;1 —+ 1[,'2), for i = ]., 2, (335)

supplemented with the starting condition H(0) := ®(0) gives H(x) in Equation

B33). Thus the steady-state distribution has the product form (B.6]), where H (x)
is given by Equation ([B33]). This completes the proof of the result. O

3.3.3 a-Unproportional PS model

We consider another example of unproportional sharing of the capacity and show
that unproportional and non-zero sharing functions over both queues might still
retain the necessary invariance (BI1]), or equivalently (38]). Consider the complete
state space

C={x|z1,22 >0}, (3.36)

and a sharing function s;(x) in which a fraction of the capacity is assigned to queue
1, and a fraction of the capacity is assigned to queue 2, as follows, for x € C,

(1—-a,a), if x> xo,
(s1(x),82(x)) =1 (1 —0a), if 21 < o, (3.37)
(v, @), if z1 = 29,
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for an arbitrary 0 < a < 1/2. We allow « to be smaller than a half, and thus the
model is not work-conserving. The fraction of the total capacity ®(z1 +z2) a queue
receives, is dependent on the state space. The sharing function s;(x) partitions the
state space in three regions, namely in the region where the number of jobs in the
queue 1 is greater than the number of jobs present at queue 2 (i.e., 1 > x3), the
region where the number of jobs at queue 1 is smaller than the number of jobs
at queue 2 (i.e., 1 < x2), and the region where the number of jobs is equal in
both queues (i.e., x1 = x2). We refer this model as the a-unproportional processor-
sharing model.

Result 3.3.5. A product-form solution applies for the a-unproportional processor-
sharing model of the form B, with

2 o max(z1,z2) 1 T1+To
H(x) = [H APl P(x) < ) (—) , forx e C. (3.38)
i=1

11—« «
Proof. To show that this model possesses a product-form solution we need to in-
vestigate condition (B8] or equivalently ([BII]) so that Theorem B21] applies. For
this model it suffices to verify the condition for the following cycles

p = X—X+e —Xx+e +e —X+ey —X,

p = X—X+e —X+e t+e —X+te —X. (3'39)

These cycles need to be considered for the following five scenarios: x1 = x2, z1+1 =
To, x1 — 1 = 29, x1 + 1 > 29, and 21 — 1 < x9, respectively. For these scenarios
the transition rates differ, due to the specific sharing function defined in Equation
B31). Consider the state space region 1 — 1 < x5, the products of the transition
rates for the paths p and p, as in Equation ([8:39]), equal

O(p) = qx,x+e)g(x+e,x+e +e)i(x+er+eyx+e)g(x+erx)
= a*(1—a)®®(xy + a0 + D)P(z1 + a2+ 1) X A1 X Ao,
0(p) = q(x,x+e)q(x+ez,x+e +e)j(x+er+ex,x+er)g(x+erx)

?(1 = a)?®(z1 + 22 + 2)P(x1 + 20 4+ 1) X A\p X Ao

Similarly, for the other scenarios the products of the transition rates for the paths
p and P are also verified. Thus Equation [B.8)) is fulfilled since for all scenarios
O(p) = 6(p). Next note that Equation ([B38)) is obtained following the same lines as
in the example given in Section B3] or equivalently by Equation [B7)). The result
B38)) then follows by substitution of Equations ([34]) and 337) in Equation (3.1,
with H(x) as defined in Equation ([B.38)) and proper scaling. This completes the
proof. O

Remark 3.3.6. Note that for this example the queue with the highest workload
receives more capacity than the other queue. When the queues have equal workload,
both receive an equal share of the total capacity. But since a can be arbitrarily
close to 0, not all capacity needs to be used if the workloads are equal. Thus, as a
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price to pay to satisfy the invariance condition (BI1)) note that a capacity of « is
lost when 1 = x5.

3.3.4 State space restriction

In general, state space restrictions of a model that possesses a product-form solution
do not necessary possesses a product-form solution itself. However, it is known
from [63] 64] that a model, which is reversible itself, possesses a product form at
any state space C' also possesses a product form at any coordinate convex state
space, where coordinate convex is defined by

xeC=x—e€(C, fori=1, 2. (3.40)

We give an example of a coordinate convex state space restriction for forward
reference, since comparing a similar state space restriction for the parallel and the
tandem model (see Section B:44] below) leads to remarkable observations. To this
end, consider in this example the service and blocking functions as given in Section
B3Il We restrict the state space of this model by elimination of all states x with
o > do and with 1 + xo > dy, where d; > 0 is a constant for ¢ = 1, 2. This can be
enforced by a proper choice of the blocking functions b;(x), for ¢ = 1, 2. This will
lead to the following coordinate convex state space

C={x|0x1 +x2 <dy,x2 <dg, z; > 0,fori=1, 2}. (3.41)

This state space restriction is presented in the left figure of Figure B4l We illustrate
that the product-form solution indeed holds by verifying Equation (3.8) for the paths

p = X—X+e —X+te t+te — X+ ey — X,
p = X—X+e —-X+e +e —-Xx+e — X
And, indeed 0(p) = 0(p) holds, since for all x € C, for i = 1, 2, we have
1 +1 zo +1
0 = MXAaX—P(x;+a0+2) X —————D(x1 + 22 + 1),
(p) 1 2 T+ g+ 2 (1 2 ) o+ as+1 (1 2 )
_ ro+1 z1+1
0 = MXdAaX —P(x1+25+2) X —————D(x1 + 25+ 1).
(p) 1 2 T+t 2 (1 2 ) o+ as+ 1 (1 2 )

3.3.5 Two-queue LPS model

Now we consider the two-queue extension of the limited processor-sharing (LPS)
queue, which is recently studied in [59] [85] [126] 127, 128]. The LPS queue works as
follows: Instead of taking all jobs immediately in service and sharing the capacity
among all these jobs, we assume that k;(x) jobs receive service and that k;(x) is
bounded by ¢;. If there are more than ¢; jobs in queue i these jobs have to wait
until one of the k;(x) jobs leaves the queue. The two-queue extension of the LPS
queue is defined by the following sharing function

s1(x) = ki(x)/(k1(x) + ka(x)), ki(x) = min(zy, e1),

s2(x) ko (x)/ (k1 (%) + ka(x)), k2(x) = min(zg, c2). (3.42)
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Note that each queue receives a fraction of the capacity based on the number of jobs
in both queues, and not as in recently studied LPS models based on the number of
jobs in only one queue. Let ¢; and/or ¢o be finite and let the state space be defined
as all non-negative integer values for x; and zo which is

C={x|z;>0,i=1, 2}. (3.43)

This model is illustrated in Figure B0l where ¢; = 3 for ¢ = 1, 2, and where z; = 4
and zo = 2. Thus one job in the first queue is not in service, but is in the buffer,
and remains in the buffer until one of three jobs in service leaves the queue.

Result 3.3.7. The two-queue parallel LPS model does not allow a product-form
solution.

Proof. The proof is based on a counter-example, so that Equation ([BI4]) holds, and
equivalent, Equation (38) or Equation (3I1]) does not hold. For this, let ®(k) =1
for all £ > 1. Note that the routing is again reversible, and we verify if the products
of the transition rates of the cycles satisfy Equation (3I4]) such that the adjoint
model is reversible. Consider the LPS model with ¢; = 2 and ¢ = 3. Based on
verifying Equation (314) we construct the following paths p; and py

pr =(43)—4,2) — (4,1) = (3,1) = (2,1) — (1,1),
o= (1,1)—=(2,1)—3,1) = (4,1) — (4,2) — (4,3),
p2 =(43)—(3,3) = (2,3) = (1,3) = (1,2) — (1,1),
P2 =(1,1)=(1,2) = (1,3) = (2,3) = (3,3) — (4,3).

Take Ay = 1 and A = 1. This brings us to the following values of ©(p;) as in [B14),
namely

x (3/4) x (2/3) = 3/50,
(2/3) x (2/3) = 4/50.

Thus note that ©(p1) # ©(p2). Hence, the necessary reversibility condition (B.14)
is violated, and thus no product form exists. O

Remark 3.3.8. Most remarkably, a single LPS queue obviously has a product form,
but the structure of the network, in which the sharing depends on the state of
the entire model, does not. Because of the limited number of jobs in service, the
order of arrival of the jobs becomes important, since a job not in service can not
be exchanged for a job in service, due to the fact that the service speed does not
only depend on that queue itself, but also on the other queue. This dependency of
queues makes the order of arrival of the jobs important, which results in violation
of the reversibility conditions.
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3.3.6 Truncated two-queue LPS model

A way to retain the product form for the two-queue LPS parallel model is to restrict
the state space artificially such that there can never be more than ¢; jobs in queue
i for i = 1, 2. The following access blocking functions give a proper state space
restriction with respect to the existence of a product-form solution

bi(x) = 0, ifz >cy, (3.44)
bQ(X) = 0, if X9 Z Co. (345)

These access blocking functions limit the state space to
C={x]0<uz<¢, i=1, 2}. (3.46)

Thus, if a job arrives at a queue i while there are already ¢; jobs present, then this
job is blocked. This model is referred to as the truncated two-queue parallel LPS
model.

Result 3.3.9. The truncated two-queue parallel LPS model possesses a product form
of the form B8) with H(x) as in Equation (B2I]).

Proof. We again rely on Theorem [3.2.1] to prove the existence of the product form
and its specific form (BZI). Observe that s;(x) is defined in the same way as in
the natural processor-sharing form (BI9) for the state space C' in Equation (3:40)
and that also on the boundaries the routing remains reversible and transitions are
similarly defined as in Section B34 This leads immediately to the conclusion
that the product form (B:6) applies, which can be verified analogously to the proof
in Section B34l The form of the product, FZI)), follows due to the previous
observation, following the lines in Section 334l This completes the proof. O

The state space restriction of Section B34l in Equation [B41]) and the state
space truncation ([340) of the example in this section are illustrated by Figure B4l

Remark 3.3.10. Results for showing that a product form cannot hold appear to be
rare in the literature. From [25] such results can be deduced if a proper transfor-
mation is made, however in the present setting it follows directly. The observation
that a model does not have a product form is very important, and can lead to
adjustments of the model such that a product form still applies. Note that these
adjusted models can be used to develop approximations for the steady-state distri-
bution of non-product form models and can be used to derive error bounds (which
falls beyond the scope of the present chapter).

3.4 Tandem model: Examples

In this section we apply Theorem B.2I] to the tandem model, by using similar
examples as for the parallel model. In this model the arrivals at the second queue
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c1
o T2 Ty ‘= X9

ds

di

T

Cc2

1 1

Figure 3.4: Parallel model: The left figure illustrates state space ([B.41]) and the
right figure illustrates state space ([B.46). For both truncations the product form
B5) applies. In the right figure the state (c1,c2) is marked for further reference in

Section B.4.41

are fed by departures from the first queue as described in Section 3.2.2] We show
the similarities and differences for the parallel and tandem models with respect to
product-form solutions.

3.4.1 Proportional PS model

Consider the following two-queue tandem model with the capacity equal to ®(x1 +
x9), and a fraction s;(x) of this capacity is allocated to the queues as given in
Equation ([I9), and thus the capacity is shared proportionally among the number
of jobs in each of the queues. Let the state space C' be as in Equation [B20). We
refer to this model as the proportional tandem PS model.

Result 3.4.1. The proportional tandem PS model possesses a product-form solution

of the form [B.4), with

T+ T2

G0 = p (7

), forx € C. (3.47)
Proof. To prove this result we show that Theorem B.2.1] applies, by verifying Equa-
tion ([B.8]). Therefore we construct the adjoint Markov chain. The transition rates
of the original Markov chain are as follows

q(X, X+ el) = A’
__"M %
q(x,x —e; +e) = P (21 + 22), (3.48)
x
q(x,x — e2) = 2 ®(z1 + z2).

xr1 + X9
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Note that the routing of this model is not reversible, and we construct the adjoint
Markov chain transition rates according to Equation (B3], which results in the
following rates

J(x,x +ep) = A
dx,x —e;+e) = o O(z1 + 22),
xr1 + X2
q(x,x — e2) - D(x1 + x2),
xr1 + X9
) . (3.49)
q(x +e1,x) - +x2@($1 + x2),
dx—er +exx) = —2— Bz +a2),
T+ T2
d(x — e2,x) =\

Similar to the parallel model, for the tandem model any cycle can be built from just
two basic cycles, and therefore, it suffices to consider only the following two basic
cycles

p1 = X—X+te —X+e —X, (350)
p2 = X—X+e —X+e — X .

Substituting the expressions in Equation (349) in Equation (BI0) we obtain
0(p1) = a(x,x +e1)q(x +e1,x + e)q(x + ez, x)

(x1+1)
1+ a9+ 1

(z2 +1)
1+ a9+ 1

>
X

(I>($1+J,‘2+1) X (I>($1+J,‘2+1),

0(p1) = q(x,x + €2)g(x + ea, x + €1)G(x + e1,x)

(z2+1)
1+ a9+ 1

(1 +1)

=AX _
1+ a9+ 1

(I>($1+J,‘2+1) X (I>($1+J,‘2+1),

and verifying Equation (8], indeed 6(p1) equals 6(p1). Using similar arguments
we can show that 6(p2) = 0(p2). Thus, 0(p;) = 6(p;) for i = 1, 2, and since from
these two cycles any other cycle can be constructed, the reversibility applies (i.e.,
Equation (3.8) holds) and there exists a product-form solution (3.8). Next, we
prove that H(x) has the form [B47). This can be obtained by solving Equation
B recursively starting with H(0) = ®(0), which leads to Equation [B28]) and
Equation ([329), where \s is replaced by A. Next, since the solution of the recursive
scheme also satisfies the third recursive relation

($1+1)
1 +x0+1

(z2 +1)

H e
(x+er) T1+ 22+ 1

(I>($1+J,‘2—|—1) = H(X+€2) ‘I)(xl —|—J)2—|—1),
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the local balance equations are satisfied. This completes the proof. O

Remark 3.4.2. The model can be seen as a single processor-sharing model with 2
classes of jobs where after completion of service of a class-1 job it becomes a class-2
job, see [25] [64]. However, it illustrates how to apply the theorem with the use of
the adjoint Markov chain which is different from the original Markov chain due to
the non-reversible routing of the original chain.

Remark 3.4.3. Note that the function H(x) differs only in the routing part from
the form given in Equation (3ZI]), due to the fact that A feeds both, queue 1, and
queue 2 after completion of service at queue 1. Contrary, for the parallel model
queue 2 is fed by its own arrival process with rate Ao. The service part in H(x),
based on s;(x), is similar for the parallel and tandem model which was expected
since s;(x) is equally defined, for i = 1, 2.

Remark 3.4.4. (Expression for the total population) In the particular proportional
case we can also obtain a simple standard geometric-type expression for the steady-
state distribution 7(v) of the total number of jobs v = 21 + 3. To this end, by

[3.6) and ([B.47) we obtain
() = ¢ Z \71+e2 (3?1;1332) [ﬁ (k) (%)xl (i)m

x1,T2:T1+T2=V k=1

v -1 1 1 v
= c)\¥ @(k)] — 4+ —
kl;[l (Ml M2)
= c(Ar) H@(k) ,
k=1

with 7 = i + ;le the total mean service time. For the parallel model from Section
B30 we similarly find by B.6]) and (321)

-1

m(wv) = cn)” [[[e®)| . (3.51)
k=1
with
A1 A 1
T = — + I
/\1+)\2/L1 A1+ Ae H2
A= A+ Ao

Hence, for both the parallel and the tandem model under proportional sharing and
¢ a normalizing constant we obtain
-1

m(v) = ¢p” [H@(k) ) (3.52)
k=1
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with p the mean workload with p = A(61 + (2) for the tandem model, and p =
A1 81 + A2f3o for the parallel model and with 3; = p; ~'.

Remark 3.4.5. Note that Equation (852) can in fact be seen as a simple insensitivity
result, i.e., the expression does not depend on the routing mechanism but only on
the traffic intensity p. As such this insensitivity result is in line (though somewhat
different) with more standard insensitivity results for processor-sharing systems,
e.g., [I7 25]. Note, however, that the (insensitivity Equation (852) also applies
without assuming a strict processor-sharing discipline, i.e., in which the service at a
queue is equally spread over all jobs. We know that such an insensitivity result for
the examples in Sections to can not be concluded since Equation (3.52))
essentially uses the multinomial coefficient. For these examples this coefficient does
not, exist.

3.4.2 Unproportional PS model with full capacity to one
queue

As for the parallel model, for the tandem model we also continue with unpropor-
tional processor-sharing examples. First we consider the example where the full
capacity is always allocated to one queue by setting the capacity of the other queue
at value 0, and in the next section we consider the a-unproportional model. For the
model considered in this section, the model where the full capacity is assigned to
the queue with the highest workload, recall the sharing function s;(x) as in Equa-
tion (332) and let the blocking function by (x) be equal to the blocking function for
queue 1 as given in Equation [B31]). This model is referred to as the unproportional
tandem PS model. Because of the sharing and blocking functions the state space
C is defined as in Equation (330). Note that blocking cannot occur at the second
queue, however, we obtain the same state space as for the parallel model. In the
left figure of Figure this state space is illustrated.

Result 3.4.6. The unproportional tandem PS model possesses a product-form so-
lution of the form (B8], with

H(x) = X' P(x), for x € C. (3.53)

Proof. We construct the adjoint Markov chain according to Equation (3] so that
we can verify Equation (B8] and rely on Theorem B27Il The transition rates of the
adjoint Markov chain are as follows

q(x,x +er) =\
dx+e,x+e) =P(x1+ x2),
q(x + ez, x) = ®(z1 + 22),

.54
Gx+enx) =Bz +aa), (8:54)
q(x+e2,x+e1) = @(1‘1 —l—J?Q),
q(x,x +ez) =\
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where the transition rates only exist for given C as stated in Equation (B.30).
Along the lines of the previous proof, we again need to verify for only two cycles
that Equation (B.8]) is satisfied, because the other cycles can be constructed with
these cycles. Consider the cycles

p = X—X+e —X+ey —X,

p = X—X+e —-X+e —X.

For these cycles we use Equation [B354]) in Equation ([BI0) which results in the
following

0(p) = q(x,x+e1)q(x+er,x+e2)q(x+ ez, x),
= )\X(I)(CL'1+£L'2+1)X(I)(£L'1+£L'2+1),
0(p) = q(x,x+e2)d(x+ ez, x+e1)d(x+ e, x),

= )\X‘I)(xl—i—xg—l—l)xq)(xl—i—xg—i—l)

And indeed 0(p) = 0(p) for these two cycles and thus for all cycles p in C. Notice
that Equation [3353]) can be obtained recursively solving Equation ([37), starting
with H(0) = ®(0), which results in Equation [333]) with A2 replaced by A. This
recursion leads to the form given in Equation (353]). This completes the proof. O

The left figure in Figure illustrates the state space restrictions as in Equa-
tion ([330), however, also other state-space restrictions for which ([353) applies are
possible, an example is illustrated in the right figure. Note the triangular structure
of the cycles.

2 T2

1 1

Figure 3.5: Tandem model: Figures for state space C' for which the product form
(B0)) applies with positive transition rates indicated by an arrow (all other rates are
equal to 0).
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3.4.3 oa-Unproportional PS model

Now, we consider again unproportional and non-zero sharing functions s;(x) over
both queues, as in Equation (331) on the state space C as defined by Equation
(320). This model is called the a-unproportional tandem PS model. This model is
presented in [36], and for a special value of « some results are presented. However,
in this section we explain explicitly how to obtain the product form and compare
this with the parallel version of the model. To this end, we observe that the a-
unproportional tandem model still retains the necessary invariance [BI1) or equiv-
alently (3.8)), for example, with arbitrary 0 < a < 1/2. This model is illustrated in
Figure B0, wherein only a few cycles are presented, representing the different rates
depending on the state (z1,22). Since there are no limitations on the state space,
the complete state space is filled with these triangular structured transition rates.

x1

Figure 3.6: Tandem model: The a-unproportional PS model. In this figure in each
of the regions (z1 < 2, 1 = @2, and 21 > x2) the transition rates of a cycle are
given.

Result 3.4.7. The a-unproportional tandem PS model possesses a product-form
solution with the fraction of capacity allocated according to Equation B31) of the

form B4, with

a max(z1,rs2) 1 z1+x2
H(x) = \*1172 P(x) ( > <—> , forx e C. (3.55)

1l -« a

Proof. For the proof we follow similar lines as the proof given in Section B33 To
this end, we construct the adjoint Markov chain according to Equation (B3] to
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verify condition (Z)). The adjoint transition rates become

Q(X7X =+ el) = /\7

q(x + e1,x) = (1—-a), ifa+1<a,,

q(x + e1,x) = a if 21 +1> a9,

d(x + e2,x) = q, if oo +1 <,

d(x + e2,x) = (I-a), ifas+1>um,

doxte) = A (3:56)

dx+e,x+e) = (1—a), ifa;+1>ua,,

jx+e,x+e) = a, if 1 +1 < a9,

ix+eynx+e) = a if 2o +1 < a4,

jdx+ey,x+e) = (1—a), ifas+1>ua.

The adjoint transition rates differ, depending on z; and x5. We only verify
Equation ([B.8)) for the three cycles illustrated in Figure B:6 noting that using these

cycles, all cycles in the state space C' can be constructed. Let

p = X—X+e —X+ey—X,

p = X—X+e —-X+e —X.

The product of the transition rates for these paths are as follows. For x1 > xo,

0(p) = da®(zi+xz2+ 1)1 — )P(z1 + 2 + 1),
(@) = M1—a)®(z1 + 22+ 1)adP(z1 + 22 + 1),

and for z1 < x2,

0p) = Ml—a)®(x1 + 22+ 1)ad®(z1 + x2 + 1),
0(p) = da®(z1+z2+ 1)1 — )P(z1 + 2+ 1),

and for z1 = w9,

Op) = Ax(1—a)P(x1+x2+1)x(1—a)P(x1+ a2+ 1),
0p) = Ax(1—-a)®(x1+x2+1)x (1 —a)P(x1+a2+1).

And thus indeed 6(p) = 6(p) for all paths in C. This leads to the conclusion that for
this model the product-form solution exists and is given with H(x) as in Equation
[B3]). Since the state space equals the state space of the parallel model, and the
model has the same sharing function, we immediately conclude that H(x) has the
same form as the parallel model up to the routing part, as already can be seen in

the proof given in Section B4l Thus the proof is completed.

O

Remark 3.4.8. Note that for this model less cycles need to be checked than for the
parallel model, due to the routing structure. But the results are equivalent, both

examples lead to a product-form solution.



62 3.4 Tandem model: Examples

3.4.4 State space restriction

As we have seen in previous sections for the tandem model, the tandem model and
the parallel model have many similarities with respect to the obtained product form
for the same sharing functions and blocking functions. In the following examples of
the tandem model we observe that differences occur. Consider the sharing function
as in Equation (319) and state space C as given by Equation (341]). For the tandem
model, with proportional sharing of the capacity, the sharing function needs to be
supplemented with

s1(x) = 0, for x1 + 22 = da. (3.57)

In the left figure of Figure the transitions for this particular proportional
sharing model in the state space C' defined in (B41]) are illustrated.

Result 3.4.9. The standard PS model has a product form

(%) = AT P(x) (“;‘”), (3.58)

for state space C' as given in (BAI), supplemented with the sharing function in

Equation [3.57).

Proof. For the proof of this result we refer to Section BZTIl We only have to verify
if Equation (38) is satisfied for the cycles in the admissible state space C' ([BAI]).
Note that we block service at the first queue for the states 1 = dy — x5 to obtain
the local balance (which can be verified by substitution of the transition rates (3.49])
of the adjoint Markov chain in the Kolmogorov equations (3.3])). We now conclude
similarly to the example in Section[B.Z.Ilthat the product-form solution applies with
the same H(x), wherein H(x) can be obtained following the lines of the proof of

Result 3411 O

Remark 3.4.10. Note that these results cannot be concluded from product-form
results by simply restricting the state space under reversibility conditions such as in
[91], since transition rates in the coordinate convex state space need to be changed
such that reversibility of the adjoint Markov chain remains to hold.

Remark 3.4.11. Most remarkable is the following: to obtain a product form for
the tandem model similarly to the parallel model different sharing functions are
necessary such that the queue balance equations are satisfied. For the tandem
model additionally the service from the first queue needs to be blocked in the state
space, in the case £1 = da — 2, which results in the function being H (x) equivalent
to the parallel model up to the routing part, the part containing the \’s.

3.4.5 Two-queue LPS model

Now, we consider the tandem LPS model, with sharing function s;(x) as in Equation
(B22). This function shares the capacity similar to the model in the previous section
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in the inner region of the state space C, and differs as soon as the boundaries are
reached, namely if 1 = ¢; or o2 = co. We consider the state space

C={x|z1,22 > 0}. (3.59)

Result 3.4.12. A product form solution does not exist for the two-queue tandem
LPS model.

Proof. This can be proved by verification of Equation ([B.8]). To this end, let ®(z1 +
x2) = 1 and let A = 1. The transitions of the adjoint Markov chain are shown in
Figure 37 and, more precisely, as follows

d(x,x+eq) = q(x,x+ey) =1,
dx+e,x+e) = qgx+e,x)=s(x+e1), (3.60)
dx+ez,x+e) = gx+ezx)=s2(x+ez).

Using a counter-example, we show that Equation (8] is violated. Consider ¢; = 2
and ¢y = 0o as also presented in Figure 3.7 and consider the following cycles

p = 1L)=21)—=31)—32) — (22— (1,2) = (11),

p= (L)=(1,2)=(22)=32) =31 —(2,1) = (1,1),
and the products of these paths according to Equation (FI0) equal

O(p) = 1x1x1x(1/2)x(1/2)x(2/3)=1/6,

0(p) = 1x1x1x(1/2)x(2/3)x(2/3)=2/9,

and indeed 0(p) # 6(p). Similarly, for any ¢; and co, with at least one of these less
than infinity, it can be shown that Equation (88 is violated. As a consequence,
condition (8] and thus also the necessary reversibility condition is violated so that
the product form (B.6]) fails. Similar (counter) examples can be given for any finite
¢1 and/or cs. O

3.4.6 Truncated two-queue LPS model

In line with Section B.4.4] and as an extension to queue interdependent processor-
sharing services of a product-form modification result in [34] for independent ser-
vices, a way to retain the product form for the case where k;(x) (the number of
jobs in service at queue ) is limited, is to restrict the state space such that there
can be no more than ¢y jobs at queue 1 and ¢y at queue 2. This idea was already
introduced for the parallel model.

However, to satisfy the necessary reversibility for the adjoint Markov chain ad-
ditional boundary conditions are required, namely

Sl(X) = 0, if To = C2,
sa(x) = 0, ifx; = ¢,
bhi(x) = 0, if 1 =c1 or 3 = co. (3.61)
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Figure 3.7: Tandem model: The adjoint transition rates for the LPS model.

These additional boundary conditions limit the state space to
C={x|0<uz;<¢, i=1, 2} (3.62)

Result 3.4.13. The truncated two-queue tandem LPS model possesses a product

form BH), with H(x) as in (3A7).

Proof. To prove that the model possesses a product form we rely on the proof in
Section B4l The model, as defined above, implies reversible routing of the adjoint
Markov chain, which can be easily verified by checking the queue balance Equations
B3). Next verifying Equation ([B.8]) leads to the same products as in Section BAT]
and similarly to Section B4l we obtain H(x). Thus we conclude immediately that
the product form exists with H(x) as by (3.47). O

Remark 3.4.14. In this example we adjusted the sharing function to satisfy the
queue balance equations. This adjustment leads to a smaller state space than the
state space of the parallel model, since the upper-right corner (c1,cz) can not be
reached, because this upper-right corner will ruin the reversibility of the adjoint
Markov chain. Thus, the product form has the same form as the parallel model up
to the routing part, but the state space differs to let the model possess a product-
form solution.

3.5 Discussion

The results presented in Sections and [34] lead to a number of remarkable ob-
servations, which will be discussed in more detail below. First we observe that the
product-form results for the parallel and the tandem model have the same form
for some examples, up to the part containing the arrival rates; this part contains
A for the tandem model and \; and Ay for the parallel model. This observation
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c1
T2 T1'= 22

da

2

\t C2

1 1

Figure 3.8: Tandem model: The left figure illustrates state space ([B.41), and the
right figure illustrates state space ([8.62)). For both truncations a product form (B.6))
applies.

can be explained by the fact that the input rate to the second queue is A2 in the
parallel model, and A in the tandem model. For equal sharing functions and the
common state space C, defined in Equation (320) this is the case. However, the
product forms do not have the same structure if the state space is truncated, due to
blocking of arrivals or stopping of services, such as in the examples in Sections[3.3.4]
BZ44 and B30, For some examples similar functions of H(x) are obtained,
due to the proper choice of the state space and stopping some transitions such that
the reversibility, and the queue balance equations are satisfied. Thus, although
the models are fundamentally different, the function H(x) is the same (except the
routing part) for both models.

Second, it is remarkable that the two-queue version of the LPS model does
not lead to a product form, neither the tandem model nor for the parallel model.
However, if the service discipline is independent of the number of jobs in each
queue a simple product-form solution applies and also when the capacity is evenly
shared among all jobs a product form exists. However, if the number of jobs that
simultaneously receive service is bounded, the product-form structure is ruined. We
suspect that the product form of a two-queue version of the LPS model is violated
due to the effect of queueing, which does not only depend on the queue where the
job is served, but also on the other queue.

Third, to verify the reversibility condition, we rely on the adjoint Markov chain.
It is interesting to observe that this is necessary for the tandem model, but not for
the parallel model. To this end, note that the transitions for the tandem model
are not reversible, whereas the transition rates of the parallel model are reversible.
This illustrates the additional value of defining the adjoint Markov chain, since
many model instances fit in the framework presented in Theorem B.2.] to prove
that a model does or does not possesses a product-form solution.
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3.6 Conclusion and topics for further research

In this chapter we extended the product-form results of [34] to a general setting
wherein blocking is allowed, as well as state-dependent services as fully stopped
services. We present an approach for showing whether a model possesses a product
form or not, unifying the tandem and parallel model. Hlustrative and new examples
are presented, in which remarkable results are shown.

The results lead to a number of directions for further research. First, in this
chapter we focused on networks with two queues, which led to the analysis of two-
dimensional state spaces. An interesting area for further research is to investigate
to what extent the results can be generalized to models with an arbitrary number of
queues. We suspect that this type of generalizations is possible under assumptions
about the symmetry of the capacity assignment function s;(x). For asymmetric
capacity assignment functions (see for example (17)), additional assumptions are
likely to be needed to obtain product-form results. Derivation of this type of gen-
eralizations is a challenging area for further research.

Second, the results form an excellent basis for the development of simple yet
accurate approximations for the mean sojourn times in case there is no product
form. In this context, we may also derive error bounds for these approximations,
based on the value-function techniques for related product-form networks [35].

Third, the results provide possibilities for optimization, both for models with
and without product-form solutions. We may be able to derive monotonicity and
convexity properties of mean sojourn times with respect to the limitations on the
number of jobs in service, and with respect to the limitations on the state space.
In this context, encouraging monotonicity results have been obtained for the single-
queue case in [85]. Extensions of these results to the more general setting of the
present chapter is an interesting area for follow-up research. Another area of interest
is the development of efficient strategies for the dynamic assignment of capacities
to the queues. To this end, we may study the performance of a control scheme
in a Markov decision framework, and consider multi-modularity properties of value
functions. Initial results presented in [T13] show that significant performance gains
can be obtained by these dynamic schemes compared to state-independent schemes.



CHAPTER 4

MONOTONICITY PROPERTIES

In this chapter we study monotonicity properties of a processor-sharing queue
with a limited number of servers and an infinite buffer. The occupied servers
share an underlying resource. We prove that for service times with a decreas-
ing failure rate, the queue length is stochastically decreasing in the number of
servers, and that for service times with an increasing failure rate, the queue
length is stochastically increasing in the number of servers. We show that the
result also holds for the limited foreground-background queue. The queue-
length distributions and their corresponding asymptotic decay rates are com-
pared to these in other queueing models with and without restrictions on the
number of servers. This chapter is based on [85].

4.1 Introduction

In this chapter we study monotonicity properties of a multiserver queue in which
the active servers share a common resource in a processing-sharing fashion; this
model is commonly referred to as the Limited Processing-Sharing (LPS) queue.
When the First Come First Served (FCFS) discipline was superseded in popularity
for a number of applications, the Processor-Sharing discipline (PS) was one of the
main disciplines to take over. Not only does PS perform much better under heavy-
tailed service-time distributions, but it is also relatively easy to implement, as no
information on the job size is needed. Furthermore, PS is in many ways a fair
discipline, since it does not discriminate among jobs based on their arrival time,
original size or remaining size to be processed, see, for example, Wierman and
Harchol-Balter [T18].
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However, the PS scheduling mechanism is not always feasible in practice: al-
though the number of jobs in the system may be unbounded, the number of jobs
being served simultaneously may not. To overcome the infeasibility of the ordi-
nary PS model, we discuss the so-called limited processor-sharing discipline with ¢
servers (LPS-c, or in short, LPS) with an infinite buffer. When there are n jobs in
the queue, the service rate for the jobs in service at each server equals 1/ min{n, c}.
Clearly, LPS-1 is the same as FCFS, and in the limit ¢ — oo, the LPS-c is identical
to ordinary PS.

Apart from some limiting scenarios, and the case of exponential service times
(where the queue-length distribution does not depend on the service discipline),
little is known about the LPS queue. Avi-Ttzhak and Halfin [6] provide some pre-
liminary insights for the general LPS system, and give an approximation for the
expected sojourn time. Unfortunately, this approximation is only accurate when
the coefficient of variation of the service times is small. By simulations, Van der
Weij [112] obtains some insights in the behavior of the LPS model for small values
of ¢, pointing in the direction that the expected sojourn time could be monotone in
c. For the LPS model, very recently, Zhang and co-authors develop a fluid approxi-
mation using the framework of measure-valued processes in [127]. The limit of this
measure-valued process is obtained under diffusion scaling and heavy traffic condi-
tions and the limit of the total job size process is proved to be a piece-wise reflected
Brownian motion [126]. In [12§], the authors investigate a diffusion approximation
for the LPS queue in the heavy traffic regime.

The main result of this study is that for a class of service-time distributions,
namely distributions with a decreasing failure rate, the queue length in the LPS
queue is monotonically decreasing in ¢, in the stochastic order sense. For distri-
butions with an increasing failure rate, the reverse statement holds. Examples of
distributions with a decreasing failure rate are Pareto distributions, and (certain)
Gamma and Weibull distributions. The normal distribution (at the non-negative
domain) and the uniform distribution have an increasing failure rate. In certain
applications where the service can be preemptive, it is the number of preempted
jobs and jobs in service that may be limited, rather than the number of servers. For
this model, we introduce the Limited Foreground-Background (LFB) queue. The FB
discipline is a well-known discipline and minimizes the expected queue length in an
G/G/1 queue for a service-time distribution with decreasing failure rate, where the
actual job-size information is unknown, see Righter and Shanthikumar [96]. The
FB discipline is a preemptive discipline, that always serves the job with the least
amount of service received. Restricting the number of preempted jobs and jobs in
service ¢ then yields the LFB-¢ model. The proof for showing monotonicity in the
number of servers for the LPS queue can be used to prove a similar result for the
LFB-c queue.

This chapter is organized as follows. In Section 2], we introduce the model and
notation. The main result is proved in Section 13l The results are extended to the
LFB queue in Section 4l In Section [£H] we discuss the performance of the LPS
queue under another performance metric: the tail of the sojourn-time distribution.
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Figure 4.1: Tllustration of the LPS-¢ model for ¢ = 3.
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We conclude in Section by providing directions for further research.

4.2 Model and preliminaries

We consider a queueing model with one queue. Jobs arrive according to an process
that is allowed to be any sequence, e.g., a deterministic sequence. We model the
service times by a non-negative continuous random variable with distribution func-
tion F'(z) and density function f(x). The generic job size is denoted by B. The
queue has an infinite buffer but a finite number of servers, denoted by ¢. As long as
there are ¢ or less jobs in the system, the queue operates as under the ordinary PS
discipline, but as soon as the number of jobs in the queue exceeds ¢, the behavior of
the queue becomes different: the (c+1)st job has to wait until one of the ¢ jobs that
are in service leaves the system. The service is non-preemptive. Throughout, this
model is denoted by G/G/1 LPS-¢ (or LPS). In Figure 1] this model is illustrated.

For the service-time distributions, we focus on two cases, namely service-time
distributions with an increasing failure rate (IFR) and with a decreasing failure rate
(DFR), defined as follows. The failure (or hazard) rate, denoted by p(x), is defined
as

f(x)

() = = F2)’ xz > 0. (4.1)
A service-time distribution belongs to the class DFR if u(x) is decreasing for all x,
ie., p(z) > u(y) whenever x < y. A service-time distribution belongs to the class
IFR if u(x) is increasing for all . For discrete-time queues, we will use p to denote
the discrete-time failure rate.

Finally, a random variable X is said to be stochastically smaller than a random
variable Y, notation X <, Y, if P(X > z) < P(Y > z) for all .
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4.3 The monotonicity result

In this section we prove the main result of the study: a characterization of the
behavior of the queue length in the G/G/1 LPS-¢ queue with respect to ¢, the
number of servers. We first prove the monotonicity for a discrete-time process by
adapting a technique used in Righter and Shanthikumar [96]. After that, we outline
the limiting argument that leads to the continuous-time result.

In discrete time, the LPS-c discipline serves the jobs (at most ¢) in a round-robin
fashion. The jobs in service are lined up and the server serves them for one unit of
time, from the first to the last job. After serving the last job in the line, the server
returns to the front of the queue. If a new job arrives, and there are less than ¢ jobs
in service, it is added to the end of the line. If there are more than ¢ jobs in the
system, and the service of a job is finished, the (¢ + 1)-st job is added at the end
of the line. Both changes to the end of the line happen before the server possibly
moves back to the front of the line. The state of the process can be described such
that it is a Markov process, as required for applying the limiting argument from
discrete to continuous time given below. We now first prove the discrete-time case.

Theorem 4.3.1. Let X°(t) denote the queue length in the discrete-time G/G/1
LPS-¢ queue at time t. If the service times have a DFR distribution, then for
allt > 0 and ¢ € {1,2,...}, X°(t) is stochastically decreasing in c. For IFR
distributions, the stochastic inequality is reversed.

Proof. We first introduce artificial discrete-time disciplines denoted by LPS-c[dn, for
n = 0,1,..., defined as follows. The first n time steps, LPS-c[dn behaves exactly
like the LPS-(¢ + 1) discipline. From time step n 4+ 1 onwards, it behaves like the
LPS-c¢ discipline. So, intuitively one can think of LPS-c[On as a mixture of LPS-¢
and LPS-(c 4+ 1). Furthermore, if there are no more than ¢ jobs in the system up
to time n, then LPS-c[n and LPS-c are identical. Note that the service discipline
is non-preemptive, and therefore the jobs in service will be finished. To prove the
theorem, we show that for all ¢ € N, and n € {0,1,2,...},

Xy > Xy, t>o0. (4.2)

The theorem then follows from noting that X¢(t) = X°U°(¢) and that X°t1(t) =
lim,, oo XHF7(t) for all £ > 0.

To prove ([{2), fix a t > n (for ¢ < n there is nothing to prove) and note that
LPS-c0n and LPS-cO(n + 1) are the same up to time n. If LPS-cOn and LPS-
cd(n + 1) also serve the same job at time n + 1, then they are equal forever, and
there is nothing left to prove. So, assume that LPS-cn and LPS-c[J(n + 1) serve a
different job at time n + 1. Denote the job served by LPS-cO(n + 1) at time n + 1
by x, and let a(x) denote the amount of service it has received by time n+ 1. After
that, until job x leaves the queue, LPS-cJ(n + 1) serves at each time step the job
that was served by LPS-c[On at the previous time step.

Now there are two cases. First, if LPS-c[On serves job x at a time u < ¢ (note
that this is only possible if one of the jobs leaves the LPS-c[dn queue before time
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t), then at time step u, job x has received the same amount of service under both
policies, as have all other jobs. So, the queues are the same at time u, and from
that moment on, the two queue lengths will be identical. In particular, they will be
at time ¢, which was to be shown.

To conclude the proof, we consider the case that job z is not served by the
LPS-cldn queue before or at time ¢. Hence, at time ¢ there are exactly two jobs
that have received different amounts of service under LPS-c[On and LPS-c0(n + 1):
job x and the job served by LPS-c[n at time ¢, denoted by y, with received service
a(y), see also the table below.

time 1 n n+1l|n+2|--- | t—11]1t
job served by LPS-c[On same | --- | same d e e g Y
job served by LPS-c[On + 1 job | --- job T d e f g

As a consequence, the lengths of the two queues can differ by at most one. The
crucial observation is now that a(y) > a(x). Since u is decreasing by assumption,
this implies that

P(XU(t) = XUHi(t) —1) = P(job y leaves at time ¢, job z has not left
at time n + 1)

= pla(y))1 — pla(x))]
< pla(x)[1 — pla(y))]

= PP(job « has left at time n + 1, job y does
not leave at time t)

_ IP(XCD"(t) _ XCD"'H(t) + 1).
(4.3)

Since XU (t) and X I () can differ at most one, we conclude from ([3) that
XOn(t) >, XDn+1(t). For IFR service-time distributions, the inequality in (3]
is reversed. This completes the proof. O

The discrete-time result of Theorem [£3.1] can be turned into the corresponding
continuous-time statement by using a result of Bohm and Mohanty [I3] that links
the discrete process to a continuous process by an appropriate passage to the limit.
Additionally, note that in Section 4 in [I04] the converge result is proved, linking
the discrete round-robin discipline to the processor-sharing discipline.

This limiting procedure is proven in [I3] and applies to Markovian queueing
processes, which includes the model under consideration. To apply the limiting
procedure, discrete time marks 0,1,...,n are considered, and the unit in which
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time is measured is changed to A = ¢/n. These new time marks 0, A, 2A, ...
form a partition of the interval [0,¢] into n slots of equal length. Using this time
partition, the arrival rate and service rate have to be scaled so that the n-step
transition probabilities of a discrete-time process Zj converge to the probabilities
of the continuous-time process Zj(t) as n — oo, see [I4]. The continuous coun-
terpart of the distribution results (e.g., queue-length distribution) in Section 4 of
Katzenbeisser and Panny [62] can be obtained mechanically and are found in Sec-
tion 4 of Bohm and Panny [14], who extend the proof in [I3] to arbitrary transition
probabilities (see Section 1 of [62] for the model assumptions). Following this path,
the discrete-time result in Theorem [£.3.1] implies the continuous-time result.

Theorem 3] matches with the following heuristic. For DFR service times,
among all work-conserving disciplines P, the queue length X (#)” is (stochastically)
maximal under P=FCFS, and minimal under P=FB, for all ¢, see Righter and Shan-
thikumar [96]. For ¢ = 1, LPS is the same as FCFS. Furthermore, the larger ¢, the
more LPS differs from FCFS, and the more it behaves like PS, but also like FB.
Hence, intuitively, the larger the ¢, the smaller the queue length.

Assuming that the load (or throughput) p satisfies p < 1, the workload process
converges to a stationary state as the time goes to infinity, see Asmussen (Propo-
sition 1.1., Chapter VIII) [4]. Let X¢ be the stationary queue length in the LPS-c
queue. By letting the time ¢ go to infinity, we obtain the following corollary.

Corollary 4.3.2. If the service times have a DFR distribution, and p < 1, then
Xetl <, X¢ for all c € N. For IFR service times, Xt >, X¢ for all c € N.

It is interesting to compare Corollary [4.3.2] with the following heavy-traffic ap-
proximation of the expected queue length found in Zhang and Zwart [128], which
is

v2
EX¢ n P VS+1/§( +)

SRR CUN S B b
1—p2(1+v2) v —lp

where v, and v, are the coefficients of variation of the interarrival and service-time
distributions, respectively. This expression is decreasing in ¢ if and only if vy > 1.
Since all DFR distributions satisfy this condition, the approximation of EX is de-
creasing in c¢ for a class of distributions that includes DFR distributions. On the
other hand, the ordering in Corollary[4£.3.2is stronger, namely stochastic instead of
‘in expectation’. Obviously, for IFR distributions, comparable statements hold.

Consider an LPS queue where jobs are coming from two different classes, and
the server does not know from which class a job comes. The density f of the service
distribution in such a queue is a mixture of the density functions f; and f> of the
respective classes, and given by f = af; + (1 — a)fa, for some a € (0,1). Since
such a mixture of DFR distributions is again DFR, see Barlow and Proschan [9],
Theorem 3Tl automatically holds for this queue, as long as the distribution in each
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class is DFR. In general, the reverse does generally not hold for IFR distributions,
since a mixture of IFR distributions is not necessarily IFR. For example, a mixture
of exponential distributions is hypergeometric, which is not IFR.

The DFR condition in Theorem [£3] is important. Simulations suggest that
the monotonicity results do not hold for a lognormal service-time distribution with
coefficient of variation 1.72, mean job size 1 and p = 0.8, for different values of ¢,
although this distribution has a coeflicient of variation larger than one. Little’s law
implies the following result for the stationary sojourn time, S°.

Corollary 4.3.3. If the service times have a DFR distribution, and p < 1, then
ESet! < ES®. For IFR and p < 1, we have EST! > ES°.
Expected sojourn time

"""" Gamma distribution
_ —— Exponential distribution

e - Erlang distribution

Number of servers

Figure 4.2: The expected sojourn time in the M/G/1 LPS queue for A = 4/15,
p = 0.8 and Erlang(2), exponential, and Gamma(0.5, 12) service-time distributions.

To illustrate Corollary £33l in Figure we have simulated the expected so-
journ time for a number of M/G/1 LPS queues where the service times have strictly
decreasing (Gamma), strictly increasing (Erlang) and constant failure rates (ex-
ponential). In the figure the point estimations of the expected sojourn time are
presented. Confidence intervals are omitted for ease of the discussion.

4.4 The Limited FB discipline

In certain applications where the service may be preemptive, the limit is not so
much on the number of servers, but it is the number of preempted jobs that is
limited, see for example Van der Mei et al. [79]. Assume that at most ¢ jobs are
allowed to receive service. These jobs constitute the inner queue. All other jobs
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— 1o -

outer queue

inner queue

Figure 4.3: The G/G/1/4/00 model.

are waiting in the outer queue, and are only allowed to enter the inner queue when
the number of jobs in the inner queue is smaller than ¢, see Figure 4l We call
this queue the inner-outer queue with ¢ positions, and denote it by G/G/1/c/cc.
The LPS queue with ¢ servers discussed in the previous section is an example of an
inner-outer queue.

In this section, we discuss the Limited FB discipline, denoted by LFB. We
will show that this discipline stochastically minimizes the queue length in the
G/G/1/c/ox queue under DFR service-time distributions for each ¢, where the
queue length is the sum of the jobs in the inner queue plus the outer queue. Then,
using the proof technique used in the previous section, we show that for DFR dis-
tributions, under the LFB discipline, the queue length is stochastically decreasing
in c.

First, let us describe how the normal FB discipline works. Denoting by the age
of a job the amount of service it has received, FB serves the youngest job. If there
are n youngest jobs, they are served simultaneously, in a processor-sharing manner,
at rate 1/n. In particular, when a new job arrives, the job in service is preempted,
and the new job is served immediately. The preempted job is assumed to occupy a
server. See Nuyens and Wierman [86] for a recent survey on the FB discipline.

We now modify the FB discipline to fit to the G/G/1/¢/oc0 framework. The
limited FB queue with ¢ positions, denoted by LFB-c, is defined as follows: under
LFB-c, the server preemptively serves the youngest job, but only if there are ¢ jobs
or less in the inner queue. Hence, if a new job arrives it is served immediately if
and only if there are ¢ — 1 jobs or less in the (inner) queue. If there are ¢ jobs in the
inner queue, the server can only switch to an unserved job when one of the ¢ jobs
leaves the queue. Like in the PS queue, LFB-1 is equal to FCFS, while for ¢ — oo,
LFB-c¢ converges to the ordinary FB discipline. The FB discipline can be considered
to be the opposite of FCFS: FB always serves the youngest job(s), while FCFS serves
the oldest. Hence, LFB-¢ has the interesting feature that when ¢ runs from 1 to oo,
LFB-¢ moves from FCFS to its opposite, FB.

In fact, to prove the optimality of LFB-c in the G/G/1/¢/c0 queue, we can simply
copy the proof of the optimality of FB in G/G/1/00 queues given in Theorem 2.1
of Righter and Shanthikumar [96]. Hence, we have the following result

Theorem 4.4.1. Consider the G/G/1/c/o0o queue with DFR service times. Let
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XP(t) denote the queue length at time t under discipline P. Then for all disciplines P
that do not use information on the exact job sizes, we have XFB¢(t) <y XP(t) <4
XFCFS(#). For IFR job sizes, the inequalities are reversed.

Since the queue-length distribution is the same for all queues with a non-
preemptive service discipline, one can put in Theorem EZJ] any non-preemptive
service discipline (e.g., ROS, or LCFS) instead of FCFS.

Following the lines in the proof of Theorem 3] the following stochastic or-
dering result holds:

Theorem 4.4.2. Let X¢(t) denote the queue length in the G/G/1/c/oo LFB-c
queue with a DFR service-time distribution, then X¢(t) is stochastically decreasing
in ¢ for all t. For IFR service times, the inequalities are reversed.

Combining Theorems [£3.1] {41l and with Theorem 2.1 of Righter and
Shanthikumar [96], we have the following result for the different queue lengths
discussed in this chapter:

Corollary 4.4.3. For p <1, in the G/G/1 queue with DFR service times, we have
for P € {LFB-c, PS} that

XFB Sst XP Sst XLPS—C Sst XFCFS.

For IFR service times, the inequalities are reversed.

4.5 The tail of the sojourn-time distribution

In this section, we investigate the performance of the LPS queue in heavy traffic,
measured by the likelihood of a very long sojourn time. To be precise, denoting the
sojourn time of a discipline P by Sp, we consider the decay rate v(Sp), defined as

1
v(Sp) = — lim —log P(Sp > u),
u—00 U
whenever this limit exists. Hence, the smaller the decay rate, the larger the tail of
the distribution. We prove the following theorem.

Theorem 4.5.1. In the M/G/1 queue, if E[exp(sB)] < oo for some s > 0, then
for any ¢, the equality v(Sips-.) = Y(Secrs) holds for p < 1 large enough.

Before giving the proof, we discuss the result. In case of light-tailed service times
(e.g., exponential and uniform distributions), the decay rate of the sojourn time
under any work-conserving discipline lies in the (non-empty) interval [y(L), v(W)],
where W is the stationary workload, and L the length of a generic busy period.
Most well-known policies have a decay rate that equals one of these extremes. The
lower bound is matched for LCFS, FB, and, under mild additional conditions, SRPT,
and PS. Under FCFS, the upper bound is achieved. For an overview of results on
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the decay rates of different disciplines, see Nuyens and Zwart [87] and the references
therein.

The remarkable conclusion we can draw from Theorem .51l is that no matter
how large c is, the asymptotic behavior of the decay rate of the sojourn-time distri-
bution under LPS in heavy traffic is equal to that of FCFS, which is optimal, and
not to that of PS, which in most cases is the worst possible discipline. This means
that in heavy traffic, the ‘FCFS-like’ property of LPS (once a job is served, it is
guaranteed a minimum rate) dominates its ‘PS-like’ property that the service rate
is shared with other jobs in the system.

Proof of Theorem [{.5.1] By the PASTA property, an arriving job has to wait at
most W before its service starts, and then it is served with rate at least 1/¢. Hence,
the sojourn time Sips_. of a job of size B in the LPS queue satisfies Sips_. <g
W +¢B, where W is the stationary workload in the M/G/1 queue, and W and B are
independent. Since v(X +Y) = min{v(X),v(Y)} when X and Y are independent,

see for instance [73], we have

Y(Stps-c) > min{~(W),~(B)/c}.

Since y(W) — 0 as p — 1, see for example Mandjes and Zwart [74], there exists
a p(c) such that (W) < ~v(B)/c for all p(c) < p < 1. Hence, for those values of
p, we have v(SLps) > v(W). Since the service times have an exponential moment,
the inequality (SLps) < (W) holds, see Stolyar and Ramanan [I08]. Hence,

v(Sips) < v(W) for p > p(c), which completes the proof. O

Remark 4.5.2. In some cases, v(W) and v(B) can be calculated explicitly. For
example, in the M/M/1 queue where the interarrival and service times have pa-
rameters A and p, we have y(W) = p — X and «(B) = u. Writing p = \/u, we
have

1

B
B A< e 1<t s s

c

=
—

y(W) <

o
o
o

Hence, for all p such that 1 —c¢™! < p < 1, we have 7(Sips) = y(W) = — .

4.6 Conclusion and topics for further research

In this chapter we studied monotonicity properties for the LPS queue. It was shown
that for service-time distributions with a decreasing failure rate the queue length
is stochastically decreasing in the number of servers. And the reverse is true for
service-time distributions with an increasing failure rate. These results also hold
for the FB-c queue. Next, the decay rate is considered, and both the queue-length
distribution and their asymptotic decay rates are compared to several other service
disciplines.
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We discuss two possible extensions of the LPS model that are interesting for
further research. One possible extension of the LPS model is to consider two G/G/1
LPS queues in tandem, see the left part of Figure In this tandem model, jobs
arrive at the first queue according to a process that is allowed to be any sequence.
After completion of service, they are routed to the second queue, and after the
completion of the service at that queue the jobs leave the network. The queues
have infinite buffers but finite numbers of servers, denoted by ¢; and ¢s. As long as
there are ¢; or less jobs in each queue (for i = 1, 2), the queue mimics the PS queue
where the total capacity is equally shared among all occupied servers at the two
queues. But as soon as the number of jobs in queue i, say, exceeds c¢;, the behavior
of the system differs: the (¢; + 1)st job has to wait until one of the ¢; jobs that are
in service leaves the system. For this queue, it is interesting to study under which
conditions there is monotonicity in ¢; and co. For exponentially distributed service
times, the expected overall queue length is minimized if ¢; = 1 and co as large as
possible, while for each queue in isolation the expected queue length is increasing
in ¢, see also [112].

A second extension of the LPS model is the following. Consider again two G/G/1
LPS queues, and assume that these queues share a common resource in the same
manner as the model above. The two arrival streams are now independent, and
each queue is fed by one of these arrival streams. After service at the queue, the job
immediately leaves the system (instead of being routed to another queue), see the
right part of Figure Bl As far as we know, no monotonicity results on the queue
length with respect to ¢; and ¢ are known. Since the number of servers assigned
to queue 1 influences the capacity assigned to queue 2, this model cannot be solved
by the same techniques as used in this chapter.






CHAPTER 5

DYNAMIC SCHEDULING FOR
THE LPS QUEUE

The next two chapters deal with scheduling jobs in layered queueing models.
First, in this chapter we study a limited processor-sharing queue (LPS) at
which jobs arrive according to a Poisson process. Each job has a service
time that is distributed according to a phase-type distribution. Based on the
number of jobs in each phase of its service, the processor can admit a limited
number of jobs for service. We present a new decomposition-based approach
to analyze monotonicity properties that leads to a complete characterization
of the optimal scheduling policy providing new fundamental insights into the
optimal control of LPS queues. We provide a numerical assessment of the
performance of the optimal dynamic policy compared to several commonly
used static policies and the optimal static policy. The results show that strong
gains can be obtained by using the optimal dynamic policy. This chapter is

based on [114].

5.1 Introduction

In this chapter we consider optimal dynamic scheduling policies for the LPS queue.
Jobs arrive according to a Poisson process and bring work to the system that is
distributed according to a phase-type distribution. Upon arrival a job can either
wait in the queue for service, or be assigned a server immediately. We study how
many jobs should be served simultaneously based on the complete state information,
i.e., the number of jobs present in each phase of their service and the number of
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jobs waiting in the queue. We cast this problem as a Markov decision problem and
study the properties of the dynamic programming relative value function. We derive
monotonicity properties, which provide fundamental insights into the behavior of
the system. Based on this, we obtain optimal dynamic scheduling policies. We
illustrate how effective the dynamic policies are by comparing them to a number of
commonly used static policies and the optimal static policy. The results show that
a significant improvement can be obtained.

Significant work has been done in the static optimization of the number of
servers in multiserver queues. Stidham [60] and Brumelle [22] study G/ E,, /c models
and show that the number of jobs in the system is stochastically minimized by
setting ¢ to 1 under the same utilization factor; the intuitive explanation behind
this is that a single-server system fully utilizes the service capacity, whereas in a
multiserver system servers may be idle even when the system is not empty. Brumelle
shows that in a GI/GI/c queue the single-server queue, i.e., ¢ = 1, minimizes the
expected number of jobs in the system when the coefficient of variation cg for
the service-time distribution is less than 1. Based on these results, Yamazaki and
Sakasegawa [120] conjecture that for any LPS queue for any ¢ > 1 if ¢g < 1 the
system performance degrades compared to an equally loaded single-server queueing
system, while the reverse is conjectured to be true for ¢cg > 1. As far as we know,
dynamic optimization of the LPS queue has not been analyzed in detail.

The contribution of this study is three-fold. First, we derive a number of mono-
tonicity properties for the dynamic programming relative value function for the LPS
queue, that leads to a complete characterization of the optimal dynamic scheduling
policy. These results are among the first exact analytic results for the LPS queue.
Second, we study the LPS queue in a Markov decision theoretic framework which
leads to a problem with a very large state space. We provide an insightful ap-
proach based on decomposition of terms related to arrivals and departures to study
monotonicity properties of the relative value function. This leads to a complete
characterization of the optimal policy. Third, we provide a numerical assessment
of the gains that can be obtained by using the dynamic policy over commonly used
policies and the optimal static policies.

The remainder of this chapter is organized as follows. In Section the LPS
model is described and the dynamic programming relations are formulated. In
Section [5.3 we study monotonicity properties of the dynamic programming relative
value function, that lead to the optimal dynamic policy. In Section [£.4] we provide
the assessment through extensive numerical experiments followed by a discussion.
We conclude the chapter with Section 5.5 where we address a number of challenging
topics for further research.

5.2 Model and preliminaries

Consider a multiserver queue with ¢ servers to which jobs arrive according to a
Poisson process with rate A. The servers work in a processing-sharing (PS) manner,
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so that whenever there are k < ¢ jobs in service, every job receives a fraction 1/k
of the processing capacity; jobs that find all ¢ servers busy upon arrival enter an
infinite buffer (the model is illustrated in Figure 1] for the case ¢ = 3). The
service-time distribution of a job is modeled by a phase-type distribution which is
characterized by a quadruple (M + 1, 7, u, P). Here M stands for the number
of phases (and state M + 1 is the absorbing state), and 7 = (), ..., n(*)) with
nU) the probability that the service starts in phase 7, p = (u™, ..., u®™)) with
1) the rate of the exponential distribution of the time that the process spends in
phase j, P = (p(i’j))i=1,__.,M, j=1,....,M+1 With p(i’j) the probability that the process
jumps to phase j (or the absorbing state when j = M + 1) upon leaving phase i.
The absorbing state corresponds to a completion of the service requirement. It is
well-known that phase-type distributions are dense in the class of all non-negative
distributions retaining their tractability [I02]. Therefore, it is possible to model
heavy-tailed distributions by phase-type distributions [5] 44].

We are interested in minimizing the expected number of jobs in the system by
adjusting ¢ dynamically based on the state of the system, which is described by the
tuple (x, k), where x is the vector denoting the number of jobs in each phase (i.e.,
z\9) is the number of jobs in phase j that are waiting and in service at the queue),
and k is the vector that represents the number of jobs k) in phase j in service, for
j=1,...,M.

To obtain the optimal scheduling policy 7* that minimizes the expected number
of jobs, we model the system in a Markov decision framework. To this end, we
uniformize the system (see Section 11.5 of [93]). For simplicity we assume that
A+ maxg_y e < 1 without loss of generality, we can always get this by
scaling. Uniformizing is equivalent to adding dummy transitions (from a state to
itself) such that the rate out of each state is equal to 1; then we can consider the
arrival and service rates to be transition probabilities.

Let V(x,k) be a real-valued function defined on the state space NM x NM,
This function will play the role of the relative value function, i.e., the asymptotic
difference in total costs that results from starting the process in state (x,k) instead
of some reference state. The long-term average optimal actions are a solution of
the optimality equation (in vector notation) g+ V = TV, where T is the dynamic
programming operator acting on V' (x,k) defined in Equation (51]) below.

The first term in the expression TV (x, k) (see Equation (5])) models the direct
costs, i.e., the total number of jobs in the system. The second term models the
arrivals, which occur with rate An?) to phase j. The transitions of a job to a different
phase are given by the third term. A transition from phase j to phase [ for a job
occurs with rate @) pU:D | but this is adjusted by the factor £U) /(™M) 4. .. 4 k(M)
since that job only uses a fair share of the service capacity. Note that the system
is specifically modeled such that when a job moves from one phase to another, the
previously assigned server is not lost. The server is only released upon completion
of the service requirement. The service discipline is a non-preemptive discipline.
The next term, which accounts for a transition to the absorbing state, is similarly
explained. The last term is the uniformization constant to account for the dummy
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transitions added to the model.

M M
TV(x, k) = Zx(j) + )\Zn(j)H(x + el k)

j=1 j=1

M M N
k(J)M(J)p(JJ) 4 4

E _ ol @) NG 0
+_ Zk(1)+...+k(M)H(X e’ + el k—e +el)

- (5.1)
}) )l M +1)

—_ el Kk _eW
+41k<1>+...+k(M>H(X e,k —e))
j=
M . .
k@) ()
* 1_A_z:1k(1)+...+k(M) Vix k),
]:

with e the unit vector with all entries zero, except for the j-th entry for j =
1,..., M. The actions, denoted by H, are given by

M
H(x,k) = min{V(X,k—l— Za(j) e(j)) ‘ 0<a¥ <z kW ¢ ¢ ]NO}7
j=1

(5.2)

with Ng = {0,1,2,...}, where action a¥) e/) represents the action that schedules
a¥) additional jobs that are waiting in the queue and start in phase j.

The optimality equation g + V = TV is hard to solve analytically in practice.
Alternatively, the optimal actions can also be obtained by recursively defining

Vi1 =TV, (5.3)

for n = 0,... and arbitrary Vj. For n — oo, the maximizing actions converge to
the optimal ones (for existence and convergence of solutions and optimal policies we
refer to [93]). Consequently, when V' is known, we can restrict our attention to the
function H to obtain the optimal actions. In Section [5.4] we adopt this approach to
numerically compute optimal policies.

5.3 Optimal scheduling policy

In this section we identify the policy that minimizes the expected number of jobs in
the system. To this end, the following notation is convenient. Let s¢) denote the
mean passage time from phase j to the absorbing state M + 1. The mean passage
times can be uniquely determined by solving the following set of linear equations:

M
50 =1/ 437 i),
=1
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for j = 1,..., M. Without loss of generality, we can rank the variables s (j =
1,..., M) in increasing order, such that s < ... < (M) The main result is the
complete characterization of the optimal policy given in the following theorem.

Theorem 5.3.1. For arbitrary (x,k) € NM x NM  we have
V(x,k) = V(x,k") for k= ]l{i:min{j:x(ﬂ)>0},k:0}+x(i)]1{2§.”;+1 kG) >0} (5.4)
where 1g is the indicator function on the event E.

In words, the theorem states that the optimal policy is as follows: when no jobs
are in service, then only one job amongst the ones with the shortest expected service
time (i.e., the smallest s(j)) amongst the jobs waiting in the queue is taken into
service (the first term of k*(9). Otherwise, all jobs with a strictly shorter expected
service time than the job in service with the longest remaining service time are
taken into service simultaneously (the second term of k*(®).

To prove Theorem .31l monotonicity properties of the relative value function
are required, namely increasingness and submodularity. These properties are for-
mulated and proven in Lemmas and below. For ease of the discussion,
we formulate the proofs for a hyper-exponential service-time distribution with two
phases (referred to as the Hs-distribution); note the Hs-distribution occurs as a
special case of the phase-type distribution by taking

M =250 = p @ = @

(5.5)
P12 = p21) (L) Zp22) _ (03 _ ) and p@3) 1.

A generalization of the proof to arbitrary phase-type distribution is straightforward
but notationally cumbersome (see also the remarks at the end of Section 4). Finally,
the proof of Theorem [5.3.111s given at the end of this section.

Lemma 5.3.2 (Increasingness). The relative value function V (x,k) is non-decreasing
in 29 for all j =1,..., M, independent of k for all (x,k) € NM x NM,

Proof. The proof proceeds via induction on n in the relation ([B3]). To start, note
that by assumption V(x,k) = 0, which is clearly non-decreasing in z() for all
j=1,..., M. Next, we assume that V,,(x, k) is non-decreasing in x for some n > 0.
To show that V,,11(x,k) is also non-decreasing in x one needs to show that the
difference V,, 41 (x+e) k) —V, 11 (x, k) is non-negative. This result directly follows
from the dynamic programming relation (5 by a pair wise comparison of the
corresponding terms where the first term (i.e., Z]Ail x()) yields a difference of 1,
and where the induction hypothesis can be applied to the other terms. The result
now follows by taking the limit for n to infinity. O

In words, Lemma [(.3.9] states that the relative value function has the property
that the system is subject to higher costs when having more jobs in the system.
Therefore, the optimal actions in H aim to achieve as few jobs in the system as
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possible while taking into account the future evolution of the system. In order to
fully derive this property, we also need that the relative value function is submodular
as formulated in Lemma [.3.3] below.

Lemma 5.3.3 (Submodularity). For () >0, 2 >0, kM) >0, k® > 0, it holds
that

kM M
A o 1 _ 2 (1 _ 2
k(l)—i—k@)H(x 1,29k 1, k%)
JASINC)
P 1D @ 1 0 @ _
k;(l) o) (' x 1,k K 1)
REOIEN k(2 2
__r 7 1) .2 (1) 2y _ > 7 D) 22 1) 1(2)
B0+ k(Q)V(x A AN )| O k(Q)V(m SV RS
(1) (1
v 1 _ (2) px(1) _ #(2)
ro e HE -1k 1, k)
52
A 1 .(2) _ #(1) .x(2) _
k*(1)+k*(2)H(x T 1,k k 1)
k) () 1*(2) ,(2)
B D (1) ) () @)y B TR 1) @ 1) p*(2)
B kj*(l) —|—k*(2) V(i[,' T 7k ’k ) + k*(l) +k*(2) V((E ) L 7k 7k )
>0.
(5.6)
Proof. See Appendix A. O

The submodularity property is a generalization of convexity in more dimensions.
This property together with the increasingness property are necessary to prove the
elegant structure of the policy as stated in Theorem B.3.11

Proof of Theorem [52.3.1l Similar to the proof of Lemma[5.3.2] the proof is based on
induction on n. The relative value function when using the parameters as stated in

(E3) reduces to
M
Vir1(x, k) Z —|—)\Zp H,(x + e k)
M
k(J)u(J) . )
+ ——  _H,(x—eY k—e 5.7
> St ) 6)
M . .
L) (@)
+ |:]. — )\ — M7M:| n ak)v
i1 2= kG)
with

H,(x,k) = min{Vn(x,k—i—ae(j)) lj=1,...,.M,0< a) < 20 — k0 40) ¢ ]No},



DYNAMIC SCHEDULING FOR THE LPS QUEUE 85

fori = 0,1,... and (x,k) € NM x NM M = 2, and Vy(x,k) = 0 and with Ny =
{0,1,2,...}. Using these definitions, it directly follows that Vj(x, k)— Vo (x,k*) > 0.
Without loss of generality, we assume that () > ;(?). Next, we assume that (159%21)
holds for V,,(x,k) for some n > 0. Then we have to prove that

Vn+1(X, k) — Vat1 (X7 k*) =0, (58)
where k] is defined in Theorem [5.331] To this end, using (B.7) we can write

Vir1(3%,k) — Vo1 (x, k%) = ApWH, (2 + 1,23 kM) 12))

@ H, (@D, 2@ 41, kD 1)
(1), (1)

AT

D + k@

OWE)
+ 5 @

Hy (2 — 1,22, k0 — 1, £2)

2V 2@ 1 M 5@

ROE 52 ,2)
D+ k@ k) ;@)

. (1 WO RISWEIN ) Vo (z0, 22) 50 @)
WV H @D +1,0@ 50 @) @ (0 @) 1 D) @)

(D), (1)

A 1 _ (2) p*(1) _ *#(2)
+ D —|—k;*(2)Hn(x 1,29k 1, k%))
}(2) ()

() ¢ (2

*(1 1 (2 2
— (1= ™ Zap@ OO @)
D @ ) ;@

Hy(2®, 2@ — 1,10 =@ _ 1)

X Vo (20, 2@+ 1))

which can be rewritten as

Vir1(x,k) = Vg1 (x, k") = A+ D, (5.10)
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where the arrival-related and departure-related terms are grouped into
A:=2pWH, (2D + 1,2 kW k@) 4 2P H, (2D, 2@ 4+ 1, kD k)
+ (1 _p® = Ap<2>> Vi (2D, 2@ kD £2)
_ )\p(l)Hn(x(l) + 1,23 kM), k‘*(2)) _ )\p(Q)Hn(x(l),x(Q) +1, kM), k‘*(2))
_ (1 —p - Ap<2>> Vi (2D, 2@ kD) )

(5.11)
and
:_%H’l(m(l) — 1,23, k0 — 1,5®)
+ %Hn(x(l)’x@) —1, k-(l), £ _ 1)
- %Vn(ﬂ?m, 2@ kW @)
_ %Vn(x(1>7x(z>7k<1>7k<z>) .
_ %Hn@(l) _ 1733(2), 0 _ 1, k*(Q)) .
_ %H}(m(l),x(?) 1,k @)
+ %Vn(ﬂl), 2@ g )
k() (2)

1 2 *(1 *(2
+an(x( ), 2@ ) @)y,

respectively. Below we will show that A, D > 0. To this end, we first consider A,
and observe that by the induction hypothesis we find that

)\p(l)Hn(x(l) + 1,23 kM), k(2)) > )\p(l)Hn(x(l) +1,23, kM), k*(Q)), (5.13)

since the action function H (-, -) forces the second term to be smaller than the first
term. Similarly, it holds that

AP H, (@D, 2@ 41,50 £2) > \pO H, (2D, 2@ 4 1, kO k@), (5.14)

and

(1 —ap™ = Ap(m) Vi(z®, 2@ kD )

(5.15)
> (1 — M — Ap<2>) Vo (2, 2@ () ),
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Combining (&13), (514), and (BI5) implies that indeed A > 0. Next, to show that
D > 0, we distinguish several cases. First, for z(!) > 0, 23 > 0, V) = 0, and
k) =0, D reduces to

O H (@D =1, 2@ 5O Z 1 R 4 O, (20, 5@ gD 1 @) > g,

which directly follows from Lemma 3.2 Next, for z() = 0, 22 > 0, k(M) = 0,
and k® =0, D reduces to

P, (W 2@ 1 W ) 1) £ @1, (0, 2@ ) @) 1) >,

which again follows from the fact that V' (x,k) is increasing in all components in x
(Lemma [5.3.2). Then, consider the case where (1) > 0, 22 > 0, £V > 0, and
kE®? = 0. D then reduces to

kM (1) I
EO L@
kM (1)
D + k2
(D) (1)

(D) £ Ex(2)
JRECOING)

(@™ — 1,2 10 1 k)
Vo (e, 2@ k0 12
Hy(x® — 1,22 1D _ 1 @)

v P (1) .(2) 1x(1) 1.%(2)
+k*(1)+k*(2)Vn(m AN S S

— O H, (@ = 1,2® k0 21 k) Wy, (20, @ 0 2]

O H (2D — 1, 2@ 1O 1 @) 4 Oy (o0 5 1) 2)) > .

which again follows from Lemma by noting that k*?) = 0. Lastly, for
M =0, 23 > 0, kM = 0, and k® > 0, Lemma [£.3.2 is readily seen to im-
ply that

(2),(2)
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since k*() = 0 because z(V) = 0. Finally, for 2z > 0, z® > 0, k& > 0,
and £ > 0, the result follows from Lemma [5.3.30 This implies D > 0. This

completes the proof of (B.8]). Taking the limit of n to infinity completes the proof
of Theorem [5.3.11 O

5.4 Numerical experiments

In the previous section, we determined the optimal policy (denoted by 7*) for hyper-
exponentially distributed service times. In this section we compare this policy with
two commonly used policies, and illustrate the gain in performance through exten-
sive numerical experiments. To this end, we consider the following three static poli-
cies: (1) all arriving jobs are served immediately (denoted by 77°); this corresponds
to the classical PS queue, (2) only one job with the shortest expected remaining
processing time is taken into service (denoted by m°EPT); this corresponds to the
classical queue in which only the job with the shortest expected processing time is
served first, and (3) the classical M/G/1 FCFS queue (7F). For a policy 7 we
denote by g(m) the long-term average number of jobs.

We show the results for a variety of parameter settings. To cover a broad
set of the parameter space, we varied the load p as 0.50, 0.80 and 0.90, and the
squared coefficient of variation ¢% from 1 to 16. The service times were taken to
be Hs-distributed, parameterized by the triple (p, u(l),u(Q)), such that p() = p,
p? =1 —pin ([@3); the mean service time equals § = p /u™ 4 p®@) /u?) | and
the load offered to the system is p = AB. The results are shown in Table 1]
below. The results on 7* in the table are derived by solving the backward recursion
equations numerically. Note that for the FCFS model the Pollaczek-Khintchine
formula immediately implies that

2 2
FCFS p°(1+cg)
g(aFFS) = p 4 LT ) (5.16
( 30— ) )
while for the classical PS model it is known that
g(7™%) = S (5.17)

L—p

Furthermore, for Ho-distributed service times it is readily seen that the SEPT policy
coincides with an M/M/1-type priority system with two priority classes, where class-
1 has non-preemptive priority over class-2, and where class-i jobs arrive according
to a Poisson process with rate A) and with service rate u( (i = 1,2). Assume
M > p) (without loss of generality), and let A*) := \p(®) and p® := A /()
Then, if N denotes the number of class-i jobs in the system (i = 1,2), it is
well-known that

g(n°FT) = EINV] + E[N®], (5.18)
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p A  pP p ) (=) g7 g(a")
050 1 || 050 0500 1.000 1.000 || 1.00 _ 1.00 1.00 1.00
050 4 || 050 0.887 1775 0225 | 094  1.00 1.43 1.75
050 16 || 0.50 0.970 1.939 0.061 | 094  1.00 3.41 475
080 1 || 080 0500 1.000 1.000 || 400  4.00 .00 1.00
0.80 4 || 0.80 0.887 1.775 0225 | 3.16  4.00 4.67 8.80
0.80 16 || 0.80 0970 1939 0061 | 312 400 1097  28.00
000 1 | 090 0500 1.000 1.000 || 9.00 _ 9.00 9.00 9.00
090 4 || 090 0887 1775 0225 | 626  9.00 8.32 21.15
0.90 16 || 0.00 0970 1.939 0.061 || 6.05 9.00  16.83  69.75

Table 5.1: The expected number of jobs in the system for the four policies.

with

1—pM ’

1 1 2 2
E[N®)] = 5@ 4 @ p >1+ pRyme)
(1= pM)(1 —p)

The results shown in Table 5.1l show that the optimal policy 7*, strongly outper-
forms the three static policies, particularly when the squared coefficient of variation
c?g of the service times increases. Furthermore, we observe that the optimal values
of the cost function g(7*) tend to decrease when c% is increased; this is remark-
able, since in many queueing systems an increase in the variability in the service
times leads to a degradation of the waiting-time and queue-length performance
(see also Section for a discussion). This observation can be explained by the
fact that for Ho-distributed service times with large ¢ we have p > 4 and
pM) =1—p®@ x 1, while the optimal policy gives priority to type-1 jobs (i.e., those
with service rate u(1)) over type-2 jobs (i.e., those with service rate u(?)). Type-2
jobs only enter service when no type-1 jobs are present, while the number of type-2
jobs in service at any moment in time is at most 1; when type-1 jobs arrive during
the service of a type-2 job, then each of these type-1 jobs immediately receives its
fair share of the service capacity (in a PS fashion). In this way, the small (i.e.,
type-1) jobs get some priority over large (i.e., type-2) jobs and, therefore, for Ho-
distributed service times with balanced means the expected number of jobs in the
system is indeed small when c% is large.

Another remarkable observation is that for the SEPT policy the cost function
g(m>EPT) is not monotonically increasing in ¢% (in Table 1, see the case where
p = 0.90). In fact, numerical experiments with Equations (BI8)-(EI9) suggest
that, for any value of p, there is a threshold value T'(p) such that 9e2 (mSEPT) <

g1 (7EPT) for 1 < ¢4 < T(p), while 9e2 (m5EPT) > g1 (75EPT) for ¢4 > T(p). Also,

numerical experimentation with Equations (.I8)—(519) suggests that at the cross-
over point ¢ = T(p), we have E[N()] = E[N®)] (and by definition ez (mSEPT) =

E[N(l)] = p 40
(5.19)
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g1(m5EPT)). The derivation of rigorous proofs of such results, which are specific for

H,-distributed service times, and can be obtained directly from (EIS)-(EI9), is
left as an exercise to the reader.

We end this section with a number of remarks. In the proof of Theorem [5.3.1] we
restricted ourselves to the case of hyper-exponential service-time distributions with
two phases. This mainly serves the ease of the discussion. For the case of general
phase-type distributions, the proof can be done in a similar way. The decomposition
of the value function into A and D (see Equations (B.I1)) and (5.12)) still holds. The
monotonicity properties of A (see Equations (BI3)—(E.13])) are completely identical.
The monotonicity of D (defined in Lemma [5.33]) requires submodularity for a more
general expression in the dynamic programming formulation for the services, which
can be proven similarly but is notationally cumbersome.

In the formulation of the relative value function it is implicit that the starting
phase of each job is known before a job enters service. In case the starting phase is
not known, the assignment policy can only be based on the number of jobs waiting
in the queue. In this case, one may suspect that the optimal policy is of switching
type, i.e., there exists a connected subset S of the state space such that if the
system state is in S then assignment is optimal and otherwise waiting is optimal.
The method presented can be adopted to prove such a result.

5.5 Conclusion and topics for further research

In this chapter we studied dynamic server-assignment policies for the single queue
LPS queueing system with general phase-type distributions, where assignment deci-
sions are based on the number of jobs in each service phase. For this model, we have
derived a complete and explicit characterization of the optimal dynamic assignment
policy based on increasingness and submodularity properties of the relative value
function. We have also provided a numerical assessment of the performance of the
optimal dynamic policy compared to several commonly used static policies, and the
optimal static policy. The results show that a considerable gain can be obtained by
using the dynamic policy.

Finally, we address a number of topics for further research. First, it is interesting
to study optimal server-assignment policies for multi-queue extensions of the LPS
queue, building upon the insights obtained in this chapter. To start, an extension
that is of main interest both from a theoretical and an application point of view
is a two queue tandem where the servers can be dynamically assigned to either
one of the queues and where at any moment in time the active servers share an
underlying resource in a PS fashion. For this model, for which the optimal server-
assignment policy is unknown today, it is challenging to investigate whether the
optimal server-assignment policy can be characterized using monotonicity proper-
ties of the relative value function. These results, in turn, may be generalized to
multi queue extensions of the LPS with more than two queues. Moreover, the
methodological insight that we obtained by decomposing the relative value function
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may also be applicable to study monotonicity properties for multi-node extensions.
Second, the numerical results suggest that significant improvements can be made
by implementing dynamic instead of static server-assignment policies. It would be
interesting to derive bounds on the performance gain that can be realized by op-
timal dynamic assignment strategies. Third, an interesting question raised by the
numerical results shown in Table[5.1lis whether the cost for the optimal policy, g(7),
is increasing as a function of ¢%. In this context, recall from Section [54] that such a
monotonicity property generally does not exist for the SEPT policy. Derivation of
such monotonicity results, or counter-examples contradicting such properties, are
left as a challenging open question for further research. Finally, it is interesting to
investigate whether an explicit quantification of the performance gain can be given
under heavy traffic assumptions. In heavy traffic, the performance of the system
mainly depends on the first and second moments of the arrival and service process
in many queueing networks. It is a challenging open question to see whether this is
also the case for the LPS queue.

5.6 Appendix: Proof of Lemma [5.3.3

In this section we provide a proof of Lemma [5.3.3] which is put into an appendix,
since it is rather technical in nature and notationally cumbersome. The proof is
very similar to the one provided for Theorem B.3.11

Proof. The proof is by induction on n, where n is defined in Equation (57). We
focus on the terms that deal with the services only, since the terms for the arrivals
are dealt with similarly as in Equation (GII)). To this end, for ¥U) > 1 and for



92 5.6 Appendix: Proof of Lemma [5.3.3]

j € M, we find by expanding all terms
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In this expression, the H),-terms denote the expression that follows from taking



94 5.6 Appendix: Proof of Lemma

the action after evaluating H,, (whereas the H,-terms denote the expression that
follows from taking the action after evaluating V;,). Note that by induction, starting
with £ > 0, results in H! being equal to H,, because the optimal decisions are
the same. By applying Lemma [5.3.3] the expression above can be decomposed into
the four expressions (B20)-(E23) below, for each of which we show that they are
non-negative.

For the first expression, we have
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because k* equals k for z() > 0, 2 > 0, kD >0, and £ > 0. Since £ > 0, it
follows from Theorem [.3.0] that k*(2) = k(2)| and the action taken in H is then to
serve all jobs of type 1, thus k") = 2z and similarly &*() = k1),
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For the next expression we find
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using similar arguments as before. Similarly, the third expression leads to
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and the final expression
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For k) = 1 the proof follows immediately, since in Equation (5.21)) and (5.23)), the
terms with 2(?) —2 are zero. Similarly for k") = 1, in Equation (5.20) and (5.22)) the
terms with (1) —2 are zero, and again the inequalities are satisfied. This completes
the proof. O






CHAPTER 6

OPTIMAL SERVER
ASSIGNMENT IN WEB
SERVERS

In this chapter we derive new dynamic thread-assignment policies that min-
imize the average response time of Web servers. A Web server is modeled
as a two-layered tandem of multi-threading queues, where the active threads
compete for access to a common resource. This type of two-layered queueing
models naturally occur in the performance modeling of systems with intensive
software-hardware interaction. Our results show that the optimal dynamic
thread-assignment policies yield strong reductions in the response times. Val-
idation on an Apache Web server shows that our dynamic thread policies
confirm our analytical results. This chapter is published as [I13].

6.1 Introduction

The rise of Internet and broadband communication technology have boosted the use
of Web-based services that combine and integrate information from geographically
distributed information systems. As a consequence, popular Web sites are expected
to handle huge numbers of requests simultaneously without noticeable degradation
of the response-time performance. Moreover, Web servers must perform significant
CPU- and disk I/O-intensive processing, caused by the emergence of server-side
scripting technologies (e.g., Java servlets, Active Server Pages, PHP). Furthermore,
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Figure 6.1: The Web server model in [51].

Web pages involving recent and personalized information (location information,
headline news, hotel reservations) are created dynamically on-the-fly and hence are
not cacheable. This limits the effectiveness of caching infrastructures that are usu-
ally implemented to boost the response-time performance of commercial Web sites
and limits the bandwidth consumption. At the same time, as a result of the recent
advances in wired networking technology, there is usually ample core network band-
width available at reasonable prices. As a consequence of these developments, Web
servers tend to become performance bottlenecks in many cases. These observations
raise the need for Web-based service providers to control the performance of their
Web servers.

Web servers are typically equipped with a pool of threads. In many cases, a re-
quest is composed of a number of processing steps that are performed in sequential
order. For example, see Figure [ an HTTP GET request may require process-
ing in several steps: a document-retrieval step and a sequence of script-processing
steps to create dynamic content. Similarly, an HTTP POST request may require
a document-processing step and several database update queries. To handle the
incoming requests, Web servers usually implement a number of thread pools that
are dedicated to perform a specific processing step [0 [77].

The performance of the Web server largely depends on the thread-management
policy [51I]. This policy may be either static (i.e., with a fixed number of threads —
possibly of different types) or dynamic (i.e., where threads may be created or killed
depending on the state of the server). Traditionally, many Web servers implement
a simple static thread-assignment policy, where the size of the thread pool (i.e., the
maximum number of threads that can simultaneously execute processing steps) is
a configurable system parameter. This leads to a trade-off regarding the proper
dimensioning of thread pools to optimize performance: on the one hand, assign-
ing too few threads may lead to relative starvation of processing power, creating
a performance bottleneck that may increase the average response time of requests,
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particularly when the workload increases. On the other hand, if the total number of
threads running on a single hardware component is too large, performance degrada-
tion may occur due to superfluous context switching overhead and memory or disk
I/0 activity. Nowadays, more efficient thread policies are widely implemented. In
order to effectively react to sudden bursts of transaction requests, many Web servers
implement simple dynamic thread-management algorithms that allow threads to be
created or killed, depending on the actual number of active threads. However, even
though the implementation of these thread policies is common practice, a thorough
understanding of the implications of the proper choice of thread-assignment policies
and the settings of the parameters on the performance of the Web server is mostly
lacking. In particular, the trade-off between relative starvation of processing power
in the case of too few threads and the performance degradation in the case of too
many threads is not fully understood (see [45] for recent results on software bot-
tlenecks). Moreover, the commonly used thread policies do not take into account
the probability distribution of the service times required by the different requests,
while significant performance improvements can be obtained by doing so.

A key feature of multi-threaded Web servers is that the threads typically share
a common hardware (e.g., a CPU and disk) with a limited amount of capacity. This
naturally leads to the formulation of a two-layered tandem of multi-server queues,
where the active threads share the processor capacity in a processing sharing (PS)
fashion; i.e., when there are k threads active at some moment in time, then each of
these k threads receives a fair share 1/k of the total processor capacity [79]. In this
model, transaction requests are represented by customers, threads are represented
by servers, and response times are represented by the sojourn times of the customers.
To identify optimal thread-assignment policies, we describe the evolution of the
system as a Markov decision model and derive optimal thread policies from the
properties of the relative value function. In doing so, we show that the structure of
the optimal thread policy strongly depends on the service-time distributions of the
different processing steps in the Web server; in practice, these distributions can be
monitored and updated on-the-fly.

An interesting characteristic of this model is that it has a two-layered structure,
modeling the complex interaction between contention at the hardware (CPU, disk,
memory) layer and the software entities (threads) layer. At the software layer, the
processing steps, comprising a request, are processed by different (say N) types
of threads. However, the active threads effectively share the underlying resource:
the more threads are active, the smaller the processor capacity is assigned to each
thread. In this way, the thread is no longer an autonomous entity operating at a
fixed rate; instead, the processing rate of each thread continuously changes over
time. Evidently, for N = 1, the model coincides with the classical processor-sharing
discipline; but for N > 1, the processing speed of one thread pool depends on the
state of the other thread pools. This type of interaction makes the model rather
complicated, and highly challenging from a methodological point of view.

Although the theory of job scheduling with autonomous independent servers
is well-matured, in the literature only a few papers deal with scheduling of Web
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servers. Harchol-Balter et al. [50, 8, [49] and Crovella et al. [31] study scheduling
policies for Web servers to improve the response time performance of Web servers
with static Web pages, provided the size of a Web page is known a-priori; for this
type of models, the results show that the classical Shortest Remaining Processing
Time (SRPT) policy is very effective [I05]. In contrast to the present chapter, it
should be noted that the results in [50] are based on the assumption that the net-
work interface, rather than the Web server itself, is the performance bottleneck; this
leads to fundamentally different performance models than the one considered in this
chapter. In this context, the contribution of the present chapter complements the
results obtained in the above references. Menascé [80] gives an overview of issues
involved in modeling Web servers. Cao et al. [23] propose to model a Web server
by a simple M/G/1/K/ PS queue, and validate the model through lab experiments.
Detailed performance models for Web servers, explicitly including the interaction
between software and hardware contention, were proposed in [79, [51]; these model-
ing efforts naturally led to the formulation of two-layered queueing models.

In this chapter we model a Web server by a two-layered queueing network with
a single processor-shared resource. We describe the evolution of the system as a
Markov decision process from which we obtain simple and readily implementable
dynamic thread-assignment policies that minimize the expected response time of
the requests. The service-time distributions are modeled by the class of phase-type
distributions, which is a broad class of distributions and also allows to study the
impact of heavy-tailed distributions on the expected response time of the requests.
The results show not only that, but also how the optimal policy depends on the
service-time distributions at each of the processing steps. The proposed policy uses
monitored information on both the number of active threads and the probability
distribution of the required service time per request. Our results show that the
optimal dynamic thread-assignment policies yield strong reductions in the response
times. To validate the model, we have tested the performance of our policies in
an experimental setting on an Apache Web server. The experimental results show
that our policies indeed lead to significant reductions of the response time, which
demonstrates the practical usefulness of the results.

The remainder of this chapter is organized as follows. In Section [6.2]we formulate
the model. In Section we derive optimal dynamic thread-assignment policies.
In Section we consider numerical experiments and evaluate them on an Apache
Web server. In Section [G.5] we discuss the model assumptions and the computational
complexity of the thread-assignment policies. We conclude in Section and give
ideas for further research directions.

6.2 Model description

In this section we model the problem of dynamic thread assignment in the context
of a multi-layered queueing system with a shared PS resource. For this purpose,
consider a network of N queues in tandem with a common shared processor for
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serving arriving requests. Requests arrive according to a Poisson process with rate
A to the first queue. At each queue, threads can be spawned which may be assigned
to a request. When a request is assigned to a thread at queue i, it receives service
S; with mean duration §; for ¢ = 1,..., N. However, during service, the request
only gets a fraction of the total capacity of the server, depending on the number
of outstanding threads k; at each queue ¢ for ¢ = 1,...,N. Upon completion
of service, the thread is terminated and the request proceeds to queue i + 1 if
i < N, or it leaves the system otherwise. If a request is not assigned a thread, the
request joins an infinite buffer at the queue and waits until it is assigned a thread.
Note that we do not explicitly model delays due to context switching between
threads, since the CPU time in comparison to the processing times of the threads
is negligible (see Remark [6.4.1] for a justification). The load on the system is given
by p=A(B1 + -+ + Bn). This model is illustrated in Figure

To obtain optimal thread-assignment policies that minimize the expected re-
sponse times, we model the system in the framework of Markov decision theory. To
this end, we model the service-time distribution of .S; by a phase-type distribution
with M; + 1 states (where state M; + 1 is the absorbing state), with initial distribu-
tion n; = (n§1), e nfMi)), where nz(j ) is the probability that the Markov chain starts
in state j for j = 1,..., M;. When the Markov chain is in state j, the time tl(lagt
J

P

the process spends in state j has an exponential distribution with parameter u

Upon leaving state j, the process jumps to state [ with probability p(.j 4

;5 or jumps to
the absorbing state M; + 1 with probability pEJ’MiJrl), where Ef\i’fl pl(.]’l) = 1. The
absorbing state corresponds to a completion of the service requirement at queue 3.

Phase-type distributions have the important feature that they are dense in the
class of all non-negative distributions, retaining their tractability [I02]. Therefore,
it is possible to model heavy-tailed distributions by phase-type distributions. This
is especially relevant, since it has been observed that file sizes on Web servers
follow a heavy-tailed distribution (see, e.g., [31]). It is common to fit phase-type
distributions on the mean ES; = (; and on the coefficient of variation cg, (see,
e.g., [I10]), or by the more complex EM-algorithm (see [5]).

Next, we uniformize the system (see Section 11.5 of [33]). For simplicity we
assume that A + max{ugl), . ,ug\],\/[N)} = 1; we can always get this by scaling.
Uniformizing is equivalent to adding dummy transitions (from a state to itself)
such that the rate out of each state is equal to 1; then we can consider the rates to
be transition probabilities. Note that rate costs in this case are equivalent to lump
costs at each epoch.

( )Let X be the vector that denotes the number of requests in each phase, i.e.,
J

x,”’ is the number of requests in phase j that are waiting at queue ¢ plus the

number of requests in phase j in service at queue i for ¢ = 1,..., N. Moreover,
let the vector k denote the number of outstanding threads, i.e, k'z(j ) is the number
of outstanding threads for requests in phase j at queue i¢. Thus, the number of
outstanding threads at queue ¢ equals k; = kgl) 4+ k'gM"’). A state z of the
system, depicted in Figure [62] is then given by the tuple (x, k).
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Figure 6.2: A two-layered tandem queue with a shared resource.

Let EW be the expected response time of an arbitrary customer in the system.
The goal is to find a policy 7* that minimizes EW. By using Little’s Law [I10] this
objective translates to minimizing the expected number of requests in the system.
Therefore, we assume that the system is subject to unit costs for holding a request
per unit of time in the system. Let u.(z) denote the total expected costs up to
time ¢ when the system starts in state x. Note that the underlying Markov chain
representing the state of the system satisfies the unichain condition, so that the
average expected cost g = limy_,o ut(2)/t, i.e., the average number of requests in
the system, is independent of the initial state = (Proposition 8.2.1 of [93]). The
expected response time IEW can then be expressed as g/\.

A policy m maps the state (x,k) to an admissible action a, which represents the
number of additional threads to be spawned in state (x,k). Thus, the information
that one uses to derive optimal actions generally depends on the number of requests
in each phase at each of the queues as well as the number of outstanding threads
for each request in each phase.

Let V(x,k) be a real-valued function defined on the state space. This function
will play the role of the relative value function, i.e., the asymptotic difference in
total costs that results from starting the process in state (x, k) instead of some ref-
erence state. The long-term average optimal actions are a solution of the optimality
equation (in vector notation) g +V = TV, where T is the dynamic programming
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operator acting on V' defined as follows
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with egj ) the unit vector with all entries zero, except for the i, j-th entry for i =
.,Nand j=1,...,M;, and with eg\j,)_H the zero vector. The unit vector egj) is

similarly defined. The actions, denoted by H, are given by

Aok = min AVEkr 33 o)
g

0<al? <@ 1)

with a(j) € ]No7 where No = {0,1,2,...}. V(x,k+ a(j) (')) represents the action

’L
that spawns a ) additional threads at queue ¢ for jobs in phase j. From the definition
of H, we see that it is not possible to spawn more threads than there are requests
waiting. Spawning more threads than requests waiting is obviously not optimal,
since that leads to loss of capacity in the model.

The first term in the expression TV (x, k) models the direct costs, i.e., the total
number of requests in the system. The second term models the arrivals, which
occur with rate /\7753 ) to phase j at the first queue. The transitions of a request to
a different phase within each queue are given by the third term. A transition from
phase j to phase [ for a request in queue ¢ occurs with rate u(] ) , but this is

adjusted with the factor k§])/(k1 + e+ kN), since that request only uses a fair
share of the service capacity. Note that the system is specifically modeled such that
when a request moves from one phase to another, the previously assigned thread is
not lost. The thread is only released upon completion of the service requirement.
The next term, which accounts for a transition to the absorbing state, is similarly
explained with the exception that the departure is split into arrivals to phase [ of
the next queue with probability 77521. The last term is the uniformization constant
to account for the dummy transitions added to the model. Note that the last term

in Equation (6] is non-negative.
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The optimality equation g +V = TV is hard to solve analytically in prac-
tice. Alternatively, the optimal actions can also be obtained by recursively defining
Vig1 = TV, for arbitrary V. For [ — oo, the maximizing actions converge to the
optimal ones (for existence and convergence of solutions and optimal policies we
refer to [93]). Consequently, when V' is known, we can restrict our attention to the
function H to obtain the optimal actions. In Section [6.4] we adopt this approach to
compute optimal policies.

6.3 Dynamic thread management

In this section we focus on dynamic thread assignment. We determine, using dy-
namic programming, optimal policies minimizing the expected response time per
request. The performance of the optimal policies is compared to the performance
of policies that only serve requests based on the number of threads outstanding. A
specific example of the latter case is the policy that serves one request with only one
outstanding thread until it leaves the system, resulting in a First Come First Served
(FCFS) policy. The other extreme is the policy that always serves all requests so
that new threads are spawned for arriving requests. The intermediate case, which
is commonly implemented in Web servers, is the policy that serves requests simul-
taneously with a number of threads of which the maximum number is limited by
some specified number. More precisely, let 7(%) be the policy that spawns at most
k threads in total such that the requests in queue i get priority over requests in
queue j when ¢ > j. Note that the three policies mentioned earlier are represented
by 71, 7() and 7#®) for k = 2,3, ..., respectively.

Exponential service-time distributions are a special case of phase-type distri-
butions, namely those with one phase only. In this case, the optimal policy that
minimizes the expected response time is to serve according to policy 7(1, i.e., serve
one request with only one outstanding thread until it leaves the system, such that
the requests in queue ¢ get priority over requests in queue j when ¢ > j. This result
also holds when the service-time distributions are replaced with Erlang distribu-
tions, since the requests are not preempted during service. For Erlang distributed
service times a request keeps its thread jumping from one phase to its next phase
in the same queue. This class of distributions models the situation where a Web
server fetches a Web page and also performs server-side scripting for the page.

The optimal policy changes when the service-time distributions are replaced with
hyper-exponential distributions. In this case, requests waiting in queue 7 may have
a smaller expected sojourn time compared to a request in queue j > ¢ when a thread
is opened at queue 7. For this reason, the optimal policy can be obtained efficiently
by recursive computation. As will follow from Theorem [6.3.1], this policy coincides
with the optimal policies for exponential and Erlang service-time distributions. For
these distributions there is only one service phase, so that the expected sojourn
time decreases monotonically as a request progresses to the last queue. Therefore,
there is only one thread outstanding at most.
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In the previous paragraphs, we have obtained intuition for optimal policies for
dynamic thread management. We have seen that the expected sojourn time of
requests plays a key role in the decision to spawn threads. In the case of exponen-
tial and Erlang service-time distributions it was not possible to obtain a smaller
expected sojourn time than the expected sojourn time of a request further in the
system when spawning additional threads, and therefore the FCFS policy is opti-
mal. In the case of hyper-exponential service-time distributions, we obtained that
the optimal actions at queue ¢ depend on the state of queues j > ¢ and the decision
rules for those queues. This result also holds for the general phase-type service-time
distributions.

Theorem 6.3.1. Let ;(x,k) denote the decision rule that describes the thread-
management Tule at queue i, for i = 1,...,N. Let @; be such that it spawns al(.j)
threads for requests in phase j at queue i given state (x,Kk), if the expected sojourn
time of the az(j) phase-j requests become smaller than the expected sojourn time of
at least one request in queue j > i under decision rules @i+1,...,9on. Then policy

7= (1,...,0N) is optimal.

The decision rule can by applied by recursively solving the expected sojourn time
of the requests, starting with the last queue, denoted by N. Given the expected
sojourn time of the requests in this queue we decide if additional threads are spawned
to the requests in this queue. For the calculation of the expected sojourn time
arriving requests are not taken into account. Then, we move to the previous queue,
N — 1. We calculate the expected sojourn time for this queue, given the action
taken in queue N. Continuing this recursion the optimal policy will be defined and
can be applied.

To prove Theorem [6.3.1] submodularity of the relative value function is required.
This property is formulated and proven in Lemma To avoid cumbersome
notation we present the proof for exponentially distributed service times. For ex-
ponentially distributed service times the theorem can be stated as follows

Theorem 6.3.2. Consider an emptly system, then k* = 0. Now, consider a non-
empty system with k = 0, and define z := max{!|xz; > 0}, then k* = e.. Finally,

consider a non-empty system with open threads, and define j := max{l|k; > 0}.
Then
N
k* = k—f—Zaiei, (6.2)
i=j

with the j* entry

aj =0, if z=j and kj =1,
aj =z —k;j, ifz=jandk; >1, orz#j,

and with the other entries

a; =x; — ki, fori=j5+1,...,N, (6.4)
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where k* = (k},...,k%). Then, for arbitrary (x,k), we have
Vi(x,k) > V(x,k"). (6.5)

Proof. Let ent1 = 0. For exponentially distributed service times, the backward
recursion equation following from (G]) reduces to

Vn(X,k) NH,,_1 x+e1, Z Mz : H, _ 1(x—ei—|—ei+1,k—ei)
i=1 Jj= 1k]
N ik
+ (1 —-—X— _ Ml ank_’_Zm’U
i=1 Z] 1 ki
(6.6)
with
N
H,(x,k) = min{V,,(x,k + Zaieiﬂ i=1,...,N, 0<a; <z; —k;,a; € N},
i=1
forn=0,1,... and (x,k) € N¥ x N¥ and with V5(x,k) = 0. Clearly,
Vo(Xa k) - V()(X, k*) > 0. (67)

We assume that the Equation ([G8) holds for n and then prove that it holds for
n+ 1.

Va(x, k) — V. (x,k*) > 0, (6.8)
where &} is defined in Equation ([62). We can write, using (G.6))
Vo1 (x, k)—VnH(x k*) = ANH,(x + e1,k) — Hy(x + e1,k")]

+Z uz z (x —e;+eit1,k—e)
i=1 j 1 J

—Z ﬂz Hy(x —e;+e1,k" —e;) (6.9)
= Jj= 1k3

+(1 =N [Va(x,k) — Vo (%, k*)]
_ 2:: ,Lj’fz lzkj X k + Z ,Lj’fz :kj X k*)

Expression ([G3]) above consists of terms related to the arrivals and related to the
departures. We will now show that Equation (68 indeed holds. To this end, we
use induction in n to show that for n > 0

ANH,(x +e1, k) — H,(x+e,k")] >0, (6.10)
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and
Vo(x,k) = Vo (x, k") > 0, (6.11)
holds. Combining (GI0) and (GI0) we have that

ANH,(x +e1, k) — H,(x+ e, k")]

+ (1= N)[Va(x,k) = Vi (x,k*)] > 0. (6.12)

The terms in Equation ([GI2]) are the so-called arrival terms. The remaining terms,
the so-called service related terms, are exactly equal to the terms of the expression
in Lemma [6.33 given below. This shows the inequality in (6.8]). By taking the limit
of n to infinity the proof of Theorem is completed. O

Lemma 6.3.3 (Submodularity). Let k* be defined in (€2). Given the backwards
recursion equation in (68), for x; > 0, k; > 0, fori = 1,...,N, it holds for all
n > 0 that

N ik
%Hnﬂ(x —e;+et1,k—e)
i=1 Zj:l kj
N
o .
- ljvziz*ﬂnﬂ(x—erf-eiﬂ’k —e;)
= 2= K
N
s
- #Vn-i-l(x_ei“‘ei-i-hk_ei)
i=1 Zj:l kj
N
pik; .
+ T*Vn+1(x—ei+ei+1,k —ez)] 2 0
o1 2aj=1 k]

Proof. The proof is by induction on n. In this proof the focus is on the terms
that deal with the services only, since the terms dealing with arrivals are similar
as in Equation ([GI2). Assume, without loss of generality, that puq > -+ > py.
The queues can always be ordered in the way, due to the exponentially distributed
service times and the non-preemptive service. Then, the proof of Lemma [6.3.3]
follows from applying the decomposition approach in Section

In the following equation H’ is the expression that follows from taking the action
after evaluating H. Due to the induction hypothesis and starting with k; > 0 the
optimal decisions are the same and thus H = H’. k’* follows after taking the
optimal action in a state with k*, which was already optimal. Induction on n gives



110 6.3 Dynamic thread management

kipi E] 1 k;
Zivzl ks Zt 1 k*
— %Hn_l(x —e; +e11,k"— ei))
t=1"t
k*uz Z;v 1 k;/ﬂj
Zs 1 8 Zt lk*l
_ M
Zt Lk}
kipi (E] 1k;
PRARY SN DARY
e 1k;
Zt 1
ki (ZJ 1k;"uj
Sk Lk
B Z] 1 K5
Zt:l k:,

U
Hn(x —e;+ey1—ejt+ej,k"—e —ej)

+ H,’l(x—ei—l—ei_,rl—ej+ej+1,k*’—ei—ej)

H,(x—e; +e., k" — ei))

Hn(X — €y —+ ej+1,k* — ej)

Vn(x,k*))

+ Hn(x—ej+ej+1,k*’—ej)

TV (x, k*')) .

Applying the induction hypothesis on the expression above decomposes into the
following two expressions (G.13) and (E.14).

Hi

— WHn(X + 2(ei+1 — ei), k*/ — 261‘)
s=1"s

+ L H(x— e+ eia, kY —e; — ei41)

N
Es:l k;/

+ E]\llm P Hy(x +2(eit1 — €;), k™ — 2¢;) (6.13)
s=1"s

Zs:l k:

Hy(x—e;+ei2,k" —e;—eiq1)

>0

)
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because the u;’s are ordered, and similarly,

:u"i */
——~x —Hu(x—eit+e1,k" —e
R " :
+%Hn(x—ei+ei+1,k*’—ei)
Zs:l k:/
+ Al,“ Hy(x+ei11— e, k" —e) (6.14)

*

Es:l ks
+ %Hn(x —e; +ei1, k" —e)
Es:l k‘;

> 0.

This completes the proof. O

6.4 Numerical experiments

In the previous section, we determined optimal policies for general phase-type
service-time distributions. In this section, we compare these policies with other
thread-assignment rules that are frequently used. First, for various parameter set-
tings, we analytically show that the optimal policies outperform the simple thread-
assignment rules. Then, we compare the theoretically obtained improvements with
those that are obtained in an experimental setting on an Apache Web server.

6.4.1 Comparison of policies

In this subsection, we analytically compare the optimal policy, which we denote by
7", with commonly used alternative policies. For this purpose, we use a Web server
infrastructure with NV = 2, and where M; = 1 or 2 for ¢ = 1,..., N. We consider
the following alternative policies: 7)), 7%, 7(®) and 7#(1:1). Note that the first
three policies follow the notation given in Section [6.3] i.e., the policy that spawns
at most k£ = 1,4, and unlimited threads in total such that requests in queue 7 get
priority over requests in queue j when i > j. The last policy, denoted by 711 is
the policy that spawns at most one thread at queue 1 and at most one thread at
queue 2, independent of each other. Note that following the notation in Chapter B
7 equals 77CFS and 7(°°) equals 775, We are interested in the gain, defined as

(EW (x)) — EW (%)) /EW (7*) x 100%, (6.15)

where EW (7r) is the expected response time under policy 7, and 7(%) is one of the
alternative policies.
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In our scenarios, we focus on exponentially and hyper-exponentially distributed
service times. The choice for these distributions is motivated by the fact that they
have a coefficient of variation that is equal to one and bigger than one, respectively.
The coefficient of variation can be seen as a measure for the variation in the service
times, i.e., it is the ratio of the standard deviation and the mean of the service times.
Low (high) values of the coefficient of variation correspond to low (high) variability
in the service times. These service-time distributions are rich and simple enough to
gain insight into the structure of optimal policies. The Erlang distributed service
times (which have a coefficient of variation smaller than one) are not considered here,
because the optimal policies for the case of Erlang and exponentially distributed
service times are equal.

In Table[6.I] we present the different scenarios with the corresponding parameter
settings for which we have compared the policies. The performance loss of the
policies is given in Table [.2] where the performance is derived by solving the
backward recursion equations numerically. In case the coefficient of variation equals
one, we only mention ﬁi(l), since there are no other phases. In the other case, we

specify both ﬁi(l) which is selected with probability rgl) and ﬁi@) which is selected
with probability 1 — 7“51). Moreover, the average load p = A(51 4+ B2) on the system
is taken to be constant, p = 0.6. The table also presents the gains in expected
response times for the 12 different cases, as defined above. The last line in this
table represents the average gain compared to each policy. Note that the case
with p = 0.6 is representative, since experiments with other loads give comparable
performance gains.

Figure [6.3] shows the expected response times in seconds for the five policies for
the twelve scenarios. We can immediately see that the optimal policy 7* leads to
significant reductions in the expected response times. For exponentially distributed
service times at both queues, the optimal policy is given by 7(1), and this can be seen
in the figure by the two bars of equal height. However, we see that in many cases
of hyper-exponentially distributed service times, the gain is significant compared to
all other policies.

6.4.2 The Apache Web server

In this subsection we validate the theoretically obtained improvements of the previ-
ous section with improvements that are obtained in an experimental setting on an
Apache Web server. For the experimental setup, we use the Apache HTTP server
version 1.3.33 running on a 2.8 GHz Linux platform with kernel version 2.4.31. The
requests are generated according to a Poisson process by a Perl script that issues
HTTP GET requests from a remote desktop. The requests that the script makes
are requests to PHP pages that draw a random number w from a pre-specified
probability distribution. This random number is then used to generate a file of size
w megabytes, and is displayed as a Web page. After displaying the Web page, a
second PHP page is requested which behaves similarly. The second page represents
the requests at the second queue that also use the same underlying CPU, memory,
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Ao, A o) P P
1 1 1 1.00 1.00
2 1 5 0.91 1.00 0.55 5.45
3 5 1 091 0.55 5.45 1.00
4 ) 5 091 091 055 545 055 545
) 1 1 1.00 5.00
6 1 5 0.91 1.00 2.75  27.25
7 5 1 091 0.55 5.45 5.00
8 5 5 091 091 055 545 275 27.25
9 1 1 5.00 1.00
10 1 ) 0.91 5.00 0.55 5.45
11 ) 1 091 2.75 27.25 1.00
12 5 5 091 091 275 2725 055 545

Table 6.1: The twelve scenarios.

and I/O hardware.

The policies are not implemented directly in the Apache Web server code. The
script that issues the requests for the Web pages keeps track of the requests in
service and does request policing. Thus, it maintains a list of requests that still
need to be issued and it implements a queue. Therefore, the script has complete
state information and can decide when to issue a request for a Web page with the
right parameters, based on the given policies. Since the time the script needs for
decision making is negligible, we expect that implementing the code in the Apache
Web server does not add significant additional computational overhead. Therefore,
the results still give realistic indications of the improvements that can be obtained.

Remark 6.4.1. The threads are spawned by the Apache Web server itself, and con-
sequently delays due to context switching between threads can affect the results in
these experiments. In practice, when the number of threads increases, other hard-
ware resources may become a bottleneck (e.g., memory or disk I/O). However, the
optimal policies spawn only a finite number of threads such that these phenomena
do not occur in our experiments. In practice, the optimal policy bounds the number
of threads so that the likelihood of causing other bottlenecks is limited.

Presently, the Apache Web server consists of a Multi-Processing Module (MPM)
that implements a hybrid multi-process multi-threaded server. This module uses
threads to serve requests with less system resources than a process-based server. The
maximum total number of threads that may be spawned is equal to the parameter
MaxClients, which is set to 150 in the standard configuration. The configuration
file of the Apache Web server advises to set this number high so that maximum
performance can be achieved (thus, effectively implementing 7(>)). In addition,
Apache always tries to maintain a pool of spare or idle server threads, which stands
ready to serve arriving requests. In this way, requests do not need to wait for new
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scenario || 7«1 @ gle) D
1 0.00 13.82 17.63 16.92
2 18.99 5.73 3.45 47.38
3 34.79 19.77 17.19 53.05
4 66.06 23.78 14.50 94.96
5 0.00 7.12 9.08 10.02
6 78.61 14.73 2.04 97.35
7 5.57 9.93 11.11 14.74
8 99.82 26.93 11.94 119.78
9 0.00 7.12 9.00 4.57
10 0.00 4.13 5.25 5.74
11 98.91 40.53 13.64 104.17
12 91.26 2149 7.14 98.07

average || 41.17 16.25 10.17  55.56

Table 6.2: The performance gain of the optimal policy over the four policies (see
Equation (GI3))) under the twelve scenarios.

threads to be created before they can be served. Consequently, the assumption in
our model that creating (killing) threads does not cost additional time is justified.

In Table the gains of using policy 7* over policy 7" and 7(>) are listed.
We compare 7* only with these two policies, since the results in Table suggest
that the best alternative policy is achieved either under 7Y or 7(°°). As mentioned
in the previous paragraph, the policy 7(>) also coincides with the standard thread-
management policy used by the Apache Web server. In Figure the gains of the
different cases are compared to the theoretically calculated gains.

The figure shows that the observed gains closely match the theoretical gains,
so that the multi-layered queueing model can be used to establish effective thread-
management policies in practice. Note that the gains obtained by the model are
generally higher than the gains obtained in the experimental setting. This can
be explained by observing that context switching is not taken into account in the
model. Moreover, we expect that the gains of 7* over 7(°) strongly increase when
the system is heavily loaded, since this will lead to superfluous context switching
and hence waste of processor capacity in the case of 7(°).

6.5 Discussion

In this section we discuss the computational complexity of the optimal policy derived
in Theorem and discuss possible model extensions.

The optimal policy of Theorem [6.3.T]is explicit for the case of exponentially and
Erlang distributed service times. For other service-time distributions the optimal
policy can be computed efficiently by a recursive scheme starting with queue N and
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Figure 6.3: Expected response times (in seconds) for the twelve scenarios.

case 1 2 3 4 5 6
D || 0.00 1755 31.62 60.23 0.00 75.56
7 1116.01 3.41 16.03 10.42 8.78 1.13

case 7 8 9 10 11 12 average
Ml 512 9276 0.00 0.00 92.16 85.23 | 38.35
7)1 1091 6.47 7.98 5.12 10.61 3.82 8.39

Table 6.3: Performance gains (in %) obtained on an Apache Web server for the
twelve scenarios.

working backwards to queue 1. Thus, decision rule ¢; does not depend on the states
(x;,k;) for j <i. This observation leads to a dramatic reduction in the dimension
of the state space for which one needs to determine the optimal decision rule. More
precisely, the number of states that one needs to derive the decision rule for queue
i is reduced from Hf\;l M; to Hl]\; M;.

In this chapter it is assumed that the service-time distribution at each processing
step is a known phase-type distribution, while in practice accurate measurements
of the service-time distribution may not be trivial to obtain. In practice, custom
instrumentation can be developed to estimate the workload (see [37]). Also, the
processing-time distributions may change over time, which may impact the optimal
thread-assignment policies. In practice, one can develop a feedback loop that re-
estimates the service-time distribution regularly and adjusts the policies accordingly.
The work is this chapter forms the basis for this closed-loop control with feedback.

In the present chapter it is assumed that the active threads share a single com-
mon hardware resource, modeled as a PS server. Although this assumption works
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Figure 6.4: Comparison of gains: Apache versus model.

well in many cases (e.g., where the server is CPU- or I/O-bound), the model may
be extended to include the fact that threads may occupy multiple resources simul-
taneously. In fact, many Web server architectures deal with more than one shared
resource at the hardware layer in addition to the CPU (e.g., memory, I/O, band-
width, multi-cored processors or multiple CPUs). Therefore, the highly distributed
nature of today’s information and communication infrastructures warrants research
for multi-layered queueing models with multiple shared resources. The derivation of
efficient thread-assignment policies for models that allow thread to occupy multiple
resources at the same time is far from trivial, and addresses an interesting topic for
further research.

6.6 Conclusion and topics for further research

We have considered the problem of dynamic thread assignment in Web servers such
that the expected response time is minimized. This problem can be translated
into a Markov decision process problem for multi-layered queueing networks, a
class of queueing networks for which hardly any exact detailed results have been
obtained so far. We have shown that for phase-type service-time distributions the
optimal policy spawns a thread for a request if the resulting expected sojourn time
of that request becomes smaller than the expected sojourn time of at least one
request further in the queueing system. This insight, when using dynamic policies
that have information on the service-time distributions, led to an efficient recursive
computation of the optimal policy. When the performance of this optimal policy
is compared to the performance of policies that serve requests only based on the
number of outstanding threads, it is shown that significant gains can be obtained.



OPTIMAL SERVER ASSIGNMENT IN WEB SERVERS 117

Experiments on an Apache Web server have shown that the theoretically predicted
gains are also achieved in practice.

We mention a number of interesting avenues for further research. First, in
many Web-based services a single user transaction induces a sequence of server
and database requests. These requests do not need to progress through the system
linearly, but may be routed in a general manner through the network, so that
certain queues are visited more than once. In this case, the optimal decision rules
may depend on the decision rules of all the queues, since requests that are behind
a particular request can be routed such that they will be ahead of the request. The
insight provided by our model can prove to be useful for deriving optimal policies
for this system.

Second, from a methodological point of view, it is challenging to investigate
to what extent the results presented in this chapter can be generalized to a more
general class of multi-layered queueing models. For example, in many cases the
threads at the higher layer may not share an underlying resource that follows a
processor-sharing discipline, but instead may be served, for example, on a First
Come First Served basis. Performance analysis and optimization for this type of
models address a very challenging area for further research.

Third, another highly relevant extension of the model is to include communi-
cation with backend servers. In practice, Web servers usually operate in a multi-
tiered environment in which dynamic content is gathered from downstream back-
end servers. In this context, an active thread that sends an information-retrieval
request to a backend server communicates either synchronously or asynchronously.
In case of synchronous communication, the thread is blocked while waiting for the
requested information, while in the case of asynchronous communication the thread
proceeds to the next job and may be interrupted whenever the information retrieval
is finished. Extension of the model to include communication with remote backend
servers is an interesting topic for further research.

Finally, for many transaction-based applications, the user-perceived performance
is not fully described by the expected response time. The variability, and in many
cases, even the tail probabilities of the response times, have a significant impact on
the perceived performance. Alternatively, from the perspective of a service provider,
the model can be extended to deal with multiple request types, each having its own
service level agreement. These extensions raise many challenging questions that are
of practical interest.
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SAMENVATTING

Wachtrijmodellen met gedeelde capaciteit

In de wachtrijtheorie worden verschijnselen bestudeerd die zich voordoen in wacht-
rijsystemen. Een wachtrijsysteem bestaat uit een of meerdere wachtrijen waar
klanten bediend kunnen worden. Een klant die bij een wachtrij aankomt en niet
direct bediend kan worden, neemt tijdelijk plaats in een wachtruimte alvorens
bediend te worden, of wordt geblokkeerd. Nadat een klant bij een wachtrij be-
diend is, gaat deze naar een andere wachtrij of verlaat het systeem. De laat-
ste paar decennia is de wachtrijtheorie succesvol gebleken voor het bestuderen en
verbeteren van de efficiéntie van systemen in allerlei toepassingengebieden, zoals
computer-communicatiesystemen, transport- en distributienetwerken, supermark-
ten, productie- en voorraadsystemen, call centers en patiéntenlogistiek.

In de meeste wachtrijmodellen wordt aangenomen dat de bedieningscapaciteit bij
elke individuele wachtrij onafhankelijk is van het aantal klanten bij andere wacht-
rijen. Naar het gedrag van dergelijke modellen is uitvoerig onderzoek gedaan en
zijn veel inzichten verkregen. Echter in veel toepassingen, zoals applicatie servers,
kabelnetwerken, mobiele ad hoc netwerken en gedistribueerde software-systemen, is
deze aanname over de bedieningscapaciteit niet correct. In dergelijke systemen is
sprake van wachtrijmodellen met gedeelde capaciteit, waarbij de totale hoeveelheid
bedieningscapaciteit dynamisch over de verschillende wachtrijen wordt verdeeld,
afhankelijk van het aantal klanten bij elk van de wachtrijen.

Ondanks het feit dat wachtrijmodellen met gedeelde capaciteit veel relevante
toepassingen hebben, is momenteel relatief weinig bekend over het gedrag van dit
soort modellen. In dit proefschrift wordt het gedrag van dit soort wachtrijmodellen
bestudeerd. Allereerst worden stabiliteitseigenschappen onderzocht. Het al dan
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niet stabiel zijn van een wachtrij heeft invloed op de prestatie van het systeem.
Een belangrijke prestatiemaat voor instabiele wachtrijen is de doorzet. De doorzet
(meestal throughput genoemd) voor een gegeven wachtrij is het gemiddeld aantal
klanten dat per tijdseenheid de wachtrij verlaat gemeten over een lange tijdsperiode.
Wanneer elke wachtrij in een wachtrijmodel stabiel is, is het interessant de even-
wichtsverdeling te bestuderen. In sommige gevallen zorgt het bestaan van pro-
ductvorm oplossingen voor de evenwichtsverdeling van het aantal klanten in het
systeem ervoor dat prestatiematen die een functie zijn van de rijlengte verdeling
kunnen worden afgeleid. Productvorm oplossingen voor verscheidene modellen met
gedeelde capaciteit worden in dit proefschrift uitvoerig bestudeerd.

In dit proefschrift speelt de Limited Processor Sharing (LPS) wachtrij een be-
langrijke rol. In deze wachtrij kan een gelimiteerd aantal klanten in een processor
sharing modus capaciteit toebedeeld krijgen voor bediening. Ondanks de prak-
tische relevantie van dit wachtrijmodel met gedeelde capaciteit zijn analytische
resultaten nauwelijks bekend. Een belangrijk inzicht in de LPS wachtrij wordt
verkregen in monotonie-eigenschappen voor het aantal klanten in een LPS wachtrij
met betrekking tot het aantal bedienden voor die wachtrij. Dit geeft inzicht in on-
der andere de rijlengte, wat kan dienen voor het minimaliseren van de rijlengte op
basis van het aantal bedienden. Als het aantal bedienden in een LPS wachtrij kan
fluctueren over de tijd, kan de rijlengte dynamisch worden geoptimaliseerd. Voor de
LPS wachtrij en voor een tandemvariant wordt de optimale dynamische toewijzing
van bedienden aan de wachtrijen bestudeerd.

In Hoofdstuk Bl worden twee eigenschappen bestudeerd: ‘rate stability’ en de
doorzet. Een wachtrij is ‘rate stable’” als het lange-termijn gemiddelde van de snel-
heid waarmee het aantal klanten in de wachtrij groeit gelijk is aan nul. Het is
belangrijk op te merken dat deze prestatie-indicatoren fundamenteel anders zijn
voor wachtrijmodellen met gedeelde capaciteit dan voor de klassieke wachtrijnet-
werken waarin de capaciteit per wachtrij wordt toegekend onafhankelijk van het
aantal klanten bij de andere wachtrijen. Er worden noodzakelijke voorwaarden
voor de ‘rate stability’ van elke wachtrij afzonderlijk afgeleid, en ook bovengrenzen
voor de doorzet per wachtrij, onder milde aannames over de capaciteitstoewijzings-
functie. Voor open wachtrijnetwerken met twee wachtrijen in serie en voor twee
wachtrijen in parallel worden een expliciete karakterisering voor de ‘rate stability’
en voor de doorzet gegeven.

In Hoofdstuk [3]is het al dan niet bestaan van productvorm oplossingen voor de
evenwichtsverdeling bestudeerd. Twee modellen worden geanalyseerd: een tandem
model met twee serieel gekoppelde wachtrijen, en een model met twee gekoppelde
wachtrijen in parallel. In beide modellen wordt de bedieningscapaciteit dynamisch
toegewezen aan de verschillende wachtrijen op basis van het aantal klanten in
het systeem. Voor deze modellen wordt een noodzakelijke en voldoende voor-
waarde gegeven voor het bestaan van een productvorm oplossing. Deze voorwaarde
unificeert het tandem en het parallelle model in een theorie door middel van het
construeren van een kunstmatige Markov keten. Deze voorwaarde is toegepast op
een aantal capaciteitstoewijzingsfuncties, hetgeen leidt tot een aantal nieuwe pro-
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ductvorm resultaten voor wachtrijmodellen met gedeelde capaciteit.

De monotonie-eigenschappen van de LPS wachtrij worden beschouwd in Hoofd-
stuk@l Voor de LPS wachtrij wordt bewezen dat voor bedieningstijden met een afne-
mende falingsgraad (decreasing failure rate) de lengte van de wachtrij afneemt (in
stochastische zin) naarmate het aantal klanten dat gelijktijdig mag worden bediend
toeneemt. Voor bedieningstijden met een toenemende falingsgraad geldt dat de
lengte van de wachtrij toeneemt naar mate er meer klanten gelijktijdig bediend mo-
gen worden. Daarnaast wordt aangetoond dat een dergelijk resultaat ook geldt voor
de zogenoemde Limited Foreground-Background (LFB) wachtrij. In deze wachtrij
wordt de klant bediend die de kleinste hoeveelheid bedieningstijd heeft gehad, echter
komt een gelimiteerd aantal klanten in aanmerking voor bediening. Als er vervol-
gens een klant vertrekt, wordt een klant uit de wachtruimte toegevoegd aan de poule
van klanten die in aanmerking komt om te worden bediend. Naast deze resultaten
wordt ook de asymptotische afnamesnelheid van de lengte van de wachtrij verde-
ling vergeleken voor modellen met en zonder restricties op het aantal klanten dat
gelijktijdig voor bediening in aanmerking komt. Vervolgens wordt bewezen dat de
afnamesnelheid van de lengte van de LPS wachtrij gelijk is aan die van de First
Come First Served (FCFS) wachtrij.

In Hoofdstuk B] wordt de optimale dynamische toewijzing van bedienden in
een LPS wachtrij met fase-type bedieningsduurverdelingen bestudeerd, waarbij de
gemiddelde verblijftijd van een willekeurige klant wordt geminimaliseerd. Op ba-
sis van het aantal klanten in elk van de fasen kan een aantal bedienden wor-
den toegewezen aan de klanten. Een nieuwe decompositie-aanpak is ontwikkeld
waarmee monotonie-eigenschappen van de relatieve waarde functie kunnen worden
afgeleid. Deze eigenschappen leiden vervolgens tot een expliciete karakterisering van
de optimale dynamische toewijzingsstrategie. Numerieke voorbeelden laten vervol-
gens zien dat de dynamische toewijzing in veel gevallen leidt tot een veel efficiéntere
benutting van de capaciteit in vergelijking met statische toewijzingsstrategieén.

In Hoofdstuk [6] wordt gekeken naar de optimale dynamische toewijzing van be-
dienden in een tandem van een willekeurig aantal gekoppelde wachtrijen, waarbij de
actieve bedienden een gezamenlijke onderliggende capaciteit delen volgens een PS
mechanisme. Hierbij hebben de bedieningsduren een Erlang- of exponentiéle verde-
ling en wordt de gemiddelde verblijftijd van een willekeurige klant geminimaliseerd.
Dit model is gemotiveerd vanuit het belang van het ontwikkelen van optimale toewi-
jzingsstrategieén voor applicatie servers. Voor dit model wordt de optimale dy-
namische toewijzingsstrategie afgeleid op basis van eigenschappen van de relatieve
waarde functie. De optimale strategie wijst bedienden toe aan klanten die een
kortere verwachte verblijftijd hebben dan de klanten reeds in bediening. Om de
praktische relevantie van de resultaten te evalueren, is de optimale toewijzingsstrate-
gie geimplementeerd in een Apache Web server. De experimentele resultaten laten
zien dat de optimale toewijzingsstrategie leidt tot een significante verbetering van
de prestatie van applicatie servers.
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