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ABSTRACT 

The design of a controller such that the closed-loop system will track reference 
signals or reject disturbance signals from a specified class is known as the 
"servomechanism problem" or the "regulator problem." We show here that the 
regulator problem can be looked at as an interpolation problem for a subspace-valued 
function that can be viewed as a multivariable version of the Nyquist curve. The result 
is applied to obtain a simple parametrization of all solutions. © Elsevier Science Inc., 
1997 

1. INTRODUCTION 

In a classical paper [13], Martin and Hermann introduced the idea of 
associating to a given observable and controllable linear system with m inputs 
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and p outputs a mapping from the extended complex plane into the 
Grassmannian manifold of m-dimensional subspaces of ( m + p )-dimensional 
complex space. The idea was applied by Brockett and Byrnes (4] to study 
feedback stabilization and root loci. More recently, it was recognized that 
subspace-valued functions off er an excellent framework to define a distance 
measure between linear systems and to study robustness issues (see for 
instance [15] and [17]). In this paper, we use subspace-valued functions to 
study the regulator problem (sometimes also known as the servo problem), 
which is one of the most widely studied problems in control theory. A 
particular instance is the rejection of constant disturbances under closed-loop 
stability, the study of which dates back to Maxwell [14]. Instead of attempting 
to list the many contributions since, we refer the reader to [18] and [3] for 
entries into the literature. In this paper, we show that the regulator problem 
can be viewed as an interpolation problem for a subspace-valued function 
associated to the controller. 

It turns out that in the study of the regulator problem it is necessary to 
extend the point of view of [13] in several ways. In the first place, since we 
will be interested in stability properties, it is natural to use the closed right 
half plane as a domain of definition for subspace-valued functions, rather 
than the extended complex plane as a whole; the same shift of focus also 
already occurred in for instance [15] and [17]. By taking the closed right half 
plane as the domain of definition, it becomes natural to consider systems that 
are stabilizable and detectable rather than controllable and observable. How
ever, in the regulator problem one is dealing with nonstabilizable systems. 
We shall still associate subspace-valued functions to such systems; the price 
we pay is that the resulting functions will have singularities, in the sense that 
at certain points the dimension of the associated subspace ''jumps up." 
Another new element is introduced by the interpolation conditions. \Ve want 
to allow higher-multiplicity conditions, so that somehow derivatives should be 
involved. We deal with these by a concept that we call the .. blowup." 

The main results of the paper may be summarized as follows. First we 
introduce subspace-valued functions associated to linear systems with the 
extensions to the Martin-Hermann framework as mentioned above. Then we 
give conditions for the regulator problem in terms of these subspace-valued 
functions. The conditions are interpolation conditions, in the sense that they 
partly specify the values of a subspace-valued function associated to the 
controller at a finite number of points in the complex plane corresponding to 
the characteristic frequencies of the exogenous signals specified in the 
regulator problem. For the case of simple multiplicities, this partial specifica
tion is of the form 

%'(A) n.£( A) C.% ( 1.1) 
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where ~(s) and A(s) are subspace-valued functions defined by the con
troller and by the problem data respectively, Yl' is a given subspace, and A is 
a characteristic frequency. The full version (including higher multiplicities) is 
given in Theorem 4.2. One important reason why one may want to write a 
given problem as an interpolation problem is to obtain a parametrization of 
all solutions, and we show that also in this case such a parametrization can be 
obtained (Theorem 5.5). In the companion paper [6], this parametrization is 
used to optimize robustness of closed-loop stability over the set of regulators. 

The paper is organized as follows. A formulation of the regulator problem 
as it will be considered here is given in Section 2, where we also define the 
associated subspace-valued functions and discuss the description of closed
loop stability in terms of these. In Section :3, we introduce the "blowup" and 
obtain its basic properties. After these preliminaries, it is not difficult to 
interpret the regulator problem as an interpolation problem, and this is done 
in Section 4. The parametrization of all solutions to the regulator problem is 
derived under an extra condition in Section 5. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

We shall freely use standard terminology from the linear systems litera
ture; for explanation, see any textbook on linear systems such as (18, 5]. 
Consider a finite-dimensional linear time-invariant system of the following 
form: 

x1(t) = A 11 x1(t) + A 12 x2(t) + B1u(t), 

X2(t) = A22X2(t), 

y(t) = C 1 x 1(t) + C2 x 2 (t). 

(2.1) 

(2.2) 

(2.3) 

The interpretation is as follows: x 1 denotes the state of the plant, whereas x 2 

is the state of an "exosystem" that generates signals which can be distur
bances or references. Typically the matrix A22 has its eigenvalues on the 
imaginary axis, allowing the reference/ disturbance signals to be steps, ra1~ps, 
sinusoids, etc. The variable y(t) should converge to zero, irrespective of the 
presence of the signals generated by the exosystem. This is to be achieved by 
a linear time-invariant compensator of the form 

i ( t) = Fz ( t) + Gy ( t) , 

u(t) = Hz(t) + Jy(t). 

(2.4) 

(2.5) 
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The closed-loop system takes the forrn 

(2.6) 

y(t) - [c, o c,1[ ?,](t), (2.7) 

where 

(2.8) 

The compensator is said to satisfy the internal stability requirement if the 
closed-loop system is stable when xit) = 0, that is, if all eigenvalues of the 
matrix 

are in the left half plane. It is said to satisfy the regulation requirement if 
y( t) tends to zero for all initial values, that is, if 

(2.9) 

where 2'+ ( Ae) denotes the unstable subspace of Ae. A compensator 
(2.4)-(2.5) is called a regulator if it satisfies both the internal stability 
requirement and the regulation requirement (Maxwell's term was governor 
[14]). The regulator problem can now be formulated simply as the problem of 
finding a regulator for the given system (2.1)-(2.3). A number of variations 
and extensions of this problem have also been studied in the literature; the 
formulation above is referred to as the "autonomous regulator problem" in [3, 
p. 317]. 

The following will be standing assumptions throughout this paper. Recall 
that a matrix pair ( A, B) ( A E IR" x ", B E IR" x "') is said to be stabilizable if 
there exists an F E IR m x" such that A + BF has all its eigenvalues in the 
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open left half plane, or equivalently if the matrix [ sl - A B] has full row rank 
for all S-~thRe s ~ 0,andthatamatrixpair(C, A)(C E !Rpxn, A E !Rnxn) 
is said to be detectable if (AT, CT) is stabilizab!e (see for instance [5, p. 259]). 

ASSUMPTIONS. The system (2.1)-(2.3) satisfies: 

(Al) the pair (A 11 , B 1) is stabilizable; 
(A2) the pair (C, A) given by 

A= [ 
A11 
0 

is detectable; 
(A3) all eigenvalues of A 22 are in the closed right half plane. 

(2.10) 

Assumption (Al) is necessary for the plant to be stabilizable by a feedback 
compensator, and so this is a natural assumption to make. Detectability of the 
pair (C 1 , A11 ) is necessary as well for closed-loop stability to be achieved by a 
compensator of the form (2.4)-(2.5); assumption (A2) requires a bit more, 
however. It can be argued that (A2) may be assumed \vithout essential loss of 
generality in the regulator problem (cf. [18, §8.l]). The final assumption (A3) 
is standard; it is not interesting to consider external signals that decay to zero 
(or alternatively, they may be considered as a noncontrollable but stabilizable 
part of the plant). Concerning the compensator (2.4)-(2.5), we shall only 
consider triples ( F, G, H ) that are controllable and observable, since there is 
nothing to be gained by not doing so. 

The following notational conventions will be used. The input and output 
spaces of (2.1)-(2.3) will be denoted by 2! and :JI, with dimensions m and p 
respectively. The closed right half plane will be denoted by 

C + ~f { s E C I Re s > 0} U { oo} . (2.11) 

Finally, RH,, denotes the ring of rational functions that are analytic on IC+, 
i.e., proper stable rational functions. 

We now introduce the subspace-valued functions associated to plant and 
controller. With the plant given by the triple (Au, B 1, C 1) we associated the 
function 

([ ] [
sl - A11 

9'(s) = ~ 3xs.t. cl 

9'(oo)=im[~]· 

0 
-I 

(2.12) 
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It follows from assumptions (Al) and (A2) that dim 9'(s) is equal tom for all 
s with Re s ;;;. 0. With the full system (2.1)-(2.3) we associate 

0 

0 
-I 

(2.13) 

The system (2.1)-(2.3) is detectable but not stabilizable, and so, although dim 
L(s) = m for most points in c+, at the eigenvalues A of A 22 we have dim 
L(A) > m. We finally associate to the controller the subspace-valued function 

-G 
I 

(2.14) 

which has constant dimension p on the entire extended complex plane. Note 
that all functions take values in the set of subspaces of the produet space 
'Y X W, which is an (m + p)-dimensional space. 

We used state-space terms above; other popular representations include, 
of course, matrix fraction descriptions and the transfer matrix. In fact, Martin 
and Hermann used polynomial coprirne factorizations iu their original paper 
[13]. In our present context, factorizations over RH"' are more appropriate. 
The following lemma gives the connections between various representations 
(see also [8, Lemma 2.4], where an alternative proof is given). 

LEMMA 2.1. Consider a set of state-space parameters (A, B, C, D) and 
assume that (A, B) is stabilizahle and that (C, A) is detectable. Let 
N(s )D- 1(s) = fr 1(s)N(s) be reS'pectively a right and a left coprime factor
ization over RH 00 of the transfer nwtrix G(s) = C(sl - A)- 1 B + D. Under 
these conditions, one has 

[ N{s)l [ -im D( 8 ) = ker D( s) -N( s)] [~ ~]ker[sI - A -B] (2.15) 
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for all s E C with Re s ;;.: 0, and 

[ N(oo) l [ -im D(oo) = ker D(oo) (2.16) 

Proof. All functions appearing in (2.15) are continuous as mappings 
from {s E C I Re s ;;.: O} to the Grassmannian manifold of m-dimensional 
subspaces of 'Y X W; the extension indicated in (2.16) even makes all 
functions continuous as mappings from the extended right half plane (includ
ing the point at infinity) to the Grassmannian. For the state-space representa
tion, this follows from the stabilizability and detectability assumptions (see 
[8]); concerning the image and kernel representations, see [13]. For all points 
s in the right half plane that are not eigenvalues of A, it is easily seen that all 
entries in (2.15) are just alternative ways of writing ker[I -G(s)], so that 
equality holds in these points. But since A has only finitely many eigenvalues, 
equality must thep by continuity hold everywhere in C +. • 

If P(s) and P(s) are any matrix functions of full generic column and row 
rank respectively, and 

.9'(s) = im P(s) = kerP(s), (2.17) 

then we shall call P(s) an image representation and P(s) a kernel represen
tation of 9'(s). By way of convention, we use the tilde here and below to 
indicate kernel representations. As is seen from the above, kernel representa
tions can be seen as left factorizations and image representations as right 
factorizations; coprimeness corresponds to the representations having full 
rank everywhere on their domains of definition. By putting the subspace
valued functions at center stage rather than their representations, we empha
size a geometric viewpoint. 

REMARK 2.2. Note that the minimality assumptions in the lemma are 
essential; it is immediately clear from dimension considerations that a sub
space-valued function associated to a nonstabilizable system, such as L(s) as 
defined in (2.13), cannot have an image representation. Below we do con
struct kernel representations for L(s), howev~r, adding some e_xtra require
ments allowing to distinguis~ for instanc_e M/s) = s from M2(s) = s2 if 
necessary, even though ker M1(s) = ker M2(s) for alls. 

REMARK 2.3. Consider a subspace-valued function 9'(s) = im P(s) on 
the closed right half plane, where P(s) is an RH., matrix having full rank 
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everywhere on IC+. It can readily be seen (cf. [9]) that it is actually sufficient 

to give the values of 9'(s) on the extended imaginary axis, by the uniqueness 

of analytic continuation into the right half plane. The curve 9'(i w) traced out 

as w traverses the real line may reasonably be called the Nyquist curve of 

the system that gives rise to 9'(s ). Indeed, the usual Nyquist curve for 

single-input, single-output systems is obtained via the standard identification 

of the Grassmannian manifold G1(1C 2 ) with the extended complex plane by 
the mapping 

Since we start in this paper from a state-space context, we insert a lemma 

about the characterization of closed-loop stability in terms of the subspace
valued functions associated to the plant and the compensator; compare [17] 

for a polynomial version. We first prove the lemma below, using the well
known fact (see for instance [11, p. 650]) that a square matrix 

in which the block A.,9 is invertible, is invertible itself if and only if the Schur 
complement A 11 - A:2 A;21A 21 is invertible. . 

LEMMA 2.4. The closed-loop connection of a linear Sljstem 

x( t) = Ax( t) + Bu( t), (2.18) 

y(t) = Cx(t) (2.19) 

with a compensator of the form (2.4)-(2.5) is stable if and only if for each s in 
C with Re s ~ 0 the two subspaces 

k [ sl - A 
er -C 

0 0 
0 I (2.20) 
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and 

are complementary. 

sI - F 
-H 

-G 
-] 

Proof. The closed-loop system matrix is 

A = [A+ BJC BFH] 
' GC 

=[~ 0] + [ 0 
F -G 

319 

~] (2.21) 

so that sI Ae is invertible for all s in the closed right half plane if and only 
if the matrix 

0 
sI - F 

0 
-H 

0 
-G 
I 
-J 

-Bi 0 
0 
I 

has the same property. This in turn is equivalent to the condition in the 
statement of the lemma. II 

The subspaces 9'(s) defined analogously to (2.12) and W(s) defined as in 
(2.14) are simply the projections of the two subspaces (2.20) and (2.21) above 
on the product of the input space 2lt' and the output space ']?. The characteri
zation of closed-loop stability in terms of complementarity is now proved as 
follows. 

LEMMA 2.5. Let a plant (2.18)-(2.19) and a compensator (2.4)-(2.5) be 
given, and suppose that both are stabilizable and detectable. Let 9'(s) and 
W(s) denote the associated subspace-valued functions. Then the closed-loop 
system is stable if and only if the subspaces 9'( s) and W( s) are complemen
tary for all s in C with Re s ~ 0. 

Proof. It follows from Lemma 2.3 in [8] that dim 9'(s) = dim Z! and 
dim ~(s) = dim 'Y for all s in the closed right half plane. To prove 
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complementarity of the two subspaces, it therefore suffices to show that they 
intersect only in zero. Suppose to the contrary that, for some A with Re 

A ~ 0, the intersection 91'( A.) n ~(A) contains a nonzero vector [ ~ ] . By 

definition, this means that there exists an x such that 

[AI~ A 0 ~Bl[~] ~ o (2.22) -1 

and a z such that 

[AI; F -G ~I l[~ l ~ O. (2.23) 
I 

But then obviously 

m E ~,[AI~A 0 0 -B] [O AI - F -G ~ ], 0 I 0 nker 0 -H -] 

(2.24) 

which shows, by the previous lemma, that the closed-loop system is not 
stable. The converse part of the proof is obtained by reversing this reasoning . 

• 
REMARK 2.6. If the plant is not strictly proper and is given by state-space 

parameters (A, B,C, D), then the description of .9'(s) is modified in the 
obvious way, and 91'( oo) is given by ker[ - I D ]. The statement of the above 
lemma is then changed to: the closed-loop system is stable and well-posed if 
and only if the subspaces .9'(s) and ~(s) are complementary for all s in the 
extended closed right half plane (cf. [17]). 

3. THE BLOWUP 

In order to handle higher-order interpolation conditions, it is convenient 
to introduce the concept of the blowup of a subspace-valued function. We 
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begin by defining blowups of matrix-valued functions. Let an analytic func
tion M(s) be given that is defined on some domain 0 of the complex plane 
and that takes values in the set of linear mappings from a linear space ff' to a 
linear space 'JI'. If x(s) is an analytic vector-valued function taking values in 
ff', then the first r coefficients in the Taylor series development of M(s)x(s) 
around any point A E n are determined by the first r coefficients in the 
Taylor series development of x(s) around A. The dependence is of course 
linear, and we denote the associated mapping by M[rl(A), which is a linear 
mapping from the r-fold product T to the r-fold product '.Jt'r. By repeating 
this construction at every A E .0. we obtain a new operator-valued function 
M[rl(s), which we shall call the r-fold blowup of M(s). An explicit expression 
for M['l(s) in terms of M(s) is given by 

M{s) 

M'(s) 

1 
---M<r-1>( s) 
( r - 1) ! 

0 

M(s) 0 

0 

0 

M'(s) M(s) 

(3.1) 

This clearly shows that M[rl(s) will again be an analytic operator-valued 
function. We shall sometimes use the notation [M(s)]lrl instead of M[rl(s), 
in particular when M(s) is a partitioned matrix, and in such cases even write 
[ M(s)]l'l(,\) instead of Mlrl( A). 

Now we come to defining blown-up versions of the various subspace
valued functions that were introduced above. For the functions .9"(s) and 
~(s) defined in (2.12) and (2.14) respectively, these can be defined via 
either image or kernel representations as follows: 

gifrl(s) = kerf'Crl(s) = im plrl(s), (3.2) 

and similarly for W(s ). It follows from Lemmas 3.3 and 3.4 below that this 
definition is unambiguous. The subspace-valued function L(s) defined in 
(2.13) requires more care because it has singularities. Note that we may write 

[sl -A 
L(s) =II ker C 

0 
-1 

-B] 0 , (3.3) 
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where II denotes the natural projection from :ff' X Y X 'f/ to Y X '!/. We 
now define ,.1lrl(s) by 

0 
-1 

-B]lrl 
0 ' 

[ 
0 ][r] 

,.1lrl(oo) = im I . 

{3.4) 

A matrix function M(s) will be called a kernel representation of the sequence 
of subspace-valued functions ,.1lrl(s) if ker Af"lrl(s) =L[rl(s) for all s in the 
considered domain. It has to be shown that such representations do indeed 
exist; this will be done in Lemma 3.9 below. 

We start the description of the properties of blowups with a simple but 
crucial product formula. 

LEMMA 3.1. For any matrix functions T(s) E IRpxm(s) and S(s) E 

IRmx 1(s) and any r = 1, 2, ... , one has 

{3.5) 

Proof. This is immediate from the definition, since T(s)(S(s)x(s)) = 
(TS)(s)x(s). One may also give a more computational proof based on the 
expression (3.1), using the Leibniz rule for derivatives of products: 

~(TS)(kl(s) = ~ E (~)ru>(s)s<k-J>(s) 
k. k.j=O) 

k 1 1 
= E~r<J>(s) . 1s(k-J>(s). (3.6) 

J=oJ· (k-;). 

• 
The blowup does not commute with matrix partitioning; indeed, if A and 

B are linear mappings from :ff' to .% and from Y to .% respectively, then 
[A B]lrl is a mapping from (TX yy to .zr, but [ AlrJ Blrl] is a mapping 
from Tr X Y' to .zr. To get a proper correspondence we need an operator 
from :ll'r x yr to (:Jl'x yy that we shall call the mingling operator. It is 
defined by 
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We shall use the mingling operator between various spaces and even use its 
obvious generalization to products of more than two factors, employing the 
same symbol Mi every time; this rather severe abuse of notation should cause 
no confusion. The following lemma is given without proof. 

LEMMA 3.2. For matrix functions A(s) and B(s) with the same domain 
space, we have 

[ A{s)l[r] = Mi[A[rl(s)l· 
B{s) B[rl(s) 

(3.8) 

For matrix functions A(s) and B(s) with the same codomain space, we have 

LEMMA 3.3. Consider matrix functions T(s) and f(s) that are analytic 
on a neigborhood of a given point,\ E C U {oo}. Let r be any positive integer. 
If T(.A) has full column rank, then the same holds for y[rl(.A), and if T(.A) 
has full row rank, then the same is true for f!rl(.A). If moreover ker 
f(s) = im T(s) for all s in a neighborhood of .A, then ker f[rl(.A) = 
im rlrl(,\) for all r E N. 

Proof. The first claim is immediate from the matrix form of T[rl(s) and 
f[rl(s) [se~ (3.1)]. If now ker f(s~ = im T(s) for all s in a neighborhood of 
.A, then T(s)7_:(s) = 0 so that y[rl(s)T[rl(s) = 0 which implies that im 
1.:[rl(.A) c ker ylrl(A). By the full-rank assu_mptions and because dim ker 
T(A) = dim im T(A), we also have dim ker y[rl(,\) = dim im y[rl(A), so that 
actually equality must hold. • 

LEMMA 3.4. Let T1(s) and T2(s) be RH"' matrices. If im T1(s) = 

im T2(s) for s E c+ and both T1(s) and T2(s) have full column rank 
everywhere on c+, then im TJ'l(s) = im TJrl(s) for alls E c+. An analo
gous statement is true for kernel representations. 

Proof. Under the stated conditions, there exists an RH 00-unimodular 
matrix U(s) such that T1(s) = T2(s)U(s) for all s E c+ (this is essentially 
the standard uniqueness theorem for right-coprime factorizations). From this 
we get Tf'l(s) = TJrl(s)Ulrl(s), where U[rl(s) is nonsingular for all s E c+ 
by the previous lemma, and the claim follows. • 
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It is well lmown that interpolation conditions for matrix-valued functions 
can often be expressed as divisibility conditions (cf. for instance (2, Chapter 
10]). The connection between blown-up matrix functions and divisibility is 
brought out by the following proposition. 

PROPOSITION 3.5. Let Q(s) E RH:'xp and H(s) E RH!xP, and sup
pose that H(s) is nonsingular. Under these conditions, Q(s) is right divisible 
by H(s), in the sense that the matrix function Q(s)H- 1(s) belongs to 
RH:xr, if and only if 

(3.10) 

for all s E c+ and all r E ~. The conclusion in fact already holds if the 
inclusion (3.10) is satisfied at each zero ,\ of H(s) in c+, and with r equal to 
the multiplicity of that zero. 

For the proof it is convenient to introduce the ring A(,\) of functions 
analytic in a neighborhood of ,\ E C U {oo}, and the A(,\)-module Zr(H; ,\) 
defined by 

where sr should be read instead of(s - ,\)-r if ,\ = oo; the same convention 
will be used below. We now first prove the following lemma. 

LEMMA 3.6. In the situation of the above proposition, Q(s) is right
divisible by H ( s) if and only if 

(3.12) 

Proof. It is clear that the condition is necessary. Assume now that (3.12) 
holds. We shall show that Q(s)H- 1(s)f(s) belongs to RH:' for every 
f E RH£. Take such an f, and suppose to the contrary that Q(s)H- 1(s)f(s) 
would have a pole at some point ,\ E C +. We can write H- 1( s) f( s) = 
(s - A)-rg(s) for some r E ~ and some g E RH!. Then H(sXs -
A)-rg(s) = f(s) so that g belongs to Zr(H; A) and hence to Zr(Q; A) by 
(3.12). But then Q(s)H- 1(s)j(s) = Q(sXs - A)-r g(s) cannot have a pole at 
A, and we have a contradiction. • 
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The proof shows that it is sufficient to consider only the zeros of H(s), 

and to take r equal to the multiplicity of the zero. The proof of the 
proposition is now easy. 

Proof (of Proposition 3.5) Given a matrix function M(s), direct calcula
tion shows that 

Z,( M; A) - \f -1~0fi(' - A)1 EA( A) Mi'l(A) col(f0,f,, ... ,f,. ,) -o). 
(3.13) 

So the claim in the proposition is immediate from the above lemma. 

We note the following corollaries of the proposition. 

COROLLARY 3.7. Let Q1(s) E RH!'XP(s) and Qz(s) E RH~XP(s), and 

suppose that Q2(s) has full generic row rank. Under these conditions, there 

exists a matrix function F(s) E RH!x 1(s) such that Q 1(s) = F(s)Q2(s) if 
and only if 

(3.14) 

for all s E C + and r E N. 

Proof. The necessity of the condition is immediate from Lemma 3.1. To 

show the sufficiency, write (after a column permutation, if necessary) Q2(s) = 

[Q21(s) Q22(s)] where Q 21(s) is nonsingular, and partition Q 1(s) corre

spondingly as [Qu(s) Q 12(s)]. From (3.14) it follows that ker Q\~l(s) ::J 

ker Q~~l(s). By the proposition, this implies that there exists a matrix function 
F(s) E RH;xi such that Q11(s) = F(s)Q12(s); it remains to prove that also 

Q12(s) = F(s)Q22(s). Take a rational vector x 2(s) of length p - l, and 

define x1(s) = -Q2/(s)Q22(s)x 2(s). Applying (3.14) with r = 1, we then 
have Q 12(s)x 2(s) = -Q11(s)x 1(s) = -F(s)Q21(s)x 1(s) = F(s)Q22(s)x2(s). 

Because x2(s) was arbitrary, the desired conclusion follows. Ill 

COROLLARY 3.8. Let Q1(s) E RH!'XP(s) and Qz(s) E RH~XP(s), and 

suppose that both matrix functions have full generic row rank. Under these 
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conditions, there exists an RH.,-unimodular matrix function U(s) such that 
Q1(s) = U(s)Q2(s) if and only if m = l and 

ker Q~'l( s) = kerQrl( s) (3.15) 

for alls E c+ and r E N. 

Proof. The necessity follows from Lemma 3.1 and Lemma 3.3. Assume 
now that (3.15) holds. From the previous corollary it follows that there exist 
RH"'-matrix functions F1(s) and F2(s) such that Q 1(s) = F2(s)Q2(s) and 
Q2(s) = F1(s)Q1(s). We get Q2(s) = F1(s)F2(s)Q2(s), and since Q2(s) is 
surjective as a mapping from c P(s) to cm(s), this implies that F1(s)F2(s) = l. 
In the same way we have F2(s)F1(s) = I and it follows that both F1(s) and 
F2(s) are unimodular. • 

LEMMA 3.9. Consider a set of state-space parameters (2', 'JI,~; 
A, B, C, D) and suppose that the pair (C, A) is detectable. Let II denote the 
natural projection from 2'X Y X Z!' to Y X Z!'. For each r = 1, 2, ... , 
define a subspace-valued function LI rl(s) by 

Llrl( s) = IIlrJ ker[ sl ~ A 0 
-I 

-B]lrl 
D , [ D]lrl 

Llrl(ao) = im I . 

(3.16) 

Then we can find an RH"' function M(s) such that 

Vsec+.reN. (3.17) 

Moreover, if M1(s) and M2(s) are both matrix functions of full generic row 
rank satisfying (3.17), then there exists an RH,.,-1mi11wdular matrix U(s) 

such that M2(s) = U(s)M1(s). 

Proof. Write C(sl - A)- 1 = fr 1(s)N(s) where D(s) and N(s) are 
Ieft-coprime matrices over RH 00 • By the coprimeness and the detectability 
assumption, we have 

[sl-A] [ -im C = ker - N ( s) i>( s)] (3.18) 
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for all s E C with Res ~ 0. Now define 

M(s) = [-N(s) D(s)][ ~I ~] = [-I5(s) -N(s)B + D(s)D]. 

(3.19) 

Note that we may write 

([ 0 B ] lrl)-1 i [·s·[ - AJ[rl 
_L[r](s) = ···I 

- D m C · ( 3.20) 

whereas it follows from C3.18) by Lemma 3.4 that 

[ sI-A][r] -
im' C =ker[-N(s) - ] [r] 

D( s) . ( 3.21) 

Therefore, we have 

]
[r ])- I 

~ ker[-N(s) 

= ker([-N(s) I5(s)f1[ ~r ~f1) 

=ker([-N(s) D(s)J[~r ~Jt1 =kerAJ!rl(s) (3.22) 

for all s E C with Re s ;;;., 0. Concerning the point at infinity. we have 

[ 
- [r] [l]lrl 

ker - N ( oo) D( oo)] = im 0 . (3.23) 

This equaliry follows by taking limits in both sides of (3.21); note that the 

matrix [-N(s) D(s)Jlr] has full row rank for alls E c+ bv Lemma 3.3. so 

that the subspace-valued function ker( -N(s) I5Cs)J1r1 is c~ntinuous on c+. 
It is now immediate from the definition (3.19) that the equality (3.17) also 

holds at s = oo. The final claim about the uniqueness of solutions is immedi

ate from (3.17) by Corollary 3.8. II 
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4. INTERPOLATION CONDITIONS FOR THE REGULATOR 
PROBLEM 

In this section we shall show how the regulator problem can be viewed as 
an interpolation problem. An important role is played by the relation between 
the subspace-valued functions L(s) and .9J(s) that were introduced in (2.13) 
and (2.12). Note that L(,\) =.91(,\) for all ,\that are not eigenvalues of A22 

(i.e. poles of the exosystem), and that in general we have .9J(s) cL(s). 
Unlike .9'(s), the function L(s) has singularities, in the sense that it is not of 
constant dimension on the complex plane. In particular it can therefore not 
be considered as a mapping from the complex plane to any Grassmannian. 
The way in which L(s) plays a role in describing the regulation property is 
most easily seen in the case in which the eigenvalues of A22 are simple (i.e. 
when A22 is diagonalizable). We shall treat this case first in a proposition, 
and then make the necessary adjustments to handle the general case. 

PROPOSITION 4.1. In the regulator problem as defined in Section 2, 
assume that A 22 is diagonalizable. A controller is then a solution to the 
regulator problem with internal stability if and only if the associated 
subspace-valued function ~( s) is such that the interpolation condition 

~(A) nL( A) c {O} X ~ ( 4.1) 

holds for all eigenvalues ,\ of A 22 • and the complc11u•11tarity co11ditio11 

( 4.2) 

hold~ for all ,\ E C +. 

Proof. By Lemma 2.5, the complementarity condition is equivalent to 
internal stability of the combination of plant and compensator. If internal 
stability holds, the unstable eigenvalues of the closed-loop system matrix A., 
must coincide with the eigenvalues of A22 • The regulation property will be 
satisfied if and only if the characteristic modes corresponding to these 
eigenvalues have zero output values associated to them. Because of the 
assumption that A22 has only simple eigenvalues, it suffices to consider 
solutions of the form x(t) = x0 eAI, z(t) = z 0 eAt, y(t) = y 0 e"1, u(t) = u 0 e>..t. 
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Substituting the assumed solutions in (2.1)-(2.5) and equating the coeffi
cients of e >..t results in the equations 

[AI~ A 0 -oBl[~:]- O, -1 
( 4.3) 

[U;F -G ~1J[~:]-o, J 
( 4.4) 

where A and C are as in (2.10) and 

So the regulation property holds if and only if the equations (4.3)-(4.4) only 
allow solutions with Yo = 0. But this in turn is equivalent to (4.1). • 

We now proceed to the general (higher-multiplicity) version of the above 
proposition. For ease of notation, we introduce 

( 4.5) 

and denote the natural projection from ';]/ X ~ to ';]/ by K = [I O], so that 

% = ker K = im [ ~]. ( 4.6) 

Regarding K as a constant matrix-valued funct!on, we can also consider z([rJ 

which is sim_ply a block-diagonal matrix with K on the diagonal entries, and 
~rJ = ker K[rJ. By the multiplicity of an eigenvalue of a matrix we mean the 
length of the longest Jordan chain associated with that eigenvalue. 

THEOREM 4.2. A controller of the form (2.4)-(2.5) is a solution to the 
regulator problem with internal stability as formulated in section 2 if and 
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only if the associated subspace-valued function ~(s) is such that the higher
order interpolation condition 

( 4.7) 

holds for all eigenvalues ,\ of A 22 of multiplicity r, and the complementarity 
condition (4.2) holds for all ,\ E IC+. 

Proof. The analysis is the same as in the proposition above, except that 
we now have to take into account (for an eigenvalue A of A 22 of multiplicity 
r) solutions of the form 

x(t) = (x + x t + ··· +x tr-l)e>..t 0 I r-1 

and similarly for z(t ), y(t ), and u(t ). Substituting these solutions in 
(2.1)-(2.5) and equating the coefficients of tkeAt for k = 0, 1, ... , r - 1 
results in the following equations, where x r = col( x r- 1, ••• , x 0 ) and y r and 
u r are defined hkewise, and where we use the mingling operator of (3. 7): 

[ sl ~A 0 r n -OB (,\)Mi yr = 0, 
-1 

ll r 

( 4.8) 

[sl ~ F r.r n -G ~I] (,\)Mi y' =O. 
J u' 

( 4.9) 

The regulation property holds if the above equations imply that y0 = ··· = 
Yr- 1 = 0, that is, if (4.7) holds. Conversely, if (4.7) is not satisfied, then it 
follows as in the proof of Proposition 4.1 that the given controller does not 
solve the regulator problem. • 

The above formulation of the regulator problem shows that a necessary 
condition for the problem to be solvable is that at each exosystem pole ,\, 
there should exist a subspace W complementary to .9( ,\), which moreover 
should be such that W 11.L c.%. This observation can be used to derive 
"local necessary conditions" for the solvability of the regulator problem. 
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5. PARAMETRIZATION OF ALL REGULATORS 

As an application of the interpolation conditions found in the previous 
section, we shall here consider the parametrization of regulators. We shall do 
this under the following assumption, additional to the standing assumptions 
(Al)-(A3): 

(A4) For every eigenvalue A of A 22 , the matrix 

has full column rank. 

This assumption implies that the number of outputs is at least equal to the 
number of inputs, whereas it is well lmown [18, Chapter 8] that the regulator 
problem can only be well posed if the number of outputs is at most equal to 
the number of inputs. One may therefore say that (A4) essentially limits one 
to the case in which the number of control inputs is equal to the number of 
regulated outputs. The assumption requires that the plant zeros do not 
coincide with the exosystem poles, which is a well-known condition in 
connection with the regulator problem [18, Theorem 8.3; 3, Corollary 5.2-2]. 
A geometric interpretation can be given as follows. 

LEMMA 5.1. Consider the system (2.1)-(2.3), with associated subs-pace
valued function .9'(s) and under the standing assumptions (Al)-( A3). 
Assumption ( A4) then holds if and only if 

.9'(A) n% = {O} (5.1) 

for each eigenvalue A of A 22 • 

Proof. Take an eigenvalue A of A22 . First suppose that (5.1) holds, and 
let x and u be such that 

(5.2) 
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We then obviously have 

which implies that 
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0 

-I 

[~] E9'(t\). 

(5.3) 

By (5.1) it then follows that u = 0, and by the detectability assumption (A2) 
we then also have x = 0 from (5.3). The converse is proved by reversing this 
reasoning. 11111 

The parametrization of regulators will be given through an image repre

s~ntation for 'I&'( s ). First, let f ( s) be a kernel representation for 9'~ s ). Since 
P(s) has full row rank everywhere on c+, we can find a matrix P1(s) such 

that [ ~ ( s) ] is RH 00-unimodular. Write 
P1( s) 

P(s)]; ( 5.4) 

then P(s) is an imagc> r(•presentation of <9'(s ). A matrix C:(s) i~ an image 
representation for a stabilizing compensator '6'(s) if and rn~y if P(s)C(s) is 
lUl-.c-unimodular; indeed, this is equivalent to /jD( s) = ker P(s) and W(s) = 

im C(s) being complementary for all s E C +. Since an image representation 
is only determined up to right multiplication by_ uni modular matrices, we may 
without loss of generality even require that P(s)C(s) =I. Let C0(s) be a 
Earticular solution to this equation, and let C(s) be any solution; then 
P(s){C(s) - C0(s)} = 0, so 

[P(s)l , , P(s)] _ {C(s) - C0 (s)} 
Pi( s) 

(5.5) 
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which shows that C(s) is of the form 

C{s) = C0{s) - P{s)Q(s) (5.6) 

for some RH 00 matrix Q(s). Conversely we see that any matrix of this 
form satisfies the equation P(s)C(s) = I. Here we have, of course, the 
Kucera-Youla parametrization of all stabilizing compensators [12, 19]. We 
now want to refine this parametrization in order to find all stabilizing 
compensators that solve the regulation problem. For this we need the 
following lemma. 

LEMMA 5.2. Let Y be a vector space, and let ~, .9, and ./t be 
subspaces of Y such that .9 EB l&' = Y and .9 c./t. Denote the projection 
onto ~along .9 by IT;'. We then have 

(5.7) 

Proof. If w E ~ n./t, then w = IT:'w E Il;'./t. Conversely, suppose 
that w E rr;./t. Then certainly w E ~. and also there is an x E./t such that 
w = rr;x. Because (I - rr:;)x E.9 c./t, we have w = x - (I - rr;)x E 

./t. • 

In view of the lemma, the regulation requirement (4.7) may be written in 
the form 

(5.8) 

where n;i~i denotes the projection along glrJ onto ~[rJ. If C(s) is chosen 
such that P(s)C(s) = I, then 

(5.9) 

and so we can write Equation (5.8) as 

- [r) - -[CP] kerMlrlckerK(rJ. (5.10) 

A_t this poi~t we need a more precise description of the relation between 
M(s) and P(s). Such a description can be given on the basis of the lemma 
below. 

--
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LEMMA .5.3. Suppose that the matrix function Q(s) E RH~k+m)x(l+m) is 
of the form 

(.5.11) 

and has full column rank for all s E C +, so that in particular the matrix 
Q11(s) has full column rank for all s E c+. Let P(s) = [P1(s) P2(s)] E 

RH~k-l)x(k+m) and Pt 1(s) E RH~k l)xk be kernel representations for the 
subspace-valued functions given by im Q( s) and im Q ll ( s) respectively. 
Under these conditions, there exists a square and nonsingular matrix function 
H(s) E RH~k-l)x(k-I) such that 

(.5.12) 

Moreover, the nontrivial elementary divisors of H(s) are the same as those of 
Q22(s). 

Proof. Because of the full-column-rank assumption on Q(s), there exists 
a unimodular matrix U(s) of size k + m such that 

(.5.1:3) 

Note that, in this partitioning, U21 (s) has size (k - /) X k. Because the matrix 
[P1(s) P2(s)] is determined only up to lefr multiplication by an RH 00 -

unimodular matrix, we may for the purposes of the proof set 

(.5.14) 

Now, let Q0(s) be such that [Q0(s) Q 11(s)] is unimodular. Then there exists 
a unimodular matrix V(s) such that 

() ] 
h-1 ' 

(.5.1.5) 
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and we may set 

(5.16) 

Define 

(.5.17) 

Because U2/s)Q 11(s) = 0 by (5.13), we then have 

(5.18) 

Finally note that 

The nontrivial elementary divisors of the left-hand side are equal to those of 
Q 22 (s), since [Q0(s) Q 11(s)] is unimodular, whereas on the right-hand side 
they are equal to those of U21(s)QoCs) = H(s). 11111 

In the context of the regulation problem, this leads to the following. 

LEMMA 5.4. Let P(s) be a kernel representation of the subspace-valued 
function Y'(s) defined in (2.12), and let M(s) be a kernel representation of 
the sequence of subspace-valued fimctions .erlrl(s) defined in (3.4). Then 
there exists a square and nonsingular RH x-matrix fimction H(s) such that 

M(s) = H(s)P(s). (5.20) 

Moreover, the nontrivial elementary divisors of H(s) are the sarne as those of 
sl - A22 • 
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Proof. A kernel representation for the sequence .A"[rl(s) is constructed 
as follows (cf. the proof of L~mma ~.9). By the _9etectability assumption (A2), 
we can find RH"' matrices N1(s), N2(s), and D(s) such that 

-A12 l -c 2 

sl - A 22 

(5.21) 

We then set 

[ 1[ 0 -0811· = -N1(s) D(s) I (5.22) 

qn the oth~r hand, a kernel representation P(s) is constructed by finding 
N0(s) and D 0(s) such that 

\Is E IC 1 

and setting 

[ ][ O -()B 1 ]. P(s) = -N0 (s) 1\(s) I (5.24) 

It follows from Lemma 5.3 that there exists an !UL" matlix Jl(s) with the 
properties as stated in the lemma such that 

(5.25) 

From this together witl: (5.22) an~ (5.24), the claim in the lemma follows for 
the matrix functions M(s) and P(s) constrncted above. Lemma 3.9 shows 
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that the same conclusion must hold for any representations M(s) and P(s) 
that satisfy the specified conditions. • 

Using this lemma, we can rewrite (5.10) as 

- [ r] [ - -1 [ r l -[ CP] ker HP C ker K[rJ. (5.26) 

Because P(s) has full row rank everywhere on c+, the same holds for p[rl(s) 
(Lemma 3.4) and so (5.26) is equivalent to 

c[r] ker J{lr] c ker j([r] (5.27) 

which is the same as 

- [r] 
(KC} I kerJi!rJ = 0. (5.28) 

Because the matrix function H(s) is nonsingular, the same holds for fi[rl(s), 
and so the subspace-valued function ker Hlrl(s) takes the value {O} almost 
everywhere on C +. Consequently, the inelusion (5.27) ~s trivial almost every
where. The only interesting points are th<JS(' at which H(s} has a zero, which 
by the lemma above are exactly the exosystem _poles. The lemma also 
guarantees that the multiplicities of the zeros of H(s) are the same as the 
multiplicities of the exosystem poles, so that we may reformulate the condi
tion (5.28) as follows: 

- [r] 
(KC) (A) I kerlil'l(A) = 0 for all A in CT ( A22 ) of multiplicity r. ( 5 .29) 

Now, assume that the regulator problem V.':ith internal stability is solvable, 
and let co<s) be an image representation of the subspace-valued function 
associated to a particular solution. We know from the Kucera-Youla 
parametrization that any controller achieving internal stability can be repre
sented by C(s) = Co{s) - P(s)Q(s) where Q(s) is an arbitrary RH., matrix 
of the appropriate size. It is clear from (5.29) that such a controller will also 
be a solution to the regulator problem if and only if 

- [,.] 
( KPQ) (A) I kerHl'l(A) = 0 for all A in CT ( A 22 ) of multiplicity r. 

(5.30) 
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If we assume now that assumption (A4) holds, so that KP(A) is injective (cf. 
Lemma 5.1), then the same holds for (KP)l"l(A), and the condition (5.30) 
simplifies to 

for all A in er ( A 22 ) of multiplicity r. ( 5 .31) 

But then we also have 

Vs E c+' (5.32) 

since the inclusion is trivial for those s that are not eigenvalues of A 22 • By 
Lemma 3.5, (5.32) implies that 

Q(s) = 'l'(s)H(s) (5.33) 

for some RH 00 mat~ 'l'(s). Conversely, it is clear that any matrix of the form 
C0(s) - P(s)'l'(s)H(s) provides a solution to the regulator problem. There
fore, we have proved the main result of this section, which gives a 
parametrization of all controllers of the form (2.4)-(2.5) that achieve regula
tion with internal stability. 

THEOREM 5.5. Consider the system (2.1 )-(2.3) under asswnptions 
(Al)-(A4). Let P(s) and P(s) denote image and kernel represrntatiom 
respectively for the subspace-valued fimction ;,f"(s) associated to the plant as 
defined by (2.12). A.sswne that the regulator prohle111 icith internal stability is 
solvable, and let C0(s) he an image n'presentation (:/the fimction '#i'(s) 
associated as i11 (2.14) to a particular solution, 1w1'11wlized such that 
P( s )C 0( s) = I. Let H ( s) he as in Lemma 5.4. Under these conditions, the 
general form 1if an inwge representation C(s) iif a solution of the regulator 
problem with internal stability is given by 

C(s) = C0(s) - P(s)'l'(s)H(s), (.5.34) 

where 'I'( s) is an arbitrary elenumt 1if RH~· x I'. 

Comparing this with the Kucera-Youla parametrization (5.6), we see that 
the parametrization of regulators comes down to constraining the "central" 
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compensator Co{s) to be a regulator, and requiring_that the parameter Q(s) 
be right-divisible by the square matrix function H(s), which can be con
structed from the proble_m data. Taking into consideration that the nontrivial 
elementary divisors of H(s) coincide with those of the exosystem sl - A22 , 

this result may be viewed as an instance of the internal model principle (see 
in particular the version of [10]). For other parametrizations of all solutions to 
the regulator problem, see for instance [7, 16, l]. The parametrization given 
above turns out to be particularly useful in connection with the robust 
stabilization problem [6]. 
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