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Chapter 1
Introduction

Imaging mass spectrometry is a powerful technique to measure the spatial distribution
of molecular content on complex surfaces of samples. It combines high-resolution mi-
croscopic imaging tools with the analytical capabilities of spectrometry. The resulting
measurements can be used for microscale analysis. The size of these measurements
is ever increasing, since developments in spectrometry instrumentation allow for data
acquisition in continually higher mass and spatial resolution.

Since current visualization techniques can not yet fully utilize the increasing reso-
lution and size of the measured datasets, new techniques have to be developed. With
enhanced visualization techniques, analysis of complex datasets can be supported
and improved. This thesis aims to show that analysis of imaging mass spectrometry
data can be improved by introducing new approaches for automatic selection and
visualization of features in large scale datasets.

1.1 Mass spectrometry
Mass spectrometry (MS) is the process of measuring atoms and molecules present
in a material by determining the mass and charge of their ions. The presence of a
combination of different ions can uniquely identify a material. Basically, this technique
can be compared to measuring the different wavelengths present in (visible) light.
Each wavelength—or color in the case of visible light—has a certain intensity. The
combined intensities of all wavelengths determine how the color of a beam of light is
perceived. A prism is able to separate a beam of light into its spectral colors creating
a spectrum in which colors are arranged according to their wavelength. Similarly,
a mass spectrometer is able to break up ions from the surface of a physical sample
material. The distribution of these separated ions is represented in a mass spectrum
in which ions are arranged according to their relative mass.

Varying intensity values in a mass spectrum represent the presence of (molecular
fragments of) chemical compounds. Measured ions with nearly identical masses and
charges are grouped together in order to create peaks in the mass spectrum. Each
peak indicates the presence of a chemical compound with a particular mass. The
height of a peak indicates the amount of ions measured in relative proportion to the

1



2 INTRODUCTION 1.1

height of another peak. A mass spectrum can be expressed as the function f(m)
where m represents the mass and f(m) denotes the intensity value in the spectrum
on that particular mass. Combinations of peaks in a mass spectrum create different
specific spectral profiles. Each profile uniquely describes the composition of a chemical
compound in a material sample. This spectral profile is similar to a spectrum within
visible light, but with a composite of chemical properties rather than colors.

In Imaging MS [Ben87; McD07], the location (x,y) of each mass spectrum is added,
which results in a three-dimensional (3D) dataset F (x, y,m). The x and y coordinate
of the position on the surface of a particular sample is measured for each of the mass
spectra. The measured values can be combined to create one ‘spectral datacube’. A
spectral datacube could be compared with a digital color picture composed of three
color bands, for instance red, green and blue (RGB). Since their RGB-value on each
position is known, their combined intensity creates a specific color on that location
in the picture. Each separate color band shows how a color is distributed in the
picture as a single intensity image. Instead of creating a digital picture with the
colors from a sample, imaging mass spectrometry measures the distribution of the
chemical compounds on the surface of a sample. Similar to the terms ‘color band’
or ‘color channel’, each position m in a mass spectrum is called ‘spectral band’ or
‘spectral channel’.

An expert spectrometrist uses mass spectra to deduce the chemical, physical,
or even biological properties of the compounds present in a sample of an unknown
material. Analysis of a spectral measurement is based on the presence of peaks in
the intensity in the mass spectrum. These peaks have to be located, interpreted,
and compared to other peaks in the mass spectrum to be able to characterize the
chemical structure in the sample material. Besides comparing spectral peaks, spectral
datacubes also enable a mass spectrometrist to compare peak intensities on different
locations. The heights of the peaks are used to create an image with the spatial
distribution F ′

m(x, y) of a single spectral band m in the spectral datacube.
When different peaks in a spectrum show a similar spatial distribution, these peaks

could originate from the same compound molecule. This principle can be illustrated
with a simplified example of the chemical compound ‘sodium chloride’ (NaCl), also
known as table salt. After a mass spectral measurement of a sample that contains
this compound, there is a peak in the acquired mass spectrum around 23 u (unified
atomic mass unit) for the sodium ion (Na+) and two peaks around 35 u and 37 u for
chloride ions (35Cl− and 37Cl−). When both sodium and chlorine peaks occur with
a similar spatial distribution in the measured dataset, it is likely that they originate
from the salt crystals within the sample. The heights of the peaks are a measure for
the amount of ions that are present. If the sodium peak in this example is 100%, the
35Cl− peak would be at 75% and the 37Cl− peak would be at 25%, according to the
natural ratio in which these isotopes exist.

Imaging MS has many useful applications for microscale analysis of cells and tis-
sue sections from biological samples. Mass spectral measurements enable detection of
differences in the molecular composition of the surface of a sample material. These
differences may be used to determine whether a tissue sample is healthy or con-
tains tumors. Besides detecting chemical differences, imaging MS allows for spatial
localization of differences within a tissue sample on a high resolution. The spatial dis-
tribution of, for instance, different peptides and proteins can be obtained. The ability



1.2 ANALYSIS 3

Figure 1.1: A schematic of the spectral view on peaks and spatial view on an image, both
from the same 3D datacube.

to classify cells on a molecular level can provide more insight into the effect of, for
instance, disease, drug treatment, or environment on the metabolism in biomedical
or pharmaceutical research.

1.2 Analysis
Traditionally, spectral datacubes are analyzed by switching between the mass spec-
trum and images of a single spectral band. This way, interesting peaks, spatial dis-
tributions, and similarities between peaks and their locations can be detected. First,
an overall spectral view of the datacube is used to locate peaks of interest. Figure 1.1
shows a schematic representation of several spectral peaks. After peak detection,
images of selected peaks are created in order to examine their—combined—spatial
distributions (as can be seen on the right of Figure 1.1). For instance, two different
cells can be recognized in the schematic representation of the spatial distribution of
the peaks. One or more interesting locations in the spatial view can be selected to
examine their spectral profile and characterize the material on a certain location. An
illustrative representation of the complete spectral datacube used to create both views
is shown in the middle of Figure 1.1.

Current imaging MS techniques produce spectral datacubes with many variables
in the spectral as well as both spatial dimensions. Exploration of mass spectral data-
cubes is not an easy task, because every peak and spectral image has to be exam-
ined in order to find potentially interesting spectral peaks or distributions. Existing
approaches in spectral analysis apply data-reduction techniques to simplify the ex-
ploration of spectral datacubes by reducing and optimizing the variables. Dimension
reduction is the process of reducing the number of variables in a dataset. Common
practice is to apply dimension reduction to create a smaller dataset in which the most
interesting properties in the data are grouped—also known as a feature space—in
both spectral and spatial dimension. This way, the complexity is reduced and the
accuracy for analysis is improved [Gra06].

Dimension reduction can be divided into three phases: filtering and variable se-
lection, and model-fitting. Filtering and variable selection improves the quality of the
data by removing noise. The quality can be improved by for instance techniques like
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down-binning, finite impulse response filtering, (de-)convolution, and wavelet filtering.
Other common variable selection techniques to reduce the influence of noise are for
example thresholding, spectral peak-picking, or data-decomposition strategies. In the
second phase, a model is fitted with the selected data in order to extract a subset of
variables that describe the original data. Different methods for multivariate analysis
can be used to describe the data with less variables, for instance correspondence anal-
ysis, principal component analysis, factor analysis, independent component analysis
or variations of these. The general problem with the choice of a dimension reduction
technique is the need for accurate models for noise estimation and fitting of the data
onto the new variables. Before an appropriate reduction technique can be evaluated,
the characteristics of the desired feature-space for imaging mass spectrometry have
to be defined first.

1.3 Features
This thesis expresses its objectives and approach in terms of ‘features’. We define a
feature in imaging MS as:

one or more distinct spectral peak(s), recurring at several locations in a
recognizable spatial pattern

Multiple peaks are linked together as a feature when they recur with the same ratio
of intensity on several locations. These peaks should be linked when induced by
the presence of the same chemical compound. This way, a chemical compound is
represented by a single feature. The intensity values of each of these peaks can be
organized in an image, which is the spatial distribution of the feature. A pattern
is recognized if this spatial distribution resembles a known image of, in this case, a
biological sample. An expert biologist can determine if the spatial distribution has
a recognizable pattern which is specific for the sample that is being measured. An
example of a feature in a sample of nervous tissue is, for instance, the distribution of
cholesterol at the edges of a specific group of neuronal cells. With this definition, we
can focus our aim to the detection, visualization, and use of features in the analysis
of spectral datacubes.

Detection

The detection of features depends on the detection of spectral peaks. A spectral
peak is identified examining neighboring intensity values in a mass spectrum. After
identification, different peaks have to be compared to find similarities, for example
a recurring ratio between intensities of different peaks. Similarities can be found
by comparing the spatial intensity distributions of different identified peaks or by
applying statistics on the spectra. Similar peaks are selected and grouped together
in a single feature.

Feature detection must be robust when a low signal-to-noise ratio is present in
a spectral datacube. Robust feature detection is sensitive in identifying peaks and
specific in selecting peaks to be grouped in a feature. Peak identification is compli-
cated by noise, as it can lower the intensities within a peak (also known as a ‘ signal’)
and raise the intensity of the neighboring values. The ratio between peak height and
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intensity of noise is called the signal-to-noise ratio. Moreover, a feature should not
contain every peak detected: only those peaks of which the intensity ratio has a sig-
nificant contribution to a particular feature should be selected. When many peaks
with an insignificant contribution are selected, a feature becomes cluttered and less
distinctive.

Visualization

A detected feature is traditionally visualized with two separate views: a spectral
and a spatial view. All spectral peaks of a feature are visualized in a spectrum (the
spectral view). The spatial distribution of these peaks is visualized in an intensity
image (the spatial view). Although both views are visualized separately, they are
related as they represent the same feature from two perspectives. A single spectral
peak can be distributed among several spectral bands. To be able to view the spatial
distribution of an entire spectral band, all images on those spectral bands are added
together to create one intensity image.

Visualization of features has to be accurate with proper contrast in both the
spectral and spatial view. When spectral datacubes have a sparse distribution of
intensity values, it is common practice to add all spectral intensity values from a
single peak to improve the contrast between this peak and the neighboring spectral
bands. This way, the spectral peaks can be visualized with more accuracy. Similarly,
the accuracy and contrast in the spatial view can be improved by adding neighboring
intensity images. With this technique, however, structural information is lost in both
views. The individual spectra can not be distinguished from each other by removing
the spatial dimension in the spectral view. Similarly, individual peaks can not be
distinguished in the combined intensity image.

Interpretation

After feature detection and visualization, identification and interpretation is left to an
expert, who should be enabled to select, zoom in on, and compare different visualized
features in an analysis. This is important in order to be able to place features in the
right perspective. Each spectral measurement is performed with a different hypoth-
esis. Identifying and interpretation which features are important in a measurement
may differ as well. Therefore, a user should make a final selection of appropriate fea-
tures. Some basic tools have to be available to assist identification and interpretation.

A user should be enabled to select appropriate features and exclude uninteresting
features in a particular measurement. A less detailed, top-level view of the complete
dataset makes it possible to place different features in the same perspective. After
this, potentially interesting features can be selected for further inspection. Different,
more detailed features could exist within a selection and can be selected by the im-
plementation of a zooming function. A final selection of features should be visualized
in one combined overview to be able to compare their spectral properties and spatial
distributions. This comparison is the most accurate when features can be compared
on the highest level of detail.

The following requirements on the detection, visualization, and analysis of features
from imaging mass spectrometry data are identified:



6 INTRODUCTION 1.4

• robust peak identification and selection requires a high signal-to-noise ratio;

• a more accurate representation of features requires a combined view of the
spectral and spatial properties;

• users should be enabled to zoom in on and compare multiple features.

1.4 Contributions
Recent technological developments not only allow mass spectrometric imaging at
higher spatial resolution, but also with shorter acquisition times, larger surfaces, and
higher spectral resolution. Because of the large amount of detail produced with these
spectrometric techniques, manual analysis of the data is an intensive and error-prone
task. In many cases, the measurement itself is not the most time-consuming, but
analysis of the results becomes more elaborate due to the large amount of data ob-
tained. New tools and techniques for reducing and processing these large datasets
have to be developed to support analysis.

Many dimension reduction methods are already available to transform data from
imaging spectrometry into a feature space (a smaller dataset in which characteristics
remain present). Each filter and decomposition method makes implicit and explicit
assumptions about the underlying mathematical model of the data. Different parame-
ters control a model’s explicit assumptions. In order to create a generic approach and
keep the parameter-space as small as possible, the model should have as few explicit
assumptions as possible. This way, feature detection does not depend on the type of
sample measured. The multiple requirements mentioned in the previous section can
be met with this feature-based approach.

The key strategy in this work is the application of Principal Component Analy-
sis (PCA) for automatic feature detection in spectral datacubes. PCA is a simple
approach for dimension reduction and feature selection against a low computational
cost (see Section 2.3.3). It is non-parametric and uses statistics to create a stable and
unique solution that is able to extract different ‘components’ from a dataset. Each ex-
tracted component consists of related spectral peaks accompanied by their combined
spatial distributions. Given the definition of a feature, it can be stated that each
extracted component potentially contains a feature. Still, the resulting components
have to be inspected to determine whether or not they contain interesting features.
Therefore, improved visualization techniques are needed to locate potential features
in extracted components.

In this thesis, a wide range of visualization techniques based on automatic feature
extraction is presented. With extracted features, datacubes can be aligned automati-
cally. In this application, datacubes can originate from measurements in different ar-
eas of the same physical sample. Since interesting artifacts can be distributed among
several datacubes, they may be not be recognized when viewed partially. Therefore,
datacubes have to be spatially aligned and combined to create a complete overview
of the data. With extracted features, transfer functions can be generated. With
these functions, spectral and spatial properties of a feature are highlighted simulta-
neously within a single 3D view of the datacube. Features can be used to zoom in
on and extract specific parts within a spectral datacube on higher resolutions. The
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Figure 1.2: The dataflow in the visualization pipeline of this approach.

resulting high-resolution features are parametrically visualized as 3D abstract geo-
metric shapes. This improves analysis, because it enables an analyst to compare and
examine several features on different levels of detail.

1.5 Research objective
The central research objective addressed in this thesis is: to combine PCA with
visualization techniques to solve detection, visualization, and analytical issues in the
analysis of imaging spectrometry data. This objective is specified by the following
research questions:

• How can PCA be used for robust feature detection in large imaging spectrometry
datasets?

• How can features be used to improve registration, zooming, and visualizations
of spectral datasets?

1.6 Approach
An overview of our approach can be visualized in a dataflow model (in Figure 1.2),
based on the extended ‘visualization pipeline’ of Dos Santos and Brodlie [San04]. The
preprocessing step in their model is computer-centered and provides computational
methods to fit a model and enrich data. In our approach, this preprocessing step
is user-centered to allow for data-enrichment on a specific level of detail. Then, the
prepared datacube is filtered to be able to select different sections of the data to be
mapped for visualization. According to Dos Santos and Brodlie, this is a user-centered
step, because an appropriate model and a number of parameters has to be defined for
filtering. We use PCA for filtering, since it is able to automatically extract different
features without any parameters. In the next step in this visualization process, the
filtered data (also ‘focus data’) is mapped onto abstract representations. In our
approach, focus data (or components) are mapped either by a transfer function or a
parametric definition of geometrical shapes. Finally, after rendering, an expert can
select, compare, and interpret components with interesting features on different levels
of detail.



8 INTRODUCTION 1.8

In our approach, we added registration to the dataflow model. In this step, several
spectral datacubes are aligned and combined into a single dataset in order to spatially
extend datacubes. The feature-based alignment takes place after feature detection on
the focus data (in this case the extracted principal components). When the same
feature is present in different datacubes, these cubes can be spatially aligned after
which an extended datacube is created from the two original (raw) datasets. Again,
the different steps in our visualization pipeline are used to analyze the extended
datacube and improve results in feature detection.

1.7 Thesis outline

The chapters in this thesis are structured according to the steps mentioned in the
approach in the previous section. Each chapter focuses on a different feature-based
technique in order to address different issues concerning visualization of mass spec-
trometry data.

First, a background survey on spectral analysis is provided in Chapter 2. It
includes a general introduction of data acquisition in imaging spectrometry. Different
methods for the extraction of features are compared as well as different approaches
for the visualization of spectral data.

Chapter 3 presents an overview of PCA and PCA-based methods for detecting
and extracting features from spectral datacubes. We discuss preprocessing of mass
spectral data, PCA, additional rotational optimization, and a method for factor re-
gression. The results are compared quantitatively and qualitatively, together with
some performance characteristics.

In Chapter 4, a robust method for automatic feature-based registration is devel-
oped. First, features are detected using PCA. Then, an additional signal quality
metric ensures that only those regions with enough signal are considered by a sim-
ilarity metric. Several spectral datacubes are combined to provide better detection
and extraction of features.

Chapter 5 describes a visualization technique that applies PCA to create transfer
functions for volume rendering of a spectral datacube. These volumetric visualiza-
tions enable us to observe and explore features with connected spectral and spatial
properties in a single 3D view. Applications demonstrate the additional value of these
visualizations.

Chapter 6 presents a technique for spectral and/or spatial zooming of extracted
features. This technique is especially useful for spatially extended datasets, when us-
ing the method presented in Chapter 4. Features of interest can be selected for further
analysis on different levels of detail. Moreover, features with unwanted artifacts can
be removed to reduce noise.

Chapter 7 provides an approach to visualize features in 3D with distinct boundaries
and at the highest resolution possible. Three parameters regulate the selection of
similar spectral peaks, the level of detail, and the size of the extracted feature shapes.
An application shows how resulting features are visualized and interpreted.

Finally, conclusions regarding the objectives in this thesis are presented in Chap-
ter 8. In addition, directions for future research are proposed.
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Chapter 2
Spectral analysis: a survey

Chapter 1 introduced the analysis and visualization of imaging mass spectrometry
datasets. An approach was proposed to do spectral analysis by feature detection,
visualization of the resulting features and analysis of a selection by expert interpreta-
tion. The objective of this thesis was stated together with an outline of the approach
taken to reach that objective.

This chapter provides a more detailed overview of current approaches and corre-
sponding methods and techniques for the analysis of spectral data. A comparison
is made of these existing methods and techniques with their purpose, strengths, and
weaknesses. A minimal subset of tools is chosen to be able to implement the suggested
exploratory visualization approach for analysis of spectral imaging data.

2.1 Introduction
The purpose of spectral analysis is to extract information of the molecular compo-
sition of a material of interest. In general, spectral data describe the interaction
between matter and radiation as a function of either wavelength or frequency. One
can determine properties of the matter by measuring the absorption, emission or scat-
tering of radiation. Therefore, the materials of interest could be located far away, for
instance on the surface of stars or planets in the field of astronomy or remote sensing.
On the other hand, the materials of interest can also be microscopically small. In all
cases, these chemical substances can be analyzed by examination of their spectra. The
analysis in this thesis is limited to the discovery of features in biological samples with
the help of strategies and tools for visualization. By comparing existing methods, we
have to choose which would be most appropriate for this approach.

It depends on the purpose of the analysis and the state and location of the mate-
rial of interest which method—or combination of methods—is the most appropriate.
The goals, parameters and limitations of an individual spectral measurement are too
versatile and the results too complex to be able to perform analysis without expert
knowledge [Har84]. Therefore, tools for analysis and visualization have to be de-
veloped that facilitate the discovery and interpretation of extracted features. This
versatility of goals complicates making an exhaustive comparison between currently

11
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implemented methods for analysis. The final step in the analysis and interpretation
will be left to an expert spectrometrist. By a visual presentation of the results, the
complexity can be reduced and a user can gain more control on and insight into the
extracted features.

A spectral dataset can be modeled in terms of pure spectral profiles (also called
‘spectral endmembers’ in the field of light spectroscopy) and/or spectral images (also
called ‘abundance images’ in the field of imaging light spectroscopy) [Kes03]. A pure
spectral profile is the spectrum resulting from one material or chemical compound
in the case of mass spectrometry. The ratio between the intensities of the peaks in
such a pure spectrum is always the same and can be considered a basic building block
of a chemical compound. Each material or chemical compound has a certain con-
centration. These concentrations can vary on different spatial locations in a spectral
datacube. A general linear function model that describes a spectrum f [m] is

f [m] =
N∑

n=1

βnXmn (2.1)

where m is the independent variable of a spectral band, β a vector with concentrations
of the chemical compounds and N the number of distinct chemical compounds present
in the dataset. An overview of the most important variables is shown in Table 2.2. The
coefficients in the columns of matrix Xmn are the pure spectral profiles. Depending
on the chemical compound, each spectral profile consists of one or more peaks.

According to Lohnes [Loh98], spectral analysis can be performed from two dif-
ferent points of view: a quantitative and a qualitative view. This work focuses on
a qualitative exploration prior to a quantitative analysis by an expert. This focus
is chosen, because identifying unknown constituents present in complex surfaces on
samples is often too complex to be modeled completely automatically. The complex-
ity is caused by the large number of different pure spectral profiles and the large
number of peaks that can be present in one spectral profile. When only the presence
of a chemical compound has to be detected, there is no need to fit an exact, complex
model on the spectral data. The search for and detection of chemical compounds in
a spectral dataset can be called qualitative exploration.

Commonly used sequential stages in an approach for a qualitative analysis are:
data acquisition, feature extraction, and the visualization of features as shown in
Figure 2.1. The first stage is the acquisition of the spectral data from a material
sample. In the second stage, specific features have to be selected and extracted from
the complete dataset. Those features are visualized in the third stage to be interpreted

variable range

spectral variable m = 1 . . .M
compound/component n = 1 . . . N

horizontal location x = 1 . . . X
vertical location y = 1 . . . Y

spatial coordinate xy = 1 . . . XY

Table 2.1: Different important variables with their ranges.
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Figure 2.1: Three stages in a spectral analysis.

by an expert. The expert should be enabled to make a selection to explore in more
detail, after which the complete cycle of feature extraction and visualization starts
again.

The data in the process from data acquisition to visualization can be described
by different mathematical functions. An overview of these descriptions is shown in
Table 2.2. As mentioned before, there are many techniques available to support the
extraction of features. To be able to compare them more easily, they can be divided
in three subsequent categories: for the process of filtering, selecting features, and
classifying features. The different techniques and methods used in these stages are
described in more detail in the next three sections.

2.2 Data acquisition
Spectral data is acquired by a spectrometer. Whereas spectroscopy is a more general
term to describe the study of spectral data, spectrometry usually refers to the actual
process of measuring spectral data. These measurements can be classified according
to the spectrum emitted from or absorbed by a material in some form of energy.
This energy can be measured in the form of electromagnetic radiation (e. g., light),
acoustic, electrons, or ions. There are many different types of spectrometers, each
with its own characteristic properties and specific output of spectra, for instance the
number of spectral bands. Imaging spectrometers have the added functionality of
obtaining spectra for a large number of positions separately, where these positions

data type in the process function parameters

continuous spectrum f(m) m: spectral variable

spectral datacube F (x, y,m) x, y: spatial coordinates, m: spectral variable

spectral image F ′
m(x, y) x, y: spatial coordinates, m: spectral variable

spectral noise f̃(m) m: spectral variable

multiple datacubes F ′(x, y,m) x, y: spatial coordinates, m: spectral variable

discrete spectrum f [m] m: spectral variable

filtered spectrum f̂ [m] m: spectral variable

selected spectra f ′k k: number of selections

decomposed spectra Pn×m n: number of components, m: spectral variables

decomposed distributions Yn×xy n: number of components, x, y: spatial coordinates

Table 2.2: Different mathematical descriptions used in the process.
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Figure 2.2: (a) A single spectrum and (b) a single image in the spectral datacube.

are typically arranged in a regular grid. This way, the resulting dataset has the
format of a spectral datacube: intensity values having two spatial (x and y) and one
spectral coordinate (denoted as m). A representation of a spectral datacube is shown
in Figure 2.2. The grey areas in the datacube represent (a) a single spectrum on one
location and (b) a single image on one spectral band.

Typically, spectral image data lends itself best for a qualitative analysis approach,
as the spatial appearance can provide substantial information for a correct classifi-
cation. A spatial map of each spectral band can be obtained and spectral data with
added spatial information also provides more possibilities to provide a better view on
the noise that is present in a measurement. This knowledge opens up more opportu-
nities to reduce the influence of noise for feature extraction in a spectral analysis.

Each method for spectral imaging results in a different kind of spectral dataset
with different resulting quantities (e. g., wavelength, energy), ranges, resolution, di-
mensions and of course different influences of noise. It is common practice in spectral
analysis to make multiple measurements of the same material of interest. A larger
region on the material can be covered by changing the spatial offset of each measure-
ment, as well as the reduction of noise by comparing duplicate results. The following
subsections will elaborate on different imaging spectrometers, noise, and the use of
multiple measurements.

2.2.1 Imaging spectrometers
There are many types of imaging spectrometers. Each uses a different spectral imaging
technique in remote sensing. Landsat’s Thematic Mapper (TM), for instance, records
8 spectral bands. NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
can record 244 spectral bands [Geb98]. There are also different techniques for acquir-
ing spectra from small biological samples on a higher resolution [Alt07]. One tech-
nique is ‘Fourier Transform InfraRed’ (FT-IR) imaging spectroscopy [Lev05; Wee02].
A second technique is the Time-of-Flight Secondary Ions Mass Spectrometry (TOF
SIMS) [Vic02], which is primarily used in this thesis. It can be used in combination
with the Matrix-Assisted Laser Desorption/Ionization (MALDI) technique [Kar88].
When TOF SIMS is used in an additional Large Area Mosaic mode [McD07], spe-
cific locations with a higher resolution compared to a normal measurement can be
recorded. Whereas imaging spectroscopy measures a light spectrum according to its
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Figure 2.3: Schematic representation of an imaging TOF SIMS instrument.

photon energy, a mass spectrum can be measured by, for instance, the time it takes
ions to reach a detector. This amount of time depends on the mass-to-charge ratio of
the ion (see Figure 2.3) from which the particle can be identified.

Mass spectrometers can produce millions of spectral measurements from the chem-
ical compounds present on the surface of a recorded sample. The primary ion beam
in Figure 2.3 scans the spatial surface of a sample by removing ions from it. If a
surface is measured for a longer period of time, there are more ions removed from
the surface. The resulting raw spectral data is basically a cloud of single 3D points
where each point (x, y,m) represents one measured ion. These 3D points can be used
to create a 3D datacube F [x, y,m] in which the 3D points are put into 3D cells in a
spatial grid with Cartesian coordinates (x, y) with a certain spectral channel m. Mea-
surements that have the same location and the same spectral channel are summed
in a single cell. Most (∼ 90%) of the 3D cells within this mass spectral datacube do
not contain a value. This is in contrast with the spectral datacubes resulting from
measurements that involve capturing light on different frequencies. Each 3D cell in
these mass spectral datacubes normally contains a scalar value for the intensity of a
particular spectral channel on a location.

The first developments of the Secondary Ions Mass Spectrometry (SIMS) technique
appeared in the early 1940s. These experiments were used to analyze oxides and
metals [Ric07]. Fifty years later, improvements led to the preservation of the spatial
relationship between the ions. This resulted in the first applications for imaging MS in
which the mass spectra of an entire spatial region could be obtained. Surface analysis
of biological material was first demonstrated by Benninghoven [Ben94]. Innovations
on enhanced ion generation made it possible to improve spatial resolution and quality
of the resulting spectral images [Pac99]. Single cell and direct tissue analysis by
investigation of large intact biomolecular species became possible with imaging MS
as a proteomic tool [Aeb03].

This thesis focuses mainly on the visualization of data from imaging mass spec-
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trometers, because of their capability to measure at a high spectral and spatial reso-
lution. A mass spectrometer can record the presence of particles on a molecular and
atomic scale, which results in complex and large datasets. Moreover, its ability for
imaging is essential, because the location of each identified substance in a biological
sample is important for the recognition of the spatial pattern of a subject of interest
by an expert. Also, imaging enables us to reduce noise in a measurement using the
additional available spatial information.

2.2.2 Noise
Inherently, every measurement contains a desired signal and some degree of noise,
usually expressed as the Signal-to-Noise ratio (S/N) in the field of spectral analysis.
The signals are in this case the spectra in the datacube. Intrinsically, a measured
spectrum f̃(m) consists of part signal f(m) (from Equation 2.1) and part distortion
εmn as defined in

f̃(m) = f(m+ τ) + εmn (2.2)

Besides the signal-independent distortion εmn on spectral band m and spectral profile
n, there is an additional noise factor τ that results in a spectral shift of peaks in a
spectrum. This spectral shift causes a broadening of spectral peaks if all spectra in
a datacube are added together in a spectral view on the datacube. The independent
distortion can be fitted on a chemical model of the sample, but can also be modeled
by applying the right statistics on the chemical model, if the nature and variability
of the noise is known.

Noise is any unwanted signal interfering with a desired signal and can be observed
by differences between expected and measured intensity values. In spectral datacubes,
noise is not only present in a spectrum, but also in between spectra. It usually has a
Gaussian distribution. In TOF SIMS however, it is Poisson distributed, because this
technique is event-based. This distribution is caused by the uncertainty associated
with the rate of arrival of ions at the detector. Other sources of noise in TOF SIMS
include: chemical noise, electrical noise, shot noise, and calibration noise. Chemical
noise is caused by unwanted artifacts (substances or contaminants) on the surface of
a sample, due to preparation or impurities. It can also refer to the material in which
a specimen of interest is embedded, called the ‘matrix material’. One can say that
shot and electrical noise are caused by the physics of an instrument, namely by the
distortions at the ion source or internal noise in the circuits of the detector. The
random noise in a measurement is mainly caused by the electrical variability within
the detector. Variation in the height of the surface of a sample can be observed
by a small shift of τ in the mass spectrum. This phenomenon can be perceived as
calibration noise in the spectral dimension.

In the ideal case, an analysis is not influenced by noise in the data. However,
all techniques for measurement of spectral data invariably are. It complicates the
extraction of features from the data as it is uncertain whether or not a feature is
either noise or an interesting occurrence in the measured sample. Therefore, noise
reduction techniques have to be applied to reduce the influence of noise on the analysis
as much as possible. Many filters are available to reduce different kinds of noise in
signal, image, and volumetric datasets. All filters need prerequisite information about
the nature of the noise, which varies in almost every experiment. Instead of filtering,
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it is also possible to reduce noise by removing specific parts from a dataset that
mostly contain unwanted artifacts. In this qualitative approach, the interpretation of
a feature is left to the experience of an expert rather than the design of tailor-made
noise reduction techniques. The influence of noise can be reduced by methods of
feature extraction, but also by taking advantage of having multiple measurements of
the same sample.

2.2.3 Multiple measurements
Multiple measurements with a different spatial offset can be taken from the same
sample. This is a common strategy in imaging to be able to image a larger spatial
area. A spatially enlarged datacube

F ′[x, y,m] =
N∑

n=1

Fn[xn, yn,m] (2.3)

is created, where N is the number of spectral datacubes and (xn, yn) are the spatial
coordinates of the added spectra. For instance, satellites are taking several separated
images of earth. It is not possible to create an image of the complete surface with
the same quality and resolution of each separate image. When put together, these
images form a high-resolution map of the complete surface of the earth. However,
this approach requires that images are fitted together correctly, which process is
referred to as ‘registration’. The strategy of taking multiple measurements is also
applied to spectral imaging of biological samples. The different measurements have
to be registered first in order to take advantage of this strategy. Unfortunately, most
imaging mass spectrometers are not able to provide a precise offset between two
different measurements, if any at all.

It is important to determine the offset between multiple measurements, because
it allows for the creation of one combined dataset with larger spatial dimensions.
With these larger dimensions, feature extraction could improve, because the number
of measurements increases. Moreover, since there are several measurements of the
same region, noise can be reduced in overlapping regions.

The field of image processing offers many approaches for registration of images.
However, current literature does not provide any examples of implementation of reg-
istration of imaging mass spectrometry data. This could be caused by the unique
nature of mass spectra (the difference in quality of spectral images due to their spe-
cific noise). In our approach (analysis by feature exploration), we attempt to register
spectral datacubes using feature extraction. Several measurements are combined into
a single dataset which would contain less noise than the individual ones. This will
improve the extraction of features from a combined spectral datacube.

2.3 Feature extraction
After data acquisition, features can be extracted. Many extraction methods are devel-
oped in ‘chemometrics’, each with different prerequisites, goals, and performance con-
siderations [Lis05]. An overview of the objective and limitations of each exploratory
method has to be created, before one or more appropriate methods are selected for
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this approach. The description of a feature in Section 1.3 can be reformulated with
Equation 2.1 as:

one or multiple correlated column(s) in Xmn that create a recognizable
spatial pattern with their intensity values.

In this description, Xmn is the matrix with pure spectral profiles. In other words,
a feature represents one or several correlated chemical compound(s), which spatial
distribution can be recognized. Two chemical compounds are correlated if there is a
linear relation between the peaks in their spectral profiles. The correlation between
these spectral variables can be expressed in terms of ‘multicollinearity’. This refers
to a situation in which the correlation coefficient between two or more independent
variables is equal to 1 or -1 (positively or negatively correlated). Positively correlated
spectral variables indicate that the two chemical compounds represented by those
variables could originate from the same molecule. Negatively correlated spectral vari-
ables indicate the presence of mutually exclusive chemical compounds. When the
correlation coefficient is equal to 1 of -1, these variables are linearly dependent and
called ‘collinear’. In this case the relationship β1Xm1 + β2Xm2 + · · · + βmXmn = 0
exists, where βm ∈ Z are constants and Xm are the explanatory (in this case the
spectral) variables. In our definition of a feature, if two or more spectral profiles are
collinear, they are put in one single feature. This way, chemical compounds with the
same spatial distribution are put together because it is likely that there is a relation
between these compounds. In this approach, the objective of feature extraction is
to automatically highlight these relations and identify them by studying their spatial
patterns.

Methods for extraction can be categorized by a large number of different proper-
ties, resulting in a diversity of taxonomies. Unfortunately, many methods do not seem
to belong exclusively to a single category. Therefore, in spectral analysis, methods
are mainly categorized according to the consecutive steps necessary for the process
of feature extraction. These steps are for instance: dimension reduction, endmember
determination, and inversion to estimate the fractional abundance of the endmember
spectra [Kes03]. Other methods [Hil06] have a preprocessing phase (such as smooth-
ing and peak detection) prior to a classification phase. From a system-processing
point of view, methods can be classified according to their input, output, model de-
scription, and constraints. A model describes the statistical structure in a function
by mathematical rules. The taxonomy presented in this section classifies feature ex-
traction methods with as little overlap as possible, according to a specific partial goal
within the process of extraction.

A hierarchical taxonomy of methods for feature extraction is presented in Fig-
ure 2.4. The process of feature extraction is divided into three categories: filtering,
variable selection, and classification. Each category has two distinct subcategories
to further differentiate the methods. Filtering is a transformation of the data, with
(binning) or without (convolution) reducing the number of variables. Selection is
grouping parts of the data, with (peak-picking) or without (clustering) a transforma-
tion. Classification is finding the underlying components in the data, with (regression)
or without (decomposition) a residual term.

One common goal of all methods is the reduction of noise to improve the quality
of the extracted features. In most taxonomies, data or dimension reduction is often
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Figure 2.4: Hierarchical taxonomy to classify methods for feature extraction.

a separate category, but in this overview it is considered a property of the method.
This choice was made, because different methods for data reduction can be placed
within each separate category. The general properties of each method are explained
in an overview in the following subsections along with a comparison of the major
methods. A selection of appropriate methods is implemented for the approach taken
in this study.

2.3.1 Filtering
Filtering is a common approach to reduce noise, to reduce the amount of data and/or
to improve the signal-to-noise ratio. In the spectrometry literature, this step prior to
selection and classification is also referred to as ‘preprocessing’. It can be implemented
by removing data-points or by transformation of the data, which both usually lead to
a reduction of data. Many methods for filtering exist in the field of one-dimensional
(1D) signal processing. Besides 1D-approaches, there are many two-dimensional (2D)
methods for filtering in the field of image processing as well. Both 1D and 2D methods
can be used in processing spectral datacubes, provided they have both a spectral signal
and an image component. A combination of a 1D and 2D filter can be implemented as
a 3D filter, which acts differently in the spectral dimension compared to both spatial
dimensions.

It is considered necessary to improve the quality of data with respect to noise
to be able to extract features more accurately. Also, the performance of feature
extraction can be improved when noise is removed from a dataset and the remaining
data-points have a higher signal-to-noise ratio. Improvement is only possible when
the appropriate method is chosen. This choice should be based mainly on the type of
spectral measurement, but the goal of the measurement and the goal of the analysis
are important as well. Some aspects in the raw data which could be important for
interpretation are sometimes removed or incorrectly transformed when a generic noise
reduction filter is applied. For example, small peaks in a single mass spectrum are
based on individual counts of ions. These peaks could easily be considered noise when
they are unjustly present according to a selected filter model. With mass spectrometry
data, each detected ion could be part of a significant peak when neighboring spectral
channels and positions are considered. The same problem exists in the case of a
spectral image. If the expected pattern in a spectral image can not be predicted, it
is not possible to smooth pixels according to neighboring pixels. Mostly, there are
no clear-cut borders or other recognizable spatial artifacts between different chemical
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substances that can be used in a simple image filter.
Detailed models of the data are needed to be able to filter spectral data by remov-

ing or transforming data-points [Cly06; Pla06]. In most cases of mass spectrometry
data, a spectral model is too complex and too large to be successfully fitted onto a
resulting measurement. Only when a desired spectral profile is known after classifica-
tion, multivariate regression techniques can be applied to filter the measured spectra.
This is also known as ‘calibration’ of the data in the field of mass spectrometry. All
filtering techniques that use regression need—estimations of—model information to
be able to apply filtering. A remaining group of non-regression filtering methods
can be divided into two categories that both implement a transformation of data:
(de-)convolution and binning.

(De-)Convolution

Convolution filters transform data by replacing values with a weighted average on
several data-points that are located near each other. The discrete convolution

f̂ [m] = (f ? g)[m] =
n−1∑
l=0

f [l] · g[m− l] (2.4)

defines the convolution operator ? which takes two functions: the spectral function
f of length n ∈ N and g of length m ∈ N where n ≤ m that produces the composite
function f̂ . This composite function is a modified version of f and can be described
as a weighted average of f . A deconvolution filter does exactly the opposite: it is
the inverse of a convolution filter. Its objective is to find f where g represents an
estimated transfer function of an instrument. In deconvolution, an estimation of g
would be made to obtain f from a measured signal f̂ by reducing the instrumental
noise. For instance, Ritter et al. [Rit04] implemented a deconvolution based on the
known instrument response profile determined by a mass peak of silicon. However,
in most mass spectral measurements, it is not always possible to get an appropriate
estimation for g. One efficient group of convolution filters is that which uses wavelet
transforms [Dro03]. These transforms enable to perform operations on images at
multiple resolutions. To be able to apply a Discrete Wavelet Transform (DWT) to
individual spectra one needs a model of the signal or wavelet function, a scaling
function or sampling window, and a threshold on the resulting coefficients.

All values in a measured spectrum f are smoothed by g and thus can reduce the
independent noise present in a measurement. After transformation, there should be
less noise caused by the variability of a measurement in the data. Deconvolution can
adjust differences in data-points locally and reduces influence of noise, provided a
correct model for g is chosen. For instance, small spectral shifts in the location of
peaks in a mass spectrum can be corrected if their model τ in Equation 2.2 is known.
The estimation of a density function is less complex than creating a complete model
of a dataset. Since the intrinsic shape of a peak in a raw spectrum changes with the
mass, the adaptive properties of the wavelet transform are a good choice for filtering.
Still, a wavelet function and a scale have to be chosen or estimated for the filtering
process.

Besides using spatial windows, there are several ways to implement convolution
and deconvolution filters. In signal and image processing, the classic Fourier trans-
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form is commonly used for the implementation of smoothing by convolution filters.
Vogt [Vog04] implemented 3D wavelet compression after which multivariate analysis
is applied to the compressed dataset. Wolkenstein [Wol97; Wol99] also applied 3D
wavelet filtering, but on a small number of spectral images to implement segmentation.
Although stationary wavelet transform is a technique without a sampling window, a
choice has to be made at which level to filter. According to Brown [Bro99], there are
no gains in multivariate calibration performance by the application of convolution fil-
ters. He mentions three principal effects: reduction of magnitude of higher-frequency
components, introduction of correlated noise, and reduction of any high-frequency
components of the noise-free signal by the filter.

Binning

Another filtering approach is binning, also known as ‘down-binning’ or ‘bucketing’.
Binning can be compared with the creation of a histogram that maps a number of
observations into a smaller number of discrete categories. Spectra are usually binned
by taking the sum of a number of consecutive spectral variables. In binning, a reduced
spectrum f̂ is created by

f̂ [n] =
n·w+w∑

m=(n−1)·w+1

f [m] (2.5)

where k is the width of a single bin (i. e., the number of variables), m ∈ N are the
dependent spectral variables or observations in the spectrum f and n ∈ N are the new,
binned variables (n < m) in f̂ . The value of w can be fixed or variable for each bin.
Binning reduces both the size of a dataset by a factor w and the influence of noise by a
simple transformation of the dependent variables. Binning is a predominant method
in mass spectrometry to increase signal-to-noise ratio and reduce dimensionality in the
spectral dimension. Neighboring spectral variables are grouped together by summing
their intensity values into a single, new spectral variable. This way, the heights of the
spectral peaks in a binned datacube are increased, while the resolution is decreased.
Although mostly implemented in the spectral dimension, binning can also be applied
to spectral image planes. It will combine a group of neighboring pixels into a single
new pixel. Again, a resulting image has a lower spatial resolution, but the independent
noise has less influence on the image.

The signal-to-noise ratio will increase by applying binning at the expense of the
resolution, but without much computational effort. The bins can be of a fixed width
or they can be of variable size, using manual inspection or automated algorithms. An
example of binning with equal-width of w = 2 is shown in Figure 2.5, with in (a) the
original variables m and in (b) the new variables n. Calculations are straightforward,
as specific models do not have to be estimated when using bins with a fixed width.
Mass spectrometry data has a relatively large spectral resolution compared to other
spectrometry methods. Therefore, binning is ideal for data compression in the spectral
dimension and simultaneously increases the signal-to-noise ratio. Similarly, spatial
binning could be an interesting approach provided a spectral datacube is spatially
extended by combining multiple spectral images into a single dataset.

The high resolution of imaging spectrometry data perfectly allows for binning.
Different types of binning and peak selection can be used [Car03; Ran05a] before
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(a) (b)

Figure 2.5: Binning with equal-with bins with size w = 2 of (a) the original variables m
into (b) the new variables n.

applying multivariate analysis methods to analyze and quantify mass spectra (see
Subsection 3.2.2 for more details). Wickes [Wic03] stated that the best image denois-
ing algorithm is down-binning, instead of wavelet or boxcar filtering. When binning
is applied ideally, each spectral peak is put into a single bin [Dav07]. A practically
impossible task, because the distances between these peaks vary. Another obvious
disadvantage of binning is that separated, neighboring peaks are combined into a
single peak. Therefore, information is lost in the filtering process.

2.3.2 Selection

The previous subsection elaborated on filtering methods for noise reduction and data
compression. The data selection methods in this subsection try to reach the same
goals by the selection and grouping of similar data-points. The main difference is
that filtering can be applied prior to selection, to improve the results of a method
for feature selection. For example, instead of filtering with a fixed bin-size, a peak-
selection approach locates peaks after which each peak can be used as a new variable.
Inherently, this is the most optimal way to bin a spectral dataset, provided there is
a robust and accurate selection of peaks. However, rather than solving the problem
of finding an appropriate bin-size, it become a problem of peak-selection. Besides
specialized methods designed to distinguish and select spectral peaks, there is a variety
of generic approaches to reduce data. These methods select different parts of a dataset
based on—statistical—properties they have in common.

Data reduction methods can be considered methods for selection. The influence
of noise or unimportant artifacts can be reduced when they are not included in a
selection. If noise has a different statistical model of distribution, variables can be
singled out or projected into a new selection of variables, called ‘ factor’. Therefore,
approaches for variable selection are mostly referred to as common Factor Analysis
(FA). The description of the methods for FA is ambiguous. Besides data reduction by
selection, these methods can also be categorized as a filtering approach for reduction
of noise. This group of methods is even able to classify a dataset when the num-
ber of classes is known. This classification approach is described in more detail in
Subsection 2.3.3 about classification in feature extraction.

Numerous different implementations exist for FA, with different statistical as-
sumptions, parameters, target distributions, and performance issues. Examples of
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more complex variations on FA are commonly used for classification problems and
can be found in Subsection 2.3.3. Two of the most commonly applied variations of
FA are Principal Component Analysis [Hil06] (PCA) and correspondence analysis. A
main difference with other FA derivatives is that PCA does not need a fixed and pre-
defined number of factors or components to decompose the data. Also, most methods
for FA assume that multiple models are present in the data [Här03] of which the com-
mon variance in each factor is considered. It depends on the method of computation
and the model which variables are combined in one factor. PCA merely distinguishes
the covariance of the total variance present in the data and the results are indepen-
dent of the method of computation. Correspondence analysis distinguishes itself by
the assumption that data must be positive and distributed according to Chi-square
distribution. Most of the remaining methods for selection of spectral data can be
divided into two categories: peak-selection and clustering methods.

Peak-picking

A general discrete peak-fitting function f ′[s, t] can be defined as

f ′[s, t] =
M∑

m=1

f [m]ψst[m] (2.6)

with f [m] the spectral signal and ψs,t[m] as a family of discrete wavelet basis functions,
s as the scale, and t as the translation factors. High values of f ′[s, t] indicate peaks
of scale s at position t. These peaks are selected by a threshold on the values. The
occurrence of spectral peaks is a common characteristic in the field of spectral analysis.
One or more peak(s) indicate the presence of a specific chemical compound. Besides
the presence of noise, there are two characteristics that complicate peak-selection
or peak-picking. A peak is mostly distributed among several, neighboring spectral
bands, depending on the resolution and the type of measurement. A single apparent
peak can consist of several peaks that are located closely together in a spectrum. Both
characteristics complicate an automatic selection of peaks. One way to solve this is
to perform interactive peak-selection, in which an expert spectrometrist recognizes
and manually selects a peak in a spectrum. Additionally, a spectral library with
known peak locations can be used to make a correct selection. A spectrometrist still
has to make the final interpretation, because libraries can not contain all chemical
compounds with their corresponding spectral peaks.

Proper peak-selection ensures a spectral dataset can be reduced in size without
losing important details. If a specific peak is correctly detected and selected, the
intensities are combined or transformed into one or more new spectral variable(s).
This way, the influence of noise is reduced together with the number of excess spectral
variables. In a mass spectrum, small fluctuations of noise can not be filtered by
applying a threshold on signal-intensities. The signal-to-noise ratio is too low in this
type of spectral data, to be able to distinguish between a spectral peak and noise.

There are many implementations [Coo07; Ran05a] of peak-detection algorithms
that use database entries, model information, or parameterized differences between
sequential spectral bands. For instance, Morris [Mor05] implements peak detection
with the discrete wavelet transform applied to the mean spectrum instead of a single
spectrum. Most implementations of peak-selection approaches do not perform well
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with individual spectra, because their signal-to-noise ratio is too low to distinguish a
peak from surrounding noise. Therefore, peak-selection methods should be applied to
a combined rather than a single spectrum. Alternatively, a spectrum could be filtered
by, for instance, a convolution approach. According to Chen [Che03], self-modeling
curve resolution can be seen as a sub-category of FA. It is a way to determine spectral
profiles without prior information about the location of peaks or reference data. This
kind of curve resolution does need an estimation of pure profiles and noise to make
the estimation.

Clustering

In clustering, a dataset F = {f1, f2, . . . , fn} of n = x × y spatial entities is mapped
on a smaller set of K clusters f ′K = {c1, c2, . . . , cK} where K < n. The membership
of a spectrum fn to a cluster c is defined by minimizing an objective function

O(F, f ′) =
K∑

k=1

n∑
i=1

d(fi, ck) (2.7)

where d(f, c) is a distance function between the entity fn and a prototype entity c
(i. e., the average of all points in the cluster) of a cluster. In general, clustering of data
covers a wide range of methods. The idea behind Cluster Analysis (CA) is to partition
a dataset into several subsets, in such a way that each subset has similar properties.
Similarities are expressed by a distance measure. A distance measure can be used,
for instance, to find similar spectra located in spatial neighborhood. Techniques for
clustering can be divided into three categories: partitional (distance-based, model-
based), hierarchical (linkage, model-based) and density-based (mode-seeking, graph-
based). Most of them require a distance function and spatial information if available.

Cluster analysis is applied to group areas with similar spectra to be able to rec-
ognize spatial patterns with the same chemical composition. It is similar to a peak-
selection approach, but adds location information to the distance measure. Thereby,
cluster analysis can be used for image segmentation including the spectral informa-
tion. Tran [Tra05] investigated clustering methods applied to multi-spectral data and
defined clustering as: “to help to understand relationships of objects by similarity”.
When visualized, subsets can instantly provide insight into these relationships. Clus-
ters can be left out of further analysis or focused on in more detail by applying another
cluster analysis on a resulting subset [Fle06].

There are many implementations of clustering methods from the field of digital
imaging. These implementations are based mainly on the spatial characteristics and
intensity values in a single image. Clustering results depend heavily on the defined
measure for similarity. Again, a model of the data or similarity measure has to be
defined and the expected number of clusters have to be given in non-hierarchical clus-
tering [Kes03]. Linear Discriminant Analysis (LDA) assumes Gaussian conditional
density models and only needs the desired number of clusters as input. Derivatives
on cluster analysis exist (e. g., Support Vector Machines), that do not need an ad-
ditional model. Instead, the parameters in the distance measure are estimated by
training with a correctly partitioned dataset. The availability of partitioned datasets
complicates the applicability of this type of data selection in spectral datasets. Meth-
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ods in feature extraction that incorporate more sophisticated models for clustering
can be categorized as classification methods.

2.3.3 Classification
The process of classification is similar to certain methods for peak-picking and cluster-
ing. In general, classification is the labeling of individual objects based on quantitative
information on one or more properties of these objects. In imaging spectrometry, clas-
sification is the actual labeling of data-points that belong to the same spectral group
and/or spatial region. Labeling is done either by a defined similarity measure, by
expert knowledge, or by applying statistics. Similar to applying filtering methods
before selection, a primary selection can be made prior to classification. Making an
appropriate pre-selection is beneficial to the performance of a classification method.
Firstly, a pre-selection reduces the search-space for a classification. Secondly, influ-
ences of noise and artifacts can be removed which should make the classification more
robust.

Generally, classification is applied to reduce the influence of noise by analyzing
spectral data and subdividing a datacube in recognizable pieces with the same char-
acteristics. Anderson [And00] describes mathematical models for exploratory mul-
tivariate data analysis. Classification makes it possible to first explore correlations
supporting an analyst to generate hypotheses. There are many non-linear approaches
and variations of decomposition and regression techniques. This overview does not fo-
cus on the use of non-linear classification techniques for dimension reduction [Maa07].
According to Nascimento [Nas06], spectral data can not be correctly unmixed and
classified by for instance Independent Component Analysis (ICA) and Independent
Factor Analysis (IFA). Both expect statistical independence of non-Gaussian dis-
tributed data instead of correlations in Gaussian distributed data as is the case with
mass spectral data. Furthermore, both can be implemented as higher order and/or
non-linear methods.

The process of classification can be implemented by matrix decomposition or by
fitting estimated factors in regression analysis. In other words, classification is an
attempt to find Xmn and βm where the concentration vector βm can have different
values on different spatial coordinates in F [x, y,m]. Both multivariate methods can be
preceded by several filtering methods [Lee08]. Regression analysis requires training,
calibration datasets, or proper statistical estimators. In methods for classification by
decomposition, there is also an implicit model of the data. Regression analysis and
methods for classification by decomposition are closely related to each other. The
use of Neural Networks (NN) for classification is another way to examine linear as
well as non-linear relations in the data [Chi01; San02]. The NN tries to learn how
to classify a dataset, by giving itself feedback with a so-called cost function [Hut96].
For instance, a posterior probability function can be used to estimate the statistical
model in a dataset. Performance and design issues prevent fruitful implementations
of NN for the exploratory analysis of spectral data.

Decomposition

The goal of decomposition is to break up a dataset in a number of smaller compo-
nents to gain more insight how these smaller parts contribute to the whole dataset. A
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Figure 2.6: Two spectral variables f(1) and f(2) that are positively correlated with (a) the
two eigenvectors and (b) the data projected on the new dimension of the first component.

decomposition is usually expressed in one part with the correlations between the vari-
ables and the smaller components, and one part with the projections of the variables
onto the smaller components. A general model for a matrix decomposition is

D = PT · Y (2.8)

whereD is a 2Dm by nmatrix with observable variables and instances (also ‘samples’)
of those variables, Y is a n by n (‘scores’) matrix with the projected variables, and P is
a n by m transformation (also ‘loadings’) matrix that contains the correlation between
the spectral variables m and the components n. One way to find suitable matrices
for Y and P is by PCA using eigenvalue decomposition (see Subsection 3.3.1 for more
details). The values in these components can be both negative as well as positive,
which shows whether the variables are positively or negatively correlated. The number
of components is limited only by the smallest dimension of D. Usually, decomposition
methods are integrated in regression algorithms to estimate a component with certain
constraints. For example, two positively correlated spectral variables f [1] and f [2] are
as shown in Figure 2.6. When these variables are collinear, they can be described by
one new variable by rotation of the ordinant axes using the eigenvectors. This variable
is projected onto a new axis by the eigenvector in P with the largest eigenvalue as
shown in Figure 2.6b. The second eigenvector with the second largest eigenvalue
describes the residual variance if the variables f [1] and f [2] are not perfectly collinear.
In this way, all variables are decomposed according to their variance. The number of
variables is reduced if there are any linear relationships between them. The noise in
the data (described by the second eigenvector in this example), can be removed by
using only the first principal component (first eigenvector) of the projected data.

Features can be extracted from mass spectral data by decomposing the datacube
into several components. The matrix P contains spectral profiles, which resemble
different rows in Xmn. The rows in Y contain the different values for βm on each
spatial location in the datacube. A decomposition method does not use estimates,
specific model information, or expert knowledge. This group of methods has to rely on
the relations within the given data-points to create a decomposition and a potential
classification. Unsupervised classification is applied, when datasets are too large to
be able to manually create a training set. Also, relations could be too complex to
be put into a complete model in advance. A third reason to use plain decomposition
is when expert knowledge about the relations in the data or its distribution is not
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available. A disadvantage is that the solutions are never exactly modeled due to noise
in the data. Another disadvantage is that it is hard to verify the results, because it
is unclear what the classification is based on.

In this category of classification methods, implicit constraints are used only. For
instance, an orthogonality constraint on P decorrelates the different components and
merges multicollinear peaks. Closely related is the Singular Value Decomposition
(SVD). Both use second order statistics to re-express data in terms of basis functions.
These methods do not incorporate a model of the noise on top of the chemical model
of the data. Implicitly, this additional noise factor can be found in the components
that explain the least of the—Gaussian—variance in the data. Contrastingly, meth-
ods belonging to the group of FA estimate the chemical model and leave the noise
out of the final decomposition in factors. Another widely used method is Multiple
Correspondence Analysis [Kie91] (MCA), sometimes referred to as ‘weighted PCA’
because both components are weighted using a statistical model, for instance χ2.

Factor regression

Another method used to determine original spectral profilesXm in a measured dataset
is factor regression. This method uses a limited number of components (or factors)
and has a separate term for the residual. A loading matrix L is estimated by the
spectral profiles that are expected to be present in a dataset or by putting constraints
on these variables. Also previous classification results from, for instance PCA, can be
used as an initial estimation of L. These values are used to model a dataset in factors
using regression. The factor model used in regression is generally of the form

D = L · V + U (2.9)

where D is a m by n matrix of observable variables and instances. The matrix L is a
m by k matrix of factor loadings or unobservable constants, V is a k by n matrix of
unobservable random variables and U is a m by n matrix with a unique, uncorrelated
or error variance for each factor. This model is called the ‘factor model’ and is related
to the decomposition model with a couple of differences. The number of factors ex-
plained by this model is k and is predefined as a constraint on the model. This model
tries to factorize a dataset in a smaller number of components compared to the decom-
position model. The coefficients in Xmn are estimated by the k columns in L. This
model is also applied to the Multivariate Curve Resolution (MCR) [Tyl06]. A super-
vised classification method by regression is trained by examples outside the dataset,
by a data-model, or by expert knowledge. These training or calibration datasets have
to be supplied to be able to create a classifier for the data, for instance maximum
likelihood. In some cases, when only a few distinct properties in a dataset are known,
the use of a data-model could be advantageous. Constraints and limitations on a
statistical distribution can provide a practical model of the data for classification.
Using pure spectra, known mixtures, clustering and region selection, an expert has
to determine endmembers. These endmembers are used for correct classification by
applying a regression model on the measured spectra.

The use of previous classification results for L will enable an accurate selection of
those specific properties in a dataset for a correct classification. Classification results
include those spectral profiles that contain several spectral peaks which are already
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identified. A linear function can be fitted through the data-points if there is only
one independent (spectral) variable. There are many spectral variables in a spectral
dataset. Therefore, a linear regression model has to be found that fits the linear
combination of these spectral variables and does not have to be a linear function of
these variables. Classification will fail, when a non-representative training set is used
in a regression or when a wrong model of the data or noise is implemented. Linear
dependencies between independent variables (multicollinearity) make linear regression
impossible unless constraints are put on the estimators in the model. An expert should
perform a final interpretation and verification of the results before invalid assumptions
lead to the wrong conclusions. Previous results of correct classifications can be stored
in a database and used in future supervised classification.

Many examples of regression schemes exist in literature. Most of them are de-
signed for a specific application for classification. When Multivariate Linear Regres-
sion (MLR) is performed on the resulting scores of a PCA, it is called Principal
Component Regression (PCR). It is used to make an estimation of the different spec-
tral profiles present in a sample. Preacher [Pre02] explains exploratory factor analysis
as a more general approach to regression analysis. All factor analysis methods have in
common that they need a model of the data and noise. With this, an estimation can
be made which can iteratively be improved by for instance (Partial) Least Squares
(PLS) regression or one of its many variants [Wag04]. Projection Pursuit (PP) is
similar to FA to discover groups of data and outliers in projection subspaces. Con-
straints are put on spectral data components with non-negative matrix factorization
from Pauca [Pau06]. Parallel Factor Analysis (PARAFAC) by Bro [Bro97] provides a
unique solution, in contrast with other methods for FA. This means that a solution
has no rotational freedom and can provide a more robust chemical model of the data.

2.3.4 Comparison

In order to implement the desired feature extraction approach, a selection has to be
made in the aforementioned methods for noise reduction. Three categories (filter-
ing, selection and classification) for feature extraction were distinguished, but some
methods can be placed in alternative categories. One reason is the large overlap in
functionality of the methods. Many of the mentioned methods are variations on the
same theme. There is a large variety of alternative methods or specific implemen-
tations, but this overview tries to distinguish the main approaches and some of the
differences in this large collection of methods. As mentioned in the previous subsec-
tions, most methods can be used side-by-side in the same analysis: filtering to improve
a primary selection and selection to improve the classification. However, their com-
mon goal is the extraction of features and reduction of the influences of noise. This
subsection provides an overview of the methods and their properties.

All of the methods mentioned are designed to reduce the influence of noise in
an analysis. Since each of them has a different approach to reduce noise, different
advantages and disadvantages have to be considered in a specific application. This
comparison is not intended to formally quantify all available methods. Instead, it aims
to provide a framework on which the decision of finding the appropriate methods can
be based. Certain criteria have to be defined to be able to find an appropriate subset
of methods that can be used for the exploratory qualitative analysis of (imaged) mass
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method\property selection reduction parameters

down-binning − + window

convolution filter − − transfer function

deconvolution filter − − transfer function+model

wavelet filtering − + wavelet function+window

cluster analysis + + #components

principal component analysis + + none

factor analysis + + #components+model

multiple correspondence analysis + − model

Table 2.3: Different methods with noise reduction properties for peak detection.

spectral data. A main selection of methods with their accompanying scores on certain
criteria can be found in Table 2.3.

In this approach, automatic selection of spectral variables is important. Conse-
quently, an expert can inspect and interpret a selection. Not only is a manual selection
within large datasets a time-consuming exercise, but chances are that interesting data
is missing in a selection. This brings us to the next property that is important in the
analysis of mass spectral data: the ability to reduce data. In large datasets, it is hard
to get a complete view of all of the different relationships. Many methods for feature
extraction tend to reduce the search-space by dimension reduction or compression.
Instead of dimension reduction by subset selection (or filtering), the number of di-
mensions can also be reduced by transformation into or projection onto a new and
smaller set of variables. There is a difference between dimension reduction and—lossy
or lossless—compression [Kaa01], although both have the goal to retain as much of
the signal as needed prior to classification. Dimension reduction intends to improve
classification by eliminating irrelevant variables in contrast with compression which
eliminates redundancy in the data as much as possible.

A next criterion can be put on the parameters and—as a result—the complexity
of each method. Since each spectral measurement and its intended goal is different,
it is desirable to have as few parameters as possible. Of course, without any model
parameters, feature extraction becomes less accurate compared to having a full chem-
ical model and estimation of noise. Finding the optimal parameter setting for an
experiment is a difficult task. Not many mass spectrometrists are knowledgeable in
the subtle differences of each setting. Experts still have to interpret and quantify the
results in exploratory analysis. A quick and simple feature extraction could be more
efficient than time spent on creating an exact parameterized model. In this compari-
son, methods become less complex when they have less parameters as described in a
survey of nonlinear dimension reduction techniques by Van der Maaten [Maa07]. This
study compared nonlinear to linear methods and found that nonlinear methods do
not perform better, because of the curse of dimensionality, overfitting of local models,
oversampling, and the sensitivity to outliers. Iterative methods are likely to be more
complex compared to direct methods as the final point of convergence is not fixed,
but depends on the used parameters. Quantification of computational complexity
in extraction methods is an intricate area. This complexity depends on the dataset,
on specific parameters, and is difficult to express in comparable figures [Pla04]. An
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exhaustive and more formal comparison is beyond the scope of this overview.
In our approach, the methods with the least prerequisites are chosen to be im-

plemented in the set of tools. The many available spectral variables make it possible
to choose those methods that are able to make a trade-off between resolution and
improvement of the signal-to-noise ratio. The primary goal of feature extraction in
this approach is to be able to make a selection of possibly interesting features. A
final classification and interpretation is left to the expert to whom the results are
presented. Since the data is multicollinear, the most simple approach for selection is
PCA. It enables the selection of data and is well-known for its data reduction capa-
bilities. Another important property is that it is not necessary to set any parameters.
Unfortunately, in order to be able to apply PCA to a collection of mass spectra, the
signal-to-noise ratio has to be improved prior to selection, for instance by filtering.
Otherwise, the variance in the noise dominates extracted components, because PCA
uses covariances as a criterion to make a distinction between different components.
The most simple method to reduce and filter spectral data is binning. The purpose of
binning is not only to increase the signal-to-noise ratio of the spectral peaks, but pri-
marily to reduce the number of variables to be able to apply PCA. One mass spectral
peak is measured among several spectral variables. A higher signal-to-noise ratio is
established by combining neighboring spectral variables instead of smoothing them.
Together, these methods create a minimal subset of tools to allow for the extraction
of features in imaging mass spectrometry data. Others have successfully used PCA
as well as binning for feature detection. The difference with this work is the explicit
use of binning in feature detection and separation of positive and negative (corre-
lated) parts in a component. Interesting peaks are often selected manually [Lho01]
before PCA instead of being able to use the full dataset for exploration. Addition-
ally, feature detection is separated from the visualization of features, which allows for
enhancements in the representation of features.

2.4 Visualization
After extraction, features are visually presented to an expert. This expert has to be
enabled to make an appropriate selection in the spectral and/or spatial dimension
for a more detailed inspection and interpretation of the automatically highlighted
features from the data. Besides the interpretation of the spectral peaks, an expert
focuses on recognizing spatial patterns in spectral data. Visual cues on extracted
features will provide better contrast against other parts of the dataset. The ability to
leave out identified artifacts and noise by selection creates a better focus on the more
interesting parts of the dataset.

According to the dimensionality, visualization techniques can be divided into
four categories: spectrum, image plane, datacube, and feature. Müller exploited
PCA to optimize each separate step in the generic visualization pipeline [Mül06].
Landgrepe [Lan00] distinguished visualizations into three categories: the spectral
space, the image space, and the feature space. One or more spectra can be visualized
in a plot of the signal in the spectral space. In the image space, the intensity values
are visualized by an image plane on a specific spectral band. In the feature space,
the results are parameterized and could be represented by an abstract shape or icon.
Another category for visualization is added in the approach in this work. This is
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Figure 2.7: (a) An example of a single raw spectrum with raw channels and (b) the sum of
all spectra with raw channels of neuroblastoma cells.

the visual representation of the datacube in three dimensions. This representation is
closely related to the visualization of features, but can be distinguished by the fact
that the data-points are not parameterized before display. The following subsections
provide a more detailed overview of each of these categories.

Spectrum

Line-plots are 1D representations of a spectral signal. They are a representation of
one or more spectra in a single view, as shown in Figure 2.7a and b. Multiple spectra
measured at different locations can be visualized by multiple lines, although another
common approach is to display the sum (or average) of all spectra. A mass spectrum
shows the isotopic distribution of a sample material. Each data-point in a spectral
datacube represents a detected ion. These data-points are joined together by a line.
Several detections, located closely together in the spectral dimension, create a spectral
peak. In other words, peaks in mass spectra are those regions with a relatively higher
density than their surrounding spectral regions.

The display of a spectrum in a line-plot is the traditional view in the analysis
of spectral data. This way, peaks in the spectral signal are instantly visible. In
the case of a mass spectrum, multiple spectra are added together to improve the
signal-to-noise ratio for better distinction of peaks. This is an operation on multiple
spectra, and therefore removes the spatial distinction between spectra and decreases
the resolution of a spectral image plane. An alternative method to improve distinction
between peaks is to filter a single mass spectrum with for instance a binning or a
convolution method. This improves the signal-to-noise ratio, but with a decrease in
spectral resolution. Again, there is a trade-off between noise that could occlude a
peak and the level of detail of a peak’s visualization.

A spectrum is plotted with the spectral units on the x-axis and the intensities on
the y-axis. The spectral units are usually expressed in the mass-to-charge ratio instead
of ‘channels’ that are measured by the mass spectrometer. Historically, a spectrum
is analyzed by locating the peaks in a spectrum. Therefore, alternative approaches
for feature extraction should keep the possibility to view the results spectrally.



32 SPECTRAL ANALYSIS: A SURVEY 2.4

(a) (b)

Figure 2.8: (a) An example of the spatial distribution of intensity values of a group of 250
summed channels combined in one spectral band and (b) the spatial distribution of the sum
of all spectral bands of neuroblastoma cells in a 150 × 150 µm field of view.

Image plane

A spectral image plane is a 2D representation of the intensities on one or more spectral
band(s) as shown in Figure 2.8a and b. Usually, multiple spectral bands are combined
and visualized in the same image. When all spectral bands are summed and displayed
in the same image, it is usually referred to as the Total Ion Count (TIC) image.
Different colors are assigned to different signal intensities. This creates a spatial
distribution of measured signals. Just as all positional information is lost in the
spectral view, all spectral information is lost in a spatial view. Many small biological
structures can be recognized in an image. A spectral image is therefore a useful
representation to identify and interpret different chemical structures in an extracted
feature.

An image representation instantly shows the spatial patterns in a measurement,
but knowledge about the chemical composition is still needed to find an appropriate
spectral region. Not all spectral regions contain distinguishable spatial patterns or
have enough contrast to be used for interpretation. Most images resulting from mass
spectrometry do not contain edges, corners, or blobs with enough contrast in order
to be detected automatically. Results have to inspected manually for interpretation.

Each intensity value on a specific spectral band is converted into a pixel with a
specific color in a color-scale. The observation made by Prutton [Pru99] states that
some mass spectra can contain information about the surface depth as well as the
masses of the detected ions. This information can be visualized by creating an image
plane of a single peak. Each—relatively small—difference in mass can be visualized
by assigning colors to different mass-to-charge ratio located nearby [McD03]. This
creates a map where different regions in mass-to-charge ratio are assigned to different
colors. As a result, this image contains a height-map of the surface of the sample
after a measurement with an appropriate technique.
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Figure 2.9: An example of a 3D representation of a spectral datacube of neuroblastoma
cells in which the lowest intensity values are transparent.

Datacube

A datacube is a volumetric representation of the acquired spectra with their spatial
positions. This three-dimensional (3D) representation is basically a sequence of im-
age planes, stacked on top of each other as shown in Figure 2.9. Whereas spatial
information is lost in the spectral view and spectral information is lost in a spatial
view, a combined view could be useful to highlight these relations.

An eminent problem in this representation is the occlusion of the data-points
within the boundaries of the datacube. Problems with occlusion are usually solved
with tools that interactively change the view in a 3D visualization. Changing the
view on a solid datacube will not solve the occlusion problem. The introduction of
selection tools can help to interactively remove uninteresting parts of the datacube.
Additionally, transparency can be used to provide more insight in occluded parts.
Since a datacube has no ‘ real’ physical meaning, interpretation of the resulting shapes
can be troublesome. Therefore, the applicability of a 3D representation of a datacube
for analysis remains questionable.

Some authors experimented with 3D visualization of imaging mass spectrome-
try data [Sme07]. In 1997, Kenny [Ken97] experimented with compression, volume
rendering and segmentation of datacubes from multi-spectral analytical electron mi-
croscopy. Although his implementation was limited by hardware, no further progress
was made in this area even when hardware improved. Other experiments with multi-
resolution visualization strategies on sparse data from neutron spectroscopy were
made by Bustinduy [Bus05]. Although the same problems were recognized, this im-
plementation was able to visualize some spectral variables with a limited spatial reso-
lution. Small differences in the spectral dimension can be visualized as 3D differences
in height to represent surface characteristics.
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(a) (b)

Figure 2.10: (a) An example of the spatial component of a projected feature and (b) the
spectral component of the same feature, from a datacube of neuroblastoma cells in which
groups of 250 channels are summed together.

Feature

Instead of visualizing the original data values, an abstract representation can be
made to highlight properties of—parts of—the data. Basically, all abstract, filtered
or projected representations of spectral data can be considered visualizations in a
newly defined feature space. Many results of the feature extraction techniques can be
put into this category. Most of these methods create a subset of the original dataset
or make projections onto new variables as shown in Figure 2.10a and b.

Feature visualization can be helpful, because the original intensity values do not
always provide the necessary insight into the data. As the data is transformed and the
dimensions change, however, it is difficult to extract any quantified information from
a dataset. The metrics and models in the feature extraction have to be very accurate
to be able to interpret a visualization of features instead of using the original data
values. In the field of visualization, one common technique for dimension reduction is
Multi-Dimensional Scaling (MDS). This visualization technique allows the exploration
of similarities and dissimilarities within a dataset.

In an approach for exploratory analysis, it is not harmful to rely on feature vi-
sualization. A final quantification and interpretation has to be done with original
data-values, preferably on the highest possible resolution. PCA is able to provide
both spectral and spatial components as a result of an analysis. Both components
are projections from the original dataset and therefore can be called features. Mean-
while, these features can still be represented in a spectral or spatial view. The main
difference with real values is that both spectral and spatial components contain neg-
ative data values, whereas the real intensity values do not. These negative values are
inherent to the way PCA decomposes the data. These visualizations can therefore
be useful for feature discovery, but interpretation has to be based on the real data
values.
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2.5 Summary and conclusion
This chapter presented an overview of the methods used for the analysis of imaging
spectrometry data. The analysis in the proposed approach is divided into three stages:
data acquisition, feature extraction and feature visualization. A detailed description
of currently applied methods is given for each stage. This was done to obtain a
specific subset of methods that is the most appropriate in this qualitative approach
for analysis. The choice was made according to the defined intentions and goals
for analysis, applicable in the extraction and visualization of features from acquired
spectral image data.

The high-resolution capabilities and available spatial information make imaging
mass spectrometry ideal for the analysis of biological samples. PCA in combination
with a binning function is most suited for extracting features from imaging mass
spectral data. Both methods increase the signal-to-noise ratio and reduce the amount
of data. The binning function can create different levels of detail in visualizations.
Additionally, PCA is able to distinguish between positive and negatively correlated
spectral profiles. The visualization of (spectrally and spatially linked) features sup-
ports an analyst in the exploration of a spectral datacube.

In the remaining chapters of this thesis, different issues are addressed to facilitate
feature extraction and visualization in order to support exploratory analysis. The
main subset of methods used to implement these applications are: binning, PCA, and
(primarily 3D) visualization to support the analysis and exploration of spectral data.
The combination of these methods should make it possible to implement basic feature
extraction and visual exploration of the results by an expert.





Chapter 3
PCA-based feature extraction

Chapter 2 provided an overview of different methods for the acquisition of spectral
imaging data, extraction of features and visualization of the results. In our approach,
two simple methods were chosen for qualitative analysis. These methods provide
filtering, selection and classification of imaging spectrometry data. With these two
methods, different tools were developed to assist an expert in the exploratory analysis
of large spectral datacubes.

Chapter 3 will provide more details on implementing feature extraction on spectral
datacubes by using PCA or PCA-based methods. Firstly, a spectral datacube has
to be transformed and binned. Then, features are extracted from the datacube in
three ways: by applying PCA and two PCA-based methods. For all three methods,
the resulting features are compared quantitatively and qualitatively. The extracted
features are used to solve issues with the visualization of mass spectral imaging data,
as described in the remaining chapters of this thesis.

3.1 Goal
In our approach, the goal of extracting features from a spectral datacube is to auto-
matically create a potentially interesting selection for analysis. Interesting features
are data-points which have similar properties, thereby distinguishing themselves from
other parts in a dataset. In the case of spectral data, these features are the spectral
peaks that recur in several spectra or on different locations. Basically, the goal is to
discover the original spectral peaks Xmn and their concentrations βn in

F ′
x,y(m) = β1Xm1 + β2Xm2 + · · ·+ βNXmN (3.1)

that produced a spectrum F ′
x,y(m) on a certain location (x, y) where n is the num-

ber of original spectral profiles and M the number of spectral variables. PCA-based
methods are able to automatically create selections of features according to the vari-
ance present in the spectral variables without data-dependent prerequisite parameters.
These unknown values for Xm can be approximated with a system of linear equations
if there are enough measured instances F ′

x,y(m), i. e. an overdetermined system. These
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selections are highlighted in a visual representation of the data, to be interpreted by
an expert.

If each spectral peak has to be selected, interpreted and compared manually,
chances are certain features are not noticed. For instance, if the goal of an analysis
focuses on a different part or aspect in the dataset. Automatic feature extraction
on the other hand will—besides being more sensitive—also reduce the manual effort
in selecting individual or regions of data-points. Therefore, a method for automatic
extraction is less time-consuming, but still relies on an accurate manual interpretation
of the results.

The raw data of an imaging mass spectrometry experiment has to be prepared
before a decomposition method can be applied. This phase is usually referred to as
preprocessing of data. Several transformations have to take place before a decom-
position method can be applied to the data. Different PCA-based methods can be
applied after preprocessing. The mathematical models and prerequisites of three de-
composition methods with different constraints are compared. These three methods
are quantitatively and qualitatively compared to decide which is the most appropri-
ate for this exploratory approach. A quantitative comparison is made by comparing
the results of the methods with an a-priori known spectral data cube; i. e. a ground
truth. A qualitative comparison of resulting components of a case-study is made by
an expert.

3.2 Data preprocessing
Data preprocessing is the transformation of a dataset, which is necessary to be able
to apply specific methods for analysis. The transformations for preprocessing can
be divided into four different groups. First, the imaging MS measurements have
to be transformed and combined into one dataset with a certain format, a spectral
datacube in this case. Second, the spectral datacube has to be filtered to reduce it
to an appropriate size and improve the signal-to-noise ratio. Third, this datacube is
transformed into a 2D matrix for the application of the decomposition algorithm. An
optional fourth transformation is to weight the different variables or instances against
each other. In order to be able to estimate the weights, additional knowledge of the
measurement is needed. It should be mentioned that the use of weighting as a means
of transformation is sometimes called into question when the variance estimates of
the data elements have a high degree of uncertainty [Kee05].

3.2.1 Format
PCA is traditionally performed on a 2D matrix with the samples of the dataset
in one dimension and the dependent variables in the other dimension. A spectral
datacube has to be converted to such a matrix with preservation of the spectra and
images. In order to do so, the raw mass spectrometry data has to be placed in this
spectral datacube format. A mass spectral measurement consists of a collection of ion
detections. Each detection is a 2-tuple with a number representing the coordinates of
a location. The two coordinates of one location can be derived from this number. The
other part of the 2-tuple is a channel number, from which a mass-to-charge ratio can
be determined. All these 2-tuples are combined into one datacube. One measurement
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can contain more than 2.5 · 107 2-tuples. This process transforms all measurements
into a discrete datacube F [x, y,m].

One way to reduce data is to use the raw channel data instead of converting
its corresponding mass-scale. Accuracy is lost when converting the 32-bit channel
integers into floating point numbers for the m/z values. Another advantage of using
the channel integers is that the sparse matrix format can be used in MatLabTM.
This compression uses a Harwell-Boeing format which leaves out the storage of zero-
counts in the mass spectrometry data without loss of information. The spectrum on
a certain spatial location represents one column in matrix X. A slice of the datacube
at a particular wavelength represents one row.

3.2.2 Filtering
The data has to be filtered to reduce the size and improve the signal-to-noise ratio. In
this approach the minimal filtering is done by binning, also known as down-binning,
bucketing, or bagging. This filtering approach is closely related to the discretization
of continuous measurements or the mapping of measurements to categories by means
of a histogram.

Binning can be applied in the spectral dimension as well as in the spatial dimen-
sion. Usually, there are many more spectral variables compared to the spatial variables
in mass spectrometry. Because of their large amount of data-points, spectral data-
cubes are commonly reduced by spectral binning in the field of mass spectrometry.
With this technique the spectral and spatial dimension are reduced to any desirable
size by putting two or more consecutive channels or four or more neighboring counts
into one combined bin. No ion-counts are lost and the signal-to-noise ratio is reduced
at the same time. PCA needs this spectral reduction to be able to treat each peak as
one variable instead of having more samples across multiple channels. Without spec-
tral reduction, PCA finds correlations in peak distributions instead of correlations
between spectral peaks.

A simple linear binning function f̂ [i] on the spectral variable m ∈ {4, 5, 6, . . .}
with equal-width bins with size w ∈ [2, bm/2c] and the binned spectral variable i ∈
[0, bm/wc] is defined as

f̂ [i] =
w−1∑
j=0

f [i · w + j] (3.2)

on the sequence of spectral measurements. The discrete function describing the com-
plete measured spectrum is divided into equally sized bins by summing the sequential
values. Spatial filtering has to be applied to the datacube format instead of on a
2D matrix to be able to use the neighboring intensity values. In the 2D matrix for-
mat, these spatial relations are only implicitly present. In spatial filtering, spatially
neighboring cells are combined into a single new cell.

3.2.3 Unfolding
The spectral datacube has to be ‘unfolded’ after acquisition to be able to perform
a multivariate analysis. Bro [Bro97] describes it as: “simply a way of rearranging a
multi-way array to a matrix”. The measured 3D datacube F [x, y,m] is converted into
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2D M by XY matrix D with m, the spectral dimension and xy the spatial dimension.
Several matching spectral and spatial components are extracted using multivariate
analysis on unfolded matrices. Commonly, the resolution of the components is limited
to the amount of memory that is available to store a partial solution, for instance the
covariance matrix in a PCA. Therefore it is desirable to use the smallest possible
matrix D with the highest possible resolution to obtain good results.

A 2D matrix is constructed by unfolding each X by Y image in the spatial dimen-
sion into an XY -dimensional vector. This vector represents the spatial dimension
at a particular mass-to-charge ratio. The 2D matrix, D, consists of each unfolded
spatial vector, see Equation 3.3. Typically, these are 2 ·106 by 256×256 matrices for,
respectively, the spectral and spatial dimension. Each row in

D =


d1,1 d1,2 · · · d1,XY

d2,1 d2,2 · · · d2,XY

...
...

. . .
...

dM,1 dM,2 · · · dM,XY

 (3.3)

represents an image at a particular spectral variable m.

3.2.4 Weighting
Most applications of multivariate methods agree on the necessity of data weight-
ing prior to feature extraction. There are several approaches to remove undesired
artifacts, unwanted variances and corrections for relative intensity variations. The
most common approaches are baseline correction, mean-centering, unit variance scal-
ing, and different methods for normalization. Baseline correction is necessary with
MALDI data (see Subsection 2.2.1) and is performed by subtracting a baseline from
the complete spectrum. Mean-centering across a matrix D is performed to center the
data on the origin of coordinates to remove the mean of the variables. To remove the
mean from d1 . . . dXY , the centering matrix CM = IM − 1

M 1M1T
M is used for WM in

D̃ = WMDWXY (3.4)

with IM the identity matrix and 1m the m-element vector of ones. This is only useful
if variables can not be compared directly or have different offsets. An offset is a
part of the structural model that is constant across one or several variables [Bro03].
Unfortunately, meaningless variables can contaminate a dataset if emphasis is put on
them by mean-centering, which increases the noise in the variance. Variance scaling
can also be expressed as a weight matrix with the scale as a diagonal matrix, for
instance with inverse of standard deviations of D. Scaling is generally not suitable
for spectral data since noise is scaled to be as important as peaks, especially when
factor analysis is applied due to the risk of overfitting. Depending on the type of
data, different applications of normalization exist. A correct model of normalization
must be selected, since normalizing using a wrong model could introduce erroneous
trends and artificial variation.

It is very well possible to combine various preprocessing techniques with the meth-
ods presented here. Mean-centering would be not appropriate in the TOF SIMS case,
as data-processing is performed on full datasets and not only on peaks. The use
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of spectral mean-centering would then result in negative values for mass-numbers
that give zero counts and therefore the interpretation of the spectral profiles that
result from PCA would be much more complicated. The advantage of the sparse
format would be lost as every spectral parameter would give a certain number of
mean-centered spectral counts, resulting in almost no zeros in the matrix.

Keenan and Kotula [Kee04a] applied a different weighting scheme for PCA to
account for Poisson distribution in mass spectrometry data as in

Wm = (aG)−1/2 (3.5)

Wxy = (bH)−1/2 (3.6)

where a and b are constants to scale the eigenvalues. The estimates in the Poisson
distribution of these variables are a =

√
d../n, b =

√
d../m, g = dm/

√
d.. and h =

dn/
√
d.., where d.. represents the total number of counts in D, m is the number of

rows inD and n the number of columns. G andH are diagonal matrices with elements
of vectors g and h along the diagonals. With this choice of variables, the weighting
matrix aG is simply a diagonal matrix with the properly unfolded mean image along
its diagonal. The diagonal of the matrix bH consists of the mean spectrum. This way,
the data is transformed according to the estimated variance by the mean to distribute
the Poisson uncertainty in the data more uniformly.

3.3 PCA-based methods
PCA separates peaks in different uncorrelated spectral components and can simul-
taneously extract spatial patterns with the distribution of those components. The
direct linkage between the resulting spectral and spatial components characterizes
the approach. In this work, we combine both spatial and spectral dimensions to form
a 2D data matrix and apply PCA to this matrix. This results in finding correlated
spatial and spectral features. This way, features are used to discriminate between
boundaries of chemical elements on the material surface. We use the resulting princi-
pal component vectors to construct different tools for visualization. Features can be
made opaque to highlight features of interest, while features with low variances are
made transparent. We briefly describe the three different PCA-based methods for pa-
rameterless feature extraction. The methods we use are: PCA, PCA with VARIMAX
rotation and PARAFAC.

3.3.1 PCA

We extract spatial and spectral components using the well-known method of apply-
ing PCA [Wal03; Las98]. In some application areas, this is also called the discrete
Karhunen-Loève transform, or the Hotelling transform. In our approach, we unfold a
M by X by Y datacube in such a way that a 2D M by XY matrix D is constructed.
Common PCA is used to compute a sorted list of N principal components in an or-
thogonal N by M matrix P using eigenvector decomposition. From these eigenvectors
(or ‘eigenspectra’), a N by XY matrix Y is calculated by
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Y = P ·D (3.7)

that, in this case, can be denoted as the matrix with ‘eigenimages’. The matrices D,
PT and Y are defined as


d1,1 · · · d1,XY

d2,1 · · · d2,XY

...
. . .

...
dM,1 · · · dM,XY

 =


p1,1 · · · p1,N

p2,1 · · · p2,N

...
. . .

...
pM,1 · · · pM,N

 ·


y1,1 · · · y1,XY

y2,1 · · · y2,XY

...
. . .

...
yN,1 · · · yN,XY

 (3.8)

by Equation 2.8, which explains how D can be expressed using N components in P
and Y .

In PCA, the following constraints apply: P · PT has to be a diagonal matrix and
Y · Y T is a square identity matrix I. These constraints define a unique solution for
P that is found by the eigenvector decomposition. An eigenvector decomposition
A · P = λ · I · P is obtained by breaking up a m by m square covariance matrix

A =
1
m
·D ·DT (3.9)

from the outer product of matrix D into eigenvectors P with eigenvalues in λ and
the identity matrix I. This is accomplished by solving the homogeneous equation
|A− λI| = 0. The columns of both P and D are forced to be mutually orthogonal
and the components are ordered according to the explained variance in the data.

The first principal components in P describe those ‘loading vectors’ (the spectral
profiles) in the datacube with the most spectral variance. Without preprocessing,
the first component has only non-negative values [Len04]. The original datacube is
projected using the principal components in P as basis functions and results in a
matrix Y with the spatial ‘score vectors’. The rows in P are the eigenvectors in
the spectral dimension and the rows in Y give the scores of the eigenvector on each
spatial location. Since the principal components in P are sorted in decreasing variance
according to their eigenvalues (λ1 ≥ λ2 ≥ . . . ≥ λn), the first rows in Y represent the
highest contribution to the spatial dimension. The last rows with the less associated
variances are more likely to represent noise. The components can have both negative
as well as positive values.

The ‘Guttman-Kaiser criterion’ [Gut54] states that components with a eigenvalue
lower than one—less than one original variable—should be discarded. There is also
‘Cattell’s scree test’ [Cat66] which basically sets a relative threshold by visual inspec-
tion based on the inflection point of the resulting curve of eigenvalues. One problem
with this approach is the minimal contrast between different spectral peaks and spatial
components. This results in less distinctive regions in the resulting features. Another
problem is that the extracted loading and score vectors can be negative, while it
is known that spectra are intrinsically positive. This problem can be overcome by
splitting the spectral profiles in P in a part with positive values

P+
n [m] =

{
m, if m ≥ 0
0, otherwise (3.10)
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and a part with negative values

P−
n [m] =

{
−m, if m ≤ 0
0, otherwise (3.11)

where n is the number of components (or rows in P ) and m are the spectral variables
in the columns. The matching positive spatial distributions Y +

n can be obtained by

Y +
n = P+

n ·D (3.12)

and its similar counterpart Y −
n can be found by replacing P+

n with P−
n in Equa-

tion 3.12.

3.3.2 VARIMAX after PCA
The decomposition given in Equation 3.7 is not unique. There are many variations
on the two-way bilinear decomposition similar to PCA [Tim01]. Various optimization
criteria and constraints can produce different results. One approach is to rotate the
resulting principal components to obtain a better fit on the data without affecting
the decomposition using the rotational ambiguity of PCA; i. e., D = PT ·R ·R−1 · Y .
Both R and R−1 demonstrate the ambiguity, as they can be removed or change the
value of PT and Y . The VARIMAX rotation proposed by Kaiser [Kai58] is one of
the most popular criteria for rotation. It can be applied as a post-processing step on
extracted principal components. VARIMAX searches for a rotation of the original
components in such a way that the variance of the squared principal components is
maximized. The axes of the new components remain orthogonal to each other in
VARIMAX. The axes are not required to be orthogonal to each other in an oblique
rotation, like for instance SIMPLIMAX [Kie94]. For each kth principal component
the objective function S2

k is computed via

S2
k =

f ·
∑m

i=1

(
x2

if/h
2
i

)2

−
(∑m

i=1 x
2
if/h

2
i

)2

f2
(3.13)

where is f the number of principal components, m is the number of spectral variables,
xif is the loading of spectral variable i on component f and

h2
j =

f∑
i=1

P 2
ji (3.14)

is the communality of the ith spectral variable in P . The overall variance V , with
V =

∑f
k=1 S

2
k is being maximized until the increase of V drops below a certain

threshold (i. e. 10−6 in our examples). In theory, the VARIMAX method can improve
the contrast between spectral peaks, since rotating the principal component bases will
result in sharper gradients in adjacent spectral peaks.

3.3.3 PARAFAC
Another variation of a PCA-like decomposition method is the PARAFAC (PARAllel
FACtors analysis) model of Harshman [Har70]. Exactly the same model was inde-
pendently proposed by Carroll and Chang [Car70] as the CANDECOMP (CANonical
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DECOMPosition). Kiers [Kie91] has shown that PARAFAC model can be considered
a constrained version of the two-way PCA. The PARAFAC generalization of PCA
does not have the rotational ambiguity in its restricted model as in

Dk = PT ·Bk · Y + Ek (3.15)

where Ek is a residual matrix. This restricted PARAFAC model [Bro98] resembles
the model of SVD in which Bk would be a diagonal matrix with the singular values,
where k is the number of components. This allows putting several constraints on
the decomposition instead of the orthogonality constraint in the SVD. The imple-
mentation of the algorithm described by Bro [Bro97] is used in this work to put a
non-negativity constraint on the decomposition on P and Y in Equation 3.7 to im-
prove interpretation of the scores. Hereby, the implicit orthogonality constraint of
the PCA model is lost.

Other than with PCA, the PARAFAC model has residuals which are not part of
a model of noise or error, but of the difference between model and measured data.
The components in PARAFAC can not be sorted according to the explained variance
as with PCA. Therefore, the number of components has to be known in advance,
also in contrast with an eigenvector decomposition. The advantage of the PARAFAC
method as we use it, is that the score vectors will always be positive. The resulting
features are therefore easier to interpret as only the most positive values in the score
vectors instead of the most negative ones have to be included in a selection.

3.4 Results
The quality of the extracted features from three different PCA-based methods is
compared. We have identified three important criteria to assess the quality. First,
spatially correlated spectral features in the visualization should be distinguishable.
As a rule of thumb, the higher the contrast between features, the higher the quality
of the visualization. Second, these features should be recognizable as bio-molecules in
complex surfaces such as cells and tissue samples in the datacube. For example, do
these features represent a cell wall or a tissue, etc.? If so, how well are the recognized
spectral features correlated? Finally, are the spectral and spatial features distinct
in different regions in the image? These criteria will be used in Subsection 3.4.2 to
qualitatively compare the presented methods.

3.4.1 Quantitative comparison
A synthetic spectral datacube was created to be able to make a quantitative com-
parison between the three decomposition methods. Three different spectra including
some overlap in the peaks were used to create a variety in the spectral and spatial
dimensions. After this, some different levels of Gaussian noise (mean: 0.000 and with
a variance: between 0.0001 and 0.0500) were added to the whole datacube to make
it more realistic. A spectral, spatial and 3D view on this synthetic spectral datacube
are displayed in Figure 3.1.

The resulting spectral score vectors of the three methods are compared with the
original spectra, our ground truth. For a quantitative analysis we use a widely used
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(a) (b) (c)

Figure 3.1: Three views on the synthetic spectral datacube with variance of 0.0001. (a) A
summed spectral intensity plot with on the x-axis the spectral channels and on the y-axis the
intensity. (b) The summed spatial distribution of all spectral profiles. (c) A volume rendering
of the complete synthetic datacube.

Table 3.1: The root mean squared error of the different components of each method.

Method PCA PCA+VARIMAX PARAFAC
component1 0.0744 0.0813 0.0235
component2 0.0691 0.0581 0.0112
component3 0.0753 0.0629 0.0249

Total ε 0.2190 0.2023 0.0597

measure of error, the Root Mean Squared Error (RMSE, ε) similarly used in other
analyses of correlated spectral data [Sca93]. The absolute values of the resulting
spectral component are compared with the synthetic component according to

εmethod =

√∑m
i=1 (|componenti| − synthetici)

2

m
(3.16)

The number of spectra in the datacube is represented by m and results in a ε for
each method. Each method is able to distinguish between the three different spectral
components, while the other components clearly contain the added noise. An overview
of ε of each method is shown in Table 3.1.

This table clearly indicates that the PARAFAC decomposition results in the least
amount of error. Also the VARIMAX rotation provides a better fit compared to the

Table 3.2: The total root mean squared errors of each method with different levels of Gaus-
sian noise.
variance\Method PCA PCA+VARIMAX PARAFAC

0.0001 0.2259 0.1983 0.0352
0.0010 0.2190 0.2023 0.0597
0.0100 0.2210 0.2038 0.1352
0.0500 0.2307 0.2219 0.1613
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(a) (b)

Figure 3.2: (a) A summed spectral intensity plot with on the x-axis the mass-to-charge ratio
and on the y-axis the measured intensity. (b) The summed spatial distribution of all spectral
profiles in the datacube.

use of PCA without a rotational fit. To gain better insight into the influence of the
added Gaussian noise, different levels of noise are introduced as shown in Table 3.2.
Table 3.2 shows that also when noise levels are rising, the ε of the PARAFAC method
still remains lower than the ε of the other two methods.

3.4.2 Qualitative comparison

Imaging MS is used to analyze the spatial organization of intact biomolecules in com-
plex surfaces such as cells and tissue samples. It is particularly useful to directly
visualize peptide and protein distributions in invertebrate or mammalian tissue. In
the imaging MS data used here a 15 kV Indium primary ion beam is rastered over
the surface of a cryosection of the cerebral ganglia of the freshwater snail Lymnaea
Stagnalis. A data array of 256× 256 x,y-coordinates, is generated with each position
containing an entire mass spectrum. Each square pixel represents an area of approxi-
mately 500×500 nm. Prior to the experiment the tissue surface has been covered with
a thin layer of 2,5-dihydroxybenzoic (2,5-DHB) acid by electrospray deposition (called
‘matrix material’) to enhance the generation of intact biomolecular ions. The mass
spectrometer used was a time-of-flight mass spectrometer. High-resolution molecu-
lar ion maps have previously shown to provide insight in the spatial organization of
various biomolecules in these brain sections [McD05]. Figure 3.2 shows the summed
spectral intensities and the TIC image of the spectral datacube in this example.

Manual interpretation of these types of datasets is a time-consuming procedure,
where either the spectral peaks of interesting spatial features or the spectral images
of interesting peaks in the spectrum are inspected. In order to identify spatially
correlated spectral data (often attributed to a specific compound), statistical analysis
tools are called for. Here, we qualitatively examine the results of the three different
multivariate statistical analysis algorithms applied to a single MS image dataset of
the brain of Lymnaea Stagnalis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Two spectral (a) and their two spatial (d–g) components derived using PCA.
Two spectral (b) and their two spatial (e–h) components derived with PCA and VARIMAX
rotation. Two spectral (c) and their two spatial (f–i) components derived with PARAFAC.
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PCA

The reconstructed score vectors in Figure 3.3a display two separated components
where the first component (blue spectrum) contains predominantly spectral features
that are clearly correlated to the applied 2,5-DHB matrix material as positive peaks.
Intermixed with this compound negative spectral features of cholesterol (m/z 368 and
385) are also observed. As in regular spectra the 2,5-DHB peaks usually constitute
the base peak in the spectrum. This method seems to underrepresent the spectral
intensities. The spatial features in (d) are distinctively related to the areas in between
individual cells that seem to indicate a stronger 2,5-DHB signal is found there.

The second component (green spectrum) found is again a mixture of cholesterol,
but now includes positive peaks and a peak at m/z 425 that previously has been
attributed to APGWamide. It also contains some higher mass lipid molecules around
m/z 815. The spatial features of the individual cells in (g) are barely recognizable.

PCA with VARIMAX rotation

The second method, PCA with VARIMAX rotation, shows similar spectral features
in its components but judging from Figure 3.3b an improved spectral correlation is
found. Some of the individual cells can be recognized by the higher values in yellow
compared with the green areas that surround them. This is also obvious from the
improvement in quality of the images in (e) and (h) compared to similar spatial
components from PCA in (d) and (g). A better feature contrast is found, but the
individual components are not fully separated.

PARAFAC

The PARAFAC approach offers a spectral view that is more similar to the spectral
view the mass spectrometrists are used to. In addition, the relative intensities and
signal-to-noise ratio in the two spectral components (in Figure 3.3c) are as would
be expected from these types of measurements. More importantly, a much better
separation between the 2,5-DHB-related peaks and the cellular peaks is obtained. This
also results in better contrast in the feature images in Figure 3.3f and i, facilitating an
easier localization of the chemical compounds. Note that color-scale in (i) has only
positive values and is reversed compared the similar component images in (g) and
(h). This is caused by the positivity constraint in PARAFAC. This scale is reversed
to make it more comparable with Figure 3.3g and h.

The smaller peaks aroundm/z 815 are not clearly visible on this scale in the (green)
spectral component, but may be incorporated in other component spectra. It becomes
clear that the compound separation and localization has significantly improved. This
can be observed in the more clearly defined peaks in the spectral component and the
increased contrast in the image components.

3.4.3 Performance
Performance regarding the computational effort is another aspect for the applica-
tion of methods for multivariate data analysis. An estimate of computation time
was made for the studied methods. All time-measurements were done on the same
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computer (single processor 32 bit AMD Athlon, 2.2 GHZ, 1 GB of memory), using
MatLabTM 7.1 with the N-way toolbox 2.11 [Bro97] and VARIMAX implementation.
Calculations were done in a 32-bit environment. This limits memory allocation and
therefore the maximum size of the analyzed dataset to 4 GB. The use of a 64-bit
environment would circumvent this memory problem and therefore makes the use of
larger datasets possible. However, this would also increase calculation time. The size
of the quantitatively analyzed datasets was chosen in such a way that the total calcu-
lation could be done without the need of virtual memory. The use of virtual memory
would dramatically increase the total calculation time, because hard disk access is
much slower than RAM access. This would not result in a representative measure
when algorithms are compared.

Memory

The memory requirements for the application of PCA involve calculating the eigen-
value decomposition of a covariance matrix of a dataset. The environment with a
PCA implementation sets limits on the size of the dataset that can be analyzed.
These limits depend on the amount of (virtual-)memory that is available on a system
and the maximum size of a variable containing the data. It would be beneficial re-
garding memory consumption, if the PCA is implemented on sparse matrix structures,
because most data-points in imaging MS data contain zeros. Standard approaches
for solving a non-Hermitian eigenvector problem generally have a O

(
N2

)
space—or

memory—complexity [Bai00]. It is not possible in these standard approaches to ex-
ploit the sparsity of the matrix to reduce memory requirements. Different iterative
alternatives have been proposed [Bai00] that are able to find a subset of eigenvectors
within a sparse matrix structure. These alternative approaches can be tailored by
many parameters to solve the eigenvector problem for different classes of matrices.
The actual performance of each approach depends on the implemented approach, the
values of its parameters, and the properties of the data within the sparse matrix.

Standard memory tests within the profiling utility of MatLabTM give an indication
of the memory use by the implementation of MatLabTM to solve the sparse eigen-
vector problem. MatLabTM sets a maximum to the size of its workspace, the size of
the largest matrix and the number of elements in the largest arrays. The MatLabTM

environment supports the use of sparse matrices as well as the operation for eigen-
value decomposition. There are not many ready-to-use implementations available for
the eigenvalue decomposition of sparse matrices. MatLabTM environment provides a
simple interface to routines for processing sparse matrices and create an eigenvalue
decomposition [Leh96]. This environment is widely used and provides stable and
efficient implementations of the routines used in this thesis.

The used single mass spectral datacubes contain approximately 1011 elements of
which on average 2.5 · 107 elements are non-zero in the used datasets. A complete
datacube will fit into memory only when a sparse format is used because it exclusively
stores the non-zero elements. It depends on the implementation of a sparse matrix
multiplication whether or not there is enough memory to calculate the covariance
matrix. Current iterative implementations for eigenvector decompositions are efficient
in memory usage to be able to find the desired principal components as soon as
a (sparse) covariance matrix can be constructed. The sparse covariance matrices
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Table 3.3: Indications of computation time in seconds using various methods on var-
ious samples. With #:number of components, sPCA:sparse PCA, VX:VARIMAX and
PFAC:PARAFAC. The VARIMAX processing time is given as the time added to PCA.

set # size PCA sPCA +VX PFAC sPFAC
hair 7 300× 256× 256 3 3 +0.15 3500 2000
droplet 7 300× 256× 256 3 3 +0.15 1200 6500
hair 14 300× 256× 256 3 3 +0.25 6000 5000
droplet 14 300× 256× 256 3 3 +0.25 40000 50000
hair 21 300× 256× 256 3 5 +0.35 14000 13000
droplet 21 300× 256× 256 3 4 +0.35 160000 85000
hair 7 5053× 64× 64 5 · 102 25 +0.20 900 1000
droplet 7 5053× 64× 64 5 · 102 20 +0.20 700 600
hair 14 5053× 64× 64 5 · 102 25 +0.30 3500 3000
droplet 14 5053× 64× 64 5 · 102 20 +0.30 9000 8000
hair 21 5053× 64× 64 5 · 102 30 +0.40 6000 4000
droplet 21 5053× 64× 64 5 · 102 20 +0.40 30000 27000
LDI 7 1850× 290× 7 30 35 +0.15 52000 55000
LDI 14 1850× 290× 7 30 35 +0.30 212000 214000
LDI 21 1850× 290× 7 30 35 +0.40 498000 511000

in these examples were between 8 MB and 150 MB. The memory usage for the
calculation of the eigenvectors within MatLabTM took between 16 MB and 256 MB
depending on the properties of the spectral dataset. These properties include the
amount of non-zero elements in the datacube and the variance in the data.

Time

Computation time was evaluated for three datasets in Table 3.3. Three samples were
studied using TOF SIMS imaging: a purely synthetic sample containing well-defined
chemical components as a droplet-array, an embedded hair cross-section and a third
sample was measured using Laser Desorption and Ionization (LDI)-TOF imaging: a
cross-section of paint layers. Two different datacubes were used for the TOF SIMS
datasets: one with a large spectral dimension and one with a large spatial dimension.
The number of components was varied from 7 to 14–21. The LDI-TOF imaging
datacube was analyzed at full spatial resolution (7 × 290) and with 1850 spectral
variables.

The standard PCA method first calculates the full and exact decomposition and
then restricts the resulting dataset to the requested number of components. PCA
performed on sparse matrices produces an approximation by itself, not giving a full
representation of the original datacube, but only resulting in the requested number of
components. The resulting sparse components are approximations because the data-
matrix itself has to be approximated in the sparse decomposition. The equivalent,
non-sparse data-matrix would be too large to be decomposed. The difference in
methodology contributes to the time-reduction that is involved in the use of sparse
matrices.

The continuous nature of the LDI data, with a non-zero entry at almost each
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sampling point resulted in an increased computation time when the sparse matrix
format was used. This can be explained from the fact that the in-memory size is
larger for the sparse-type matrix than for the full matrix, which inevitably leads to
larger processing times. VARIMAX as a post-processing optimization step after PCA
results in only a small increase in calculation time. This justifies the use of VARIMAX
after PCA in any case to increase chemical contrast in both component images and
spectra, as shown in previous subsections.

PARAFAC is clearly a much more demanding technique with an increase of a factor
of 10–1000. Although it turned out to be better at resolving certain features, it is not
suitable for routine use with the current standings of desk computer facilities. It could
be very helpful in very complex systems or in systems where trace amounts of a certain
chemical components are expected. Prior knowledge, which is favorable to make a
sensible choice for the number of components to be looked for, could be obtained using
PCA. Like PCA, PARAFAC turned out to be faster on sparse matrices. It should
be mentioned that the random initialization as used in the PARAFAC calculations,
results in a large variation in calculation time and the order of the factors. PARAFAC
is a computationally much more demanding technique because it seeks an exact fit of
the data using optional constraints, spread over the defined number of factors.

3.5 Summary and conclusion
In this chapter we have compared the quality of three different PCA-based methods
for the 3D visualization of imaging spectroscopy data. We used PCA, PCA with
VARIMAX rotation and the PARAFAC method. We compared the methods quanti-
tatively and qualitatively. For the quantitative comparison, we used a RMSE metric
to compare the methods with ground truth spectra under various noise conditions.
For the qualitative comparison, we used three criteria to judge the quality of features
in the resulting visualizations. These criteria were applied to interpret the visualiza-
tions of features in the brain of the snail Lymnaea Stagnalis.

This study shows that the PARAFAC method is clearly superior to the other
methods. PARAFAC results in features that are more clearly recognizable than the
other two methods (see Figure 3.3). The reason is that PARAFAC uses some model
information, while PCA does not. The VARIMAX rotation uses a post-processing
fitting to maximize the variance of the components which results in images and spectra
with higher contrast.

We learn from the synthetic data case that although the root mean squared error
becomes larger with higher noise levels, the PARAFAC method still produces the most
distinctive results. We expect that these trends are similar in the real life application.
The implication is that more noisy samples will still result in good visualizations.





Chapter 4
Feature-based registration

Chapter 3 described how PCA and PCA-based methods can be used to extract fea-
tures from imaging spectrometry data. These methods provide an automatic extrac-
tion of spectral and image components from one measurement (a spectral datacube).
When multiple measurements are made from the surface of the same sample, each
measurement has to be aligned with another to create one single multi-spectral image
of the sample to be used for analysis.

This chapter presents a feature-based method to facilitate the automatic regis-
tration of spectral datacubes. Features are used together with a similarity measure
to find overlapping regions between multiple measurements. To exclude potential in-
correct alignments, a registration has to made more robust by adding a measure to
indicate the randomness within a region. This measure of randomness acts as a weight
to express the similarity in the overlapping regions more accurately. The performance
of this feature-based method is compared with a pixel-based registration method.

4.1 Introduction

The surface area of a typical biological sample is too large to be recorded in one
measurement by an imaging mass spectrometer. In a typical high spatial resolution
SIMS measurement the maximum analysis areas are approximately 50µm. This is
much smaller than many of the samples of interest, for example biological tissue
samples of 2× 1 cm.

To provide high-resolution imaging of the complete, large areas, the sample is di-
vided into a mosaic of small areas (termed ‘tiles’) with the sample stage raster. Each
tile is then analyzed with a high spatial resolution measurement. Moreover, the mul-
tiple spectral datacubes have to be combined to provide the final, complete (mosaic)
dataset. Compared to the high resolution microscopic image in Figure 4.1a, the spec-
tral TIC image mosaic discloses the chemical composition of surface material on each
location. This TIC image in Figure 4.1b is created by the sum of all spectral intensities
present at a single two-dimensional location. Instead of the black background in be-
tween the crystallized droplets in the microscopic image, the spectral image provides

53
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(a) (b)

Figure 4.1: (a) Microscopic image and (b) spectrometric TIC image mosaic of a droplet-
deposition on a silicon substrate.

spectra of the material in between the crystals as false color information.
Sample stages capable of moving through large areas (e. g., 5 × 5 cm) are of-

ten significantly less accurate than the resolution of the imaging mass spectrometry
experiment. Therefore, it is not possible to make a measurement of a tile that is
precisely located alongside another tile. Each tile is acquired with a small, but un-
known amount of overlap with its neighboring tiles. These overlapping regions make
it possible to reconstruct a complete mosaic with the different tiles. As a result, the
high-resolution spectral images have to be aligned after data acquisition. In most
examples this has been performed ‘by eye’. This process is time-consuming, user
intensive, and subjective. At best, a manual alignment process would include the
following steps:

1. Import the data into a mathematical package capable of processing > 2 GB
data files.

2. Calculate the TIC images of each tile.

3. Create a layered image to manipulate relative positions of the TIC images.

4. Vary the relative positions until the ‘optimum’ is found.

5. Use the offsets determined in step 4 to combine the data files into a single
datacube.

However, it is more common to use the proprietary software to create the images for
each m/z range of interest of each tile’s dataset and to apply a pixel-based registration
method. The TIC images are then aligned in a graphics package, the relative offsets
are applied to the specific spectral images, and the results are saved. In fact, no
case studies are known in SIMS imaging in which multiple tiles were combined into
one dataset and in which all raw data events could be preserved. Recently, more
advanced techniques for data acquisition are able to sample a larger surface area by
capturing a number of datacubes on a higher resolution. However, these kinds of
state-of-the-art datacube registration still use TIC images to create one large mosaic
of datacubes. These methods are very similar to pixel-based registration techniques
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found in many image processing handbooks, for instance Ibanez and Schroeder [Iba03]
or image registration for remotely sensed spectral data [Cha99].

This chapter describes a new feature-based, automated image alignment algorithm
for imaging mass spectrometry datasets. Automatically combining several datacubes
is done to increase spectral information and the range of the spatial area to improve
analysis.

Usually, the uncorrelated noise prevents the optimum offsets of two images from
being determined. This noise often blurs or hides edges of recognizable spatial dis-
tributions present in an image that can be used for alignment. Feature extraction by
PCA reduces uncorrelated noise and can therefore be exploited for automated align-
ment. Also, spectral datacubes do not always contain useful features at the over-
lapping regions that can be used for landmarking approaches. Finally, the spectral
datasets have a relatively low signal-to-noise ratio compared to other image regis-
tration problems. Although there are many tiles available, there is neither a fixed
ordering nor a fixed overlap between the different measurements. In addition, each
overlap is relatively small compared to the complete image.

Fortunately, instead of having to apply some additional rotation, scaling, shear-
ing or nonrigid transformations, the tiles only have to be linearly translated in two
dimensions. Another advantage is that acquisition will always provide overlap with
other regions in the collection.

In the next section, we describe the algorithm as a whole, as well as methods for
selecting and registering features and for adding additional weight to specific areas.
Subsection 4.3 compares our feature registration method to the pixel-based method
on two test collections. Finally, a discussion of the pros and cons of our method
concludes this chapter.

4.2 Approach
Our registration method can be divided into three parts. In the first part, the data is
reduced by selecting and extracting the most important features from the datacubes
using PCA. Then, by applying the mean squared error metric to corresponding
features in adjacent cubes, a minimalization landscape is constructed. This landscape
represents the ‘fit’ of the feature when two adjacent datacubes are aligned with each
other. The minima provide the regions with the most similarities. Under various
conditions, however, the landscape does not provide sufficient information to robustly
assume that the lowest value of the landscape is indeed the desired solution. These
conditions can be described in the third step by analyzing the entropy of the landscape
and to add a weight to all of the possible solutions. The resulting algorithm in
Subsection 4.2.4 gives an overview of how a solution is found in the final search space.

4.2.1 Principal Component Analysis
First, PCA is applied to the datacubes to reduce them by preserving the most impor-
tant features into a number of spectral components and their corresponding image
components. There are many methods to decompose multidimensional data or to
apply dimension reduction [Har70; Car70; Moi02], but these are better suited when
many independent features—rather than only a few components—describe most of the
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(a) (b)

Figure 4.2: (a) One image component and (b) an other spectrally matching image compo-
nent.

information. PCA can be used to compress the thousands of image planes into a few
image components. PCA selects correlated spectral and spatial features in the data-
cubes, which results in different components as described in Subsection 3.3.1. Once
two similar spectral components can be found in both pieces of the same collection,
the corresponding image components (see Figure 4.2) can be used for registration. For
example, Figure 4.2a shows an area in yellow at the bottom left corner that contains
some high intensity values. A similar area can be found in Figure 4.2b in the top left
corner. The similarity between both regions can be measured using an appropriate
similarity metric.

4.2.2 Mean Squared Error
Although many metrics and applications already exist for the registration of im-
ages [Fon97; Ran05b; Zit03], we use the most basic approach. In most cases, there
are no clear defined edges or distinguishing regions present in the resulting image
components. Landmarking or region-based registration could be problematic when
applied to this type of datasets. Most of these approaches use a metric to measure
the difference in intensity values between two regions in two images and an optimizer
to transform one of the images according to a fitness value to find a better fit. One
image is the so-called ‘fixed image’, and the image that is being transformed is the
‘moving image’. Because these spectral datacubes do not have many spatial features
and could contain some noise, the complete search space has to be considered to find
a suitable minimum and a correct offset between the two images. There is no longer
a need for an optimizer. However, this approach is only possible when both images
are small enough and—more importantly—that the moving image does not need any
rotational, scaling or warping transformations.

The most simple pixel-based similarity measure is the Mean Squared Error (MSE)
measure. The mean squared pixel-wise difference is calculated using

MSE(A,B) =
1
N

N∑
i

(Ai −Bi)2 (4.1)

where A is a region in the fixed image, B a region in the moving image, N the number
of pixels in these regions and i the pixel position.
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Figure 4.3: Shifting two image components of 256 × 256 pixels to create a MSE landscape
of 511×511 pixels of each overlapping region to find the correct minimum represented by the
dark colored points.

Linear changes in intensity between both images will result in a poor match value
and poor matches result in large values of the metric. This metric is used on all
subregions of two image components, as can be seen on the left in Figure 4.3. It
results in a 511 × 511 search space in which each point is the result of the MSE
metric applied to a combination of two regions. The Normalized Cross-Correlation
(NCC) metric [Pra91] also uses images of the same modality. It is invariant to linear
changes in intensity and it is robust to noise. Poor matches result in high values of the
metric with well-defined minima and sharp peaks. The metric is sensitive to clutter,
occlusion and non-linear changes in contrast. It is not used in this case, because it
does not perform considerably better than the MSE metric on these spectral datasets.

4.2.3 Entropy

In the complete MSE landscape on the top right in Figure 4.3, there are still many
(black) areas with low values. This is mainly caused by the fact that the intensities
in certain regions do not have enough contrast and/or a high amount of randomness
and simply do not contain enough information to accurately use the similarity-metric.
If the subregions consist of only one pixel (at the corners of the MSE landscape), it
is practically impossible to find an accurate metric for the similarity. Image char-
acteristics can provide some statistics about the information in an image [Gon03].
These statistics can give an indication of fitness of the region in an image relative
to a region in another image. This characteristic can be used to provide a weight
for the MSE landscape and to create a more realistic search space in order to find
the most appropriate minimum. Some commonly used texture metrics are contrast,
correlation, energy, entropy, and homogeneity [Ooi06]. In this context the measure
for entropy in Chalermwat [Cha99] is the most suitable to act as a weight. It provides
an indication of the ‘randomness’ of intensities in an image using its histogram. The
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(a) (b)

(c) (d)

Figure 4.4: Different texture measurements applied to the partial windows: (a) the image
component, (b) differences between minimum and maximum values, (c) homogeneity, and
(d) entropy.

entropy H of each region in one image component is calculated using

H(A) = −
∑

pA · log pA (4.2)

where A is the region in an image component and pA the histogram values of A. Many
registration algorithms for multimodal images also use entropy as similarity-metric
instead of weight function. This similarity-metric is called ‘mutual information’ and
measures the mutual dependence between image regions. The mutual information of
two images can be expressed in terms of entropy for registration. In this approach
entropy is used as weight function to eliminate regions with high uncertainty in the
spatial distribution of intensity values.

The entropy of each region of the fixed image component can be calculated and put
into a landscape corresponding with the MSE landscape from Figure 4.3. The entropy
landscape of the moving image component can be created similarly and combined with
the fixed entropy landscape using the entry-by-entry product of both entropy values.
The resulting combined entropy landscape of the image components in Figure 4.2 is
shown in Figure 4.5a. This combined entropy landscape contains some outliers, mostly
located at the corners where only a few pixels are being considered. An additional
fit on the histogram is made to remove unwanted outliers. This is done according to
the normal distribution, by using only the values in the interval [µ− σ, µ+ σ], where
µ is the mean and σ is the standard deviation in the histogram. The values in the
histogram to the left of this area are set to zero and the values to the right of this
area are set to the remaining maximum. The remaining landscape (see Figure 4.5b)
is applied as a weight for the MSE landscape.
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(a) (b)

Figure 4.5: (a) Entropy space of all regions in the image component of Figure 4.2a and
(b) the standard deviation fitted entropy of the same image component.

The black regions in entropy spaces indicate that a minimum found in the corre-
sponding regions of the MSE landscape most likely will not contain enough informa-
tion to be considered a solution. The final weighted search space can be created by
dividing all values in the MSE landscape by the fitted entropy landscape. This results
in a MSE

entropy search space in which a minimum has to be found. Once the location
of this minimum is known, the offset of the translation between both images can be
calculated with the correct registration between both image components.

4.2.4 Algorithm

With the use of the previously described methods, a PCA-based registration algorithm
was created to find the correct offset between two datacubes, if such an offset exists.
If more similar spectral components are present, more minima in the MSE

entropy search
spaces can be compared in order to find the correct offset. The algorithm proceeds
as follows:

1. Apply PCA on two datacubes from one collection of measurements which results
in a decomposition of each datacube with a number of corresponding spectral
and image components.

2. Select matching spectral components of both datacubes by comparing spectral
peaks, starting from the components describing the most variance.

3. Registration of the corresponding selected image components from both data-
cubes by creating a MSE landscape of all possible combinations of regions in
the image components.

4. Add a weight function to the MSE landscape using an entropy image character-
istic applied to each region of both of the image components to exclude regions
that do not contain enough spatial information to be considered a solution.

5. Select the lowest points in the first five regions with local minima in the MSE
entropy

search space in such a way that a selection of points remains which are the most
appropriate solutions for a correct registration.
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6. Repeat step 2 to 5 for the next two corresponding spectral components from the
PCA decomposition of both datacubes in order to get two sets of points that
could be solutions for a correct registration.

7. If present, select the point with the lowest value in both selections of appropriate
solutions, in order to find the best solution for a registration. If there is no such
point, no suitable offset between both datacubes can be found.

This algorithm can be applied to each combination of spectral datacubes in a collection
of measurements. If it is known which datacubes in a larger mosaic are neighbors, this
algorithm is applied to find the correct offset. When this information is not available,
each combination of pairs has to be considered. Two datasets are used in the next
section to compare this PCA-based algorithm with a traditional approach.

4.3 Results
The algorithm is applied to two collections of spectral datacubes resulting from imag-
ing mass spectrometry. These datacubes have two spatial dimensions (256 × 256
pixels) and one spectral dimension (more than three thousand image planes). A
dataset has to be read, transformed into a datacube and binned before PCA can
be applied. The time it takes to perform these operations depends on the size of a
dataset and the variation in the intensity distribution of the spectral variables. The
time it takes to create a MSE-landscape or to create an entropy-space is independent
from the properties of a dataset. With two image components of 256× 256 pixels, it
takes approximately 125 seconds to create a MSE-landscape of 512× 512 pixels on a
single processor of a 32 bit AMD Athlon (2.2 GHZ). One entropy-space of one image
component is created in approximately 350 seconds.

4.3.1 Two collections

One dataset of four overlapping datacubes (see Figure 4.6a for their relative positions)
is a measurement of an array of crystals as shown in Figure 4.1. They were produced
from aqueous solution by droplet-deposition on a silicon substrate. The crystals
consist mainly of dihydroxybenzoic acid (DHB), a compound which is widely used as
matrix material in matrix-assisted mass spectrometry techniques. Measurements were
done using imaging TOF SIMS in microprobe mode [Cha99] on a Physical Electronics
TRIFT-2 time of flight mass spectrometer. Each imaged area was 200 × 200 µm−1.
The high abundance of DHB results in distinct peaks in the mass-spectrum. The low
total signal intensity in one of the corners of each of the images is due to inaccurate
alignment of the primary ion beam.

Another dataset shows a mosaic of the kneecap of a mouse which contains 85
datacubes recorded with the same mass spectrometry technique as the droplet de-
composition. A small part of only five datacubes (see Figure 4.6b) was taken from
the complete collection in this first approach to test this feature-based registration
method. In contrast to the crystal dataset there are some datacubes that do not have
an overlap with one of the other cubes in the dataset. There is no overlap between
the three combinations: A-E, B-E and B-D in Figure 4.6b. Both collections of four
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(a) (b)

Figure 4.6: The relative locations of (a) four pieces of the crystal dataset and (b) five pieces
of the kneecap dataset.

and five datacubes are used to compare a traditional TIC-based registration with the
PCA-based registration.

4.3.2 Application

Since there has not yet been an attempt to register imaging MS datacubes automati-
cally, the TIC images are used in a manual approach to stitch different spectral image
planes. These images are constructed by taking the summation of all image planes
of the spectral datacubes. Each combination of these resulting images can be regis-
tered with each other using the same MSE

entropy metric which is used in the PCA-based
approach to be able to quantitatively compare both approaches. The crystal dataset
consists of four datacubes which results in six combinations, in which there is an
overlap with every other datacube. The kneecap dataset consists of five datacubes
which results in ten combinations, in which seven combinations do have an overlap
and three of them do not. The results of this registration can be found in the next
subsection.

All combinations in each dataset are being registered using this new PCA-based
method. First a PCA is conducted on each datacube using the algorithm from sub-
section 4.2.4. Similar spectral components are being matched and each corresponding
image component (see Figure 4.2) is used for the registration. This results in sev-
eral MSE landscapes (see Figure 4.7) for each matching spectral component in which
minima have to be found to get a most appropriate solution for a registration.

The entropy space (see Figure 4.5) of each component image is calculated and
combined into the MSE

entropy search space to add a weight to the solutions according
to the amount of information that is present in each region. Figure 4.8a shows the

MSE
entropy search space of the first spectrally matched components of two datacubes. And
Figure 4.8b shows the MSE

entropy search space of the next spectrally matched components
of the same two datacubes. The white regions in both images are caused by the
entropy weight. The overlapping regions in these white areas do not contain enough
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(a) (b)

Figure 4.7: Mean Squared Error landscape from comparing the (a) first and the (b) second
principal component of C and E of the kneecap dataset in which the location of the correct
solution for the registration is marked.

(a) (b)

Figure 4.8: MSE
entropy

search space of the (a) first principal component and the (b) second
principal component with the possible solutions in the blue color.
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Table 4.1: Summary of the results from the TIC-based approach.

TIC-based array of crystals kneecap of a mouse
found not-found found not found

global fit 0 6 2 5
incorrect fit – – 0 3

Table 4.2: Summary of the results from the PCA-based approach.

PCA-based array of crystals kneecap of a mouse
found not-found found not found

correct fit 5 1 5-1 2
incorrect fit – – 3 0

intensity information to be considered in the solution. Both landscapes do have
a global minimum on the same location which should be the best solution for the
translational offset between both datacubes. The same procedure is applied to all
other possible combinations to find those offsets or dismiss the combination if there is
no joint local minimum in both search spaces and therefore not an overlap of regions.

4.3.3 Comparison

The results of the six combinations of TIC-based registration of the crystal dataset
together with the ten combinations of the kneecap dataset are presented in Table 4.1.
None of the correct offsets between the six combinations in the crystals dataset could
be found using the TIC-based approach as shown in the row with the ‘global fit’.
Only one MSE

entropy search space could be considered for each combination of datacubes,
so the global minimum in the search space was used as a solution for a best fit. There
were only two correct offsets found successfully within the kneecap dataset using the
global minimum in the MSE

entropy search space in this TIC-based approach. There was
no indication available in the TIC-based approach whether or not the global minimum
would result in a incorrect fit. This is the reason why the three incorrect fits of the
kneecap dataset were put in the ‘not found’ column.

Table 4.2 contains the corresponding results with PCA-based registration. All
but one of the correct offsets between the six combinations of the crystal dataset
could be found. In some cases there was only one pair of spectral components that
gave a match in a combination of datacubes. The reason is probably that there
was not enough similar information present to find more than one match of spectral
components that made a comparable contribution to the complete datacube. In those
cases, only the match and its MSE

entropy search space were used and its global minimum
was considered as a solution. The three combinations in the kneecap dataset that did
not have any overlap were correctly found as indicated in the row with the ‘incorrect
fit’. Unfortunately, two offsets that did exist could not be found. This was caused
by the lack of entropy in regions that should provide for a correct fit. The remaining
four out of six existing offsets were found and one was found, but was incorrect. This
solution was found by comparing two regions without much intensity information.
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The joint entropy was not low enough to dismiss it as a possible solution.

4.3.4 Enlarged dataset
After successfully finding the correct offset between two datacubes, the two datasets
can be fused together by combining the raw ion counts of the different spectral mass
measurements. The feature-based registration algorithm can be applied to this fused
dataset and the remaining pieces in the collection. There are two advantages in using
a registered and combined datacube as a new base for another registration [Bro08a].

The first advantage is the increased number of spectra that become available for a
new application of PCA. When more spectral signal is used in a PCA, the components
can be separated more accurately according to the variation present in the spectra.
This will improve the contrast and separability between the extracted features. This
is shown in Figure 4.9, which compares PCA applied to the mosaic dataset with PCA
applied to a single tile. Both positive and negative component images are primarily
influenced by the peaks on m/z 369 and 365. The signs of the components correlated
with the different parts of the tissue section are different for the mosaic dataset and
the single tile. This phenomenon is caused by PCA and depends on the variation in
the dataset. Both spectral components from the mosaic dataset and the single tile are
matched, after which the component images are compared in Figure 4.9. Although
the signs are inverted, both components are still anti-correlated in both datasets.

The second advantage of using the combined result for a new registration is the
larger spatial area that is used to create the MSE landscape. Spatial regions on the
edge of a single component image are extended by the registered and added component
image. As a consequence, the MSE landscape gains accuracy on the former edges that
could have caused problems in finding a well-defined minimum. A MSE landscape of
two combined datacubes is shown in Figure 4.10, which is used in the registration of
a third tile from the same sample.

4.4 Discussion and Future work
The presented automatic alignment routine is suitable for highly multidimensional
datasets, which are sparse in any single channel and possess a significant degree of
uncorrelated noise. The results show that the PCA-based approach for the registration
of a collection of spectral datacubes is superior to a traditional TIC-based method.
Pixel-based registration of selected image components using the MSE metric with a
complete coverage of the search space and an additional entropy weighting is able
to correctly register two datacubes if a solution exists. We can find a more robust
solution with the multiple minima from the landscapes of several extracted features
instead of using only one pair of images. Some remarks can be made about the metrics
used in this method with the possibility to improve and/or optimize the algorithm.
This method of aligning multiple tiles has several advantages:

• By using the sequentially aligned and combined data from the first two tiles, a
following alignment step includes additional overlap information.

• The tiles can be ranked according to contrast, allowing those of higher contrast
to be aligned first, thus maximizing the overlapping regions for those tiles of
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Figure 4.9: Enhanced separability and contrast in components by PCA using a larger data-
set. The positive and negative components on the left of the combined data show a better
separation between peaks on m/z 369 and 365 compared with the similar components on the
right from a single datacube. Note that the signs of the components are different of the mosaic
dataset and the single tile.
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Figure 4.10: MSE landscape for a registration using a more accurate, intermediate result
of two combined datacubes.
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lower contrast.

• This method is time-saving because the process is executed in parallel using a
‘divide and conquer’ approach.

Discussion

This procedure was developed, because existing image alignment routines, such as
those used in photography, were found to be unsuitable for the imaging mass spec-
trometry datasets. There are several reasons. In most mass spectral measurements,
there are no sharply defined edges/corners that can be used as ‘landmarks’. Landmark
points are identifiable points [Dry98] used to align two images. The images created of
particle counts by the mass spectrometer do not contain sharply defined shapes that
can be robustly landmarked. Another problem with mass spectrometry data is that
the overlapping regions between tiles are small. There are very few distinct features
present in the overlapping regions, therefore it is hard to detect similarities. Even if
these regions were larger, the individual spectral images contain less correlation be-
tween groups of neighboring pixels compared to photographic images due to counting
statistics. This results in spectral images with a low signal-to-noise ratio that compli-
cates feature detection. Areas with low signal, or no signal at all, are excluded in this
approach by a weighting factor on the regions that are compared. In image alignment
routines for photography, it is usually unnecessary to implement a weighting factor
on regions in order to create a more robust alignment. Another issue that complicates
the alignment of datacubes is that each datacube can contain thousands of distinct
images; photography normally compares only a few single images.

Only one solution in the kneecap dataset from Figure 4.6b was marked as a ‘cor-
rect fit’, but incorrectly found by the algorithm. This was mainly caused because the
overlapping regions with the found minimum did not contain enough intensity infor-
mation. Unfortunately, the entropy did not contribute enough as a weight to eliminate
it as a solution in the MSE

entropy search space. One mistake out of ten combinations is
not a serious problem when the complete mosaic has to be constructed. With the
joint contributions of all correct solutions, it is not hard to find the correct location of
the datacube in the mosaic. Besides the advantage of directly registering the impor-
tant features with this PCA-based approach, more search spaces are available in one
combination of datacubes. In those cases where no match could be found between
the spectral components of two datacubes, or where the correct solution could not be
found, the algorithm still does not produce an ambiguous solution, because it is able
to use more search spaces. Generally, it does not have to be a problem if some of the
offsets can not be found, if there is enough certainty about the ones that are found.
With the TIC-based approach, there is no alternative but to use the global minimum
in the MSE

entropy search space. The MSE metric was not able to find an unambiguous
offset to register the TIC images, while they can be found with the PCA-based ap-
proach. So even if some of the datacubes do not have much overlap or useful spatial
features in the overlapping regions, it is still possible to create a complete mosaic
when the entire MSE

entropy search space is used.
The automatic alignment routine addresses the problem of the sample stage posi-

tion being of greater uncertainty than the spatial resolution of the SIMS measurement.
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There are other issues associated with mosaic imaging that the analyst should arm
himself against in order to ensure the validity of mosaic measurements:

1. Sample height variation, across a large sample, would result in a systematic
variation of compounds measured m/z mass across the sample and leads to
ionization artifacts. Any such variation (including a localized protrusion) can
be readily identified by calculating the variation of an ion’s mass with position,
a so-called ‘height map’ [McD03]. This height map can be used to correct
the mass measurements but can not remove any ionization artifacts. No such
variation was found with the samples in these results.

2. Chemical damage of biologic samples: the dose of the primary ion beam is a crit-
ical factor; if it is too high the chemical integrity of the sample is compromised
and the SIMS spectra are no longer representative of the sample. A mosaic
image requires overlap regions that will receive two-fold the normal primary ion
dose. If this dose is too high it could cause the overlapping regions to display
different spectral signatures and potentially skew the alignment procedure. The
ion dose delivered to the overlapping areas was sufficiently low that the only
effects observed were a slightly lower signal intensity in the overlapping areas.
These lower intensity areas were sufficiently different to be distinguished by
PCA.

Future work

Clearly, the results of the PCA step and the determination of the quality of the sig-
nal are essential elements in the success of the automated alignment algorithm. The
results obtained with PCA can be highly affected by preprocessing the data, which
includes denoising, selection of peaks, and even the choice of scales. For example,
in SIMS the signal intensities decrease rapidly with increasing mass-to-charge ratio;
the use of a logarithmic intensity scale can be used to give more weight to the higher
mass, but lower intensity, molecular ions. For the automated alignment routine pre-
processing was limited to binning. Previous work on SIMS data has demonstrated
that binning is “the most effective technique to improve PCA performance” [Wic03].
The auto-alignment procedure benefits from PCA in noise reduction and the availabil-
ity of more than one component image for a more robust alignment. Consequently,
we used fast PCA methods rather than more computationally intensive variants for
these large datasets.

The algorithm could be tuned by changing the registration metric using for in-
stance reciprocal square differences, gradient difference or different implementations
of mutual information. Some—combinations of—other image characteristics acting
as a weight like a gradient-based metric or maybe a variogram-based approach may
create some improvement in certain cases. These are more computationally intensive
than the currently used metric. Several standard metrics on image texture properties
were investigated, including contrast, correlation, homogeneity, energy, and entropy.
It was found that the approach of local entropy, used in all the results, was the most
effective at removing regions with a high randomness in intensity values.

For accuracy, it is desirable to use each combination of datacubes by the creation
of the mosaic. The use of many complex metrics may improve the results, they
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slow down the process significantly when using larger collections. The next step for
solving this problem of creating a mosaic is the applications of the algorithm on
larger collections and investigate if some optimizations are needed. Image pyramids
are commonly used to reduce the search space and to reduce the computations. If the
binned 128× 128 image is used instead of a 256× 256 image, the number of entropy
calculations and the comparisons to create the MSE-landscapes are both decreased by
a factor of four. Once the correct offset is found in a low resolution image, this offset
could be refined using the same region in a higher resolution image or by sub-pixel
interpolation.

An interactive variant of the presented registration algorithm will improve the
robustness of the found solutions. An analyst could improve the results by reducing
the search-space when the overlapping regions can be selected manually. This forces
to locate a minimum in a more confined search-space. Similarly, if estimations can be
made about the relative positions of the measurements within a raster, it reduces the
number of combinations that have to be considered for the solution. Computational
efforts for the interactive selection can be reduced when selection takes place on a
lower resolution made possible by, for instance, the zooming technique described in
Chapter 6.

4.5 Summary and conclusion
This chapter explains how the reduction of uncorrelated noise provided by PCA al-
lows high-resolution imaging mass spectrometry datasets to be automatically aligned
and combined for high-resolution analysis of large areas. The generation of mosaic
images of large datasets necessitates stitching together a collection of separate imag-
ing experiments. One advantage of feature-based registration is that the influence of
noise in a datacube is greatly reduced and, therefore, will result in a more robust reg-
istration. Another advantage is that multiple attempts for registration are performed
with several extracted features to improve robustness.

The three steps of PCA decomposition, spectral matching, and signal quality
assurance are necessary because of the high dimensionality and sparsity of the SIMS
imaging mass spectrometry data and indicate future methods of how to work with
such data. The results clearly show that the entropy-weighted, mean squared error
landscape of chemically matched component images can be used to automatically
align high-resolution imaging mass spectrometry datasets. This algorithm can be
adapted for all datasets of similar nature in imaging mass spectrometry, particularly
the mass microscope being developed as part of the high-resolution imaging mass
spectrometry research efforts.





Chapter 5
Feature visualization

So far, we have shown how PCA is used to extract features from imaging spectrom-
etry data. A feature-based method was introduced for the automatic registration of
spectral datacubes. Registered datacubes can be combined to create a new dataset
that covers a larger spatial region. PCA can then be used to extract features from
the combined dataset as well.

This chapter presents a new application of PCA: to generate multidimensional
transfer functions for the visualization of spectral datacubes. These transfer functions
are needed in the volumetric visualization of spectral data to isolate those regions
containing interesting features. This approach is characterized by the direct linkage
between the resulting spectral and spatial components of a feature. Our method
enables us to create an opacity map from these components. One or more mappings
can be selected to highlight features in 3D using volume visualization.

5.1 Introduction

The use of Direct Volume Rendering (DVR) is a well-known method for the visual-
ization of 3D volumetric datasets. In most volumetric datasets, each voxel contains a
scalar value that represents the density of a material on that location. For visualiza-
tion, a transfer function is a mapping that assigns a color and opacity value to a scalar
value. A volume renderer can draw the voxel data using the mappings specified in
the transfer function. The challenge in designing an appropriate transfer function is
identifying which structural properties are important for the user and which relevant
features in the data should be highlighted.

Imaging spectrometry can be used to scan the structure of chemical elements on
material surfaces. In contrast to a volume consisting of 3D points of scalar values,
a spectral dataset consists of two spatial dimensions and a wavelength in the third
dimension. Each scalar value in the volume is interpreted as the intensity on a wave-
length at a 2D position on the surface of a material. Linsen [Lin05] stated objectives
for a visual exploration tool for mass spectrometry data: a better understanding of
the data set in its entirety, quantitative depiction of expression ratios on a global scale,

71
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(a) (b)

Figure 5.1: (a) A plot of the summation of all spectra in the datacube from the cerebral
ganglia of the pond snail. The right part of the plot is enlarged by a factor of 467. (b) The
spatial distribution of spectral profiles.

and easy visual detection of data acquisition errors. These objectives also apply to
the design of visualization tools for other mass spectrometry datasets.

Since molecular compounds have a unique and known spectral profile, scientists
can use spectrometry to investigate which chemical elements are present on the sur-
face of a material, provided their spectral profile can be extracted. Unfortunately,
extracting a spectral profile from a datacube is a difficult task. First, the intensity at
each point in the volume consists of contributions of the spectral properties of neigh-
boring chemical elements at that position on the surface. A robust extraction method
is needed to factor the linear combination in a spectrum into the spectral profiles of
each molecular compound. Second, spectra characterize themselves by different levels
of scale in which peaks in the spectral profile can vary in order of magnitude. For
example, consider Figure 5.1a. The sum of all spectral profiles in the datacube is
plotted, with the mass-to-charge ratio on the x-axis and the measured intensity on
the y-axis. For visualization purposes, the right part of the plot is magnified by a fac-
tor of 467. Various large peaks can be seen in the left part of the spectrum, while the
right part of the spectrum consists mainly of very small peaks. Both types of peaks
are important in the analysis of the data. Figure 5.1b shows the spatial distribution
of spectral peaks. The value of a pixel represents the sum of spectral intensities at
each position on the surface of the material. A color map is used to assign a color to
each intensity.

Figure 5.1 is an example of how scientists use two side-by-side views to analyze
data in a datacube. One view is the spectral view: it shows the sum of all spectral
profiles. The second view is a spatial view: it shows the summation of the spectral
profile at each position on the surface of the scanned material. It is our goal to create
tools for data analysis with one integrated 3D-view to gain insight into the spatial
distribution of features in the volume. This is difficult using only the above mentioned
spectral and spatial views. This chapter is a first step towards achieving this goal: we
demonstrate how a transfer function can automatically be generated for 3D-rendering
of the datacube using PCA. Different automatically extracted components are pre-
sented in 3D visualizations to a user. The spatial and spectral characteristics of a
component are displayed in one single representation. This representation provides
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more information on the spectral profile and spatial distribution of a feature in one
component.

5.2 Related work
Early implementations of volume rendering [Lev88] using transfer functions [Dre88]
are mostly applied to data resulting from Computed Tomography (CT) scans. Many
other areas in science could benefit from the techniques developed for these medical
applications. For instance, Djurcilov et al. [Dju02] use techniques for visualizing 3D
scalar datasets by combining uncertainty information on top of environmental data.
Uncertainty information is added to the classic volume rendering equation to highlight
important features by adjusting opacity and color. In these datasets each data-point
has a 3D spatial location, contrary to spectral data where each data-point has a
2D spatial location and a certain spectral channel (for instance mass-to-charge ratio
or wavelength). Therefore, there are few implementations of 3D visualizations for
spectral data. One example can be found in Polder and van der Heijden [Pol01]: it
shows a DVR of a spectral datacube and a representation using iso-surfaces. The
latter produced some unexpectedly good results. Torson [Tor89]presents a system
for interactive analysis of 3D data-arrays. He uses this system on spectral data on
which conventional volume rendering and surface display techniques could not be
used appropriately. Torson names three reasons for not applying DVR techniques
on data from imaging spectroscopy. First, the data values are not varying smoothly
throughout the datacube. Second, volume rendering can not easily show small local
data variations superimposed on broad overall variations. Third, volume rendering
provides only a qualitative view of the data. Torson’s system did not provide any
interactive navigation tools for volume rendering in a PC-based virtual reality, unlike
Fuhrmann et al. [Fuh02], who implemented interactive navigation tools on CT data.
This would be the goal for this procedure, though.

We try to solve the problem of using DVR for spectrometry data using PCA (see
Wall et al. [Wal03]) to detect features. Lasch et al. [Las98] already used PCA to
detect patterns in FT-IR data images. Also, Piwowar et al. [Piw01], applied PCA
to recognize spatial-temporal patterns in Arctic sea ice concentrations. A closely
related multi-variate image analysis algorithm is ICA. Muraki et al. [Mur00] apply
ICA on multichannel volume data from Magnetic Resonance Imaging (MRI) scans
to separate specific tissue characteristics, e. g., water and fat. Muraki trains a radial
basis function network with sample data from the visible female dataset to generate
color transfer functions.

He et al. [He96] also use stochastic search techniques to generate transfer functions
for data from MRI and CT scans, with better results than the approaches relying
merely on the ‘trial and error’ of the human factor. He’s approach requires a minimum
of computer aid compared to data-centric or image-centric approaches as described
in Pfister et al. [Pfi01]. Due to the complexity of the task and the introduction of
multi-dimensional transfer functions [Kin98; Kni01b], most research tends towards
a semi-automatic approach in transfer function design for direct volume rendering
of medical datasets. A minimum of user involvement is accomplished using direct
manipulation widgets (see Kniss et al. [Kni01a]) to create multi-dimensional transfer
functions for specific datasets [VH04].
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Different approaches in creating appropriate transfer functions have to be consid-
ered in the relatively open area of using DVR to visualize the datacubes from imaging
spectrometry. Existing multi-dimensional transfer functions do not handle the equally
important high and low peaks in the spectral dimension very well. PCA has already
proven itself in the area of statistical pattern recognition.

5.3 Method
In our method, PCA is used to extract features and create an appropriate transfer
function for a volumetric visualization of the spectral datacubes. This transfer func-
tion maps the intensities in an extracted principal component to different opacity
values. After PCA, a component is selected and the spectral datacube is visualized
using the opacity map that is generated by the transfer function. This way, the linked
spectral and spatial distribution of a feature in the datacube can be examined.

Weighted PCA

PCA has to be applied to all spectral imaging datasets (both TOF SIMS and FT-
IR). As described in Subsection 3.2.4, PCA can be applied to TOF SIMS data with-
out scaling of the spectral and/or spatial dimension. The FT-IR datacubes are not
created by counting statistics, which makes mean-centering and scaling appropriate
preprocessing steps. These preprocessing steps are to normalize the unfolded FT-IR
spectroscopy data in matrix D, as in Subsection 3.2.3. First, we subtract each data
value with the mean. This reduces the influence of extreme scalar data values. Sec-
ond, data values are scaled according to the variance. This removes big variations
between values. Both rows and columns of the data matrix D are preprocessed in
this way

D̃rows = (D − µxy) /σxy (5.1)

Dpreprocessed =
(
D̃rows − µm

)
/σm

where D̃rows is the data matrix D with mean µxy subtracted from each row, af-
ter which the row is scaled according to the variance σxy. The same operations
(mean-centering and variance scaling) are applied to the columns, which will result
in Dpreprocessed. Consequently, we can treat both rows and columns in the matrix
as measurements when applying PCA. Next, PCA is used to find orthogonal and
normalized matrices for the spectral and spatial dimensions.

Transfer function generation

In Subsection 3.3.1 we described how the principal components and score vectors
are computed in order to find spectral or spatial features in a 3D spectral volume.
Opacity of the transfer function is applied for the visualization of these features.
Multiple opacity functions are used for different features to isolate them from other
areas. With the eigenimages and eigenspectra matrices (Y and P ), the original data is
projected onto new bases. To generate the opacity function of areas with the highest
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variance, an addition of the first score vector with both the highest spatial and the
highest spectral variance is used. The motivation is that those features are captured
in one single 3D opacity map. A 3D opacity map is a datavolume in which each cell
cell is assigned a certain opacity value, for instance by a transfer function.

This argument is represented more formally by

Y =


i1
i2
...
im

 P =


s1
s2
...
sxy

 (5.2)

Here, Y is a m× xy size matrix with spatial scores and P is a xy ×m matrix with
the spectral loadings, which is converted to a m× xy matrix by taking the
transpose. Hence, O1 is a m× xy sized matrix. The resulting vectors are combined
into one opacity transfer function. For example,

O1 =


i1
i1
...
i1

 +


s1
s1
...
s1


T

(5.3)

shows how the opacity map of the first score vectors is derived. The 3D points with
the highest positive and negative values in O1 are assigned to high alpha values. All
regions in the volumetric data that contribute to this first principal component are
made opaque using this 3D transparency map. Similarly, the opacity maps of the
consecutive score vectors can be generated. Different opacity mappings can be
combined to display similarities or differences of multiple features in the original
data.

5.4 Applications
Our method is applied to four examples of spectral recordings. First, the results of
our method are shown when applied to a dataset created by the TOF SIMS technique.
It is a dataset of a small section of the anterior lobe of the cerebral ganglia of the
pond snail, Lymnaea Stagnalis. The second example is a visualization of the brain
ventricle of a mouse resulting data from FT-IR spectroscopy. The third and fourth
example is respectively an embedded hair cross-section and a synthetic sample as a
droplet-array as seen in Subsection 3.4.3.

The small brains of a snail

A high spectral and spatial resolution can be obtained using TOF SIMS. In this
example, atomic and molecular structures in a dataset can be identified. The bound-
aries of different cells can be visualized when TOF SIMS is applied to a slice of the
brain of the pond snail. Figure 5.1 already showed the resulting spectra and images
from this spectral scan. Some obvious features are highlighted when our method is
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(a) (b)

(c) (d)

Figure 5.2: (a–c) The first two score vectors with (b–d) the accompanying eigenimages as
a result from PCA.

applied to this dataset. The first two spectral score vectors are shown in diagram a
and c of Figure 5.2.

The three lowest peaks in (a) represent the negative contributions in the spectral
dimension of the component that isolates the largest amount of data. Figure 5.2b
gives the corresponding spatial distribution of the material in which the cells in the
dataset are embedded. The second score vector in (c) has isolated a large positive
peak. This peak corresponds with the red areas in the image of Figure 5.2d that can
be identified as larger cavities between the different cells. Other components that
result from PCA also highlight certain areas within or between cells that contain
different organic compounds.

Transfer functions can be made from the resulting components of the spectral
datacubes described in Subsection 3.4.2. The principal components extracted in Fig-
ure 3.3 result in a 3D representation shown in Figure 5.3. The spectral datacube in
Figure 5.3a shows that many different spectral features display a certain amount of
spatial correlation. This makes it difficult to identify the individual features from
these two principal components. Figure 3.3b shows similar spectral features in its
components after PCA with an additional VARIMAX rotation. The features in this
datacube are more clearly visible by the improved spatial correlation. A better feature
contrast is found, but the individual components are not fully separated. Figure 3.3c
and d both show similar features resulting from PARAFAC. These datacubes show
improved distinction between the spectral planes of the feature, but PARAFAC is
also able to separate the feature from (b) in two individual features.
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(a) (b)

(c) (d)

Figure 5.3: The spectral datacube with a resulting transfer function from (a) PCA, (b) PCA
with VARIMAX rotation and (c–d) two different components from PARAFAC.

The bigger brains of a mouse

The second example is a slice of the central brain ventricle of a mouse. FT-IR spec-
troscopy is applied to identify different chemical functional groups. The resulting
spectral and spatial components are combined in different 3D maps of which the
second, third and fourth are displayed in Figure 5.4.

The long axis represents the spectral dimension that ends in the front on wave-
length of 4000 cm−1. The first component mainly highlights the differences between
the uninteresting regions (the red and blue areas). The red and orange regions of
the components represent positive correlations, whereas the blue regions represent
negative correlations. Both positive and negative regions could be of interest for the
identification of the functional groups. In Figure 5.4a, the isolated blue region at
wavelength 1550 cm−1 represents the location of amide groups. The blue regions at
wavelength 3300 cm−1 and 3400 cm−1 represent hydroxy groups and amino groups.
Different regions are clearly distinguished in the resulting 3D maps. These maps can
be used as an opacity map on top of the original data as shown in Figure 5.5.

The same volumetric data can be loaded in VolView, a visualization package from
Kitware. This package offers many tools [Mar05] to interactively create an appropriate
transfer function based on the ‘trial and error’ method with an initial estimation of
color and opacity transfer function based on the histogram of the data. This initial
guess for an appropriate transfer function is shown in Figure 5.5c. This package
can not distinguish between the spatial and spectral dimensions in the spectral data,
because it uses the scalar values the same way in all three dimensions. VolView
can not differentiate between small but important differences between values in the
spectral dimension when they are dominated by large peaks that are present in other
regions in the datacube.
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(a) (b)

(c)

Figure 5.4: The (a) second, (b) third and (c) fourth component mappings with the negative
contributions in blue and positive contributions in red.

(a) (b)

(c)

Figure 5.5: (a–b) Two resulting component mappings applied to the original data compared
with (c) the VolView representation of the same dataset.
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(a) (b)

Figure 5.6: A representation of the complete spectral datacube of the embedded hair with
an overlay using the (a) first principal component, PC1, and (b) the thirteenth principal
component.

A hair and a droplet-array

The third example is a cross-section of a hair. PCA was able to extract the location
of a particular feature in the hair, but the spectral view revealed that it was caused
by a salt-crystal. A combined view would instantly reveal the connection between
both views. Each pair of extracted scores and loadings can be combined in a single
three-dimensional overview to gain more insight in the correlations between spectral
profile and location. Each value in the cube is the intensity on a certain position
in a spectral plane and is given a color using the ‘hot’-color map from MatLabTM.
Because most data-points have value zero within a mass spectrometry dataset, the
complete datacube would result in an image of a black box. Large parts of this box
can be discarded as they do not contain any interesting properties. Again, an opacity
map is generated to hide uninteresting features within the datacube which is created
by the extracted components. Instead of a continuous switch between spectral and
spatial view, a complete view of the cube can directly reveal this connection. A user
is able to interactively rotate the cube and instantly get an overview of all the data
in three dimensions.

The complete spectral datacube of the hair is shown in Figure 5.6a and b. Only
the high values in the spectral profile and image component of the first principal
component are made opaque by the opacity map. This highlights that component in
the original datacube which contains mostly the areas and peaks from the hair itself.
The component with the extracted features from the crystal is shown in Figure 5.6b.
It clearly shows the relation between the highlighted image plane on m/z 39 and
the small group of pixels on the location of the crystal, while other areas of the
datacube remain hidden. The significant peak on m/z 39 in the spectral component
highlights the complete image plane at this spectral position. Similarly, the high
intensity of the pixels in the spatial component results in the appearance of a ‘rod’,
spanning the whole spectral dimension of the datacube. The number of points that
are shown can be adjusted by changing the threshold in the opacity map. This
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Figure 5.7: A representation of the complete spectral datacube of the PVP droplet series
with the 6th PARAFAC factor.

representation provides better overall insight in the data by visualizing the direct
correlation between spectral peaks and spatial occurrences. Figure 5.7 shows several
isolated drops in the spectral datacube using the sixth PARAFAC factor. The different
components or factors can be highlighted together or separately in the same datacube
by combining their opacity maps. The resulting three-dimensional view becomes more
accurate and discriminating once the resulting components contain more contrast.
This advantage makes it easier to compare the quality of results from the different
multivariate analyses.

5.5 Discussion
The current practice in the analysis of spectral data is illustrated in Figure 5.1. Two
plots, one for the spectral and one for the spatial information, are used to view the
spectral datacube. In this chapter, we have introduced a method to view spectral data
in three dimensions. The 3D view is used to gain insight into the spatial distribution
of features in the volume, which is very difficult to do using only the spectral and
spatial views. We have discussed how a transfer function can be generated using PCA.
It is applied in both the spectral and spatial dimension of the individual images, as
well as in the dimensions of the spectra of all images.

Using PCA in both dimensions of the datacube allows us to address the two major
problems that were mentioned in the introduction. First, intensity at each point in
the data consists of contributions of many spectra. Applying PCA in the spectral
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dimension results in the principal components of a number of spectra. Second, spectra
characterize themselves by different levels of scale. PCA is a technique that computes
variances. Hence, the technique will find variances between spectra with very large
and very low peaks.

We now discuss the advantages and disadvantages of the proposed method:

• Although the first principal component is used to highlight the data regions
which have the highest variances, this does not necessarily mean the most in-
teresting feature is captured by the first component. For example, a principal
component could contain high variances in the spectral dimension and very low
variances in the spatial dimension. As a consequence, each opacity function
should still be manually checked by the user.

• Contrary to the original data, component vectors can contain negative values.
These negative peaks may be just as important as the positive, but it is uncertain
how the composite opacity map is affected when the peaks have a positive
spectral but negative spatial contribution.

• The method normalizes the data as much as possible and reduce variances in
both dimensions (see Equation 5.1). This is difficult to realize in both dimen-
sions without losing the direct relation between spectral and spatial components.
In some cases, it is not possible to filter outliers completely in the preprocessing
steps: their values are too deviant to successfully auto-scale the data and lose
the extreme values. An alternative data-scaling technique can be used to re-
move these outliers automatically through a threshold function to filter extreme
values.

• As mentioned above, PCA is used to analyze spectra and highlight contrasting
features in images. Even small differences between spectra and images can be
detected when they are correctly preprocessed. Hence, the method can also
be used to detect noise in both spectral and spatial dimensions. The ‘least’
principal components will contain most of the noise present in the data.

• The main advantage of using our method to detect spectral and spatial fea-
tures is the direct linkage between these dimensions by using the result in one
dimension to calculate the other (see Equation 5.3). It is not possible to link
components automatically by using separate analyzes and treating the spectra
or images as separate dimensions.

Future work

Our method is the first step in creating a tool for the analysis of spectral datacubes
using direct volume rendering. In future, 3D separation and clustering algorithms
can be incorporated to improve the definition of the opacity function. Another im-
provement would be the automatic identification of features by adding additional
information about spectral peaks. Component vectors could be matched using this
database of score vectors to label the different volumetric regions in the visualiza-
tion. Storing datasets, features and classifications could eventually evolve into an
integrated system for feature recognition and analysis. Finally, the method can be
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applied to other multidimensional scientific datasets which lend themselves for finding
high dimensional patterns.

5.6 Summary and conclusion
This chapter shows how principal components can be used to create multi-dimensional
transfer functions. Two types of spectral datacubes are visualized in 3D by direct
volume rendering with these transfer functions to control opacity and highlight ex-
tracted features. This enables us to visualize the link between the spectral and spatial
characteristics of a feature within the spectral datacube. The resulting volume can
be viewed from different perspectives. Moreover, different features are highlighted,
thereby providing a complete overview of the data. Consequently, selection and zoom-
ing operations can be applied to create partial views.



Chapter 6
Feature zooming

Chapter 5 described how PCA creates multi-dimensional transfer functions to high-
light features in a 3D representation of spectral datacubes. These highlighted parts of
a spectral datacube show the direct linkage between spectral and spatial properties of
an extracted feature. Spectral datacubes resulting from imaging mass spectrometry
contain too many variables to be displayed entirely in one direct volume rendering.

In this chapter, we present a zooming technique based on PCA to select regions in a
datacube for enhanced feature extraction at the highest possible resolution. It enables
us to select spectral and spatial regions at a low resolution and recursively apply PCA
to zoom in on interesting, correlated features. The technique utilizes a higher signal-
to-noise ratio in the data, without losing the high resolution characteristics. Less
interesting and/or dominating features can be excluded in the spectral and spatial
dimension. For these reasons, more features can be distinguished, and in greater detail
as well. Analysts can zoom in on a feature of interest by increasing the resolution.

6.1 Introduction

Traditionally, analysts look at the sum of all spectral variables in a datacube to
determine the presence of different chemical compounds. The peaks in intensity values
within the spectral dimension, as shown in Figure 6.1a, are of particular interest. The
m/z on the x-axis of the figure is the ‘mass-to-charge ratio’. A knowledgeable mass
spectrometrist can determine which ion corresponds with a certain spectral value.
More recently, analysts also look at the sum of all spatial variables, or ‘spectral image
planes’, as shown in Figure 6.1b. This example shows the spatial distribution of the
summed mass spectra in a cross-section of a chicken embryo.

Figure 6.2 is an example of an extracted component image with the traditional
application of PCA. Depending on PCA for the extraction of features has several
weaknesses. A common weakness is the noise within the data. Noise occurs for
various reasons. For example, counting statistics in the image detector rely on a small
number of incident particles. Also, the ion source or detector can display instability.
This noise remains present in the extracted components, thereby having a negative
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(a)

(b)

Figure 6.1: (a) The sum of all 5122 spectral variables with the side on the right zoomed 200
times and (b) the matching sum of all 2 · 106 image planes of a cross-section of a chicken
embryo.

Figure 6.2: Image component extracted traditionally with a dominating area in the top left
corner and with a relatively low contrast.
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effect on peak separation. Methods for feature extraction usually try to reduce the
effects of noise by applying complex filtering models in order to increase the signal-
to-noise ratio. Due to the size of the imaging mass spectrometry data, filtering is
not considered in this approach, because of memory and time restrictions. A second
weakness of PCA is that it extracts features according to covariance. If there is an
artifact in the data with a relative high variety of intensity values or a number of peaks
with a large variance, it would dominate in the extracted components. Finally, the
spectral dimension has to be reduced to be able to use PCA-based feature extraction.
As a result, any high resolution characteristics in the spectral dimension are lost.

This study aims to improve feature detection as well as the level of detail of the
results by a zooming strategy based on PCA as a multi-scale approach. Our recursive
strategy consists of three steps. In the first step, the raw data is compressed to an
appropriate size. In the second step, PCA is applied to extract features automatically.
Interesting feature components are selected in the third step. The associated spectral
and spatial variables are used to construct a new dataset at a higher resolution using
the original data. Again, as in the first step, PCA is applied to the selected data until
an interesting feature is isolated at the highest possible level of detail.

The proposed strategy exploits a basic data reduction technique. The number
of variables is reduced by summing the intensity values of a consecutive number of
variables. At first, peak information is neglected in the analysis. Eventually though,
this strategy is still able to extract the high-resolution characteristics that are lost in
the traditional application of PCA. The main difference with the traditional approach
is that a larger bin size must be chosen in order to fully exploit the capacity to zoom
and create more detail. Larger bins increase the signal-to-noise ratio in each variable.
So binning can be applied to reduce the noise without the use of complex filters
and data-dependent noise reduction techniques. At the same time, it compresses a
datacube to a size that is computationally less restrictive to apply a feature extraction
technique to. A final strength of our ‘divide and conquer’ approach is that by zooming
in on interesting features, dominating artifacts can be left out in the newly constructed
datasets. This increases the contrast in the resulting components after reapplying
PCA.

In previous work [Bro05a; Bro07], we visualized extracted correlated features in
3D by combining spectral information with spatial locations. These features are para-
metrically visualized at the highest resolution possible, but they have to be identified
first. With this new technique, we are able to spectrally and spatially zoom in on
specific regions of the datacube and extract a larger amount of features with more
precision and more detail. Therefore, the final visualizations will benefit, because
they depend on the feature extraction step prior to the visualization step. Even with
a technique to visualize mass spectrometry data at the highest resolution possible,
the selectivity and quality of the feature extraction is still key.

6.2 Related work
The classical method for feature discovery in mass spectrometry data is by manually
locating peaks in the mass spectrum. In imaging mass spectrometry, the ions that
are removed from a surface are counted. Their spatial location is stored, together
with the time it took to arrive in a detector. This time-of-flight is used as a spectral
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variable or raw channel. Additional databases with known peak locations in mass
spectra can be consulted to identify a selected peak. Often, only a small part of
the data is selected for detailed analysis. Most of the data remains unutilized in the
analysis. The spatial distribution of a peak is traditionally visualized by summing
all intensity values in the spectral dimension to create an image of summed intensity
values.

Univariate analysis [McC05] can be applied to imaging spectrometry data to image
the distribution of ion counts in a small spectral window. PCA is attractive for our
purposes, since it is fast, does not use complex models and is easily scalable to large
inputs. In order to be able to apply PCA on mass spectrometry data, the number of
spectral variables has to be reduced. A common reduction step is the summation of
multiple spectral variables into one spectral bin [Pac04]. Binning is done, because:

1. rather than a feature being distributed among multiple spectral variables, it is
now combined and can therefore be treated as a single variable in PCA;

2. it reduces the size of datacubes enough to be able to apply PCA without memory
restrictions;

3. it improves the low signal-to-noise ratio in a datacube.

There is a balance between the number of spectral variables combined into one bin
and the resolution of the features. If PCA is used at the highest resolution with a
small bin size, fewer features can be distinguished. Once the bin-size increases, more
features with higher contrast can be extracted. Unfortunately, an analyst is unable
to separate the different spectral peaks combined into one bin. With a low signal-to-
noise ratio, PCA is not able to separate those features with small variances from the
many dominant peaks with large variances.

To overcome the problem of size and influence of noise, many researchers have
developed advanced multi-scale compression techniques that use deconvolution filters
in combination with wavelets [Sta98; Wol97]. Wickes et al. [Wic03] compared three
spatial denoising algorithms on their performance with PCA. Claiming down-binning
is the most effective technique compared to boxcar and wavelet filtering, this study
still faces the same problem of initial spectral binning in order to apply the wavelet
transform. After the transform, it is no longer possible to use the traditional PCA for
feature extraction. For these reasons, we used the simple binning strategy to compress
the data.

A new problem rises when several mass spectrometry datacubes are registered and
combined into one new datacube [Bro06]. Because of the increased size, PCA can not
be applied to this new dataset in the traditional way without reducing the spatial
dimensions. It is useful to apply PCA to an enlarged datacube, because it includes
more spectral variance in the analysis. Besides spectral binning, we also bin the data
spatially in our approach and therefore are able to handle the combined datacubes.
Although binning results in a decrease in detail, it has turned out to be very effective
in increasing image contrast, especially for images with highly sparse features [Tyl03].

PCA is already hierarchically applied to different 3D datasets that contain point-
clouds [Fra06; Kal05]. In these studies, PCA is used to replace a group of ‘real’ 3D
points with an ellipsoid, thereby reducing the dataset. PCA is also used for data
reduction in the field of neural networks in the so-called ‘PCA-pyramids’ [Wei96].
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Figure 6.3: The data-flow in visualization pipeline of the approach for zooming.

This study can be compared to the well-known image pyramids, but it uses PCA as
a reduction function in a neural network. These applications of PCA are intended as
data reduction strategies instead of automatic feature selection schemes.

Other methods for noise reduction are mainly based on spectral or spatial filter-
ing. According to Randolph [Ran05a], there is no optimal technique to filter mass
spectrometry data due to the unknown and data-specific signal-to-noise ratio. Even
if a point spread function could be estimated to apply a spatial deconvolution fil-
ter [Hut96], it is impossible to apply this filter to the millions of spectral planes in a
mass spectral dataset in order to improve feature extraction. Keenan et al. [Kee04a]
proposed a weighted variant of PCA to account for the Poisson noise present in mass
spectrometry data. Although this study shows that the contrast in the results im-
proved, it basically created a filter according to a model of the noise in the data in
order to add a weight to the covariance matrix of the PCA. Other filtering methods
like adaptive filtering techniques or simple Gaussian deconvolution on the individual
image planes could also improve the results. However, we would like to emphasize the
application of the widely accepted step of binning mass spectrometry data. Although
most case studies ignore the selection of the appropriate size of the bins, the results
mainly depend on this step. By implementing a variable bin size, and therefore dif-
ferent levels of detail, an analyst can select the most suitable level of detail for each
component during the component exploration.

6.3 Method
An overview of the visualization pipeline in this approach for zooming is shown in
Figure 6.3. The first step in the proposed method is the spectral and—optional—
spatial binning of the raw channel data resulting of a measurement. Binning results
in a multi-spectral datacube on which feature selection is applied by PCA or by a
comparable decomposition method. PCA creates multiple components of which the
resulting spatial distributions of the different extracted components are visualized in
an overview. One or more components in the overview can be selected or excluded by
an analyst. A new dataset is created with the contributing spectral and spatial bins
of the selected components from the original data. After re-binning the new dataset
with a larger bin size, PCA is reapplied. When a feature is isolated successfully, it
can be visualized at the highest resolution.

The algorithm for zooming proceeds as follows:

1. Create a reduced spectral datacube on a low resolution by the spectral or spatial
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(a) (b) (c)

Figure 6.4: Similar extracted components with enhanced contrast by (a) spectral binning
with spectral bin size 4096, (b) spatial binning with spatial bin size 16 and (c) spectral and
spatial binning with bin size 4096 and 16 respectively.

binning of raw channel data.

2. Apply PCA on the low resolution datacube which results in a decomposition
with a number of spectral and image components.

3. Display the resulting spectral and image components to a user for inspection.

4. A selection of spectral and/or image components is made that contain interest-
ing features or undesired artifacts.

5. Create a new, rebinned datacube with higher resolution from the original chan-
nel data with the interesting features included or the excluded undesired arti-
facts.

6. Repeat step 2 to 5 until the extracted components contain interesting features
on the highest resolution.

6.3.1 Binning and PCA

Binning is simply the act of grouping neighboring spectral variables by summing
their intensity values into a single, new spectral variable. The same principle can
be applied spatially by summing the intensity values of certain area to create a new
spatial variable. This way, the signal-to-noise ratio of a spectrally and spatially binned
datacube is increased, while the resolution is decreased. An example of this increase
in contrast is shown in Figure 6.4. These three extracted components are all similar
to the component in Figure 6.2. Figure 6.4a is binned spectrally, (b) spatially and (c)
both spectrally and spatially. All image components show more contrast compared
to the component in Figure 6.2.

Different methods for decomposition or factor analysis can be used for this fea-
ture visualization. PCA still has satisfying results with respect to the computational
complexity, discrimination between extracted components and ability to identify cor-
relations as well as anti-correlations between spectral and spatial dimensions. PCA is
applied to the datacubes to select and extract the most important correlated spectral
bins with the summed spectral peaks.
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(a) (b)

Figure 6.5: (a) Four selected components with the same spectral peak of interest, each bin
with a different number of spectral variables. (b) Close-up of the components in the large red
bin with 16384 spectral variables seen in (a) and the raw channel data in black.

6.3.2 Selection and zooming

In the previous section, we showed that larger spectral and spatial bins increase the
separability and contrast in the resulting components. After binning and feature
extraction, the next step in the pipeline of our approach is selection of the resulting
spectral scores and image components that contain features of interest (see Figure 6.3).
An analyst can select interesting spectral or spatial regions. PCA can be applied to
these regions once again, but this time at a higher spectral and spatial resolution,
because smaller bin sizes are used.

Spectral dimension

Some examples of extracted spectral components are shown in Figure 6.5a. The blue
spectral score is one of many extracted components, of which only the positive part is
displayed is this histogram. The smaller red bin (in the middle) highlights the same
feature of interest at a similar spectral location. The bin containing the peak with
the highest contribution to that particular component is selected again. Because of
the reduced bin size, the component is now much more specific. Multiple red bins
contribute to the selected component. Once the bin size becomes smaller, the contri-
bution from the other bins increases. This phenomenon becomes more apparent in
the green and cyan score vectors. These are still the closest possible representations of
the same feature. However, we now see the dominating contributions to the resulting
component of the multiple bins on the left of Figure 6.5b in much more detail.

After identifying a feature of interest at a low resolution, the bins in this score
vector are selected by a threshold set by a user. Only those bins with a high intensity
score are selected to construct the new dataset to which PCA is reapplied. Figure 6.5b
shows a close-up of a spectral area of interest with 16384 spectral variables. The two
score vectors are plotted behind the raw data to show how a spectral selection can
be made at the highest resolution. If zooming was not applied, it would have been
a time-consuming job to find the small peak of interest based on the traditional bin
size of 1024 spectral variables. Its contribution might even have remained hidden by
the dominating other bins in the score vector.
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(a) (b) (c)

Figure 6.6: Region selection by applying a threshold to image components with (a) a low
resolution (128 × 128) image component to exclude a dominating artifact on the sample
surface, (b) a different component to exclude areas outside the object of interest and (c) the
same, more cluttered region selected at a high resolution (512 × 512).

Spatial dimension

A similar procedure can be followed for spatial zooming. PCA is first applied to a
spatially binned datacube at a relatively low spatial resolution. Image components
resulting from PCA are organized and displayed. This enables a scientist to include
or exclude selections of features for the application of PCA on a spatially zoomed
part of the datacube. Certain image components have both a positive and negative
loading. An appropriate threshold is applied to the intensity loading of a component
image. Small intensity loadings contain mostly noise and are therefore excluded from
the selection.

The thresholded images act as a mask to include or exclude certain spatial areas.
A better selection of areas can be established when a spatially binned area is used as
shown in Figure 6.6. Figure 6.6a contains a small area with a dominating, but less
interesting artifact that reoccurs in almost each extracted component. The red area
in Figure 6.6b is an image component selected by a user and contains a section outside
the area of interest. This spatial selection can be excluded from further analysis to
reduce clutter in the final results. The contour of this image component has less
cluttered boundaries compared to the green area in Figure 6.6c, which is a similar
image component extracted at a full spatial resolution. This example shows that a
low spatial resolution can be used to create better defined boundaries without having
to apply any image segmentation algorithms.

6.4 Results
The data used in this example were measured using TOF SIMS. The sample is a
thin cross-section of a chicken embryo. The cross-section is 8 × 8 mm in size and
contains a spectral mass window from ∼ m/z 1 − 2000. The dataset consists of four
separate measurements, each with a spatial dimension of 256×256. We registered and
combined the four measurements into one spectral datacube with a spatial dimension
of 512 × 512 and a spectral dimension of ∼ 2 · 106 intensity values. In this example,
the MatLabTM environment is used with a sparse implementation of the eigenvalue
decomposition.
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(a) (b)

(c) (d)

Figure 6.7: Different extracted cholesterol image components with (a) 1024 spectral vari-
ables in one bin, (b) 32768 spectral variables in one bin, (c) 1024 spectral variables and a
low spatial resolution and (d) a zoomed selection of spectral bins with 1024 spectral variables
at the high spatial resolution.
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(a) (b)

Figure 6.8: (a) Image component by application of PCA to the complete datacube and
(b) improved selectivity and contrast of a similar extracted component with a selected region
of interest.

6.4.1 Spectral zooming

In many cases, interesting features are cluttered in image components, mainly by the
low signal-to-noise ratio in the part of the mass spectrum with the higher mass-to-
charge ratios. Our method is able to extract more discriminating features, with higher
contrast in the image components. A good example of an interesting feature is the
distribution of cholesterol within the embryo itself. Figure 6.7a shows the twenty-fifth
principal component in the sorted list of eigenimages of the traditional application of
PCA on 1024 spectral variables in one bin.

Figure 6.7a is the closest representation to be classified as the cholesterol distri-
bution in the sample, but it contains considerable noise indicated by the dispersity
of the black dots. The black dots represent the presence of cholesterol with a thresh-
old of max(image)/2 applied to the values of each image component. Cholesterol is
distributed mostly towards the edges of the embryo, and a little is situated around
the organs within the cross-section. Figure 6.7b shows the corresponding component
with spectral bins that are thirty-two times larger. This is component number eight
and shows significantly more contrast towards the edges of the sample. Once the
datacube is binned spatially as well, and each square of 4 × 4 locations is combined
into one, the resulting cholesterol component has another increase in contrast (see
Figure 6.7c). The final distribution of cholesterol after spectral zooming is shown in
Figure 6.7d. This image has the same resolution as the image in Figure 6.7a, but the
cholesterol feature can be extracted and visualized with more detail.

6.4.2 Spatial zooming

The selectivity of feature extraction and therefore the contrast of the image is en-
hanced if the selection mask of Figure 6.6b is applied. This way, the area and noise
outside the cross-section of the embryo are omitted when PCA is reapplied. Both
spectral scores in Figure 6.8a and 6.8b have similar spectral peaks. The main differ-
ence being that two peaks are excluded from the spectral score of Figure 6.8b. The
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Figure 6.9: A low resolution overview of the components after PCA on a spectrally and
spatially binned datacube. Each colored shape represents an extracted feature that can be
selected or excluded for zooming.

spatial distribution of those peaks is mainly located in the omitted area.
It is fairly easy to create two-dimensional contours of low resolution principal com-

ponents. Hence, it is possible to show one overview of the sample without using ad-
ditional segmentation algorithms. An analyst can use our approach to spectrally and
spatially zoom into extracted features using the automatically generated 2D overview
in Figure 6.9. The green shape represents the negative part of the second principal
component. This feature depicts most of the hard tissues inside the embryo and in-
cludes for instance bone. The red area is the positive part of the second component
and clearly covers the area outside of the embryo itself. The blue areas were iden-
tified as cholesterol, according to the peaks in the spectral scores, which are located
between m/z 368.2 and m/z 369.13.

A final representation of a selected feature can be made when zooming at the high-
est resolution, using the parametric visualization technique of Broersen et al. [Bro07].
This technique creates a 3D representation of a selected feature. The cholesterol dis-
tribution, for example, could not automatically be extracted and visualized by the
traditional application of PCA. Within the components extracted in a traditional
manner, the contribution of this peak was too small to be noticed at once. With the
increased selectivity of the zooming approach, it is possible to locate the peak among
the components extracted automatically.

6.5 Discussion
In this chapter, we proposed a method for selective zooming in spectral datacubes
by recursive application of PCA. By combining two well-known techniques, binning
and PCA, we generally increase the signal-to-noise ratio spectrally and spatially. Less
noise improves the feature extraction with PCA in two ways. Firstly, more distin-
guishing features can be extracted from a multi-spectral datacube. Secondly, the
spatial contrast or detail in these features is higher. By selecting a component of
interest, an analyst can spectrally and spatially zoom into these improved results
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(the spatial distribution and the spectral window in which the feature is represented).
Zooming is accomplished by removing uninteresting parts and increasing the resolu-
tion in an interesting area. After increasing the spectral and spatial resolution, PCA
is reapplied. It is possible to mask irrelevant areas in the datacube and to increase
contrast by using component shapes. Additionally, binning and selective zooming
reduce the number of variables. This creates the possibility to apply PCA to several
spectral datasets which are stitched together. Initially, the combined dataset is too
large to apply PCA to. However, the zooming functionality overcomes this problem of
size. Hence, it takes full advantage of the increase of spectral and spatial information
in the combined dataset.

In future work, zooming may even be enhanced by experimenting with other data-
specific spatial filtering techniques. The noise in a binned multi-spectral datacube
could be reduced, for instance, by applying Gaussian convolution or other conven-
tional smoothing techniques. This operation would be computationally expensive at
a high resolution datacube, but takes less effort when applied in combination with our
zooming approach. Another addition to this approach could be the use of a different
PCA-based feature extraction technique. A similar technique is the PARAFAC model
of Harshman [Har70]. Kiers [Kie91] has shown that PARAFAC can be considered a
constrained version of the two-way PCA. PARAFAC uses fewer degrees of freedom
to fit the data on a simple model and can put constraints on the resulting factors, for
instance a non-negativity constraint. This increases contrast between extracted fea-
tures, but against an increased computational cost [Kle07]. Again, with our method,
the number of spectral planes and locations—and therefore computational costs—are
reduced. If PARAFAC, instead of PCA, is used for feature extraction the execution
time is increased roughly with a factor thousand, depending on the data and the
number of extracted components. With our zoomed approach the bin size increases
with a factor of thirty-two, the execution time for feature extraction is cut down by
two-third.

6.6 Summary and conclusion
This chapter describes an approach for feature based zooming on mass spectrometry
datacubes. The approach primarily utilizes the data reduction technique of binning,
which is commonly used in imaging mass spectrometry. This approach is primarily
designed to enable feature exploration in fused imaging mass spectrometry datasets
after registration with the approach described in Chapter 4. The combined spectral
datasets are too large in size to be explored and visualized using commonly feature
extraction and visualization techniques. Analysts are able to select important features
or deselect unimportant features. Again, feature extraction is applied to the dataset,
which is binned to make visualization on a higher resolution possible. By selectively
removing spectral and/or spatial regions with noise or uninteresting features, new
features can be found with greater accuracy.



Chapter 7
High-resolution feature visualization

Chapter 6 introduced an approach for zooming in on imaging spectrometry data using
feature extraction. After zooming in on a feature on the highest possible resolution,
it is necessary to control the representation of the feature to be able to use it in
analysis. Without such control, the high-resolution spectral data has a signal-to-
noise ratio, that is too low to be insightful for analysts. A 3D representation of the
spectral data with high spectral resolution creates well-defined feature borders and is
useful to gain more insight into the noise present in a measurement.

In this chapter, we present a parametric visualization technique, which allows an
analyst to examine spectrally and spatially correlated patterns on the highest possi-
ble resolution. The extracted features are represented as abstract geometric shapes
using three parameters to allow for data exploration. The first parameter thresholds
the spectral contribution at which an extracted component is visualized. The level
of detail of the shapes is controlled by a second parameter. A third parameter deter-
mines at which density-level the extracted feature is represented. With this method,
the visualization of extracted features includes less noise. Moreover, by introducing
various levels of detail the full spectral resolution can be utilized.

7.1 Goal

It is our intention to create exploratory visualization techniques with as few as possible
data-specific denoising or complex clustering methods. At the same time, we want
to be able to visualize features of these enormous datacubes at the full spectral and
spatial resolution. In the most simple case of exploration, a spectral window is selected
by hand using the histogram in Figure 7.1a. Here, all intensities at a single location
are summed to create one image. Other methods almost always use a limited set
of spectral planes compared to the amount of planes imaging mass spectrometry
supplies. Figure 7.1a shows the sum of all spectral profiles in a datacube. However,
this view had to be simplified by combining several neighboring spectral levels into
one bin.
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(a) (b)

Figure 7.1: (a) The sum of all binned spectral profiles with left part zoomed 200 times and
(b) the matching sum of image planes.

7.2 Parametric feature visualization
After detecting features in imaging MS data, results are commonly visualized as a
spectrum or spectral image. Features in mass spectral data are distributed among
multiple spectral channels. A spectral image is conventionally visualized by taking
the sum of a range of spectral channels, thus visualizing one (or more) spectral bin(s).
The separate spectral channels in these images can not be distinguished from each
other. High-resolution topological information is removed although it could be useful
in the interpretation and analysis of the data. The resulting spectral images do not
contain shapes with well-defined edges. These shapes represent the distribution of
a molecular substance. The spatial density distribution can be estimated better if
the high-mass information is not removed. This could result in boundaries which are
defined better, thereby distinguishing a feature more clearly.

The spatial distributions of features in different spectral ranges have to be com-
pared to find similar or correlated patterns. These patterns can indicate connections
between different molecular substances. When the amount of a particular substance
increases, while another substance decreases correspondingly, it can be said that these
substances are anti-correlated (i. e., having a negative correlation). This phenomenon
is also useful for the analysis of interaction between molecular substances. The av-
erage signal intensity of the correlated features can vary, as well as the number of
spectral peaks within a feature. Therefore, an analyst should be enabled to adjust
the representation of the visualized features.

We present a new visualization technique enabling the user to:

• use the highest possible resolution instead of a spectrally binned resolution;

• extract features as 3D shapes with boundaries which are defined better;

• visualize spectrally and spatially correlated and anti-correlated patterns;

• parametrically explore multiple features within the same view.

Our feature visualization is controlled by three parameters. The first parameter α is
set as a threshold for the spectral contribution of an extracted feature. This way, only
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(a) (b)

Figure 7.2: (a) The spectral profile of a second principal component and (b) the matching
second image component.

the spectrally correlated windows with the highest contributions to that extracted
feature are included in the visualization. This enables a user to remove smaller peaks
and noise cluttering the visualization. A second parameter β controls the level of
detail of a 3D feature. A feature can be represented as a simplified smooth 3D shape
with high resolution, thereby containing more details of the structure. The third
parameter γ is used to determine at which level of density in the data a geometric
shape is created. A family of iso-surfaces can be created to explore areas with different
densities in the feature. Extracted iso-surfaces contain less noise compared to 2D
contours extracted from an image component. Therefore, these three parameters
enable us not only to display multiple correlated features, but to represent them as
3D geometrical shapes, while containing less noise than a traditional 2D view.

7.2.1 Extraction and visualization

Various visualization techniques have been proposed to inspect datacubes. The most
basic technique uses a TIC image (Figure 7.1b), in which a side-by-side view of spec-
tral and spatial domains can be analyzed. However, it is left to the user to identify
which chemical compounds are present in the datacube and whether or not their spa-
tial distributions are correlated. There are some complex fuzzy logic segmentation
algorithms [Wol99] as well, but these can only be applied to a limited number of
spectral windows. Also, a few implementations exist to visualize 3D spectral imaging
data in the spectral or spatial domain. Visualization implies coping with a number
of difficulties. First, the 2D spatial information with added 1D spectral information
can not be treated the same as ‘real’ 3D volumes, resulting for instance from a CT or
MRI scan. To overcome this problem, most techniques apply feature extraction using
factor analysis first, for instance Kenny et al. [Ken97] or Keenan [Kee05]. Feature
extraction is closely related to compression or dimension reduction techniques. It tar-
gets the removal of redundant data or data that mostly contains noise. Unfortunately,
both studies are unable to use the full available spectral resolution in their final visu-
alizations. The second difficulty is to find the most appropriate technique for feature
extraction or dimension reduction, which is specific for each spectral dataset. A third
problem is the ever increasing size and resolution of the datasets. This problem makes
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both visualization and feature extraction more difficult even with increasing compu-
tational power. For instance, Haigh et al. [Hai97] use correlation partitioning on
five spectral channels turning to dimension reduction techniques. Other visualization
techniques use between 100–300 spectral channels to visualize spectral data with flat
image overlays with color weighting envelopes [Jac05]. Others such as Polder and van
der Heijden [Pol01], apply volume visualization techniques. These techniques work
with a spectral dimension within visible light. The spectral dimension depicting the
wavelength has continuous intensity values. The spectral dimension resulting from
mass spectrometry can have ∼ 2 · 106 spectral channels and can be considered as
a cloud of single 3D points. Because mass spectrometry datasets consist of a cloud
of data-points with an increased amount of spectral channels, the aforementioned
methods of feature visualization can not be applied.

In almost all attempts to explore and visualize the enormous datasets resulting
from mass spectrometry, multivariate statistical analysis tools are used. Most tools
tend to focus on denoising [Wic03] or specific 1D filtering techniques [Kee04b]. The
tool AXSIA (used in Smentkowski et al. [Sme04]), for instance, statistically aggregates
spectral profiles to identify features in the data, but the results are still shown as sep-
arate spectral profiles and summed spatial distributions. AXSIA claims to decompose
the datacube more intuitively by disallowing negative spectral contributions. Many
successful multivariate tools [Kle07; Pac04] for spectral feature selection and unsu-
pervised exploration use PCA, which is less time-consuming. Nevertheless, there are
several disadvantages. Although with PCA correlations between spectral peaks and
their spatial distribution can be studied in a single view, feature extraction can not be
parametrically controlled. Furthermore, any noise inside the spectral bins is included
in the resulting volume rendering. Combining high-resolution spectral channel data
into one bin in order to apply PCA, results in the loss of spectral information. A
final disadvantage is that it is impossible to select a spatial region or specific spectral
window inside an extracted principal component for further examination.

In our approach we focus on visual parametric exploration of the datacube. Al-
though with PCA, correlations between chemical components can be found unsu-
pervised, much spectral information is lost when visualized in the traditional two
dimensions. We use the full spectral resolution in feature visualization to reduce
noise as much as possible without having to focus on advanced and computation-
ally expensive algorithms. It highlights positively correlated features, as well as their
negatively correlated counterparts in one parametrically simplified view.

In our method, the features are extracted in a four-step process. First, princi-
pal component analysis is used to discriminate specific components present in the
datacube according to their spectral correlation. Then, the most important spectral
windows are parametrically selected to exclude smaller spectral contributions contain-
ing more noise. In the third step, the selected windows are convolved into continuous
scalar fields to be able to extract appropriate iso-surfaces from those regions where
the data is most dense. In the final step, correlations between extracted features are
visualized at their 2D locations at the highest spectral resolution. The adjustment of
the parameters α, β, and γ (defined in Section 7.2) allows the user to interactively
analyze and highlight the spatial and spectral distributions of the chemical elements
and molecules on the surface of the material.
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7.2.2 Principal Component Analysis

Although different methods for decomposition or factor analysis can be used for our
approach, we use PCA [Jol02]. It has satisfying results with respect to speed, dis-
crimination between extracted components and identification of correlations as well
as anti-correlations between spectral and spatial dimensions. We decided not to nor-
malize or auto-scale in our technique, because Keenan and Kotula [Kee04b] showed
that with mass spectrometry, common preprocessing steps such as normalization or
auto-scaling can lead to less satisfactory results.

As shown in Chapter 3, PCA is applied to the datacubes to extract the most
important correlated spectral profiles. This way, the thousands of spectral profiles
are decomposed and compressed into a few main components that capture the main
characteristics of the data. These components especially contain spectral peaks that
are correlated. When sorted according to their eigenvalues, the first few components
describe the most variance in the spectral data and therefore have the most contrast
in the peak intensity.

Our study offers an approach to visualize these components in more detail by
isolating positive and negative spectral peaks. Each component is used as a new
base to project the original datacube as in Equation 3.7. This results in a matrix
P with spectral loading vectors, which can be interpreted as spectral components.
Here, each peak in a spectral component represents the contribution of a specific ion.
An example of an extracted component is shown in Figure 7.2a, in which positive
peaks are blue and negative peaks are red. In this component, the positive and
negative parts are anti-correlated. The transposed datacube D can be multiplied by
the spectral component matrix P to obtain the spatial distributions of these spectral
correlations as in Equation 3.7. Each row in the resulting matrix Y contains an
unfolded image component containing the spatial contributions of each profile in P .

All positive and negative values in a profile in P contribute to a component,
even when the values are close to zero. However, the higher a—positive or negative—
contribution to a component is, the more important it is considered to be. A threshold
parameter α is defined to reduce the number of spectral bins that are used in the
feature visualization. The thresholded contributions P+

α for positive and P−
α for

negative are given by

P+
α [m] =

{
m, if m ≥ α
0, otherwise

(7.1)

P−
α [m] =

{
−m, if m ≤ −α
0, otherwise

(7.2)

Often, a good initial choice for α is the highest possible value. As a consequence,
only those peaks with the highest positive or negative contribution are left for further
processing. This way, small or less important contributions containing more noise
remain hidden at first. When the value of α is lowered, more correlated spectral bins
are added to the visualization. Although these bins do not contribute as much to a
principal component, they could contain correlated spatial or spectral characteristics.
For example, when using an α = 0.3 in the spectral profile of Figure 7.2a, those peaks
with the largest contribution remain (in this case three peaks, as shown in Figure 7.3).
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Figure 7.3: Selection of spectral peaks outside the grey area with α = 0.3 from the spectral
profile of the second principal component from Figure 7.2a.

This figure shows two negative contributions and one positive contribution. If neces-
sary, a user can lower α and add more contributing correlated spectral windows to
the resulting visualization.

7.2.3 Convolution
So far, PCA has been applied to a binned datacube. The bins with the highest con-
tributions in a principal component were selected using a threshold α. The technique
from Chapter 6 is used to zoom in on an interesting feature by reducing the size of the
bins. After this, the selected principal components with the binned spectral profiles
are then used to extract feature data from the original unbinned datacube. The re-
sulting 3D clouds of data-points with high-resolution ion-counts do not reveal a clear
structure. Most intensities (∼ 99%) have either value one (∼ 9%) or zero (∼ 90%).
To be able to visualize more structural details within the cloud, a 3D convolution
filter transforms the datacube into a scalar field with continuous values. This low-
pass frequency filter blurs the volume in such a way that those regions with a high
concentration of data values can be represented by an iso-surface. Choosing smaller
kernel sizes, more fine-scaled anomalies will appear in a scale-space [Wit83; Koe84]
representation of the extracted features.

The second parameter, called β, controls the size of the kernel and therefore the
level of detail of the smoothed 3D feature. For smoothing, a standard Gaussian
isotropic convolution kernel hβ is chosen in such a way that β is the variance of the
Gaussian kernel, as defined in

hβ [x]= (2πβ)−n/2 · e
− ‖x‖2

2β (7.3)

where ‖x‖ is defined as the length of multidimensional vector x and n is the dimen-
sionality of vector x. The kernel hβ has the same value for β in both spectral and
spatial dimensions to keep the representation of the density distribution the same in
all three dimensions. To be able to apply the convolution filter to 3D datacubes in
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(a) (b)

Figure 7.4: The iso-surfaces of two anti-correlated features within the second principal
component with (a) β = 16 and (b) β = 32.

an interactive visualization, the Discrete Fourier Transform (DFT) can be used, as
in Nussbaumer [Nus81] and Geusebroek et al. [Geu02]. According to the convolu-
tion theorem, a convolution in a spatial domain is equivalent to multiplication in the
frequency domain. The 3D convolution filter can now be defined in the frequency
domain using the discrete Fourier transform in

F [k] =
N−1∑
n=0

f [n] · e−2πikn/N (7.4)

Here are n = (nx, ny, nm) and k = (kx, ky, km). n and k defined as the three-
dimensional vectors of indices of the selected datacube N = (N1, N2, N3) to simplify
the equation. After the Fourier transformations of datacube f [n] and the filter hβ [x],
the results are multiplied, as in

G[k] = F [k]⊗Hβ [k] (7.5)

After this, the inverse discrete Fourier transform results in a convolved datacube

g[n] =
1∏3

l=1Nl

N−1∑
k=0

G[k] · e2πink/N (7.6)

It is now possible to extract iso-surfaces from the high density regions. These iso-
surfaces represent a high concentration of a specific chemical element at a certain
location without losing high-resolution spectral information. Figure 7.4 (an enlarged
version of the top right part of Figure 7.1b) shows how β influences two extracted
features.

7.2.4 Correlated geometric shapes
Each extracted iso-surface represents the spectral and spatial distribution of elements
or molecules in the datacube. These iso-surfaces can be visualized as different geo-
metric shapes. PCA enables us to add more information to 3D shapes. Information
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(a) (b)

Figure 7.5: The iso-surfaces of two anti-correlated features within the second principal
component with (a) the red shape on γ = 0.4, a green shape on γ = 0.2 and (b) the red shape
on γ = 0.6, a green shape on γ = 0.4.

about the (positive and negative) correlation between peaks and regions could be used
for the visualization of these shapes. The largest peaks in a spectral component are
selected by α. After this, β is used to control the detail and convert the 3D clouds
of data-points into a scalar field with continuous values. A third parameter γ is set
to extract and show iso-surfaces of the selected features in the created 3D space g[n].
A histogram is created with the values in g[n] of the extracted features, as shown in
Figure 7.6a. γ is defined as an intensity value (or iso-value) on the horizontal axis of
this histogram. The low intensities on the left side of the horizontal axis represent
those points in the areas of g[n] with a low density. The points in the areas with a
high density are on the right of this intensity scale. Each iso-surface is extracted by
selecting a particular iso-value γ. The effects of choosing different values for γ are
shown in Figure 7.5. Figure 7.5a contains 3D feature shapes with low values for γ
and thus represent those areas in the datacube with lower densities. The areas with
higher densities are represented in Figure 7.5b and have higher values for γ.

7.3 Results

In this chapter, we refer to the dataset acquired in Section 6.4. All its spectral
intensities are summed in a single image (Figure 7.1b). This makes it impossible
to distinguish between different values in a spectral profile and their corresponding
specific spatial contribution. In this type of representation, interesting features like
heart, blood vessels, bone structures or distribution of cholesterol remain hidden or
are poorly visible at best. It is hard to distinguish the cross-section itself from the
material in which it is embedded. In our approach, α is used to reduce the amount
of spectral noise in the selection of spectral windows. A second parameter β enables
a user to view the resulting features on different levels of detail. The highest level
of detail shows the original cloud of points from one particular spectral window, but
the iso-surface of the unconvolved data does not reveal clear coherent information in
the cloud. The information of the spectral structure becomes more apparent when
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(a) (b)

Figure 7.6: (a) The histogram with the densities of three analytes in the second principal
component from which an appropriate value for γ can be selected and (b) the extracted cor-
related shapes with α = 0.3, β = 16 and γ = 0.35 for the blue and red shape, γ = 0.15 for
the green shape.

smaller values are chosen for β. Figure 7.4 shows the iso-surfaces of two anti-correlated
features within the second principal component. It shows the same part of the cross-
section of the backbone with the red shape representing sodium and the green shape
representing indium. Clearly, more structural details can be seen in the image on the
right of Figure 7.4. For instance, small red regions appear beside the backbone that
can be identified as blood vessels. The neural tube (represented by the hole on the
left-bottom part of the cross-section of the backbone) is visible in the image on the
right, whereas it is closed on the left. Different values for β can be used to find a
balance in the complexity of the structure of the iso-surfaces and the desired level
of detail. The size of the extracted shapes can be controlled by the third parameter
γ. Figure 7.6a shows the histogram with the densities of three analytes within the
second principal component. In Figure 7.5 we show that different values for γ can
be used in order to find an appropriate level of density to display the component.
Regions with the highest data density are selected by choosing higher values for γ.

Using all three parameters at the same time results in the visualization of the
cross-section in Figure 7.6b. In this example, we used the second principal component
only, as it displays a clear distinction between bone tissue and the material in which
the cross-section is embedded. Again, the red and blue shapes are elements that are
correlated and the green shapes represents the anti-correlated material outside the
embryo. The holes in the green shape are caused by fragments of other elements. If
desired, they can be deselected. The irregularities on the green surface are due to
noise artifacts in the sample itself. An expert is able to interpret the distribution of
elements in this visualization. For instance, the blue element (potassium) shows a
similar distribution as the red element (sodium). Both are present in bone-tissue and
blood. The large red shape on top of the figure can be identified as a cross-section
of the backbone. The large red shape on the bottom can be identified as the heart.
Different principal components can be used to create multiple views of the distribution
of correlated features within the same datacube. For instance, if other components
contain elements or molecules present in the heart but not in the bone (or vice versa)
they can be classified and separated as different types of tissue.
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Figure 7.7: Isolated cholesterol distribution at the highest resolution between m/z 368.2 and
m/z 369.13 found by PCA-based zooming described in Chapter 6.

The PCA-based zooming technique introduced in Chapter 6 enables us to auto-
matically extract a component containing cholesterol distribution in the cross-section.
This feature could not be detected without the zooming approach. A resulting vi-
sualization of the cholesterol distribution at the highest resolution can be found in
Figure 7.7. The blue areas, mainly situated on the boundaries of the cross-section of
the embryo, represent high concentrations of cholesterol. This high-resolution feature
is represented by 3D shapes instead of the raw data-points. As a result, the bound-
aries of those areas with a high density of the cholesterol feature are visualized with
sharply defined borders.

When PCA is applied using the highest possible spectral resolution, it can be used
to identify different peaks. These peaks could remain hidden in one merged peak when
observing the summed spectrum. For instance, Figure 7.8 shows how a single peak in
the summed spectrum of a measurement (b) actually consists of three separate peaks
as shown by the principal component in (a). There are several reasons why these
peaks are represented as a single peak. There could be analytes with different m/z
values. Also, there can be noise in the measurement due to differences in height on the
surface. Finally, instrumental noise can be present because of optics: this is a so-called
‘ringing’-effect, due to optics within a mass spectrometer, which manifests itself as a
difference in height. With our method, this noise can be visualized as a high-resolution
representation of a peak. Figure 7.8c and d (resulting from the droplet dataset in
Figure 5.7) are examples of high-resolution visualizations of one peak. These examples
demonstrate how a 3D view provides more insight in the 3D distribution of peaks
in a spectral datacube. Figure 7.8c shows the 3D representation of the spectral
and spatial dimension and Figure 7.8d the spectral dimension with another spatial
dimension. The red iso-surface has a higher density than the blue iso-surface. Both
views clearly show the additional value of a high-resolution visualization for identifying
anomalies in spatial structures of peaks. After identification, these effects can be
removed by correcting these differences in height and therefore deconvolving the data
in the spectral dimension.
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(a) (c)

(b) (d)

Figure 7.8: (a) PCA component that separates three peaks from (b) one peak in the summed
spectrum using a high-resolution visualization with (c) the spectral dimension against y and
(d) the spectral dimension against x.

7.4 Discussion and future work

The proposed method of parametric visualization of high-resolution correlated fea-
tures has a number of advantages compared to the classical method of manual ex-
ploration. First, the extracted correlated and anti-correlated patterns are made dis-
tinctive through different colors. The threshold α is used to reduce the spectral noise
present in a single feature. Second, we make use of a dataset at its full spectral res-
olution, while other tools for visualization use a binned dataset. Third, our method
displays the extracted features with better defined boundaries, because the image is
extracted in three dimensions rather than in just 2D. Therefore, our shape extraction
contains less spectral noise. Our shapes contain only those 3D regions which have
the highest density in contrast to low-density regions with lower signal-to-noise ratio.
These geometric shapes are used to conveniently select one or more spectral windows
or even just a single spatial region of interest. Finally, our visualization is parametri-
cally controlled in such a way that an analyst is in control of feature extraction and
can set any desired level of detail.

With our approach, some aspects have to be taken into consideration. Our visu-
alization depends on the effectiveness of PCA. We chose PCA for feature extraction,
because it has already proven itself in this field of application. Other methods for
decomposition can be used as well, but—due to the enormous size of the datacubes
and the distribution of peaks among multiple spectral levels—it is not yet possible
to apply the algorithm on a dataset at its full resolution. So, even while depending
on the effectiveness of PCA, our method creates a more satisfying representation of
the distribution of mass spectral components than other known methods. Our zoom-
ing technique can also be used on features extracted with PCA-based methods (see
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Section 3.3). In fact, the application of PCA-based techniques is similar to PCA
regarding filtering by binning resulting in spectral and spatial components. However,
with PCA the computational load is considerably smaller.

Furthermore, our method is able to provide an intuitive interpretation of the
negative scores that result from PCA [Sme04]. Moreover, the presence of negative
scores even contributes to our visualization, because it allows for the display of anti-
correlated features. It is easy to experiment with different 3D filtering techniques, for
instance anisotropic convolution, which can provide less smoothed boundaries in the
extracted shapes. Eventually, we would like to add a functionality to this parametric
visualization method which is able to select the most appropriate values for the three
parameters we introduced. These values have to be independent from the methods
for decomposition, use of different convolution kernels and most importantly, the type
of spectral dataset used.

7.5 Summary and conclusion
This chapter explains how features are parametrically visualized at the highest possi-
ble resolution. Three parameters control the spectral contribution, the level of detail
and the level of density on which an extracted feature is represented. This visual-
ization has feature shapes with well-defined borders and provides more insight into
the influences of noise on a mass spectral measurement. It is possible to distinguish
different peaks according to their difference in density and spatial position, which
would not be possible in a separate spectral or spatial view. For a clear distinction,
different colors are assigned to the positively or negatively correlated spectral peaks.



Chapter 8
Conclusions and future research

Imaging mass spectrometry is a powerful technique to measure the spatial distribu-
tion of molecular content on surfaces of biological samples. Modern developments in
spectrometry instrumentation allow for data acquisition in continually higher mass
and spatial resolution, resulting in datasets which have become very large and rich
of detail. This thesis has explored the usage of features for the visualization of such
datasets. The research questions in Section 1.5 were formulated as:

• How can PCA be used for robust feature detection in large imaging spectrometry
datasets?

• How can features be used to improve registration, zooming, and visualizations
of spectral datasets?

We have shown that PCA can be used for robust feature detection in mass spectral
datasets. However, due to the low signal-to-noise ratio and the number of variables
in these datasets, PCA can not be applied to the raw channel data of a mass spectral
measurement. Therefore, a binning function has been used for preprocessing in order
to combine several spectral channels into a single new spectral variable. We have
shown that binning generally increases the signal-to-noise ratio in the data and re-
duces the size of the a mass spectral dataset which increases sensitivity of the feature
detection by PCA.

8.1 Conclusions
PCA has several advantages. It does not require different parameters based on a
chemical model of a specific dataset or based on the purpose and goal of the analysis.
By combining PCA with binning, interesting features can be found. PCA can high-
light features in original data-points for quantification, whereas the resulting principal
components are not suited for quantitative interpretations. Both positive and neg-
ative parts in the principal components provide information about the correlation
of different spectral profiles. Just one single parameter is needed in the process of
binning to be able to determine the level of detail in the feature detection. Therefore,
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PCA is ideal for the discovery of unknown features and the exploration of spectral
datacubes without well-defined spectral peaks.

We have shown that features can improve registration, zooming, and visualiza-
tions of spectral datasets. Feature-based registration is more robust compared to
registration of complete datacubes or registration of TIC images. The extended data-
cubes have more spectra, which improve signal-to-noise ratio and therefore feature
detection. Feature-based zooming fully utilizes all available data. For example, it is
possible to zoom in on a specific area with improved detection of features. Features
can be visualized by direct volume rendering or in a high-resolution parametric 3D
representation. Both visualization techniques provide a direct linkage between the
spectral and spatial properties of a feature. Direct volume rendering gives an analyst
better insight in the relations between features as well as their spectral and spatial dis-
tributions. High-resolution parametric 3D representations create distinct boundaries
and provide more detailed characteristics of the surface of a feature.

All methods are implemented in the MatLabTM-environment. This environment
serves as a rapid prototyping environment for each method in this thesis. It offers a
large variety of optimized implementations for (sparse) data-structures, mathemati-
cal operations, and visualization techniques. The flow of the data in the visualization
pipeline (see Figure 1.2) can be easily adjusted in the MatLabTM-scripts that imple-
ment our methods. These scripts are cross-platform implementations that can be used
in batch processing for the automatic registration of multiple datacubes. Several mass
spectrometrists use these scripts to create enlarged spectral datacubes, extract, and
visualize features. All results in this thesis were obtained in close collaboration with
these experts. The methods can be extended accordingly to the evolving methods for
acquisition of mass spectral data.

8.2 Directions for future research
There are several directions in which this work can be continued and improved.

Detection

The binning function combines several spectral channels into a single new spectral
variable by a fixed spectral window size. This binning function can be improved
when the spectral window is dynamic—rather than fixed—according to a certain
transfer function. An appropriate transfer function could be determined according to
the differences in height of the surface [McD03]. This way, a deconvolution filter is
created in which none of the peaks are broadened by the variation in height of the
sample surface. This will improve the signal-to-noise ratio in the data.

Another improvement in the detection of features is possible when the spatial
neighborhoods of spectra are included in PCA. Normally, PCA distinguishes vari-
ables and samples in a dataset. Therefore, relations between closely located spectral
variables or spatial samples are not considered in a solution, i. e., spectral datacubes
are not handled as images but a disarranged list of spectral measurements. It is not
possible to incorporate spatial information in the implementation of PCA, but filter-
ing could create the same desired effect. An appropriate 3D convolution filter will
smooth data-points and include the intensities of neighboring spectra for improved
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application of PCA. It is not complicated to smooth a small part of a datacube, but
smoothing increases the number of data-points with non-zero values compared to the
original sparse datacube. Alternative solutions have to be found for processing these
non-sparse datacubes to be able to apply PCA.

A final improvement to feature detection can be made by the method used for
the fusion of several datacubes. Spectral datasets have to be combined after finding
the correct offset between different datacubes. Traditional methods use the spectra
of the first measured datacube for the overlapping region, because these spectra are
measured from the undamaged surface of the sample. The quality of a second mea-
surement of the same surface area will be less, since the surface is affected by the
first measurement. An alternative method for combining two datasets could use the
information in the overlapping region to enrich these spectra in this area.

Visualization

Two improvements can be considered in the visualization of features. Additional
uncertainty information can be visualized in the overlapping regions of several mea-
surements. Two measurements of the same overlapping area can provide statistics
on the data distribution in that area. With these statistics, uncertainty information
about the data distribution can be determined and added to a visualization as an
overlay on these spectral and spatial areas. This way, the signal-to-noise ratio could
be visualized.

In addition, the visualization of features can be improved by applying additional
statistics on the extracted features. Instead of visualizing spectral and spatial infor-
mation, other (statistical) characteristics could provide more insight in the extracted
feature. For example, the density distribution within a feature shape can be mea-
sured and visualized. Alternatively, the characteristics of two feature shapes could
be compared. Such comparison could result in a metric to quantify the correlation
between feature shapes.

Interpretation

The final interpretation of the visualized features is done by an analyst. Interpretation
could be made less complex when a (statistical or model-based) weighting function
is used on the spectral variables before PCA is applied. Depending on the type of
measurement and goal(s) for analysis, an analyst would be able to control the contri-
bution of the spectral variables in a solution. Characteristic noise in a measurement
could be reduced (as in Lee et al. [Lee08]) and emphasis can be put on small, but
important peaks. This is similar to our zooming approach. In zooming, features are
either selected or deselected. With weighting, uninteresting features do not have to be
removed completely, but their influence could be limited and controlled appropriately
to an experiment.

Interpretation of spectral measurements could also be enhanced by combining
measurements of different modality of the same sample. Different imaging techniques
(e. g., microscopy, radiography, thermography) provide different characteristics of the
same sample [Ery07]. If these datasets can be registered correctly, all datasets could
be used for enhanced feature detection. These multi-modal features provide a more
complex but enhanced view of the composition of a sample material. Besides having
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more spatial distributions, signals of different modality would improve interpretation
of features.

Another improvement for interpretation of features is the use of features already
identified in previous analyses. The characteristics of these features can be used for
a more robust or automatic classification. Quantitative information of the intensities
of a combination of several peaks within a feature can be stored and used for feature
detection in other—similar—spectral datasets. Feature detection would not be lim-
ited to the variation in intensity values, since other properties of previously detected
features could be used as well. An analyst would be able to visualize and compare
the same identified feature within several datasets without comparing all extracted
components for similarities. This improvement would be useful in the comparison of
samples in, for instance, biomarker detection.
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[Fuh02] A. Fuhrmann, B. Özer, L. Mroz, and H. Hauser. VR2 interactive volume
rendering using PC-based virtual reality. Tech. Rep. 14, TR-VRVis, Mar
2002. 73



114 BIBLIOGRAPHY

[Geb98] M. S. klein Gebbinck. Decomposition of mixed pixels in remote sensing
images to improve the area estimation of agricultural fields. Ph.D. thesis,
Katholieke Universiteit Nijmegen, Nov 1998. 14

[Geu02] J. M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer. Fast
anisotropic gauss filtering. In European Conference on Computer Vision,
Copenhagen, Denmark, Part I, vol. 2350, pp. 99–112. Springer Berlin /
Heidelberg, May 2002. 101

[Gon03] R. Gonzalez, R. Woods, and S. Eddins. Digital Image Processing Using
MATLAB. Prentice Hall, 2003. 57

[Gra06] D. J. Graham, M. S. Wagner, and D. G. Castner. Information from com-
plexity: Challenges of tof-sims data interpretation. Applied Surface Science,
vol. 252(19):pp. 6860–6868, 2006. 3

[Gut54] L. Guttman. Some necessary conditions for common-factor analysis. Psy-
chometrika, vol. 19:pp. 149–162, 1954. 42

[Hai97] S. Haigh, P. G. Kenny, R. H. Roberts, I. R. Barkshire, M. Prutton, D. K.
Skinner, P. Pearson, and K. Stribley. Automatic and interactive correlation
partitioning compared : Application to TiN/ Ti/ SiO. Surface and Interface
Analysis, vol. 25:pp. 335–340, 1997. 98

[Har70] R. A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an explanatory multimodal factor analysis. In UCLA Work-
ing Papers in Phonetics, vol. 16, pp. 1–84. 1970. 43, 55, 94

[Har84] R. A. Harshman. How can I know if it’s real? A catalogue of diagnostics
for use with three-mode factor analysis and multidimensional scaling, chap.
Appendix A, pp. 566–591. Praeger, 1984. 11
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Glossary of Terms

3D opacity map A datavolume in which a certain opacity value is assigned to each
cell, page 75.

abundance Proportion in which an element is present compared to all other elements,
page 12.

analyte Substance or chemical constituent that is determined in an analytical proce-
dure, page 103.

binning Down-binning combines serveral data-points into one variable or ‘bin’ with-
out the use of a complex model. The intensity values are added together to
create a new variable. A single parameter sets the size of the bin, page 21.

CA Cluster Analysis is mainly applied to imaging spectrometry data to group
similar spectra that are within each other’s neighborhood, page 24.

chemometrics Refers to multivariate analysis in the context of applications in the
chemistry. It comprises the application of multivariate statistics, computa-
tional methods and also includes the representation and display of the ex-
tracted information, page 17.

convolution Filters or transforms data by applying a local function on several data-
points that are located together. The local function (or density function)
is based on a local properties of the data distribution instead of a complete
model of the data. All data-points are transformed according to this local
function. A suitable model can transform the dataset into one with less local
noise, page 20.

cost function The cost function describes the difference between a temporal classifi-
cation and the actual data. This cost function is minimized to be able find
the best mapping between data and a resulting classification. A cost function
could be complex or simple, depending on the type of input, page 25.

CT Computed Tomography is a medical method for imaging by sections, originally
known as the a ‘EMI scan’ and later as a computed axial tomography (CAT)
scan, page 73.

125



126 GLOSSARY OF TERMS

deconvolution Reversed convolution by making an estimation of a point-spread func-
tion which describes a local model of (variance in) the data distribution, page
20.

DVR Direct Volume Rendering is a technique to display a 2D projection of a 3D
volume in which every voxel has an opacity and a color, page 71.

endmembers Constituent spectra that correspond to known chemical compounds or
materials in a spectral image. They are the most elementary building blocks
that define a ‘pure’ material within a spectrum, page 12.

f(m) Function describing a spectrum that assigns a intensity value to each mass m,
page 2.

F (x, y,m) Function describing a 3D spectral datacube that assigns a intensity value
to each mass m on each location (x, y), page 2.

F ′
m(x, y) Function describing an image with a spatial distribution of intensity values

of a spectral band m, page 2.

FA Factor Analysis or common factor analysis is a dimension reduction technique
in which variables are re-expressed by orthogonal projection on new variables
according to their common variability, page 22.

FT-IR Fourier Transform InfraRed imaging spectroscopy is a technique that employs
the transmission of infrared light through the surface of a material. Light
from the spectrometer illuminates the sample. Reflected or transmitted light
is projected on the camera. During each step of the interferometer, the cam-
era acquires and averages 200 images to gain signal-to-noise. This way, an
interferogram is obtained for each of the 4096 camera pixels. These can be
Fourier transformed resulting in 4096 infrared spectra. Using the IR spec-
trum, chemical bonds and the molecular structure of organic compounds can
be identified. Surface areas as small as 10-15 microns can be detected, page
14.

GB GigaByte means either exactly one billion bytes or approximately 1.07 billion
bytes, page 54.

Hermitian Square matrix with complex entries which is equal to its own conjugate
transpose, page 49.

isotropic Uniformity in all directions, for instance when an image is circularly sym-
metric in 2D, page 100.

landmark Significant and easily identifiable point of correspondence on each object
that matches between and within populations and is useful to represent shape
changes, page 67.

LDI Laser Desorption and Ionization time of flight imaging is a soft ionization
technique in mass spectrometry, page 50.
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matrix material Crystallized molecules that surround and support an embedded an-
alyte material to protect it from being destroyed by the laser beam and to
facilitate vaporization and ionization in chemical analysis, page 16.

MCA Multiple Correspondence Analysis is a generalized approach that assigns dis-
tances between nominal or ordinal data measurements. It utilizes a model,
for instance chi-square, to base it distance functions on. It provides tools for
analyzing the associations in contingency tables. Simple indices are assigned
to each pair of row and column variables to show the relation between the
both of them, page 27.

MCR Multivariate Curve Resolution is a group of techniques which intend the re-
covery of the response profiles (spectra, pH profiles, time profiles, elution
profiles, etc.) of more than one component in an unresolved and unknown
mixture when no prior or little information is available about the nature and
composition of these mixtures, page 27.

MDS Multi-Dimensional Scaling visualizes distances or similarities between vari-
ables in a graphical map, page 34.

MRI Magnetic Resonance Imaging is a technique used in radiology to visualize the
structure and function of the body using a magnetic field, page 73.

MSE Mean Squared Error is a pixel-wise similarity measure between two images,
page 56.

multicollinearity Refers to a situation in which two or more explanatory variables in
a multiple regression model are highly correlated, page 18.

NCC Normalized Cross-Correlation is a pixel-wise similarity measure between two
images of the same modality, page 57.

NN Neural Networks can be designed to perform all tasks of filtering, selecting
and create a classification. Before this, a neural network needs training data,
a number of output variables and an objective or optimization function, page
25.

noise Any unwanted signal interfering with the clarity and intelligibility of desired
signals, page 16.

PARAFAC Parallel Factor Analysis is a multiway decomposition method and a gen-
eralization of PCA on higher order arrays. The number of components in a
model have to be estimated and there is a residual term with the difference
between the model and the measured data, page 28.

PCA Principal Component Analysis is a dimension reduction technique in which
variables are re-expressed by orthogonal projection on new variables according
to the total variance, page 23.

PP Projection Pursuit maximizes a chosen projection index, for example the nor-
mal distribution, the entropy, kurtosis etc., page 28.
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qualitative view Focuses on classifying a sample in an analysis as either having a
specific chemical attribute or not, page 12.

quantitative view Focuses on modeling a measured response in an analysis based on
the amounts, concentrations, or other physical or chemical properties, page
12.

RGB Red, Green, Blue describes a device-dependent color space that can reproduce
a range of colors when these three additive primary colors added together, page
2.

S/N Signal-to-Noise ratio is the power ratio between a signal and the level of back-
ground noise corrupting the signal, page 16.

datacube Spectral datacubes are used in the field of imaging spectrometry, in which
a spectrally-resolved image dataset can be represented as a 3D volume, page
2.

SVD Singular Value Decomposition is a factorization method that results in a di-
agonal matrix ande two unitary matrices, page 27.

TIC Total Ion Count refers to an image with all ions counts summed to create a
spatial distribution of intensity values, page 32.

TM Thematic Mapper is a sensor observing the earth in the Landsat program.
These sensors have seven spectral bands: three in visable wavelenghts and
four in infrared most of which have a spatial resolution of 30 meter, page 14.

TOF SIMS Time-of-Flight Secondary Ions Mass Spectrometry is a method in which
a surface is bombarded with a primary, pulsed beam of ions. Emitted ions
are accelerated and imaged with sophisticated ion optics on a detector. This
results in the emission of secondary ions, which are accelerated and subse-
quently mass analyzed to generate surface mass spectra. Secondary ions with
different masses and charges have different velocities and are separated based
on their flight time through the system. The technique therefore provides very
detailed elemental and chemical structure information. Using the latest TOF
SIMS instruments, surface areas as small as 3-5 microns can be detected, page
14.

u Unified atomic mass unit, or Dalton (Da) or, universal mass unit, is an unit
of mass used to express atomic and molecular masses. It is the approximate
mass of a hydrogen atom, a proton, or a neutron, page 2.

Xmn Matrix with the coefficients of the pure spectral profiles in the columns, where
m are the spectral variables and n the number of distinct compounds, page
12.
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Summary

Imaging mass spectrometry is an innovative technique that combines high-resolution
microscopic imaging tools with analytical capabilities of spectrometry. It is a pow-
erful tool to determine the spatial distribution of chemical compounds on complex
surfaces, for example, for microscale analysis of cells and tissue in biological samples.
The result is a large spectral datacube: a three-dimensional (3D) dataset in which sur-
face position and mass spectral distribution are represented. Analysts try to discover
‘features’: correlations in spectral profiles with a recognizable spatial distribution.
Techniques for feature extraction and visualization are developed to improve the ex-
ploratory analysis of spectral datacubes. The topic of this work is the design and
implementation of feature extraction and visualization techniques in high-resolution
imaging spectrometry data. Principal Component Analysis (PCA) is interactively
used as a governing approach for feature detection. A wide range of visualization
techniques are implemented based on extracted features.

The thesis is organized as follows. In Chapter 2 (Spectral analysis: a survey), we
provide a brief background survey on spectral analysis. The analysis in the proposed
approach is divided into three stages: data acquisition, feature extraction and feature
visualization. For each stage, a detailed description of currently applied methods is
given. The methods most appropriate for this qualitative approach of analysis are
chosen as a specific subset. PCA in combination with a binning function is most suited
for extracting features from imaging mass spectral data. Both methods increase the
signal-to-noise ratio and reduce the amount of data from imaging mass spectrometry.

Chapter 3 (PCA-based feature extraction) compares the quality of three different
PCA-based methods for detecting and extracting features from spectral datacubes.
We discuss preprocessing of mass spectral data, PCA, additional rotational optimiza-
tion by VARIMAX, and the PARAFAC method for factor regression. The results are
compared quantitatively and qualitatively, together with some performance charac-
teristics. For the quantitative comparison, we used a RMSE metric to compare the
methods with ground truth spectra under various noise conditions. For the qualita-
tive comparison, we used three criteria to judge the quality of features in the resulting
visualizations. These criteria were applied to interpret the visualizations of features.

In Chapter 4 (Feature-based registration), a robust method for automatic feature-
based registration is developed. The reduction of uncorrelated noise provided by
PCA allows high-resolution imaging mass spectrometry datasets to be automatically
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aligned and combined for high-resolution analysis of large areas. The results clearly
show that the entropy-weighted, mean squared error landscape of chemically matched
component images can be used to automatically align high-resolution imaging mass
spectrometry datasets. Several spectral datacubes are combined to provide better
detection and extraction of features.

In Chapter 5 (Feature visualization), a visualization technique is described that
utilizes principal components to create transfer functions for volume rendering of a
spectral datacube. Two types of spectral datacubes are visualized in 3D by direct
volume rendering with these transfer functions to control opacity and highlight ex-
tracted features. This enables us to visualize the link between the spectral and spatial
characteristics of a feature within the spectral datacube. Applications demonstrate
the additional value of these visualizations.

Chapter 6 (Feature zooming) presents a technique for spectral and/or spatial
zooming of extracted features. This technique is especially useful for spatially ex-
tended datasets. The combined spectral datasets are too large in size to be explored
and visualized using commonly feature extraction and visualization techniques. Ana-
lysts are able to select important features or deselect unimportant features for further
analysis on different levels of detail. Moreover, features with unwanted artifacts can
be removed to reduce noise.

Chapter 7 (High-resolution feature visualization) provides an approach to para-
metrically visualize features in 3D and at the highest resolution possible. Three pa-
rameters control the spectral contribution, the level of detail and the level of density
on which an extracted feature is represented. This visualization has feature shapes
with well-defined borders and provides more insight into the influences of noise on
a mass spectral measurement. It is possible to distinguish different peaks according
to their difference in density and spatial position, which would not be possible in a
separate spectral or spatial view. An application shows how resulting features are
visualized and interpreted.

The developed tools generate new possibilities to handle, explore, and visualize the
large imaging mass spectrometry datasets. A sensitive, selective, and robust approach
for feature extraction enables detection and classification of features in different pro-
teomics applications. Multiple feature shapes with high-resolution characteristics can
be compared and examined on different levels of detail. These visualizations can
provide more detailed molecular insight in the biochemistry of surfaces and improve
classification of peptides and proteins.



Samenvatting (Dutch summary)

Plaatsopgeloste massa spectrometrie is een innovatieve techniek die gereedschappen
voor microscopische beelden met hoge resolutie combineert met de analytische moge-
lijkheden van spectrometrie. Het is een krachtig middel om de ruimtelijke verdeling
te bepalen van chemische componenten op complexe oppervlakten, bijvoorbeeld voor
de analyse van cellen en weefsel in biologische specimen. Het resultaat is een grote
spectrale datakubus: een driedimensionale (3D) dataverzameling waarin de opper-
vlaktepositie en de verdeling van spectrale massa zijn vertegenwoordigd. Onderzoe-
kers proberen ‘kenmerken’ te ontdekken: correlaties in spectrale profielen met een
herkenbare ruimtelijke verdeling. Er zijn technieken ontwikkeld voor het extrahe-
ren en visualiseren van kenmerken om de verkennende analyse van spectrale dataku-
bussen te verbeteren. Dit werk richt zich op het ontwerpen en implementeren van
technieken voor de extractie en visualisatie van kenmerken uit plaatsopgeloste spec-
trometrische data met hoge resolutie. Principale Componenten Analyse (PCA) wordt
interactief gebruikt als een leidende benadering voor het detecteren van kenmerken.
Op basis van deze geëxtraheerde kenmerken is een brede reeks visualisatietechnieken
gëımplementeerd.

Dit proefschrift is op de volgende manier georganiseerd. In Hoofdstuk 2 (Spectra-
le analyse: een overzicht) wordt een kort overzicht gegeven van de achtergrond van
spectrale analyses. In de voorgestelde benadering is de analyse in drie fasen verdeeld:
dataverwerving, het extraheren van kenmerken en de visualisatie van kenmerken. De
methoden die op dit moment worden toegepast, worden voor elke fase gedetailleerd
beschreven. De methoden die het meest toepasselijk zijn voor deze kwalitatieve be-
nadering van een analyse worden als deelverzameling gekozen. PCA in combinatie
met een verdelingsfunctie is het meest toepasselijk voor het extraheren van kenmer-
ken uit plaatsopgeloste data met spectrale massa’s. Beide methoden vergroten de
signaal/ruisverhouding en reduceren de hoeveelheid data afkomstig uit de plaatsop-
geloste massa spectrometrie.

Hoofdstuk 3 (PCA-gebaseerde extractie van kenmerken) vergelijkt de kwaliteit van
drie verschillende PCA-gebaseerde methoden voor het detecteren en extraheren van
kenmerken uit spectrale datakubussen. We bespreken het voorbewerken van data
met spectrale massa, PCA, extra optimalisatie door rotatie met VARIMAX en de
PARAFAC methode voor de regressie in factoren. De resultaten zijn kwantitatief
en kwalitatief vergeleken, samen met enkele kenmerken van het prestatievermogen.
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We hebben een RMSE-metriek gebruikt voor de kwantitatieve vergelijking van de
methoden, waarbij verschillende spectra gebruikt worden waarvan de hoeveelheid ruis
bekend is. In de kwalitatieve vergelijking hebben we drie criteria gebruikt om de
kwaliteit van de kenmerken in de resulterende visualisaties te beoordelen. Deze criteria
zijn toegepast om de visualisaties van de kenmerken te kunnen interpreteren.

In Hoofdstuk 4 (Registratie gebaseerd op kenmerken), is een robuuste methode ont-
wikkeld voor automatische registratie op basis van kenmerken. PCA zorgt voor een
afname van niet-gecorreleerde ruis, waardoor plaatsopgeloste dataverzamelingen met
spectrale massa automatisch uitgelijnd kunnen worden en gebruikt kunnen worden
voor de analyse van grote gebieden op een hoge resolutie. De resultaten laten dui-
delijk zien dat het landschap bestaande uit gemiddelde kwadraten met een entropie-
weegfactor, gemaakt door beelden met chemisch gelijke componenten, gebruikt kan
worden om plaatsgebonden dataverzamelingen met spectrale massa op een hoge reso-
lutie automatisch uit te lijnen. Meerdere spectrale datakubussen zijn gecombineerd
om een betere detectie en extractie van kenmerken te kunnen krijgen.

In Hoofdstuk 5 (Visualisatie van kenmerken) wordt een visualisatietechniek be-
schreven die principale componenten gebruikt om transferfuncties te generen voor
het afbeelden van het volume van een spectrale datakubus. Twee typen spectrale
datakubussen worden gevisualiseerd in 3D door directe weergave van volumes met
deze transferfuncties. Hiermee kan de mate van ondoorschijnendheid worden gecon-
troleerd en kunnen de uitgelichte kenmerken worden benadrukt. Hierdoor ontstaat
de mogelijkheid om de spectrale en ruimtelijke eigenschappen van een kenmerk direct
af te beelden in de spectrale datakubus. Applicaties demonstreren de toegevoegde
waarde van deze visualisaties.

Hoofdstuk 6 (Vergroten van kenmerken) presenteert een techniek voor het spec-
traal en/of ruimtelijk vergroten van geëxtraheerde kenmerken. Deze techniek is vooral
nuttig voor dataverzamelingen die ruimtelijk vergroot zijn. De gecombineerde spec-
trale dataverzamelingen zijn te groot om ze met de gebruikelijke methoden voor de
extractie en visualisatie van kenmerken te kunnen afbeelden en bestuderen. Onderzoe-
kers kunnen belangrijke kenmerken selecteren of onbelangrijke kenmerken schrappen
voor verdere analyse op verschillende detailniveaus. Bovendien kunnen kenmerken
met ongewenste artefacten verwijderd worden om de ruis te verminderen.

Hoofdstuk 7 (Visualisatie van kenmerken op hoge resolutie) stelt voor om ken-
merken in 3D te parametrisch te visualiseren op de hoogst mogelijke resolutie. Drie
parameters sturen de spectrale bijdrage, het detailniveau en het dichtheidsniveau
waarop een geëxtraheerd kenmerk is weergegeven. Deze visualisatie geeft kenmerken
een vorm met goed gedefinieerde grenzen en geeft meer inzicht in de invloeden van
ruis op een meting met spectrale massa’s. Het is mogelijk om verschillende pieken te
onderscheiden aan de hand van het verschil in dichtheid en ruimtelijke positie. Dit zou
niet mogelijk zijn in een gescheiden spectrale of ruimtelijke afbeelding. Een applicatie
laat zien hoe de resulterende kenmerken worden gevisualiseerd en gëınterpreteerd.

De ontwikkelde middelen genereren nieuwe mogelijkheden om grote plaatsopge-
loste dataverzamelingen afkomstig van massa spectrometrie te hanteren, onderzoeken
en visualiseren. Een gevoelige, selectieve en robuuste benadering voor de extractie
van kenmerken maakt het mogelijk om kenmerken te detecteren en classificeren in
verschillende applicaties van proteomics. De vormen van meerdere kenmerken met
karakteristieken op hoge resolutie kunnen vergeleken en bekeken worden op verschil-
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lende detailniveaus. Deze visualisaties kunnen een gedetailleerder moleculair inzicht
geven in de biochemie van oppervlakten en verbeteren de classificatie van de peptiden
en protëınen.
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